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Introduction

(i) Synopsis. The discovery, around 1960, of the 'Kervaire Invariant' for almost
framed manifolds of dimension 4k+ 2 (see [12]) was an important stimulant for the
development of surgery theory; but it also led to the theory of the 'generalized
Kervaire Invariant' of Browder and Brown [2, 3].

The present paper is an attempt at uniting these two theories, by constructing a
non-simply-connected and in other respects updated version of the generalized
Kervaire Invariant.

The construction has three surprising aspects. Firstly, it is conceptually satisfying
and, in the simply-connected case, clarifies Brown's original theory; for instance, the
'product formula problem' (see [4]) evaporates. Most of the new concepts are
borrowed from the 'algebraic theory of surgery'; see [15]. Secondly, it is computation-
ally satisfying. Thirdly, it has applications to classical surgery theory, especially to the
calculation of the symmetric L-groups of [13] and [15]; and therefore to anything
which involves product formulae for surgery obstructions.

A black box description of the theory has been given in [22]; in this introduction I
shall concentrate on the concepts inside the box.

(ii) Symmetric forms on (co-)homology groups vs. symmetric forms on chain complexes.
If M is a 2/c-dimensional geometric Poincare complex, then Hk(M;Z2) carries a non-
degenerate symmetric bilinear form.

Let y be a spherical fibration on a space X. Brown's generalization of the Kervaire
Invariant [3] is based on the observation that, under certain conditions on y, a bundle
map vM -* y (with underlying classifying map / : M -> X) determines a refinement of
the symmetric form on Hk(M; Z2) to a quadratic form with values in Z4; here vM

denotes the Spivak normal fibration of M.
So much for the simply-connected theory. (The term 'simply-connected' is a little

misleading here; of course X above does not have to be simply-connected—it is just
that we pay no special attention to n^X).) Now let n be a discrete group, let
w: n -* Z2 be a homomorphism, let a be a principal rc-bundle on X, and let j be an
identification of the two double covers arising from the given data (namely, the
orientation cover associated with y, and w"'(a)). Such sextuples (n,w;X,y;a,j) will
be the main objects of study.

For a geometric Poincare complex M" with bundle map vM -»• y and underlying
classifying map / : M -> X as before (but with n arbitrary), let C{M) be the cellular
chain complex of the total space of / " (a ) (the principal rc-bundle on M; assuming that
M is a CW-space). Now C(M) is a chain complex of finitely generated (f.g.) projective
left /4-modules, and A = Z[7t] is regarded as a ring with involution (the w-twisted
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What next? Inspection shows that the approach of [3] does not work very well here,
even if n = 2k. That is, some kind of symmetric bilinear form is defined on
Hk(C(M);A), but it has very unpleasant properties in general.

The solution to this dilemma is suggested by recent developments in surgery theory.
In [13] and [15], the notion of'symmetric bilinear form on a chain complex (of f.g.
projective left /1-modules)' is defined or implicit (details follow below); the notion is
homotopy invariant, and it is shown that the dual chain complex of C{M), written
C(M)~* = Hom/((C(M),/4), carries a non-degenerate symmetric bilinear form.
(Again, the dimension n is arbitrary.) So, instead of trying to 'refine' a symmetric
bilinear form on some middle-dimensional cohomology group of C(M), we shall
refine Mishchenko's non-degenerate symmetric bilinear form on the chain complex
C(M)~*.

(iii) The technical terms. Let C be a chain complex of f.g. projective left /4-modules,
with Cr = 0 except for a finite number of indices r. Using the involution on A, we can
also regard C as a chain complex of right /4-modules, written C. So C ®A C is
defined, and is a chain complex of Z[Z2]-modules; the generator T e Z2 acts by
switching factors, with the usual sign rules.

Define Z[Z2]-module chain complexes W, W by

(Z[Z2] f o r r ^ O ,
r }0 for r < 0,

withd: Wr - Wr_{; x v-* (1 +{-)rT)-x for r > 0, and by

Wr = Z[Z2] for all r,

with*/: Wr -> Wr_x; x ^ (\+(-)'T)-x.
Write W&C and W&C for the chain complexes (of abelian groups)

HomZ[Z2](W, C ®A C) and HomZ[Z2,(^, C <g)A C), respectively. Finally, let

Q"(C):=Hn(W&C) and Q"(C) := Hn(W&C).

The covariant functors C H-> Q"(C), C \-* Q"(C) are homotopy invariant (this is
proved in [15], but also in this paper).

Now define a 'symmetric bilinear form of degree n on C to be

either an n-cycle cp e W&.C*

or a class [<p] e Qn{C~*) = Hn(W&C~*).

(There are two different schools of thought here; I find the first definition better to
work with, but the" second is homotopy invariant.) We now give some 'motivations',

(a) The n-cycle cp is a Z[Z2]-module chain map from HnW to

C~*f ®A C~* = Hom^C, C"*).

In particular, the value of cp on 1 e Z[Z2] = Wo is an n-cycle in Hom^C, C~*), that
is, a chain map

cp0: 1TC - C*

which can be considered as a bilinear form of degree n on C.
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(b) If Vx, V2 are vector spaces over a field F (for example, F = Z2), then there is an
abelian group isomorphism

(symmetric bilinear forms on Kx © V2)

= (symmetric bilinear forms on Vx)

© (symmetric bilinear forms on V2) © HomF(Kl5 V2).

In generalizing the notion of symmetric bilinear form to (certain) chain complexes
over A, this is a property one would like to retain; now it is indeed true that

Q"((C © D)~*) £ Q"{C-*) © Qn(D-*) © Hn(HomA(C,D-*)),

and there is clearly no simpler definition of 'symmetric bilinear form on a chain
complex' which is homotopy invariant and has this property.

(c) It is shown in [13] and [15] that a closed manifold or geometric Poincare
complex M", equipped with a principal rc-bundle a' and an identification of double
covers

w^(a') = (orientation cover of M"),

gives rise to a pair (C, q>) in which C = C(M), and q> is an n-cycle in W& C (sufficiently
well determined). In the terminology introduced above, q> is a symmetric bilinear form
of degree n on C~*; in the case at hand, cp is non-degenerate, that is, the chain map

<p0: r{C~*) - C = C~*-*

is a chain homotopy equivalence.
A pair (C,q>) as above (with q> non-degenerate) is called an 'n-dimensional

(symmetric) algebraic Poincare complex'. It is treated here as the chain level analogue
of a closed manifold or geometric Poincare complex, just as chain complexes (over A)
are treated as the analogues of spaces. 'Bordisms' between symmetric algebraic
Poincare complexes of the same dimension can be defined, etc.

(iv) Chain bundles. If spaces and closed manifolds (geometric Poincare complexes)
have analogues in the chain complex world, what about vector bundles (or spherical
fibrations)?

By 'chain complex world' is meant the category <^A of chain complexes C of f.g.
projective left /4-modules, with Cr = 0 except for a finite number of indices r. The
conceptual vacuum is filled as follows:

a 'chain bundle' on a chain complex C {in ^A) is a ^-dimensional cycle in W&C~*.

Motivation for this definition is as follows,
(a) The homotopy invariant (and contravariant) functors

constitute a cohomology theory on (€A\ that is, they satisfy the analogues of the
Eilenberg-Steenrod axioms in the (co-)homology theory of spaces, except the
dimension axiom.

(b) It is shown in [15] that a sextuple (n, w; X, y; a, j) as in (ii) above determines a
'characteristic class' in Q°(C(X)~*) [15, Part II, 9.3]; similarly, a stable automorph-
ism of y determines a class in Q'(Q^)"*) [15, Part II, 9.9]. This suggests that the
cohomology theory C t-> {Q~"(C~*)\ n e Z} is the chain level analogue of spherical
/C-theory. So it is reasonable to expect that chain bundles on chain complexes C (that
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is, representing cycles for elements in Q°(C~*)) are the chain level analogues of
spherical fibrations. And indeed it is possible to refine the 'characteristic class' above
to a rule which associates chain bundles to spherical fibrations. (Warning: this rule is
not additive; the geometric Whitney sum has not much to do with the addition in
W&C~*.)

(c) The definition of 'chain bundle' is so designed that any symmetric algebraic
Poincare complex (C, q>) carries a 'normal chain bundle' (the chain level analogue of
the Spivak normal bundle of a geometric Poincare complex). For details, see the main
text; the idea stems from [15, Part II, 9.6].

The non-simply-connected generalized Kervaire Invariant can now be described as
follows. Let (n,w;X,y;tx,j) be a sextuple as in (ii). The chain level image of y is a
chain bundle c(y) on the chain complex C(X) (over A = Z[7i]). Using the dictionary

space <-> chain complex of projective left A-modules,

geometric Poincare complex M <-* symmetric algebraic Poincare complex (C, (p),

spherical fibration <-• chain bundle,

Spivak normal fibration of M <-> normal chain bundle of (C, q>),

one obtains homomorphisms (for n e Z)

flexible signature: Qp
n(X,y) -> L"(C(X),c(y)).

Here Q^(X, y) is the bordism group of geometric Poincare complexes M" equipped
with a map of spherical fibrations from vM to y; similarly, Ln(C(X), c(y)) is the bordism
group of n-dimensional algebraic Poincare complexes (C,cp) over A, equipped with
a 'chain bundle map' from the normal chain bundle (on C) to the chain bundle c(y)
(on C(X)).

The relationship with the Wall groups Ln(Z[7r]) is as follows. Firstly, if the sextuple
(n,w;X,y;<x,j) is such that X = 0 , then L"(C(X),c(y)) s Ln(Z[>]). Secondly, if
X is arbitrary again, we may still consider the inclusion 0 <=-> X; it induces
homomorphisms

release: Ln(Z[n\) -> L"(C(X),c(y))

for n G Z. Now let / : M" -> N" be a degree-1 normal map between geometric
Poincare complexes. Suppose that N is equipped with a map of spherical fibrations
from v^ to y. Then the normal map / induces a similar structure on M, and the
equation

a*(M)-a*(N) =

holds. Here a* is the flexible signature (in L"(C(X), c(y))), and a^ is the surgery
obstruction (in Ln(l\n])).

(v) Computations. Let 6 be any chain bundle on a chain complex B (in y>A, for a ring
with involution A). Write 0 for the only chain bundle on the zero chain complex 0^ in
(€A. The inclusion 0^ d_> B is covered by a unique 'chain bundle map'; so there are
induced homomorphisms of algebraic bordism groups

release: L"(0A,0) -> L"{B,/l).

These algebraic bordism groups are defined just like L"(C(X),r.(y)) in the preceding
section.
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Now £"(0,4,0) is naturally isomorphic to the Wall group Ln(A) (see [21] or [15]).
Further, Ln{0A, 0) = Ln{A) and L"(B, 6) are the nth homotopy groups of certain spectra
J?(0A, 0) and S£\B, S) respectively, and the release homomorphisms are induced by a
map of spectra,

release: ^ (0^ ,0 ) -* ¥'{B,6).

Let Ln{B,6) be the nth (relative) homotopy group of 'release'. If we succeed in
calculating Ln{B,6) for all n, then we have largely reduced the calculation of
{Ln(B, 6) | n e Z} to that of {Ln(0A, 0) = Ln(A) \ n e Z}. The following theorem shows,
surprisingly, that the groups L"(B, 6) are homological objects and therefore usually
easy to compute.

MAIN THEOREM. There is a natural long exact sequence

... -+ §n + 1(B) -+ L"(B,t) -+ Q"(B) -> Q"(B) - Ln~\B,6) -+ ... (n e Z).

The proof uses the algebraic surgery techniques of [15]. The standard application is
to the case where B = C(X), 6 = c(y) as in (iv). However, the main theorem has
another application (to the more classical surgery theory): let B be the 'classifying
chain complex for chain bundles' and 6 the 'universal chain bundle' on B. (So the role
of B in the chain complex world is similar to that of the spaces BO or BG in topology.)
Then L"{B, 6) is the bordism group of symmetric algebraic Poincare complexes of
dimension n (with no particular structure), called L"(A) in [15]. The groups L"(A) are
useful in obtaining product formulae for surgery obstructions. The main theorem
above shows that the relative terms Ln(A) = L"(B, &) appearing in the long exact
sequence relating LJ^A) and L*(A) are homological objects. The homological
description of Ln(A) is made even more explicit by a complete analysis of the
'classifying chain complex for chain bundles' which is obtained in Part II [23], for
A = Z[7t]. (The result: it is as simple as it can be.)

(vi) The 'ordinary generalized Kervaire Invariant' revisited. The, theory outlined so
far has an unoriented version: instead of working with sextuples (n, w;X,y;a, j),
consider quadruples (n;X,y;ot) and replace Z[7r] by Z2[n\. The resulting algebraic
bordism groups will be written L"(C(X;Z2),c{y\Z2))\ here C(X;Z2) = C(X)®zZ2,
etc.

Now assume further that n = {1}. In this case the flexible signature can be
considered as a mild improvement on the 'generalized Kervaire Invariant' of [3]. That
is to say, if n = 2k and the (fc+l)th Wu class of y (in Hk + 1(X;Z2)) is zero, there is a
commutative diagram

(C(X;Z2),c(y;Z2))

in which the horizontal arrow is the invariant of [3]. The homomorphism
L2k(C(X ;Z2),c(y;Z2)) -> Z8 is obtained by adapting the methods of [3]. Elements
of L2k(C(X;Z2),c(y;Z2)) are represented by 2/c-dimensional algebraic Poincare
complexes (C, q>) (over the ring with involution Z2 = Z2[{1}]), with a certain
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structure; and this structure permits one to refine the non-degenerate symmetric
bilinear form on Hk(C,Z2) to a quadratic form, with values in Z4.

(Recall that the invariant of [3] is non-canonical, i.e. depends on a choice; the same
is true for its algebraic counterpart, L2k{C{X;Z2),c{y;Z2)) -> Z8, and there is a
one-one correspondence between the two kinds of choices.)

Summarizing, it seems legitimate in the case at hand to regard the flexible signature
itself as 'the' generalized Kervaire Invariant. It is defined for arbitrary n, without
conditions on the spherical fibration y, involves no choices, and looks pretty in
product formulae. Finally, the groups L"(C(X; Z2), c(y; Z2)) are easy to compute with
the help of the main theorem in (v) above. (Remember that the functors Q"( — ) , Q"(~)
are homotopy invariant, and that any chain complex over Z2 is homotopy equivalent
to its homology.)

(vii) A Caveat. Let (n, w;X,y;cc,j) be a sextuple as in (ii) again, and suppose that
y is the trivial spherical fibration on X. One is tempted to think that the release
homomorphisms

have particularly attractive properties in that case, such as being split injective; but
they are probably not even injective in general.

(Here is an example to meditate upon. Let X = RP00, let X = S00, and let y, y be the
trivial spherical fibrations on X and X respectively. Then, for n = 2, 6, 14, 30, or 62(?),
the composite

~ P / V x transfer ^p,<? -\ Kervaire Invariant _.Qp
n(X, y) >^(X, y) >Z2

is surjective, but

LM(Z[Z2]) ^ ^ >Ln(Z[{l}]) ^ Z 2

is the zero map.)
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0. Conventions

Since the present paper is inspired mainly by [15], I have tried to retain Ranicki's
conventions wherever possible. They are listed here for convenience, with a few
alterations and additions that appeared necessary.

The symbol 'IF refers to Part II of this paper [23].

0.1. The letter A is usually reserved for a ring with involution, that is, a ring with 1
equipped with an involutory antiautomorphism

": A - > A ; a i—• a.

0.2. Unless otherwise specified, '/4-module' will mean left A-module. Sometimes,
however, it is necessary to shift an /4-action from left to right; so if M is a left
/4-module, let M' be the right /4-module with the same additive group as M, and with
/4-action

M' x A -> M'; (x, a) H+ ax.

0.3. The dual module M* of an /1-module M is

M* = HomA(M,A)

with A acting (on the left) by

AxM -> M; (fl,/)H(jch»/(x)-fl).

If M is finitely generated projective, then so is M*, and the /4-module homomorphism

M -> M**; xi—•(/!-> f(x)) is an isomorphism.
The dual of an /4-module homomorphism f:M-*N\s the /4-module homomor-

phism / * : N* —> M*; g f—• gf.

0.4. Two chain maps f, f: C -> D (between /4-module chain complexes graded
over the integers) are homotopic if there exists a collection of /4-module homomorph-
isms {gr: Cr -*• Dr+11 r e Z} so that / ' — / = dDg + gdc: C -*• D. The collection is
called a chain homotopy from / to / ' .

0.5. Still assuming that C, D are /4-module chain complexes, define abelian group
chain complexes C ®A D and Hom^(C, D) by

(C'®AD)n= ® C'p®ADq,
p + q = n

d(x ®y) = x® dD(y) + ( - )^c(x) ® y;

(HomA(C,D))n= [ I HomA(Cp,Dq),
q-p = n

d(f) = dD(f)-(-)" fdc.
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In both cases, dD and dc denote the differentials on D and C respectively, and d the
differential on C ®A D or on HomA(C, D).

(The definition of O ®A D agrees well with certain geometric constructions, and
with that given in [15]. Ranicki [15,16] has a slightly different definition for
Hom/J(C, D); I prefer the above because it gives more direct identifications

(Group of cycles in (Hom^(C, D))o) ^ (Group of chain maps C -• D)

and

H0(UomA(C, D)) = (Group of chain homotopy classes of chain maps from C to D).)

Note that the involution on A does not appear in the definition of HomA(C, D); we
can do without it.

0.6. The dual chain complex C~* of an /4-module chain complex C is given by
(C~*)r : = (C_r)* = : C~\ with differential

(-Y®: • - r+ l

A chain map f:C->D induces f.D * -*• C *; g i—• g-f.
Given an abelian group (or A-module) G, write (G, n) for the chain complex with

(G, n)r = G if r = n and (G, n)r = 0 otherwise. It is worth noting that the 'obvious'
identification C~* = HomA(C,(A,0)) is not a chain map; some sign changes are
necessary. Still, the choice of differential in C~* has certain advantages. (It agrees
with [15, p. 104, bottom], but not with [15, p. 98, bottom].)

If C is a chain complex of f.g. projective /4-modules, then the chain map

is an isomorphism. If also Cr = 0 except for finitely many r e Z, then the slant chain
map

D
A

is an isomorphism.

0.7. The suspension SC of a chain complex

L , . . . . — > l - > r + i • ^ r * < - - r - l ^ •••

is the chain complex (LC)r = Cr_ l5 dzc = —dc. (This differs from the definition in [15]
by a sign.) So EC s C ®2(Z, 1) (cf. 0.6), and

Hn(HomA(C, D)) ^ (group of homotopy classes of chain maps from Z"C to D),

if C, D are A-module chain complexes.
Let / stand for the cellular chain complex of the standard 1-simplex, or unit

interval. Corresponding to the two endpoints of the 1-simplex, there are two chain
maps J0, il: (Z, 0) -> /; if/: C -> D is a chain map, we define the mapping cylinder of
/ to be the pushout of the diagram

C®z/
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and similarly for the mapping cone, Cone(/). So

with differential d given by

d(x,y) = (dD(x)+f(y),-dc(y)).

If / = id: C -» C, write Cone(C) instead of Cone(id).
Every chain map f:C->D has an associated Puppe sequence

» C -> Z) -> Cone(/) -• I C -> I£> -> ...,

infinite on both sides.

0.8. ^A (or simply #) will be the category of chain complexes C, graded over the
integers, such that each Cr is a f.g. projective left /4-module, and such that Cr = 0
except for finitely many r e Z; the morphisms in ̂  are ^-module chain maps.

A morphism / : C -• D in ̂  is called a fibration if it is surjective, and a cofibration
if its dual / * is a fibration.

0.9. If C is a chain complex in ̂ , the group Z2 acts on the abelian group chain
complex C ®A C (cf. 0.5) by the transposition involution

T: C'p®ACq - Cp®ACq;x®y^(-ry®x.

Following [15], we shall have to deal with the 'cohomology groups of Z2 with
coefficients in the Z[Z2]-module chain complex C ®A C and the like. Here Z[Z2] is
the group ring, without any particular involution; we let W be the standard free
resolution of the trivial Z[Z2]-module Z (viz., Wr = Z[Z2] if r ^ 0, Wr = 0 if r < 0,
with differential d: Wr -» Wr.^ x \-* ( l + ( - ) T ) x where r > 0, T being the gen-
erator of Z2), and write W&C for the abelian group chain complex

HomZ[Z2](W,C®AC).

Then

Q"(C):=Hn(W&C)

is the ( — n)th cohomology group of Z2 with coefficients in C ®AC. (See [10] if
the terminology appears mysterious.)

On replacing the standard resolution W by the standard complete resolution W
(with Wr = Z[Z2] for all r, d: Wr -• ^ . , ; X H ( 1 +(-)rT)-x, for all r) we obtain a
chain complex W& C : = HomZ[Z2](^, C ®A C) whose homology groups

Q"(C):=Hn(W&C)

are the Tate cohomology groups of Z2 with coefficients in O ®A C.

0.10. We will need a detailed description of the abelian group chain complexes
W&C, W&C, and W&C* (= W&(C~*)).

Case 1: W& C. Then

(W& C)n = n HomZ[22](^s, (C ®A C)n+
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and the differential d sends a collection

<p = {cps e ( C ® A C ) n + S \ s e Z } e ( W & C ) n

to d(q>) e (W& C)n.u with (d(<p))s G (C ®A C)n_x + s given by

If we use the identification

of 0.6, then <p can be regarded as a collection

the differential sends this to d((p), with (d((p))s = f ] rHom/ 1(C1"1" r + s , Cr) given by

dc-(ps-(-y
+scps-dc_.-(-)"((ps_l+(-yTcPs_l).

Here Z2 acts on Homi4(C~*, C) by the duality involution

T: H o m ^ C , Cq) -> H o m ^ C , Cp); 0^> ( - ) " V -

If <p = {<pj is a cycle, d(<p) = 0, then <ps is a chain homotopy from 0 to the chain map

1): z-^-^c-*) - c
for each s.

Case 2: W&C. This is much the same as Case 1, except that we are now dealing
with collections q> = {cps} such that q>s = 0 for s < 0. Identifying C ®A C with
UomA(C'*, C) again, we find that for a cycle cp in (W& C)n, q>0 is a chain map from
Z"(C~*) to C; it is 'self-dual' up to an infinity of higher chain homotopies (the higher
chain homotopies are the cps, for s > 0).

Case 3. W & C " *. Here we make the identification C~*'®AC~* ^ HomA(C, C ~ *)
(using 0.6 and the chain isomorphism C = C~*~* specified there) and find that the
differential maps

q> = {<ps e f ]Hom(C r . n _ S ! C~r)\ s e Z} € (W&C~*)n
r

to d(<p) = {(d(<p))s | s G Z}, with (d(<p))s given by

This time we are obliged to let Z2 act by

T: Hom^Cp, C ) - . Hom^C, , C ) ; 9 h- (

0.11. (Taken from [15, Part I, §8].) Define the tensor product of two rings with
involution A, B to be A ®z#, with involution

(a (x) b) \-* a (x) b.

If C is an /1-module chain complex, and D is a fl-module chain complex, then
C®iD is an A (g)2 J5-module chain complex, since A ® Z B acts on C®ZD
by (a ® b) • (x ® ^) = ax (x) 6y. (The differential in C ® z D is defined with sign
conventions as in 0.5.) Then C ® z D is in (^A^>zB provided C and D are in ^ and %>B
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respectively. Under the same conditions there is an identification

C~*®ZD-* -> (C®ZD)"*,

(vertical bars as in \g\, \x\ denote dimension). There is another identification of
Z[Z2]-module chain complexes

(C ®A C) ®z(D' ®BD) -+ (C ®z D)' ®A®lB(C ®z D),

(v ® w) ® (x ® y) I-* (— )'*"w\v ® x) ® (w ® y)

(there are no conditions; TeZ2 acts on the left-hand side by

T((v ® w) ® (x ® y)) : = T(v ® w) ® T(x ® y)).

The Z[Z2]-module chain complex W of 0.9 is equipped with a strictly associative
diagonal map

+ 00

A: W -+ W® W; \ s ^ £ K®Tr
s.r (ssZ).

r = — oo

(The symbol ® indicates that infinite chains are allowed; subscripts denote dimen-
sions, and Wr is identified with the ring Z[Z2]. Regarding W as a factor complex of W
gives a similar diagonal for W.) It can be used to define exterior products, such as the
chain map

x: W&C®ZW&D -+ W&(C®ZD); q>x9 : = {cp ®6)-&

(this makes sense if C and D are in <&A and %, respectively). More explicitly, if
(p = {q>s} is an m-chain, and d = {6S} is an n-chain (as in 0.7), then

+ 00

((px6)s= X cpr®T%_r.
r = — oo

(So (q> x 9)s belongs to

((C ®ZD)' ®A®zB(C ®zD))m+n+s s ((C ®A C) ®Z(D' ®BD))m+n+s,

but be warned that this last identification involves sign changes.)
Of course, W can be replaced by W. Apart from being associative, the exterior

product has something like a unit: namely the triple (Z,(Z,0),v), in which Z is
regarded as a ring with involution, (Z,0) as a chain complex in y>z, and v is the 0-chain
in I^&(Z,0) determined by v0 = 1 e Z ® Z ^ Z.

Again, this works with W replaced by W.

0.12. For /4-modules M, N a sesquilinear map X: M x N —> A is a biadditive map
satisfying

k{ax, by) = al{x, y) T>

for a, b e A, x e M, y 6 N.
Taking (left) adjoints we can identify the abelian group of sesquilinear maps

M x N -> A with Hom^(M, N*); so k corresponds to

: x -• (yh-> k(x,y)).

(Right adjoints will be avoided, although their use would save bars.) The transpose TX
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of a sesquilinear map X: M x N -> A is the sesquilinear map

N x M -• A; (y, x) i-> A(x, y).

Under the left adjoint, T corresponds to the usual transposition

M,JV*) - Hom^N.M*).

If M = Nt we speak of a sesquilinear form, and denote the abelian group of such
forms by Sel(M).

0.13. If F is a covariant or contravariant functor from a category X to a category Y,
and / is a morphism in X, I shall occasionally write /"* or f~ instead of F(f)
(whereas / * indicates a 'dual' chain map or homomorphism, as in 0.3 and 0.6). If C is
a chain complex in <tfA, and W and W are as in 0.9, then the canonical projection
W -> W induces a chain map

J: W&C -• W&C

which in turn induces homomorphisms Q"{C) -> Q"{C), also denoted by J.

0.14. The homotopy pullback of a diagram X —• Z <— Y of chain maps is the chain
complex P with

Pn:=Xn®Yn®Zn + i

and
d: (x,y,z) Ĥ  (-dx, -dy,dz+f{x)-f{y)).

0.15. If Y is a chain complex (of free abelian groups, say), then an 'n-cycle in Y,
well-defined up to an infinity of higher homologies' is a diagram of chain maps of the
following sort:

(Z, n) ^ X -• Y.

Here (Z, n) is defined in 0.6, and X is another chain complex of free abelian groups.

1. Chain bundles

The first part of this section presents a cohomology theory, defined on the category
(€A (see 0.8), which is to real or spherical K-theory as chain complexes (for instance
those in (<oA) are to CW-spaces. The ring with involution A is kept fixed.

1.1. THEOREM. The contravariant functors

C^Q"{C~*), forn<=Z,

(see 0.9) constitute a cohomology theory on %>A. That is,
(i) if f / ' : C —• D are homotopic chain maps in ̂ A, then

f- =f'-:Q"(D-*)^ Q"(C-*), forneZ;

(ii) there is a natural and canonical equivalence between the two functors

C^ Q"~l{(ZCy*) and C ^ Q"(C~*), forneZ;
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(iii) if f: C -» D is a chain map in (€A with associated Puppe sequence

... - I - 'ConeC/) -> C -• D -> Cone(/) -> I C -> I D - ...,

t/jen t/ie sequence of induced homomorphisms

... «- ^ ( (Z^ConcC/") )"* ) - (2°(C-*) - (?°(D"*) - C°(Cone( / ) -* ) - ...
is exact.

Proof. Note first that C i—» Qn(C~*) is a contravariant functor because a chain map
f:C-*D induces

f*®f*: D-*'®AD~* -> C"*l®i4C"*,

and hence a chain map

/*": W&D-* - W&C~* etc.

To prove (i), suppose that / , / ' : C -> D are homotopic; then so are / * , / ' * :
D~* -* C~*. Let # be a homotopy from / * to / ' * ; think of g as a chain map from
D~*®il to C~*. Now the chain maps f",f"~: W&D~* -* W&C~* are also
homotopic; the appropriate chain homotopy maps an n-chain ip in W&D~* to the
(n+ l)-chain g"(q> xa>) in W^&C"*.

(Explanation: choose, once and for all, a 1-chain a> in

(cf. 0.7) so that d(cu) = 'T(v)~'o*(v)> a s in 0-̂ > 'o a n d 'i are certain chain maps from
(Z,0) to /, and v is the unit mentioned at the end of 0.11. For q> e {W&D~*)n, the
exterior product q>x at (cf. 0.11) belongs to (W&(D~* ® z / ) ) n + 1 , whence g^(q> xa>) is
in {W&C~*)n+i as required.) See [15] for an explicit formula.

For the proof of (ii) and (iii), recall (for example, from [10]) that a module M over a
ring with unit is 'coextended' or 'coinduced' if it has the form M ^ Homz(ft, G)
(G being any abelian group, R the ring at issue, acting on the left of Homz(/?, G) by
(a,f) H-> (x i->/(x-a)) for ae R, fe Hom(R, G)). If, for example, R = Z[Z2], the
Tate cohomology groups of a coinduced module M, written

H"(Z2;M) := H_n(HomZ[Z2](W,(M,0)))

(see 0.6), are trivial by a simple argument.
Further, let D be a chain complex of Z[Z2]-modules; call D coinduced if Dr = 0

except for a finite number of r e Z, and if Dr is a coinduced module for all r. Then a
familiar induction argument [7, Anhang Proposition 2.1] shows that for such a D, we
have //n(Hom2(22](I^, D)) = 0 for n e Z.

We now exploit this fact. Suppose that / : C -• D is a cofibration in ^ (see 0.8), so
that 0 -> C -• D -> D/im(/) -> 0 is a short exact sequence in <

î4. Then the sequence
of induced maps

C-*®AC~* +1—D-*®AD~* +2— (D/im(f)y* ®A(D/im(f)y*

is not short exact, because ker(i*~)/im(p*~) # 0 in general. However, ker(i<~)/im(p'~) is
a coinduced chain complex of Z[Z2]-modules, which by the above just suffices to
show that the homology groups of the chain complexes W&C~*, W&D~*,
W&(D/\m(f))~* fit into a long exact sequence.
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This proves (iii) (since every morphism in %>A is 'homotopy equivalent' to a
cofibration), or strictly speaking reduces (iii) to (ii). But (ii) is proved by applying the
same argument with / equal to the inclusion of C in Cone(C) (see 0.7).

1.2. REMARKS, (a) Theorem 1.1 is of course equivalent to the statement that the
covariant functors C i—• Q"(C) constitute a homology theory. The 'homotopy in-
variance' part of the statement can be obtained under more general circumstances: for
instance, the covariant functors C -> Q"(C) are also homotopy invariant, by the same
argument.

(b) The 'covariant' suspension isomorphism Q"(C) -*• Q"+i(LC) has an explicit
description. Regard the collapsing map C ® 2 / -> EC as a chain homotopy from the
zero map 0: C -> EC to itself. Then the proof of part (i) of 1.1 gives a semi-explicit
formula for an induced chain homotopy (depending on the choice of a certain 1-chain
co) from the zero map 0: W&C -* W&.{ZC) to itself, that is, a chain map S from
H(W&C) to W&(LC). Passage to homology groups gives the suspension isomor-
phism. For a suitable choice of co, the chain map S : 2,(W & C) -* W &(ZC) takes the
form (p i—• Scp; Scp)s+l = ( — )sfi2(

(Ps) (where IXUJX2'- C ®AC -*• C ®AC are homo-
morphisms given by nY(x (x) y) = ( —)|x|x ® y, n2(x ® y) = ( —)|y|x (g) y); then S is a
chain isomorphism.

The same formula yields a suspension homomorphism (not an isomorphism in
general) Q"(C) -> Qn + l{ZQ.

Finally, similar formulae exist in the contravariant case, but will not be needed.
(The suspension formula in [15, p. 106] is simpler, but I suspect the signs are

incorrect.)

1.3. PROPOSITION. The groups Q"(C~*), Qn{C) are Z2-vector spaces (for C in WA,
n G Z). Further, the cohomology theory C i—• {Q"(C~*)} is periodic of order 2, that is,
there exist natural isomorphisms Q"(C~*) = Qn + 2(C~*), with n e Z, commuting with
the suspension isomorphisms. Similarly, the homology theory C i—> {Q"(C)} is periodic.

Proof. The first statement holds because the chain map W -*• W; x h-> 2x is null-
homotopic. The periodicity isomorphisms come from

E2 HomZ[22](^, C ®A C) s E2 HomZ[Z2](E2^, C ®A C)

that is, from the periodicity of W.

It is possible to give a more economical description of the groups Q"(C~*), for C in
(€A. Thinking of a class in Q"(C~*) as being represented by a collection

{zp., e Hom^(Cp, C) \p,qeZ] (cf. 0.10),

one should expect that most of the information is located in the terms zp q with p — q;
and something quite similar is true. (This is well known, and I am grateful to John
Jones for pointing it out to me, when A = Z2.)

1.4. DEFINITION. For a chain complex C in <gA, let

V(C) = ... - K(Ch - K(C)0
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be the abelian group chain complex given by

K(C) n :=nSel(C r ) (cf. 0.12),
rel

d:

{X,}

(Here Xr,^,dciK-x) are in Sel(Cr); dc(K-v)(x,y) := K-i(dc(x)Jc(y))-)
A cycle in V(C)0 is then a sequence of sesquilinear forms ),r: CrxCr -> A such

that, for each r e Z , the 'symmetrization of A/ (= TAr — (— )Mr) equals the pullback

Note that C h-> K(C) is a contravariant functor.

1.5. PREPARATION. Think of an element in (W&C~*)n as a collection of sesquilinear
forms {(pp q: CpxCq -+ A\ p,q € Z} (whose left adjoints are /l-homomorphisms
zPt,: Cp -*'O). Then the differential d: (W&C~*)n + l ^(W&C~*)n is described by

( — )p+i+l(ppq(dcx\d), all other components 0

(Here cpp<q is to be regarded as a collection with at most a single non-zero component,
whereas the right-hand side has three non-zero components at most.)

1.6. PROPOSITION. The homomorphisms

Econ: V(C)n - (W&C-*)n;

\{Xr, ( — )r kr{dc x id), other components 0}

"r M ( - ) r ~ 1 ; ^ (-)r"1^r(>d xdc), ot/ier components 0}

(using the top line for even n, the bottom line for odd n) constitute a natural chain map
'Eco\ (Again, Xr is regarded as a collection with a single non-zero member at most, etc.)
It induces isomorphisms in homology,

Q"(C-*), withneZ,
for any C in ^A.

Proof (of the last sentence). We first show that

C^{Hn(V(C))\neZ)

is a cohomology theory. This means proving the analogues of Theorem 1.1 (i), (ii),
(iii).

Suppose first that 0-+C-+D-+B-+0 is a short exact sequence of chain
complexes and chain maps in %A, with induced sequence

0 < V(C) «-* V(D) <£— V(B) < 0;

then we would like to know that ker(t<~)/im(p*") is an acyclic chain complex.
Assuming the contrary, let k = {/r| r e Z} be an n-chain in ker(/*") c V(D) such that
d(X) belongs to im(p*~) and the homology class in //n(ker(i*")/im(p*")) represented by /
is non-zero. More precisely, within its homology class choose the representative A so
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that the number

is as large as possible. It is easy to increase this integer by 1, giving a contradiction.
It follows that the homology groups of V(C), V(D), and V(B) are related by a long

exact sequence. In particular, if D = C © B, then H*(V(D)) s H{V(Q)^ 0 H^V(B)).
Next, suppose that C is a contractible complex in <gA. Then H*{ V{Q) = 0. This can

be proved by writing C as a direct sum of contractible chain complexes, each
concentrated in two adjacent dimensions, and then applying the additivity principle
just obtained.

Next, suppose that C -> D is a morphism in <&A which is a cofibration and a
homotopy equivalence. Then the preceding arguments, when combined, show that
the induced homomorphism Hjy(D)) -> Hjy(C)) is an isomorphism. This applies
in particular to the cofibrations

idc ® /0, idc ®ix: C ®z(Z,0) -»• C ®z/

(cf. 0.7) and shows therefore that the functors C >-»• Hn(V(C)), for n e Z , are homotopy
invariant. It is now clear that these functors constitute a cohomology theory.

The proof is completed by observing that the natural chain map 'Eco' (which by
now induces a transformation of cohomology theories) gives an isomorphism between
the respective 'coefficients' of the two cohomology theories; in other words, by
observing that the last sentence of 1.6 holds for C = (A,0). (The usual induction
argument from [7, Anhang Proposition 2.1] shows that this suffices.)

The second half of the chapter consists mostly of somewhat tedious definitions
making the analogy between (geometric) real X-theory and the cohomology theory
C h-> {Q"(C~*)} more precise.

1.7. DEFINITION. A chain bundle on a chain complex C in (€A is a O-dimensional cycle
in W&C~*.

1.8. DEFINITION. If/: C -> D is a chain map in <$A, c is a chain bundle on C, and d
is a chain bundle on D, then a 'chain bundle map from c to d, covering / ' is a
homology y e (W&C'*)l from c to /"(rf) (so that c + d(y) =f~(d) in W&C~*).

Observe that chain bundle maps can be composed. If we take / = id: C -> C, then
the category of chain bundles on C and chain bundle maps covering id is a groupoid;
its components are the elements of Q°(C~*).

Sometimes a 'change of rings' has to be allowed: suppose that there is given a
homomorphism A -> A' of rings with involution (and unit), making A' into a right
module over A. Then

is a functor from <&A to ^A.. In the same spirit, a chain bundle c on C determines a
chain bundle /4' (g^ « on A' ®A C, and so on. So if C is in (€A and D is in <&A., we would
contemplate chain maps of the form / : A' ®A C -> D; and if c is a chain bundle on C
and d is a chain bundle on D, then we would also contemplate chain bundle maps
A' ®Ac -> d, covering / .

It is of course possible to define higher homotopies between chain bundle maps
with the same domain and range.
5388.3.51 K
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There are at least two distinct ways (1.9 and 1.11) of making the chain bundles over
a fixed chain complex C in (€A into a simplicial set (see [6] for general information on
simplicial sets).

1.9. DEFINITION. The 'Kan-Dold simplicial set of chain bundles on C is the
simplicial set KD{W&C~*) obtained by applying the Kan-Dold functor KD to the
chain complex W&C~* (cf. 1.10).

1.10. EXPLANATION. Let C1(AJ be the cellular chain complex of the standard
n-simplex. Given a chain complex £ (of abelian groups, graded over the integers),
define KD(£) to be the simplicial abelian group with set of n-simplices

KD(£)n : = (set of chain maps from Cl(An) to £);

the face and degeneracy operators are then obvious. Conversely, given a simplicial
abelian group G, let NG be the chain complex such that

(the d; being the face operators) and d: NGq -* NGq-i equals the restriction of d0.
Then KD(NG) = G, and N(KD(£)) is isomorphic to the subcomplex £ + of £ with

E? =
if n > 0,

: £0 -* £-1] if n = 0,

if n < 0.

See also [6].

1.11. DEFINITION. For a chain complex C in ^A, the simplicial set of concordances of
chain bundles on C, written ^(C), has as set of n-simplices

@}{C)n := (set of chain bundles on C ®ZC1(AJ)

(with C1(AJ as in 1.10; here C ®2C1(AJ is regarded as a chain complex in (€A, and, I
hope, the simplicial operators are again obvious).

Both KD(W& C~*) and ^(C) are simplicial abelian groups. They are useful because
most chain bundles occurring in nature are only well defined up to an infinity of
higher homologies, or of higher concordances—just like the (geometric) stable normal
bundle of a manifold, or the Spivak normal fibration of a geometric Poincare
complex.

The next proposition is a generalization of Theorem 1.1 (i) (as its proof will make
clear).

1.12. PROPOSITION. There is a natural homomorphism of simplicial abelian groups

Lin: @{C) -+ KD{W&C~*)

inducing an isomorphism in homotopy groups ('Lin' stands for linearization).

Proof First, we require a sequence

U)Jn = 0,1,2,...}
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such that

(i) p(0) = v (see the end of 0.11; C1(AO) has been identified with (1,0)),
(") Z"=o( - ) ' ' ^ r (p (« - !)) = %(«)) for n= 1,2,... {e{: An_, -» A,, is the inclusion

of the ith face, and d is the differential in W&C\(An),
(iii) the chain map W&C\{hn) -> W&C1(AO) (induced by the map An -• Ao) maps

p(n) to 0, for n > 0.

It is easy to construct such a sequence by induction, because

is acyclic (by 1.1 (i), or rather its covariant analogue). In defining W&C\(An) etc., we
have to work temporarily over the ring with involution Z.

Second, we need the evaluation chain map

ev: (C®zCl(An))-*®zCl(AJ -* C"*;

Third, note that for a chain complex E, any n-simplex s in KD(£) determines an
element s,op £ £„ (namely the image under s: Cl(An) —• £ of the generator correspond-
ing to the n-cell of AJ. If Y is a simplicial set, and / : Y -> KD(£) is a simplicial map,
then the knowledge of /(s),op for all simplices s in Y suffices to reconstruct the
simplicial map.

Now take an element 6 in @l{C)n (that is, in the group of 0-dimensional cycles in
^ & ( C ® z C l ( A n ) r * , c.f. 1.11 and 1.7), and put

(LinO*))top :=(evr(dxp(n)) e (W&C~*)n,

using the exterior product of 0.11.
Checking that Lin induces an isomorphism of homotopy groups is easy using 1.1.

2. Algebraic bordism theories

The aim here is to construct, for each chain complex B in <tfA and chain bundle 6 on
B, associated algebraic bordism spectra J?(B, 6) and l°(B, 6). (5£\B,6) is a more
sophisticated version of l°(B, 6), with better algebraic properties.) Inspiration comes
from the mock-bundle philosophy of [5].

2.1. DEFINITION [13,15]. An ln dimensional algebraic Poincare complex (over A)y is
a pair (C, q>) consisting of a positive chain complex C in (€A (that is, Cr = 0 for r < 0)
and an n-dimensional cycle <p e W&C so that

<p0: Z"(C"*) -» C (cf. 0.10)

is a chain homotopy equivalence.

(In [15], such a (C, q>) is called a 'symmetric algebraic Poincare complex', as distinct
from a 'quadratic algebraic Poincare complex'. The point of view taken here is that a
'quadratic algebraic Poincare complex' is a 'symmetric algebraic Poincare complex'
with additional structure; more will be said in 2.17.)
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2.2. DEFINITION. An n-dimensional (cofibrant) algebraic Poincare pair

consists of two positive chain complexes C, D in %>A, a cofibration f: C -* D, an n-
chain if/ e W &D, and an (n— l)-cycle (p e W &C so that

(i) dW)=r(q>) in (W&D)..^
(ii) the chain map pr i^0: I"(D *) -» D/im(/) (explained below) is a homotopy

equivalence.
(Here pr i / / 0 is the composite of the projection chain map pr: D -> D/\m(f) with the
homomorphism of graded abelian groups i/̂ 0: Z"(D"*) -> D; cf. 0.10, Case 2.
Although i^0 is not a chain map in general, pr-i^0 is.)

The condition that / : C -» D be a cofibration is not essential; if it is not satisfied,
pr • {j/0 has to be replaced by a chain map going from I"(D~*) to Cone(/). See [15].

The 'boundary' (C, <p) of the algebraic Poincare pair in 2.2 is an (n — l)-dimensional
algebraic Poincare complex.

2.3. DEFINITION (of a higher algebraic bordism). Let 2{0>1 Q) be the category of
subsets of {0, \,...,q), with inclusion maps as morphisms (so there is at most one
morphism between any two objects; if S" c S, denote this morphism by j s > s ) .

For S c {0, \,...,q} and 0 < i < | S | , let dtS stand for the *ith face' of S {d0S is
obtained from S by deleting the least element, c/jS by deleting the next, etc.).

A 'higher bordism of algebraic Poincare complexes, of dimension n and order tf
consists of a covariant functor

Fun: 2( O a q] - > <€A

and a function <D which for each subset S <=• {0,\,...,q} picks an (n — q + \S\— l)-chain
<D(S) e W&Fun(S); here Fun and O are subject to certain conditions. They are as
follows.

(i) Each Fun(S) is a positive chain complex; Fun(0) = 0.
(ii) For any ideal in 2(0<1 q] (i.e. a collection £ of subsets of {0, \,...,q} such that

S e / and S' <= S implies S' G f), the canonical map

Fun({0, l,...,q}y* -+ inv lim {Fun(S)"*} c f ] Fun(S)~*;
Se/ Se/

Z1"* (f'Js.iO. 1 «>)se/

is surjective. (This condition generalizes the cofibration condition in 2.2; it implies, by
an induction proof, that invlimSga(r{Fun(S)"*} is in <tfA for any ideal /.)

(iii) For S c {0,1,...,^},

i = O

in l^&Fun(S) (d is the differential in W&Fun(S)).
(iv) For each S cz {Q,\,...,q}, the chain complexes

i s i - i
I D:=Fun(S),I

i = 0
)n~fc<the inclusion map f: C -> D, the chain \jj := ( — )n~fc<l>(S) in W&D, and the cycle

q> : = Y)S=o l ( — )l®(diS)in ^ & C (in loose notation) together constitute an algebraic
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Poincare pair of dimension (n — q + \S\ — 1). (This means that the non-degeneracy
condition 2.2(ii) holds—everything else is redundant.)

2.4. REMARKS. If (Fun, O) is a higher algebraic Poincare bordism as above, of
dimension n and order q, and if S is a subset of {0,1, ...,q) with complement S', then
the restriction of Fun to 2s and the corresponding restriction of O form a higher
algebraic Poincare bordism of dimension n — \S'\ and order q — \S'\, written
(Fun/2S,O/2S).

An algebraic Poincare bordism (Fun, O) of order 1 such that Fun({0}) = 0 or
Fun({l}) = 0 will also be called an algebraic Poincare pair; this agrees with 2.2 up
to sign.

2.5. CONSTRUCTION. Assume that (Fun,O) is still as above, and forget all the
higher homotopies contained in d>, retaining only <P(S)0 (cf. 0.10, Case 2) for all
S cz {0, \,...,q). Condition 2.3(iii) gives a system of chain maps (one for each

<P0: I"-«(Fun(S)-*®2Cl(A(S))) -> Fun(S);

(Explanation: A(5) is the (\S\ — l)-dimensional simplex spanned by S and
C1(A(S)) is its cellular chain complex, with one ( |S ' | —l)-dimensional generator [S']
for each non-empty subset S' of S. The inclusion js- s: S' -*• S induces
js-,s: Fun(S') -* Fun(S); starting with fe £"~<?(Fun(S)~"*) and suspending liberally,
we find that f-js\s is in S""fl + |s'l"1(Fun(S')"*)» w h i c h is the domain of <D(S%, etc.)

For S' cz S cz {0, \,...,q}, the chain maps J2S O0 and J2SO0 are related by a certain
commutative diagram.

We will now repeat 2.1 and 2.3, adding '^-structures'; here 6 is a chain bundle on a
chain complex B in ^A, to be kept fixed until further notice.

2.6. DEFINITION. A ^-structure on an n-dimensional algebraic Poincare complex
(C, cp) (over A) consists of a chain map

g: C -» B (the 'classifying map')

and a homology

z e (W&C)n + l (the 'clutching homology')

from £"• (<pog*r(b) e (W&C)n to J(<p) e (W&C)n.
(Explanation: (pog* is a chain map from B~* to Z~"C, inducing

(<pog*r: W&B~* -> W&(L-"C),

and S" is the n-fold iteration of the explicit suspension isomorphism of 1.2 (b). See also
0.13.)

The notion of'normal chain bundle' should help clarify 2.6. Suppose that (C, q>) is
an n-dimensional algebraic Poincare complex over A, and ne W&C~* a chain
bundle on C equipped with the additional structure of a homology z e ( l ^&C) n + 1

from S"-?oW 6 (W&C)n to J{q>) e (W&C)n. Then *, or rather the pair («,z), is
called the 'normal chain bundle of (C, cp)\
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It is easy to see that the normal chain bundle n of (C, cp) is well defined up to an
infinity of higher homologies in W&C~* (see 0.15). That is, it is something better than
a mere class in H0(W&C~*) = Q°(C~*). In this respect it resembles the normal
bundle of a geometric manifold or the Spivak normal fibration of a geometric
Poincare complex, which are also well defined up to an infinity of higher
concordances.

A ^-structure on (C, (p) consists, then, of a classifying chain map g: C -* B and
an identification of the 'induced' chain bundle g"{6) on C with the normal chain
bundle n.

2.7. DEFINITION (in outline only). A ̂ -structure (g, z) on a higher bordism (Fun,O)
of algebraic Poincare complexes (of dimension n and order q) consists of

(i) a 'classifying chain map' g: Fun({0, \,...,q}) -> B,
(ii) an appropriate collection (explained below) z = {z(S)\ S <=. {0, \,...,q}} of

clutching homologies.

2.8. EXPLANATION of 2.7 (ii). In 2.9 below, a sequence

{p(m)e(W&C\(Am))m\m = 0,1,2,...}

satisfying conditions (i), (ii), and (iii) in the proof of 1.12 will be fixed once and for all.
If S is any finite ordered set and m = \S\ — \, then the unique order-preserving
bijection S -> {0, l,...,m} gives an identification

^ W&C\(Am);

write p(S) e W&C\{A{S)) for the m-chain corresponding to p(m).
The main point is that the clutching homologies in 2.7 (ii) form a set

so that, for every S c {0, \,...,q), the equation

| S | - 1

d(z(s))+(-rq- I (-y-us
i = 0

holds in (^&Fun(S))„_,+,,>,_,.
(The integral sign comes from 2.5, x is the exterior product of 0.11, d is the

differential in W&Fun(S), and S is the suspension of 1.2(b); I have written
g: Fun(S) -• B when I should have written

yJsAO.i „ : F u n ( S ) -> F u n ( { 0 , l,...,q}) -> B,

and so the map (g*)~ goes from W&B~* to W&(Fun(S))~*.)

2.9. CONVENTIONS. We shall first fix a 1-chain co in I^&C1(A1)= W&I like
the one used in the proof of 1.1 (i) and in 1.2(b); and then a sequence
{p(m)e{W&C\{AJ)m\ m = 0,1,2,...} as in the proof of 1.12.

(i) Let x, y0, y{ be the standard generators of the chain complex / = Cl(Ai); then
1*1 = 1J.Vol = l^i I = 0> a n d d(x) = yl —y0. Using notation as in Case 1 of 0.10, put

a>l=x®x, OJO = x® yo + yi ® x, co, = 0 for t # 0,1.
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Then a> = {a>s\ s e Z} e W&CliAJ gives the explicit suspension formula in 1.2(b).
Note also that co belongs to the subcomplex W&C^A^) c W&C\(Ay).

(ii) The map

A m x A x -> A m + 1 ; ((to,t1,...,tm),(uo,ul))\-+(uo,ulto,ult1,...,uitm)

(in barycentric coordinates; so to + t1+... + tm= 1 = MO + U I ) induces a chain map
of cellular chain complexes

pm. CKAJSfcClfAj) s Cl(Amx A,) -> C1(AM + 1).

Define inductively

p(0):= VG #&C1(AO),

p (m+l ) :=p ; (p (m)xo ; ) e ^&Cl(A m + 1 ) ,

where x denotestheexteriorproductofO.il.

2.10. REMARK. A ̂ -structure (g, z) on a higher algebraic Poincare bordism (Fun, O)
of order <? induces a ^-structure (g/2s,z/2s) on each of the face bordisms
(Fun/2s,0>/2s) defined in 2.4, with S c {0,l , . . . ,g}.

In particular, it is clear how to define the notion of a bordism (of order 1) between
two algebraic Poincare complexes of the same dimension, with ^-structure as in 2.6.
Granting that 'bordant' is an equivalence relation, we can define the corresponding
bordism groups. We shall now construct a spectrum whose homotopy groups they
are.

The construction contains very few surprises. Recall from [17] that a A-set (or
incomplete simplicial set) is a contravariant functor from the category A (whose
objects are the standard g-simplices Aq for q = 0 ,1 , . . . , and whose morphisms are the
linear maps defined by order-preserving injective maps of the vertex sets) to the
category of sets.

It is shown in [17] that A-sets are well behaved if they satisfy the analogue of the
Kan condition for simplicial sets, in which case they are called Kan A-sets.

Certain set-theoretic precautions are understood in the next definition, and in
several others of a similar type in §3. Without such precautions we would have to
work with A-classes rather than A-sets in many places.

2.11. DEFINITION. For p e Z, let LP(B, 6) be the A-set whose g-simplices are the
higher bordisms of algebraic Poincare complexes (over A) of dimension q + p and
order q, equipped with a ^-structure; the face operators are as outlined in 2.10.

2.12. PROPOSITION. The A-set U(B,6) satisfies the Kan condition.

Proof. This is straightforward and left to the reader.

2.13. CONSTRUCTION. There are natural homotopy equivalences

ep: VP{BJ) -> M-(p+l\BJ) for pel.

(Here A denotes the loop space. See 2.15 for the meaning of 'natural'.)

Proof. First, the loop space Al~{p+l\BJ) must be defined. The set l~{p+l)(BJ)
has a canonical 'base point' (that is, a A-map from the A-set given by the constant one-
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point functor to L"(p+ 1){B, 6)); by decree, a g-simplex of M~(P+1)(B, 6) is the same as
a (q + l)-simplex of Q_~(p+ i](B,6) whose Oth vertex and Oth face are at the base point.
(The Oth face is opposite the Oth vertex.) So

and for 0 ^ ii ̂  q the face operators dk are chosen so as to make the diagram

\B,

n

commute.
Now let x be a ^-simplex in VP{B,6), that is, an algebraic Poincare bordism

(Fun,O) of dimension q — p and order q, with ^-structure (g, z). Then ep(x) has to be
an algebraic Poincare bordism (Fun', O') of dimension q — p and order q + l, with
^-structure (gr, z').

Let e: {0, l,...,g} ^-> {0,1,...,^+1} send s to s+1 . For S c {0, \,...,q+ 1},
define

otherwise,

J i f O e S ,

^' : = 0,
and

z'(S) :=z(e- ! (S)) if 0 e S.

Since all A-sets in sight satisfy the Kan condition, their homotopy groups can be
defined via the 'pillow construction', which shows that ep is a homotopy equivalence.

2.14. COROLLARY. Definition 2.11 and Construction 2.13 define a spectrum

Again, the pillow philosophy shows that 7in(jL°(jB, <£)) is the bordism group of n-
dimensional algebraic Poincare complexes with ^-structure (2.12 implies that bordism
is an equivalence relation).

2.15. PROPOSITION. The association B, 6 \-> L°(B, ̂ ) is functorial. If 6 is a chain
bundle on B (in ^A), 6' is a chain bundle on B' (in ^A), A -> A' is a homomorphism of
rings with involution, and f: A' ®A B -*• B' is a chain map covered by a chain bundle map
(cfi 1.8) from A' ®A 6 to 6', then there is an induced map of spectra l°(B, 6) -+ L°(B', fi').

Idea of proof. Take a ^-simplex in lp(B,tf), say (Fun,tf>), (g,z), and define a
g-simplex (Fun',<D'), (g',z') in U(B',6') by letting

Fun' : = A' ®A Fun, O' : = A' ®A<D, g' :=f-(A' ®Ag),

and for S cz {0, !,...,<?},

z'(S) :=A'®A z(S) + V0((S»((A' ®A gr(y) x
12S
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y being the chain bundle map (cf. 1.8). (As in 2.8, g is an abbreviation for

A glance at the homotopy groups shows

2.16. PROPOSITION. If A = A' in 2.15, and if f: B -> B' is a chain homotopy
equivalence (covered by a chain bundle map as before), then L°(B, fi) -> t°(B',fi') is a
homotopy equivalence of spectra.

We conclude with two 'extreme' examples, for which the ring with involution A is
fixed again.

2.17. EXAMPLE. Take 6 to be the trivial bundle on the trivial chain complex B = 0A

in <€A.
A ^-structure on an algebraic Poincare complex (C, cp) is then a homology in W& C

from 0 to J{cp). It is clear that this is the same as a 'quadratic Poincare complex
structure' in the sense of [15]. So nn(L°(0A, 0)) is isomorphic to the (projective version
of the) Wall group Ln(A) for n ^ 0, and spectra homotopy equivalent to L 0 ^ , 0) have
of course been constructed before (by Quinn and Ranicki; see also [21, Chapter
17A]).

It is tempting to regard the Wall groups as the bordism groups of'framed algebraic
Poincare complexes' (see the paragraphs between 2.6 and 2.7), but this can lead to
confusion: bear in mind that the trivial chain complex 0^ is the algebraic counterpart
of an empty space, not of a contractible space or a K(n, 1).

2.18. EXAMPLE. Take tf to be the 'universal chain bundle'. (This involves a certain
amount of cheating. What I claim is that the functor C f-> Q°(C~*), when restricted to
the category of positive chain complexes in ^A, is 'almost representable'. That is, there
exist a positive chain complex B and a chain bundle 6 on B so that the transformation
of functors H0(HomA{C, B)) -> Q°(C~*); [ / ] i-> [/"(<*)] is an isomorphism, with C
in (&A. However, we must allow B to be a chain complex of possibly non-finitely
generated projective /4-modules, and possibly infinitely many of them non-zero; also
the notion of chain bundle must be defined with some care. The appendix to this
section is devoted to an explicit construction.)

Now a ^-structure on an algebraic Poincare complex is as good as no structure at
all; consequently 7rn((L

0(B, £)) is isomorphic to the symmetric L-group L"(A) defined in
[13] and [15].

2.19. REMARK. The construction of L°(B,&) may seem a little arbitrary, since it
relies on a peculiar choice made in 2.9. Here is a more convincing alternative.

(i) Choose your own favourite sequence {p(m)} satisfying the conditions in the proof
of 1.12. This will be 'essentially unique' only, but there is no need to be more specific.
Define a '^-structure' (on a higher bordism of algebraic Poincare complexes)
accordingly.

(ii) Construct a A-set L°(J5,6) as in 2.11, still using your own favourite sequence

(iii) Prove that l°(B, 6) is an infinite loop space, using Segal's machine [18]. For this
purpose, let

£(!):= l°(BJ);
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more generally, for n ^ 0 let E{n) be the A-set whose g-simplices are 'functors' which
to each non-empty subset V of {1,2, ...,n} associate a ^-simplex of l°(B,f>),
say (^Fun/O), (vg/z); and to each inclusion U a V associate a chain map

lvy. uFun({0, \,...,q}) -> "Fun({0, 1,...,<?}),

subject to certain very natural conditions. (The conditions are:

.next, the Xv v should give a direct sum decomposition

("Fun, KO) s ("Fun, UQ>) 0 ( '""Fun, "-"O)

whenever U a V cz {1,2, ...,n}, and (/ # 0 ^ K—t/; and finally, the projection
KFun -+ uFun

resulting from the previous condition in the case where U a V and U # 0 ^ K— (7,
should send Kz to "z.)

Then the collection {E(n)\ n ^ 0} (with obvious structure maps) is a F-space in the
sense of [18], and so £(1) = 1°{B, 6) is an infinite loop space. Notice the similarity of
the construction above with Segal's construction of the algebraic /(-theory spectrum,
also in [18].

To prove that the infinite loop space structure on L°(B, ft) just defined coincides
with that given by 2.13, use

2.20. LEMMA. The map ep in 2.13 has a canonical refinement to a map ofT-spaces.

(Explanation: observe first that each LP(B, S) yields a F-space, just like l°(B, f>).
Secondly, if {F(ri)\ n ^ 0} is any F-space, then so is {AF(n)| n ^ 0}; the structure
maps for {AF{n)} are obtained by applying the loop functor A to those for {F(n)}.
Hence the lemma makes sense; the proof is easy, and it is also easy to see that it proves
precisely what is needed.)

2.21. NOTATION, (i) The spectrum jL°(fl, 6) and the infinite loop spaces lp(B, 6) have
been defined in 2.14 and 2.11 respectively.

(ii) An n-dimensional 'unrestricted algebraic Poincare complex' (C, cp) consists,
by definition, of a chain complex C in (€A and an n-cycle cpeW&C so that
<p0: Z

n(C~*) -> C is a chain homotopy equivalence (C is not required to be positive).
The notion is interesting even when n < 0. The whole of this section (with the
exception of 2.19, which is unsuitable) can be rewritten with 'algebraic Poincare
complexes' replaced by 'unrestricted algebraic Poincare complexes', etc. The out-
come is

for every p e Z . a A-set $£ "(B, 6) (the 'unrestricted analogue' of lp(B, 6))
and hence a usually non-connective spectrum &\B, 6) (the 'unrestricted analogue'

of 1°{BJ)).
(iii) Write &.(A) = ^ (0^ ,0 ) , and let

release: &.{A) -> ¥\B,6)

be the map of spectra induced by the chain bundle map from 0^,0 to B, 6 (cf. the
introduction). Note that

nn{¥(A)) = LJLA) for n e Z,
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and Ln(A) depends only on the residue of n mod 4. The cofibre of

release: &.(A) -* Jg:(B,d)

is denoted by &\BJ).
(iv) Finally, write

L"(B, d) : = nnmB, d)), L"(B, 6) : = nH(&(B, d)).

(No special notation is introduced for nn{i°{B, 6)); but we will see later that, if B is a
positive chain complex, the forgetful homomorphisms

nJH°(B, 6)) -> nn(J?:(B, d)) = L"(B, 6)

are isomorphisms for n ^ 0, whereas nn(t°{B,6)) = 0 for n < 0.)

2.22. REMARK. Change of /C-theory. The whole theory so far has been written in
terms of f.g. projective modules over A; there are versions which use stably free A-
modules instead, or stably free and based /4-modules. As in ordinary L-theory, there
is a long exact sequence relating the projective and stably free versions of Ln(B,6),
involving the groups H"(Z2; K0(A)); and another long exact sequence relating the
stably free and stably-free-and-based versions, involving the groups Hn(Z2;Ki(A))
(or Hn(Z2;K1(A)) etc.). Cf. [15].

The relative groups Ln(B, d) are not affected at all by a change of /(-theory.

2.A. Appendix: The universal chain bundle

Let B be any chain complex of projective left /4-modules, not necessarily in (&A.
Then the sequence of functors

(where C is a chain complex in %>A and n e Z) constitutes a cohomology theory on <tfA,
that is, the analogues of Conditions (i), (ii), and (iii) of 1.1 are satisfied.

Conversely, any cohomology theory on <&A is isomorphic to one obtained in this
way (from a suitable chain complex B). This is the analogue in the chain complex
world of E. H. Brown's representation theorem, which normally lives in the world of
CW-spaces; see [7]. We shall now prove it in detail for the special case of the
cohomology theory

If B is an arbitrary chain complex of projective /4-modules (not necessarily in <€A),
the abelian group chain complex W&B~* can be defined as in 1.5; so an n-chain in
W&B~* is a collection of sesquilinear forms

{(pp<q:BpxBq-*A\p,qeZ},

and the differential (from (W&B'*)n+l to (W&B~*)n) is as in 1.5.
Further, a chain complex V(B) can be defined word for word as in 1.4; the chain

map

Eco: V(B) -• W&B~*

of 1.6 is still there, although perhaps not in general a homology equivalence. At any
rate, a 0-cycle in V(B) can also be regarded as a chain bundle on B.
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2.A.I. DEFINITION. Given a chain bundle 6 on B, or just a class [/*] in Q°(B~*), there
are homomorphisms (called the Wu classes of ft, see [15])

vffl: Hr(B) - tf'(Z2;/4); [ / ] .-> [ /-(*)] .

(Explanation: Hr(Z2;A) is the rth Tate cohomology group of Z2 with coefficients in
the Z2-module A; the involution makes /I into a Z2-module; //r(B) has been identified
with H0(HomA((A,r),B)), so that / is a chain map from (A,r) to B; see 0.6 for
notation. Also Hr(Z2; /4) has been identified with Q°((A, r)"*) so that /"(<£) is a chain
bundle on (A,r).)

Now Hr(Z2; A) is a left /4-module, with /4 acting by

a • [x] i—> [axa]

(for a e A and x e ker[id — ( — )r-involution: A -> ,4], and

ker[ id- ( - r - involu t ion: / I - n 4 ] _ ~
L J im[id + (-r-involution: A ^ A] ~ { 2 ' jj<

The Wu classes ur(<?) are -4-module homomorphisms.

2.A.2. EXAMPLE. Suppose that I = {Xr: Br x Br -* A \ r e 1} is a 0-cycle in V(B) (see
1.4), regarded as a chain bundle on B. The Wu classes are then given by

vM): Hr(B) -> //r(Z2;^l); [y] ^ a ( y , y ) ] .

(Assume that y e \nGv[d: Br -+ Br_ j ] ; then Ar(y, 3;) represents an element in Hr(Z2; A),
since X is a cycle.)

2.A.3. CONSTRUCTION. By induction on skeletons, we will construct a positive chain
complex B (of free /4-modules) and a 0-cycle {kr: Br x Br -> /I | r € Z} in K(B) such
that, for all r ^ 0, the Wu class

is an isomorphism. This property easily implies that A, when regarded as a chain
bundle on B, has the universal property required in 2.18.

Suppose that the /^-skeleton

has already been constructed, and that the sesquilinear forms

kr: BrxBr -> A

have been defined for r ^ n in such a way that

^ n : = { A r | 0 ^ r ^ n }

is a 0-cycle in V(B^n). Suppose further that the Wu class

is an isomorphism for r < n, and a surjection for r = n.
Let K be the kernel of vn(X^n). Note that K is an /4-submodule of Bn,

K c / /n(B^) c B..
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Choose a free /4-module B'n + X and a map

Af * D' D
" • °n+l "^ bn

such that im(d') = /C; choose a sesquilinear form AJ, + 1 on B'n + l so that

(this is possible by definition of K).
Further, choose a free /1-module B"n+x and a sesquilinear form X'n+{ on B"]+{so that
0) ^n+l-(-)"+1^n+l =0,

(ii) the /1-module map

B;'+1 -> H"+l(Z2;A); x \-> [A;'+1(x,x)]

is surjective.

Now let

d = ^ ' © 0 : B ; + 1 © B ; + 1 -> Bn,
and

An+1 : = ; t ; + 1 © A;'+ 1.

The induction step (from n to n+ 1) is complete.

2.A.4. VARIATION ON 2.A.3. It is also possible to construct a chain complex B™ (of
free /4-modules, but usually not in ^A) and a chain bundle ^°° on J5°° such that the Wu
classes

are isomorphisms for all r e Z. Then, for any chain complex C in ^ (not necessarily
positive), the homomorphism

is an isomorphism.
Therefore a ^°°-structure on an unrestricted algebraic Poincare complex (cf.

2.21 (ii)) over A is as good as no structure at all. It follows that
L^B00,^00) = nn{¥\Bx, 6m)) (cf. 2.21 (iii), (iv)) is the bordism group of n-dimensional
unrestricted algebraic Poincare complexes over A, for n e Z.

The groups L^B00, ̂ °°) are periodic in n, with period 4, almost by definition.
Note that L^B00,^00) can be identified with the direct limit limt Ln + 4fc(-4) of the

symmetric L-groups under the double skew-suspension maps

5 2 : L"+Ak(A) - Ln+Mk+i){A);

see [15].

3. Passage from geometry to algebra

In this section we show that a spherical fibration determines a chain bundle, and
that a geometric Poincare complex determines an algebraic Poincare complex whose
normal chain bundle agrees with the chain bundle determined by the Spivak normal
fibration.



174 MICHAEL WEISS

3.1. CONVENTIONS (relating to simplicial sets). Very little distinction will be made
between a simplicial set X and its geometric realization (which is a CW-space). The
cellular chain complex of X is C(X); it is freely generated by the non-degenerate
simplices of X.

If n is a (discrete) group, a principal rc-bundle on X consists of a simplicial set X
with a simplicial 7i-action which freely permutes the simplices of X, and an
identification of simplicial sets X/n = X.

Suppose that X and Y are simplicial sets. The acyclic model theorem [9] yields a
chain homotopy equivalence

C(XxY) - C{X)®ZC{Y)

natural in both variables with respect to simplicial maps. (Note: we are talking about
cellular chain complexes.) To be more thorough, the acyclic model theorem yields an
'Eilenberg-Zilber' chain map

EZ = EZ(*, Y): C(X x Y) -* Homz(W, C(X) ®z C(Y))

which
(i) is natural in both variables X and Y,

(ii) agrees with the canonical and obvious chain isomorphism if X = Y = point,
(iii) is Z2-equivariant.

(The last condition means that the diagram
EZ

C(X x Y) — ^ - + Homz(VT, C(X) ®2 C(Y))

switch conjugation by T

EZ
C(YxX) ^ ) Homz( W, C(Y) ®z C(X))

commutes for arbitrary X and Y; here T is the generator of Z2, which acts on the
chain complex W as usual, and 'conjugation by T sends fe Homz(W, C(X) (g)z C(Y))
to TfT.) To prove the existence of such an EZ, observe that EZ is equivalent to a
natural chain map

DIA: C(Y) -+ HomZ[Z2](W,C(Y)®IC(Y))

for simplicial sets Y, which agrees with the obvious and canonical chain isomorphism
in the case where Y is a point. Indeed, DIA is obtained from EZ by letting X = Y in
the description of EZ and exploiting Z2-equivariance; and EZ is obtained from DIA
by substituting X x Y for Y in the description of DIA and composing with suitable
projections. But the existence of DIA is a straightforward consequence of acyclic
model theory; see [9], especially [9, Lemma 6.2].

The acyclic model theorem also states that EZ (or DIA) is essentially unique; fix it
for the rest of the section.

Evaluating EZ on the standard generator 1 e Wo c: W gives

EZ0: C(X x Y) -+ C(X)®ZC(Y),

a natural chain homotopy equivalence.

3.2. CONVENTIONS (concerning spherical fibrations and simplicial sets). Let G be a
simplicial monoid (associative, with unit). A 'classifying' simplicial set BG is defined as
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follows (cf. [6, Definition 3.20] and [11, Definition 10.3]):

BGq = {(go,gu-,gq-i)\ 9i e G,} for q > 0,

s & 9 o > 9 u ~ - > 9 q - \ ) = ( 9 o > — > 9 q - i - i > l
q - b s o 9 q - h • • • > • * . - i 0 q - i ) f o r O ^ i ^ q .

(Reading instructions: dt and s,- are the face and degeneracy operators respectively. It
is understood that BG0 is a singleton, and that the expressions for di{g0,...,gq.]) and
Sj(g0, ...,gq-x) are read from the left if i = 0 and from the right if i = q.)

Next, let EG be the simplicial set given by

EGq = Gqx BGq for q ^ 0,

s((g, b) = (sjgf, stb) for 0 < i ^ q,

di(g,b) = (dig,dib) for 0 < i ^ q,

do{g,b) = (t(b)-dog,dob).

(Here t(b) is the 'top component' of b; so if b = (go,...,gq-y), then t(b) = gq-i- In the
terminology of [6], EG is a twisted cartesian product with base BG and fibre G.)

Let p: EG —> BG be the projection (g, b) \—* b. If no(G) is a group, then the
geometric realization of p is a quasi-fibration [8]. If moreover G is a Kan simplicial
set, then so is BG (this is proved in 3.21 below). Under these conditions it follows
easily that nn{BG) = ^ . ^ G ) for all n, and that EG is contractible. (Even so, EG does
not satisfy the Kan condition as a rule.)

Now let G(n) be the topological monoid of self-homotopy-equivalences of the pair
(D",S"~l) (with the compact-open topology, say; D" is the n-disk). Let G(ri) be the
singular simplicial set of G(n), that is, the standard simplicial approximation. Using
the construction BG above, with G = G(n), we make the following definition:

an n-dimensional spherical fibration on a simplicial
set Xis a simplicial map from X to BG(n).

Such a spherical fibration y on X has a geometric realization: let E(y) be the space

where ~ is the obvious equivalence relation, i.e. is generated by

(sf (u), v, x) ~ (u, v, s,-(x)) for q ^ i ^ 0, u e \ +15 v e D", x € Xq,

(dr(u), v,x) ~ (u, v,dt{x)) for q ^ i > 0, u e Aq-lt v e D", x e Xq,

(do(u), v, x) ~ (u, tx(u, v),do(x)) for q > 0, u e \ - u v € Dn, x s Xq.

(Here tx: &q-i xD" -> D" is the image oi x e Xq under the composition

Xq >BGq—Ucq.v

Notice the formal similarity in the descriptions of E(y) and EG.) Similarly, let dE(y) be
the space
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so that dE(y) a E(y). The diagram

dE(y)

(in which the projection E(y) -> X is obvious) allows one to interpret y as a pair of
quasi-fibrations over X, with fibre pair (D",S"~l).

Neither E(y) nor dE(y) have canonical CW-structures; however, the Thom space
E(y)/dE(y) is a CW-space (not a simplicial set) whose cells are in one-one corre-
spondence with those of X. This is extremely convenient.

There are canonical inclusions

... -> BG{n-\) CL_> BG{n) c_> BG(n+l) d_» ...;

a simplicial map X -> BG(co) : = (J fiG(n) is called a stable spherical fibration on X.

3.3. REMINDER. A Poincare space (or geometric Poincare complex) is, for the
purposes of this section, a finitely generated simplicial set Y equipped with a
fundamental class and satisfying Poincare duality with arbitrary local coefficients—
see [15] for details. (So the torsion is allowed to be non-zero.)

Such a Poincare space Y, of formal dimension n, has a 'Spivak normal fibration', i.e.
a stable spherical fibration vY on Y, characterized by the following property: there
exists a map of CW-spectra.

rY\ S" -> M{Y,vY) := (Thom spectrum of vY)

such that, in loose notation,

(Thom class of vY)n h{rY) = (fundamental class of Y).

(The Hurewicz image of rY in Hn(M(Y, vY); Z) has been denoted by h(rY); here M(Y, vY)
is the formally desuspended Thom space of vY, and the expression 'CW-spectrum' will
always mean a spectrum in the sense of Boardman, cf. [19]. A 'map' between CW-
spectra is defined as in [19, Definition 8.12], so is automatically cellular.)

'Characterized', in this context, means more than just 'unique up to (stable)
concordance'; it means, for example, that the bordism theory of triples (Y,vY,rY) as
above can be identified with the bordism theory of Poincare spaces Y. So we shall
often think of a Poincare space Y as a triple (Y,vY,rY), and similarly for geometric
Poincare pairs.

More generally, a 'higher bordism of Poincare spaces, of dimension n and order q"
consists of

(i) a functor V i—• Y(V) from the category 2{0>1 q) to the category of finitely
generated simplicial sets Y and injective simplicial maps ('cofibrations'),

(ii) a stable spherical fibration v on Y({0,1, ...,q}),
(iii) a compatible collection of maps of CW-spectra

r(V): A(V)+ A S"~q -> M(Y(V), v/Y{V)) = Thom spectrum.

The functor in (i) is required to be 'intersection-preserving', that is, for
K 1 , l /

2 c{0 ) l ) . . . , q}we have Y{VX n V2) = YiV^n Y(V2) if these spaces are interpre-
ted as subspaces of Y{VX u V2); also Y(0) = 0. Finally, each Y(V) is required to be a
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geometric Poincare pair (with boundary equal to [j Y(U), where the union ranges
over the proper subsets U of V, and relative fundamental class equal to the Hurewicz
image of r(V)).

For the rest of the section we need: a group n and homomorphism w: n -> Z2;
a finitely generated simplicial set X and a spherical fibration y on X; a principal
rc-bundle a on X and an identification of double covers of X,

j : w~*(ct) s (orientation cover of y).

Write C(X) for the cellular chain complex of the total space of a. Then C(X) is a chain
complex in %?A, with A = Z[rc] (equipped with the involution

3.4. THEOREM. TTie data (n,w; X,y; a,j) determine (up to an infinity of higher
homologies—see 0.15) a chain bundle c(y) on C(X). The construction isfunctorial.

3.5. THEOREM. The geometric bordism spectrum Qp(X,y) (details follow) and the
algebraic bordism spectrum l°(C(X), c(y)) are related by a natural map

np(X,y)-+l°(C(X),c(y)).

(There is also a map QP(X, y) -> ^'(C(X),c(y)) obtained by composing with the
forgetful map from l°(C(X), c(y)) to ¥'(C(X), c(y)); both maps are called flexible
signature.)

Explanation. Let £LQ(X, y) be the A-set (incomplete simplicial set) whose g-simplices
are the higher bordisms of Poincare spaces {Y(V),v,r(V)\ V c {0, \,...,q}} of
dimension q and order q (as in 3.3), equipped with a simplicial classifying map
g: Y({0, l,...,q}) -> so that v equals the pullback g"(y) (which ought to be written
yg). Then £lQ(X,y) is an infinite loop space (see 3.20 below), and the associated
spectrum is QP(X, y).

Most of this section is devoted to proving 3.4 and 3.5.

3.6. DEFINITION. A '7r-space' will mean (in this section at least) a simplicial set Y with
a base point (distinguished 0-simplex) and a simplicial 7r-action which fixes the base
point, but freely permutes the other cells (non-degenerate simplices) of Y. For such
a Y,

C(7):=C(y)/C(base point)

is a chain complex in <&A, provided Y is finitely generated (over n).

3.7. PROPOSITION ('symmetric construction', cf. [15]). For every n-space Y, there is
defined a chain map

Sym: T ®AC(Y) ^ W&C(Y),

inducing maps in homology

'Hn(Y/n;Z):=Hn(Z'®AC(Y)) - Qn(C(Y)).

It is natural with respect to n-maps.
5388.3.51 L
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Note: the w-twisted involution on A = Z[7t] is used.

Proof. Take the map DIA: C{Y) -» HomZ[Z2,(W, C{Y)®ZC(Y)) of 3.1; note that n
(and hence A) acts on C(y) as usual, and also on Hon\i[Z2](W, C(Y) ®z C(Y)) via the
diagonal action on C(Y)®ZC(Y). Tensoring with 2 on the left gives

T ®A C(Y) -+ Z' ®A (HomI[Z2](W, C(Y) ®z C(Y)))

S HomZ[Z2](W, C(Y)' ®A C(Y)) = W&C(Y).

3.8. EXAMPLE. Let (7, vy, ry) be a Poincare space, of formal dimension n; suppose
that there is given a principal 7r-bundle fi on 7 and an identification of twofold covers,

w~~(P) = (orientation cover of vy) (= orientation cover of Y)

(with w as in 3.4). Then Y+ (the total space of /?, with an added disjoint base point) is a
7r-space.

Let q> e W&C{Y+) = W&C(Y) be the image of the fundamental cycle under the
chain map Sym. (The fundamental cycle is the cycle determined by rY; it represents the
fundamental class.)

Then (C{Y),(p) is an n-dimensional algebraic Poincare complex over A—the
'algebraic image' of Y.

3.9. OUTLINE. We are now in a position to obtain a sketch proof of 3.4 and 3.5. It is
taken without essential change from [15, Part II, §9].

(i) Starting with a string (n, w; X, y; a, j) as in 3.4, and assuming that y is k-
dimensional, Ranicki obtains a characteristic class [c{y)~\ e Q°{C{X)~*) by choosing a
7r-equivariant S-dual T(X, y)* of the Thorn rc-space T(X,y), and applying the
symmetric construction

'H*(T(X,y)*) -^ Q*(C(T(X,y)*))

of 3.7 to the dual of the Thorn class in lHk(T(X,y)). This yields a class [>] in
Qn(C(T(X,y)*)) for some n, to begin with. Observe now that we have a chain
homotopy equivalence

by composing S-duality with the Thorn isomorphism. Then

f-: QnVn(C(X)-*)) -> Qn(C(T(X,y)*))

is an isomorphism, so that we may define the characteristic class [c(y)] e Q°{C(X)~*)
by the formula

Wl) =r • S-flXy)]) in Q"(C(T(X, y)*)).

This nearly proves 3.4.
(ii) Suppose next that the string (n,w;X,y; a, j) is such that X is an n-dimensional

Poincare space with Spivak normal fibration y. Let {C{X), cp) be the n-dimensional
algebraic Poincare complex constructed from X as in 3.8. We may take, as is well
known,
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It is then easy to check that [i/̂ ] = [<p] and / = cpQ. If we insert this in the formula
defining [«(?)], we see that

Mr)] = M,
where n is the normal chain bundle of (C(X), cp). So 3.5 is nearly proved.

The reader is advised to omit the rest of the section except 3.16, 3.17, and 3.18, and
to regard the arguments above as proofs. It should be realized, however, that they are
inadequate in two respects. Firstly, in 3.4 we do need a chain bundle c(y) rather than
just a class [4v)]> as is shown in 3.17. Secondly, the argument for 3.5 given above does
not survive the generalization from Poincare spaces to normal spaces (see Part II, § 7 of
this paper). We begin with the rigorous proof.

3.10. MACHINERY. Let X be a A-set. We will regard X as a category (whose objects
are the simplices of X; a morphism from an n-simplex x to an m-simplex y is an
injective order-preserving map {0,1,...,«} -• {0, l,...,m} so that the corresponding
face operator sends y to x).

An 'X-indexed chain complex' is a covariant functor G from X to the category of
chain complexes. Given such a G, and given any A-subset X' of X, define a new
(ordinary) chain complex (SectN.; G), or (Sect^-; G( —)), by

(Sectx-;G)n= ft ( G ( 4 + ix|,

Here s e (Sectx-; G)n; if x is a simplex in X', we write [s~]x for its x-component, and
diflT,. for the differential in G(x). Finally, jdiXtXis the inclusion of the ith face as usual,
and d is the differential in (Sectx<; G).)

Alternatively, (Sectx-; G) can be described as the subcomplex of natural chains in

I I Hom2(Cl(Aw), G(x)),

where C1(A|X|) is the cellular chain complex of the standard simplex. (Call a collection
{/, e Homz(Cl(A|X,)G(x))| x e K'} natural if

for every morphism p: x -> y in X'.)
Note that the construction has 'sheaflike' properties: given two A-subsets X' and X"

of X, there is a pullback square of restriction maps

(SectN.uS»; G) • (SectN.; G)

(Sectx»; G) • (SectN.nN»; G)

Suppose next that G above is a covariant functor, not merely from the category X to
the category of chain complexes, but from X to %>A. Suppose also that we have an
ordinary chain complex C in ^A and an /4-module chain map

/:C-(Sectx;G(-)).
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An induced chain map

/ - : W&C -> (SectN;W&G(-))

is defined as follows. Using the second description of (Sectx; G( —)), we see that / is
nothing but a natural collection of chain maps

/x :C<8kCl(Aw)->G(x).

Now def ine /" by [/~*(<p)]x : = /T(<P x p ( M ) ) e W&G{x), for <p e W&C; tomake
sense of this formula, use the sequence {p(m)| m ^ 0} of 2.9.

3.11. DEFINITION. From now on X will be the moduli space of all attempts at being
equivariantly S-dual to the Thorn n-spectrum M{X, y). In detail, a typical ^-simplex y of
K shall consist of

an intersection-preserving functor Ftr>t from 2|0>1 q] to the category of finitely
generated 7r-spaces and 7t-cofibrations, and

a compatible collection of maps of CW-spectra

A(K)+ -> M(Xxn¥tvy(V),y)/M(X,y),

one for each V a {0, \,...,q}.
This should require a fair amount of explanation.

(i) A 7i-space U is finitely generated if the space or rather simplicial set U/n is finitely
generated. Intersection-preserving means here that

if these spaces are interpreted as subspaces of Ftr^I^ u K2), and that Ftry(0) is a
point.

(ii) If U is any rc-space, then X = Xx^base point) is contained in XxnU. Note
further that

M(X xn U, y)/M(X, y) s M(X, y) An U,

if the cell decompositions are disregarded; here the pullback of y to X xn U has also
been called y.

In particular, if y is a q-simplex in X having all faces at the base point, then y
consists of a rc-space U — Ftry({0,l,...,n}) and a map of spectra from Sq to
M(X,y) An U. We may call this an attempt on the part of U at being equivariantly
S-dual to M(X,y).

Having specified X, we shall also specify the K-indexed chain complex G in 3.10
by letting

for a g-simplex y in X; in other words G(y) is the reduced cellular chain complex of the
underlying 7r-space of y.

We have now collected most of the material necessary to rewrite 3.9 in a rigorous
fashion. What follows is a parametrized version of 3.9 where X serves as parameter
space. So, instead of choosing an equivariant S-dual T(X, y)* of the Thorn 7r-space
T(X,y) = 2.kM(X,y), we shall consider simultaneously all attempts at being equi-
variantly S-dual to M(X,y). The role of C(T{X,y)*) in 3.9 will be played by
(Sectx; (/(—)); the next construction shows that the symbols / and i// in 3.9 (i) also
have their parametrized counterparts.
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3.12. CONSTRUCTION. We shall construct
(i) a chain map / : C(X)~* -• (SectN;G(-)),

(ii) a 0-cycle i// in (Sectx; W&G{-)).
For (i), let G be the K-indexed chain complex such that

G(y) = C(M(X xnFtry({0, \,...,q}),y)/M(X,y))

if y is a g-simplex in K. The very definition of K yields a canonical 0-cycle z in
(Sectx; G( —)). Our conventions concerning spherical fibrations (see the end of 3.2)
give us a Thom isomorphism on the chain level; composing with the Eilenberg-Zilber
map EZ0 of 3.1, we get a natural homotopy equivalence

G(y) 5 C(X) ®A G(y) s HomA(C(X)-*, G(y))

for any simplex y in N. Therefore we now have a 0-cycle

z e (SectN; HomA(C(X)~*, G(-))) (the image of z).

Define / : C(X)~* -* (Sectx; G(-) ) by

for x e C(X)~* and y a simplex in K.
In (ii), we put

Here Z' ®A f is the chain map from Z' ®A C(X)~* to (Sectx; Z' 0^, G( - ) ) obtained by
tensoring / with Z'; further, lc is the unique 0-cycle in Z.'®AC(X)~* representing
1 e H°(X;Z) = H0(Z' ®AC(X)~*), and Sym denotes the parametrized symmetric
construction which is a chain map from (SectN;Z' ®A G( —)) to (Sectx; W&G( —)).
See 3.7.

3.13. KEY LEMMA. Both f: C(X)~* -> (SectN;G( —)) and the induced chain map
/"*: W&C(X)~* -> (Sectx; ^ & G ( —)) are chain homotopy equivalences.

The proof is deferred; see 3.19. Now let

&(n,w;X,y;aL,j)

be the homotopy pullback (see 0.14) of the diagram of chain maps

W&C(X)~*

f ~*

(Z,0) X ^ J{^\ (Sectx; W&G(-))

Then the projections

0>(n,w;'X,y;a,j) » W&C(X)~*

(2,0)
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constitute a 0-cycle in W& C(X)~*, well-defined up to an infinity of higher homologies
(see 0.15). This proves 3.4, since a 0-cycle in W& C(X)~* is a chain bundle on C(X).

In the next lemma, an admissible 0-cycle in 0>(n, w;X,y;<x, j) means a cycle in the
class 1 e Z s Ho(0>(n,w; X, y; a, j)).

3.14. LEMMA. Every admissible 0-cycle s in ^(n, w; X, y; a, j) determines a A-map
(fl.sig.)s: £lp

0(X,y) -> l°{C{X),cs(y)). (See the paragraph following 3.5.) Here cs{y) is
the chain bundle on C(X) determined by s.

Proof. We begin with a A-map i: SIQ{X, y) -* X. Let x be a g-simplex in £IQ(X, y);
then x consists of a collection {Y(V),v,r(V)\ V <= {0,\,...,q}} and a classifying map
g: Y{{0,\,...,q}) -• X such that g*~(y) = v. (See the end of 3.3.) Each Y(V) inherits a
principal 7r-bundle from X, with total space Y(V).

Now i(x) is the g-simplex in K such that

F t r , x ) ( K ) - Y(V) + ;

for the stable map from A(K)+ to M(X xnFtri{x)(V),y)/M(X,y) required in 3.11 we
take the composition

d r i M , M(X *J{V),y).

This is a cellular map (as it should be) because X and Y(V) are simplicial sets. The
description of i is complete.

Next, observe that the parametrized version of 3.8 produces a canonical 0-cycle

<pe(Sectn8(Jf,y);G(-)).

(Here G is short for Gi.) All we need now in order to get a map from ft£(Ar,}>) to
L°(C{X),cs(y)) is a collection of clutching homologies (see 2.7, 2.8, 2.9). In other
words, we are searching for a 1-chain

Now I claim that such a 1-chain z can be extracted from the admissible cycle
s G ^(n, w; X.yia , j) in 3.14. Indeed, we constructed ^(n, w; X, y; a,./) as a chain
homotopy pullback, so our admissible 0-cycle is a triple

(lcs(y),z)

with l e ( Z , 0 ) , cs(y)eW&C{X)-*, and z e (SectN; W&G{-)). (See 0.14.) The
pullback of z under /: ft^A^y) -* X is the required 1-chain z. Inspection shows that
it satisfies the equations in 2.8.

3.15. LEMMA. The A-map (fl.sig.)s in 3.14 has a canonical refinement to a map of
infinite loop spaces.

For the proof, see 3.20. To complete the proof of 3.5, we still have to show that the
map of spectra

flexible signature: np(X,y) -> L°{C(X),c(y))

obtained from 3.15 does not depend too much on the choice of an admissible 0-cycle s
in &(n, w; X,y;at, j). This should follow from the existence of a homotopy equival-
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ence ^(n, w; X, y; a, j) ~ (Z,0). But the following argument is easier. Pick another
admissible 0-cycle s' in ^(n, w; X, y; a, j). Crossing the string of data (n,w;X,y; a, j)
with the unit interval [0,1] gives a new string, written

(n,w;Xx[0, l ] , yx [0 , l ] ; a , ; ) .

Choose an admissible 0-cycle s" in 0>(n, w; X x [0, l],y x [0, l ] ; a , j) whose image
under the restriction map

-• 0>{n, w;Xx {0}, y; a, ;) 0 ^(TI, W ; X x {1}, y; a, j)

is (s,s'). Such an s" exists. Then the commutative diagram

np(xx{o},y) > n p ( x x [ o , i ] , y x[o , i]) < np(xx{\

i°(C(X), eft)) > l°(C(x x [0, l]), cAy * [0, i])) < l°(C(X), ca.{y))

shows what we want, since all horizontal arrows are homotopy equivalences. The
proof of 3.5 is complete; the naturality part is stated separately below.

3.16. REMARK. Suppose that there are given two strings (n, w; X, y; a, j) and
(n1, W; X', i ; a', / ) as in 3.4, and

(i) a homomorphism h: n -> n' such that w'-h = w;
(ii) a simplicial map g: X -*• X' covered by a map of spherical fibrations from y

to/;
(iii) an identification h~*(a) = g~(ct') of principal rc'-bundles on X, compatible with

j and / .
Such a 'morphism' induces a sufficiently well-defined chain bundle map

C{X),c{y)^C{X'),c{y')

(involving a change of rings, cf. 1.8 and sequel); and the diagram

£ l p ( X , y ) *

is sufficiently commutative for all practical purposes.
Geometric transfer maps also have algebraic counterparts: let (n,w;X,y; a, j) be a

string of data as usual, and suppose that n" c n is a subgroup of finite index. A second
string (n", w"; X", y"; a", / ' ) is then given by

w" := w inclusion,

X": = total space of a, modulo action of n",

y" := pullback of y,

CL" : = principal 7i"-bundle on X" derived from a,

/ ' : = identification derived from j .
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There is a sufficiently commutative diagram of maps of spectra

QP(X", y") > L°(C(X"), c(y"))

geometric algebraic
transfer transfer

As in 3.5, L°(...) can be replaced by ¥'(•••)•

3.17. EXAMPLE. Using notation as in 3.4, let |>(y)] e Q°(C(X)~*) be the class of c(y).
In § 1 (after 1.8) elements of Q°(C(X)~*) were interpreted as 'isomorphism classes of
chain bundles' on C(X). Consequently, knowledge of [«(}>)] e Q°(C(X)~*) suffices to
reconstruct the groups L"(C(X), c(y)) (see 2.21 (iv)) 'up to isomorphism'. More cannot
be expected, as is shown by the following example.

Let N" be a smooth closed manifold admitting two stable framings Frl5 Fr2 such
that the Kervaire invariants of (N, F r J and (N, Fr2) are defined and distinct. (Such
manifolds are known to exist for n = 2, 6, 14, 30, 62 (?).) Specify the string
(n, w;X, y;a, j) as follows (see 3.4): X = N and y is trivial, n = {1}, etc. Let us work
with smooth manifolds instead of Poincare spaces; we may then replace QP(X, y) by
the Thorn spectrum M(X,y). The difference between the two framings Frj and Fr2 is
a map from N — X to the orthogonal group; it can also be regarded as a stable
automorphism of the trivial bundle y on X, written tw. The algebraic counterpart of
tw is a chain bundle automorphism z of c(y) (covering the identity C(X) -> C(X)).
There is a commutative diagram

flexible
signature

flexible
signature

L"(C(X),c(y)) — > L"(C(X),4y))

(notation as in 3.4, 3.5, 2.21 (iv)).
Claim. Both (tw)" and T~" are non-trivial group automorphisms. Indeed, let

y E nn(M(X,y)) be the bordism class represented by (id, Frx): N,vN -> X,y (recall
that X = N, and y is the trivial bundle). Also, let X' be a one-point space, and let y'
be the trivial bundle on X'; the obvious bundle map X,y -* X',y' then induces
a homomorphism

?: nn(M(X,y)) -> < = nn(M(X',y')).

The elements l(y) and ?((tw)">();)) of ns
n have distinct Kervaire invariants by

construction; hence (tw)" is not the identity. Practically the same argument shows
that

fl.sig.G>)*(fl.sig.(y)),
proving that r~* is non-trivial.

So it is impossible to give an 'honest' description of L"(C(X), c(y)) in terms of
lc(y)-]eQ°(C(X)-*).

3.18. REMARK. If (C(Y),(p) is the n-dimensional algebraic Poincare complex
derived (as in 3.8) from an n-dimensional Poincare space Y, with Spivak normal
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bundle vy etc., then there is a canonical identification

c(vY) = (normal chain bundle of (C(Y),(p))

(see the sequel to 2.6). This is clear from the proof of 3.5: the identity map
Y, vy —• Y, vY represents an element in nn(Q

p(Y,vY)); and we know that (C(Y),(p)
has a preferred 4vv)"structure {g,z), in which g: C(Y) -> C(Y) is the identity. In
other words, c(vY) has the property which characterizes the normal chain bundles,
as required.

Given a degree-1 map e: Pt -> P2 between Poincare spaces of the same formal
dimension n (equipped with suitable data, such as principal rc-bundles), [15] defines
the 'symmetric kernel' of e, an n-dimensional algebraic Poincare complex (C, q>'). If in
addition the map e has the attributes of a normal map, then it is easy to see that the
normal chain bundle of (C, <p') is 'trivialized' (using 3.18); by 2.17, the algebraic
Poincare complex (C, cp') together with this trivialization defines an element of
LB(Z[7c]).

Finally, let (n, w; X, y; a, j) be a string as usual, and suppose that we are given maps
of finite CW-spaces

and a map of spectra r: S" -> M(Px,(h-g)~(y)) (where M(...) denotes the Thorn
spectrum) such that the triples (Pi,(h-g)"(y),r) and (P2,h*~(y),g^(r)) are Poincare
spaces in the sense of 3.3 and 3.8.

Then g is clearly a normal map of degree 1, so, by what we have just seen,
an element oj^g) in Ln(l\n~\) is defined, traditionally called the surgery obstruction.
We have

in L"(C(X), c(y)), where a* denotes the flexible signature.
To prove this, note that the degree-1 map g induces a splitting of the algebraic

Poincare complex of Px into two direct summands; one of these is homotopy
equivalent to the algebraic Poincare complex of P2, the other is the 'symmetric kernel'
of g. It follows easily that

which completes the proof. See also 3.17.

Here are the remaining proofs.

3.19. PROOF OF 3.13 (an application of the equivariant S-duality theory of [15]). In
[15], a 'CW^-space' is defined to be a CW-space with base point (distinguished 0-cell)
and a cellular 7r-action which leaves the base point fixed, but permutes the other cells
freely. (This is slightly more general than the rc-spaces in 3.6.)

A CWn-spectrum is defined along the same lines. A CWTi-space or CW7r-spectrum
E is called finite if E/n has only finitely many cells; in that case the (reduced) cellular
chain complex C(E) belongs to ^A (with A = I\n~\).

Let dAn be the union of the proper faces of the simplex An; regard (5AJ+ as a
subspectrum of (AJ+. The following result is implicit in [15].
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(i) Suppose that E and dF are finite CW-spectra, and

dg: (dAn)+ -> E AndF

is a map of CW-spectra (the smash product being defined in the naive way). Then there
exists a CWn-spectrum F containing dF, and a map

g:(An)+ ^EAnF
extending dg, such that

g/dg:(An)J(dAn) + -> E AnF/dF

[where (An) + /(dAn)+ ~ S") is an Sn-duality {see [15]).

We apply this to the study of the A-set X defined before 3.11. Every g-simplex y in X
stands for a 7i-space Ftry({0,1,..., q}) (as in 3.6) and a map of spectra

(Aq)+ -> M(X xnFtry({0,\,...,q}),y) ^ M(X,y) AnFtvy({0,\,...,q}),

etc.; collapsing boundaries gives a map of spectra

nr (Aq)+/(dAq) -> M(X,y) A,(Ftr,({0, l , . . . ,g})/ |J Ftry(K))

(where (Aq) + /(dAq) ca Sq and where V ranges over the proper subsets of {0,1,... , q}).
Call y regular if ny is an S7r-duality map. Then we have

(ii) A q-simplex y is regular if and only if the composition

J—-> (SectN;G(-)) Pu l l b a c k> (SectA,;G-chy(-))

is a chain homotopy equivalence. Here ch}1: Aq -> X is the characteristic A-map
associated with y.

Proof. Let dG(y) c G(y) be the chain subcomplex generated by the images
j?y(G(z)) a G(y), where z ranges over the proper faces of y. Then we have to show
that the obvious projection

p:<SectAq;G-chy(-)) -> X«(G(y)/dG(y))

is a chain homotopy equivalence.
Observe that the skeletal filtration of Aq induces a filtration of (SectA<?; G-ch^ —))

by subcomplexes. It is not difficult to construct a similar filtration of the homotopy
type of l,q(G(y)/dG(y)), and to show that p induces chain homotopy equivalences on
the successive quotients. This proves (ii).

(iii) The regular simplices generate N (that is, every simplex in X is a face of some
regular simplex).

Proof. Given a ^-simplex y in X, say y = (Ftry,...), let Cone(y) = (FtrCone(>;),...)
be a (q+ l)-dimensional simplex in X such that d0(Cone(y)) = y, and such that
FtrCone(y)(V) is a contractible 7r-space whenever 0 € V a {0,1,..., q+ 1}. Iterating the
construction, define simplices

Cone"(y) =

of dimension q + n, for all n > 1. Using (i) above it is easy to see that for sufficiently
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large n, there exists a (q + n)-simplex x in X which is regular and such that

d{{x) = d,.(Cone"00) for 0 ^ i ^ q + n.

Clearly y is a face of x, which proves (iii).

(iv) Suppose that gv: Ki -> X is a map of A-sets, with Kx finite. Then there exists a

diagram of A-sets and A-maps

with K2 finite, such that the composition

C(Xy*-^ (Sects; G(-)) - (SectX2; G-g2{-))

is a chain homotopy equivalence.

Proof. Suppose first that Kt is a polyhedron. This means that Kl can be embedded
(as a A-set) in a standard simplex An. Choose such an embedding e: K{ -* An : = K2.
Since X is a contractible Kan A-set, there exists a A-map g2: An -* N such that
Q2'e = 9v We may also assume that g2 maps An to a regular simplex in X (otherwise
replace An by a standard simplex of greater dimension, using (iii) above). This proves
(iv) in the special case where Ki is a polyhedron.

Now let Kx be an arbitrary finite A-set. Choose a diagram of A-sets and A-maps

X

with M and K\ finite, such that Kt is a polyhedron and such that the restriction maps

(SectKt;G-gi(-)) «- (SectM; G-h(-)) -> (Sectjf,;G-9l(-))

are chain homotopy equivalences. (Such a diagram is easy to construct; for instance,
Kx can be taken isomorphic to an iterated barycentric subdivision of Kv) Since Kl is
a polyhedron, we can find another diagram

0i\ /9i

X

with K2 finite, such that the composition

(SectN; G(-))
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is a chain homotopy equivalence. Let K2 be the pushout of M <- K{ -* K2\ let
g2: K2 -* X be the amalgam of h and g2, and let e be the composition
K{ -> M -*• /C2. The proof of (iv) is complete.

We can now finish the proof of 3.13 using standard limit arguments. Let X be the
category whose objects are A-maps g: K -> N with K finite, and with the property
that the composite

C(Xy* -U (Sectx;G(-))

is a chain homotopy equivalence. A morphism from g: K -> X to g'\ K' -> X shall
be a A-map h: K' ^ K such that g-h = g'. By (iv), the category X is a small left
filtering in the sense of [1]; by (iv) again, we may write

(SectN;G(-))£ lim (Sect*; G •#(-)) ,

where the inverse limit is taken over X.
Note that all chain maps in this inverse system are homotopy equivalences, by

definition of Jf. So the following implies 3.13.

(v) The injection

lim (SectK;G•#(-)) -> holim(SectK; G•#(-))
g:K-X g:K-N

w fl c/ifl/n homotopy equivalence. (Both limits are taken over X.)

Explanation and proof. The homotopy inverse limit holim is defined as in [1],
mutatis mutandis.

For an object g: K -+ K of Jf, let Gg be the X-indexed chain complex such that

G9(y)= n
xeg~Hy)

whenever y is a simplex in N. Then

Therefore

holim(Sectx;G-g(-))g holim(Sectx; Gg(-)) ^ (SectN;holimGg(-)),

and similarly

It is now sufficient to show that for each simplex y in K, the injection

limC,(y) s G(y) ^ holimG,{y)

is a chain homotopy equivalence. But this is obvious.
We have now shown that / in 3.13 is a homotopy equivalence; the proof for /"* is

similar because the functor Ci-> W&C on (€A is essentially linear, as is shown in 1.1.

3.20. PROOF OF 3.15. In 2.19 we saw that l°(C(X), c(y)) is the underlying space £(1)
of a F-space {£(n)etc. | n ^ 0}. Much the same argument, with direct sums replaced
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by disjoint unions, makes SIQ(X, y) the underlying space F(l) of a F-space
{F(n) etc. | n ^ O } .

The symmetric group on n letters S(n) acts on F(ri); this action is free for all n (on the
complement of the base point), and in particular for n = 2. We shall use this fact
below.

Our problem is to refine the map F(l) -> £(1) in 3.15 to a family of maps
F(n) -> E{n), where n > 0, commuting with the various structure maps which are part
of a F-space.

It is a good idea to think of a simplex in E(n) as an affair with three levels: the first
level involves nothing more complicated than chain complexes (and chain maps), the
second nothing more complicated than algebraic Poincare complexes, and the third
involves everything (i.e. algebraic Poincare complexes with «(y)"Sfructure).

(i) With regard to the first and second levels, it is clear what the maps F(n) -> E(n)
ought to do (if they are to commute with the F-space structure maps).

(ii) It follows that there is essentially just one reasonable map from F(2) to £(2)
which is compatible with the given map from F(l) to £(1) (and with the F-space
structure maps relating F(l) and F(2) on one hand, and £(1), £(2) on the other).

(iii) It follows also that the remaining maps F(n) -* E(n), with n > 2, are deter-
mined (by induction on n) once the map F(2) -> £(2) has been fixed.

To prove (ii), note that if iC, 2C are chain complexes in <^A, then the projection

W&CC® 2C) -» W&lC® W&2C

is surjective, and is a chain homotopy equivalence (though not an isomorphism,
which accounts for the word 'essentially' in (ii)). To prove (iii), note that if
1C,2C,...,"C are chain complexes in ^A,then an element in W&(©,lC) is determined
by its projections to W&(@i^k

lC) for k e {1,2, . . . ,n}, provided n > 2.The proof of
3.15 is complete.

3.21. PROOF of the fact that BG is Kan provided G is a Kan simplicial monoid and
no(G) is a group; see 3.2. Suppose first that we are given a A-map / : <3An -> BG. Then
/ extends over An if and only if a certain obstruction in 7rn_2(G) vanishes. For
the desired extension corresponds to an element (#0>0i>•••>#„-1) in BGn; here
9o>9i>--->9n-2 a r e prescribed, and the rf,6fn-i are also prescribed for 0 ^ i ^ n— 1,
because that much information is contained in / . So we are looking for a simplex in
Gn_! with prescribed boundary (namely gn-x), which amounts to showing that an
obstruction in 7rn_2(G) vanishes.

It follows easily that any A-map Horn,(An) -> BG can be extended over An (extend
over the missing tth face first, and then over the whole simplex).

3. A. Appendix: Chain bundles and sliding forms

Let (n, w; X, y; a, j) be the usual string of data, and let c(y) be the chain bundle on
C(X) mentioned in 3.4. The geometric description of c(y) given below is inspired by
[14] rather than [15]. We assume that y is a vector bundle.

In this appendix, define a y-structure on a smooth manifold N" (with tangent
bundle TN) to consist of a classifying map e: N -*• X and a stable trivialization of
rN®e-(y).

For x e U, write [x] : = max{z e Z | z ^ x}.
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3.A. 1. DEFINITION. By a filtered y-thickening of X is meant a sequence
{P"\ n = 0,1,...} of compact smooth manifolds with boundary (the superscripts
indicate the dimension, but simultaneously serve as labels), with y-structure, such
that:

(i) each P" comes equipped with a map

en- P" -> (DKl-skeleton of X)

which is a homotopy equivalence, and the composite

pn __£«_„ ( [^ n ] . s k e i e t o n of X) c > X

equals the classifying map for the y-structure on P";
(ii) P" is contained in dPn+l, as a smooth codimension-0 submanifold-with-y-

structure. (In particular, the diagrams

Pn > [in].skeleton of X

n

n
Pn+l — • [n+|]-skeleton of X

en+ 1

are strictly commutative.)

3.A.2. PROPOSITION, (i) A filtered y-thickening of X exists and is unique up to an
infinity of higher concordances.

(ii) Any filtered y-thickening of X determines a 0-dimensional cycle in the chain
complex V(C(X)) of 1.4 (with C(X) as in 3.4). This cycle may be regarded as a chain
bundle c(y)new via 1.6; it is well determined up to an infinity of higher concordances,
by (i).

Proof, (i) Existence is clear. The uniqueness half follows from 3. A.3 below (which is
equally clear).

(ii) Let Z[a] be the coefficient sheaf over X whose stalk over p e X is the free
abelian group generated by the points in the fibre (over p) of the principal 7r-bundle a;
the stalk is then a free Z[a]-module on one generator. Denote the induced sheaves
over P", for n = 0 ,1 , . . . , by Z[a] also.

The maps e2n, eln-i of 3.A.I give an identification

with P2n~l czdP2nciP2n. On the other hand, H,,{P2n, P2n~l ;Z[a]) carries a ses-
quilinear form Xn: its left adjoint is the Z[V]-module homomorphism obtained by
composing (explanation follows)

Hn(P
2n, P2"~l) £ Hn{P2n, P2"-2) > Hn{P2n, P2n~l)

/II

(dual module of Hn(P
2n, P2n~1)) ^ Hn(P2n, P2n~l)
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(Explanation: the coefficients are Z[a] throughout; P" is the closed complement of P"
in dP" + l, for all n; the isomorphism in the top row is induced by the inclusion
P2""2 c_>. P2""1, which is a homology equivalence by 3.A.I (i); the other homomor-
phism in the top row is induced by the inclusion p 2 " " 2 c ^ P2""1 , and the vertical
isomorphism is Poincare duality.)

This sliding procedure is due to Quinn (see [14]). Combining these two ob-
servations, we obtain a sequence of sesquilinear forms

inspection shows that the sequence is a cycle in V(C(X))0 (see also [20]).

3.A.3. LEMMA. Let X and y be the same as ever, let X' be a CW-subcomplex ofX, and
y' the restriction ofy to X'. Then any filtered y'-thickening ofX' (say {P'n | n = 0, 1,...})
can be extended to a filtered y-thickening ofX (say {P" \ n = 0,1,...}), in the sense that
P'" is contained in P" as a codimension-0 submanifold-with-y-structure (for all n).

Observe that under these conditions the 0-cycles

<(y')new e V(C(X')), ,(y)new e V(C(X))

(constructed as in 3.A.2(ii) from {P'"} and {P"} respectively) are such that

if i: X' -»• X is the inclusion.
Applying 3.A.3 to the inclusion X x {0,1} -> X x [0,1] proves that filtered thicken-

ings are 'unique up to concordance'; similarly for higher concordances, which proves

3.A.4. THEOREM. We have c(y)new = c(y), up to an infinity of higher concordances.

The proof will be given in II, §4. A. (Strictly speaking, it is first necessary to extend
3.4 from simplicial sets X to CW-spaces X, but that causes no serious problems.)
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4. Algebraic Thorn complexes and algebraic thickenings

This and the following section (on algebraic surgery) are so close in spirit to [11, Part
I, §4] as to be almost superfluous. Here are two remarks for justification:

we need at least a glimpse of the theory of algebraic surgery on algebraic Poincare
complexes 'with ^-structure' (see [14]—hereafter denoted T—Definition 2.6);

I attempt to save formulae by giving a categorical description of the algebraic
thickening construction.

Recall from I, 2.21 (iii), (iv) that there is a long exact sequent

Ln(BJ) > Ln{BJ)

for any chain complex B in %, and chain bundle 6 on B. Our main result in this section
is an expression of the relative group Ln(B,fi) as a bordism group of single but
degenerate objects, as opposed to the standard description in terms of non-degenerate
pairs.

Most of this section is written in terms of unrestricted (UR for short) algebraic
Poincare complexes, higher bordisms, etc.; see I, 2.21 (ii).

4.1. DEFINITION. An n-dimensional UR symmetric chain complex is a pair (C, q>) in
which C is a chain complex in (€A and q> is an n-dimensional cycle in W&C.

4.2. DEFINITION. Let (/: C -* D,(\}j,q))) be an n-dimensional UR algebraic
Poincare pair (over A; see I, 2.2). Write \jr for the image of if/ under the map

W&D -> W&(D/im(f))

induced by the projection D -* D/im(/). Then (D/im(/), i/r) is an n-dimensional
UR symmetric chain complex, called the algebraic Thorn complex of the pair

The passage from an algebraic Poincare pair to its algebraic Thorn complex has a
geometric analogue, namely the passage from a geometric Poincare pair (N, dN) to its
Thorn complex N/dN. (If N is equipped with a principal 7i-bundle, one would be
interested in the Thorn 7c-complex N/dN instead, where N is the total space. See [11]
for a detailed description of this analogy.)

4.3. THE THEME (of this section). The passage from an UR algebraic Poincare pair to
its algebraic Thorn complex is reversible.

A.M.S. (1980) subject classification: 18F25.

Proc. London Math. Soc. (3), 51 (1985). 193-230.
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We shall first state this with more precision (in 4.6, after some preparatory
definitions), then prove it, and then list some variants. The appendix 4.A contains a
proof of I, 3.A.4, as a first application of the theory.

4.4. DEFINITION. An n-dimensional UR symmetric pair (/: C -> D, (ip, q>)) consists
of a cofibration f:C-*D in <tfA, an n-chain \jj e W&D and an (n—l)-cycle
q> e W&C so that

in (W&/))„_!

(or, if you prefer, /~*(<p) = -dOA); compare I, 2.4).

4.5. DEFINITION. Let (£, if/1) be an n-dimensional UR symmetric chain complex. An
UR symmetric pair over (£, i/r) consists of

(i) an n-dimensional UR symmetric pair (/: C -> D,(ij/,(p)),
(ii) a chain map p: D -> E which is such that the sequence of chain maps

0 • C-L> D—^> E • 0

is short exact, and such that p~*(i/0 = iA? in W&E.

For a fixed n-dimensional UR symmetric chain complex (£, i/r), the UR symmetric
pairs over (E, i/r) form a category & \ (E, if/1) in the following way. Let

P^if-.C-^D,^,^)), p.D^E,

and

be two U R symmetric pairs over (E, \jj). The set of morphisms in & [ (E, i/r) from P t

to P2 is to be a certain subset of the set

^(p,p') : = {fibre homotopy classes of chain maps g: D -* D' so that p ' g = p}.

(A fibre homotopy connecting two maps gug2: D -> D ' s o that p ' - ^ i = p = p ' - 0 2 i s a
homotopy which factors through ker(p') cz D'.) Let

P

E

represent an element [g~] in ^(p,p'); then

represents a homology class defect([g]) in //n(ker(p'"')/im(/'"*)), with

*W8LD\ p'-*

We regard [#] e J^(p, p') as a morphism from Px to P2 precisely if defect([gf]) = 0.
The promised reformulation of 4.3 now reads as follows:

4.6. THEOREM, (i) The category 0> \ (E, i/r) has an initial object {that is, an object
admitting precisely one morphism to any other object).
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(ii) An object in this category, say (/: C -*• D, (i/f, <p)), p: D -*• E, is initial if and only
if (/: C -> D, (i/>, <p)) is an UR algebraic Poincare pair.

Proof of (i). It helps to consider a small classification problem first. Fix a short
exact sequence of chain maps

0 > C - ^ D—*U £ > 0

in ^ , (with E as in 4.6). We wish to classify the various ways in which this can be
enhanced to an UR symmetric pair over (E, i// ); that is, we wish to classify, up to a
suitable notion of equivalence, pairs (t/f, q>) such that

is an UR symmetric pair over (E, i/r).
(Regard two such pairs (ij/, q>) and (\\i', q>') as equivalent if the identity map D -> D is

a morphism in & J, (£, i/̂ ?) from (/: C ^ D, (ijtt q>)), p: D -»• £ to (/: C -* D, (^', (p')),
p: D - £.)

4.7. LEMMA. "Hie set of equivalence classes of such pairs (ij/, cp) is non-empty if and
only if a certain obstruction in Hn_1(E' ®AC) vanishes; and in that case, the group
Hn{E' ®A C) acts on this set in a sharply transitive manner.

Proof. We use the diagram

W&C

r

kerQT) > W&D—£—> W&E

ker( /r) / im(/-)

in which both row and column are short exact. Let [i/r] £ Q"(E) = Hn(W& E) be the
class of i/r. It is clear that the short exact sequence 0 - » C - > £ > - > £ - » 0 can be
enhanced to an UR symmetric pair over (£, i/r) if and only if the class

comes from a class in Q"~i(C) = Hn_y(W8iC), which is the case if and only if the
image of d[i//?] in f/n_1(ker(p">)/im(/">)) is zero. A similar argument shows that the
group f/n(ker(p"')/im(/">)) acts in a sharply transitive way on the set of equivalence
classes of 'enhancements'.

It remains to be seen that the chain complexes ker(p"')/im(/">) and £' ®A C are
homotopy equivalent. A related idea was used in the proof of I, 1.1 (iii):

kerQT) / imt r ) s HomZ[Z2](W, G);

here G : = ker(p ® p)/im(/ ® / ) , with

f®f:C®AC^D'®AD, p® p: D'®AD -» £' ®A E.
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But now G is canonically isomorphic, as a Z[Z2]-chain complex, to the 'coinduced'
chain complex Homz(Z[Z2],E'®AC) (obtained from El ®AC by applying
Hom(Z[Z2], - ) in each dimension). Therefore

ke r (p - ) / im( / l * Homz(W, E' ®A C) ~ £' ®A C,

which proves the lemma.

We shall use Lemma 4.7 to give a simpler description of the category &\{E, i/r).
Let J / ( £ , t/r) be the following category: an object of s?(E, \\r) is a triple (F, j , [fi]) in
which F denotes a chain complex in <tfA, j : E -*• F is a cofibration, and [/i] is an
equivalence class of chain homotopies from

to 0. (Call h, h' equivalent if the difference chain map

h-h': I " + 1(£-*) -> F

is nullhomotopic.) Given two such objects (F, j , [K]), (F , f, [h'~\), a morphism from
the first to the second is a cofibre homotopy class of chain maps g: F -+ F' making the
diagram

F
L

E: 9

J
F'

commutative, and so that gTflTi]) =

4.8. LEMMA. The categories jrf(E, \jr) and & \ (E, if/1) are equivalent.

Proof. This is little more than a reformulation of 4.7. Given an object (F, j , [7i]) in
, \jr), there is the short exact sequence in ^A,

0 - I ^ F -> S-^ConeO")) -• E -+ 0.

By Lemma 4.7 the obstruction to 'enhancing' this short exact sequence to an UR
symmetric pair over (E, \\r) is a certain class in

and inspection shows that this class is represented by the chain map

But this is nullhomotopic; in fact, [hi] gives us a preferred class of nullhomotopies. It
is easy to deduce that every object in stf(E, i/r) gives rise to an object in 0> \ (£, t/r), well
defined up to isomorphism (in ^ 1 ( £ , i/r)); the construction can be extended to
morphisms, and yields the required equivalence of categories.

We return to the proof of 4.6 (i). We are now reduced to showing that the category
, i/r) of 4.8 has an initial object (F, j , \_h~\). But this is clear: put

F : = (Cone of ifa: Sn(£"*) -> £), etc.
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Proof of 4.6(ii). One direction is straightforward, since we have an explicit
description of an initial object

in.( / in . C in _> £)in ̂  ^ i n ^ p

from which it can be seen that (/in: Cin -• Din, (^in, <pin)) is an UR algebraic Poincare
pair. (See also 4.9 below.) Conversely, let

be an object in 0>l(E,if/1) such that (/: C -> D,(i/f,<p)) is an UR algebraic Poincare
pair. Then the unique morphism from the initial object to Y induces a degree-1 map of
UR algebraic Poincare pairs

( / i n : Cin -> Din,(ij/in,(pin))

(f:C-+D,W,q>))

('degree-1' means that (\j/—g~t(il/in),q) — g~t((pin)) represents the zero class in //„(/"*),
with /"": W&C -» W&D). We know further that the induced chain map

E s Dim/im(/in) -> D/im(/) s £

is a chain isomorphism. It follows easily that the unique morphism in question is an
isomorphism in ̂  | (E, i/r).

4.9. DEFINITION AND DESCRIPTION. The UR algebraic Poincare pair in 4.6 is called
the algebraic Poincare thickening of (E, i/r).

An explicit description is as follows. Let C and D be the mapping cones of

and

I ' V o ^ i d : Zn-1(£-*)©2:-1E -> H'lE

respectively. Thus C c D, and D/C ^ E. Define an n-chain \j/ e W&D and an (n— 1)-
cycle (p € W&C by letting (explanation follows)

0 0

0 0

(ii) for s > 0,
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(iv) for s > 0,
_ / 0 0

(Explanation: i/̂  and Tij/l are considered as chains in HomA(E~*,E). Matrices (i)
and (ii) describe

ij/s: D p • D q

II? II? ;

(E*_p@Ep+i@Ep)* Et-q®-Eq + l@Eq

it is understood that, for fixed s, p and q range over all pairs so that p + q = n + s.
Similarly, matrices (iii) and (iv) describe

Vs- C > Cq

II? II?
(F* ffi F .)* F* ffi F .

with p + q = n— 1+s.)
Now (C -> D,(ij/,(p)) is an UR algebraic Poincare pair, and the projection

p: D ^> E (with kernel C) is such that

Hence (C -> D,(\j/, (p)) is 'the' algebraic Poincare thickening of (£, i/r).

4.10. FIRST VARIATION ON 4.3. 77ie relative structureless case. Let (Fun,O) be a
higher bordism of UR algebraic Poincare complexes, of dimension n and order 2 (that
is, modelled on the 2-simplex; see I, 2.3), with the property that

Fun({0, l}) = 0.

(Such a thing is commonly called a triad; it is just an UR algebraic Poincare pair
whose boundary is split into two halves.) 'Collapsing the edge {0,2}', that is,
collapsing one half of the boundary, gives an UR symmetric pair (cf. 4.4)

(Fun({l,2})/Fun({2}) - Fun({0, l,2})/Fun({0,2}),((D?({0,1,2}),<D?({1,2})))

(in shorthand notation; certain cofibrations have been written as inclusions, and
<D?({0,1,2}), O?({1,2}) are the images of <D({0,1,2}) and 0({l,2}) respectively).

This collapsing process, or the passage from the triad (Fun,O) to an VR symmetric
pair (of the same dimension n), is reversible. That is, any UR symmetric pair can be
obtained from an UR algebraic Poincare triad by collapsing, as above; and the triad is
essentially determined by the UR symmetric pair.

The UR algebraic Poincare triad is called the algebraic Poincare thickening of the
UR symmetric pair.

4.11. REMARK. Given an UR symmetric pair (C -* D,(i/r,</>')), any algebraic
Poincare thickening (in the sense of 4.9) of the boundary UR symmetric complex
(C, qy) can be extended, in an essentially unique way, to an algebraic Poincare
thickening (in the sense of 4.10) of (C -• D,(tf,qy)).

The proofs of 4.10 and 4.11 are similar to that of 4.3.
For the rest of the section, fix a chain complex B in %>A and a chain bundle 6 on B.
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We will work towards an analogue of 4.3 for an UR algebraic Poincare pair
(/: C -+ D, (ijj, cp)) with a ^-structure (g, z) (see I, 2.7; pairs are regarded as bordisms
of order 1, as in I, 2.4)—under the very restrictive assumption that the classifying map
g vanishes on the boundary. (This means that g-f: C -> B is zero.)

There are two reasons for making such an assumption. One is technical: quite
simply, we wish to collapse the boundary of our UR algebraic Poincare pair, and the
classifying map g would be in the way if it did not vanish on the boundary. The second
and more important reason is that an n-dimensional UR algebraic Poincare pair
(/: C -> D, (i/f, cp)) as above (with a ^-structure (g, z) such that g f = 0) is a typical
representative of an element in L"{B,6). See I, 2.21 (iii), (iv), and I, 2.17.

To begin with, here is a stimulating definition:

4.12. DEFINITION. A normal structure on an n-dimensional UR symmetric complex
(C, cp) is a pair {c, z) in which

c denotes a chain bundle on C,
z is a 'clutching homology' on (W&C)n + 1 from <5" • cpo (c) e (W& C)n to

J(cp)e(W&C)n.
(Explanation: cp0 is regarded as a chain map from C * to I "C, inducing
CPQ\ W&C~* —• W&(E~"C); S" is the n-fold iteration of the explicit suspension
isomorphism of I, 1.2 (b).)

4.13. REMARKS, (i) It will be shown in § 7 that 'UR symmetric chain complexes with
normal structure' are the algebraic counterparts of '(geometric) normal spaces' (see
[10] or § 7 of this paper)—just as (UR) algebraic Poincare complexes are the algebraic
counterparts of Poincare spaces.

(ii) An n-dimensional UR algebraic Poincare complex (C, cp) can always be
regarded as an n-dimensional UR symmetric complex (C, cp) with normal structure
(c, z). Indeed, c and z exist and are essentially unique because cp0: C~* -*• E""C is a
chain homotopy equivalence. Note that c is the normal chain bundle of the UR
algebraic Poincare complex. (See the sequel to I, 2.6.)

4.14. DEFINITION. A normal ^-structure on an n-dimensional UR symmetric
complex (C, q>) is a pair (g, z) in which

g is a chain map from C to B,
ze(W&C)n+1 is a clutching homology' from <$"• q>o{g-(#))<= (W&C)n to

J(<p)e(W&C)n.

4.15. REMARKS, (i) A normal ^-structure (g,z) on (C, cp) induces a normal structure
(g~(t),z) on (C,<p).

(ii) If (C, cp) happens to be an UR algebraic Poincare complex, then a normal 6-
structure on (C, cp) (in the sense of 4.14) is the same as a ^-structure on (C, cp) (in the
sense of I, 2.6).

(iii) Define a higher bordism (Fun, O) of UR symmetric complexes (of dimension n
and order g) like a higher bordism of UR algebraic Poincare complexes, dropping
only the non-degeneracy condition I, 2.3(iv). In view of the similarity between 4.14
and I, 2.6, it is clear how to define a normal ^-structure (g, z) on such a higher bordism
of UR symmetric complexes (namely, by imitating I, 2.7). We will only need UR
symmetric pairs with normal ^-structure.
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(iv) It is also possible to define a normal structure (cf. 4.12) on an UR symmetric
pair or on a higher bordism of UR symmetric complexes (but this notion will not be
used much).

4.16. SECOND VARIATION ON 4.3. The absolute case, with ^-structure. Let
(/: C -> D, (I/J, (p)) be an UR algebraic Poincare pair with ^-structure (g, z). Suppose
that gf=0.

Then the algebraic Thorn complex of the pair (the UR symmetric complex
(D/im(/), i/r)) carries a canonical normal ^-structure (g?, z?). The passage from

the UR algebraic Poincare pair (/: C -> D,(if/,(p)) with ^-structure (g,z)
such that gf=0

to

the UR symmetric complex (D/im(f), if/1) with normal ^-structure {g?, z?)

is reversible.

4.17. THIRD VARIATION ON 4.3. The relative case, with ^-structure. Let (Fun,O) be
an UR algebraic Poincare triad (i.e. a higher bordism of order 2 such that
Fun({0,1}) = 0). Suppose that a ^-structure (g,z) on (Fun,O) is given so that the
composite

Fun({0,2}) > Fun({0,1,2}) —^U B

is zero. Then the UR symmetric pair

(Fun({ 1,2})/Fun({2}) -> Fun({0,1,2})/ Fun({0,2}), (O?({0,1,2}), O?({ 1,2})))

(compare 4.10) carries a canonical normal ^-structure. The passage from

the UR algebraic Poincare triad (Fun,O) with 6-structure (g,z)
such that the classifying map g vanishes on Fun({0,2})

to

an UR symmetric pair with normal ^-structure

is reversible.

Proof of 4.16. Recall first that, in order to be able to speak of a ^-structure (g, z), we
must consider the UR algebraic Poincare pair as a bordism of order 1 (as in I, 2.3 and
2.7); also, that z = {z(S)| S cz {0,1}} is a collection. Let

(i) z? be the image of z({0,1}) under the map jT : W&D -* W&(D/\m(f)) where
p: D -* D/im(/) denotes the projection; and define g1: D/im(/) -*• B so that

( i i ) g = g - p .
Then I, 2.9 implies that (g\ z?) is a normal /^-structure on (D/im(/), i/r).

To see that 'the passage ... is reversible', note that (/: C -> D,(i//,(p)) can be
recovered as the algebraic Poincare thickening of (£>/im(/), i/r), according to I, 4.3. It
is not hard to see that there exists an essentially unique ^-structure (g, z) on
(/: C -*• D,(\jj,(p)) satisfying equations (i) and (ii) just above—in other words, {g, z)
can be recovered from (g?, z7). (If in trouble, remember I, 1.1 (iii).)

The proof of 4.17 is similar.
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4.18. COROLLARY. The following notions are interchangeable:
(a) n-dimensional UR symmetric complex with normal structure (see 4.12);
(b) n-dimensional UR algebraic Poincare pair (C -> D,(\l/,(p)) whose boundary (C,q>)

is equipped with a 0-structure.

(Explanation: '0' is the unique chain bundle on the trivial chain complex 0^ in <&A,
discussed in I, 2.19. Note that (C, q>), with its 0-structure, represents an element in the
Wall group Ln_!(^). The corollary is useful in understanding (geometric) normal
spaces, obstructions to Poincare transversality, etc. [10]; more in §7.)

Proof. Apply 4.16 with 6 equal to the universal chain bundle ^°° of I, 2.A.4, and
B = B°°.

(A normal structure on an UR symmetric complex is practically the same as a
normal ^-structure; similarly, a 0-structure on the boundary (C, cp) of an UR
algebraic Poincare pair (C -> D,{\jj,<p)) is as good as a ^-structure (g,z) on
(C -> D,(\p, q>)) such that g vanishes on the boundary C.)

4.19. COROLLARY. The relative group L"(B, fi) is isomorphic to the bordism group of
n-dimensional UR symmetric complexes with normal S-structure.

4. A. Appendix: Chain bundles and sliding forms again

The proof of I, 3. A.4 to be given here begins with yet another variation on 4.3. This
time a different 'model' is required: the 3-disk D\, regarded as a CW-complex with
one 3-cell (whose closure is D + ), two 2-cells (with closures D2

+, D2.), two 1-cells (with
closures £> + , D1.), and two 0-cells D°+, D° . The two 0-cells are positively oriented; the
remaining cells are oriented so that the inclusions D°+ t̂ _» D\., D+ o_> D2+,
D\ <=-^. D+ and D° d_» D\., D\. CL^> D2. are orientation-preserving.

4.A.I. FOURTH VARIATION ON 4.3. Let (Fun,<J>) be an n-dimensional bordism of UR
algebraic Poincare complexes modelled on £)+ (just as the higher bordisms of I, 2.3
were modelled on the standard simplex Aq; in particular, Fun is now a functor from
the category of faces, that is, closures of cells, of D + , to ^A).

Assume that Fun(D°) = 0, and n > 1. Then

(Fun(Dl
+)/Fun(D°+) - Fun(D2

+)/Fun(Dl.), (tf(D2
+),tf(Dl

+)))

is an (n— l)-dimensional UR symmetric pair, and

(Fun(D2
+)/(Fun(D1

+)0Fun(D1_)) -> Fun(D3
+)/Fun(D2_), (O??(D3),O?"(D2)))

is an n-dimensional UR symmetric pair.
These two UR symmetric pairs are related as follows: the UR symmetric chain

complex obtained by collapsing the boundary of the first is identified with the
boundary of the second. The passage from

the n-dimensional bordism ofUR algebraic Poincare complexes (Fun,<D),
modelled on D\ and such that Fun(D°) = 0

to
the two related UR symmetric pairs above

is reversible.
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The proof of 4. A.I can be modelled on that of 4.3, but it is also amusing to derive it
from 4.10 and 4.11.

4.A.2. OUTLINE (of the proof of I, 3.A.4). We keep the notation of I, 3.A. Fix a
filtered thickening {P"\ n = 0,1,...} of X. Each Pn is a manifold with boundary, so it
gives rise to an algebraic Poincare pair

(C( n ) ĉ _> D(n\ {\p(n\ (p{n)))

of dimension n, endowed with a chain map (which is a homotopy equivalence)

(corresponding to en: P" X̂ Xlin] := [|n]-skeleton of X).
More important to us than the algebraic Poincare pair above is its algebraic Thom

complex, the n-dimensional (UR) symmetric complex

(i) (Z)(n)/C(n),iA(n)?).

There is another ^-dimensional UR symmetric complex about, namely

00 (Sn((C(je[in]))-*),SnWy)new)).

(Explanation: it is understood that

is the chain bundle derived as in I, 3.A, from the filtered thickening P" above and no
other. I have also written e(y)new for the image of c{y)new in W & C(X[in]) ~ *, so that the
n-fold suspension

is an n-dimensional cycle in W&Z"{C{X[in])~*); it cannot help lying in the
subcomplex

so that (ii) is indeed an UR symmetric complex.)
The idea of the proof is to show that the chain homotopy equivalence

obtained by composing the map

with the Poincare duality chain equivalence

is such that

(iii) 0w-(®"toy)B.w)) = «A(")?

in W&(D{n)/C{n}), up to an infinity of higher homologies. In other words, the UR
symmetric complexes (i) and (ii) are more or less identical.
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For large n, C(X[in]) = C(X), and we also have by definition of c(y) the equation

(iv) gM-(<=> ( ) ?

in W&(D{n)/C(n)), up to an infinity of higher homologies.
Putting (iii) and (iv) together proves I, 3.A.4. (The method of proof is so 'natural'

that the infinity of higher homologies which identifies c(y) and «(y)new is sufficiently
independent of the choice of filtered thickening; see I, 3.A.2(i) and 3.A.3.)

The outline is over; we are left with equation (iii). This can be proved by induction
on n. If n is even, the induction step from n to n+ 1 is trivial; for n = 2q— 1, it is
contained in Lemma 4.A.2 below, for which the assumptions are as follows.

Let (E -> F, {X, x)) be a (2g)-dimensional UR symmetric pair (in <tfAy with q > 0)
such that

(a) the (2q—l)-dimensional UR symmetric complex (E, x) is the suspension of a
(2q — 2)-dimensional UR symmetric complex (G,^) (such that E = IG ,
X = SO*));

(b) H,(F) = 0 for i ± q.
Then Hq{F) s (Hq(F))* (coefficients A) is a f.g. projective /4-module. Moreover, Hq{F)
carries two sesquilinear forms, ^ and j52.

Description of j5x: choose a chain map (in ^A)

/ : F -> tf,(F)

such that the induced map in homology is the identity (regarding H^(F) as a chain
complex in <€A). Then the 2^-chain

is nothing but an element in Hq(F)' ®AHq(F) (which is well defined!), and so can be
regarded as a sesquilinear form /?t on (Hq(F))* = Hq(F).

Description of fi2: p2 is a 'sliding form'. Condition (a) just above gives us a (2q— 1)-
dimensional UR symmetric pair

(G -> Cone(G),(ConeM,^))

(with 'Cone(jx)' equal to the image of \i under the map induced by the projection
G®zl -* Cone(G); see the text between I, 2.13 and 2.14).

The UR symmetric complex obtained by collapsing the boundary of the UR
symmetric pair

(G ->Cone(G),(ConeOi),/i))

is equal to the boundary of the UR symmetric pair

So 4.A.1 can be applied.
Let (Fun,O) be the resulting (UR) algebraic Poincare bordism modelled on D + ,

with Fun(D°) = 0. We can define a sliding form j52 on

fy(Fun(D3
+)/Fun(D2

+)) ^ tf«(Fun(D3
+)/Fun(D2_)) ^ Hq(F)

by imitating the construction in the proof of I, 3.A.2(ii). (P2q corresponds to Fun(D + ),
P2q~l to F u ^ D i ) ; P2q~2 to Fun(DV); P2q'x to Fun(D?.), P2"'2 to Fun(DL); and
d(P2q-2) = d(P2q~2) to Fun(D0).)
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4.A.2. LEMMA. fix = j?2.

To prove the lemma, it suffices (by a naturality argument) to consider the special
case where the map E c^ F is an isomorphism, and both E and F are concentrated
in dimension q; details are left to the reader.

5. Algebraic surgery

5.1. DEFINITION. Let (Fun, 0) be an n-dimensional UR algebraic Poincare bordism
(over A), of order 1 (see I, 2.3), and let

Call ((Fun,<J)),x) an elementary bordism of index k +1 if

[0 if i
Fun({0,1})) = ^ ^ ^ ^ ^ ^ fey ^ .f . =

Motivation. Suppose that we are given an n-dimensional bordism of manifolds (of
order 1) which is 'elementary of index k+V (that is, which possesses a Morse function
having exactly one critical point, and that of order k+\). Suppose also that this
geometric bordism is equipped with the usual data—principal 7r-bundle, etc., as in I,
3.8. Then the algebraic Poincare bordism (Fun, O) derived from the given geometric
bordism (by the method of I, 3.8) is elementary of index k+1 for a suitable choice of
x e / / k + 1(Fun({0})c^Fun({0,l})).

5.2. DEFINITION. Let (C, cp) be an UR algebraic Poincare complex and y e Hk{C).
Say that y can be killed by algebraic surgery if there exists an elementary (UR algebraic
Poincare) bordism ((Fun,<I>),x), as in 5.1, so that

Fun({0}) = C,

dx = y in tffc(Fun({0})) = Hk(C).

For the next definition, let B be a chain complex in ^A, and let 6 be a chain bundle
on B.

5.3. DEFINITION. Let (C, cp) be an UR algebraic Poincare complex with ^-structure
(0,z)(cf. I, 2.6), and let

y'eHk+l(g:C-> B).

Say that y' can be killed by algebraic surgery if there exists an elementary UR algebraic
Poincare bordism ((Fun, O), x) of index k + 1, and a ^-structure (g, z) on (Fun, d>) such
that

Fun({0}) = C, <D({0}) = q>, and the ^-structure (g, z) on (Fun, <D)
extends the ^-structure (g, z) on (C, <p);

under the homomorphism

tffc + 1(Fun({0}) ĉ _> Fun({0, 1})) - //fc + 1(Fun({0}) = C ^ B)

induced by the chain map g: Fun({0,1}) -> B, x maps to y'.
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5.4. PROPOSITION, (i) In 5.2, y can be killed by algebraic surgery if and only if a
certain obstruction

ob(y)eH"-2k(Z2;A)
vanishes.

(ii) In 5.3, / can be killed by algebraic surgery if and only if a certain obstruction

ob(y')eH2k_n(Z2',A)
vanishes.

Proof of (i). The Poincare dual of y e Hk(C) is a cohomology class in H"~k(C)
(coefficients A), which can be represented by a chain map (in ^A)

fy: C -> (A,n-k) (see I, 0.6).
Let

ob(y):=f;(q>) e Qn((A,n-k)) s H"-2k(Z2;A).

Let D be the mapping cylinder of fy. Suppose that ob(y) = 0. Then there exists an
(n+l)-chain i// e W&D ~ W&{A,n-k) such that

{C ^ D,W,<p))

is an (n + l)-dimensional UR symmetric pair (whose boundary symmetric complex
(C, cp) happens to be an UR algebraic Poincare complex). The algebraic Poincare
thickening (in the sense of 4.10) of (C -*• D,(I/J, cp)) is an UR algebraic Poincare triad
(Fun,O) of dimension n + 1. Since (C, cp) was already an UR algebraic complex,
(Fun, 0) can also be regarded as a bordism of order 1 (from (C, cp) to something else).
It has the properties required in 5.1, 5.2. The converse is similar.

Proof of 5.4 (ii). The obstruction ob(y') is somewhat harder to define in this case.
The following definition helps:

5.5. DEFINITION. For a chain complex E in ^A, let Qn{E) be the nth relative
homology group of the forgetful map

J: W&E -• W&E.

(So there is a long exact sequence

... -> Q"+1(E) - Qn(E) -> Q"(E) - Q"(E) -> Qn_y{E) -> ..., n e Z;

see [11] for more details.)

5.6. EXAMPLE. Let (C, cp) be an n-dimensional UR algebraic Poincare complex with
^-structure (g, z) (for example, the one in 5.3). Let E be the mapping cone of the usual
map (cf. I, 2.6)

<t>0'g*:ir{B-*)^C.

The inclusion j : C -> E gives a class j"(cp) e Q"(E). It is not hard to see that the 6-
structure on (C, <p) determines a canonical lifting x e C(E) of j^{cp) € Q"{E) ('upwards'
the long exact sequence in 5.5).

We return to the proof of 5.4(ii). Now

/ e Hk + i(g: C -> B) (from 5.4(ii) and 5.3)
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corresponds to an element in

//"" V : S"(B~*) -* I"(C"*))

(cohomology with coefficients A throughout). Since

cp0: I-(C-*) -> C

is a chain homotopy equivalence, we can also think of this as an element in

H"-k((p0-g*: I"(fl-*) -* C) = #"-*(£)

(where £ denotes the mapping cone of cp0 -g*).
Represent this element in H"~k(E) by an /4-module chain map

fy: E ^ (Atn-k).

Let x e Qn{E) be the 'lifting' described in 5.6, and put

ob(y') : = / ; ( Z ) e GB(M,n-fe)) = / / 2 k_n(Z2M).

The rest of the proof is left to the reader.

5.7. COROLLARY. Let 6 be a chain bundle on a positive chain complex B. Then the
forgetful homomorphisms (see I, 2.21)

nn(i°(BJ)) - nn{<£\BJ)) = Ln(BJ)

are isomorphisms for n ^ 0. For n ^ — 3, Ln(B, 6) is isomorphic to Ln(A), the Wall group
of A.

Proof To see that nn(L°(B, 6)) -> nn(J&:(B, 6)) is surjective, take an n-dimensional
UR algebraic Poincare complex (C, q>) with ^-structure (g, z). Then 5.4(ii) allows us to
kill the homology groups of C in negative dimensions, because

for k < 0, every element y e Hk(C) lifts to y' e Hk + l(g: C -* B), since B is positive;
ob(y') e H2k-n(Z2; A) is zero since Hi(Z2; A) = 0 for i < 0 (and since we assume

that n ^ 0).
Hence (C, (/>), with its ^-structure, is bordant to a (restricted!) algebraic Poincare
complex with ^-structure, as required.

The proof of injectivity is similar (admittedly, it uses a somewhat relativized version
of 5.4(ii)).

For n ^ — 3, performing surgery below the middle dimension using 5.4 (ii) shows

( ) 0 0 )
(seel, 2.19).

6. A homological description for L"(B, 6)

6.1. THEOREM (see I, 2.21). For any chain complex B in ^A and chain bundle 6 on B,
there is a long exact sequence

... - Qn+i(B) -+ Ln{BJ) - Q"(B) -> Q"(B) -» t-l{B,t) -> ... (n € Z).

6.2. ADDENDUM. The homomorphisms Q"(B) -> Q"(B) in 6.1 are not in general
identical with J (of I, 0.13); instead they have the form J — ind(<?), where

ind(^): Qn(B) -* Q\B)

sends \_cp] to [S"<p^(^)]. (Again, cp0 is regarded as a chain map from B~* to Z""B.)
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We give an outline of the proof of 6.1. It is rather easy to define, for n e Z, abelian
groups Qn{B, 6), depending on B and 6, which by construction fit into a long exact
sequence

Here Qn(B, 6) is the group of suitable equivalence classes of pairs

((p,z)€(W&B)nx(W&B)n + l

so that (B, <p) is an UR symmetric complex with normal structure {6, z) (see 4.12). This
amounts to saying that

cpo (&"(#))+d(z) = J(<p) in W&B.

According to 4.19 we can interpret L"(B, 6) as the bordism group of n-dimensional
UR symmetric complexes (C, <p) with normal ^-structure (g,z). Given such a (C, q>)
with normal ^-structure (#, z), one finds that (#"*(</>), fif^z)) represents an element in
Qn{B,6). Conversely, given an element [(<p,z)] in Qn(B,S), the n-dimensional UR
symmetric complex (B, cp) with normal ^-structure (id, z) represents an element in
L"{B,6). So there is an isomorphism Ln(B,6) ^ Qn(B,d), and the proof is complete.

The details are as follows. For the definition of Qn{B, 6), take two pairs (<p, z) and
{(p',z') in (W&B)nx(W&B)n + 1 such that (B,(p) and (B,(pf) are n-dimensional UR
symmetric complexes with normal structures {6, z) and {6, z') respectively. Call (<p, z)
and (q>', z') equivalent if there exists a pair (\Js, y) G (W&B)n + lx (W& B)n + 2 so that

q>' in W&B;

(Explanation: i/f0 is regarded as a chain homotopy from cp0 to (p'o, or as a chain map
from B ~ * ® z / to I""JB; therefore 6 " ' ^ x w ) is a homology from S"-<p^) to
<5H-<p'0(#). See the proof of I, 1.1 (i) and I, 2.9.)

6.3. PROPOSITION AND DEFINITION. The set of equivalence classes, written Q,,(B, 6), is
an abelian group.

Proof. Let prl5 pr2: B © B -* B be the two projections, and g = prj +pr2. Given
two elements [(<p,z)] and [(<p',z')] e Qn(B,^), choose z" e ( I^&(B© B))n+1 so that

(i) (g, z") is a normal ^-structure on the UR symmetric complex (B © B, q>® cp');

(ii) prf: W& (fi © B) -» iy & B sends z" to z,

sends z" to z'.

Such a z" exists and is 'essentially unique'. Put

', z')] : =

6.4. PROPOSITION. There is a long exact sequence (cf. 6.2)

Qn{BJ) > Q»(B)
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Proof. Go from Qn+i(B) to Qn(BJ) by [z] i-> [(0, z)] (for an (n+l)-cycle
z e W&B), and from Qn(fl,^) to Q"(B) by [((/>, z)] H-> [<p]. Exactness is almost
obvious.

6.5. REMARK. If 6 = 0, Qn(B, 6) equals Qn(B) (of 5.5), and the long exact sequence in
6.4 is the usual one.

For the next proposition, interpret L"{B, 6) as the bordism group of n-dimensional
UR symmetric complexes with normal ^-structure (g, z) (as in 4.19).

6.6. PROPOSITION. The homomorphism

L"(BJ)->Qn(BJ)

which sends the bordism class of the n-dimensional UR symmetric complex (C, cp) with
normal ^-structure (g,z) to [(#"*(<?), gf~*(z))] e Qn{B,S) is an isomorphism.

Proof. The inverse homomorphism

sends [(<p, z)] e Qn{B, 6) to the bordism class of the n-dimensional UR symmetric
complex (B, q>) with normal ^-structure (id,z). Clearly the composite
Qn(B, 6) -> L"(B, 6) -*• Qn(B, 6) is the identity. Given an UR symmetric complex
(C, q>) with normal ^-structure (g, z), the mapping cylinder of g: C -*• B can be
equipped with suitable data so as to constitute a bordism between (C, cp) (with normal
^-structure (g, z)) and (B, g^((p)) (with normal ^-structure (id, g"(z))). This shows that
the composite

is the identity also, which proves 6.6.

Finally, combining 6.4 and 6.6 proves 6.1.

6.7. EXAMPLE. Take B, 6 as in I, 2.20 and 2.A.3; so 6 is universal for chain bundles
on positive chain complexes in <^A. Then L"(B, 6) = L"(A) for n e Z , where L"(A) is the
symmetric L-group of [11] (as introduced by Mishchenko). (For n ^ 0, this is clear
from 5.7 and the discussion in I, 2.20; for n < 0, take it as a definition of L"(A). It
agrees with the definition in [11, Part I, §6].)

Write L"(A) := L"{B,S), so that there is a long exact sequence

... -> Lm(A) - L"(A) -> L"(A) - L^M) - - (« 6 Z).

From 6.1 we obtain another long exact sequence

... -> <5n+1(fl) -> £"(/4) -• e"(^) - Q"(B) -• ... (n e Z),

showing that the groups L"(A) are homological objects.
(This requires explanation, since 6.1 is valid for chain complexes in <€A—and B is

usually not in <$A. Put Q"(B):= Hn{Uomb
I[Z2]{W,B' ®A B)), where the superscript '6'

stands for the' subcomplex of bounded chains in UomI[Z2](W, B' ®A B); that is, chains
which vanish on Ws for all but finitely many s e Z. Proceed similarly for Q"{B). With
these conventions 6.1 can be generalized to cover the case at hand, that is, the case of
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an arbitrary chain complex of projective left A -modules, equipped with a chain bundle
as defined in I, 2.A. The proof uses a direct limit argument.)

In order to apply 6.1, we need means for computing groups of type Q"(B), Q"(B) or
Qn(B,tf) ^ Ln{B,S). Often this is elementary, at least if B is sufficiently well under-
stood. Some times the chain homotopy invariance of the functors Qn( —), Q"( —) can
be exploited, as in 6.8 below; if that is not sufficient, there is a spectral sequence for
computing Q"(B) (or Q"(B)), based on the filtration of W (or W) by skeletons.

6.8. EXAMPLE. Assume that A is such that every left /4-module is projective.
Then every chain complex of left /4-modules is homotopy equivalent to one with zero
differential (its homology), and hence the computation of groups such as Qn(B), Q"(B),
Qn{B,&) is usually a trivial matter. For instance, if A = Z2, one has (cf. 6.7)

7. Spherical fibrations, normal spaces, and L-theory

Recall from [10] or [11] that a normal space of formal dimension n consists of a
finitely generated simplicial set Y, a spherical fibration vy: Y -* BG(co), and a map of
spectra

pY:Sn ^ M(Y,vY),

where M(Y,vY) is the Thorn spectrum. Call vY the normal bundle, and call

(Thorn class of vY n h(pY)) e Hn(Y; Ztw)

the fundamental class; here Ztw is the twisted integer coefficients, the twisting being
given by the first Stiefel-Whitney class of vY.

EXAMPLE. Every Poincare space of formal dimension n is a normal space of formal
dimension n, according to I, 3.3.

Now let (n, w; X, y; a, j) be a string as in I, 3.4. Let M(X, y) be the Thorn spectrum.
The homotopy group nn(M(X, y)) can be identified with the bordism group of
formally n-dimensional normal spaces (Y,vY,pY) equipped with a classifying map
g: Y -> X such that g*~(y) = vy. (Proof: any quadruple (Y,vY,pY,g) as above yields
g^ipy): Sn -> M(X,y); conversely, any p: Sn -* M(X,y) yields a quadruple
{X,y,p,idx). Moreover, the quadruples (Y,vY,pY,g) and (X,y,g~*(pY),idx) are bor-
dant: the mapping cylinder of g is a bordism between the two.)

7.1. THEOREM. There is a canonical map of spectra

M(X,y)-*<2iC(X),4Y))

(cf. I, 2.21 (iii) and 3.4) which fits into a commutative square

M(X,y)

5388.3.51
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and therefore results in a map of long exact sequences (see comment below)

- LJLZMX)}) -> QP(X,)>) - nn(M(X,y)) -

l ( a ) l ( b ) I
... - L»+1(C(X),4y)) - Ln(Z[7i]) - L"(C(X),c(y)) - I"(C(*),c(y))

(/or n > 5, with fin
p(X,y) = nn(Q

p(X,y))).

I

Proof and comment. We have just interpreted M(X,y) in terms of normal spaces
mapping to X, y and in § § 4 and 6 we interpreted & (C(X), c(y)) in terms of symmetric
chain complexes with c(y)-structure. So 7.1 (apart from the long exact sequences) is a
perfect analogue of I, 3.5, and the same proof applies—just substitute 'normal spaces'
for 'Poincare spaces' everywhere.

The maps from nn(M(X, y)) to L"(C(X), c(y)) are flexible versions of the hyperquad-
ratic signature maps

constructed in [12, § 7.4].
The upper long exact sequence in 7.1 was announced by Quinn in [10].
All L-theoretic constructions in 7.1 are meant to be based on free modules rather

than "projective ones, so that, for example, Ln(I\n]) means Ljj(Z[7r]). The vertical
arrows (a) in 7.1 are induced by the sufficiently well defined homomorphism
h: nx{X) -* n corresponding to the principal 7i-bundle a, and (b) is the flexible
signature.

Warning. If y is a vector bundle, or if for any other reason transversality arguments
can be applied to y, then transversality gives a splitting of the upper long exact
sequence in 7.1. But there is absolutely no way in general of getting a compatible
splitting for the lower long exact sequence. The case in which n = {1} and X is a point
is instructive.

8. An injectivity criterion for the release map

In order to complement §6, we will examine here the release homomorphisms
Ln(A) -> L"(B,6) for a chain complex B in <8A with chain bundle 6\ cf. I, 2.21.

8.1. THEOREM. Take B, 6 as above, and let c be another chain bundle on B; suppose
that

belongs to the image of the composite homomorphism

Then there exists an isomorphism



SURGERY AND THE GENERALIZED KERVAIRE INVARIANT, II 2 1 1

making the triangle

Ln{A)

commute. So the release homomorphisms Ln(A) -* L"(B, 6) and Ln(A) -> L"(B, c) have
the same kernel.

Next, keep the assumptions of 8.1, but assume also that A = J\n\ is a group ring
(with the w-twisted involution for some w: n -> Z2). Let n" <= n be a subgroup of
finite index and let A" = I\K"~\ be the corresponding ring with involution. Write B"
for the chain complex in %,» obtained by regarding B as an /4"-module chain complex;
write 6" and c" for the chain bundles on B" obtained from 6 and c respectively.
Transfer (see I, 3.16) gives maps of spectra &.{A) -+ &:(A"), &'\BJ) -
and <£\BJ) -»• J&:(B",d"), whose cofibres we denote by

&.{A T A"), <£\B \ B", 616"), and £\B \ B", 6 \ 6")

respectively. The nth homotopy groups of these cofibres are written

Ln{A t A"), L"(B | B", 6\ 6"), and L"(B} B", 6\6").

8.2. THEOREM. With the hypotheses of 8.1, there exists an isomorphism

Ln+l(B t B", 616") ^ Ln+i(B | B", c | c")

making the triangle

Ln+l(B T B", 616") ^ Ln + l(B| B", c \ c")

commute. So the release homomorphisms

Ln(A T A") -> Ln(B T B", t T n and Ln(A | A") - L"(B T 5", «t «")

the same kernel.

8.3. COMMENT. There are two reasons for stating 8.1. Firstly, suppose that (C, <p) is
an n-dimensional algebraic Poincare complex over A, with normal chain bundle n\
then certain geometric analogies suggest that the release map Ln(A) -> L"(C, n) ought
to be injective. This is confirmed by 8.1.

Secondly, suppose that A = Z2; then the simply-connected theory of [1] and [2]
suggests that the release homomorphism L2k(A) -• L2k(B, 6) ought to be injective if
and only if the Wu class

vanishes (see I, 2.A.1). This is true (see the argument just below for the 'if part; forthe
'only if part, reduce to the case where B is concentrated in dimension k + \ and
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compute, using 6.1). Unfortunately, it does not generalize well to arbitrary A.
However, 8.1 is a reasonable substitute in many cases. We now give a standard
application. Taking A arbitrary, and assuming that 6 in 8.1 is the object of study,
suppose that c can be so chosen that

the hypothesis of 8.1 is satisfied;
the class [c] e Q°(B~*) belongs to the kernel of the restriction homomorphism

Q°(B~*) -» 6°{{Bslin] + l)~*) induced by the inclusion of the skeleton
B<[iM] + 1 d.^ B (with notation as in I, 2.A.3).

Then the release maps Ln(A) -> L"(B, 6) and, if applicable,

are injective.
Indeed, by 8.1 and 8.2 we may replace 6 by c\ now the hypothesis on c means that

there exists a chain bundle 3 on B/B^[in]+l and a chain bundle map from d o 3
covering the projection B -*• B/B^[in] + l. Hence we could have assumed from the
outset that B is ([|n] + l)-connected, and 6 = c = 2. But then the homomorphisms
LH(A) -> Ln(BJ) and Ln(A]A") -• Ln{B\B", 6\6") are isomorphisms. (The proof
uses surgery below the middle dimension.)

Proof of 8.1. We may assume that

where h is an n-cycle in W&I."(B~*). Let (q>,z) be a typical representative of
Qn + l(B,t) ^ Ln + l(B,6) (using notation as in 6.3). Then

is a typical representative of Qn + 1(B, c) = L" + l(B, c); remember that <p0 is a chain map
from I " + 1(£~*) to B. This gives a bijection between Ln+i(B,d) and Ln+l(B,c); going
back to 6.3 and using the fact that

we find that it is a group isomorphism.
To prove that the isomorphism commutes with the boundary maps to Ln(A), we use

the original definition of Ln+l(B,tf) and L"+1(B, c) in terms of algebraic Poincare
pairs. So let (/: C -• D,(cp, $)) be an UR algebraic Poincare pair of dimension n+ 1,
with a ^-structure (g,z) such that g-f: C -* B is zero. (Then q> G (W&D)n+l and
(j)E(W&C)n, etc.) Now

happens to be a chain map (because g vanishes on the boundary); and

is an UR algebraic Poincare pair of dimension n+ 1, with a ^-structure (g, z) such that
g-f = 0. If we let cp := g^((p) and z := g~*(z({0,1})), then the first algebraic Poincare
pair above corresponds to [(<p,z)] e C + i(5,<?), and the second to

But the boundaries of the two algebraic Poincare pairs (with additional structure) are
identical; so they represent the same element in Ln(A), as required. (I am obliged to A.
Ranicki for help with the proof.)



SURGERY AND THE GENERALIZED KERVAIRE INVARIANT, II 2 1 3

Proof of 8.2. This is identical with the proof of 8.1, except that it calls for a more
categorical point of view. We are dealing with certain A-modules (mostly the chain
modules Bn and their duals); but we usually regard them as /T-modules only, and
moreover adopt the policy of regarding yT-module homomorphisms between them as
'negligible' if they preserve the A-module structure.

For instance, the group Ln + 1(B\B", 6}6"), which we might also call

has a description in terms of equivalence classes of pairs (9, z), with q> e (W&B")n + l

and z e (W&B")n + 2; however, instead of requiring that

d(cp) = O in W&B"
a n d{z) = J((p)-6" + l(q>o(0) in W&B"

(as we should in defining Qn+i(B", 6")), we merely ask that

and

where = indicates that the difference between the left-hand and right-hand terms
belongs to the 'negligible' subcomplexes W&BcW&B" or W&Bcz W&B". (We
have, for instance, W&B a W&B" because

B'®AB^ HomA(B-*, B) a Hom^B"- *, B") s B'" ®A.. B".)

The details are left to the reader.

8.4. REMARK. If a version of the theory is used where projective class and/or
torsion matters, then 8.2 must be formulated with greater care; see I, 2.22. However,
this affects Ln(A] A") only, not the relative groups Ln+\B\B", 6\6").

9. Products and Whitney sums

9.1. DEFINITION. If 6 is a chain bundle on a chain complex B in %>A and 6' is a chain
bundle on a chain complex B' in <€A>, then 6 x 61 is a chain bundle on the chain
complex B®ZB' in %>A®zA-, called the exterior product of 6 and 6' (cf. I, 0.11).

9.2. PROPOSITION. There are multiplication maps

) A S£\B',6')
and

S£\BJ) A £\B',6') -+ £\B®ZB\ 6x6'),

inducing multiplication homomorphisms

Lm{B, 6) ® L"(B\ 6') -> Lm+n{B ®z B', 6 x 6')
and

Lm(B, 6) ® Ln(B', 6') -> Lm + n(B ®2 B', 6x6').

Proof. Let (C, q>) be an m-dimensional UR symmetric chain complex over A with
normal ^-structure (g, z) (cf. 4.14); and let (C, q>') be an n-dimensional UR symmetric
chain complex over A' with normal ^'-structure (g',zr). Then {C®%C', cpxcp') is an
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(m + n)-dimensional UR symmetric chain complex over A ®Z/4', with normal 6 x6'-
structure

{g® g', (p xz' + ( — )"• z x (q)'— d(z'))).

Passage to bordism classes defines the multiplication

Lm(B, 6) ® L"(B', 6') -»• Lm+n(B ®2 B', 6x6').

If in addition (C, <p) and (C, q>') are both UR algebraic Poincare complexes, then so is
<p x q>'), which explains the multiplication

( D , &) (x) L ( D , 6 ) —> L ( D Q92 " > ^ x ^ J-

The rest of the proof is unpleasant and left to the reader.

9.3. PROPOSITION. Under the association

spherical fibration (-• chain bundle

of I, 3.4, exterior Whitney sums (explanation below) correspond to exterior products of
chain bundles.

Proof. The passage from spherical fibrations to chain bundles in I, 3.4 (and
previously in [11]) was based on equivariant S-duality; 9.3 is an application of the
principle that (equivariant) S-duality commutes with smash products. Details are
again left to the reader. To get a good definition of Whitney sums, return to I, 3.2 and
use an identification D"xDm^ Dn+m.

9.4. PROPOSITION. The diagram of maps of spectra

QP(X, y) A ap(X', y') > np(X xX',yx / )

, c(y)) A r(C(X'), c(y')) > ¥(C(X x X'), c(y x y'))

commutes.

(Here y and / are spherical fibrations on simplicial sets X and X', equipped with
certain data; y x y' on X x X' is the exterior Whitney sum.)

There is a similar commutative diagram in which Qp(X,y) and ^(C{X), c{y)) are
replaced by M(X,y) and ^(C{X), c(y)), respectively (similarly for X' and / ) . See 7.1.
The proof of 9.4 is left to the reader.

The analogue of 9.3 for internal Whitney sums looks as follows. Given strings of
data (7i, w; X, y; a, j) and [n\ w' ;X,y'; a', / ) as in I, 3.4, their internal Whitney sum is
the string (nxn\w xw' ;X,y ®y' ;<xxxa', j xf). The associated chain bundles c(y),
c(y'), and c(y@y') (which will also be denoted, for greater precision, by c(y;n),
c(y'; 7r'), and c(y © y'; n x ri) respectively) are related by a 'Cartan formula1:

9.5. COROLLARY. c{y © y'; n x n') = ciy; n) u c{y'; n').



SURGERY AND THE GENERALIZED KERVAIRE INVARIANT, II 2 1 5

(Explanation: c(y; n) u c(y'; n') is, by definition, the pullback of c(y; n) x c(y'; n')
under the composition

C(X) E i l e n b e r g ~ Z i l b e r > C(X) ®2 C(X) ^ > C(X/n') ®z C(X/n)

in which X denotes the total space of a xxa ' . )
Next, let (n,w;X,y;a.,j) be a string as usual, and assume for simplicity that

w: n -> Z2 is trivial. Write this string as the internal Whitney sum of the two strings

(n, w;X, trivial spherical fibration; a, trivial)
and

({1}, trivial ;X,y; trivial,;).

In other words, write

y = (trivial spherical fibration © y);

let the first Whitney summand (trivial spherical fibration) carry the weight of the data,
and equip the second summand with the trivial data. Then 9.5 implies

9.6. COROLLARY ('Separation principle').

c{y; n) = ^(trivial spherical fibration; n) u c(y; {1}).

Both 9.5 and 9.6 have to be interpreted in the usual woolly way, namely 'up to an
infinity of higher homologies'; but at any rate, 9.6 shows that c(y; n) is determined in a
sense by c(y;{\}).

The situation is similar for stable fibre homotopy equivalences of spherical
fibrations. Suppose that we are given two strings

fawiX^iiccJJ and (n, w;X,y2;cc, j2)

as in I, 3.4 (with w = 0), and an orientation-preserving stable fibre homotopy
equivalence

(With our restrictive notion of spherical fibration, it is best to assume that ft comes in
the shape of a stable spherical fibration on X x [0,1] which restricts to yt on X x {0}
and to y2 on X x {1}.)

9.7. ADDENDUM TO 9.6. The 'chain bundle isomorphism1 (cf. I, 1.8) c(yx; n) = c(y2; 7r)
induced by n (cf. I, 1.12) is determined by the chain bundle isomorphism

(also induced by fx).

These trivial algebraic observations have a non-trivial geometric consequence. Let
/ : BSO -» P]f c > 0 X(Z2,2k) be a map in the homotopy class {v0, v2, u4,...), where the v{

are the Wu classes.
Define a pseudo-surgery problem over (n, w) (with w = 0 as before) to consist of
a degree-1 map p from a compact smooth oriented manifold N" with boundary dN

to a finite (simple, if you wish) oriented geometric Poincare pair (Xn, dX),
restricting to a (simple) homotopy equivalence of the boundaries;
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a principal 7i-bundle on X;
a map (not just a homotopy class)

g:X - Y\K(Z2,2k);

and a homotopy from

N-^-> BSO

to

N-MX-

An ordinary surgery problem (as in [13]) gives rise to a pseudo one: take

g : = / • (classifying map for the vector bundle on X).

9.8. THEOREM. There is a canonical factorization (broken arrow)

Bordism group of n-dimensional
ordinary surgery problems

Bordism group of n-dimensional
pseudo-surgery problems

As an example, consider an ordinary surgery problem (consisting of a degree-1 map
g: N" -» X" as before, a vector bundle y on X, and a stable trivialization of
g"(y) © TN). Let us alter the stable trivialization by a map f:N-> SO. Suppose that

f~(d{Vi)) = 0 in H'-l{N; Z2) for all i > 0,

where <5(y,) e H'~l(SO,Z2) is the cohomology desuspension of the Wu class

y,-e//'(BSO;Z2).

Then the change of framing f does not affect the surgery obstruction, by 9.8.

Proof of 9.8. Write A = Z[ft]. The pseudo-surgery problem described just before
9.8 gives rise to a degree-1 map of algebraic Poincare pairs

p: (C(dN) -

where 'degree-1' means that p~*(if/,(p) = [h,n), strictly. Specifying a map

X

is another way of specifying a chain bundle cz (over Z!) on C(X) = Z ®A C(£). (It is
easy to see that Q°(C(X)" *) ^ f]*&o #2*(*; Z2), for instance by applying I, 2.A to the
ring with involution Z.)

The remaining data give an isomorphism of chain bundles (over Z!)

Isz: p~(cj) = (normal chain bundle of C{N)),
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with C(N) = Z ®A C(N). (Of course, algebraic Poincare pairs, too, have normal chain
bundles.)

What we really need in order to get an element in Ln(A) is the chain level analogue
of a surgery problem, i.e. apart from the degree-1 map p of algebraic Poincare pairs
(which restricts to a chain homotopy equivalence of the boundaries),

a chain bundle cA (over A\) on C(X), and
an identification of chain bundles (over A\),

Is,,: p"(cA) = (normal chain bundle of C(N)).

Now 9.6 suggests that cA can be defined using cz; similarly, 9.7 suggests that Is^ can
be defined using Is2.

In detail, let 6- be the chain bundle (over A) on C(X) determined, as in I, 3.4, by the
trivial vector bundle on X; put

cA : = 6 u cz, v

and let Is^ be the identification

P^UA) = P"{6 ^ cz) = p~(6) u p*~(cz)

= p~(#) u (normal chain bundle over Z of C(N))

= (normal chain bundle over A of C(N)).

(The last in this sequence of identifications stems from 9.6, taking into account the
first sentence of I, §3; and the previous one is induced by Is2.)

9.9. REMARK. In the twisted case, that is, when w: n -> Z2 is non-trivial, 9.8
remains valid with no essential change, except that the classifying map for the normal
bundle vN,

N -+ BSO

has to be replaced by the classifying map for

yN © w-twisted line bundle,

which still goes from N to BSO. Moreover, there is no harm in replacing the smooth
manifold with boundary N by a geometric Poincare pair.

Let X be a finitely generated simplicial set, let a be a principal 7r-bundle on X, and
let K0Sf(X) be the group of stable fibre homotopy equivalence classes of orientable
spherical fibrations.

9.10. PROPOSITION. The diagonal maps X - > I x I and n -> n x n make
Q°(C(X)~*) into a (commutative, associative) ring. The rule y i—• [c(y)] defines a
multiplicative map from Kos{(X) to Q°(C(X)~*), so it transforms Whitney sums into
products. (See also 10.13.)

Explanation and proof. C(X) is in #z[7r), and Z[7r] carries the involution coming
from the trivial homomorphism w: n -* Z2. The ring structure on Q°(C(X)~*) is
obtained as follows. Given chain bundles 6 and 6' on C(X), note that 6 x 6' is a chain
bundle on C(X)®iC(X), regarded as a chain complex over

Z[7r] ®z Z[7t] = J\n x K].
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Although the diagonal subgroup n a % x n will not in general have finite index, an
ad hoc transfer argument shows that

C{X) ®z C{X) can be thought of as a chain complex of Z[7i]-modules (free, but not
necessarily finitely generated);

6x.fi' determines a chain bundle tr(^ x fi') (over Z[7r]!) on the said chain complex.
(To see this, write D : = C(X) ®z C(X), and let

/ : Z[TT x it] -+ Z[TE]

be the homomorphism of free abelian groups which sends the generator

(x, y) E n x n a Z[n x n] to x e n a Z.[n] if x = y,

and to 0 otherwise. Define 'chain bundles' as at the beginning of I, 2.A; if

fixfi' = {(pp,q: DpxDq -> Z[7iX7i] |p ,geZ},
put

Xr{fixfi'):={f-(ppq.DpxDq^Z[n\\p,qeZ}.)

The Eilenberg-Zilber diagonal EZ0: C(X) -> C(X)®zC{X) is a chain map over
Z[7r]; the ring structure on Q°(C(X)~*) is given by

Now let y be an orientable spherical fibration on X; choose an orientation j . Then
(n,w;X,y;ct,j) is a string of data as in I, 3.4, with w = 0. Therefore [c(yj] in
£ ° ) is defined. Choosing a different orientation does not affect the result.

There is a version of 9.10 which covers the non-orientable case: the appropriate ring
to consider is then

®Q°(WC(X)~*)
w

(where w ranges over all homomorphisms from n to Z2, and the superscript w in
Q°{WC(X)~*) indicates which involution on l[n] is used to define Q°{C{Xy*).)

The principal 7i-bundle a on X would be fixed, however, as in 9.10. See also 10.13.

10. Classification of chain bundles over a group ring

10.1. THEOREM. Let R be either Z or Z2; let A = R[K] be the group ring, equipped
with the w-twisted involution for some w: n —*• Z2. The cohomology theory

C H {Q-"(C-*)\ n e Z }

on (€A is then an ordinary cohomology theory, that is, there are canonical natural
isomorphisms

Q-"(C-*)^YlHk+n(C;Hk(Z2;A))
keZ

for « e Z , commuting with the suspension isomorphisms.

(Note that the groups Hk(Z2; -4) ̂  Q°({A, k)~*) are the coefficients of the cohom-
ology theory and therefore carry a left /4-module structure, made explicit in I, 2.A.)
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Assume now that A = Z2\j(\. Let PR be a projective resolution of the left A -module
H°{Z2;A) (so that H0{PR) is canonically identified with H°{Z2;A)). Theorem 10.1
follows (in the case where A = Z2[n~\) from

10.2. ROUGH STATEMENT. There exists a (somehow distinguished) chain bundle d
on PR so that the Oth Wu class defined in I, 2.A,

vo(d):Ho(PR)^H°(Z2;A),

agrees with the canonical identification. ('Chain bundle' has to be interpreted here as
in I, 2.A.)

Proof of the implication 10.2 => 10.1, for A = Z2[n\. It suffices to specify a natural
isomorphism

Y\H\C-H\Z2-A))^Q°{C-*)
kel

for C in <gAt since Q"(C~*) ̂  Q°((LnC)~*). Since A has characteristic 2,

H\Z2; A) ^ H°(Z2; A) for k e Z;

further, the cohomology theory at issue is now periodic with period 1 (not merely 2;
see I, 1.3). To be more precise, if B is a possibly huge chain complex of projective left
/4-modules, if W&B~* is defined as at the beginning of I, 2.A, and if

q> = {(pp<q: Bp x Bq -+ A | p , q e Z}

is an n-cycle in W&B~* for some n e Z, then <p can be viewed as an n-cycle in
W& B~* for all n e Z. Equivalently, if 6 is a chain bundle on B, then <5~V can be
regarded as a chain bundle on Z"B.

Now let
B00 := 0 I f c P K ;

fceZ

supposing that 10.2 holds, let

Since all the Wu classes
kel

are now isomorphisms, we recognize in ^°°, B°° the 'universal chain bundle' of I, 2. A.4.
Therefore or otherwise, the natural homomorphism

kel

is a natural isomorphism, for C in <£A. (Of course, in order to make it canonical we
have to specify a canonical d in 10.2.)

The proof of 10.2 proceeds by obstruction theory. Write @)A for the category of
projective left /1-module chain complexes C which are positive, such as PR in 10.2.
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(For the moment, A can be any ring with involution.) For C in Q)A, let

(Here C$k is the /c-skeleton of C.)
So the homotopy-invariant functor

(i) CH+^<2° (C - * )

is the '/cth Postnikov base' of the (homotopy-invariant) functor

(ii) Ch+<2°(C-*);

see [4] for a completely analogous topological definition. Or in other words, passing
from (ii) to (i) amounts to 'killing' the coefficient groups of the functor (ii) in dimension
greater than k, that is, the groups Q°((A,n)~*) for n > k. (Cf. I, 0.6.) There is a
commutative diagram of natural forgetful maps

and there are natural homomorphisms

ob: &>k.xQ°{C-*)

so that the sequence

l{C;Hk(Z2;A))

0>kQ°(C-*) > 0>k.,Q°{C-*)-^ Hk + l(C;Hk(Z2;A))

is exact. (Again, Hk(Z2; A) = Q°{{A, k)~*) plays the role of 'coefficient group'.)

10.3. DESCRIPTION of ob:
k + l (C;Hk(Z2;A)). For y in

let y e Q°((C^k)~*) be a lifting; treat the differential d: Ck + l -»• Ck as a.chain map
from (Ck + 1,k) to C^k. Then

represents an element ob(y) e Hk + 1(C;Hk(Z2;A)), independent of the choice of
lifting y.

10.4. DEFINITION. For k > 0 and C in ^ , let

socle: 9k.&°{C-*) - //°(C; H°(Z2M)) = ^Q\C~*)

be the forgetful map. (Note that C is positive.)

Let C, C be chain complexes in <2)A, 3>A- respectively, where A and A' are arbitrary
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rings with involution. Then C®ZC is in S)A^A>; if y e 0>fc_jQ°(C~*) and
y' € ^k-iQ^C"*), the exterior product yxy' is an element of 9k.xQ°{{C ®z C)~*).

10.5. LEMMA.

socle(y x y') = socle(y) x socle(/);

ob{y x y') = ob{y) x socle(/) + society) x ob(/) .

To make sense of these formulae, note that there are 'exterior multiplication maps'

H\Z2; A) x H\Z2 • A') -+ Hi+j(Z2 ; A ®z A')

derived from the diagonal map W -> W ® z W (in fact, A and A' could be replaced by
arbitrary Z[Z2]-modules). Consequently, there are exterior cohomology products

Hp(C;Hi(Z2;A))xH«(C;Hj(Z2;A')) -> HP+"(C ®ZC ;Hi+j(Z2;A ®ZA')).

The lemma is easy to verify.

Now let A = Z2[n\ again, and let PR be as in 10.2. The ring A is equipped with a
diagonal homomorphism

Z2[7i] = A -*• A (x)z A ^ Z2[n x n~]

corresponding to the diagonal inclusion n -*• nxn. Therefore PR ®z PR can be
regarded as a left /4-module chain complex (in

10.6. OBSERVATION. PR is equipped with a canonical (homotopy commutative,
homotopy associative) diagonal chain map

PR -> PR ®z PR

of ^-module chain complexes. Therefore Q°(PR~*) and &kQ°(PR~*) are rings, for

Proof. Since PR is a projective resolution of H°(Z2; A) and Pi? ® z P/? is a
projective resolution of H°(Z2;A) ®ZH°(Z2\ A), specifying such a chain map is
equivalent to specifying a 'diagonal map' of left /4-modules

H°(Z2; A) - H°(Z2; /I) ®z H°(Z2; ^)-

A further reduction is possible. There is a functor FR from the category of rc-sets to
that of Z2[7r]-modules: to every rc-set S it associates the Z2-vector space generated by
S, with 7r-action induced from the 7i-action on S. We have

H°(Z2;A)^FR(tov2(n)),
where

tor2(7r) = {x e 7i | x2 = 1},

and where n acts on tor2(7i) by conjugation. Similarly,

H°(Z2; A) ®2 H°(Z2; A) = FR(tor2(n) x tov2(n)).

So all we need is a 7i-map

tor2(7i) -• tor2(rr) x tor2(7r);

we take the diagonal map.
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The ring structures on Q°(PR-*) and 0>kQ°{PR~*) are defined as in 9.10.

10.7. LEMMA. Suppose that y e ^kQ°{PR~*) satisfies

socle(j;) = 0.

Then y is nilpotent.

Proof. If socle(y) = 0, then y can be represented by a chain bundle

{<*>,,,: PRp®zPRq -+ A\p,q^k+\]

on PR$k + 1 so that <pOtO = 0. The definition of the multiplication in 0>kQ°{PR~*)
implies then that / can be represented by a chain bundle

{(//„,„: PRp®iPRq -+ A\p,q^k+\]

on PR^k + l so that if/p<q = 0 whenever p + q < n. So y" = 0 for n > 2k.

10.8. LEMMA. For any y e ^kQ°(PR~*), y2" is idempotent if n is sufficiently large.

Proof. Write y2 = y + h. Then socle(ft) = 0, since socle(y2) = socle(y). By 10.7, h is
nilpotent; choose n large enough so that h2" = 0. Then

as required. (Note that we are in characteristic 2, so y \—• y1" is a ring endomorphism.)

It is now possible to reformulate 10.2, as follows. Firstly, it is not necessary in 10.2
to construct a chain bundle on PR; a class in Q°(PR~*) will do just as well. Secondly,
although the map

Q°(PR ~ *) - • lim 0>kQ°(PR ~ *)

need not be an isomorphism, it is clear that an element in lim^ft^°(P/?~*) is quite

sufficient for the application to 10.1 (in the case where A = Z2[7r]). The next
proposition exhibits such an element.

10.9. PROPOSITION. For every k ^ 0, there is a unique element yk in gPkQ°{PR~*) such
that

(i) society) e H°(PR; H°(Z2; A)) £ HomA(H°(Z2; A), H°(Z2; A)) is the identity,
(ii) yk is idempotent.

Proof. Clearly y0 exists and is unique. Suppose that yk-i has already been
constructed. Then (yk-i)

2 = yk-i', now 10.5 implies that

ob(yk.l)eHk+l(PR;Hk(Z2;A))

is divisible by 2, and hence equal to 0. So there exists an element z in ^kQ°(PR~*)
which lifts Vfc-i- Put

yk : = z2" for sufficiently large n,

so that yk is idempotent (10.8). Clearly yk satisfies conditions (i) and (ii). To prove
uniqueness, suppose that y'k e ^fcQ°(P/?~*) also satisfies (i) and (ii). Then yk — y'k is
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idempotent, since we are in characteristic 2, but also nilpotent by 10.7. Therefore

.Vfc = yl
The proof of 10.1 for R = Z2 is • omplete. (The argument fails for R = Z, even when

w: n -> Z2 is trivial. The point is that 10.6 becomes false: if PR is a projective
resolution of H°{Z2; A) over Z|>], then it is also a projective resolution of H°{Z2; A)
over Z; therefore PR ®/PK will not be a projective resolution over Z or over Z[7i],
since /^(PK ®2 P/?) * 0.)

Proof of 10.1 /or R = Z. Write ^ = Z[7i]. Indicate reduction mod 2 by a double
prime; thus /4" = Z2[n~\ and C" = C ® Z Z 2 for C in ̂ .

Five cohomology theories on <€A will be needed, namely

TH2: C .-> {[I //fc+n(C;i?fc(Z2M"))| n e Z},
fceZ

TH4: C M {]"] f/*+"(C;^k(Z
kel

TH5: C^{Y\Hk + n{C-Hk-\
keZ

The canonical direct sum decomposition

Hk(Z2; A") ^ Hk(Z2; /4) 0 Hk" X(Z2; /4), for /c e Z,

gives a canonical isomorphism

(i) 77/2 ̂  TH4 0 T//5.

That part of 10.1 which has been proved gives an identification

(ii) TH, s T//2.

Let

(iii) TH3 0 TH5 - THX s

be the map of cohomology theories which on the first direct summand is the obvious
reduction mod2, TH3 -> THV; and which on the second summand is the inclusion
TH5 d.^ TH2 ^ THl of (i) just above. The map (iii) is also an isomorphism of
cohomology theories, because it induces an isomorphism on coefficient groups.
Combining (i), (ii), and (iii), we obtain a commutative diagram

TH*

TH4 0 TH5

showing that TH3 ^ THJTH5 ^ TH4. So there is a canonical isomorphism
TH3 s T//4, as required.
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10.10. REMARK. The preceding proof shows that TH3 and 77/4 are isomorphic by
showing that both are direct summands of THX, with common complement
THS c THV If w: n -> Z2 is trivial, then it is easy to see that TH3 and 77/4 are in fact
identical as direct summands of THX.

10.11. PROPOSITION. The isomorphism in 10.1 is compatible with ring structures if
R = Z2.

Explanation. Write A = Z2[7r]. For any space X with principal rc-bundle a, define
a ring structure on Q°{C(X)"~*) as in 9.10, where C{X)" = C(X)®ZZ2. Under the
isomorphism

Q°(C(xy-*) S n

of 10.1, this corresponds to the 'ordinary ring structure' on

Y\Hk(C(X);Hk(Z2;A)).
kel

To understand what 'ordinary ring structure' means, note that pointwise multipli-
cation pi makes H°(Z2; A), the set of functions from tor2(7t) to Z2, into an /4-algebra;
that is, ^

JI: //°(Z2M)(g)z//
0(Z2M) -+ H°(Z2M)

is an /4-module chain map (with the diagonal /4-action on H°(Z2; A)®iH°(Z2;A);
see the text preceding 10.6). Therefore {Hk(Z2 ;A)\ k e Z} is a graded /4-algebra, since

Sketch proof of 10.11. The cohomology theory under consideration is periodic
with period 1, and so 10.11 can be reduced to the claim below.

Let PR be as in 10.2, and let yk 6 0>kQ°{PR-*) be as in 10.9. Then PR ®zPR is, a
priori, an A ®z /4-module chain complex, and yk x yk e ^^((PR (g)z PR)'*) has to
be interpreted accordingly.

Using the 'ad hoc transfer' tr associated with the diagonal inclusion n c n x n,
regard PR ®z PR as an /4-module chain complex (see 9.10 and its proof); tr(yk x yk) is
then an element of

(the subscript A indicates that everything takes place over A, not A ®%A).
Now let ^res: PR®%PR -+ PR be the chain map of /4-module chain complexes

whose induced homomorphism in 0-dimensional homology is the multiplication

ix: H°(Z2; A) ®I H°(Z2; A) > H°(Z2; A)
II? \U

HO(PR®ZPR) H0(PR)

CLAIM. ^Jyk) = tr(yk x yk) in ^>kQ°A((PR ®z PR)'*).

(To see how the claim implies 10.11, suppose that

u G Hl(C(X)";H'(Z2;A)))
v e H\C{X)» • H\Z2; A))] C fl

write down the two definitions of u- v, and compare them.)



SURGERY AND THE GENERALIZED KERVAIRE INVARIANT, II 225

Proof of claim. Clearly

socle(/i;;s(};fc)) = socle(tr(yfc x yk)).

(cf. 10.4). Further, it is possible to define a homotopy commutative, homotopy
associative diagonal chain map of ,4-module chain complexes

PR ®z PR -> (PR ®2 PR) ®i (PR ®z PR)

(imitating 10.6), and thereby a ring structure on 0>kQ°A((PR ®zP/?)~*), such that
0) AC*: &k6°{PR~*) -> 0>

kQ°A((PR®zPR)~*) is a ring homomorphism,
(ii) tr(yk x yk) e 0>kQ°A((PR ®2 PR)'*) is idempotent.

Summarizing, we see that ti~s(yk) and tr(yk x yk) are both idempotent, and have the
same socle; so they are equal, by the argument used in the proof of 10.10.

10.12. REMARK. The analogue of 10.11 for A = Z[7i] makes sense and is correct if
w: n —• Z2 is trivial. This follows from 10.10.

Let X be a finite CW-space with principal rc-bundle a, and write A = Z[7r]
(equipped with the w-twisted involution for some w: n -* Z2), A" = Z2[7r], etc. The
group homomorphism {1} -> n induces

(i) a map Z2 = Z2[{1}] -> Z2[7i] = A" of group rings,
(ii) by (i), a map Z2 s Hk(Z2;Z2) - Hk(Z2;A"),

(iii) by (ii), a map

rx: Y\Hk(X;Z2) -, X\Hk(C(X);Hk(Z2-A")) = Q°
kel keT

Since (i) is canonically split as a map of Z[Z2]-modules, (ii) and (iii) are also split.
Working over A = Z[7i], one obtains similarly a split inclusion

IV Y\H2k(X-Z2)^Q°(C(X)-*).
fceZ

10.13. PROPOSITION. Suppose that n,w,X,ct form part of a string of data
(n, w; X, y; a, j) as in I, 3.4. Then

l>(y)] = rx(v0,v2,v4,...)

in Q°(C(X)~*); here v{ e H\X; Z2) is the ith Wu class ofy. The corresponding formula
over A" = Z2\n\ is

in Q°(C(X)"~*). (In this case, w and j can be omitted from the string.)

Sketch proof. Over A", the formula is correct for the trivial spherical fibration y,
and hence correct for arbitrary y because of 9.6. To get the formula over A, note that
O(y)] e Q°(C(X)-*) maps to O"(y)] e Q°(C(X)"~*) under the reduction mod2 map
Q°(C(Xy*) -»• Q°(C(X)"-*). On the other hand, the identification

Q°(C(Xy*) s n ^
kel

5388.3.51 O
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was defined as the composite

Q°{C(Xy*) > Q°{C{X)"-*) s f ] Hk{C{X);Hk{Z2; A"))

f

Y\Hk(C(X);fik(Z2;A))

where / is induced by. t h e projections Hk(Z2;A") -* Hk(Z2;A). Hence the only
element in Q°{C{X)-*) which maps to r^vo,vuv2,...) e Q°(C{X)"-*) is

i ? 2 , . . . ) ) = T x ( y 0 , v2, w 4 , . . . ) .

This completes the proof.

11. Miscellany

This section contains two distinct illustrations of the theory. The first is related to
the 'generalized Kervaire invariants' of [1] and [2], and the second is a not-so-new
proof of Browder's theorem [1] on the Kervaire invariant (which sheds light on the
results of § 10, but not on Browder's theorem).

We shall work with CW-spaces instead of simplicial sets in this section; see the
remark after I, 3.A.4.

Generalized Kervaire invariants. Here the ring with involution is fixed: A = Z2, to
be regarded as the group ring Z2[{1}] of the trivial group. If X is a finite CW-space,
its algebraic counterpart for the time being is C(X) ®z Z2\ any spherical fibration y on
X determines a chain bundle on C(X)®%Z2. No orientation is needed.

Most computational problems evaporate upon observing that every chain complex
in ^A is homotopy equivalent to one with zero differential (its homology). For
example, using the fact that the functors Qn( — ) commute with direct sums, we obtain
directly (i.e. without using 10.1):

11.1. PROPOSITION. There is a natural isomorphism

Qn(C-*)^Y\Hk-n(C;A) forCin^A.
fceZ

The next proposition, proved in [11], is a special case of 10.13 (but has been used
implicitly in the proof of 10.13); it can also be deduced from I, 3. A.

11.2. PROPOSITION. We have [c(y)] = (v0, vlt v2, v2,...) in

Q0((C(X)®IZ2y*)^l\Hk(X;Z2)
kel

if y is a spherical fibration on X with Wu classes u, € Hl(X;Z2).

11.3. PROPOSITION, (i)

2 (Kervaire invariant) ifn = 2k,
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(ii) Suppose that the {k + \)th Wu class of y {in Hk+1{X; Z2)) is zero {with X and y as
in 11.2). Then

release: L2k{A) -+ L2k{C{X) ®z Z2, c{y))

is injective.

Proof, (i) is easy; (ii) follows from 8.3. The converse of (ii) also holds.

{Warning: the groups L2k{C{X) ®ZZ 2,c{y)) are not in general Z2-vector spaces,
even though we are working with A = Z2.)

In view of 11-3 (ii), we could call the homomorphism

flexible signature: Q2k{X,y) -* L2k{C{X)®zZ2,c{y))

a 'generalized Kervaire invariant', at least if the (/c + l)th Wu class of y vanishes. (See
7.1 for notation.)

For clarification, suppose that d is any ('abstract') chain bundle on a chain complex
D in ^A; and that, for some k ^ 0, the '(/e+ l)th Wu class of d' is zero. (This makes
sense by 11.1.)

Given a 2/c-dimensional algebraic Poincare complex (C, <p) over A, with d-
structure, can we imitate [2] to obtain a 'quadratic form with values in Z4 ' on
Hk{C;A)l

The answer is 'yes' (certain choices are, however, necessary, just as in [2]). The
following examples constitute a sketch proof.

Example 1. Take D = (Z2, k) (that is, Dk = Z2, Dr = 0 for r # /c); of the two chain
bundles on D, let d{k) be the non-trivial one. Certainly the {k+ l)th Wu class of d{k) is
zero. If (C, q>) is a 2/c-dimensional algebraic Poincare complex in ^A, then H\C,A)
carries a non-degenerate symmetric bilinear form. It is not hard (but highly amusing)
to see that a ^(Zc)-structure on (C, cp) (as in I, 2.6) determines an enhancement of the
bilinear form to a quadratic form—with values in a group isomorphic to Z4, as
required.

Example 2. Let m be a large integer; put

Du= 0 {Z2,r) and du = © d{r)
— m<r<m —m<r<m
r*k+ 1 r±k+1

(in the notation of the previous example). If (C, cp) is a 2/c-dimensional algebraic
Poincare complex with ^"-structure, then Hk{C,A) carries a quadratic form with
values in a group isomorphic to Z 4 (same proof as before).

Example 3. The general case. Let d be a chain bundle on D whose {k+ l)th Wu
class is zero; then there exists a chain map D -*• Du (see Example 2) covered by a chain
bundle map d -• d". (N.B. m is large.) Choose such a chain map; then any d-
structure on an algebraic Poincare complex over A determines a ^"-structure, and we
obtain the desired quadratic forms from Example 2.

(There is a one-to-one correspondence between the choices used here—that is,
homotopy classes of chain bundle maps from d to d"—and the choices used in [2], if
D = C{X) ®^Z2 and d = c{y) for a space X with spherical fibration y.)



228 MICHAEL WEISS

Browder's theorem on the Kervaire invariant. The theorem in question states that
the Kervaire invariant ns

2k -»• Z2 (defined for arbitrary k > 0, but interesting only
when k is odd) is zero if k is not of the form 2P— 1 for some integer p > 0.

Let X = UPm, let y be the trivial vector bundle on X, let X" = Sm be the standard
twofold cover of X, and let y" be the trivial vector bundle on X"; take m large.

Transfer gives a map of bordism groups

nn(M(X,y)) -+ nn(M(X",/')) = <•

(We assume that n < m; on the left is the bordism group of'framed n-manifolds with
twofold covers', and on the right is the bordism group of framed n-manifolds. The
transfer assigns to a 'framed manifold with twofold cover' its twofold cover.)

The celebrated theorem of Kahn and Priddy [9] implies that this transfer is
surjective for 1 ̂  n < m. (It is also known that the Kahn-Priddy theorem has the
Browder theorem above among its corollaries; see [7] and [8]. That is why I have
apostrophized the argument below as 'not-so-new'.)

Put n = Z2 ; then A = Z[7r] is a ring with involution (coming from the trivial
homomorphism w: n -> Z2, not from the identity). Let a be the non-trivial principal
7i-bundle on X, and let j : w~*(a) s (orientation cover of y) be the standard
identification.

Apply I, 3.4: the result is a chain bundle c(y) on

Ctf) - ... ̂  Z [ Z 2 ] ^ Z[Z2] ±=Z Z[Z2]

whose homology class we wish to describe explicitly. Recall the isomorphism
Q°(C(X)-*)^H0(V(C(X)))ofl, 1.6.

11.4. PROPOSITION. The class [>(y)] e Q°{C{X)~*) ^ H0(V{C{X))) is represented
by the 0-cycle {Ar} 6 V(C(X)) with

' (1) if r = 0,

(1 + ( - ) T ) if r = 2" for some p ^ 0,

(0) otherwise.

(Sesquilinear forms on C(X)r are identified, for r ^ 0, with 1 x 1-matrices with
coefficients in A; apart from that, the notation of I, 1.4 has been used.)

Theoretically, 11.4 can be verified using 10.1 and 10.13. However, the isomorphism
in 10.1 is very mysterious. A geometric proof of 11.4 is given below (after 11.7).

11.5. COROLLARY. The algebraic transfer

L"(C(X),c(y))^L"(C(X"),c(y"))

is zero if n = 2/c < m, for k odd with k # 2P — 1.

Explanation and proof The transfer is associated with the inclusion

{1} c^^ Z2 = 71.
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Using, for example, 6.1, one finds, for m > n > 0, that

( Z if n = 0 mod 4 ('signature/8'),

Z2 if n = 1 or 3 mod 4 ('Hopf invariant'),

Z2 if n = 2 mod4 ('Kervaire invariant').

For the proof of 11.5, apply 8.2 and 8.3: there is a commutative diagram

transfer transfer

L"(C(X),c(y))

If n = 2 mod 4, the top horizontal arrow is isomorphic and the left vertical arrow is
zero (by [13, Chapter 13A]). If, moreover, n # 2(2"- 1), then 8.2 and 8.3 imply that
the transfer on the right is also zero.

11.6. COROLLARY. If n = 2k is as in 11.5, then the Kervaire invariant n2k

zero.

Proof. There is a commutative diagram

ns
2k = n2k(M(X",y")) > L2k(C(X"),c(y")) s Z2

Z2 is

geometric
transfer

algebraic
transfer

, y)) L2k(C(X), c(y))

in which
the left vertical arrow is surjective (Kahn-Priddy),
the right vertical arrow is zero (by 11.5),

so that the horizontal arrow (which is the Kervaire invariant) is also zero.

To conclude the chapter, here is the geometric proof of 11.4. The idea and
construction are based on I, §3.A; so we shall produce a sequence {Pn\ n ^ 0} of
framed manifolds (each P" having the homotopy type of the [^n]-skeleton of UPm,
etc.) such that the sesquilinear sliding forms kr (cf. I, 3.A.2(ii)) are as specified in 11.4.
We use the standard C M^-structure on UPm.

Suppose that P°, P1, . . . , P2k have already been constructed so that the sliding forms
Xo, Xu...,kk are the required ones. (Assume that m ^ 2/c > 2, otherwise there is little to
prove.)

CLAIM. Let z be a generator of nk(P
2k) ^ nk(UPk) ^ Z. Because of Hirsch's

immersion theorem [6, 5], and because P2k is framed, z determines a regular homotopy
class of immersions ik: S

k -• P2k. The self-intersection number n(ik) of this immersion
equals \ + Tifk = 2p—\ for some integer p > 1, and 0 otherwise. (It belongs to Z[Z2]
if k is even, to Z2\Z2~\ if k is odd.)
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Assuming the truth of the claim, we can easily construct framed manifolds P2k + l,
P2fc + 2, etc. giving the correct sliding form Xk + V

To prove the claim, we can suppose that k is odd. (For even k, there is nothing to
prove because n(ik) is algebraically determined by the sliding form Xk\ we have
2/4'fc) = ^k(l - T, 1 - T), since /k represents the element 1 - T in C(X)k = Z[Z2].)

Since k is odd, there are just two regular homotopy classes of immersions Sk -> P2k

homotopic to ik; ifik has self-intersection number a-1 +b- T (with a, b e Z2), then the
immersions in the class not containing ik have self-intersection number
(a+\)\+b-T.

Let i'k: Sk -> P2k be an immersion which factors as follows:

s , double cover > Rpk g > ^

where g is an immersion and also a homotopy equivalence. Arguing exactly as in [3],
onefindsthatthe self-intersection number of i'k is 0 • 1 + 1 • T e Z2 [Z2] if k = 2P — 1, and
0 otherwise.

Let / : P2k -> U2k be the codimension-0 immersion determined, up to regular
homotopy, by the framing of P2k. Then the immersion f-i'k: Sk -> U2k has self-
intersection number 1 e Z2 if k = 2P—1, and 0 otherwise (also by [3]). From the
definition of ik, it is clear that / • ik: S

k -> U2k has self-intersection number 0 for all k,
being regularly homotopic to the standard embedding. Therefore ik and i'k are
regularly homotopic if and only if k ^ 1P — 1.

Putting these observations together proves the claim.
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