
SURGERY AND THE GENERALIZED
KERVAIRE INVARIANT, I

MICHAEL WEISS

[Received 1 November 1982—Revised 24 January 1984]

Introduction

(i) Synopsis. The discovery, around 1960, of the 'Kervaire Invariant' for almost
framed manifolds of dimension 4k+ 2 (see [12]) was an important stimulant for the
development of surgery theory; but it also led to the theory of the 'generalized
Kervaire Invariant' of Browder and Brown [2, 3].

The present paper is an attempt at uniting these two theories, by constructing a
non-simply-connected and in other respects updated version of the generalized
Kervaire Invariant.

The construction has three surprising aspects. Firstly, it is conceptually satisfying
and, in the simply-connected case, clarifies Brown's original theory; for instance, the
'product formula problem' (see [4]) evaporates. Most of the new concepts are
borrowed from the 'algebraic theory of surgery'; see [15]. Secondly, it is computation-
ally satisfying. Thirdly, it has applications to classical surgery theory, especially to the
calculation of the symmetric L-groups of [13] and [15]; and therefore to anything
which involves product formulae for surgery obstructions.

A black box description of the theory has been given in [22]; in this introduction I
shall concentrate on the concepts inside the box.

(ii) Symmetric forms on (co-)homology groups vs. symmetric forms on chain complexes.
If M is a 2/c-dimensional geometric Poincare complex, then Hk(M;Z2) carries a non-
degenerate symmetric bilinear form.

Let y be a spherical fibration on a space X. Brown's generalization of the Kervaire
Invariant [3] is based on the observation that, under certain conditions on y, a bundle
map vM -* y (with underlying classifying map / : M -> X) determines a refinement of
the symmetric form on Hk(M; Z2) to a quadratic form with values in Z4; here vM

denotes the Spivak normal fibration of M.
So much for the simply-connected theory. (The term 'simply-connected' is a little

misleading here; of course X above does not have to be simply-connected—it is just
that we pay no special attention to n^X).) Now let n be a discrete group, let
w: n -* Z2 be a homomorphism, let a be a principal rc-bundle on X, and let j be an
identification of the two double covers arising from the given data (namely, the
orientation cover associated with y, and w"'(a)). Such sextuples (n,w;X,y;a,j) will
be the main objects of study.

For a geometric Poincare complex M" with bundle map vM -»• y and underlying
classifying map / : M -> X as before (but with n arbitrary), let C{M) be the cellular
chain complex of the total space of / " (a ) (the principal rc-bundle on M; assuming that
M is a CW-space). Now C(M) is a chain complex of finitely generated (f.g.) projective
left /4-modules, and A = Z[7t] is regarded as a ring with involution (the w-twisted
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involution,
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What next? Inspection shows that the approach of [3] does not work very well here,
even if n = 2k. That is, some kind of symmetric bilinear form is defined on
Hk(C(M);A), but it has very unpleasant properties in general.

The solution to this dilemma is suggested by recent developments in surgery theory.
In [13] and [15], the notion of'symmetric bilinear form on a chain complex (of f.g.
projective left /1-modules)' is defined or implicit (details follow below); the notion is
homotopy invariant, and it is shown that the dual chain complex of C{M), written
C(M)~* = Hom/((C(M),/4), carries a non-degenerate symmetric bilinear form.
(Again, the dimension n is arbitrary.) So, instead of trying to 'refine' a symmetric
bilinear form on some middle-dimensional cohomology group of C(M), we shall
refine Mishchenko's non-degenerate symmetric bilinear form on the chain complex
C(M)~*.

(iii) The technical terms. Let C be a chain complex of f.g. projective left /4-modules,
with Cr = 0 except for a finite number of indices r. Using the involution on A, we can
also regard C as a chain complex of right /4-modules, written C. So C ®A C is
defined, and is a chain complex of Z[Z2]-modules; the generator T e Z2 acts by
switching factors, with the usual sign rules.

Define Z[Z2]-module chain complexes W, W by

(Z[Z2] f o r r ^ O ,
r }0 for r < 0,

withd: Wr - Wr_{; x v-* (1 +{-)rT)-x for r > 0, and by

Wr = Z[Z2] for all r,

with*/: Wr -> Wr_x; x ^ (\+(-)'T)-x.
Write W&C and W&C for the chain complexes (of abelian groups)

HomZ[Z2](W, C ®A C) and HomZ[Z2,(^, C <g)A C), respectively. Finally, let

Q"(C):=Hn(W&C) and Q"(C) := Hn(W&C).

The covariant functors C H-> Q"(C), C \-* Q"(C) are homotopy invariant (this is
proved in [15], but also in this paper).

Now define a 'symmetric bilinear form of degree n on C to be

either an n-cycle cp e W&.C*

or a class [<p] e Qn{C~*) = Hn(W&C~*).

(There are two different schools of thought here; I find the first definition better to
work with, but the" second is homotopy invariant.) We now give some 'motivations',

(a) The n-cycle cp is a Z[Z2]-module chain map from HnW to

C~*f ®A C~* = Hom^C, C"*).

In particular, the value of cp on 1 e Z[Z2] = Wo is an n-cycle in Hom^C, C~*), that
is, a chain map

cp0: 1TC - C*

which can be considered as a bilinear form of degree n on C.
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(b) If Vx, V2 are vector spaces over a field F (for example, F = Z2), then there is an
abelian group isomorphism

(symmetric bilinear forms on Kx © V2)

= (symmetric bilinear forms on Vx)

© (symmetric bilinear forms on V2) © HomF(Kl5 V2).

In generalizing the notion of symmetric bilinear form to (certain) chain complexes
over A, this is a property one would like to retain; now it is indeed true that

Q"((C © D)~*) £ Q"{C-*) © Qn(D-*) © Hn(HomA(C,D-*)),

and there is clearly no simpler definition of 'symmetric bilinear form on a chain
complex' which is homotopy invariant and has this property.

(c) It is shown in [13] and [15] that a closed manifold or geometric Poincare
complex M", equipped with a principal rc-bundle a' and an identification of double
covers

w^(a') = (orientation cover of M"),

gives rise to a pair (C, q>) in which C = C(M), and q> is an n-cycle in W& C (sufficiently
well determined). In the terminology introduced above, q> is a symmetric bilinear form
of degree n on C~*; in the case at hand, cp is non-degenerate, that is, the chain map

<p0: r{C~*) - C = C~*-*

is a chain homotopy equivalence.
A pair (C,q>) as above (with q> non-degenerate) is called an 'n-dimensional

(symmetric) algebraic Poincare complex'. It is treated here as the chain level analogue
of a closed manifold or geometric Poincare complex, just as chain complexes (over A)
are treated as the analogues of spaces. 'Bordisms' between symmetric algebraic
Poincare complexes of the same dimension can be defined, etc.

(iv) Chain bundles. If spaces and closed manifolds (geometric Poincare complexes)
have analogues in the chain complex world, what about vector bundles (or spherical
fibrations)?

By 'chain complex world' is meant the category <^A of chain complexes C of f.g.
projective left /4-modules, with Cr = 0 except for a finite number of indices r. The
conceptual vacuum is filled as follows:

a 'chain bundle' on a chain complex C {in ^A) is a ^-dimensional cycle in W&C~*.

Motivation for this definition is as follows,
(a) The homotopy invariant (and contravariant) functors

constitute a cohomology theory on (€A\ that is, they satisfy the analogues of the
Eilenberg-Steenrod axioms in the (co-)homology theory of spaces, except the
dimension axiom.

(b) It is shown in [15] that a sextuple (n, w; X, y; a, j) as in (ii) above determines a
'characteristic class' in Q°(C(X)~*) [15, Part II, 9.3]; similarly, a stable automorph-
ism of y determines a class in Q'(Q^)"*) [15, Part II, 9.9]. This suggests that the
cohomology theory C t-> {Q~"(C~*)\ n e Z} is the chain level analogue of spherical
/C-theory. So it is reasonable to expect that chain bundles on chain complexes C (that
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is, representing cycles for elements in Q°(C~*)) are the chain level analogues of
spherical fibrations. And indeed it is possible to refine the 'characteristic class' above
to a rule which associates chain bundles to spherical fibrations. (Warning: this rule is
not additive; the geometric Whitney sum has not much to do with the addition in
W&C~*.)

(c) The definition of 'chain bundle' is so designed that any symmetric algebraic
Poincare complex (C, q>) carries a 'normal chain bundle' (the chain level analogue of
the Spivak normal bundle of a geometric Poincare complex). For details, see the main
text; the idea stems from [15, Part II, 9.6].

The non-simply-connected generalized Kervaire Invariant can now be described as
follows. Let (n,w;X,y;tx,j) be a sextuple as in (ii). The chain level image of y is a
chain bundle c(y) on the chain complex C(X) (over A = Z[7i]). Using the dictionary

space <-> chain complex of projective left A-modules,

geometric Poincare complex M <-* symmetric algebraic Poincare complex (C, (p),

spherical fibration <-• chain bundle,

Spivak normal fibration of M <-> normal chain bundle of (C, q>),

one obtains homomorphisms (for n e Z)

flexible signature: Qp
n(X,y) -> L"(C(X),c(y)).

Here Q^(X, y) is the bordism group of geometric Poincare complexes M" equipped
with a map of spherical fibrations from vM to y; similarly, Ln(C(X), c(y)) is the bordism
group of n-dimensional algebraic Poincare complexes (C,cp) over A, equipped with
a 'chain bundle map' from the normal chain bundle (on C) to the chain bundle c(y)
(on C(X)).

The relationship with the Wall groups Ln(Z[7r]) is as follows. Firstly, if the sextuple
(n,w;X,y;<x,j) is such that X = 0 , then L"(C(X),c(y)) s Ln(Z[>]). Secondly, if
X is arbitrary again, we may still consider the inclusion 0 <=-> X; it induces
homomorphisms

release: Ln(Z[n\) -> L"(C(X),c(y))

for n G Z. Now let / : M" -> N" be a degree-1 normal map between geometric
Poincare complexes. Suppose that N is equipped with a map of spherical fibrations
from v^ to y. Then the normal map / induces a similar structure on M, and the
equation

a*(M)-a*(N) =

holds. Here a* is the flexible signature (in L"(C(X), c(y))), and a^ is the surgery
obstruction (in Ln(l\n])).

(v) Computations. Let 6 be any chain bundle on a chain complex B (in y>A, for a ring
with involution A). Write 0 for the only chain bundle on the zero chain complex 0^ in
(€A. The inclusion 0^ d_> B is covered by a unique 'chain bundle map'; so there are
induced homomorphisms of algebraic bordism groups

release: L"(0A,0) -> L"{B,/l).

These algebraic bordism groups are defined just like L"(C(X),r.(y)) in the preceding
section.
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Now £"(0,4,0) is naturally isomorphic to the Wall group Ln(A) (see [21] or [15]).
Further, Ln{0A, 0) = Ln{A) and L"(B, 6) are the nth homotopy groups of certain spectra
J?(0A, 0) and S£\B, S) respectively, and the release homomorphisms are induced by a
map of spectra,

release: ^ (0^ ,0 ) -* ¥'{B,6).

Let Ln{B,6) be the nth (relative) homotopy group of 'release'. If we succeed in
calculating Ln{B,6) for all n, then we have largely reduced the calculation of
{Ln(B, 6) | n e Z} to that of {Ln(0A, 0) = Ln(A) \ n e Z}. The following theorem shows,
surprisingly, that the groups L"(B, 6) are homological objects and therefore usually
easy to compute.

MAIN THEOREM. There is a natural long exact sequence

... -+ §n + 1(B) -+ L"(B,t) -+ Q"(B) -> Q"(B) - Ln~\B,6) -+ ... (n e Z).

The proof uses the algebraic surgery techniques of [15]. The standard application is
to the case where B = C(X), 6 = c(y) as in (iv). However, the main theorem has
another application (to the more classical surgery theory): let B be the 'classifying
chain complex for chain bundles' and 6 the 'universal chain bundle' on B. (So the role
of B in the chain complex world is similar to that of the spaces BO or BG in topology.)
Then L"{B, 6) is the bordism group of symmetric algebraic Poincare complexes of
dimension n (with no particular structure), called L"(A) in [15]. The groups L"(A) are
useful in obtaining product formulae for surgery obstructions. The main theorem
above shows that the relative terms Ln(A) = L"(B, &) appearing in the long exact
sequence relating LJ^A) and L*(A) are homological objects. The homological
description of Ln(A) is made even more explicit by a complete analysis of the
'classifying chain complex for chain bundles' which is obtained in Part II [23], for
A = Z[7t]. (The result: it is as simple as it can be.)

(vi) The 'ordinary generalized Kervaire Invariant' revisited. The, theory outlined so
far has an unoriented version: instead of working with sextuples (n, w;X,y;a, j),
consider quadruples (n;X,y;ot) and replace Z[7r] by Z2[n\. The resulting algebraic
bordism groups will be written L"(C(X;Z2),c{y\Z2))\ here C(X;Z2) = C(X)®zZ2,
etc.

Now assume further that n = {1}. In this case the flexible signature can be
considered as a mild improvement on the 'generalized Kervaire Invariant' of [3]. That
is to say, if n = 2k and the (fc+l)th Wu class of y (in Hk + 1(X;Z2)) is zero, there is a
commutative diagram

(C(X;Z2),c(y;Z2))

in which the horizontal arrow is the invariant of [3]. The homomorphism
L2k(C(X ;Z2),c(y;Z2)) -> Z8 is obtained by adapting the methods of [3]. Elements
of L2k(C(X;Z2),c(y;Z2)) are represented by 2/c-dimensional algebraic Poincare
complexes (C, q>) (over the ring with involution Z2 = Z2[{1}]), with a certain
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structure; and this structure permits one to refine the non-degenerate symmetric
bilinear form on Hk(C,Z2) to a quadratic form, with values in Z4.

(Recall that the invariant of [3] is non-canonical, i.e. depends on a choice; the same
is true for its algebraic counterpart, L2k{C{X;Z2),c{y;Z2)) -> Z8, and there is a
one-one correspondence between the two kinds of choices.)

Summarizing, it seems legitimate in the case at hand to regard the flexible signature
itself as 'the' generalized Kervaire Invariant. It is defined for arbitrary n, without
conditions on the spherical fibration y, involves no choices, and looks pretty in
product formulae. Finally, the groups L"(C(X; Z2), c(y; Z2)) are easy to compute with
the help of the main theorem in (v) above. (Remember that the functors Q"( — ) , Q"(~)
are homotopy invariant, and that any chain complex over Z2 is homotopy equivalent
to its homology.)

(vii) A Caveat. Let (n, w;X,y;cc,j) be a sextuple as in (ii) again, and suppose that
y is the trivial spherical fibration on X. One is tempted to think that the release
homomorphisms

have particularly attractive properties in that case, such as being split injective; but
they are probably not even injective in general.

(Here is an example to meditate upon. Let X = RP00, let X = S00, and let y, y be the
trivial spherical fibrations on X and X respectively. Then, for n = 2, 6, 14, 30, or 62(?),
the composite

~ P / V x transfer ^p,<? -\ Kervaire Invariant _.Qp
n(X, y) >^(X, y) >Z2

is surjective, but

LM(Z[Z2]) ^ ^ >Ln(Z[{l}]) ^ Z 2

is the zero map.)
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0. Conventions

Since the present paper is inspired mainly by [15], I have tried to retain Ranicki's
conventions wherever possible. They are listed here for convenience, with a few
alterations and additions that appeared necessary.

The symbol 'IF refers to Part II of this paper [23].

0.1. The letter A is usually reserved for a ring with involution, that is, a ring with 1
equipped with an involutory antiautomorphism

": A - > A ; a i—• a.

0.2. Unless otherwise specified, '/4-module' will mean left A-module. Sometimes,
however, it is necessary to shift an /4-action from left to right; so if M is a left
/4-module, let M' be the right /4-module with the same additive group as M, and with
/4-action

M' x A -> M'; (x, a) H+ ax.

0.3. The dual module M* of an /1-module M is

M* = HomA(M,A)

with A acting (on the left) by

AxM -> M; (fl,/)H(jch»/(x)-fl).

If M is finitely generated projective, then so is M*, and the /4-module homomorphism

M -> M**; xi—•(/!-> f(x)) is an isomorphism.
The dual of an /4-module homomorphism f:M-*N\s the /4-module homomor-

phism / * : N* —> M*; g f—• gf.

0.4. Two chain maps f, f: C -> D (between /4-module chain complexes graded
over the integers) are homotopic if there exists a collection of /4-module homomorph-
isms {gr: Cr -*• Dr+11 r e Z} so that / ' — / = dDg + gdc: C -*• D. The collection is
called a chain homotopy from / to / ' .

0.5. Still assuming that C, D are /4-module chain complexes, define abelian group
chain complexes C ®A D and Hom^(C, D) by

(C'®AD)n= ® C'p®ADq,
p + q = n

d(x ®y) = x® dD(y) + ( - )^c(x) ® y;

(HomA(C,D))n= [ I HomA(Cp,Dq),
q-p = n

d(f) = dD(f)-(-)" fdc.
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In both cases, dD and dc denote the differentials on D and C respectively, and d the
differential on C ®A D or on HomA(C, D).

(The definition of O ®A D agrees well with certain geometric constructions, and
with that given in [15]. Ranicki [15,16] has a slightly different definition for
Hom/J(C, D); I prefer the above because it gives more direct identifications

(Group of cycles in (Hom^(C, D))o) ^ (Group of chain maps C -• D)

and

H0(UomA(C, D)) = (Group of chain homotopy classes of chain maps from C to D).)

Note that the involution on A does not appear in the definition of HomA(C, D); we
can do without it.

0.6. The dual chain complex C~* of an /4-module chain complex C is given by
(C~*)r : = (C_r)* = : C~\ with differential

(-Y®: • - r+ l

A chain map f:C->D induces f.D * -*• C *; g i—• g-f.
Given an abelian group (or A-module) G, write (G, n) for the chain complex with

(G, n)r = G if r = n and (G, n)r = 0 otherwise. It is worth noting that the 'obvious'
identification C~* = HomA(C,(A,0)) is not a chain map; some sign changes are
necessary. Still, the choice of differential in C~* has certain advantages. (It agrees
with [15, p. 104, bottom], but not with [15, p. 98, bottom].)

If C is a chain complex of f.g. projective /4-modules, then the chain map

is an isomorphism. If also Cr = 0 except for finitely many r e Z, then the slant chain
map

D
A

is an isomorphism.

0.7. The suspension SC of a chain complex

L , . . . . — > l - > r + i • ^ r * < - - r - l ^ •••

is the chain complex (LC)r = Cr_ l5 dzc = —dc. (This differs from the definition in [15]
by a sign.) So EC s C ®2(Z, 1) (cf. 0.6), and

Hn(HomA(C, D)) ^ (group of homotopy classes of chain maps from Z"C to D),

if C, D are A-module chain complexes.
Let / stand for the cellular chain complex of the standard 1-simplex, or unit

interval. Corresponding to the two endpoints of the 1-simplex, there are two chain
maps J0, il: (Z, 0) -> /; if/: C -> D is a chain map, we define the mapping cylinder of
/ to be the pushout of the diagram

C®z/
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and similarly for the mapping cone, Cone(/). So

with differential d given by

d(x,y) = (dD(x)+f(y),-dc(y)).

If / = id: C -» C, write Cone(C) instead of Cone(id).
Every chain map f:C->D has an associated Puppe sequence

» C -> Z) -> Cone(/) -• I C -> I£> -> ...,

infinite on both sides.

0.8. ^A (or simply #) will be the category of chain complexes C, graded over the
integers, such that each Cr is a f.g. projective left /4-module, and such that Cr = 0
except for finitely many r e Z; the morphisms in ̂  are ^-module chain maps.

A morphism / : C -• D in ̂  is called a fibration if it is surjective, and a cofibration
if its dual / * is a fibration.

0.9. If C is a chain complex in ̂ , the group Z2 acts on the abelian group chain
complex C ®A C (cf. 0.5) by the transposition involution

T: C'p®ACq - Cp®ACq;x®y^(-ry®x.

Following [15], we shall have to deal with the 'cohomology groups of Z2 with
coefficients in the Z[Z2]-module chain complex C ®A C and the like. Here Z[Z2] is
the group ring, without any particular involution; we let W be the standard free
resolution of the trivial Z[Z2]-module Z (viz., Wr = Z[Z2] if r ^ 0, Wr = 0 if r < 0,
with differential d: Wr -» Wr.^ x \-* ( l + ( - ) T ) x where r > 0, T being the gen-
erator of Z2), and write W&C for the abelian group chain complex

HomZ[Z2](W,C®AC).

Then

Q"(C):=Hn(W&C)

is the ( — n)th cohomology group of Z2 with coefficients in C ®AC. (See [10] if
the terminology appears mysterious.)

On replacing the standard resolution W by the standard complete resolution W
(with Wr = Z[Z2] for all r, d: Wr -• ^ . , ; X H ( 1 +(-)rT)-x, for all r) we obtain a
chain complex W& C : = HomZ[Z2](^, C ®A C) whose homology groups

Q"(C):=Hn(W&C)

are the Tate cohomology groups of Z2 with coefficients in O ®A C.

0.10. We will need a detailed description of the abelian group chain complexes
W&C, W&C, and W&C* (= W&(C~*)).

Case 1: W& C. Then

(W& C)n = n HomZ[22](^s, (C ®A C)n+
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and the differential d sends a collection

<p = {cps e ( C ® A C ) n + S \ s e Z } e ( W & C ) n

to d(q>) e (W& C)n.u with (d(<p))s G (C ®A C)n_x + s given by

If we use the identification

of 0.6, then <p can be regarded as a collection

the differential sends this to d((p), with (d((p))s = f ] rHom/ 1(C1"1" r + s , Cr) given by

dc-(ps-(-y
+scps-dc_.-(-)"((ps_l+(-yTcPs_l).

Here Z2 acts on Homi4(C~*, C) by the duality involution

T: H o m ^ C , Cq) -> H o m ^ C , Cp); 0^> ( - ) " V -

If <p = {<pj is a cycle, d(<p) = 0, then <ps is a chain homotopy from 0 to the chain map

1): z-^-^c-*) - c
for each s.

Case 2: W&C. This is much the same as Case 1, except that we are now dealing
with collections q> = {cps} such that q>s = 0 for s < 0. Identifying C ®A C with
UomA(C'*, C) again, we find that for a cycle cp in (W& C)n, q>0 is a chain map from
Z"(C~*) to C; it is 'self-dual' up to an infinity of higher chain homotopies (the higher
chain homotopies are the cps, for s > 0).

Case 3. W & C " *. Here we make the identification C~*'®AC~* ^ HomA(C, C ~ *)
(using 0.6 and the chain isomorphism C = C~*~* specified there) and find that the
differential maps

q> = {<ps e f ]Hom(C r . n _ S ! C~r)\ s e Z} € (W&C~*)n
r

to d(<p) = {(d(<p))s | s G Z}, with (d(<p))s given by

This time we are obliged to let Z2 act by

T: Hom^Cp, C ) - . Hom^C, , C ) ; 9 h- (

0.11. (Taken from [15, Part I, §8].) Define the tensor product of two rings with
involution A, B to be A ®z#, with involution

(a (x) b) \-* a (x) b.

If C is an /1-module chain complex, and D is a fl-module chain complex, then
C®iD is an A (g)2 J5-module chain complex, since A ® Z B acts on C®ZD
by (a ® b) • (x ® ^) = ax (x) 6y. (The differential in C ® z D is defined with sign
conventions as in 0.5.) Then C ® z D is in (^A^>zB provided C and D are in ^ and %>B
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respectively. Under the same conditions there is an identification

C~*®ZD-* -> (C®ZD)"*,

(vertical bars as in \g\, \x\ denote dimension). There is another identification of
Z[Z2]-module chain complexes

(C ®A C) ®z(D' ®BD) -+ (C ®z D)' ®A®lB(C ®z D),

(v ® w) ® (x ® y) I-* (— )'*"w\v ® x) ® (w ® y)

(there are no conditions; TeZ2 acts on the left-hand side by

T((v ® w) ® (x ® y)) : = T(v ® w) ® T(x ® y)).

The Z[Z2]-module chain complex W of 0.9 is equipped with a strictly associative
diagonal map

+ 00

A: W -+ W® W; \ s ^ £ K®Tr
s.r (ssZ).

r = — oo

(The symbol ® indicates that infinite chains are allowed; subscripts denote dimen-
sions, and Wr is identified with the ring Z[Z2]. Regarding W as a factor complex of W
gives a similar diagonal for W.) It can be used to define exterior products, such as the
chain map

x: W&C®ZW&D -+ W&(C®ZD); q>x9 : = {cp ®6)-&

(this makes sense if C and D are in <&A and %, respectively). More explicitly, if
(p = {q>s} is an m-chain, and d = {6S} is an n-chain (as in 0.7), then

+ 00

((px6)s= X cpr®T%_r.
r = — oo

(So (q> x 9)s belongs to

((C ®ZD)' ®A®zB(C ®zD))m+n+s s ((C ®A C) ®Z(D' ®BD))m+n+s,

but be warned that this last identification involves sign changes.)
Of course, W can be replaced by W. Apart from being associative, the exterior

product has something like a unit: namely the triple (Z,(Z,0),v), in which Z is
regarded as a ring with involution, (Z,0) as a chain complex in y>z, and v is the 0-chain
in I^&(Z,0) determined by v0 = 1 e Z ® Z ^ Z.

Again, this works with W replaced by W.

0.12. For /4-modules M, N a sesquilinear map X: M x N —> A is a biadditive map
satisfying

k{ax, by) = al{x, y) T>

for a, b e A, x e M, y 6 N.
Taking (left) adjoints we can identify the abelian group of sesquilinear maps

M x N -> A with Hom^(M, N*); so k corresponds to

: x -• (yh-> k(x,y)).

(Right adjoints will be avoided, although their use would save bars.) The transpose TX
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of a sesquilinear map X: M x N -> A is the sesquilinear map

N x M -• A; (y, x) i-> A(x, y).

Under the left adjoint, T corresponds to the usual transposition

M,JV*) - Hom^N.M*).

If M = Nt we speak of a sesquilinear form, and denote the abelian group of such
forms by Sel(M).

0.13. If F is a covariant or contravariant functor from a category X to a category Y,
and / is a morphism in X, I shall occasionally write /"* or f~ instead of F(f)
(whereas / * indicates a 'dual' chain map or homomorphism, as in 0.3 and 0.6). If C is
a chain complex in <tfA, and W and W are as in 0.9, then the canonical projection
W -> W induces a chain map

J: W&C -• W&C

which in turn induces homomorphisms Q"{C) -> Q"{C), also denoted by J.

0.14. The homotopy pullback of a diagram X —• Z <— Y of chain maps is the chain
complex P with

Pn:=Xn®Yn®Zn + i

and
d: (x,y,z) Ĥ  (-dx, -dy,dz+f{x)-f{y)).

0.15. If Y is a chain complex (of free abelian groups, say), then an 'n-cycle in Y,
well-defined up to an infinity of higher homologies' is a diagram of chain maps of the
following sort:

(Z, n) ^ X -• Y.

Here (Z, n) is defined in 0.6, and X is another chain complex of free abelian groups.

1. Chain bundles

The first part of this section presents a cohomology theory, defined on the category
(€A (see 0.8), which is to real or spherical K-theory as chain complexes (for instance
those in (<oA) are to CW-spaces. The ring with involution A is kept fixed.

1.1. THEOREM. The contravariant functors

C^Q"{C~*), forn<=Z,

(see 0.9) constitute a cohomology theory on %>A. That is,
(i) if f / ' : C —• D are homotopic chain maps in ̂ A, then

f- =f'-:Q"(D-*)^ Q"(C-*), forneZ;

(ii) there is a natural and canonical equivalence between the two functors

C^ Q"~l{(ZCy*) and C ^ Q"(C~*), forneZ;
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(iii) if f: C -» D is a chain map in (€A with associated Puppe sequence

... - I - 'ConeC/) -> C -• D -> Cone(/) -> I C -> I D - ...,

t/jen t/ie sequence of induced homomorphisms

... «- ^ ( (Z^ConcC/") )"* ) - (2°(C-*) - (?°(D"*) - C°(Cone( / ) -* ) - ...
is exact.

Proof. Note first that C i—» Qn(C~*) is a contravariant functor because a chain map
f:C-*D induces

f*®f*: D-*'®AD~* -> C"*l®i4C"*,

and hence a chain map

/*": W&D-* - W&C~* etc.

To prove (i), suppose that / , / ' : C -> D are homotopic; then so are / * , / ' * :
D~* -* C~*. Let # be a homotopy from / * to / ' * ; think of g as a chain map from
D~*®il to C~*. Now the chain maps f",f"~: W&D~* -* W&C~* are also
homotopic; the appropriate chain homotopy maps an n-chain ip in W&D~* to the
(n+ l)-chain g"(q> xa>) in W^&C"*.

(Explanation: choose, once and for all, a 1-chain a> in

(cf. 0.7) so that d(cu) = 'T(v)~'o*(v)> a s in 0-̂ > 'o a n d 'i are certain chain maps from
(Z,0) to /, and v is the unit mentioned at the end of 0.11. For q> e {W&D~*)n, the
exterior product q>x at (cf. 0.11) belongs to (W&(D~* ® z / ) ) n + 1 , whence g^(q> xa>) is
in {W&C~*)n+i as required.) See [15] for an explicit formula.

For the proof of (ii) and (iii), recall (for example, from [10]) that a module M over a
ring with unit is 'coextended' or 'coinduced' if it has the form M ^ Homz(ft, G)
(G being any abelian group, R the ring at issue, acting on the left of Homz(/?, G) by
(a,f) H-> (x i->/(x-a)) for ae R, fe Hom(R, G)). If, for example, R = Z[Z2], the
Tate cohomology groups of a coinduced module M, written

H"(Z2;M) := H_n(HomZ[Z2](W,(M,0)))

(see 0.6), are trivial by a simple argument.
Further, let D be a chain complex of Z[Z2]-modules; call D coinduced if Dr = 0

except for a finite number of r e Z, and if Dr is a coinduced module for all r. Then a
familiar induction argument [7, Anhang Proposition 2.1] shows that for such a D, we
have //n(Hom2(22](I^, D)) = 0 for n e Z.

We now exploit this fact. Suppose that / : C -• D is a cofibration in ^ (see 0.8), so
that 0 -> C -• D -> D/im(/) -> 0 is a short exact sequence in <

î4. Then the sequence
of induced maps

C-*®AC~* +1—D-*®AD~* +2— (D/im(f)y* ®A(D/im(f)y*

is not short exact, because ker(i*~)/im(p*~) # 0 in general. However, ker(i<~)/im(p'~) is
a coinduced chain complex of Z[Z2]-modules, which by the above just suffices to
show that the homology groups of the chain complexes W&C~*, W&D~*,
W&(D/\m(f))~* fit into a long exact sequence.
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This proves (iii) (since every morphism in %>A is 'homotopy equivalent' to a
cofibration), or strictly speaking reduces (iii) to (ii). But (ii) is proved by applying the
same argument with / equal to the inclusion of C in Cone(C) (see 0.7).

1.2. REMARKS, (a) Theorem 1.1 is of course equivalent to the statement that the
covariant functors C i—• Q"(C) constitute a homology theory. The 'homotopy in-
variance' part of the statement can be obtained under more general circumstances: for
instance, the covariant functors C -> Q"(C) are also homotopy invariant, by the same
argument.

(b) The 'covariant' suspension isomorphism Q"(C) -*• Q"+i(LC) has an explicit
description. Regard the collapsing map C ® 2 / -> EC as a chain homotopy from the
zero map 0: C -> EC to itself. Then the proof of part (i) of 1.1 gives a semi-explicit
formula for an induced chain homotopy (depending on the choice of a certain 1-chain
co) from the zero map 0: W&C -* W&.{ZC) to itself, that is, a chain map S from
H(W&C) to W&(LC). Passage to homology groups gives the suspension isomor-
phism. For a suitable choice of co, the chain map S : 2,(W & C) -* W &(ZC) takes the
form (p i—• Scp; Scp)s+l = ( — )sfi2(

(Ps) (where IXUJX2'- C ®AC -*• C ®AC are homo-
morphisms given by nY(x (x) y) = ( —)|x|x ® y, n2(x ® y) = ( —)|y|x (g) y); then S is a
chain isomorphism.

The same formula yields a suspension homomorphism (not an isomorphism in
general) Q"(C) -> Qn + l{ZQ.

Finally, similar formulae exist in the contravariant case, but will not be needed.
(The suspension formula in [15, p. 106] is simpler, but I suspect the signs are

incorrect.)

1.3. PROPOSITION. The groups Q"(C~*), Qn{C) are Z2-vector spaces (for C in WA,
n G Z). Further, the cohomology theory C i—• {Q"(C~*)} is periodic of order 2, that is,
there exist natural isomorphisms Q"(C~*) = Qn + 2(C~*), with n e Z, commuting with
the suspension isomorphisms. Similarly, the homology theory C i—> {Q"(C)} is periodic.

Proof. The first statement holds because the chain map W -*• W; x h-> 2x is null-
homotopic. The periodicity isomorphisms come from

E2 HomZ[22](^, C ®A C) s E2 HomZ[Z2](E2^, C ®A C)

that is, from the periodicity of W.

It is possible to give a more economical description of the groups Q"(C~*), for C in
(€A. Thinking of a class in Q"(C~*) as being represented by a collection

{zp., e Hom^(Cp, C) \p,qeZ] (cf. 0.10),

one should expect that most of the information is located in the terms zp q with p — q;
and something quite similar is true. (This is well known, and I am grateful to John
Jones for pointing it out to me, when A = Z2.)

1.4. DEFINITION. For a chain complex C in <gA, let

V(C) = ... - K(Ch - K(C)0
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be the abelian group chain complex given by

K(C) n :=nSel(C r ) (cf. 0.12),
rel

d:

{X,}

(Here Xr,^,dciK-x) are in Sel(Cr); dc(K-v)(x,y) := K-i(dc(x)Jc(y))-)
A cycle in V(C)0 is then a sequence of sesquilinear forms ),r: CrxCr -> A such

that, for each r e Z , the 'symmetrization of A/ (= TAr — (— )Mr) equals the pullback

Note that C h-> K(C) is a contravariant functor.

1.5. PREPARATION. Think of an element in (W&C~*)n as a collection of sesquilinear
forms {(pp q: CpxCq -+ A\ p,q € Z} (whose left adjoints are /l-homomorphisms
zPt,: Cp -*'O). Then the differential d: (W&C~*)n + l ^(W&C~*)n is described by

( — )p+i+l(ppq(dcx\d), all other components 0

(Here cpp<q is to be regarded as a collection with at most a single non-zero component,
whereas the right-hand side has three non-zero components at most.)

1.6. PROPOSITION. The homomorphisms

Econ: V(C)n - (W&C-*)n;

\{Xr, ( — )r kr{dc x id), other components 0}

"r M ( - ) r ~ 1 ; ^ (-)r"1^r(>d xdc), ot/ier components 0}

(using the top line for even n, the bottom line for odd n) constitute a natural chain map
'Eco\ (Again, Xr is regarded as a collection with a single non-zero member at most, etc.)
It induces isomorphisms in homology,

Q"(C-*), withneZ,
for any C in ^A.

Proof (of the last sentence). We first show that

C^{Hn(V(C))\neZ)

is a cohomology theory. This means proving the analogues of Theorem 1.1 (i), (ii),
(iii).

Suppose first that 0-+C-+D-+B-+0 is a short exact sequence of chain
complexes and chain maps in %A, with induced sequence

0 < V(C) «-* V(D) <£— V(B) < 0;

then we would like to know that ker(t<~)/im(p*") is an acyclic chain complex.
Assuming the contrary, let k = {/r| r e Z} be an n-chain in ker(/*") c V(D) such that
d(X) belongs to im(p*~) and the homology class in //n(ker(i*")/im(p*")) represented by /
is non-zero. More precisely, within its homology class choose the representative A so
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that the number

is as large as possible. It is easy to increase this integer by 1, giving a contradiction.
It follows that the homology groups of V(C), V(D), and V(B) are related by a long

exact sequence. In particular, if D = C © B, then H*(V(D)) s H{V(Q)^ 0 H^V(B)).
Next, suppose that C is a contractible complex in <gA. Then H*{ V{Q) = 0. This can

be proved by writing C as a direct sum of contractible chain complexes, each
concentrated in two adjacent dimensions, and then applying the additivity principle
just obtained.

Next, suppose that C -> D is a morphism in <&A which is a cofibration and a
homotopy equivalence. Then the preceding arguments, when combined, show that
the induced homomorphism Hjy(D)) -> Hjy(C)) is an isomorphism. This applies
in particular to the cofibrations

idc ® /0, idc ®ix: C ®z(Z,0) -»• C ®z/

(cf. 0.7) and shows therefore that the functors C >-»• Hn(V(C)), for n e Z , are homotopy
invariant. It is now clear that these functors constitute a cohomology theory.

The proof is completed by observing that the natural chain map 'Eco' (which by
now induces a transformation of cohomology theories) gives an isomorphism between
the respective 'coefficients' of the two cohomology theories; in other words, by
observing that the last sentence of 1.6 holds for C = (A,0). (The usual induction
argument from [7, Anhang Proposition 2.1] shows that this suffices.)

The second half of the chapter consists mostly of somewhat tedious definitions
making the analogy between (geometric) real X-theory and the cohomology theory
C h-> {Q"(C~*)} more precise.

1.7. DEFINITION. A chain bundle on a chain complex C in (€A is a O-dimensional cycle
in W&C~*.

1.8. DEFINITION. If/: C -> D is a chain map in <$A, c is a chain bundle on C, and d
is a chain bundle on D, then a 'chain bundle map from c to d, covering / ' is a
homology y e (W&C'*)l from c to /"(rf) (so that c + d(y) =f~(d) in W&C~*).

Observe that chain bundle maps can be composed. If we take / = id: C -> C, then
the category of chain bundles on C and chain bundle maps covering id is a groupoid;
its components are the elements of Q°(C~*).

Sometimes a 'change of rings' has to be allowed: suppose that there is given a
homomorphism A -> A' of rings with involution (and unit), making A' into a right
module over A. Then

is a functor from <&A to ^A.. In the same spirit, a chain bundle c on C determines a
chain bundle /4' (g^ « on A' ®A C, and so on. So if C is in (€A and D is in <&A., we would
contemplate chain maps of the form / : A' ®A C -> D; and if c is a chain bundle on C
and d is a chain bundle on D, then we would also contemplate chain bundle maps
A' ®Ac -> d, covering / .

It is of course possible to define higher homotopies between chain bundle maps
with the same domain and range.
5388.3.51 K
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There are at least two distinct ways (1.9 and 1.11) of making the chain bundles over
a fixed chain complex C in (€A into a simplicial set (see [6] for general information on
simplicial sets).

1.9. DEFINITION. The 'Kan-Dold simplicial set of chain bundles on C is the
simplicial set KD{W&C~*) obtained by applying the Kan-Dold functor KD to the
chain complex W&C~* (cf. 1.10).

1.10. EXPLANATION. Let C1(AJ be the cellular chain complex of the standard
n-simplex. Given a chain complex £ (of abelian groups, graded over the integers),
define KD(£) to be the simplicial abelian group with set of n-simplices

KD(£)n : = (set of chain maps from Cl(An) to £);

the face and degeneracy operators are then obvious. Conversely, given a simplicial
abelian group G, let NG be the chain complex such that

(the d; being the face operators) and d: NGq -* NGq-i equals the restriction of d0.
Then KD(NG) = G, and N(KD(£)) is isomorphic to the subcomplex £ + of £ with

E? =
if n > 0,

: £0 -* £-1] if n = 0,

if n < 0.

See also [6].

1.11. DEFINITION. For a chain complex C in ^A, the simplicial set of concordances of
chain bundles on C, written ^(C), has as set of n-simplices

@}{C)n := (set of chain bundles on C ®ZC1(AJ)

(with C1(AJ as in 1.10; here C ®2C1(AJ is regarded as a chain complex in (€A, and, I
hope, the simplicial operators are again obvious).

Both KD(W& C~*) and ^(C) are simplicial abelian groups. They are useful because
most chain bundles occurring in nature are only well defined up to an infinity of
higher homologies, or of higher concordances—just like the (geometric) stable normal
bundle of a manifold, or the Spivak normal fibration of a geometric Poincare
complex.

The next proposition is a generalization of Theorem 1.1 (i) (as its proof will make
clear).

1.12. PROPOSITION. There is a natural homomorphism of simplicial abelian groups

Lin: @{C) -+ KD{W&C~*)

inducing an isomorphism in homotopy groups ('Lin' stands for linearization).

Proof First, we require a sequence

U)Jn = 0,1,2,...}
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such that

(i) p(0) = v (see the end of 0.11; C1(AO) has been identified with (1,0)),
(") Z"=o( - ) ' ' ^ r (p (« - !)) = %(«)) for n= 1,2,... {e{: An_, -» A,, is the inclusion

of the ith face, and d is the differential in W&C\(An),
(iii) the chain map W&C\{hn) -> W&C1(AO) (induced by the map An -• Ao) maps

p(n) to 0, for n > 0.

It is easy to construct such a sequence by induction, because

is acyclic (by 1.1 (i), or rather its covariant analogue). In defining W&C\(An) etc., we
have to work temporarily over the ring with involution Z.

Second, we need the evaluation chain map

ev: (C®zCl(An))-*®zCl(AJ -* C"*;

Third, note that for a chain complex E, any n-simplex s in KD(£) determines an
element s,op £ £„ (namely the image under s: Cl(An) —• £ of the generator correspond-
ing to the n-cell of AJ. If Y is a simplicial set, and / : Y -> KD(£) is a simplicial map,
then the knowledge of /(s),op for all simplices s in Y suffices to reconstruct the
simplicial map.

Now take an element 6 in @l{C)n (that is, in the group of 0-dimensional cycles in
^ & ( C ® z C l ( A n ) r * , c.f. 1.11 and 1.7), and put

(LinO*))top :=(evr(dxp(n)) e (W&C~*)n,

using the exterior product of 0.11.
Checking that Lin induces an isomorphism of homotopy groups is easy using 1.1.

2. Algebraic bordism theories

The aim here is to construct, for each chain complex B in <tfA and chain bundle 6 on
B, associated algebraic bordism spectra J?(B, 6) and l°(B, 6). (5£\B,6) is a more
sophisticated version of l°(B, 6), with better algebraic properties.) Inspiration comes
from the mock-bundle philosophy of [5].

2.1. DEFINITION [13,15]. An ln dimensional algebraic Poincare complex (over A)y is
a pair (C, q>) consisting of a positive chain complex C in (€A (that is, Cr = 0 for r < 0)
and an n-dimensional cycle <p e W&C so that

<p0: Z"(C"*) -» C (cf. 0.10)

is a chain homotopy equivalence.

(In [15], such a (C, q>) is called a 'symmetric algebraic Poincare complex', as distinct
from a 'quadratic algebraic Poincare complex'. The point of view taken here is that a
'quadratic algebraic Poincare complex' is a 'symmetric algebraic Poincare complex'
with additional structure; more will be said in 2.17.)
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2.2. DEFINITION. An n-dimensional (cofibrant) algebraic Poincare pair

consists of two positive chain complexes C, D in %>A, a cofibration f: C -* D, an n-
chain if/ e W &D, and an (n— l)-cycle (p e W &C so that

(i) dW)=r(q>) in (W&D)..^
(ii) the chain map pr i^0: I"(D *) -» D/im(/) (explained below) is a homotopy

equivalence.
(Here pr i / / 0 is the composite of the projection chain map pr: D -> D/\m(f) with the
homomorphism of graded abelian groups i/̂ 0: Z"(D"*) -> D; cf. 0.10, Case 2.
Although i^0 is not a chain map in general, pr-i^0 is.)

The condition that / : C -» D be a cofibration is not essential; if it is not satisfied,
pr • {j/0 has to be replaced by a chain map going from I"(D~*) to Cone(/). See [15].

The 'boundary' (C, <p) of the algebraic Poincare pair in 2.2 is an (n — l)-dimensional
algebraic Poincare complex.

2.3. DEFINITION (of a higher algebraic bordism). Let 2{0>1 Q) be the category of
subsets of {0, \,...,q), with inclusion maps as morphisms (so there is at most one
morphism between any two objects; if S" c S, denote this morphism by j s > s ) .

For S c {0, \,...,q} and 0 < i < | S | , let dtS stand for the *ith face' of S {d0S is
obtained from S by deleting the least element, c/jS by deleting the next, etc.).

A 'higher bordism of algebraic Poincare complexes, of dimension n and order tf
consists of a covariant functor

Fun: 2( O a q] - > <€A

and a function <D which for each subset S <=• {0,\,...,q} picks an (n — q + \S\— l)-chain
<D(S) e W&Fun(S); here Fun and O are subject to certain conditions. They are as
follows.

(i) Each Fun(S) is a positive chain complex; Fun(0) = 0.
(ii) For any ideal in 2(0<1 q] (i.e. a collection £ of subsets of {0, \,...,q} such that

S e / and S' <= S implies S' G f), the canonical map

Fun({0, l,...,q}y* -+ inv lim {Fun(S)"*} c f ] Fun(S)~*;
Se/ Se/

Z1"* (f'Js.iO. 1 «>)se/

is surjective. (This condition generalizes the cofibration condition in 2.2; it implies, by
an induction proof, that invlimSga(r{Fun(S)"*} is in <tfA for any ideal /.)

(iii) For S c {0,1,...,^},

i = O

in l^&Fun(S) (d is the differential in W&Fun(S)).
(iv) For each S cz {Q,\,...,q}, the chain complexes

i s i - i
I D:=Fun(S),I

i = 0
)n~fc<the inclusion map f: C -> D, the chain \jj := ( — )n~fc<l>(S) in W&D, and the cycle

q> : = Y)S=o l ( — )l®(diS)in ^ & C (in loose notation) together constitute an algebraic



SURGERY AND THE GENERALIZED KERVAIRE INVARIANT, I 165

Poincare pair of dimension (n — q + \S\ — 1). (This means that the non-degeneracy
condition 2.2(ii) holds—everything else is redundant.)

2.4. REMARKS. If (Fun, O) is a higher algebraic Poincare bordism as above, of
dimension n and order q, and if S is a subset of {0,1, ...,q) with complement S', then
the restriction of Fun to 2s and the corresponding restriction of O form a higher
algebraic Poincare bordism of dimension n — \S'\ and order q — \S'\, written
(Fun/2S,O/2S).

An algebraic Poincare bordism (Fun, O) of order 1 such that Fun({0}) = 0 or
Fun({l}) = 0 will also be called an algebraic Poincare pair; this agrees with 2.2 up
to sign.

2.5. CONSTRUCTION. Assume that (Fun,O) is still as above, and forget all the
higher homotopies contained in d>, retaining only <P(S)0 (cf. 0.10, Case 2) for all
S cz {0, \,...,q). Condition 2.3(iii) gives a system of chain maps (one for each

<P0: I"-«(Fun(S)-*®2Cl(A(S))) -> Fun(S);

(Explanation: A(5) is the (\S\ — l)-dimensional simplex spanned by S and
C1(A(S)) is its cellular chain complex, with one ( |S ' | —l)-dimensional generator [S']
for each non-empty subset S' of S. The inclusion js- s: S' -*• S induces
js-,s: Fun(S') -* Fun(S); starting with fe £"~<?(Fun(S)~"*) and suspending liberally,
we find that f-js\s is in S""fl + |s'l"1(Fun(S')"*)» w h i c h is the domain of <D(S%, etc.)

For S' cz S cz {0, \,...,q}, the chain maps J2S O0 and J2SO0 are related by a certain
commutative diagram.

We will now repeat 2.1 and 2.3, adding '^-structures'; here 6 is a chain bundle on a
chain complex B in ^A, to be kept fixed until further notice.

2.6. DEFINITION. A ^-structure on an n-dimensional algebraic Poincare complex
(C, cp) (over A) consists of a chain map

g: C -» B (the 'classifying map')

and a homology

z e (W&C)n + l (the 'clutching homology')

from £"• (<pog*r(b) e (W&C)n to J(<p) e (W&C)n.
(Explanation: (pog* is a chain map from B~* to Z~"C, inducing

(<pog*r: W&B~* -> W&(L-"C),

and S" is the n-fold iteration of the explicit suspension isomorphism of 1.2 (b). See also
0.13.)

The notion of'normal chain bundle' should help clarify 2.6. Suppose that (C, q>) is
an n-dimensional algebraic Poincare complex over A, and ne W&C~* a chain
bundle on C equipped with the additional structure of a homology z e ( l ^&C) n + 1

from S"-?oW 6 (W&C)n to J{q>) e (W&C)n. Then *, or rather the pair («,z), is
called the 'normal chain bundle of (C, cp)\
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It is easy to see that the normal chain bundle n of (C, cp) is well defined up to an
infinity of higher homologies in W&C~* (see 0.15). That is, it is something better than
a mere class in H0(W&C~*) = Q°(C~*). In this respect it resembles the normal
bundle of a geometric manifold or the Spivak normal fibration of a geometric
Poincare complex, which are also well defined up to an infinity of higher
concordances.

A ^-structure on (C, (p) consists, then, of a classifying chain map g: C -* B and
an identification of the 'induced' chain bundle g"{6) on C with the normal chain
bundle n.

2.7. DEFINITION (in outline only). A ̂ -structure (g, z) on a higher bordism (Fun,O)
of algebraic Poincare complexes (of dimension n and order q) consists of

(i) a 'classifying chain map' g: Fun({0, \,...,q}) -> B,
(ii) an appropriate collection (explained below) z = {z(S)\ S <=. {0, \,...,q}} of

clutching homologies.

2.8. EXPLANATION of 2.7 (ii). In 2.9 below, a sequence

{p(m)e(W&C\(Am))m\m = 0,1,2,...}

satisfying conditions (i), (ii), and (iii) in the proof of 1.12 will be fixed once and for all.
If S is any finite ordered set and m = \S\ — \, then the unique order-preserving
bijection S -> {0, l,...,m} gives an identification

^ W&C\(Am);

write p(S) e W&C\{A{S)) for the m-chain corresponding to p(m).
The main point is that the clutching homologies in 2.7 (ii) form a set

so that, for every S c {0, \,...,q), the equation

| S | - 1

d(z(s))+(-rq- I (-y-us
i = 0

holds in (^&Fun(S))„_,+,,>,_,.
(The integral sign comes from 2.5, x is the exterior product of 0.11, d is the

differential in W&Fun(S), and S is the suspension of 1.2(b); I have written
g: Fun(S) -• B when I should have written

yJsAO.i „ : F u n ( S ) -> F u n ( { 0 , l,...,q}) -> B,

and so the map (g*)~ goes from W&B~* to W&(Fun(S))~*.)

2.9. CONVENTIONS. We shall first fix a 1-chain co in I^&C1(A1)= W&I like
the one used in the proof of 1.1 (i) and in 1.2(b); and then a sequence
{p(m)e{W&C\{AJ)m\ m = 0,1,2,...} as in the proof of 1.12.

(i) Let x, y0, y{ be the standard generators of the chain complex / = Cl(Ai); then
1*1 = 1J.Vol = l^i I = 0> a n d d(x) = yl —y0. Using notation as in Case 1 of 0.10, put

a>l=x®x, OJO = x® yo + yi ® x, co, = 0 for t # 0,1.
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Then a> = {a>s\ s e Z} e W&CliAJ gives the explicit suspension formula in 1.2(b).
Note also that co belongs to the subcomplex W&C^A^) c W&C\(Ay).

(ii) The map

A m x A x -> A m + 1 ; ((to,t1,...,tm),(uo,ul))\-+(uo,ulto,ult1,...,uitm)

(in barycentric coordinates; so to + t1+... + tm= 1 = MO + U I ) induces a chain map
of cellular chain complexes

pm. CKAJSfcClfAj) s Cl(Amx A,) -> C1(AM + 1).

Define inductively

p(0):= VG #&C1(AO),

p (m+l ) :=p ; (p (m)xo ; ) e ^&Cl(A m + 1 ) ,

where x denotestheexteriorproductofO.il.

2.10. REMARK. A ̂ -structure (g, z) on a higher algebraic Poincare bordism (Fun, O)
of order <? induces a ^-structure (g/2s,z/2s) on each of the face bordisms
(Fun/2s,0>/2s) defined in 2.4, with S c {0,l , . . . ,g}.

In particular, it is clear how to define the notion of a bordism (of order 1) between
two algebraic Poincare complexes of the same dimension, with ^-structure as in 2.6.
Granting that 'bordant' is an equivalence relation, we can define the corresponding
bordism groups. We shall now construct a spectrum whose homotopy groups they
are.

The construction contains very few surprises. Recall from [17] that a A-set (or
incomplete simplicial set) is a contravariant functor from the category A (whose
objects are the standard g-simplices Aq for q = 0 ,1 , . . . , and whose morphisms are the
linear maps defined by order-preserving injective maps of the vertex sets) to the
category of sets.

It is shown in [17] that A-sets are well behaved if they satisfy the analogue of the
Kan condition for simplicial sets, in which case they are called Kan A-sets.

Certain set-theoretic precautions are understood in the next definition, and in
several others of a similar type in §3. Without such precautions we would have to
work with A-classes rather than A-sets in many places.

2.11. DEFINITION. For p e Z, let LP(B, 6) be the A-set whose g-simplices are the
higher bordisms of algebraic Poincare complexes (over A) of dimension q + p and
order q, equipped with a ^-structure; the face operators are as outlined in 2.10.

2.12. PROPOSITION. The A-set U(B,6) satisfies the Kan condition.

Proof. This is straightforward and left to the reader.

2.13. CONSTRUCTION. There are natural homotopy equivalences

ep: VP{BJ) -> M-(p+l\BJ) for pel.

(Here A denotes the loop space. See 2.15 for the meaning of 'natural'.)

Proof. First, the loop space Al~{p+l\BJ) must be defined. The set l~{p+l)(BJ)
has a canonical 'base point' (that is, a A-map from the A-set given by the constant one-
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point functor to L"(p+ 1){B, 6)); by decree, a g-simplex of M~(P+1)(B, 6) is the same as
a (q + l)-simplex of Q_~(p+ i](B,6) whose Oth vertex and Oth face are at the base point.
(The Oth face is opposite the Oth vertex.) So

and for 0 ^ ii ̂  q the face operators dk are chosen so as to make the diagram

\B,

n

commute.
Now let x be a ^-simplex in VP{B,6), that is, an algebraic Poincare bordism

(Fun,O) of dimension q — p and order q, with ^-structure (g, z). Then ep(x) has to be
an algebraic Poincare bordism (Fun', O') of dimension q — p and order q + l, with
^-structure (gr, z').

Let e: {0, l,...,g} ^-> {0,1,...,^+1} send s to s+1 . For S c {0, \,...,q+ 1},
define

otherwise,

J i f O e S ,

^' : = 0,
and

z'(S) :=z(e- ! (S)) if 0 e S.

Since all A-sets in sight satisfy the Kan condition, their homotopy groups can be
defined via the 'pillow construction', which shows that ep is a homotopy equivalence.

2.14. COROLLARY. Definition 2.11 and Construction 2.13 define a spectrum

Again, the pillow philosophy shows that 7in(jL°(jB, <£)) is the bordism group of n-
dimensional algebraic Poincare complexes with ^-structure (2.12 implies that bordism
is an equivalence relation).

2.15. PROPOSITION. The association B, 6 \-> L°(B, ̂ ) is functorial. If 6 is a chain
bundle on B (in ^A), 6' is a chain bundle on B' (in ^A), A -> A' is a homomorphism of
rings with involution, and f: A' ®A B -*• B' is a chain map covered by a chain bundle map
(cfi 1.8) from A' ®A 6 to 6', then there is an induced map of spectra l°(B, 6) -+ L°(B', fi').

Idea of proof. Take a ^-simplex in lp(B,tf), say (Fun,tf>), (g,z), and define a
g-simplex (Fun',<D'), (g',z') in U(B',6') by letting

Fun' : = A' ®A Fun, O' : = A' ®A<D, g' :=f-(A' ®Ag),

and for S cz {0, !,...,<?},

z'(S) :=A'®A z(S) + V0((S»((A' ®A gr(y) x
12S
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y being the chain bundle map (cf. 1.8). (As in 2.8, g is an abbreviation for

A glance at the homotopy groups shows

2.16. PROPOSITION. If A = A' in 2.15, and if f: B -> B' is a chain homotopy
equivalence (covered by a chain bundle map as before), then L°(B, fi) -> t°(B',fi') is a
homotopy equivalence of spectra.

We conclude with two 'extreme' examples, for which the ring with involution A is
fixed again.

2.17. EXAMPLE. Take 6 to be the trivial bundle on the trivial chain complex B = 0A

in <€A.
A ^-structure on an algebraic Poincare complex (C, cp) is then a homology in W& C

from 0 to J{cp). It is clear that this is the same as a 'quadratic Poincare complex
structure' in the sense of [15]. So nn(L°(0A, 0)) is isomorphic to the (projective version
of the) Wall group Ln(A) for n ^ 0, and spectra homotopy equivalent to L 0 ^ , 0) have
of course been constructed before (by Quinn and Ranicki; see also [21, Chapter
17A]).

It is tempting to regard the Wall groups as the bordism groups of'framed algebraic
Poincare complexes' (see the paragraphs between 2.6 and 2.7), but this can lead to
confusion: bear in mind that the trivial chain complex 0^ is the algebraic counterpart
of an empty space, not of a contractible space or a K(n, 1).

2.18. EXAMPLE. Take tf to be the 'universal chain bundle'. (This involves a certain
amount of cheating. What I claim is that the functor C f-> Q°(C~*), when restricted to
the category of positive chain complexes in ^A, is 'almost representable'. That is, there
exist a positive chain complex B and a chain bundle 6 on B so that the transformation
of functors H0(HomA{C, B)) -> Q°(C~*); [ / ] i-> [/"(<*)] is an isomorphism, with C
in (&A. However, we must allow B to be a chain complex of possibly non-finitely
generated projective /4-modules, and possibly infinitely many of them non-zero; also
the notion of chain bundle must be defined with some care. The appendix to this
section is devoted to an explicit construction.)

Now a ^-structure on an algebraic Poincare complex is as good as no structure at
all; consequently 7rn((L

0(B, £)) is isomorphic to the symmetric L-group L"(A) defined in
[13] and [15].

2.19. REMARK. The construction of L°(B,&) may seem a little arbitrary, since it
relies on a peculiar choice made in 2.9. Here is a more convincing alternative.

(i) Choose your own favourite sequence {p(m)} satisfying the conditions in the proof
of 1.12. This will be 'essentially unique' only, but there is no need to be more specific.
Define a '^-structure' (on a higher bordism of algebraic Poincare complexes)
accordingly.

(ii) Construct a A-set L°(J5,6) as in 2.11, still using your own favourite sequence

(iii) Prove that l°(B, 6) is an infinite loop space, using Segal's machine [18]. For this
purpose, let

£(!):= l°(BJ);
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more generally, for n ^ 0 let E{n) be the A-set whose g-simplices are 'functors' which
to each non-empty subset V of {1,2, ...,n} associate a ^-simplex of l°(B,f>),
say (^Fun/O), (vg/z); and to each inclusion U a V associate a chain map

lvy. uFun({0, \,...,q}) -> "Fun({0, 1,...,<?}),

subject to certain very natural conditions. (The conditions are:

.next, the Xv v should give a direct sum decomposition

("Fun, KO) s ("Fun, UQ>) 0 ( '""Fun, "-"O)

whenever U a V cz {1,2, ...,n}, and (/ # 0 ^ K—t/; and finally, the projection
KFun -+ uFun

resulting from the previous condition in the case where U a V and U # 0 ^ K— (7,
should send Kz to "z.)

Then the collection {E(n)\ n ^ 0} (with obvious structure maps) is a F-space in the
sense of [18], and so £(1) = 1°{B, 6) is an infinite loop space. Notice the similarity of
the construction above with Segal's construction of the algebraic /(-theory spectrum,
also in [18].

To prove that the infinite loop space structure on L°(B, ft) just defined coincides
with that given by 2.13, use

2.20. LEMMA. The map ep in 2.13 has a canonical refinement to a map ofT-spaces.

(Explanation: observe first that each LP(B, S) yields a F-space, just like l°(B, f>).
Secondly, if {F(ri)\ n ^ 0} is any F-space, then so is {AF(n)| n ^ 0}; the structure
maps for {AF{n)} are obtained by applying the loop functor A to those for {F(n)}.
Hence the lemma makes sense; the proof is easy, and it is also easy to see that it proves
precisely what is needed.)

2.21. NOTATION, (i) The spectrum jL°(fl, 6) and the infinite loop spaces lp(B, 6) have
been defined in 2.14 and 2.11 respectively.

(ii) An n-dimensional 'unrestricted algebraic Poincare complex' (C, cp) consists,
by definition, of a chain complex C in (€A and an n-cycle cpeW&C so that
<p0: Z

n(C~*) -> C is a chain homotopy equivalence (C is not required to be positive).
The notion is interesting even when n < 0. The whole of this section (with the
exception of 2.19, which is unsuitable) can be rewritten with 'algebraic Poincare
complexes' replaced by 'unrestricted algebraic Poincare complexes', etc. The out-
come is

for every p e Z . a A-set $£ "(B, 6) (the 'unrestricted analogue' of lp(B, 6))
and hence a usually non-connective spectrum &\B, 6) (the 'unrestricted analogue'

of 1°{BJ)).
(iii) Write &.(A) = ^ (0^ ,0 ) , and let

release: &.{A) -> ¥\B,6)

be the map of spectra induced by the chain bundle map from 0^,0 to B, 6 (cf. the
introduction). Note that

nn{¥(A)) = LJLA) for n e Z,
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and Ln(A) depends only on the residue of n mod 4. The cofibre of

release: &.(A) -* Jg:(B,d)

is denoted by &\BJ).
(iv) Finally, write

L"(B, d) : = nnmB, d)), L"(B, 6) : = nH(&(B, d)).

(No special notation is introduced for nn{i°{B, 6)); but we will see later that, if B is a
positive chain complex, the forgetful homomorphisms

nJH°(B, 6)) -> nn(J?:(B, d)) = L"(B, 6)

are isomorphisms for n ^ 0, whereas nn(t°{B,6)) = 0 for n < 0.)

2.22. REMARK. Change of /C-theory. The whole theory so far has been written in
terms of f.g. projective modules over A; there are versions which use stably free A-
modules instead, or stably free and based /4-modules. As in ordinary L-theory, there
is a long exact sequence relating the projective and stably free versions of Ln(B,6),
involving the groups H"(Z2; K0(A)); and another long exact sequence relating the
stably free and stably-free-and-based versions, involving the groups Hn(Z2;Ki(A))
(or Hn(Z2;K1(A)) etc.). Cf. [15].

The relative groups Ln(B, d) are not affected at all by a change of /(-theory.

2.A. Appendix: The universal chain bundle

Let B be any chain complex of projective left /4-modules, not necessarily in (&A.
Then the sequence of functors

(where C is a chain complex in %>A and n e Z) constitutes a cohomology theory on <tfA,
that is, the analogues of Conditions (i), (ii), and (iii) of 1.1 are satisfied.

Conversely, any cohomology theory on <&A is isomorphic to one obtained in this
way (from a suitable chain complex B). This is the analogue in the chain complex
world of E. H. Brown's representation theorem, which normally lives in the world of
CW-spaces; see [7]. We shall now prove it in detail for the special case of the
cohomology theory

If B is an arbitrary chain complex of projective /4-modules (not necessarily in <€A),
the abelian group chain complex W&B~* can be defined as in 1.5; so an n-chain in
W&B~* is a collection of sesquilinear forms

{(pp<q:BpxBq-*A\p,qeZ},

and the differential (from (W&B'*)n+l to (W&B~*)n) is as in 1.5.
Further, a chain complex V(B) can be defined word for word as in 1.4; the chain

map

Eco: V(B) -• W&B~*

of 1.6 is still there, although perhaps not in general a homology equivalence. At any
rate, a 0-cycle in V(B) can also be regarded as a chain bundle on B.
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2.A.I. DEFINITION. Given a chain bundle 6 on B, or just a class [/*] in Q°(B~*), there
are homomorphisms (called the Wu classes of ft, see [15])

vffl: Hr(B) - tf'(Z2;/4); [ / ] .-> [ /-(*)] .

(Explanation: Hr(Z2;A) is the rth Tate cohomology group of Z2 with coefficients in
the Z2-module A; the involution makes /I into a Z2-module; //r(B) has been identified
with H0(HomA((A,r),B)), so that / is a chain map from (A,r) to B; see 0.6 for
notation. Also Hr(Z2; /4) has been identified with Q°((A, r)"*) so that /"(<£) is a chain
bundle on (A,r).)

Now Hr(Z2; A) is a left /4-module, with /4 acting by

a • [x] i—> [axa]

(for a e A and x e ker[id — ( — )r-involution: A -> ,4], and

ker[ id- ( - r - involu t ion: / I - n 4 ] _ ~
L J im[id + (-r-involution: A ^ A] ~ { 2 ' jj<

The Wu classes ur(<?) are -4-module homomorphisms.

2.A.2. EXAMPLE. Suppose that I = {Xr: Br x Br -* A \ r e 1} is a 0-cycle in V(B) (see
1.4), regarded as a chain bundle on B. The Wu classes are then given by

vM): Hr(B) -> //r(Z2;^l); [y] ^ a ( y , y ) ] .

(Assume that y e \nGv[d: Br -+ Br_ j ] ; then Ar(y, 3;) represents an element in Hr(Z2; A),
since X is a cycle.)

2.A.3. CONSTRUCTION. By induction on skeletons, we will construct a positive chain
complex B (of free /4-modules) and a 0-cycle {kr: Br x Br -> /I | r € Z} in K(B) such
that, for all r ^ 0, the Wu class

is an isomorphism. This property easily implies that A, when regarded as a chain
bundle on B, has the universal property required in 2.18.

Suppose that the /^-skeleton

has already been constructed, and that the sesquilinear forms

kr: BrxBr -> A

have been defined for r ^ n in such a way that

^ n : = { A r | 0 ^ r ^ n }

is a 0-cycle in V(B^n). Suppose further that the Wu class

is an isomorphism for r < n, and a surjection for r = n.
Let K be the kernel of vn(X^n). Note that K is an /4-submodule of Bn,

K c / /n(B^) c B..
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Choose a free /4-module B'n + X and a map

Af * D' D
" • °n+l "^ bn

such that im(d') = /C; choose a sesquilinear form AJ, + 1 on B'n + l so that

(this is possible by definition of K).
Further, choose a free /1-module B"n+x and a sesquilinear form X'n+{ on B"]+{so that
0) ^n+l-(-)"+1^n+l =0,

(ii) the /1-module map

B;'+1 -> H"+l(Z2;A); x \-> [A;'+1(x,x)]

is surjective.

Now let

d = ^ ' © 0 : B ; + 1 © B ; + 1 -> Bn,
and

An+1 : = ; t ; + 1 © A;'+ 1.

The induction step (from n to n+ 1) is complete.

2.A.4. VARIATION ON 2.A.3. It is also possible to construct a chain complex B™ (of
free /4-modules, but usually not in ^A) and a chain bundle ^°° on J5°° such that the Wu
classes

are isomorphisms for all r e Z. Then, for any chain complex C in ^ (not necessarily
positive), the homomorphism

is an isomorphism.
Therefore a ^°°-structure on an unrestricted algebraic Poincare complex (cf.

2.21 (ii)) over A is as good as no structure at all. It follows that
L^B00,^00) = nn{¥\Bx, 6m)) (cf. 2.21 (iii), (iv)) is the bordism group of n-dimensional
unrestricted algebraic Poincare complexes over A, for n e Z.

The groups L^B00, ̂ °°) are periodic in n, with period 4, almost by definition.
Note that L^B00,^00) can be identified with the direct limit limt Ln + 4fc(-4) of the

symmetric L-groups under the double skew-suspension maps

5 2 : L"+Ak(A) - Ln+Mk+i){A);

see [15].

3. Passage from geometry to algebra

In this section we show that a spherical fibration determines a chain bundle, and
that a geometric Poincare complex determines an algebraic Poincare complex whose
normal chain bundle agrees with the chain bundle determined by the Spivak normal
fibration.
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3.1. CONVENTIONS (relating to simplicial sets). Very little distinction will be made
between a simplicial set X and its geometric realization (which is a CW-space). The
cellular chain complex of X is C(X); it is freely generated by the non-degenerate
simplices of X.

If n is a (discrete) group, a principal rc-bundle on X consists of a simplicial set X
with a simplicial 7i-action which freely permutes the simplices of X, and an
identification of simplicial sets X/n = X.

Suppose that X and Y are simplicial sets. The acyclic model theorem [9] yields a
chain homotopy equivalence

C(XxY) - C{X)®ZC{Y)

natural in both variables with respect to simplicial maps. (Note: we are talking about
cellular chain complexes.) To be more thorough, the acyclic model theorem yields an
'Eilenberg-Zilber' chain map

EZ = EZ(*, Y): C(X x Y) -* Homz(W, C(X) ®z C(Y))

which
(i) is natural in both variables X and Y,

(ii) agrees with the canonical and obvious chain isomorphism if X = Y = point,
(iii) is Z2-equivariant.

(The last condition means that the diagram
EZ

C(X x Y) — ^ - + Homz(VT, C(X) ®2 C(Y))

switch conjugation by T

EZ
C(YxX) ^ ) Homz( W, C(Y) ®z C(X))

commutes for arbitrary X and Y; here T is the generator of Z2, which acts on the
chain complex W as usual, and 'conjugation by T sends fe Homz(W, C(X) (g)z C(Y))
to TfT.) To prove the existence of such an EZ, observe that EZ is equivalent to a
natural chain map

DIA: C(Y) -+ HomZ[Z2](W,C(Y)®IC(Y))

for simplicial sets Y, which agrees with the obvious and canonical chain isomorphism
in the case where Y is a point. Indeed, DIA is obtained from EZ by letting X = Y in
the description of EZ and exploiting Z2-equivariance; and EZ is obtained from DIA
by substituting X x Y for Y in the description of DIA and composing with suitable
projections. But the existence of DIA is a straightforward consequence of acyclic
model theory; see [9], especially [9, Lemma 6.2].

The acyclic model theorem also states that EZ (or DIA) is essentially unique; fix it
for the rest of the section.

Evaluating EZ on the standard generator 1 e Wo c: W gives

EZ0: C(X x Y) -+ C(X)®ZC(Y),

a natural chain homotopy equivalence.

3.2. CONVENTIONS (concerning spherical fibrations and simplicial sets). Let G be a
simplicial monoid (associative, with unit). A 'classifying' simplicial set BG is defined as
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follows (cf. [6, Definition 3.20] and [11, Definition 10.3]):

BGq = {(go,gu-,gq-i)\ 9i e G,} for q > 0,

s & 9 o > 9 u ~ - > 9 q - \ ) = ( 9 o > — > 9 q - i - i > l
q - b s o 9 q - h • • • > • * . - i 0 q - i ) f o r O ^ i ^ q .

(Reading instructions: dt and s,- are the face and degeneracy operators respectively. It
is understood that BG0 is a singleton, and that the expressions for di{g0,...,gq.]) and
Sj(g0, ...,gq-x) are read from the left if i = 0 and from the right if i = q.)

Next, let EG be the simplicial set given by

EGq = Gqx BGq for q ^ 0,

s((g, b) = (sjgf, stb) for 0 < i ^ q,

di(g,b) = (dig,dib) for 0 < i ^ q,

do{g,b) = (t(b)-dog,dob).

(Here t(b) is the 'top component' of b; so if b = (go,...,gq-y), then t(b) = gq-i- In the
terminology of [6], EG is a twisted cartesian product with base BG and fibre G.)

Let p: EG —> BG be the projection (g, b) \—* b. If no(G) is a group, then the
geometric realization of p is a quasi-fibration [8]. If moreover G is a Kan simplicial
set, then so is BG (this is proved in 3.21 below). Under these conditions it follows
easily that nn{BG) = ^ . ^ G ) for all n, and that EG is contractible. (Even so, EG does
not satisfy the Kan condition as a rule.)

Now let G(n) be the topological monoid of self-homotopy-equivalences of the pair
(D",S"~l) (with the compact-open topology, say; D" is the n-disk). Let G(ri) be the
singular simplicial set of G(n), that is, the standard simplicial approximation. Using
the construction BG above, with G = G(n), we make the following definition:

an n-dimensional spherical fibration on a simplicial
set Xis a simplicial map from X to BG(n).

Such a spherical fibration y on X has a geometric realization: let E(y) be the space

where ~ is the obvious equivalence relation, i.e. is generated by

(sf (u), v, x) ~ (u, v, s,-(x)) for q ^ i ^ 0, u e \ +15 v e D", x € Xq,

(dr(u), v,x) ~ (u, v,dt{x)) for q ^ i > 0, u e Aq-lt v e D", x e Xq,

(do(u), v, x) ~ (u, tx(u, v),do(x)) for q > 0, u e \ - u v € Dn, x s Xq.

(Here tx: &q-i xD" -> D" is the image oi x e Xq under the composition

Xq >BGq—Ucq.v

Notice the formal similarity in the descriptions of E(y) and EG.) Similarly, let dE(y) be
the space
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so that dE(y) a E(y). The diagram

dE(y)

(in which the projection E(y) -> X is obvious) allows one to interpret y as a pair of
quasi-fibrations over X, with fibre pair (D",S"~l).

Neither E(y) nor dE(y) have canonical CW-structures; however, the Thom space
E(y)/dE(y) is a CW-space (not a simplicial set) whose cells are in one-one corre-
spondence with those of X. This is extremely convenient.

There are canonical inclusions

... -> BG{n-\) CL_> BG{n) c_> BG(n+l) d_» ...;

a simplicial map X -> BG(co) : = (J fiG(n) is called a stable spherical fibration on X.

3.3. REMINDER. A Poincare space (or geometric Poincare complex) is, for the
purposes of this section, a finitely generated simplicial set Y equipped with a
fundamental class and satisfying Poincare duality with arbitrary local coefficients—
see [15] for details. (So the torsion is allowed to be non-zero.)

Such a Poincare space Y, of formal dimension n, has a 'Spivak normal fibration', i.e.
a stable spherical fibration vY on Y, characterized by the following property: there
exists a map of CW-spectra.

rY\ S" -> M{Y,vY) := (Thom spectrum of vY)

such that, in loose notation,

(Thom class of vY)n h{rY) = (fundamental class of Y).

(The Hurewicz image of rY in Hn(M(Y, vY); Z) has been denoted by h(rY); here M(Y, vY)
is the formally desuspended Thom space of vY, and the expression 'CW-spectrum' will
always mean a spectrum in the sense of Boardman, cf. [19]. A 'map' between CW-
spectra is defined as in [19, Definition 8.12], so is automatically cellular.)

'Characterized', in this context, means more than just 'unique up to (stable)
concordance'; it means, for example, that the bordism theory of triples (Y,vY,rY) as
above can be identified with the bordism theory of Poincare spaces Y. So we shall
often think of a Poincare space Y as a triple (Y,vY,rY), and similarly for geometric
Poincare pairs.

More generally, a 'higher bordism of Poincare spaces, of dimension n and order q"
consists of

(i) a functor V i—• Y(V) from the category 2{0>1 q) to the category of finitely
generated simplicial sets Y and injective simplicial maps ('cofibrations'),

(ii) a stable spherical fibration v on Y({0,1, ...,q}),
(iii) a compatible collection of maps of CW-spectra

r(V): A(V)+ A S"~q -> M(Y(V), v/Y{V)) = Thom spectrum.

The functor in (i) is required to be 'intersection-preserving', that is, for
K 1 , l /

2 c{0 ) l ) . . . , q}we have Y{VX n V2) = YiV^n Y(V2) if these spaces are interpre-
ted as subspaces of Y{VX u V2); also Y(0) = 0. Finally, each Y(V) is required to be a
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geometric Poincare pair (with boundary equal to [j Y(U), where the union ranges
over the proper subsets U of V, and relative fundamental class equal to the Hurewicz
image of r(V)).

For the rest of the section we need: a group n and homomorphism w: n -> Z2;
a finitely generated simplicial set X and a spherical fibration y on X; a principal
rc-bundle a on X and an identification of double covers of X,

j : w~*(ct) s (orientation cover of y).

Write C(X) for the cellular chain complex of the total space of a. Then C(X) is a chain
complex in %?A, with A = Z[rc] (equipped with the involution

3.4. THEOREM. TTie data (n,w; X,y; a,j) determine (up to an infinity of higher
homologies—see 0.15) a chain bundle c(y) on C(X). The construction isfunctorial.

3.5. THEOREM. The geometric bordism spectrum Qp(X,y) (details follow) and the
algebraic bordism spectrum l°(C(X), c(y)) are related by a natural map

np(X,y)-+l°(C(X),c(y)).

(There is also a map QP(X, y) -> ^'(C(X),c(y)) obtained by composing with the
forgetful map from l°(C(X), c(y)) to ¥'(C(X), c(y)); both maps are called flexible
signature.)

Explanation. Let £LQ(X, y) be the A-set (incomplete simplicial set) whose g-simplices
are the higher bordisms of Poincare spaces {Y(V),v,r(V)\ V c {0, \,...,q}} of
dimension q and order q (as in 3.3), equipped with a simplicial classifying map
g: Y({0, l,...,q}) -> so that v equals the pullback g"(y) (which ought to be written
yg). Then £lQ(X,y) is an infinite loop space (see 3.20 below), and the associated
spectrum is QP(X, y).

Most of this section is devoted to proving 3.4 and 3.5.

3.6. DEFINITION. A '7r-space' will mean (in this section at least) a simplicial set Y with
a base point (distinguished 0-simplex) and a simplicial 7r-action which fixes the base
point, but freely permutes the other cells (non-degenerate simplices) of Y. For such
a Y,

C(7):=C(y)/C(base point)

is a chain complex in <&A, provided Y is finitely generated (over n).

3.7. PROPOSITION ('symmetric construction', cf. [15]). For every n-space Y, there is
defined a chain map

Sym: T ®AC(Y) ^ W&C(Y),

inducing maps in homology

'Hn(Y/n;Z):=Hn(Z'®AC(Y)) - Qn(C(Y)).

It is natural with respect to n-maps.
5388.3.51 L



178 MICHAEL WEISS

Note: the w-twisted involution on A = Z[7t] is used.

Proof. Take the map DIA: C{Y) -» HomZ[Z2,(W, C{Y)®ZC(Y)) of 3.1; note that n
(and hence A) acts on C(y) as usual, and also on Hon\i[Z2](W, C(Y) ®z C(Y)) via the
diagonal action on C(Y)®ZC(Y). Tensoring with 2 on the left gives

T ®A C(Y) -+ Z' ®A (HomI[Z2](W, C(Y) ®z C(Y)))

S HomZ[Z2](W, C(Y)' ®A C(Y)) = W&C(Y).

3.8. EXAMPLE. Let (7, vy, ry) be a Poincare space, of formal dimension n; suppose
that there is given a principal 7r-bundle fi on 7 and an identification of twofold covers,

w~~(P) = (orientation cover of vy) (= orientation cover of Y)

(with w as in 3.4). Then Y+ (the total space of /?, with an added disjoint base point) is a
7r-space.

Let q> e W&C{Y+) = W&C(Y) be the image of the fundamental cycle under the
chain map Sym. (The fundamental cycle is the cycle determined by rY; it represents the
fundamental class.)

Then (C{Y),(p) is an n-dimensional algebraic Poincare complex over A—the
'algebraic image' of Y.

3.9. OUTLINE. We are now in a position to obtain a sketch proof of 3.4 and 3.5. It is
taken without essential change from [15, Part II, §9].

(i) Starting with a string (n, w; X, y; a, j) as in 3.4, and assuming that y is k-
dimensional, Ranicki obtains a characteristic class [c{y)~\ e Q°{C{X)~*) by choosing a
7r-equivariant S-dual T(X, y)* of the Thorn rc-space T(X,y), and applying the
symmetric construction

'H*(T(X,y)*) -^ Q*(C(T(X,y)*))

of 3.7 to the dual of the Thorn class in lHk(T(X,y)). This yields a class [>] in
Qn(C(T(X,y)*)) for some n, to begin with. Observe now that we have a chain
homotopy equivalence

by composing S-duality with the Thorn isomorphism. Then

f-: QnVn(C(X)-*)) -> Qn(C(T(X,y)*))

is an isomorphism, so that we may define the characteristic class [c(y)] e Q°{C(X)~*)
by the formula

Wl) =r • S-flXy)]) in Q"(C(T(X, y)*)).

This nearly proves 3.4.
(ii) Suppose next that the string (n,w;X,y; a, j) is such that X is an n-dimensional

Poincare space with Spivak normal fibration y. Let {C{X), cp) be the n-dimensional
algebraic Poincare complex constructed from X as in 3.8. We may take, as is well
known,
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It is then easy to check that [i/̂ ] = [<p] and / = cpQ. If we insert this in the formula
defining [«(?)], we see that

Mr)] = M,
where n is the normal chain bundle of (C(X), cp). So 3.5 is nearly proved.

The reader is advised to omit the rest of the section except 3.16, 3.17, and 3.18, and
to regard the arguments above as proofs. It should be realized, however, that they are
inadequate in two respects. Firstly, in 3.4 we do need a chain bundle c(y) rather than
just a class [4v)]> as is shown in 3.17. Secondly, the argument for 3.5 given above does
not survive the generalization from Poincare spaces to normal spaces (see Part II, § 7 of
this paper). We begin with the rigorous proof.

3.10. MACHINERY. Let X be a A-set. We will regard X as a category (whose objects
are the simplices of X; a morphism from an n-simplex x to an m-simplex y is an
injective order-preserving map {0,1,...,«} -• {0, l,...,m} so that the corresponding
face operator sends y to x).

An 'X-indexed chain complex' is a covariant functor G from X to the category of
chain complexes. Given such a G, and given any A-subset X' of X, define a new
(ordinary) chain complex (SectN.; G), or (Sect^-; G( —)), by

(Sectx-;G)n= ft ( G ( 4 + ix|,

Here s e (Sectx-; G)n; if x is a simplex in X', we write [s~]x for its x-component, and
diflT,. for the differential in G(x). Finally, jdiXtXis the inclusion of the ith face as usual,
and d is the differential in (Sectx<; G).)

Alternatively, (Sectx-; G) can be described as the subcomplex of natural chains in

I I Hom2(Cl(Aw), G(x)),

where C1(A|X|) is the cellular chain complex of the standard simplex. (Call a collection
{/, e Homz(Cl(A|X,)G(x))| x e K'} natural if

for every morphism p: x -> y in X'.)
Note that the construction has 'sheaflike' properties: given two A-subsets X' and X"

of X, there is a pullback square of restriction maps

(SectN.uS»; G) • (SectN.; G)

(Sectx»; G) • (SectN.nN»; G)

Suppose next that G above is a covariant functor, not merely from the category X to
the category of chain complexes, but from X to %>A. Suppose also that we have an
ordinary chain complex C in ^A and an /4-module chain map

/:C-(Sectx;G(-)).
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An induced chain map

/ - : W&C -> (SectN;W&G(-))

is defined as follows. Using the second description of (Sectx; G( —)), we see that / is
nothing but a natural collection of chain maps

/x :C<8kCl(Aw)->G(x).

Now def ine /" by [/~*(<p)]x : = /T(<P x p ( M ) ) e W&G{x), for <p e W&C; tomake
sense of this formula, use the sequence {p(m)| m ^ 0} of 2.9.

3.11. DEFINITION. From now on X will be the moduli space of all attempts at being
equivariantly S-dual to the Thorn n-spectrum M{X, y). In detail, a typical ^-simplex y of
K shall consist of

an intersection-preserving functor Ftr>t from 2|0>1 q] to the category of finitely
generated 7r-spaces and 7t-cofibrations, and

a compatible collection of maps of CW-spectra

A(K)+ -> M(Xxn¥tvy(V),y)/M(X,y),

one for each V a {0, \,...,q}.
This should require a fair amount of explanation.

(i) A 7i-space U is finitely generated if the space or rather simplicial set U/n is finitely
generated. Intersection-preserving means here that

if these spaces are interpreted as subspaces of Ftr^I^ u K2), and that Ftry(0) is a
point.

(ii) If U is any rc-space, then X = Xx^base point) is contained in XxnU. Note
further that

M(X xn U, y)/M(X, y) s M(X, y) An U,

if the cell decompositions are disregarded; here the pullback of y to X xn U has also
been called y.

In particular, if y is a q-simplex in X having all faces at the base point, then y
consists of a rc-space U — Ftry({0,l,...,n}) and a map of spectra from Sq to
M(X,y) An U. We may call this an attempt on the part of U at being equivariantly
S-dual to M(X,y).

Having specified X, we shall also specify the K-indexed chain complex G in 3.10
by letting

for a g-simplex y in X; in other words G(y) is the reduced cellular chain complex of the
underlying 7r-space of y.

We have now collected most of the material necessary to rewrite 3.9 in a rigorous
fashion. What follows is a parametrized version of 3.9 where X serves as parameter
space. So, instead of choosing an equivariant S-dual T(X, y)* of the Thorn 7r-space
T(X,y) = 2.kM(X,y), we shall consider simultaneously all attempts at being equi-
variantly S-dual to M(X,y). The role of C(T{X,y)*) in 3.9 will be played by
(Sectx; (/(—)); the next construction shows that the symbols / and i// in 3.9 (i) also
have their parametrized counterparts.
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3.12. CONSTRUCTION. We shall construct
(i) a chain map / : C(X)~* -• (SectN;G(-)),

(ii) a 0-cycle i// in (Sectx; W&G{-)).
For (i), let G be the K-indexed chain complex such that

G(y) = C(M(X xnFtry({0, \,...,q}),y)/M(X,y))

if y is a g-simplex in K. The very definition of K yields a canonical 0-cycle z in
(Sectx; G( —)). Our conventions concerning spherical fibrations (see the end of 3.2)
give us a Thom isomorphism on the chain level; composing with the Eilenberg-Zilber
map EZ0 of 3.1, we get a natural homotopy equivalence

G(y) 5 C(X) ®A G(y) s HomA(C(X)-*, G(y))

for any simplex y in N. Therefore we now have a 0-cycle

z e (SectN; HomA(C(X)~*, G(-))) (the image of z).

Define / : C(X)~* -* (Sectx; G(-) ) by

for x e C(X)~* and y a simplex in K.
In (ii), we put

Here Z' ®A f is the chain map from Z' ®A C(X)~* to (Sectx; Z' 0^, G( - ) ) obtained by
tensoring / with Z'; further, lc is the unique 0-cycle in Z.'®AC(X)~* representing
1 e H°(X;Z) = H0(Z' ®AC(X)~*), and Sym denotes the parametrized symmetric
construction which is a chain map from (SectN;Z' ®A G( —)) to (Sectx; W&G( —)).
See 3.7.

3.13. KEY LEMMA. Both f: C(X)~* -> (SectN;G( —)) and the induced chain map
/"*: W&C(X)~* -> (Sectx; ^ & G ( —)) are chain homotopy equivalences.

The proof is deferred; see 3.19. Now let

&(n,w;X,y;aL,j)

be the homotopy pullback (see 0.14) of the diagram of chain maps

W&C(X)~*

f ~*

(Z,0) X ^ J{^\ (Sectx; W&G(-))

Then the projections

0>(n,w;'X,y;a,j) » W&C(X)~*

(2,0)
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constitute a 0-cycle in W& C(X)~*, well-defined up to an infinity of higher homologies
(see 0.15). This proves 3.4, since a 0-cycle in W& C(X)~* is a chain bundle on C(X).

In the next lemma, an admissible 0-cycle in 0>(n, w;X,y;<x, j) means a cycle in the
class 1 e Z s Ho(0>(n,w; X, y; a, j)).

3.14. LEMMA. Every admissible 0-cycle s in ^(n, w; X, y; a, j) determines a A-map
(fl.sig.)s: £lp

0(X,y) -> l°{C{X),cs(y)). (See the paragraph following 3.5.) Here cs{y) is
the chain bundle on C(X) determined by s.

Proof. We begin with a A-map i: SIQ{X, y) -* X. Let x be a g-simplex in £IQ(X, y);
then x consists of a collection {Y(V),v,r(V)\ V <= {0,\,...,q}} and a classifying map
g: Y{{0,\,...,q}) -• X such that g*~(y) = v. (See the end of 3.3.) Each Y(V) inherits a
principal 7r-bundle from X, with total space Y(V).

Now i(x) is the g-simplex in K such that

F t r , x ) ( K ) - Y(V) + ;

for the stable map from A(K)+ to M(X xnFtri{x)(V),y)/M(X,y) required in 3.11 we
take the composition

d r i M , M(X *J{V),y).

This is a cellular map (as it should be) because X and Y(V) are simplicial sets. The
description of i is complete.

Next, observe that the parametrized version of 3.8 produces a canonical 0-cycle

<pe(Sectn8(Jf,y);G(-)).

(Here G is short for Gi.) All we need now in order to get a map from ft£(Ar,}>) to
L°(C{X),cs(y)) is a collection of clutching homologies (see 2.7, 2.8, 2.9). In other
words, we are searching for a 1-chain

Now I claim that such a 1-chain z can be extracted from the admissible cycle
s G ^(n, w; X.yia , j) in 3.14. Indeed, we constructed ^(n, w; X, y; a,./) as a chain
homotopy pullback, so our admissible 0-cycle is a triple

(lcs(y),z)

with l e ( Z , 0 ) , cs(y)eW&C{X)-*, and z e (SectN; W&G{-)). (See 0.14.) The
pullback of z under /: ft^A^y) -* X is the required 1-chain z. Inspection shows that
it satisfies the equations in 2.8.

3.15. LEMMA. The A-map (fl.sig.)s in 3.14 has a canonical refinement to a map of
infinite loop spaces.

For the proof, see 3.20. To complete the proof of 3.5, we still have to show that the
map of spectra

flexible signature: np(X,y) -> L°{C(X),c(y))

obtained from 3.15 does not depend too much on the choice of an admissible 0-cycle s
in &(n, w; X,y;at, j). This should follow from the existence of a homotopy equival-
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ence ^(n, w; X, y; a, j) ~ (Z,0). But the following argument is easier. Pick another
admissible 0-cycle s' in ^(n, w; X, y; a, j). Crossing the string of data (n,w;X,y; a, j)
with the unit interval [0,1] gives a new string, written

(n,w;Xx[0, l ] , yx [0 , l ] ; a , ; ) .

Choose an admissible 0-cycle s" in 0>(n, w; X x [0, l],y x [0, l ] ; a , j) whose image
under the restriction map

-• 0>{n, w;Xx {0}, y; a, ;) 0 ^(TI, W ; X x {1}, y; a, j)

is (s,s'). Such an s" exists. Then the commutative diagram

np(xx{o},y) > n p ( x x [ o , i ] , y x[o , i]) < np(xx{\

i°(C(X), eft)) > l°(C(x x [0, l]), cAy * [0, i])) < l°(C(X), ca.{y))

shows what we want, since all horizontal arrows are homotopy equivalences. The
proof of 3.5 is complete; the naturality part is stated separately below.

3.16. REMARK. Suppose that there are given two strings (n, w; X, y; a, j) and
(n1, W; X', i ; a', / ) as in 3.4, and

(i) a homomorphism h: n -> n' such that w'-h = w;
(ii) a simplicial map g: X -*• X' covered by a map of spherical fibrations from y

to/;
(iii) an identification h~*(a) = g~(ct') of principal rc'-bundles on X, compatible with

j and / .
Such a 'morphism' induces a sufficiently well-defined chain bundle map

C{X),c{y)^C{X'),c{y')

(involving a change of rings, cf. 1.8 and sequel); and the diagram

£ l p ( X , y ) *

is sufficiently commutative for all practical purposes.
Geometric transfer maps also have algebraic counterparts: let (n,w;X,y; a, j) be a

string of data as usual, and suppose that n" c n is a subgroup of finite index. A second
string (n", w"; X", y"; a", / ' ) is then given by

w" := w inclusion,

X": = total space of a, modulo action of n",

y" := pullback of y,

CL" : = principal 7i"-bundle on X" derived from a,

/ ' : = identification derived from j .



184 MICHAEL WEISS

There is a sufficiently commutative diagram of maps of spectra

QP(X", y") > L°(C(X"), c(y"))

geometric algebraic
transfer transfer

As in 3.5, L°(...) can be replaced by ¥'(•••)•

3.17. EXAMPLE. Using notation as in 3.4, let |>(y)] e Q°(C(X)~*) be the class of c(y).
In § 1 (after 1.8) elements of Q°(C(X)~*) were interpreted as 'isomorphism classes of
chain bundles' on C(X). Consequently, knowledge of [«(}>)] e Q°(C(X)~*) suffices to
reconstruct the groups L"(C(X), c(y)) (see 2.21 (iv)) 'up to isomorphism'. More cannot
be expected, as is shown by the following example.

Let N" be a smooth closed manifold admitting two stable framings Frl5 Fr2 such
that the Kervaire invariants of (N, F r J and (N, Fr2) are defined and distinct. (Such
manifolds are known to exist for n = 2, 6, 14, 30, 62 (?).) Specify the string
(n, w;X, y;a, j) as follows (see 3.4): X = N and y is trivial, n = {1}, etc. Let us work
with smooth manifolds instead of Poincare spaces; we may then replace QP(X, y) by
the Thorn spectrum M(X,y). The difference between the two framings Frj and Fr2 is
a map from N — X to the orthogonal group; it can also be regarded as a stable
automorphism of the trivial bundle y on X, written tw. The algebraic counterpart of
tw is a chain bundle automorphism z of c(y) (covering the identity C(X) -> C(X)).
There is a commutative diagram

flexible
signature

flexible
signature

L"(C(X),c(y)) — > L"(C(X),4y))

(notation as in 3.4, 3.5, 2.21 (iv)).
Claim. Both (tw)" and T~" are non-trivial group automorphisms. Indeed, let

y E nn(M(X,y)) be the bordism class represented by (id, Frx): N,vN -> X,y (recall
that X = N, and y is the trivial bundle). Also, let X' be a one-point space, and let y'
be the trivial bundle on X'; the obvious bundle map X,y -* X',y' then induces
a homomorphism

?: nn(M(X,y)) -> < = nn(M(X',y')).

The elements l(y) and ?((tw)">();)) of ns
n have distinct Kervaire invariants by

construction; hence (tw)" is not the identity. Practically the same argument shows
that

fl.sig.G>)*(fl.sig.(y)),
proving that r~* is non-trivial.

So it is impossible to give an 'honest' description of L"(C(X), c(y)) in terms of
lc(y)-]eQ°(C(X)-*).

3.18. REMARK. If (C(Y),(p) is the n-dimensional algebraic Poincare complex
derived (as in 3.8) from an n-dimensional Poincare space Y, with Spivak normal
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bundle vy etc., then there is a canonical identification

c(vY) = (normal chain bundle of (C(Y),(p))

(see the sequel to 2.6). This is clear from the proof of 3.5: the identity map
Y, vy —• Y, vY represents an element in nn(Q

p(Y,vY)); and we know that (C(Y),(p)
has a preferred 4vv)"structure {g,z), in which g: C(Y) -> C(Y) is the identity. In
other words, c(vY) has the property which characterizes the normal chain bundles,
as required.

Given a degree-1 map e: Pt -> P2 between Poincare spaces of the same formal
dimension n (equipped with suitable data, such as principal rc-bundles), [15] defines
the 'symmetric kernel' of e, an n-dimensional algebraic Poincare complex (C, q>'). If in
addition the map e has the attributes of a normal map, then it is easy to see that the
normal chain bundle of (C, <p') is 'trivialized' (using 3.18); by 2.17, the algebraic
Poincare complex (C, cp') together with this trivialization defines an element of
LB(Z[7c]).

Finally, let (n, w; X, y; a, j) be a string as usual, and suppose that we are given maps
of finite CW-spaces

and a map of spectra r: S" -> M(Px,(h-g)~(y)) (where M(...) denotes the Thorn
spectrum) such that the triples (Pi,(h-g)"(y),r) and (P2,h*~(y),g^(r)) are Poincare
spaces in the sense of 3.3 and 3.8.

Then g is clearly a normal map of degree 1, so, by what we have just seen,
an element oj^g) in Ln(l\n~\) is defined, traditionally called the surgery obstruction.
We have

in L"(C(X), c(y)), where a* denotes the flexible signature.
To prove this, note that the degree-1 map g induces a splitting of the algebraic

Poincare complex of Px into two direct summands; one of these is homotopy
equivalent to the algebraic Poincare complex of P2, the other is the 'symmetric kernel'
of g. It follows easily that

which completes the proof. See also 3.17.

Here are the remaining proofs.

3.19. PROOF OF 3.13 (an application of the equivariant S-duality theory of [15]). In
[15], a 'CW^-space' is defined to be a CW-space with base point (distinguished 0-cell)
and a cellular 7r-action which leaves the base point fixed, but permutes the other cells
freely. (This is slightly more general than the rc-spaces in 3.6.)

A CWn-spectrum is defined along the same lines. A CWTi-space or CW7r-spectrum
E is called finite if E/n has only finitely many cells; in that case the (reduced) cellular
chain complex C(E) belongs to ^A (with A = I\n~\).

Let dAn be the union of the proper faces of the simplex An; regard (5AJ+ as a
subspectrum of (AJ+. The following result is implicit in [15].
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(i) Suppose that E and dF are finite CW-spectra, and

dg: (dAn)+ -> E AndF

is a map of CW-spectra (the smash product being defined in the naive way). Then there
exists a CWn-spectrum F containing dF, and a map

g:(An)+ ^EAnF
extending dg, such that

g/dg:(An)J(dAn) + -> E AnF/dF

[where (An) + /(dAn)+ ~ S") is an Sn-duality {see [15]).

We apply this to the study of the A-set X defined before 3.11. Every g-simplex y in X
stands for a 7i-space Ftry({0,1,..., q}) (as in 3.6) and a map of spectra

(Aq)+ -> M(X xnFtry({0,\,...,q}),y) ^ M(X,y) AnFtvy({0,\,...,q}),

etc.; collapsing boundaries gives a map of spectra

nr (Aq)+/(dAq) -> M(X,y) A,(Ftr,({0, l , . . . ,g})/ |J Ftry(K))

(where (Aq) + /(dAq) ca Sq and where V ranges over the proper subsets of {0,1,... , q}).
Call y regular if ny is an S7r-duality map. Then we have

(ii) A q-simplex y is regular if and only if the composition

J—-> (SectN;G(-)) Pu l l b a c k> (SectA,;G-chy(-))

is a chain homotopy equivalence. Here ch}1: Aq -> X is the characteristic A-map
associated with y.

Proof. Let dG(y) c G(y) be the chain subcomplex generated by the images
j?y(G(z)) a G(y), where z ranges over the proper faces of y. Then we have to show
that the obvious projection

p:<SectAq;G-chy(-)) -> X«(G(y)/dG(y))

is a chain homotopy equivalence.
Observe that the skeletal filtration of Aq induces a filtration of (SectA<?; G-ch^ —))

by subcomplexes. It is not difficult to construct a similar filtration of the homotopy
type of l,q(G(y)/dG(y)), and to show that p induces chain homotopy equivalences on
the successive quotients. This proves (ii).

(iii) The regular simplices generate N (that is, every simplex in X is a face of some
regular simplex).

Proof. Given a ^-simplex y in X, say y = (Ftry,...), let Cone(y) = (FtrCone(>;),...)
be a (q+ l)-dimensional simplex in X such that d0(Cone(y)) = y, and such that
FtrCone(y)(V) is a contractible 7r-space whenever 0 € V a {0,1,..., q+ 1}. Iterating the
construction, define simplices

Cone"(y) =

of dimension q + n, for all n > 1. Using (i) above it is easy to see that for sufficiently
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large n, there exists a (q + n)-simplex x in X which is regular and such that

d{{x) = d,.(Cone"00) for 0 ^ i ^ q + n.

Clearly y is a face of x, which proves (iii).

(iv) Suppose that gv: Ki -> X is a map of A-sets, with Kx finite. Then there exists a

diagram of A-sets and A-maps

with K2 finite, such that the composition

C(Xy*-^ (Sects; G(-)) - (SectX2; G-g2{-))

is a chain homotopy equivalence.

Proof. Suppose first that Kt is a polyhedron. This means that Kl can be embedded
(as a A-set) in a standard simplex An. Choose such an embedding e: K{ -* An : = K2.
Since X is a contractible Kan A-set, there exists a A-map g2: An -* N such that
Q2'e = 9v We may also assume that g2 maps An to a regular simplex in X (otherwise
replace An by a standard simplex of greater dimension, using (iii) above). This proves
(iv) in the special case where Ki is a polyhedron.

Now let Kx be an arbitrary finite A-set. Choose a diagram of A-sets and A-maps

X

with M and K\ finite, such that Kt is a polyhedron and such that the restriction maps

(SectKt;G-gi(-)) «- (SectM; G-h(-)) -> (Sectjf,;G-9l(-))

are chain homotopy equivalences. (Such a diagram is easy to construct; for instance,
Kx can be taken isomorphic to an iterated barycentric subdivision of Kv) Since Kl is
a polyhedron, we can find another diagram

0i\ /9i

X

with K2 finite, such that the composition

(SectN; G(-))
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is a chain homotopy equivalence. Let K2 be the pushout of M <- K{ -* K2\ let
g2: K2 -* X be the amalgam of h and g2, and let e be the composition
K{ -> M -*• /C2. The proof of (iv) is complete.

We can now finish the proof of 3.13 using standard limit arguments. Let X be the
category whose objects are A-maps g: K -> N with K finite, and with the property
that the composite

C(Xy* -U (Sectx;G(-))

is a chain homotopy equivalence. A morphism from g: K -> X to g'\ K' -> X shall
be a A-map h: K' ^ K such that g-h = g'. By (iv), the category X is a small left
filtering in the sense of [1]; by (iv) again, we may write

(SectN;G(-))£ lim (Sect*; G •#(-)) ,

where the inverse limit is taken over X.
Note that all chain maps in this inverse system are homotopy equivalences, by

definition of Jf. So the following implies 3.13.

(v) The injection

lim (SectK;G•#(-)) -> holim(SectK; G•#(-))
g:K-X g:K-N

w fl c/ifl/n homotopy equivalence. (Both limits are taken over X.)

Explanation and proof. The homotopy inverse limit holim is defined as in [1],
mutatis mutandis.

For an object g: K -+ K of Jf, let Gg be the X-indexed chain complex such that

G9(y)= n
xeg~Hy)

whenever y is a simplex in N. Then

Therefore

holim(Sectx;G-g(-))g holim(Sectx; Gg(-)) ^ (SectN;holimGg(-)),

and similarly

It is now sufficient to show that for each simplex y in K, the injection

limC,(y) s G(y) ^ holimG,{y)

is a chain homotopy equivalence. But this is obvious.
We have now shown that / in 3.13 is a homotopy equivalence; the proof for /"* is

similar because the functor Ci-> W&C on (€A is essentially linear, as is shown in 1.1.

3.20. PROOF OF 3.15. In 2.19 we saw that l°(C(X), c(y)) is the underlying space £(1)
of a F-space {£(n)etc. | n ^ 0}. Much the same argument, with direct sums replaced
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by disjoint unions, makes SIQ(X, y) the underlying space F(l) of a F-space
{F(n) etc. | n ^ O } .

The symmetric group on n letters S(n) acts on F(ri); this action is free for all n (on the
complement of the base point), and in particular for n = 2. We shall use this fact
below.

Our problem is to refine the map F(l) -> £(1) in 3.15 to a family of maps
F(n) -> E{n), where n > 0, commuting with the various structure maps which are part
of a F-space.

It is a good idea to think of a simplex in E(n) as an affair with three levels: the first
level involves nothing more complicated than chain complexes (and chain maps), the
second nothing more complicated than algebraic Poincare complexes, and the third
involves everything (i.e. algebraic Poincare complexes with «(y)"Sfructure).

(i) With regard to the first and second levels, it is clear what the maps F(n) -> E(n)
ought to do (if they are to commute with the F-space structure maps).

(ii) It follows that there is essentially just one reasonable map from F(2) to £(2)
which is compatible with the given map from F(l) to £(1) (and with the F-space
structure maps relating F(l) and F(2) on one hand, and £(1), £(2) on the other).

(iii) It follows also that the remaining maps F(n) -* E(n), with n > 2, are deter-
mined (by induction on n) once the map F(2) -> £(2) has been fixed.

To prove (ii), note that if iC, 2C are chain complexes in <^A, then the projection

W&CC® 2C) -» W&lC® W&2C

is surjective, and is a chain homotopy equivalence (though not an isomorphism,
which accounts for the word 'essentially' in (ii)). To prove (iii), note that if
1C,2C,...,"C are chain complexes in ^A,then an element in W&(©,lC) is determined
by its projections to W&(@i^k

lC) for k e {1,2, . . . ,n}, provided n > 2.The proof of
3.15 is complete.

3.21. PROOF of the fact that BG is Kan provided G is a Kan simplicial monoid and
no(G) is a group; see 3.2. Suppose first that we are given a A-map / : <3An -> BG. Then
/ extends over An if and only if a certain obstruction in 7rn_2(G) vanishes. For
the desired extension corresponds to an element (#0>0i>•••>#„-1) in BGn; here
9o>9i>--->9n-2 a r e prescribed, and the rf,6fn-i are also prescribed for 0 ^ i ^ n— 1,
because that much information is contained in / . So we are looking for a simplex in
Gn_! with prescribed boundary (namely gn-x), which amounts to showing that an
obstruction in 7rn_2(G) vanishes.

It follows easily that any A-map Horn,(An) -> BG can be extended over An (extend
over the missing tth face first, and then over the whole simplex).

3. A. Appendix: Chain bundles and sliding forms

Let (n, w; X, y; a, j) be the usual string of data, and let c(y) be the chain bundle on
C(X) mentioned in 3.4. The geometric description of c(y) given below is inspired by
[14] rather than [15]. We assume that y is a vector bundle.

In this appendix, define a y-structure on a smooth manifold N" (with tangent
bundle TN) to consist of a classifying map e: N -*• X and a stable trivialization of
rN®e-(y).

For x e U, write [x] : = max{z e Z | z ^ x}.
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3.A. 1. DEFINITION. By a filtered y-thickening of X is meant a sequence
{P"\ n = 0,1,...} of compact smooth manifolds with boundary (the superscripts
indicate the dimension, but simultaneously serve as labels), with y-structure, such
that:

(i) each P" comes equipped with a map

en- P" -> (DKl-skeleton of X)

which is a homotopy equivalence, and the composite

pn __£«_„ ( [^ n ] . s k e i e t o n of X) c > X

equals the classifying map for the y-structure on P";
(ii) P" is contained in dPn+l, as a smooth codimension-0 submanifold-with-y-

structure. (In particular, the diagrams

Pn > [in].skeleton of X

n

n
Pn+l — • [n+|]-skeleton of X

en+ 1

are strictly commutative.)

3.A.2. PROPOSITION, (i) A filtered y-thickening of X exists and is unique up to an
infinity of higher concordances.

(ii) Any filtered y-thickening of X determines a 0-dimensional cycle in the chain
complex V(C(X)) of 1.4 (with C(X) as in 3.4). This cycle may be regarded as a chain
bundle c(y)new via 1.6; it is well determined up to an infinity of higher concordances,
by (i).

Proof, (i) Existence is clear. The uniqueness half follows from 3. A.3 below (which is
equally clear).

(ii) Let Z[a] be the coefficient sheaf over X whose stalk over p e X is the free
abelian group generated by the points in the fibre (over p) of the principal 7r-bundle a;
the stalk is then a free Z[a]-module on one generator. Denote the induced sheaves
over P", for n = 0 ,1 , . . . , by Z[a] also.

The maps e2n, eln-i of 3.A.I give an identification

with P2n~l czdP2nciP2n. On the other hand, H,,{P2n, P2n~l ;Z[a]) carries a ses-
quilinear form Xn: its left adjoint is the Z[V]-module homomorphism obtained by
composing (explanation follows)

Hn(P
2n, P2"~l) £ Hn{P2n, P2"-2) > Hn{P2n, P2n~l)

/II

(dual module of Hn(P
2n, P2n~1)) ^ Hn(P2n, P2n~l)
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(Explanation: the coefficients are Z[a] throughout; P" is the closed complement of P"
in dP" + l, for all n; the isomorphism in the top row is induced by the inclusion
P2""2 c_>. P2""1, which is a homology equivalence by 3.A.I (i); the other homomor-
phism in the top row is induced by the inclusion p 2 " " 2 c ^ P2""1 , and the vertical
isomorphism is Poincare duality.)

This sliding procedure is due to Quinn (see [14]). Combining these two ob-
servations, we obtain a sequence of sesquilinear forms

inspection shows that the sequence is a cycle in V(C(X))0 (see also [20]).

3.A.3. LEMMA. Let X and y be the same as ever, let X' be a CW-subcomplex ofX, and
y' the restriction ofy to X'. Then any filtered y'-thickening ofX' (say {P'n | n = 0, 1,...})
can be extended to a filtered y-thickening ofX (say {P" \ n = 0,1,...}), in the sense that
P'" is contained in P" as a codimension-0 submanifold-with-y-structure (for all n).

Observe that under these conditions the 0-cycles

<(y')new e V(C(X')), ,(y)new e V(C(X))

(constructed as in 3.A.2(ii) from {P'"} and {P"} respectively) are such that

if i: X' -»• X is the inclusion.
Applying 3.A.3 to the inclusion X x {0,1} -> X x [0,1] proves that filtered thicken-

ings are 'unique up to concordance'; similarly for higher concordances, which proves

3.A.4. THEOREM. We have c(y)new = c(y), up to an infinity of higher concordances.

The proof will be given in II, §4. A. (Strictly speaking, it is first necessary to extend
3.4 from simplicial sets X to CW-spaces X, but that causes no serious problems.)
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