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4. Algebraic Thorn complexes and algebraic thickenings

This and the following section (on algebraic surgery) are so close in spirit to [11, Part
I, §4] as to be almost superfluous. Here are two remarks for justification:

we need at least a glimpse of the theory of algebraic surgery on algebraic Poincare
complexes 'with ^-structure' (see [14]—hereafter denoted T—Definition 2.6);

I attempt to save formulae by giving a categorical description of the algebraic
thickening construction.

Recall from I, 2.21 (iii), (iv) that there is a long exact sequent

Ln(BJ) > Ln{BJ)

for any chain complex B in %, and chain bundle 6 on B. Our main result in this section
is an expression of the relative group Ln(B,fi) as a bordism group of single but
degenerate objects, as opposed to the standard description in terms of non-degenerate
pairs.

Most of this section is written in terms of unrestricted (UR for short) algebraic
Poincare complexes, higher bordisms, etc.; see I, 2.21 (ii).

4.1. DEFINITION. An n-dimensional UR symmetric chain complex is a pair (C, q>) in
which C is a chain complex in (€A and q> is an n-dimensional cycle in W&C.

4.2. DEFINITION. Let (/: C -* D,(\}j,q))) be an n-dimensional UR algebraic
Poincare pair (over A; see I, 2.2). Write \jr for the image of if/ under the map

W&D -> W&(D/im(f))

induced by the projection D -* D/im(/). Then (D/im(/), i/r) is an n-dimensional
UR symmetric chain complex, called the algebraic Thorn complex of the pair

The passage from an algebraic Poincare pair to its algebraic Thorn complex has a
geometric analogue, namely the passage from a geometric Poincare pair (N, dN) to its
Thorn complex N/dN. (If N is equipped with a principal 7i-bundle, one would be
interested in the Thorn 7c-complex N/dN instead, where N is the total space. See [11]
for a detailed description of this analogy.)

4.3. THE THEME (of this section). The passage from an UR algebraic Poincare pair to
its algebraic Thorn complex is reversible.
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We shall first state this with more precision (in 4.6, after some preparatory
definitions), then prove it, and then list some variants. The appendix 4.A contains a
proof of I, 3.A.4, as a first application of the theory.

4.4. DEFINITION. An n-dimensional UR symmetric pair (/: C -> D, (ip, q>)) consists
of a cofibration f:C-*D in <tfA, an n-chain \jj e W&D and an (n—l)-cycle
q> e W&C so that

in (W&/))„_!

(or, if you prefer, /~*(<p) = -dOA); compare I, 2.4).

4.5. DEFINITION. Let (£, if/1) be an n-dimensional UR symmetric chain complex. An
UR symmetric pair over (£, i/r) consists of

(i) an n-dimensional UR symmetric pair (/: C -> D,(ij/,(p)),
(ii) a chain map p: D -> E which is such that the sequence of chain maps

0 • C-L> D—^> E • 0

is short exact, and such that p~*(i/0 = iA? in W&E.

For a fixed n-dimensional UR symmetric chain complex (£, i/r), the UR symmetric
pairs over (E, i/r) form a category & \ (E, if/1) in the following way. Let

P^if-.C-^D,^,^)), p.D^E,

and

be two U R symmetric pairs over (E, \jj). The set of morphisms in & [ (E, i/r) from P t

to P2 is to be a certain subset of the set

^(p,p') : = {fibre homotopy classes of chain maps g: D -* D' so that p ' g = p}.

(A fibre homotopy connecting two maps gug2: D -> D ' s o that p ' - ^ i = p = p ' - 0 2 i s a
homotopy which factors through ker(p') cz D'.) Let

P

E

represent an element [g~] in ^(p,p'); then

represents a homology class defect([g]) in //n(ker(p'"')/im(/'"*)), with

*W8LD\ p'-*

We regard [#] e J^(p, p') as a morphism from Px to P2 precisely if defect([gf]) = 0.
The promised reformulation of 4.3 now reads as follows:

4.6. THEOREM, (i) The category 0> \ (E, i/r) has an initial object {that is, an object
admitting precisely one morphism to any other object).
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(ii) An object in this category, say (/: C -*• D, (i/f, <p)), p: D -*• E, is initial if and only
if (/: C -> D, (i/>, <p)) is an UR algebraic Poincare pair.

Proof of (i). It helps to consider a small classification problem first. Fix a short
exact sequence of chain maps

0 > C - ^ D—*U £ > 0

in ^ , (with E as in 4.6). We wish to classify the various ways in which this can be
enhanced to an UR symmetric pair over (E, i// ); that is, we wish to classify, up to a
suitable notion of equivalence, pairs (t/f, q>) such that

is an UR symmetric pair over (E, i/r).
(Regard two such pairs (ij/, q>) and (\\i', q>') as equivalent if the identity map D -> D is

a morphism in & J, (£, i/̂ ?) from (/: C ^ D, (ijtt q>)), p: D -»• £ to (/: C -* D, (^', (p')),
p: D - £.)

4.7. LEMMA. "Hie set of equivalence classes of such pairs (ij/, cp) is non-empty if and
only if a certain obstruction in Hn_1(E' ®AC) vanishes; and in that case, the group
Hn{E' ®A C) acts on this set in a sharply transitive manner.

Proof. We use the diagram

W&C

r

kerQT) > W&D—£—> W&E

ker( /r) / im(/-)

in which both row and column are short exact. Let [i/r] £ Q"(E) = Hn(W& E) be the
class of i/r. It is clear that the short exact sequence 0 - » C - > £ > - > £ - » 0 can be
enhanced to an UR symmetric pair over (£, i/r) if and only if the class

comes from a class in Q"~i(C) = Hn_y(W8iC), which is the case if and only if the
image of d[i//?] in f/n_1(ker(p">)/im(/">)) is zero. A similar argument shows that the
group f/n(ker(p"')/im(/">)) acts in a sharply transitive way on the set of equivalence
classes of 'enhancements'.

It remains to be seen that the chain complexes ker(p"')/im(/">) and £' ®A C are
homotopy equivalent. A related idea was used in the proof of I, 1.1 (iii):

kerQT) / imt r ) s HomZ[Z2](W, G);

here G : = ker(p ® p)/im(/ ® / ) , with

f®f:C®AC^D'®AD, p® p: D'®AD -» £' ®A E.
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But now G is canonically isomorphic, as a Z[Z2]-chain complex, to the 'coinduced'
chain complex Homz(Z[Z2],E'®AC) (obtained from El ®AC by applying
Hom(Z[Z2], - ) in each dimension). Therefore

ke r (p - ) / im( / l * Homz(W, E' ®A C) ~ £' ®A C,

which proves the lemma.

We shall use Lemma 4.7 to give a simpler description of the category &\{E, i/r).
Let J / ( £ , t/r) be the following category: an object of s?(E, \\r) is a triple (F, j , [fi]) in
which F denotes a chain complex in <tfA, j : E -*• F is a cofibration, and [/i] is an
equivalence class of chain homotopies from

to 0. (Call h, h' equivalent if the difference chain map

h-h': I " + 1(£-*) -> F

is nullhomotopic.) Given two such objects (F, j , [K]), (F , f, [h'~\), a morphism from
the first to the second is a cofibre homotopy class of chain maps g: F -+ F' making the
diagram

F
L

E: 9

J
F'

commutative, and so that gTflTi]) =

4.8. LEMMA. The categories jrf(E, \jr) and & \ (E, if/1) are equivalent.

Proof. This is little more than a reformulation of 4.7. Given an object (F, j , [7i]) in
, \jr), there is the short exact sequence in ^A,

0 - I ^ F -> S-^ConeO")) -• E -+ 0.

By Lemma 4.7 the obstruction to 'enhancing' this short exact sequence to an UR
symmetric pair over (E, \\r) is a certain class in

and inspection shows that this class is represented by the chain map

But this is nullhomotopic; in fact, [hi] gives us a preferred class of nullhomotopies. It
is easy to deduce that every object in stf(E, i/r) gives rise to an object in 0> \ (£, t/r), well
defined up to isomorphism (in ^ 1 ( £ , i/r)); the construction can be extended to
morphisms, and yields the required equivalence of categories.

We return to the proof of 4.6 (i). We are now reduced to showing that the category
, i/r) of 4.8 has an initial object (F, j , \_h~\). But this is clear: put

F : = (Cone of ifa: Sn(£"*) -> £), etc.
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Proof of 4.6(ii). One direction is straightforward, since we have an explicit
description of an initial object

in.( / in . C in _> £)in ̂  ^ i n ^ p

from which it can be seen that (/in: Cin -• Din, (^in, <pin)) is an UR algebraic Poincare
pair. (See also 4.9 below.) Conversely, let

be an object in 0>l(E,if/1) such that (/: C -> D,(i/f,<p)) is an UR algebraic Poincare
pair. Then the unique morphism from the initial object to Y induces a degree-1 map of
UR algebraic Poincare pairs

( / i n : Cin -> Din,(ij/in,(pin))

(f:C-+D,W,q>))

('degree-1' means that (\j/—g~t(il/in),q) — g~t((pin)) represents the zero class in //„(/"*),
with /"": W&C -» W&D). We know further that the induced chain map

E s Dim/im(/in) -> D/im(/) s £

is a chain isomorphism. It follows easily that the unique morphism in question is an
isomorphism in ̂  | (E, i/r).

4.9. DEFINITION AND DESCRIPTION. The UR algebraic Poincare pair in 4.6 is called
the algebraic Poincare thickening of (E, i/r).

An explicit description is as follows. Let C and D be the mapping cones of

and

I ' V o ^ i d : Zn-1(£-*)©2:-1E -> H'lE

respectively. Thus C c D, and D/C ^ E. Define an n-chain \j/ e W&D and an (n— 1)-
cycle (p € W&C by letting (explanation follows)

0 0

0 0

(ii) for s > 0,
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(iv) for s > 0,
_ / 0 0

(Explanation: i/̂  and Tij/l are considered as chains in HomA(E~*,E). Matrices (i)
and (ii) describe

ij/s: D p • D q

II? II? ;

(E*_p@Ep+i@Ep)* Et-q®-Eq + l@Eq

it is understood that, for fixed s, p and q range over all pairs so that p + q = n + s.
Similarly, matrices (iii) and (iv) describe

Vs- C > Cq

II? II?
(F* ffi F .)* F* ffi F .

with p + q = n— 1+s.)
Now (C -> D,(ij/,(p)) is an UR algebraic Poincare pair, and the projection

p: D ^> E (with kernel C) is such that

Hence (C -> D,(\j/, (p)) is 'the' algebraic Poincare thickening of (£, i/r).

4.10. FIRST VARIATION ON 4.3. 77ie relative structureless case. Let (Fun,O) be a
higher bordism of UR algebraic Poincare complexes, of dimension n and order 2 (that
is, modelled on the 2-simplex; see I, 2.3), with the property that

Fun({0, l}) = 0.

(Such a thing is commonly called a triad; it is just an UR algebraic Poincare pair
whose boundary is split into two halves.) 'Collapsing the edge {0,2}', that is,
collapsing one half of the boundary, gives an UR symmetric pair (cf. 4.4)

(Fun({l,2})/Fun({2}) - Fun({0, l,2})/Fun({0,2}),((D?({0,1,2}),<D?({1,2})))

(in shorthand notation; certain cofibrations have been written as inclusions, and
<D?({0,1,2}), O?({1,2}) are the images of <D({0,1,2}) and 0({l,2}) respectively).

This collapsing process, or the passage from the triad (Fun,O) to an VR symmetric
pair (of the same dimension n), is reversible. That is, any UR symmetric pair can be
obtained from an UR algebraic Poincare triad by collapsing, as above; and the triad is
essentially determined by the UR symmetric pair.

The UR algebraic Poincare triad is called the algebraic Poincare thickening of the
UR symmetric pair.

4.11. REMARK. Given an UR symmetric pair (C -* D,(i/r,</>')), any algebraic
Poincare thickening (in the sense of 4.9) of the boundary UR symmetric complex
(C, qy) can be extended, in an essentially unique way, to an algebraic Poincare
thickening (in the sense of 4.10) of (C -• D,(tf,qy)).

The proofs of 4.10 and 4.11 are similar to that of 4.3.
For the rest of the section, fix a chain complex B in %>A and a chain bundle 6 on B.
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We will work towards an analogue of 4.3 for an UR algebraic Poincare pair
(/: C -+ D, (ijj, cp)) with a ^-structure (g, z) (see I, 2.7; pairs are regarded as bordisms
of order 1, as in I, 2.4)—under the very restrictive assumption that the classifying map
g vanishes on the boundary. (This means that g-f: C -> B is zero.)

There are two reasons for making such an assumption. One is technical: quite
simply, we wish to collapse the boundary of our UR algebraic Poincare pair, and the
classifying map g would be in the way if it did not vanish on the boundary. The second
and more important reason is that an n-dimensional UR algebraic Poincare pair
(/: C -> D, (i/f, cp)) as above (with a ^-structure (g, z) such that g f = 0) is a typical
representative of an element in L"{B,6). See I, 2.21 (iii), (iv), and I, 2.17.

To begin with, here is a stimulating definition:

4.12. DEFINITION. A normal structure on an n-dimensional UR symmetric complex
(C, cp) is a pair {c, z) in which

c denotes a chain bundle on C,
z is a 'clutching homology' on (W&C)n + 1 from <5" • cpo (c) e (W& C)n to

J(cp)e(W&C)n.
(Explanation: cp0 is regarded as a chain map from C * to I "C, inducing
CPQ\ W&C~* —• W&(E~"C); S" is the n-fold iteration of the explicit suspension
isomorphism of I, 1.2 (b).)

4.13. REMARKS, (i) It will be shown in § 7 that 'UR symmetric chain complexes with
normal structure' are the algebraic counterparts of '(geometric) normal spaces' (see
[10] or § 7 of this paper)—just as (UR) algebraic Poincare complexes are the algebraic
counterparts of Poincare spaces.

(ii) An n-dimensional UR algebraic Poincare complex (C, cp) can always be
regarded as an n-dimensional UR symmetric complex (C, cp) with normal structure
(c, z). Indeed, c and z exist and are essentially unique because cp0: C~* -*• E""C is a
chain homotopy equivalence. Note that c is the normal chain bundle of the UR
algebraic Poincare complex. (See the sequel to I, 2.6.)

4.14. DEFINITION. A normal ^-structure on an n-dimensional UR symmetric
complex (C, q>) is a pair (g, z) in which

g is a chain map from C to B,
ze(W&C)n+1 is a clutching homology' from <$"• q>o{g-(#))<= (W&C)n to

J(<p)e(W&C)n.

4.15. REMARKS, (i) A normal ^-structure (g,z) on (C, cp) induces a normal structure
(g~(t),z) on (C,<p).

(ii) If (C, cp) happens to be an UR algebraic Poincare complex, then a normal 6-
structure on (C, cp) (in the sense of 4.14) is the same as a ^-structure on (C, cp) (in the
sense of I, 2.6).

(iii) Define a higher bordism (Fun, O) of UR symmetric complexes (of dimension n
and order g) like a higher bordism of UR algebraic Poincare complexes, dropping
only the non-degeneracy condition I, 2.3(iv). In view of the similarity between 4.14
and I, 2.6, it is clear how to define a normal ^-structure (g, z) on such a higher bordism
of UR symmetric complexes (namely, by imitating I, 2.7). We will only need UR
symmetric pairs with normal ^-structure.
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(iv) It is also possible to define a normal structure (cf. 4.12) on an UR symmetric
pair or on a higher bordism of UR symmetric complexes (but this notion will not be
used much).

4.16. SECOND VARIATION ON 4.3. The absolute case, with ^-structure. Let
(/: C -> D, (I/J, (p)) be an UR algebraic Poincare pair with ^-structure (g, z). Suppose
that gf=0.

Then the algebraic Thorn complex of the pair (the UR symmetric complex
(D/im(/), i/r)) carries a canonical normal ^-structure (g?, z?). The passage from

the UR algebraic Poincare pair (/: C -> D,(if/,(p)) with ^-structure (g,z)
such that gf=0

to

the UR symmetric complex (D/im(f), if/1) with normal ^-structure {g?, z?)

is reversible.

4.17. THIRD VARIATION ON 4.3. The relative case, with ^-structure. Let (Fun,O) be
an UR algebraic Poincare triad (i.e. a higher bordism of order 2 such that
Fun({0,1}) = 0). Suppose that a ^-structure (g,z) on (Fun,O) is given so that the
composite

Fun({0,2}) > Fun({0,1,2}) —^U B

is zero. Then the UR symmetric pair

(Fun({ 1,2})/Fun({2}) -> Fun({0,1,2})/ Fun({0,2}), (O?({0,1,2}), O?({ 1,2})))

(compare 4.10) carries a canonical normal ^-structure. The passage from

the UR algebraic Poincare triad (Fun,O) with 6-structure (g,z)
such that the classifying map g vanishes on Fun({0,2})

to

an UR symmetric pair with normal ^-structure

is reversible.

Proof of 4.16. Recall first that, in order to be able to speak of a ^-structure (g, z), we
must consider the UR algebraic Poincare pair as a bordism of order 1 (as in I, 2.3 and
2.7); also, that z = {z(S)| S cz {0,1}} is a collection. Let

(i) z? be the image of z({0,1}) under the map jT : W&D -* W&(D/\m(f)) where
p: D -* D/im(/) denotes the projection; and define g1: D/im(/) -*• B so that

( i i ) g = g - p .
Then I, 2.9 implies that (g\ z?) is a normal /^-structure on (D/im(/), i/r).

To see that 'the passage ... is reversible', note that (/: C -> D,(i//,(p)) can be
recovered as the algebraic Poincare thickening of (£>/im(/), i/r), according to I, 4.3. It
is not hard to see that there exists an essentially unique ^-structure (g, z) on
(/: C -*• D,(\jj,(p)) satisfying equations (i) and (ii) just above—in other words, {g, z)
can be recovered from (g?, z7). (If in trouble, remember I, 1.1 (iii).)

The proof of 4.17 is similar.
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4.18. COROLLARY. The following notions are interchangeable:
(a) n-dimensional UR symmetric complex with normal structure (see 4.12);
(b) n-dimensional UR algebraic Poincare pair (C -> D,(\l/,(p)) whose boundary (C,q>)

is equipped with a 0-structure.

(Explanation: '0' is the unique chain bundle on the trivial chain complex 0^ in <&A,
discussed in I, 2.19. Note that (C, q>), with its 0-structure, represents an element in the
Wall group Ln_!(^). The corollary is useful in understanding (geometric) normal
spaces, obstructions to Poincare transversality, etc. [10]; more in §7.)

Proof. Apply 4.16 with 6 equal to the universal chain bundle ^°° of I, 2.A.4, and
B = B°°.

(A normal structure on an UR symmetric complex is practically the same as a
normal ^-structure; similarly, a 0-structure on the boundary (C, cp) of an UR
algebraic Poincare pair (C -> D,{\jj,<p)) is as good as a ^-structure (g,z) on
(C -> D,(\p, q>)) such that g vanishes on the boundary C.)

4.19. COROLLARY. The relative group L"(B, fi) is isomorphic to the bordism group of
n-dimensional UR symmetric complexes with normal S-structure.

4. A. Appendix: Chain bundles and sliding forms again

The proof of I, 3. A.4 to be given here begins with yet another variation on 4.3. This
time a different 'model' is required: the 3-disk D\, regarded as a CW-complex with
one 3-cell (whose closure is D + ), two 2-cells (with closures D2

+, D2.), two 1-cells (with
closures £> + , D1.), and two 0-cells D°+, D° . The two 0-cells are positively oriented; the
remaining cells are oriented so that the inclusions D°+ t̂ _» D\., D+ o_> D2+,
D\ <=-^. D+ and D° d_» D\., D\. CL^> D2. are orientation-preserving.

4.A.I. FOURTH VARIATION ON 4.3. Let (Fun,<J>) be an n-dimensional bordism of UR
algebraic Poincare complexes modelled on £)+ (just as the higher bordisms of I, 2.3
were modelled on the standard simplex Aq; in particular, Fun is now a functor from
the category of faces, that is, closures of cells, of D + , to ^A).

Assume that Fun(D°) = 0, and n > 1. Then

(Fun(Dl
+)/Fun(D°+) - Fun(D2

+)/Fun(Dl.), (tf(D2
+),tf(Dl

+)))

is an (n— l)-dimensional UR symmetric pair, and

(Fun(D2
+)/(Fun(D1

+)0Fun(D1_)) -> Fun(D3
+)/Fun(D2_), (O??(D3),O?"(D2)))

is an n-dimensional UR symmetric pair.
These two UR symmetric pairs are related as follows: the UR symmetric chain

complex obtained by collapsing the boundary of the first is identified with the
boundary of the second. The passage from

the n-dimensional bordism ofUR algebraic Poincare complexes (Fun,<D),
modelled on D\ and such that Fun(D°) = 0

to
the two related UR symmetric pairs above

is reversible.
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The proof of 4. A.I can be modelled on that of 4.3, but it is also amusing to derive it
from 4.10 and 4.11.

4.A.2. OUTLINE (of the proof of I, 3.A.4). We keep the notation of I, 3.A. Fix a
filtered thickening {P"\ n = 0,1,...} of X. Each Pn is a manifold with boundary, so it
gives rise to an algebraic Poincare pair

(C( n ) ĉ _> D(n\ {\p(n\ (p{n)))

of dimension n, endowed with a chain map (which is a homotopy equivalence)

(corresponding to en: P" X̂ Xlin] := [|n]-skeleton of X).
More important to us than the algebraic Poincare pair above is its algebraic Thom

complex, the n-dimensional (UR) symmetric complex

(i) (Z)(n)/C(n),iA(n)?).

There is another ^-dimensional UR symmetric complex about, namely

00 (Sn((C(je[in]))-*),SnWy)new)).

(Explanation: it is understood that

is the chain bundle derived as in I, 3.A, from the filtered thickening P" above and no
other. I have also written e(y)new for the image of c{y)new in W & C(X[in]) ~ *, so that the
n-fold suspension

is an n-dimensional cycle in W&Z"{C{X[in])~*); it cannot help lying in the
subcomplex

so that (ii) is indeed an UR symmetric complex.)
The idea of the proof is to show that the chain homotopy equivalence

obtained by composing the map

with the Poincare duality chain equivalence

is such that

(iii) 0w-(®"toy)B.w)) = «A(")?

in W&(D{n)/C{n}), up to an infinity of higher homologies. In other words, the UR
symmetric complexes (i) and (ii) are more or less identical.
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For large n, C(X[in]) = C(X), and we also have by definition of c(y) the equation

(iv) gM-(<=> ( ) ?

in W&(D{n)/C(n)), up to an infinity of higher homologies.
Putting (iii) and (iv) together proves I, 3.A.4. (The method of proof is so 'natural'

that the infinity of higher homologies which identifies c(y) and «(y)new is sufficiently
independent of the choice of filtered thickening; see I, 3.A.2(i) and 3.A.3.)

The outline is over; we are left with equation (iii). This can be proved by induction
on n. If n is even, the induction step from n to n+ 1 is trivial; for n = 2q— 1, it is
contained in Lemma 4.A.2 below, for which the assumptions are as follows.

Let (E -> F, {X, x)) be a (2g)-dimensional UR symmetric pair (in <tfAy with q > 0)
such that

(a) the (2q—l)-dimensional UR symmetric complex (E, x) is the suspension of a
(2q — 2)-dimensional UR symmetric complex (G,^) (such that E = IG ,
X = SO*));

(b) H,(F) = 0 for i ± q.
Then Hq{F) s (Hq(F))* (coefficients A) is a f.g. projective /4-module. Moreover, Hq{F)
carries two sesquilinear forms, ^ and j52.

Description of j5x: choose a chain map (in ^A)

/ : F -> tf,(F)

such that the induced map in homology is the identity (regarding H^(F) as a chain
complex in <€A). Then the 2^-chain

is nothing but an element in Hq(F)' ®AHq(F) (which is well defined!), and so can be
regarded as a sesquilinear form /?t on (Hq(F))* = Hq(F).

Description of fi2: p2 is a 'sliding form'. Condition (a) just above gives us a (2q— 1)-
dimensional UR symmetric pair

(G -> Cone(G),(ConeM,^))

(with 'Cone(jx)' equal to the image of \i under the map induced by the projection
G®zl -* Cone(G); see the text between I, 2.13 and 2.14).

The UR symmetric complex obtained by collapsing the boundary of the UR
symmetric pair

(G ->Cone(G),(ConeOi),/i))

is equal to the boundary of the UR symmetric pair

So 4.A.1 can be applied.
Let (Fun,O) be the resulting (UR) algebraic Poincare bordism modelled on D + ,

with Fun(D°) = 0. We can define a sliding form j52 on

fy(Fun(D3
+)/Fun(D2

+)) ^ tf«(Fun(D3
+)/Fun(D2_)) ^ Hq(F)

by imitating the construction in the proof of I, 3.A.2(ii). (P2q corresponds to Fun(D + ),
P2q~l to F u ^ D i ) ; P2q~2 to Fun(DV); P2q'x to Fun(D?.), P2"'2 to Fun(DL); and
d(P2q-2) = d(P2q~2) to Fun(D0).)
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4.A.2. LEMMA. fix = j?2.

To prove the lemma, it suffices (by a naturality argument) to consider the special
case where the map E c^ F is an isomorphism, and both E and F are concentrated
in dimension q; details are left to the reader.

5. Algebraic surgery

5.1. DEFINITION. Let (Fun, 0) be an n-dimensional UR algebraic Poincare bordism
(over A), of order 1 (see I, 2.3), and let

Call ((Fun,<J)),x) an elementary bordism of index k +1 if

[0 if i
Fun({0,1})) = ^ ^ ^ ^ ^ ^ fey ^ .f . =

Motivation. Suppose that we are given an n-dimensional bordism of manifolds (of
order 1) which is 'elementary of index k+V (that is, which possesses a Morse function
having exactly one critical point, and that of order k+\). Suppose also that this
geometric bordism is equipped with the usual data—principal 7r-bundle, etc., as in I,
3.8. Then the algebraic Poincare bordism (Fun, O) derived from the given geometric
bordism (by the method of I, 3.8) is elementary of index k+1 for a suitable choice of
x e / / k + 1(Fun({0})c^Fun({0,l})).

5.2. DEFINITION. Let (C, cp) be an UR algebraic Poincare complex and y e Hk{C).
Say that y can be killed by algebraic surgery if there exists an elementary (UR algebraic
Poincare) bordism ((Fun,<I>),x), as in 5.1, so that

Fun({0}) = C,

dx = y in tffc(Fun({0})) = Hk(C).

For the next definition, let B be a chain complex in ^A, and let 6 be a chain bundle
on B.

5.3. DEFINITION. Let (C, cp) be an UR algebraic Poincare complex with ^-structure
(0,z)(cf. I, 2.6), and let

y'eHk+l(g:C-> B).

Say that y' can be killed by algebraic surgery if there exists an elementary UR algebraic
Poincare bordism ((Fun, O), x) of index k + 1, and a ^-structure (g, z) on (Fun, d>) such
that

Fun({0}) = C, <D({0}) = q>, and the ^-structure (g, z) on (Fun, <D)
extends the ^-structure (g, z) on (C, <p);

under the homomorphism

tffc + 1(Fun({0}) ĉ _> Fun({0, 1})) - //fc + 1(Fun({0}) = C ^ B)

induced by the chain map g: Fun({0,1}) -> B, x maps to y'.
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5.4. PROPOSITION, (i) In 5.2, y can be killed by algebraic surgery if and only if a
certain obstruction

ob(y)eH"-2k(Z2;A)
vanishes.

(ii) In 5.3, / can be killed by algebraic surgery if and only if a certain obstruction

ob(y')eH2k_n(Z2',A)
vanishes.

Proof of (i). The Poincare dual of y e Hk(C) is a cohomology class in H"~k(C)
(coefficients A), which can be represented by a chain map (in ^A)

fy: C -> (A,n-k) (see I, 0.6).
Let

ob(y):=f;(q>) e Qn((A,n-k)) s H"-2k(Z2;A).

Let D be the mapping cylinder of fy. Suppose that ob(y) = 0. Then there exists an
(n+l)-chain i// e W&D ~ W&{A,n-k) such that

{C ^ D,W,<p))

is an (n + l)-dimensional UR symmetric pair (whose boundary symmetric complex
(C, cp) happens to be an UR algebraic Poincare complex). The algebraic Poincare
thickening (in the sense of 4.10) of (C -*• D,(I/J, cp)) is an UR algebraic Poincare triad
(Fun,O) of dimension n + 1. Since (C, cp) was already an UR algebraic complex,
(Fun, 0) can also be regarded as a bordism of order 1 (from (C, cp) to something else).
It has the properties required in 5.1, 5.2. The converse is similar.

Proof of 5.4 (ii). The obstruction ob(y') is somewhat harder to define in this case.
The following definition helps:

5.5. DEFINITION. For a chain complex E in ^A, let Qn{E) be the nth relative
homology group of the forgetful map

J: W&E -• W&E.

(So there is a long exact sequence

... -> Q"+1(E) - Qn(E) -> Q"(E) - Q"(E) -> Qn_y{E) -> ..., n e Z;

see [11] for more details.)

5.6. EXAMPLE. Let (C, cp) be an n-dimensional UR algebraic Poincare complex with
^-structure (g, z) (for example, the one in 5.3). Let E be the mapping cone of the usual
map (cf. I, 2.6)

<t>0'g*:ir{B-*)^C.

The inclusion j : C -> E gives a class j"(cp) e Q"(E). It is not hard to see that the 6-
structure on (C, <p) determines a canonical lifting x e C(E) of j^{cp) € Q"{E) ('upwards'
the long exact sequence in 5.5).

We return to the proof of 5.4(ii). Now

/ e Hk + i(g: C -> B) (from 5.4(ii) and 5.3)
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corresponds to an element in

//"" V : S"(B~*) -* I"(C"*))

(cohomology with coefficients A throughout). Since

cp0: I-(C-*) -> C

is a chain homotopy equivalence, we can also think of this as an element in

H"-k((p0-g*: I"(fl-*) -* C) = #"-*(£)

(where £ denotes the mapping cone of cp0 -g*).
Represent this element in H"~k(E) by an /4-module chain map

fy: E ^ (Atn-k).

Let x e Qn{E) be the 'lifting' described in 5.6, and put

ob(y') : = / ; ( Z ) e GB(M,n-fe)) = / / 2 k_n(Z2M).

The rest of the proof is left to the reader.

5.7. COROLLARY. Let 6 be a chain bundle on a positive chain complex B. Then the
forgetful homomorphisms (see I, 2.21)

nn(i°(BJ)) - nn{<£\BJ)) = Ln(BJ)

are isomorphisms for n ^ 0. For n ^ — 3, Ln(B, 6) is isomorphic to Ln(A), the Wall group
of A.

Proof To see that nn(L°(B, 6)) -> nn(J&:(B, 6)) is surjective, take an n-dimensional
UR algebraic Poincare complex (C, q>) with ^-structure (g, z). Then 5.4(ii) allows us to
kill the homology groups of C in negative dimensions, because

for k < 0, every element y e Hk(C) lifts to y' e Hk + l(g: C -* B), since B is positive;
ob(y') e H2k-n(Z2; A) is zero since Hi(Z2; A) = 0 for i < 0 (and since we assume

that n ^ 0).
Hence (C, (/>), with its ^-structure, is bordant to a (restricted!) algebraic Poincare
complex with ^-structure, as required.

The proof of injectivity is similar (admittedly, it uses a somewhat relativized version
of 5.4(ii)).

For n ^ — 3, performing surgery below the middle dimension using 5.4 (ii) shows

( ) 0 0 )
(seel, 2.19).

6. A homological description for L"(B, 6)

6.1. THEOREM (see I, 2.21). For any chain complex B in ^A and chain bundle 6 on B,
there is a long exact sequence

... - Qn+i(B) -+ Ln{BJ) - Q"(B) -> Q"(B) -» t-l{B,t) -> ... (n € Z).

6.2. ADDENDUM. The homomorphisms Q"(B) -> Q"(B) in 6.1 are not in general
identical with J (of I, 0.13); instead they have the form J — ind(<?), where

ind(^): Qn(B) -* Q\B)

sends \_cp] to [S"<p^(^)]. (Again, cp0 is regarded as a chain map from B~* to Z""B.)
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We give an outline of the proof of 6.1. It is rather easy to define, for n e Z, abelian
groups Qn{B, 6), depending on B and 6, which by construction fit into a long exact
sequence

Here Qn(B, 6) is the group of suitable equivalence classes of pairs

((p,z)€(W&B)nx(W&B)n + l

so that (B, <p) is an UR symmetric complex with normal structure {6, z) (see 4.12). This
amounts to saying that

cpo (&"(#))+d(z) = J(<p) in W&B.

According to 4.19 we can interpret L"(B, 6) as the bordism group of n-dimensional
UR symmetric complexes (C, <p) with normal ^-structure (g,z). Given such a (C, q>)
with normal ^-structure (#, z), one finds that (#"*(</>), fif^z)) represents an element in
Qn{B,6). Conversely, given an element [(<p,z)] in Qn(B,S), the n-dimensional UR
symmetric complex (B, cp) with normal ^-structure (id, z) represents an element in
L"{B,6). So there is an isomorphism Ln(B,6) ^ Qn(B,d), and the proof is complete.

The details are as follows. For the definition of Qn{B, 6), take two pairs (<p, z) and
{(p',z') in (W&B)nx(W&B)n + 1 such that (B,(p) and (B,(pf) are n-dimensional UR
symmetric complexes with normal structures {6, z) and {6, z') respectively. Call (<p, z)
and (q>', z') equivalent if there exists a pair (\Js, y) G (W&B)n + lx (W& B)n + 2 so that

q>' in W&B;

(Explanation: i/f0 is regarded as a chain homotopy from cp0 to (p'o, or as a chain map
from B ~ * ® z / to I""JB; therefore 6 " ' ^ x w ) is a homology from S"-<p^) to
<5H-<p'0(#). See the proof of I, 1.1 (i) and I, 2.9.)

6.3. PROPOSITION AND DEFINITION. The set of equivalence classes, written Q,,(B, 6), is
an abelian group.

Proof. Let prl5 pr2: B © B -* B be the two projections, and g = prj +pr2. Given
two elements [(<p,z)] and [(<p',z')] e Qn(B,^), choose z" e ( I^&(B© B))n+1 so that

(i) (g, z") is a normal ^-structure on the UR symmetric complex (B © B, q>® cp');

(ii) prf: W& (fi © B) -» iy & B sends z" to z,

sends z" to z'.

Such a z" exists and is 'essentially unique'. Put

', z')] : =

6.4. PROPOSITION. There is a long exact sequence (cf. 6.2)

Qn{BJ) > Q»(B)
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Proof. Go from Qn+i(B) to Qn(BJ) by [z] i-> [(0, z)] (for an (n+l)-cycle
z e W&B), and from Qn(fl,^) to Q"(B) by [((/>, z)] H-> [<p]. Exactness is almost
obvious.

6.5. REMARK. If 6 = 0, Qn(B, 6) equals Qn(B) (of 5.5), and the long exact sequence in
6.4 is the usual one.

For the next proposition, interpret L"{B, 6) as the bordism group of n-dimensional
UR symmetric complexes with normal ^-structure (g, z) (as in 4.19).

6.6. PROPOSITION. The homomorphism

L"(BJ)->Qn(BJ)

which sends the bordism class of the n-dimensional UR symmetric complex (C, cp) with
normal ^-structure (g,z) to [(#"*(<?), gf~*(z))] e Qn{B,S) is an isomorphism.

Proof. The inverse homomorphism

sends [(<p, z)] e Qn{B, 6) to the bordism class of the n-dimensional UR symmetric
complex (B, q>) with normal ^-structure (id,z). Clearly the composite
Qn(B, 6) -> L"(B, 6) -*• Qn(B, 6) is the identity. Given an UR symmetric complex
(C, q>) with normal ^-structure (g, z), the mapping cylinder of g: C -*• B can be
equipped with suitable data so as to constitute a bordism between (C, cp) (with normal
^-structure (g, z)) and (B, g^((p)) (with normal ^-structure (id, g"(z))). This shows that
the composite

is the identity also, which proves 6.6.

Finally, combining 6.4 and 6.6 proves 6.1.

6.7. EXAMPLE. Take B, 6 as in I, 2.20 and 2.A.3; so 6 is universal for chain bundles
on positive chain complexes in <^A. Then L"(B, 6) = L"(A) for n e Z , where L"(A) is the
symmetric L-group of [11] (as introduced by Mishchenko). (For n ^ 0, this is clear
from 5.7 and the discussion in I, 2.20; for n < 0, take it as a definition of L"(A). It
agrees with the definition in [11, Part I, §6].)

Write L"(A) := L"{B,S), so that there is a long exact sequence

... -> Lm(A) - L"(A) -> L"(A) - L^M) - - (« 6 Z).

From 6.1 we obtain another long exact sequence

... -> <5n+1(fl) -> £"(/4) -• e"(^) - Q"(B) -• ... (n e Z),

showing that the groups L"(A) are homological objects.
(This requires explanation, since 6.1 is valid for chain complexes in <€A—and B is

usually not in <$A. Put Q"(B):= Hn{Uomb
I[Z2]{W,B' ®A B)), where the superscript '6'

stands for the' subcomplex of bounded chains in UomI[Z2](W, B' ®A B); that is, chains
which vanish on Ws for all but finitely many s e Z. Proceed similarly for Q"{B). With
these conventions 6.1 can be generalized to cover the case at hand, that is, the case of
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an arbitrary chain complex of projective left A -modules, equipped with a chain bundle
as defined in I, 2.A. The proof uses a direct limit argument.)

In order to apply 6.1, we need means for computing groups of type Q"(B), Q"(B) or
Qn(B,tf) ^ Ln{B,S). Often this is elementary, at least if B is sufficiently well under-
stood. Some times the chain homotopy invariance of the functors Qn( —), Q"( —) can
be exploited, as in 6.8 below; if that is not sufficient, there is a spectral sequence for
computing Q"(B) (or Q"(B)), based on the filtration of W (or W) by skeletons.

6.8. EXAMPLE. Assume that A is such that every left /4-module is projective.
Then every chain complex of left /4-modules is homotopy equivalent to one with zero
differential (its homology), and hence the computation of groups such as Qn(B), Q"(B),
Qn{B,&) is usually a trivial matter. For instance, if A = Z2, one has (cf. 6.7)

7. Spherical fibrations, normal spaces, and L-theory

Recall from [10] or [11] that a normal space of formal dimension n consists of a
finitely generated simplicial set Y, a spherical fibration vy: Y -* BG(co), and a map of
spectra

pY:Sn ^ M(Y,vY),

where M(Y,vY) is the Thorn spectrum. Call vY the normal bundle, and call

(Thorn class of vY n h(pY)) e Hn(Y; Ztw)

the fundamental class; here Ztw is the twisted integer coefficients, the twisting being
given by the first Stiefel-Whitney class of vY.

EXAMPLE. Every Poincare space of formal dimension n is a normal space of formal
dimension n, according to I, 3.3.

Now let (n, w; X, y; a, j) be a string as in I, 3.4. Let M(X, y) be the Thorn spectrum.
The homotopy group nn(M(X, y)) can be identified with the bordism group of
formally n-dimensional normal spaces (Y,vY,pY) equipped with a classifying map
g: Y -> X such that g*~(y) = vy. (Proof: any quadruple (Y,vY,pY,g) as above yields
g^ipy): Sn -> M(X,y); conversely, any p: Sn -* M(X,y) yields a quadruple
{X,y,p,idx). Moreover, the quadruples (Y,vY,pY,g) and (X,y,g~*(pY),idx) are bor-
dant: the mapping cylinder of g is a bordism between the two.)

7.1. THEOREM. There is a canonical map of spectra

M(X,y)-*<2iC(X),4Y))

(cf. I, 2.21 (iii) and 3.4) which fits into a commutative square

M(X,y)

5388.3.51



210 MICHAEL WEISS

and therefore results in a map of long exact sequences (see comment below)

- LJLZMX)}) -> QP(X,)>) - nn(M(X,y)) -

l ( a ) l ( b ) I
... - L»+1(C(X),4y)) - Ln(Z[7i]) - L"(C(X),c(y)) - I"(C(*),c(y))

(/or n > 5, with fin
p(X,y) = nn(Q

p(X,y))).

I

Proof and comment. We have just interpreted M(X,y) in terms of normal spaces
mapping to X, y and in § § 4 and 6 we interpreted & (C(X), c(y)) in terms of symmetric
chain complexes with c(y)-structure. So 7.1 (apart from the long exact sequences) is a
perfect analogue of I, 3.5, and the same proof applies—just substitute 'normal spaces'
for 'Poincare spaces' everywhere.

The maps from nn(M(X, y)) to L"(C(X), c(y)) are flexible versions of the hyperquad-
ratic signature maps

constructed in [12, § 7.4].
The upper long exact sequence in 7.1 was announced by Quinn in [10].
All L-theoretic constructions in 7.1 are meant to be based on free modules rather

than "projective ones, so that, for example, Ln(I\n]) means Ljj(Z[7r]). The vertical
arrows (a) in 7.1 are induced by the sufficiently well defined homomorphism
h: nx{X) -* n corresponding to the principal 7i-bundle a, and (b) is the flexible
signature.

Warning. If y is a vector bundle, or if for any other reason transversality arguments
can be applied to y, then transversality gives a splitting of the upper long exact
sequence in 7.1. But there is absolutely no way in general of getting a compatible
splitting for the lower long exact sequence. The case in which n = {1} and X is a point
is instructive.

8. An injectivity criterion for the release map

In order to complement §6, we will examine here the release homomorphisms
Ln(A) -> L"(B,6) for a chain complex B in <8A with chain bundle 6\ cf. I, 2.21.

8.1. THEOREM. Take B, 6 as above, and let c be another chain bundle on B; suppose
that

belongs to the image of the composite homomorphism

Then there exists an isomorphism
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making the triangle

Ln{A)

commute. So the release homomorphisms Ln(A) -* L"(B, 6) and Ln(A) -> L"(B, c) have
the same kernel.

Next, keep the assumptions of 8.1, but assume also that A = J\n\ is a group ring
(with the w-twisted involution for some w: n -> Z2). Let n" <= n be a subgroup of
finite index and let A" = I\K"~\ be the corresponding ring with involution. Write B"
for the chain complex in %,» obtained by regarding B as an /4"-module chain complex;
write 6" and c" for the chain bundles on B" obtained from 6 and c respectively.
Transfer (see I, 3.16) gives maps of spectra &.{A) -+ &:(A"), &'\BJ) -
and <£\BJ) -»• J&:(B",d"), whose cofibres we denote by

&.{A T A"), <£\B \ B", 616"), and £\B \ B", 6 \ 6")

respectively. The nth homotopy groups of these cofibres are written

Ln{A t A"), L"(B | B", 6\ 6"), and L"(B} B", 6\6").

8.2. THEOREM. With the hypotheses of 8.1, there exists an isomorphism

Ln+l(B t B", 616") ^ Ln+i(B | B", c | c")

making the triangle

Ln+l(B T B", 616") ^ Ln + l(B| B", c \ c")

commute. So the release homomorphisms

Ln(A T A") -> Ln(B T B", t T n and Ln(A | A") - L"(B T 5", «t «")

the same kernel.

8.3. COMMENT. There are two reasons for stating 8.1. Firstly, suppose that (C, <p) is
an n-dimensional algebraic Poincare complex over A, with normal chain bundle n\
then certain geometric analogies suggest that the release map Ln(A) -> L"(C, n) ought
to be injective. This is confirmed by 8.1.

Secondly, suppose that A = Z2; then the simply-connected theory of [1] and [2]
suggests that the release homomorphism L2k(A) -• L2k(B, 6) ought to be injective if
and only if the Wu class

vanishes (see I, 2.A.1). This is true (see the argument just below for the 'if part; forthe
'only if part, reduce to the case where B is concentrated in dimension k + \ and
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compute, using 6.1). Unfortunately, it does not generalize well to arbitrary A.
However, 8.1 is a reasonable substitute in many cases. We now give a standard
application. Taking A arbitrary, and assuming that 6 in 8.1 is the object of study,
suppose that c can be so chosen that

the hypothesis of 8.1 is satisfied;
the class [c] e Q°(B~*) belongs to the kernel of the restriction homomorphism

Q°(B~*) -» 6°{{Bslin] + l)~*) induced by the inclusion of the skeleton
B<[iM] + 1 d.^ B (with notation as in I, 2.A.3).

Then the release maps Ln(A) -> L"(B, 6) and, if applicable,

are injective.
Indeed, by 8.1 and 8.2 we may replace 6 by c\ now the hypothesis on c means that

there exists a chain bundle 3 on B/B^[in]+l and a chain bundle map from d o 3
covering the projection B -*• B/B^[in] + l. Hence we could have assumed from the
outset that B is ([|n] + l)-connected, and 6 = c = 2. But then the homomorphisms
LH(A) -> Ln(BJ) and Ln(A]A") -• Ln{B\B", 6\6") are isomorphisms. (The proof
uses surgery below the middle dimension.)

Proof of 8.1. We may assume that

where h is an n-cycle in W&I."(B~*). Let (q>,z) be a typical representative of
Qn + l(B,t) ^ Ln + l(B,6) (using notation as in 6.3). Then

is a typical representative of Qn + 1(B, c) = L" + l(B, c); remember that <p0 is a chain map
from I " + 1(£~*) to B. This gives a bijection between Ln+i(B,d) and Ln+l(B,c); going
back to 6.3 and using the fact that

we find that it is a group isomorphism.
To prove that the isomorphism commutes with the boundary maps to Ln(A), we use

the original definition of Ln+l(B,tf) and L"+1(B, c) in terms of algebraic Poincare
pairs. So let (/: C -• D,(cp, $)) be an UR algebraic Poincare pair of dimension n+ 1,
with a ^-structure (g,z) such that g-f: C -* B is zero. (Then q> G (W&D)n+l and
(j)E(W&C)n, etc.) Now

happens to be a chain map (because g vanishes on the boundary); and

is an UR algebraic Poincare pair of dimension n+ 1, with a ^-structure (g, z) such that
g-f = 0. If we let cp := g^((p) and z := g~*(z({0,1})), then the first algebraic Poincare
pair above corresponds to [(<p,z)] e C + i(5,<?), and the second to

But the boundaries of the two algebraic Poincare pairs (with additional structure) are
identical; so they represent the same element in Ln(A), as required. (I am obliged to A.
Ranicki for help with the proof.)



SURGERY AND THE GENERALIZED KERVAIRE INVARIANT, II 2 1 3

Proof of 8.2. This is identical with the proof of 8.1, except that it calls for a more
categorical point of view. We are dealing with certain A-modules (mostly the chain
modules Bn and their duals); but we usually regard them as /T-modules only, and
moreover adopt the policy of regarding yT-module homomorphisms between them as
'negligible' if they preserve the A-module structure.

For instance, the group Ln + 1(B\B", 6}6"), which we might also call

has a description in terms of equivalence classes of pairs (9, z), with q> e (W&B")n + l

and z e (W&B")n + 2; however, instead of requiring that

d(cp) = O in W&B"
a n d{z) = J((p)-6" + l(q>o(0) in W&B"

(as we should in defining Qn+i(B", 6")), we merely ask that

and

where = indicates that the difference between the left-hand and right-hand terms
belongs to the 'negligible' subcomplexes W&BcW&B" or W&Bcz W&B". (We
have, for instance, W&B a W&B" because

B'®AB^ HomA(B-*, B) a Hom^B"- *, B") s B'" ®A.. B".)

The details are left to the reader.

8.4. REMARK. If a version of the theory is used where projective class and/or
torsion matters, then 8.2 must be formulated with greater care; see I, 2.22. However,
this affects Ln(A] A") only, not the relative groups Ln+\B\B", 6\6").

9. Products and Whitney sums

9.1. DEFINITION. If 6 is a chain bundle on a chain complex B in %>A and 6' is a chain
bundle on a chain complex B' in <€A>, then 6 x 61 is a chain bundle on the chain
complex B®ZB' in %>A®zA-, called the exterior product of 6 and 6' (cf. I, 0.11).

9.2. PROPOSITION. There are multiplication maps

) A S£\B',6')
and

S£\BJ) A £\B',6') -+ £\B®ZB\ 6x6'),

inducing multiplication homomorphisms

Lm{B, 6) ® L"(B\ 6') -> Lm+n{B ®z B', 6 x 6')
and

Lm(B, 6) ® Ln(B', 6') -> Lm + n(B ®2 B', 6x6').

Proof. Let (C, q>) be an m-dimensional UR symmetric chain complex over A with
normal ^-structure (g, z) (cf. 4.14); and let (C, q>') be an n-dimensional UR symmetric
chain complex over A' with normal ^'-structure (g',zr). Then {C®%C', cpxcp') is an
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(m + n)-dimensional UR symmetric chain complex over A ®Z/4', with normal 6 x6'-
structure

{g® g', (p xz' + ( — )"• z x (q)'— d(z'))).

Passage to bordism classes defines the multiplication

Lm(B, 6) ® L"(B', 6') -»• Lm+n(B ®2 B', 6x6').

If in addition (C, <p) and (C, q>') are both UR algebraic Poincare complexes, then so is
<p x q>'), which explains the multiplication

( D , &) (x) L ( D , 6 ) —> L ( D Q92 " > ^ x ^ J-

The rest of the proof is unpleasant and left to the reader.

9.3. PROPOSITION. Under the association

spherical fibration (-• chain bundle

of I, 3.4, exterior Whitney sums (explanation below) correspond to exterior products of
chain bundles.

Proof. The passage from spherical fibrations to chain bundles in I, 3.4 (and
previously in [11]) was based on equivariant S-duality; 9.3 is an application of the
principle that (equivariant) S-duality commutes with smash products. Details are
again left to the reader. To get a good definition of Whitney sums, return to I, 3.2 and
use an identification D"xDm^ Dn+m.

9.4. PROPOSITION. The diagram of maps of spectra

QP(X, y) A ap(X', y') > np(X xX',yx / )

, c(y)) A r(C(X'), c(y')) > ¥(C(X x X'), c(y x y'))

commutes.

(Here y and / are spherical fibrations on simplicial sets X and X', equipped with
certain data; y x y' on X x X' is the exterior Whitney sum.)

There is a similar commutative diagram in which Qp(X,y) and ^(C{X), c{y)) are
replaced by M(X,y) and ^(C{X), c(y)), respectively (similarly for X' and / ) . See 7.1.
The proof of 9.4 is left to the reader.

The analogue of 9.3 for internal Whitney sums looks as follows. Given strings of
data (7i, w; X, y; a, j) and [n\ w' ;X,y'; a', / ) as in I, 3.4, their internal Whitney sum is
the string (nxn\w xw' ;X,y ®y' ;<xxxa', j xf). The associated chain bundles c(y),
c(y'), and c(y@y') (which will also be denoted, for greater precision, by c(y;n),
c(y'; 7r'), and c(y © y'; n x ri) respectively) are related by a 'Cartan formula1:

9.5. COROLLARY. c{y © y'; n x n') = ciy; n) u c{y'; n').
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(Explanation: c(y; n) u c(y'; n') is, by definition, the pullback of c(y; n) x c(y'; n')
under the composition

C(X) E i l e n b e r g ~ Z i l b e r > C(X) ®2 C(X) ^ > C(X/n') ®z C(X/n)

in which X denotes the total space of a xxa ' . )
Next, let (n,w;X,y;a.,j) be a string as usual, and assume for simplicity that

w: n -> Z2 is trivial. Write this string as the internal Whitney sum of the two strings

(n, w;X, trivial spherical fibration; a, trivial)
and

({1}, trivial ;X,y; trivial,;).

In other words, write

y = (trivial spherical fibration © y);

let the first Whitney summand (trivial spherical fibration) carry the weight of the data,
and equip the second summand with the trivial data. Then 9.5 implies

9.6. COROLLARY ('Separation principle').

c{y; n) = ^(trivial spherical fibration; n) u c(y; {1}).

Both 9.5 and 9.6 have to be interpreted in the usual woolly way, namely 'up to an
infinity of higher homologies'; but at any rate, 9.6 shows that c(y; n) is determined in a
sense by c(y;{\}).

The situation is similar for stable fibre homotopy equivalences of spherical
fibrations. Suppose that we are given two strings

fawiX^iiccJJ and (n, w;X,y2;cc, j2)

as in I, 3.4 (with w = 0), and an orientation-preserving stable fibre homotopy
equivalence

(With our restrictive notion of spherical fibration, it is best to assume that ft comes in
the shape of a stable spherical fibration on X x [0,1] which restricts to yt on X x {0}
and to y2 on X x {1}.)

9.7. ADDENDUM TO 9.6. The 'chain bundle isomorphism1 (cf. I, 1.8) c(yx; n) = c(y2; 7r)
induced by n (cf. I, 1.12) is determined by the chain bundle isomorphism

(also induced by fx).

These trivial algebraic observations have a non-trivial geometric consequence. Let
/ : BSO -» P]f c > 0 X(Z2,2k) be a map in the homotopy class {v0, v2, u4,...), where the v{

are the Wu classes.
Define a pseudo-surgery problem over (n, w) (with w = 0 as before) to consist of
a degree-1 map p from a compact smooth oriented manifold N" with boundary dN

to a finite (simple, if you wish) oriented geometric Poincare pair (Xn, dX),
restricting to a (simple) homotopy equivalence of the boundaries;
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a principal 7i-bundle on X;
a map (not just a homotopy class)

g:X - Y\K(Z2,2k);

and a homotopy from

N-^-> BSO

to

N-MX-

An ordinary surgery problem (as in [13]) gives rise to a pseudo one: take

g : = / • (classifying map for the vector bundle on X).

9.8. THEOREM. There is a canonical factorization (broken arrow)

Bordism group of n-dimensional
ordinary surgery problems

Bordism group of n-dimensional
pseudo-surgery problems

As an example, consider an ordinary surgery problem (consisting of a degree-1 map
g: N" -» X" as before, a vector bundle y on X, and a stable trivialization of
g"(y) © TN). Let us alter the stable trivialization by a map f:N-> SO. Suppose that

f~(d{Vi)) = 0 in H'-l{N; Z2) for all i > 0,

where <5(y,) e H'~l(SO,Z2) is the cohomology desuspension of the Wu class

y,-e//'(BSO;Z2).

Then the change of framing f does not affect the surgery obstruction, by 9.8.

Proof of 9.8. Write A = Z[ft]. The pseudo-surgery problem described just before
9.8 gives rise to a degree-1 map of algebraic Poincare pairs

p: (C(dN) -

where 'degree-1' means that p~*(if/,(p) = [h,n), strictly. Specifying a map

X

is another way of specifying a chain bundle cz (over Z!) on C(X) = Z ®A C(£). (It is
easy to see that Q°(C(X)" *) ^ f]*&o #2*(*; Z2), for instance by applying I, 2.A to the
ring with involution Z.)

The remaining data give an isomorphism of chain bundles (over Z!)

Isz: p~(cj) = (normal chain bundle of C{N)),
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with C(N) = Z ®A C(N). (Of course, algebraic Poincare pairs, too, have normal chain
bundles.)

What we really need in order to get an element in Ln(A) is the chain level analogue
of a surgery problem, i.e. apart from the degree-1 map p of algebraic Poincare pairs
(which restricts to a chain homotopy equivalence of the boundaries),

a chain bundle cA (over A\) on C(X), and
an identification of chain bundles (over A\),

Is,,: p"(cA) = (normal chain bundle of C(N)).

Now 9.6 suggests that cA can be defined using cz; similarly, 9.7 suggests that Is^ can
be defined using Is2.

In detail, let 6- be the chain bundle (over A) on C(X) determined, as in I, 3.4, by the
trivial vector bundle on X; put

cA : = 6 u cz, v

and let Is^ be the identification

P^UA) = P"{6 ^ cz) = p~(6) u p*~(cz)

= p~(#) u (normal chain bundle over Z of C(N))

= (normal chain bundle over A of C(N)).

(The last in this sequence of identifications stems from 9.6, taking into account the
first sentence of I, §3; and the previous one is induced by Is2.)

9.9. REMARK. In the twisted case, that is, when w: n -> Z2 is non-trivial, 9.8
remains valid with no essential change, except that the classifying map for the normal
bundle vN,

N -+ BSO

has to be replaced by the classifying map for

yN © w-twisted line bundle,

which still goes from N to BSO. Moreover, there is no harm in replacing the smooth
manifold with boundary N by a geometric Poincare pair.

Let X be a finitely generated simplicial set, let a be a principal 7r-bundle on X, and
let K0Sf(X) be the group of stable fibre homotopy equivalence classes of orientable
spherical fibrations.

9.10. PROPOSITION. The diagonal maps X - > I x I and n -> n x n make
Q°(C(X)~*) into a (commutative, associative) ring. The rule y i—• [c(y)] defines a
multiplicative map from Kos{(X) to Q°(C(X)~*), so it transforms Whitney sums into
products. (See also 10.13.)

Explanation and proof. C(X) is in #z[7r), and Z[7r] carries the involution coming
from the trivial homomorphism w: n -* Z2. The ring structure on Q°(C(X)~*) is
obtained as follows. Given chain bundles 6 and 6' on C(X), note that 6 x 6' is a chain
bundle on C(X)®iC(X), regarded as a chain complex over

Z[7r] ®z Z[7t] = J\n x K].
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Although the diagonal subgroup n a % x n will not in general have finite index, an
ad hoc transfer argument shows that

C{X) ®z C{X) can be thought of as a chain complex of Z[7i]-modules (free, but not
necessarily finitely generated);

6x.fi' determines a chain bundle tr(^ x fi') (over Z[7r]!) on the said chain complex.
(To see this, write D : = C(X) ®z C(X), and let

/ : Z[TT x it] -+ Z[TE]

be the homomorphism of free abelian groups which sends the generator

(x, y) E n x n a Z[n x n] to x e n a Z.[n] if x = y,

and to 0 otherwise. Define 'chain bundles' as at the beginning of I, 2.A; if

fixfi' = {(pp,q: DpxDq -> Z[7iX7i] |p ,geZ},
put

Xr{fixfi'):={f-(ppq.DpxDq^Z[n\\p,qeZ}.)

The Eilenberg-Zilber diagonal EZ0: C(X) -> C(X)®zC{X) is a chain map over
Z[7r]; the ring structure on Q°(C(X)~*) is given by

Now let y be an orientable spherical fibration on X; choose an orientation j . Then
(n,w;X,y;ct,j) is a string of data as in I, 3.4, with w = 0. Therefore [c(yj] in
£ ° ) is defined. Choosing a different orientation does not affect the result.

There is a version of 9.10 which covers the non-orientable case: the appropriate ring
to consider is then

®Q°(WC(X)~*)
w

(where w ranges over all homomorphisms from n to Z2, and the superscript w in
Q°{WC(X)~*) indicates which involution on l[n] is used to define Q°{C{Xy*).)

The principal 7i-bundle a on X would be fixed, however, as in 9.10. See also 10.13.

10. Classification of chain bundles over a group ring

10.1. THEOREM. Let R be either Z or Z2; let A = R[K] be the group ring, equipped
with the w-twisted involution for some w: n —*• Z2. The cohomology theory

C H {Q-"(C-*)\ n e Z }

on (€A is then an ordinary cohomology theory, that is, there are canonical natural
isomorphisms

Q-"(C-*)^YlHk+n(C;Hk(Z2;A))
keZ

for « e Z , commuting with the suspension isomorphisms.

(Note that the groups Hk(Z2; -4) ̂  Q°({A, k)~*) are the coefficients of the cohom-
ology theory and therefore carry a left /4-module structure, made explicit in I, 2.A.)
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Assume now that A = Z2\j(\. Let PR be a projective resolution of the left A -module
H°{Z2;A) (so that H0{PR) is canonically identified with H°{Z2;A)). Theorem 10.1
follows (in the case where A = Z2[n~\) from

10.2. ROUGH STATEMENT. There exists a (somehow distinguished) chain bundle d
on PR so that the Oth Wu class defined in I, 2.A,

vo(d):Ho(PR)^H°(Z2;A),

agrees with the canonical identification. ('Chain bundle' has to be interpreted here as
in I, 2.A.)

Proof of the implication 10.2 => 10.1, for A = Z2[n\. It suffices to specify a natural
isomorphism

Y\H\C-H\Z2-A))^Q°{C-*)
kel

for C in <gAt since Q"(C~*) ̂  Q°((LnC)~*). Since A has characteristic 2,

H\Z2; A) ^ H°(Z2; A) for k e Z;

further, the cohomology theory at issue is now periodic with period 1 (not merely 2;
see I, 1.3). To be more precise, if B is a possibly huge chain complex of projective left
/4-modules, if W&B~* is defined as at the beginning of I, 2.A, and if

q> = {(pp<q: Bp x Bq -+ A | p , q e Z}

is an n-cycle in W&B~* for some n e Z, then <p can be viewed as an n-cycle in
W& B~* for all n e Z. Equivalently, if 6 is a chain bundle on B, then <5~V can be
regarded as a chain bundle on Z"B.

Now let
B00 := 0 I f c P K ;

fceZ

supposing that 10.2 holds, let

Since all the Wu classes
kel

are now isomorphisms, we recognize in ^°°, B°° the 'universal chain bundle' of I, 2. A.4.
Therefore or otherwise, the natural homomorphism

kel

is a natural isomorphism, for C in <£A. (Of course, in order to make it canonical we
have to specify a canonical d in 10.2.)

The proof of 10.2 proceeds by obstruction theory. Write @)A for the category of
projective left /1-module chain complexes C which are positive, such as PR in 10.2.
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(For the moment, A can be any ring with involution.) For C in Q)A, let

(Here C$k is the /c-skeleton of C.)
So the homotopy-invariant functor

(i) CH+^<2° (C - * )

is the '/cth Postnikov base' of the (homotopy-invariant) functor

(ii) Ch+<2°(C-*);

see [4] for a completely analogous topological definition. Or in other words, passing
from (ii) to (i) amounts to 'killing' the coefficient groups of the functor (ii) in dimension
greater than k, that is, the groups Q°((A,n)~*) for n > k. (Cf. I, 0.6.) There is a
commutative diagram of natural forgetful maps

and there are natural homomorphisms

ob: &>k.xQ°{C-*)

so that the sequence

l{C;Hk(Z2;A))

0>kQ°(C-*) > 0>k.,Q°{C-*)-^ Hk + l(C;Hk(Z2;A))

is exact. (Again, Hk(Z2; A) = Q°{{A, k)~*) plays the role of 'coefficient group'.)

10.3. DESCRIPTION of ob:
k + l (C;Hk(Z2;A)). For y in

let y e Q°((C^k)~*) be a lifting; treat the differential d: Ck + l -»• Ck as a.chain map
from (Ck + 1,k) to C^k. Then

represents an element ob(y) e Hk + 1(C;Hk(Z2;A)), independent of the choice of
lifting y.

10.4. DEFINITION. For k > 0 and C in ^ , let

socle: 9k.&°{C-*) - //°(C; H°(Z2M)) = ^Q\C~*)

be the forgetful map. (Note that C is positive.)

Let C, C be chain complexes in <2)A, 3>A- respectively, where A and A' are arbitrary
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rings with involution. Then C®ZC is in S)A^A>; if y e 0>fc_jQ°(C~*) and
y' € ^k-iQ^C"*), the exterior product yxy' is an element of 9k.xQ°{{C ®z C)~*).

10.5. LEMMA.

socle(y x y') = socle(y) x socle(/);

ob{y x y') = ob{y) x socle(/) + society) x ob(/) .

To make sense of these formulae, note that there are 'exterior multiplication maps'

H\Z2; A) x H\Z2 • A') -+ Hi+j(Z2 ; A ®z A')

derived from the diagonal map W -> W ® z W (in fact, A and A' could be replaced by
arbitrary Z[Z2]-modules). Consequently, there are exterior cohomology products

Hp(C;Hi(Z2;A))xH«(C;Hj(Z2;A')) -> HP+"(C ®ZC ;Hi+j(Z2;A ®ZA')).

The lemma is easy to verify.

Now let A = Z2[n\ again, and let PR be as in 10.2. The ring A is equipped with a
diagonal homomorphism

Z2[7i] = A -*• A (x)z A ^ Z2[n x n~]

corresponding to the diagonal inclusion n -*• nxn. Therefore PR ®z PR can be
regarded as a left /4-module chain complex (in

10.6. OBSERVATION. PR is equipped with a canonical (homotopy commutative,
homotopy associative) diagonal chain map

PR -> PR ®z PR

of ^-module chain complexes. Therefore Q°(PR~*) and &kQ°(PR~*) are rings, for

Proof. Since PR is a projective resolution of H°(Z2; A) and Pi? ® z P/? is a
projective resolution of H°(Z2;A) ®ZH°(Z2\ A), specifying such a chain map is
equivalent to specifying a 'diagonal map' of left /4-modules

H°(Z2; A) - H°(Z2; /I) ®z H°(Z2; ^)-

A further reduction is possible. There is a functor FR from the category of rc-sets to
that of Z2[7r]-modules: to every rc-set S it associates the Z2-vector space generated by
S, with 7r-action induced from the 7i-action on S. We have

H°(Z2;A)^FR(tov2(n)),
where

tor2(7r) = {x e 7i | x2 = 1},

and where n acts on tor2(7i) by conjugation. Similarly,

H°(Z2; A) ®2 H°(Z2; A) = FR(tor2(n) x tov2(n)).

So all we need is a 7i-map

tor2(7i) -• tor2(rr) x tor2(7r);

we take the diagonal map.
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The ring structures on Q°(PR-*) and 0>kQ°{PR~*) are defined as in 9.10.

10.7. LEMMA. Suppose that y e ^kQ°{PR~*) satisfies

socle(j;) = 0.

Then y is nilpotent.

Proof. If socle(y) = 0, then y can be represented by a chain bundle

{<*>,,,: PRp®zPRq -+ A\p,q^k+\]

on PR$k + 1 so that <pOtO = 0. The definition of the multiplication in 0>kQ°{PR~*)
implies then that / can be represented by a chain bundle

{(//„,„: PRp®iPRq -+ A\p,q^k+\]

on PR^k + l so that if/p<q = 0 whenever p + q < n. So y" = 0 for n > 2k.

10.8. LEMMA. For any y e ^kQ°(PR~*), y2" is idempotent if n is sufficiently large.

Proof. Write y2 = y + h. Then socle(ft) = 0, since socle(y2) = socle(y). By 10.7, h is
nilpotent; choose n large enough so that h2" = 0. Then

as required. (Note that we are in characteristic 2, so y \—• y1" is a ring endomorphism.)

It is now possible to reformulate 10.2, as follows. Firstly, it is not necessary in 10.2
to construct a chain bundle on PR; a class in Q°(PR~*) will do just as well. Secondly,
although the map

Q°(PR ~ *) - • lim 0>kQ°(PR ~ *)

need not be an isomorphism, it is clear that an element in lim^ft^°(P/?~*) is quite

sufficient for the application to 10.1 (in the case where A = Z2[7r]). The next
proposition exhibits such an element.

10.9. PROPOSITION. For every k ^ 0, there is a unique element yk in gPkQ°{PR~*) such
that

(i) society) e H°(PR; H°(Z2; A)) £ HomA(H°(Z2; A), H°(Z2; A)) is the identity,
(ii) yk is idempotent.

Proof. Clearly y0 exists and is unique. Suppose that yk-i has already been
constructed. Then (yk-i)

2 = yk-i', now 10.5 implies that

ob(yk.l)eHk+l(PR;Hk(Z2;A))

is divisible by 2, and hence equal to 0. So there exists an element z in ^kQ°(PR~*)
which lifts Vfc-i- Put

yk : = z2" for sufficiently large n,

so that yk is idempotent (10.8). Clearly yk satisfies conditions (i) and (ii). To prove
uniqueness, suppose that y'k e ^fcQ°(P/?~*) also satisfies (i) and (ii). Then yk — y'k is
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idempotent, since we are in characteristic 2, but also nilpotent by 10.7. Therefore

.Vfc = yl
The proof of 10.1 for R = Z2 is • omplete. (The argument fails for R = Z, even when

w: n -> Z2 is trivial. The point is that 10.6 becomes false: if PR is a projective
resolution of H°{Z2; A) over Z|>], then it is also a projective resolution of H°{Z2; A)
over Z; therefore PR ®/PK will not be a projective resolution over Z or over Z[7i],
since /^(PK ®2 P/?) * 0.)

Proof of 10.1 /or R = Z. Write ^ = Z[7i]. Indicate reduction mod 2 by a double
prime; thus /4" = Z2[n~\ and C" = C ® Z Z 2 for C in ̂ .

Five cohomology theories on <€A will be needed, namely

TH2: C .-> {[I //fc+n(C;i?fc(Z2M"))| n e Z},
fceZ

TH4: C M {]"] f/*+"(C;^k(Z
kel

TH5: C^{Y\Hk + n{C-Hk-\
keZ

The canonical direct sum decomposition

Hk(Z2; A") ^ Hk(Z2; /4) 0 Hk" X(Z2; /4), for /c e Z,

gives a canonical isomorphism

(i) 77/2 ̂  TH4 0 T//5.

That part of 10.1 which has been proved gives an identification

(ii) TH, s T//2.

Let

(iii) TH3 0 TH5 - THX s

be the map of cohomology theories which on the first direct summand is the obvious
reduction mod2, TH3 -> THV; and which on the second summand is the inclusion
TH5 d.^ TH2 ^ THl of (i) just above. The map (iii) is also an isomorphism of
cohomology theories, because it induces an isomorphism on coefficient groups.
Combining (i), (ii), and (iii), we obtain a commutative diagram

TH*

TH4 0 TH5

showing that TH3 ^ THJTH5 ^ TH4. So there is a canonical isomorphism
TH3 s T//4, as required.
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10.10. REMARK. The preceding proof shows that TH3 and 77/4 are isomorphic by
showing that both are direct summands of THX, with common complement
THS c THV If w: n -> Z2 is trivial, then it is easy to see that TH3 and 77/4 are in fact
identical as direct summands of THX.

10.11. PROPOSITION. The isomorphism in 10.1 is compatible with ring structures if
R = Z2.

Explanation. Write A = Z2[7r]. For any space X with principal rc-bundle a, define
a ring structure on Q°{C(X)"~*) as in 9.10, where C{X)" = C(X)®ZZ2. Under the
isomorphism

Q°(C(xy-*) S n

of 10.1, this corresponds to the 'ordinary ring structure' on

Y\Hk(C(X);Hk(Z2;A)).
kel

To understand what 'ordinary ring structure' means, note that pointwise multipli-
cation pi makes H°(Z2; A), the set of functions from tor2(7t) to Z2, into an /4-algebra;
that is, ^

JI: //°(Z2M)(g)z//
0(Z2M) -+ H°(Z2M)

is an /4-module chain map (with the diagonal /4-action on H°(Z2; A)®iH°(Z2;A);
see the text preceding 10.6). Therefore {Hk(Z2 ;A)\ k e Z} is a graded /4-algebra, since

Sketch proof of 10.11. The cohomology theory under consideration is periodic
with period 1, and so 10.11 can be reduced to the claim below.

Let PR be as in 10.2, and let yk 6 0>kQ°{PR-*) be as in 10.9. Then PR ®zPR is, a
priori, an A ®z /4-module chain complex, and yk x yk e ^^((PR (g)z PR)'*) has to
be interpreted accordingly.

Using the 'ad hoc transfer' tr associated with the diagonal inclusion n c n x n,
regard PR ®z PR as an /4-module chain complex (see 9.10 and its proof); tr(yk x yk) is
then an element of

(the subscript A indicates that everything takes place over A, not A ®%A).
Now let ^res: PR®%PR -+ PR be the chain map of /4-module chain complexes

whose induced homomorphism in 0-dimensional homology is the multiplication

ix: H°(Z2; A) ®I H°(Z2; A) > H°(Z2; A)
II? \U

HO(PR®ZPR) H0(PR)

CLAIM. ^Jyk) = tr(yk x yk) in ^>kQ°A((PR ®z PR)'*).

(To see how the claim implies 10.11, suppose that

u G Hl(C(X)";H'(Z2;A)))
v e H\C{X)» • H\Z2; A))] C fl

write down the two definitions of u- v, and compare them.)
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Proof of claim. Clearly

socle(/i;;s(};fc)) = socle(tr(yfc x yk)).

(cf. 10.4). Further, it is possible to define a homotopy commutative, homotopy
associative diagonal chain map of ,4-module chain complexes

PR ®z PR -> (PR ®2 PR) ®i (PR ®z PR)

(imitating 10.6), and thereby a ring structure on 0>kQ°A((PR ®zP/?)~*), such that
0) AC*: &k6°{PR~*) -> 0>

kQ°A((PR®zPR)~*) is a ring homomorphism,
(ii) tr(yk x yk) e 0>kQ°A((PR ®2 PR)'*) is idempotent.

Summarizing, we see that ti~s(yk) and tr(yk x yk) are both idempotent, and have the
same socle; so they are equal, by the argument used in the proof of 10.10.

10.12. REMARK. The analogue of 10.11 for A = Z[7i] makes sense and is correct if
w: n —• Z2 is trivial. This follows from 10.10.

Let X be a finite CW-space with principal rc-bundle a, and write A = Z[7r]
(equipped with the w-twisted involution for some w: n -* Z2), A" = Z2[7r], etc. The
group homomorphism {1} -> n induces

(i) a map Z2 = Z2[{1}] -> Z2[7i] = A" of group rings,
(ii) by (i), a map Z2 s Hk(Z2;Z2) - Hk(Z2;A"),

(iii) by (ii), a map

rx: Y\Hk(X;Z2) -, X\Hk(C(X);Hk(Z2-A")) = Q°
kel keT

Since (i) is canonically split as a map of Z[Z2]-modules, (ii) and (iii) are also split.
Working over A = Z[7i], one obtains similarly a split inclusion

IV Y\H2k(X-Z2)^Q°(C(X)-*).
fceZ

10.13. PROPOSITION. Suppose that n,w,X,ct form part of a string of data
(n, w; X, y; a, j) as in I, 3.4. Then

l>(y)] = rx(v0,v2,v4,...)

in Q°(C(X)~*); here v{ e H\X; Z2) is the ith Wu class ofy. The corresponding formula
over A" = Z2\n\ is

in Q°(C(X)"~*). (In this case, w and j can be omitted from the string.)

Sketch proof. Over A", the formula is correct for the trivial spherical fibration y,
and hence correct for arbitrary y because of 9.6. To get the formula over A, note that
O(y)] e Q°(C(X)-*) maps to O"(y)] e Q°(C(X)"~*) under the reduction mod2 map
Q°(C(Xy*) -»• Q°(C(X)"-*). On the other hand, the identification

Q°(C(Xy*) s n ^
kel

5388.3.51 O
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was defined as the composite

Q°{C(Xy*) > Q°{C{X)"-*) s f ] Hk{C{X);Hk{Z2; A"))

f

Y\Hk(C(X);fik(Z2;A))

where / is induced by. t h e projections Hk(Z2;A") -* Hk(Z2;A). Hence the only
element in Q°{C{X)-*) which maps to r^vo,vuv2,...) e Q°(C{X)"-*) is

i ? 2 , . . . ) ) = T x ( y 0 , v2, w 4 , . . . ) .

This completes the proof.

11. Miscellany

This section contains two distinct illustrations of the theory. The first is related to
the 'generalized Kervaire invariants' of [1] and [2], and the second is a not-so-new
proof of Browder's theorem [1] on the Kervaire invariant (which sheds light on the
results of § 10, but not on Browder's theorem).

We shall work with CW-spaces instead of simplicial sets in this section; see the
remark after I, 3.A.4.

Generalized Kervaire invariants. Here the ring with involution is fixed: A = Z2, to
be regarded as the group ring Z2[{1}] of the trivial group. If X is a finite CW-space,
its algebraic counterpart for the time being is C(X) ®z Z2\ any spherical fibration y on
X determines a chain bundle on C(X)®%Z2. No orientation is needed.

Most computational problems evaporate upon observing that every chain complex
in ^A is homotopy equivalent to one with zero differential (its homology). For
example, using the fact that the functors Qn( — ) commute with direct sums, we obtain
directly (i.e. without using 10.1):

11.1. PROPOSITION. There is a natural isomorphism

Qn(C-*)^Y\Hk-n(C;A) forCin^A.
fceZ

The next proposition, proved in [11], is a special case of 10.13 (but has been used
implicitly in the proof of 10.13); it can also be deduced from I, 3. A.

11.2. PROPOSITION. We have [c(y)] = (v0, vlt v2, v2,...) in

Q0((C(X)®IZ2y*)^l\Hk(X;Z2)
kel

if y is a spherical fibration on X with Wu classes u, € Hl(X;Z2).

11.3. PROPOSITION, (i)

2 (Kervaire invariant) ifn = 2k,
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(ii) Suppose that the {k + \)th Wu class of y {in Hk+1{X; Z2)) is zero {with X and y as
in 11.2). Then

release: L2k{A) -+ L2k{C{X) ®z Z2, c{y))

is injective.

Proof, (i) is easy; (ii) follows from 8.3. The converse of (ii) also holds.

{Warning: the groups L2k{C{X) ®ZZ 2,c{y)) are not in general Z2-vector spaces,
even though we are working with A = Z2.)

In view of 11-3 (ii), we could call the homomorphism

flexible signature: Q2k{X,y) -* L2k{C{X)®zZ2,c{y))

a 'generalized Kervaire invariant', at least if the (/c + l)th Wu class of y vanishes. (See
7.1 for notation.)

For clarification, suppose that d is any ('abstract') chain bundle on a chain complex
D in ^A; and that, for some k ^ 0, the '(/e+ l)th Wu class of d' is zero. (This makes
sense by 11.1.)

Given a 2/c-dimensional algebraic Poincare complex (C, <p) over A, with d-
structure, can we imitate [2] to obtain a 'quadratic form with values in Z4 ' on
Hk{C;A)l

The answer is 'yes' (certain choices are, however, necessary, just as in [2]). The
following examples constitute a sketch proof.

Example 1. Take D = (Z2, k) (that is, Dk = Z2, Dr = 0 for r # /c); of the two chain
bundles on D, let d{k) be the non-trivial one. Certainly the {k+ l)th Wu class of d{k) is
zero. If (C, q>) is a 2/c-dimensional algebraic Poincare complex in ^A, then H\C,A)
carries a non-degenerate symmetric bilinear form. It is not hard (but highly amusing)
to see that a ^(Zc)-structure on (C, cp) (as in I, 2.6) determines an enhancement of the
bilinear form to a quadratic form—with values in a group isomorphic to Z4, as
required.

Example 2. Let m be a large integer; put

Du= 0 {Z2,r) and du = © d{r)
— m<r<m —m<r<m
r*k+ 1 r±k+1

(in the notation of the previous example). If (C, cp) is a 2/c-dimensional algebraic
Poincare complex with ^"-structure, then Hk{C,A) carries a quadratic form with
values in a group isomorphic to Z 4 (same proof as before).

Example 3. The general case. Let d be a chain bundle on D whose {k+ l)th Wu
class is zero; then there exists a chain map D -*• Du (see Example 2) covered by a chain
bundle map d -• d". (N.B. m is large.) Choose such a chain map; then any d-
structure on an algebraic Poincare complex over A determines a ^"-structure, and we
obtain the desired quadratic forms from Example 2.

(There is a one-to-one correspondence between the choices used here—that is,
homotopy classes of chain bundle maps from d to d"—and the choices used in [2], if
D = C{X) ®^Z2 and d = c{y) for a space X with spherical fibration y.)
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Browder's theorem on the Kervaire invariant. The theorem in question states that
the Kervaire invariant ns

2k -»• Z2 (defined for arbitrary k > 0, but interesting only
when k is odd) is zero if k is not of the form 2P— 1 for some integer p > 0.

Let X = UPm, let y be the trivial vector bundle on X, let X" = Sm be the standard
twofold cover of X, and let y" be the trivial vector bundle on X"; take m large.

Transfer gives a map of bordism groups

nn(M(X,y)) -+ nn(M(X",/')) = <•

(We assume that n < m; on the left is the bordism group of'framed n-manifolds with
twofold covers', and on the right is the bordism group of framed n-manifolds. The
transfer assigns to a 'framed manifold with twofold cover' its twofold cover.)

The celebrated theorem of Kahn and Priddy [9] implies that this transfer is
surjective for 1 ̂  n < m. (It is also known that the Kahn-Priddy theorem has the
Browder theorem above among its corollaries; see [7] and [8]. That is why I have
apostrophized the argument below as 'not-so-new'.)

Put n = Z2 ; then A = Z[7r] is a ring with involution (coming from the trivial
homomorphism w: n -> Z2, not from the identity). Let a be the non-trivial principal
7i-bundle on X, and let j : w~*(a) s (orientation cover of y) be the standard
identification.

Apply I, 3.4: the result is a chain bundle c(y) on

Ctf) - ... ̂  Z [ Z 2 ] ^ Z[Z2] ±=Z Z[Z2]

whose homology class we wish to describe explicitly. Recall the isomorphism
Q°(C(X)-*)^H0(V(C(X)))ofl, 1.6.

11.4. PROPOSITION. The class [>(y)] e Q°{C{X)~*) ^ H0(V{C{X))) is represented
by the 0-cycle {Ar} 6 V(C(X)) with

' (1) if r = 0,

(1 + ( - ) T ) if r = 2" for some p ^ 0,

(0) otherwise.

(Sesquilinear forms on C(X)r are identified, for r ^ 0, with 1 x 1-matrices with
coefficients in A; apart from that, the notation of I, 1.4 has been used.)

Theoretically, 11.4 can be verified using 10.1 and 10.13. However, the isomorphism
in 10.1 is very mysterious. A geometric proof of 11.4 is given below (after 11.7).

11.5. COROLLARY. The algebraic transfer

L"(C(X),c(y))^L"(C(X"),c(y"))

is zero if n = 2/c < m, for k odd with k # 2P — 1.

Explanation and proof The transfer is associated with the inclusion

{1} c^^ Z2 = 71.
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Using, for example, 6.1, one finds, for m > n > 0, that

( Z if n = 0 mod 4 ('signature/8'),

Z2 if n = 1 or 3 mod 4 ('Hopf invariant'),

Z2 if n = 2 mod4 ('Kervaire invariant').

For the proof of 11.5, apply 8.2 and 8.3: there is a commutative diagram

transfer transfer

L"(C(X),c(y))

If n = 2 mod 4, the top horizontal arrow is isomorphic and the left vertical arrow is
zero (by [13, Chapter 13A]). If, moreover, n # 2(2"- 1), then 8.2 and 8.3 imply that
the transfer on the right is also zero.

11.6. COROLLARY. If n = 2k is as in 11.5, then the Kervaire invariant n2k

zero.

Proof. There is a commutative diagram

ns
2k = n2k(M(X",y")) > L2k(C(X"),c(y")) s Z2

Z2 is

geometric
transfer

algebraic
transfer

, y)) L2k(C(X), c(y))

in which
the left vertical arrow is surjective (Kahn-Priddy),
the right vertical arrow is zero (by 11.5),

so that the horizontal arrow (which is the Kervaire invariant) is also zero.

To conclude the chapter, here is the geometric proof of 11.4. The idea and
construction are based on I, §3.A; so we shall produce a sequence {Pn\ n ^ 0} of
framed manifolds (each P" having the homotopy type of the [^n]-skeleton of UPm,
etc.) such that the sesquilinear sliding forms kr (cf. I, 3.A.2(ii)) are as specified in 11.4.
We use the standard C M^-structure on UPm.

Suppose that P°, P1, . . . , P2k have already been constructed so that the sliding forms
Xo, Xu...,kk are the required ones. (Assume that m ^ 2/c > 2, otherwise there is little to
prove.)

CLAIM. Let z be a generator of nk(P
2k) ^ nk(UPk) ^ Z. Because of Hirsch's

immersion theorem [6, 5], and because P2k is framed, z determines a regular homotopy
class of immersions ik: S

k -• P2k. The self-intersection number n(ik) of this immersion
equals \ + Tifk = 2p—\ for some integer p > 1, and 0 otherwise. (It belongs to Z[Z2]
if k is even, to Z2\Z2~\ if k is odd.)
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Assuming the truth of the claim, we can easily construct framed manifolds P2k + l,
P2fc + 2, etc. giving the correct sliding form Xk + V

To prove the claim, we can suppose that k is odd. (For even k, there is nothing to
prove because n(ik) is algebraically determined by the sliding form Xk\ we have
2/4'fc) = ^k(l - T, 1 - T), since /k represents the element 1 - T in C(X)k = Z[Z2].)

Since k is odd, there are just two regular homotopy classes of immersions Sk -> P2k

homotopic to ik; ifik has self-intersection number a-1 +b- T (with a, b e Z2), then the
immersions in the class not containing ik have self-intersection number
(a+\)\+b-T.

Let i'k: Sk -> P2k be an immersion which factors as follows:

s , double cover > Rpk g > ^

where g is an immersion and also a homotopy equivalence. Arguing exactly as in [3],
onefindsthatthe self-intersection number of i'k is 0 • 1 + 1 • T e Z2 [Z2] if k = 2P — 1, and
0 otherwise.

Let / : P2k -> U2k be the codimension-0 immersion determined, up to regular
homotopy, by the framing of P2k. Then the immersion f-i'k: Sk -> U2k has self-
intersection number 1 e Z2 if k = 2P—1, and 0 otherwise (also by [3]). From the
definition of ik, it is clear that / • ik: S

k -> U2k has self-intersection number 0 for all k,
being regularly homotopic to the standard embedding. Therefore ik and i'k are
regularly homotopic if and only if k ^ 1P — 1.

Putting these observations together proves the claim.
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