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WHAT DOES THE CLASSIFYING SPACE
OF A CATEGORY CLASSIFY?

MICHAEL WEISS

(communicated by Graham Ellis)

Abstract
The classifying space of a small category classifies sheaves

whose values are contravariant functors from that category to
sets and whose stalks are representable.

Introduction

Let C be a small category. Contravariant functors from C to the category of
sets, and natural transformations between them, will be called C-sets and C-maps,
respectively. The category of C-sets shares many good properties with the category
of sets. (In short, it is a topos. See [4] or [7]. Here we will not make any explicit use
of this fact.) The C-sets which are of the form b 7→ morC(b, c) for fixed c ∈ C, and any
isomorphic ones, are called representable. By the Yoneda lemma, the representable
C-sets form a full subcategory of the category of all C-sets which is equivalent to C.

We will be concerned with sheaves of C-sets on a topological space X. For such
a sheaf, and x ∈ X, the stalk Fx is again a C-set. It is the direct limit of the C-sets
F (U) where U runs through the open neighborhoods of x.

Theorem 0.1. The classifying space BC classifies sheaves of C-sets with repre-
sentable stalks.

Notation, terminology, clarifications.
Let F be any sheaf of C-sets on X. We may regard F as a contravariant functor

(c, U) 7→ F (c)(U) in two variables (where c ∈ ob(C) and U is open in X). Spe-
cializing one of the variables, we obtain F (c), a sheaf of sets on X, and F (U), a
C-set.

Let L be any sheaf of sets on X. The espace étalé of L , denoted Spé(L ), is
the (disjoint) union of the stalks Lx, suitably topologized. See [2, II.1, ex.1.13] for
details. The sheaf L can be identified with the sheaf of continuous (partial) sections
of the projection Spé(L )→ X.

The projection Spé(L ) → X is an étale map alias local homeomorphism. [But
it happens frequently that X is Hausdorff while Spé(L ) is not.] The construction
Spé(L ) leads to a good notion of pullback of sheaves: for a map v : Y → X, the
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pullback v∗L is defined in such a way that Spé(v∗L ) = v∗Spé(L ). More generally,
for a sheaf F of C-sets on X and v :Y → X, the pullback v∗F is defined in such a
way that Spé((v∗F )(c)) = v∗Spé(F (c)).

Let F and G be sheaves of C-sets on X, both with representable stalks. Let
e0, e1 :X → X × [0, 1] be given by e0(x) = (x, 0) and e1(x) = (x, 1). The sheaves F
and G are concordant if there exists a sheaf of C-sets H on X × [0, 1], again with
representable stalks, such that e∗0H ∼= F and e∗1H ∼= G .

The precise meaning of theorem 0.1 is as follows. Suppose that X has the homo-
topy type of a CW-space. There is a natural bijection from the homotopy set [X,BC]
to the set of concordance classes of sheaves of C-sets on X with representable stalks.

Remark. Suppose that C is a group. To be more precise, suppose that C has just
one object c and mor(c, c) is a group. Let F be a sheaf of C-sets on a space X. If the
stalks of F are all representable, then the projection Spé(F ) → X is a principal
mor(c, c)-bundle. Indeed any choice of an open U and s ∈ F (c)(U) determines a
bundle chart

Spé(F |U) ∼= mor(c, c)× U .
In this situation, concordant sheaves of C-sets on X (with representable stalks)
are isomorphic, because “concordant” implies “isomorphic” for principal mor(c, c)-
bundles.

Remark. The question in the title undoubtedly has many correct answers and
a few have already been given elsewhere. Moerdijk [7, Introd.] has a result like
theorem 0.1 in which the representability condition on stalks is replaced by a weaker
condition, that of being principal. To explain what a principal C-set is, we start with
the following standard definitions:
• The transport category of a C-set S has objects (c, x) where c is an object of
C and x ∈ S(c). A morphism from (c, x) to (d, y) is a morphism g : c → d in
C such that the induced map S(g) :S(d) → S(c) takes y to x. (Some people
would call this the opposite of the transport category of S.)

• A category D is filtered if
– it has at least one object;
– for any two objects d1, d2 in D there exists another object d3 and mor-

phisms d1 → d3, d2 → d3;
– for any two morphisms in D with the same source and target, say f, g : a→
b, there exists a coequalizer (a morphism h : b→ c in D such that hf = hg).

Now a C-set is principal if its transport category is filtered. (This is not exactly
the terminology which Moerdijk uses. He calls a sheaf of C-sets on X a principal
Cop-bundle if the transport category of each stalk, as defined above, is filtered.) A
representable C-set S is certainly principal, since the transport category of S has a
terminal object. The converse does not hold.

For example, suppose that C itself is a filtered category which does not have a
terminal object. Define a C-set S in such a way that S(c) has exactly one element,
for every object c in C. Then the transport category of S is equivalent to C, so S is
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principal. But S is not representable, since a representing object would be a terminal
object for C. It follows that there exist sheaves of C-sets on some spaces X which
do not satisfy the condition of theorem 0.1 but which are principal Cop-bundles
according to Moerdijk’s definition. (Take X to be a point.)

Moerdijk [7] takes the discussion much further by considering topological cate-
gories, which I have not attempted to do.

Another precursor of theorem 0.1 is due to tom Dieck (1972, unpublished). He
used a notion of C-bundle defined in terms of a bundle atlas. His result was redis-
covered in [5, thm 4.1.2].

Theorem 0.1 is anticipated and illustrated to some extent in [6].

1. The canonical sheaf on BC
We are going to construct a sheaf E of C-sets on BC which will eventually turn out

to be “universal”. Recall to begin with that BC is the geometric realization of the
simplicial set whose n-simplices are the contravariant functors [n] → C, where [n]
is the linearly ordered set {0, 1, 2, . . . , n}. (There are historical reasons for insisting
on contravariant functors [n]→ C; the formulae for boundary operators look more
familiar in the case where C is a group or monoid.) Now suppose that U is open in
BC and c is an object of C.
Definition 1.1. An element of E (c)(U) is a “function” which to every α : [n]op → C
and x ∈ B[n]op ∼= ∆n with α∗x ∈ U assigns a morphism s(α, x) : c→ α(0) in C. The
function is required to be
• locally constant in the second variable, so that for y ∈ ∆n sufficiently close to
x, with α∗y ∈ U , we have s(α, y) = s(α, x);

• natural in the first variable. That is, for an order-preserving g : [m]→ [n] and
y ∈ ∆m, we have

s(α, g∗y) = α(0, g(0)) ◦ s(αg, y)
where α(0, g(0)) :α(g(0))→ α(0) is the morphism in C induced by the unique
morphism 0→ g(0) in [n].

The contravariant dependence of E (c)(U) on U and c is obvious. The sheaf prop-
erty is also obvious. Because of the naturality condition, an element s of E (c)(U) is
determined by its values s(α, x) for nondegenerate α : [n]op → C and x ∈ ∆nr∂∆n.
Then α and x are determined by α∗x ∈ U ; in particular n is the dimension of the
cell (in the canonical CW-decomposition of BC) to which α∗x belongs. (Regarding
cells, the convention used here is that the cells of a CW-space are pairwise disjoint,
and each cell is homeomorphic to some euclidean space. This is in agreement with
[1], for example.)

Lemma 1.2. Fix a nondegenerate β : [m]op → C and y ∈ ∆m r ∂∆m. The stalk of
E at β∗y is the contravariant functor c 7→ mor(c, β(0)).

Proof. Any point of BC can be uniquely written as α∗z where α : [n]op → C is
nondegenerate and z ∈ ∆n r ∂∆n. If α∗z is sufficiently close to β∗y, then some
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degeneracy of β will be a face of α. That is, there are an order-preserving surjection
f : [k]→ [m] and an order-preserving injection g : [k]→ [n] such that αg = βf . And
moreover, there will be w ∈ ∆k such that f∗w = y and z is close to g∗w. For s in
the stalk of E (c) at β∗y ∈ BC, we then have

s(α, z) = s(α, g∗w) = α(0, g(0)) ◦ s(αg,w) ,
s(αg,w) = s(βf,w) = s(β, f∗w) = s(β, y) ,

so that s(α, z) = α(0, g(0))◦s(β, y). Hence s is determined by s(β, y) ∈ mor(c, β(0)).
To establish the existence of a germ s with prescribed value s(β, y), we proceed
differently. Suppose inductively that the values of s at points near β∗y and in the
(n − 1)-skeleton of BC have already been determined consistently, for some fixed
n > m. For an n-simplex α : [n]op → C we have an attaching map from ∂∆n to the
(n−1)-skeleton of BC. Hence s(α, x) is already determined for x in some open subset
V of ∂∆n. As a function on V , denoted informally s|V , it satisfies the continuity
and naturality conditions of definition 1.1 (mutatis mutandis). We now have to find
an open W ⊂ ∆n such that V = W ∩ ∂∆n and an extension of s|V from V to W .
This is easy. For example, ∆n can be identified with a cone on ∂∆n and W could
then be defined as the cone on V minus the cone point. Then s|V has a unique
extension from V to W .

For an object c of C, let (c ↓ C) be the “under” category associated with c. The
objects of (c ↓ C) are the morphisms in C with source c, and the morphisms of
(c ↓ C) are morphisms in C under c. The classifying space B(c ↓ C) is contractible
since (c ↓ C) has an initial object. The forgetful map B(c ↓ C)→ BC has a canonical
factorization

B(c ↓ C) λc−−−−→ Spé(E (c))
proj.−−−−→ BC .

Indeed, any point of BC can be uniquely written as α∗z where α : [n]op → C is
nondegenerate and z ∈ ∆nr ∂∆n. Lifting α∗z to B(c ↓ C) amounts to specifying a
morphism c→ α(n) in C; lifting α∗z to Spé(E (c)) amounts to specifying a morphism
c → α(0) in C. Clearly a morphism c → α(n) determines a morphism c → α(0) by
composition with α(0, n) :α(n)→ α(0).

The map λc will be useful in the proof of

Proposition 1.3. The space Spé(E (c)) is weakly contractible.

Proof. Let B̄C be the fat realization of the nerve of C, obtained by ignoring the
degeneracy operators. The quotient map q : B̄C → BC is a quasifibration with con-
tractible fibers. To see this, note that the fat realization of any simplicial set Z
can be described as the ordinary realization of another simplicial set Z̄ whose n-
simplices are triples (k, f, x) where x ∈ Zk and f : [n] → [k] is an order-preserving
surjection. The forgetful simplicial map Z̄ → Z is a Kan fibration with contractible
fibers; hence the induced map of (lean) geometric realizations, |Z̄| → |Z|, is a quasi-
fibration with contractible fibers. See [3].

Let E = Spé(E (c)), let r :E → BC be the projection, and let Ē = q∗E. In the
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pullback square

Ē
r̄−−−−→ B̄

r∗q

y
yq

E
r−−−−→ B

the map q is a quasifibration with contractible fibers and r is a local homeomor-
phism. It follows that r∗q is a quasifibration with contractible fibers, and conse-
quently a weak homotopy equivalence.

It remains to prove that Ē is contractible, or equivalently, that the canonical
map λ̄c : B̄(c ↓ C) → Ē, the fat version of λc, is a weak homotopy equivalence.
Suppose therefore that Y is any finitely generated ∆-set (= “simplicial set without
degeneracy operators”) and let

f : |Y | → Ē

be any map. We want to show that, up to a homotopy, f lifts to B̄(c ↓ C). The
argument has two parts.

(i) If r̄f : |Y | → B̄ is induced by a map of the underlying ∆-sets, then f admits
a unique factorization through B̄(c ↓ C).

(ii) Modulo iterated barycentric subdivision of |Y |, and a homotopy of f , the com-
position r̄f is indeed induced by a map of the underlying ∆-sets.

For the proof of (i), we may assume that Y is generated by a single n-simplex, so
|Y | = ∆n. Suppose that r̄f : ∆n → BC is the characteristic map of an n-simplex
α : [n]op → C in the nerve of C. The extra information contained in f amounts to
compatible morphisms ui : c→ α(i) for i = 0, 1, . . . , n; clearly all ui are determined
by un. Together, un and α determine an n-simplex in the nerve of (c ↓ C).

For the proof of (ii), we note that the first barycentric subdivision of B̄C can
be described as B̄C′ for another category C′. An object of C′ is a simplex of the
nerve of C; a morphism from an m-simplex α to an n-simplex β is an injective
order-preserving v : [m]→ [n] with v∗β = α. The functor C′ → C given by α 7→ α(0)
induces a ∆-map from the nerve of C to the nerve of C′, and then a map

ϕ1 : B̄C → B̄C′ .
This map is not a homeomorphism. There is of course another (well-known) map
ϕ0 : B̄C′ → BC which is a homeomorphism. What is important here is that ϕ0 and
ϕ1 are homotopic in an obvious way, by a homotopy (ϕt)t∈[0,1]. (Each track of the
homotopy is a straight line segment, or a single point, in a simplex of B̄C.) The
homotopy (ϕtϕ

−1
0 )t∈[0,1], from the identity of B̄C to ϕ1ϕ

−1
0 , has a unique lift to a

homotopy
(ψt : Ē × [0, 1]→ Ē)t∈[0,1]

with ψ0 = id. (To verify this claim, compare the pullbacks of Ē under the maps

B̄C × [0, 1]
ϕϕ−1

0−−−−→ B̄C , B̄C × [0, 1]
proj.−−−−→ B̄C .

They are homeomorphic as spaces over B̄C×[0, 1].) We can similarly look at iterated
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barycentric subdivisions of B̄C. They all have two canonical maps ϕ0, ϕ1 B̄C, one
being a homeomorphism and the other being simplicial, and these two maps are
homotopic by a homotopy (ϕt)t∈[0,1]. Again, the homotopy (ϕtϕ

−1
0 )t∈[0,1] has a

unique lift to a homotopy (ψt : Ē × [0, 1] → Ē)t∈[0,1] with ψ0 = id. Coming back
now to maps |Y | → Ē, any such map is homotopic to a map f such that r̄f
is induced by a ∆-map from some iterated barycentric subdivision of Y to some
iterated barycentric subdivision of the nerve of C. Compose f with ψ1 from the
above homotopy. Then r̄ψ1f is induced by a ∆-map from Y to the nerve of C.

2. Resolutions

The previous section gives us a method to “convert” a map f :X → BC into a
sheaf of C-sets on X with representable stalks, by f 7→ f∗EC . Going in the opposite
direction is more difficult. From a sheaf F of C-sets on X, we shall construct a
“resolution” pF :XF → X and a map πF :XF → BC. It turns out that pF is a
homotopy equivalence if F has representable stalks and X is a CW-space. Then
we can choose a homotopy inverse p−1

F
and obtain a map πFp

−1
F

:X → BC, well
defined up to homotopy.

Let O(X) be the poset of open subsets of a space X, ordered by inclusion. Let
F be a sheaf of C-sets on X. We can regard F as a contravariant functor from
O(X)×C to sets. The functor F determines a transport category TF whose objects
are the triples (U, c, s) consisting of an object U in O(X), an object c in C, and
s ∈ F (c)(U). A morphism from (U, c, s) to (V, d, t) is a morphism U → V in O(X)
together with a morphism f : c → d in C such that f∗(t)|U = s. Let τ be the
tautological functor (taking U ∈ O(X) to the space U) from O(X) to spaces, and
let ϕ : TF → O(X) be the forgetful functor. Put

XF := hocolim τϕ .

This comes with a canonical projection pF :XF → X, induced by the obvious
natural inclusions τϕ(U, c, s) → X. There is also a projection XF → BTF which
we can compose with the forgetful map BTF → BC. This gives

πF :XF → BC .
Proposition 2.1. If F has representable stalks, then the projection pF :XF → X
is a weak homotopy equivalence.

The proof relies on a few lemmas which in turn rely on the notion of a microfi-
bration. Recall that a map p :E → B is a Serre fibration if it has the homotopy
lifting property for homotopies X× [0, 1]→ B, with prescribed “initial” lift X → E,
where X is a CW-space. [It is enough to check this in all cases where X is a disk.]
A map p :E → B is a Serre microfibration if, for any homotopy h :X × [0, 1] → B
with prescribed initial lift h̄0 :X → E, there exist a neighborhood U of X × {0}
in X × [0, 1] and a map h̄ :U → E such that ph̄ = h|U and h̄(x, 0) = h̄0(x) for all
x ∈ X. In that case the map h̄ is a microlift of h. [Again it is enough to check the
micro-lifting property in all cases where X is a disk.]
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Lemma 2.2. Let p :E → B be a Serre microfibration. If p has weakly contractible
fibers, then it is a Serre fibration.

Notes on the proof. This is essentially due to G. Segal [8, A.2]. The hypotheses here
are slightly more general, though. There is a short inductive argument as follows.
The induction step consists in showing that if p :E → B is a Serre microfibration
with contractible fibers, then so is the projection pI :EI → BI . Here I = [0, 1], and
the mapping spaces EI = map(I, E) and BI = map(I,B) come with the compact-
open topology. The Serre microfibration property for pI is obvious, so it is enough
to establish the weak contractibility of the fibers of pI . Suppose therefore given a
map γ : I → B and a map f :Sn × I → E which covers γ, so that pf(z, t) = γ(t) for
z ∈ Sn and t ∈ I. We must extend f to a map g :Dn+1 × I → E which covers γ.
But that is easy: Use a sufficiently fine subdivision of I into subintervals [ar, ar+1]
so that partial extensions

gr :Dn+1 × [ar, ar+1]→ E

of f can be constructed, with pgr(z, t) = γ(t) for z ∈ Dn+1 and t ∈ [ar, ar+1]. Then
improve gr if necessary, on a small neighborhood of Dn+1×{ar} in Dn+1×[ar, ar+1],
to ensure that gr(z, ar) = gr−1(z, ar) for z ∈ Dn+1.

The induction beginning consists in showing that p has the path lifting property.
(That is, given a path γ : I → B and a ∈ E with p(a) = γ(0), there exists a path
ω : I → E with pω = γ and ω(0) = a.) But that is also easy.

Lemma 2.3. Let τ be the tautological functor from O(X) to spaces and let K be a
compact subset of hocolim τ . Then there exist a finite full sub-poset P ⊂ O(X) and
a subfunctor κ of τ |P with compact values such that K ⊂ hocolim κ.

Remarks. The fullness assumption means that U, V ∈ P and U ⊂ V imply U 6 V
in P. By a subfunctor κ of τ |P is meant a selection of subspaces κ(U) ⊂ τ(U) = U ,
one for each U ∈ P, such that κ(V ) ⊂ κ(U) if V 6 U in P.

The lemma is closely related to an observation for which I am indebted to Larry
Taylor: The mapping cylinder C of the inclusion of the open unit interval in the
closed unit interval is not homeomorphic to a subset of [0, 1]2. This is easy to verify,
although surprising. The two endpoints of the closed unit interval, viewed as ele-
ments of the mapping cylinder C, don’t have countable neighborhood bases; hence
C is not even metrizable. Equally surprising, and more to the point, is the following.
Let K be a compact subset of C. Then there exists a compact subinterval L of the
open unit interval such that K is contained in the mapping cylinder of the inclusion
L→ [0, 1]. For the proof, exhaust the open unit interval by an ascending sequence
of compact subintervals Li. Suppose if possible that for each i there exists xi ∈ K
which is not contained in the mapping cylinder of the inclusion Li → [0, 1]. Then the
xi form an infinite discrete closed subset of K, which contradicts the compactness
of K.

Proof of lemma 2.3. The classifying space BO(X) is a simplicial complex. This has
one n-simplex for each subset of O(X) of the form {U0, U1, . . . , Un} where Ui−1 is
a proper subset of Ui, for i ∈ {1, 2, . . . , n}. The image of C under the projection
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hocolim τ → BO(X) is contained in a compact simplicial subcomplex BO(X), and
without loss of generality we can assume that the subcomplex has the form BP for
a finite full sub-poset P of O(X). For each simplex S of BP, let e(S) ⊂ BP be the
“cell” determined by S, so that e(S) is locally closed in BP and BP is the disjoint
union (but not the coproduct in general) of the e(S) for the simplices S of BP.
Let U(S) be the smallest of the open sets corresponding to the vertices of S. The
inverse image of e(S) for the projection

hocolim τ −→ BO(X)

is identified with e(S) × U(S). Its intersection with K is contained in a subset of
the form e(S) × L(S), where L(S) ⊂ U(S) is compact. (This can be proved as in
the remark just above.) Choose such an L(S) for every simplex S in BP. For an
element U of P let

κ(U) :=
⋃

S with U(S)⊂U

L(S).

Then κ(V ) ⊂ κ(U) for V,U ∈ P with V ⊂ U , and each κ(U) is compact.

Corollary 2.4. The projection pF :XF → X is a Serre microfibration.

Proof. Write p = pF . Let q :XF → BTF be the standard projection (from the
homotopy colimit to the classifying space of the indexing category). As we just
discovered, the formula y 7→ (p(y), q(y)) need not define an embedding of XF in
X × BTF , but it certainly defines an injective map and we can use that to label
elements of XF . In particular, let h :Di × [0, 1] −→ X be a homotopy with an
“initial lift” H0 :Di −→ XF , so that h(z, 0) = pH0(z). We need to find ε > 0 and
a map H :Di × [0, ε] −→ XF such that pH = h on Di × [0, 1] and H(z, 0) = H0(z)
for z ∈ Di. The plan is to define H in such a way that

(pH(z, t), qH(z, t)) = (h(z, t), qH0(z)),

for (z, t) ∈ Di × [0, ε], which means that qH :Di × [0, 1] −→ BTF is a constant
homotopy. By lemma 2.3, the plan is sound, giving a well defined and continuous
map Di × [0, ε] −→ XF for sufficiently small ε.

Lemma 2.5. The projection pF :XF −→ X has contractible fibers.

Proof. The fiber over x ∈ X is identified with the homotopy colimit of the (con-
travariant, set-valued) functor

(U, c) 7→ F (c)(U)

where U runs through the open subsets of X containing x, and c runs through the
objects of C. By a well-known Fubini principle for homotopy colimits, it is homotopy
equivalent to the double homotopy colimit

hocolim
c

hocolim
U3x

F (c)(U).



Homology, Homotopy and Applications, vol. 7(1), 2005 193

In this expression the inside homotopy colimit is a homotopy colimit of sets (i.e.,
discrete spaces) taken over a directed poset, and therefore the canonical map

hocolim
U3x

F (c)(U) −→ colim
U3x

F (c)(U)

is a homotopy equivalence. Therefore

hocolim
c

hocolim
U3x

F (c)(U) ' hocolim
c

F
(c)
x

where F
(c)
x is the stalk of F (c) at x. But the stalk functor Fx is representable by

assumption. The homotopy colimit of a representable functor is contractible.

Proof of proposition 2.1. Apply lemma 2.2 and note that a Serre fibration with
weakly contractible fibers is a weak homotopy equivalence.

3. Classification of sheaves up to concordance

Lemma 3.1. Let F0 and F1 be two sheaves of C-sets on X, both with repre-
sentable stalks. Let g : F0 → F1 be a binatural transformation. Then F0 and F1

are concordant.

Proof. Let e0 :X → X × I be given by e0(x) = (x, 0) and let p :X × I → X be the
projection. For an object c in C and an open subset U of X× [0, 1], let U0 = e−1

0 (U)
and let G (c)(U) be the set of pairs (s, t) ∈ F0(U0) × p∗F1(U) such that gs = e∗0t.
Now G is a sheaf of C-sets on X × I with representable stalks. Its restrictions to
X × {0} and X × {1} are identified with F0 and F1, respectively.

Corollary 3.2 (to proposition 2.1 and lemma 3.1). Let F be a sheaf of C-sets
on X with representable stalks. Suppose that X is a CW-space. Then

πFp
−1
F :X → BC

is a classifying map for F . That is, (πFp
−1
F )∗E is concordant to F , with E as in

definition 1.1.

Proof. Abbreviate p = pF , π = πF . It is enough to show that the sheaves π∗E
and p∗E on XF are concordant. By lemma 3.1, it is then also enough to make a
map from π∗E to p∗F . That is what we will do, using the “étale” point of view.
Therefore let z ∈ XF . We need to compare the stalk of F at p(z) ∈ X with the
stalk of E at π(z) ∈ BC. The point z maps to some cell in BTF which corresponds
to a nondegenerate diagram

(U0, c0)← (U1, c1)← · · · ← (Uk−1, ck−1)← (Uk, ck)

in O(X) × C, with p(z) ∈ Uk, and an element s0 ∈ F (c0)(U0). The stalk of E at
π(z) is then represented by the object c0. The germ of s0 near p(z) amounts to a
morphism from c0 to the object which represents the stalk of F at p(z); equivalently,
by the Yoneda lemma, s0 determines a C-map from the stalk of E at π(z) to the
stalk of F at p(z). Letting z vary now, and selecting an object c in C, we obtain a
map over XF from Spé(π∗E (c)) to Spé(p∗F (c)). This is continuous (verification left
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to the reader) and natural in c, and therefore amounts to a map between sheaves
of C-sets on XF , from π∗E to p∗F .

Proof of theorem 0.1. Suppose that X is a CW-space. Let g :X → BC be any map
and put F = g∗E . We have to show that g is homotopic to πp−1, where π = πF

and p = pF . We note that XF also has the homotopy type of a CW-space since it
is a homotopy colimit of open subsets of X (all of which have the homotopy type
of CW-spaces). Hence p is a homotopy equivalence. Therefore, showing g ' πp−1

amounts to showing that gp ' π.
Now recall that XF was constructed as the homotopy colimit of a functor τϕ

from a certain category TF with objects (U, c, s) to the category of spaces. The
maps gp :XF → BC and π :XF → BC both have a factorization of the following
kind:

hocolim
(U,c,s)

U
v−−−−→ hocolim

c
Spé(E (c)) w−−−−→ BC .

Here v is (in both cases) induced by a natural transformation from the functor
(U, c, s) 7→ U to the functor (U, c, s) 7→ Spé(E (c)), given by the maps

U −→ Spé(E (c)) ; x 7→ (x, s) .

In the case of gp, the second map w = w0 in the factorization is determined by the
projections Spé(E (c)) → BC. In the case of π, the map w = w1 is the composition
of the projection to BTF and the forgetful map BTF → BC.

Consequently it is now sufficient to show that w0 and w1 are weakly homotopic,
which is to say, w0f ' w1f for any map f from a CW-space to the common source of
w0 and w1. It is enough to check this for a particular f which is a weak equivalence.
A good choice of such an f is the map

hocolim
c

B(c ↓ C) −→ hocolim
c

Spé(E (c))

induced by the natural maps λc :B(c ↓ C) → Spé(E (c)). By proposition 1.3, this f
is indeed a weak homotopy equivalence. The maps w0f and w1f are easily seen to
be homotopic. Indeed, each (c ↓ C) has two obvious functors two C, one given by
(c → d) 7→ d and the other by (c → d) 7→ c. These are related by a natural trans-
formation, which determines a homotopy h(c) between the induced maps B(c ↓ C)
to BC. Integrating the homotopies h(c) one obtains a homotopy w0f ' w1f .
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