
Exotic spheres and the Whitehead space
Translation of: Sphères exotiques et l’espace de Whitehead by Michael Weiss;
C.R. Acad. Sc. Paris, vol. 303 (1986). Some serious misprints have been corrected.

I. Review: An obstruction theory. — Let Θn be the group of diffeomorphism classes of
oriented smooth homotopy spheres of dimension n. Let Diff(Sn−1) be the simplicial group of
orientation preserving diffeomorphisms Sn−1 → Sn−1. For n > 5, the natural homomorphism
from π0Diff(Sn−1) to Θn is surjective by Smale’s h–cobordism theorem, and injective by Cerf’s
pseudo–isotopy theorem. It is easily seen that π0Diff(Sn−1) ∼= π0Diff∂(In−1), where Diff∂(In−1)
is the simplicial group of diffeomorphisms In−1 → In−1 which restrict to the identity near the
boundary ∂In−1. Summarizing, there is an isomorphism Θn

∼= π0Diff∂(In−1) for n > 5.

Question. — Given a class in π0Diff∂(In−1) and given an integer q with 0 ≤ q ≤ n− 1, is there
a representative f of that class such that

(?)
In−1 f−→ In−1

↓ ↓
Iq =−→ Iq

commutes ? (The vertical arrows are the standard projections.)

Let Vq ⊂ Diff∂(In−1) be the simplicial group of all those f for which (?) commutes. Then

{1} = Vn−1 ⊂ Vn−2 ⊂ ... ⊂ V1 ⊂ V0 = Diff∂(In−1) .

To describe the simplicial set Vj/Vj+1 of left cosets of Vj+1 in Vj we will use the following notation.
For a smooth compact manifold M , let C(M) be the (simplicial) group of pseudoisotopies alias
concordances of M ; that is, diffeomorphisms M×I → M×I which are the identity near M×{0}
and ∂M × I. There are (almost obvious) homotopy equivalences

Vj ' ΩjDiff∂(In−1−j) , Vj/Vj+1 ' ΩjC(In−2−j) .

They lead to exact sequences

πj+1C(In−2−j) −→ π0Vj+1 −→ π0Vj −→ πjC(In−2−j)

and therefore to an obstruction theory for the study of π0V0
∼= Θn. For more details, see [2].

Now it is well known that the spaces C(Iq) are closely related to the algebraic K–theory of Z.
More precisely, there are stabilisation maps

· · · → C(Iq−1) → C(Iq) → C(Iq+1 → · · ·
and a map

C(I∞) := lim
q
C(Iq) −→ Ω2(BGL(∞,Z)+);

see [3], [4], [5]. Hence there is a connection between homotopy spheres and algebraic K–theory.

II. Tying the obstructions together. — To elucidate this connection, we will construct:

(i) a fibration p : E → Sn−2 whose fibers have the homotopy type of C(In−2);
(ii) an involution τ : E → E sucht that pτ = αp, where α is the antipodal involution on Sn−2;
(iii) for each oriented smooth homotopy sphere, a homotopy class of equivariant sections of p.

Here are the details:
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(i) The fibration. — Let Dn−1 ⊂ Rn−1 be the unit disk. For each x ∈ Sn−2 = ∂Dn−1 let

W (x) = {y ∈ Sn−2 | 〈x, y〉 ≥ 0} ,

where 〈 , 〉 is the usual inner product. Let Ex be the group of diffeomorphisms f from Dn−1

to Dn−1 for which f(z) = z whenever z ∈ W (x). Then clearly Ex ' C(In−2).
(ii) The involution. — For each x ∈ Sn−2 there is a surjection

prx : W (x)× I → Dn−1

(v, t) 7→ v − 2t〈v, x〉 · x.

For each f ∈ Eα(x) (where α(x) is the antipode of x) let ∂f : W (x) → W (x) be the
restriction of f to W (x). Define ∂f × I : Dn−1 → Dn−1 by

(∂f × I)(prx(v, t)) := prx(∂f(v), t).

The map
Eα(x) −→ Ex ; f 7→ (∂f × I)−1 · f

is a homeomorphism. Letting x vary in Sn−2, one obtains an involution τ : E → E for
which pτ = αp.

(iii) The equivariant section ψ(Σn) associated with a smooth homotopy sphere Σn. — We
represent Σn by a diffeomorphism f : Dn−1 → Dn−1 which fixes ∂Dn−1 = Sn−2 pointwise.
For each x ∈ Sn−2 we can view f as an element of the fiber Ex , by the very definition
of Ex. The section ψ(Σn) of p : E → Sn−2 obtained in this way is indeed equivariant. (It
can be shown that the section is non–equivariantly nullhomotopic; hence it is a 2–primary
invariant.)

Now let Wh(∗) = WhDIFF(∗) be the spectrum associated with the infinite loop space B2C(I∞).
This comes with a canonical involution tw, independent of n, which we will regard as an operation
of Z/2 = π1(RP∞) on Wh(∗).

Remark. — One can view ψ(Σn) as an element of

Hn(RP∞;Wh(∗)tw) = πn(S∞+ ∧Z/2 Wh(∗)).

Sketch proof. — Let p̂ : Ê → RPn−2 be the fibration obtained from p : E → Sn−2 by passage to
the orbit spaces Ê = EZ/2 and RPn−2 = (Sn−2)Z/2. Then ψ(Σn) is a section of p̂, in other words
a ‘twisted map’ from RPn−2 to C(In−2). This leads to a twisted map from RPn−2 to C(I∞) by
means of a stabilisation of the fibers of p̂. But C(I∞) is a representing space for the representable
cofunctor H0( ; Σ−2Wh(∗)). The twisted map RPn−2 → C(I∞) therefore represents an element
of H0(RPn−2; Σ−2Wh(∗)tw′ where tw′ : Wh(∗) → Wh(∗) is an appropriate involution (which
depends on n). To complete the proof, one uses the homomorphisms

H0(RPn−2; Σ−2Wh(∗)tw′) ∼=−→ Hn−2(RPn−2; Σ−2Wh(∗)tw)
∼=−→ Hn(RPn−2;Wh(∗)tw) −→ Hn(RP∞;Wh(∗)tw) ;

the first of these is a Poincaré duality isomorphism, the second is a suspension isomorphism,
and the third is induced by the inclusion RPn−2 ⊂ RP∞.
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For any positive integer q and sufficiently large n (larger than an integer n(q) depending on q),
the following conditions are equivalent:

(i) the smooth homotopy sphere Σn can be obtained from a diffeomorphism f ∈ Diff∂(In−1)
making the square (?) above commutative;

(ii) the invariant ψ(Σn) ∈ Hn(RP∞;Wh(∗)tw) belongs to the image of the homomorphism
induced by inclusion,

Hn(RPn−q−2;Wh(∗)tw) −→ Hn(RP∞;Wh(∗)tw).

Moreover (i) implies (ii) for all n > q.

The existence of an invariant having roughly the properties of ψ was conjectured by Bruce
Williams (Notre Dame) in a more general setting, along with the theorem just below. A joint
article is in preparation.

III. Calculations. — Recall that for n ≥ 4, the surgery obstruction group Ln+1(Z) is isomor-
phic to the bordism group of smooth compact stably framed manifolds Mn+1 whose boundary
∂M is a homotopy sphere. The isomorphism is obtained by associating to such an M its signa-
ture divided by 8 if n + 1 = 4k, and its Kervaire invariant if n + 1 = 4k + 2. This description of
Ln+1(Z) gives us a homomorphism

ψ∂ : Ln+1(Z) −→ Hn(RP∞;Wh(∗)tw)
[M ] 7→ ψ(∂M) .

Waldhausen has obtained a map of spectra

λ : Wh(∗) −→ K(Z).

This map commutes with the standard involutions; note that K(Z) has a standard involution
coming from the involutions GL(m,Z) → GL(m,Z) ; A 7→ (At)−1. Hence there is an induced
homomorphism

λ : Hn(RP∞;Wh(∗)tw) −→ Hn(RP∞;K(Z)tw) .

Our goal is to describe the composite homomorphism

λψ∂ : Ln+1(Z) −→ Hn(RP∞;K(Z)tw).

On needs to know that, for n = 4k − 1, there is a Poincaré duality isomorphism

Hk(RPn;K(Z)tw) ∼= Hn−k(RPn;K(Z)tw).

The element corresponding to 1 ∈ H0(RPn;K(Z)tw) under this duality will be called the fun-
damental class [RPn] ∈ Hn(RPn;K(Z)tw).

Theorem. — For x ∈ Ln+1(Z) one has

λψ∂(x) =
{

(signature of x) · [RPn] if n + 1 = 4k
0 otherwise

in Hn(RP∞;K(Z)tw).

Suppose now that n = 4k − 1 (where k > 1) and let Σn be the Milnor exotic sphere. It
can be regarded as the boundary of the generator of L4k(Z) ∼= Z. Using the above theorem
and easy calculations with real topological K–theory, one can estimate the order of ψ(Σn) in
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Hn(RP∞;Wh(∗)tw). It is divisible by 22k−3 if k is even, and by 22k−2 if k is odd. Using the
Atiyah–Hirzebruch spectral sequence, one can deduce:

Corollary. — Let β(k) be the number of indices i such that 0 ≤ i ≤ 4k− 1 and πi(Wh(∗)) has
odd order (note that 1 is odd). Then β(k) ≤ 2k + 3 if k is even, and β(k) ≤ 2k + 2 if k is odd.

This result has also been obtained by Bökstedt and Waldhausen, see [1], with completely different
methods.

A more detailed investigation of the Atiyah–Hirzebruch spectral sequence gives the following.
Let f ∈ Diff∂(I4k−2) represent Milnor’s exotic sphere.

Corollary. — It is impossible to choose f in such a way that the diagram

I4k−2 f−→ I4k−2

↓ ↓
I2 =−→ I2

(where the vertical arrows are the standard projections) commutes.

In fact one encounters a nonzero obstruction in π3(Wh(∗)) ∼= Z/2. (There is no obstruction in
π2(Wh(∗)) because that group is zero by Cerf’s pseudoisotopy theorem.) It is surprising that
such a simple description of the generator of π3(Wh(∗)) ∼= Z/2 exists; until 1983, the structure
of π3(Wh(∗)) was unknown. See also [1].
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