Exotic spheres and the Whitehead space

Translation of: Sphéres exotiques et 'espace de Whitehead by Michael Weiss;
C.R. Acad. Sc. Paris, vol. 303 (1986). Some serious misprints have been corrected.

I. Review: An obstruction theory. — Let ©, be the group of diffeomorphism classes of
oriented smooth homotopy spheres of dimension n. Let Diff(S*~!) be the simplicial group of
orientation preserving diffeomorphisms S"~! — S"~!. For n > 5, the natural homomorphism
from moDiff(S”~1) to ©,, is surjective by Smale’s h—cobordism theorem, and injective by Cerf’s
pseudo-isotopy theorem. It is easily seen that moDiff(S?~!) = mDiff?(I"~1), where Diff? (1"~ 1)
is the simplicial group of diffeomorphisms I"~1 — I™~! which restrict to the identity near the
boundary dI"~!. Summarizing, there is an isomorphism ©,, = mDiff?(I"~1) for n > 5.

Question. — Given a class in moDiff?(I"~!) and given an integer ¢ with 0 < ¢ < n — 1, is there
a representative f of that class such that
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commutes 7 (The vertical arrows are the standard projections.)

Let V, C Diff?(I"~1) be the simplicial group of all those f for which (x) commutes. Then
{1} =V, 1 CVp o C..C Vi CVy=Diff(I" ).

To describe the simplicial set V;/Vj1 of left cosets of Vj 11 in V; we will use the following notation.
For a smooth compact manifold M, let C(M) be the (simplicial) group of pseudoisotopies alias
concordances of M; that is, diffeomorphisms M x I — M x I which are the identity near M x {0}
and OM x I. There are (almost obvious) homotopy equivalences

Vi = D), Vil Vier = QIC(I"2).
They lead to exact sequences
T C(I"*) — mVjyr — moV; — mC(I" %)

and therefore to an obstruction theory for the study of mVy = ©,,. For more details, see [2].
Now it is well known that the spaces C(I?) are closely related to the algebraic K—theory of Z.
More precisely, there are stabilisation maps

RN C([q—l) — C(I7) — C([q+1 SN
and a map
C(I*®) :=lim C(IY) — Q*(BGL(c0,Z)");
q

see [3], [4], [5]. Hence there is a connection between homotopy spheres and algebraic K-theory.

II. Tying the obstructions together. — To elucidate this connection, we will construct:

(i) a fibration p: E — S"~2 whose fibers have the homotopy type of C(1"~2);
(ii) an involution 7: E — E sucht that pr = ap, where « is the antipodal involution on S"~2;
(iii) for each oriented smooth homotopy sphere, a homotopy class of equivariant sections of p.

Here are the details:



(i) The fibration. — Let D"~1 € R™~! be the unit disk. For each € S"~2 = gD" ! let
W(z) ={y € S"7?| (z,y) > 0},
where (, ) is the usual inner product. Let E, be the group of diffeomorphisms f from D"~
to D"t for which f(z) = z whenever z € W(z). Then clearly E, ~ C(I"2).
(ii) The involution. — For each z € S"~2 there is a surjection
pry: W(z) x I — D1
(v,t) — v —2t{v,x) - x.
For each f € E,() (where a(z) is the antipode of z) let df: W(x) — W(z) be the
restriction of f to W (z). Define 0f x I: D"t — D"~ ! by

(0f x I)(pre (v, t)) := pra(9f(v), t).
The map
Ea(x) — By f'_)(anI)_lf
is a homeomorphism. Letting # vary in S 2, one obtains an involution 7: E — E for
which pr = ap.

(iii) The equivariant section ¥(X™) associated with a smooth homotopy sphere ¥". — We
represent X" by a diffeomorphism f: D*1 — D"! which fixes D" 1 = S*~2 pointwise.
For each z € S"2 we can view f as an element of the fiber £, , by the very definition
of E,. The section ¥(%,,) of p: E — S"~2 obtained in this way is indeed equivariant. (It
can be shown that the section is non—equivariantly nullhomotopic; hence it is a 2—primary
invariant.)

Now let Wh(x) = WhP™F (%) be the spectrum associated with the infinite loop space B2C(I°°).
This comes with a canonical involution tw, independent of n, which we will regard as an operation
of Z/2 = 71 (RP*) on Wh(x).

Remark. — One can view ¢(X") as an element of
Hyp(RP%; Wh()™) = 7,(ST A/ Whx)).

Sketch proof. — Let p: E — RP" 2 be the fibration obtained from p: E — S"2 by passage to
the orbit spaces £ = Ez,/5 and RP"2 = (S"_Q)Z/z. Then 1(X") is a section of p, in other words
a ‘twisted map’ from RP"~2 to C(I"~2). This leads to a twisted map from RP"~2 to C(I*°) by
means of a stabilisation of the fibers of p. But C(I°°) is a representing space for the representable
cofunctor H°( ;X "2Wh(x)). The twisted map RP"~2? — C(I°°) therefore represents an element
of HO(RP"2; % 2Wh()" where tu/: Wh(x) — Why(x) is an appropriate involution (which
depends on n). To complete the proof, one uses the homomorphisms

HO(RP™ 2 S 2Wh(x)™) — H, o(RP" 2 X 2Wh(x)™)
=, H,(RP" 2, Wh(x)) —  Hyp(RP>®; Wh(x)™);

the first of these is a Poincaré duality isomorphism, the second is a suspension isomorphism,
and the third is induced by the inclusion RP"~2 ¢ RP>,



For any positive integer ¢ and sufficiently large n (larger than an integer n(q) depending on q),
the following conditions are equivalent:

(i) the smooth homotopy sphere X" can be obtained from a diffeomorphism f € Diff?(I"~1)
making the square (%) above commutative;
(ii) the invariant (X") € H,(RP*; Wh(x)™) belongs to the image of the homomorphism
induced by inclusion,
H,(RP" 972, Wh(%)") — H,,(RP>; Wh(x)").
Moreover (i) implies (ii) for all n > q.
The existence of an invariant having roughly the properties of ¥ was conjectured by Bruce

Williams (Notre Dame) in a more general setting, along with the theorem just below. A joint
article is in preparation.

ITI. Calculations. — Recall that for n > 4, the surgery obstruction group L,1(Z) is isomor-
phic to the bordism group of smooth compact stably framed manifolds M™*! whose boundary
OM 1is a homotopy sphere. The isomorphism is obtained by associating to such an M its signa-
ture divided by 8 if n + 1 = 4k, and its Kervaire invariant if n + 1 = 4k + 2. This description of
Ly11(Z) gives us a homomorphism
$d: Lpi1(Z) —  Hy(RP>®; Wh(x)™")
[M] — Y(OM).
Waldhausen has obtained a map of spectra
A: Wh(x) — K(Z).

This map commutes with the standard involutions; note that K(Z) has a standard involution
coming from the involutions GL(m,Z) — GL(m,Z); A — (A")~!. Hence there is an induced
homomorphism

A: H,(RP®; Wh(%)") — H, (RP*;K(Z)™).
Our goal is to describe the composite homomorphism
MpO: Lny1(Z) — Ho(RP¥;K(Z)™).
On needs to know that, for n = 4k — 1, there is a Poincaré duality isomorphism
H,(RPY; K(Z)™) = H" F(RP"; K(Z)™).

The element corresponding to 1 € H(RP"; K(Z)™) under this duality will be called the fun-
damental class [RP"] € H,(RP"; K(Z)™).

Theorem. — For x € Ly,41(Z) one has

| (signature of x) - [RP"| ifn+1=4k
Apo(z) = { 0 otherwise

in H,(RP>; K(Z)).

Suppose now that n = 4k — 1 (where k£ > 1) and let ¥ be the Milnor exotic sphere. It

can be regarded as the boundary of the generator of L4 (Z) = Z. Using the above theorem

and easy calculations with real topological K—theory, one can estimate the order of 1 (X") in
3



H,(RP>; Wh(x)™). It is divisible by 2273 if k is even, and by 22*=2 if k is odd. Using the
Atiyah—Hirzebruch spectral sequence, one can deduce:

Corollary. — Let 3(k) be the number of indices i such that 0 <i < 4k —1 and m;(Wh(x)) has
odd order (note that 1 is odd). Then B(k) < 2k + 3 if k is even, and B(k) < 2k + 2 if k is odd.

This result has also been obtained by Bokstedt and Waldhausen, see [1], with completely different
methods.

A more detailed investigation of the Atiyah—Hirzebruch spectral sequence gives the following.
Let f € Diff?(I*~2) represent Milnor’s exotic sphere.

Corollary. — It is impossible to choose f in such a way that the diagram

J4k—2 R J4k—2

! !
r = r

(where the vertical arrows are the standard projections) commutes.

In fact one encounters a nonzero obstruction in m3(Wh(x)) = Z/2. (There is no obstruction in
mo(Wh(x)) because that group is zero by Cerf’s pseudoisotopy theorem.) It is surprising that
such a simple description of the generator of m3(Wh(x)) = Z/2 exists; until 1983, the structure
of m3(Wh(x)) was unknown. See also [1].
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