
EXCISION AND RESTRICTION IN CONTROLLED K–THEORY

Michael Weiss

Abstract. The main result is a description in terms of controlled algebra/topology
of the locally finite homology theory associated with the algebraic K–theory spectrum
of a ring or the algebraic K–theory spectrum of a topological space. While such a
description is known from [ClPV], the one here is better suited as a receptacle for
characteristic invariants.

0. Introduction

Controlled algebra, a hybrid of algebra and topology, has been used to give
a description of the generalized homology theory associated with K(R), the (in
general non–connective) algebraic K–theory spectrum of a ring R. See [PW1],
[PW2], [ACFP], [V1], [V2], [CdP]. Here the ring R may be discrete, or it may be
one of the brave new group rings which arise in Waldhausen’s algebraic K–theory
of spaces. Descriptions of this type have proved to be very useful in topology. In
particular, assembly maps [WWa] in K–theory such as

α: X+ ∧K(Z) −→ K(Z[π1X])

can often be interpreted as forget control maps. Hence elements in Ω∞K(Z[π1X])
can often be shown to lift across the assembly to Ω∞(X+ ∧K(Z)), provided they
arise from geometric situations with sufficient control.

Examples. (i) Let X be a connected space which admits a homotopy domina-
tion by a finite CW–space. Then X determines a characteristic element χh(X)
in Ω∞K(Z[π1X]) which represents the projective class of the singular chain com-
plex of the universal cover of X. The image of χh(X) in the reduced projective
class group

K̃0(Z[π1X]) = coker [H0(X;K(Z)) → K0(Z[π1X])]

= coker
[
π0(Ω∞(X+ ∧K(Z))) α∗−→ π0(Ω∞K(Z[π1X]))

]

is the Wall finiteness obstruction [Wa] of X. If X happens to be a compact ENR,
then χh(X) lifts to an element χ(X) ∈ Ω∞(X+ ∧ K(Z)), and so the finiteness
obstruction of X vanishes. (The vanishing was first proved in greater generality by
West [We] using Hilbert cube manifold methods.)
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(ii) Let f : X → Y be a homotopy equivalence between compact CW–spaces.
This determines a path χh(f) from f∗χh(X) to χh(Y ) in Ω∞K(Z[π1Y ]). Together
with the lifts f∗χ(X), χ(Y ) of f∗χh(X) and χh(Y ), respectively, χh(f) determines
an element in the Whitehead group

Wh(π1X) = coker [H1(X;K(Z)) → K1(Z[π1X])]

= coker
[
π1(Ω∞(X+ ∧K(Z))) α∗−→ π1(Ω∞K(Z[π1X]))

]
.

This is the Whitehead torsion of f . If f is a homeomorphism, then χh(f) lifts
across the assembly to a path χ(f) from f∗χ(X) to χ(Y ). Hence the Whitehead
torsion vanishes. (Here the vanishing was first proved by Chapman [Cha] using
Hilbert cube manifold methods.)

Ranicki and Yamasaki [RY] prove the two vanishing theorems mentioned above
using the assembly map in controlled K0- and K1-groups. Explicit constructions of
the characteristic elements χh(X), χ(X) and characteristic paths χh(f) and χ(f)
can be found in [DWW].

In more detail: see 6.1–6.3 of [DWW] for χh(X) and χh(f); then 7.8 and 7.9
for χ(X) and χ(f); then 8.7–8.9 for compatibility. This gives the nonlinear
versions, i. e.,

χh(X) ∈ Ω∞(A(X)),

χ(X) ∈ Ω∞(X+ ∧A(∗))

where A(X) is Waldhausen’s algebraic K–theory spectrum of X. To get the
linear versions apply the natural linearization map A(X) → K(Z[π1(X)]).
See also 6.4 of [DWW].

But the belief that these characteristic elements and characteristic paths have been
known for some time, with the stated assumptions on X and f , is essential to this
author’s understanding of the development of controlled topology and the modest
contribution of this paper.

With a view to generalizations, it is appropriate to describe the situation ab-
stractly as follows. We start with a homotopy invariant functor J from spaces to
spectra. Such a functor comes (always) with an essentially unique assembly map
[WWa], a natural transformation

X+ ∧ J(∗) → J(X) .

In addition, we assume given a rule associating to certain spaces X a characteristic
element χh(X) ∈ Ω∞J(X). The rule also associates, with a homotopy equivalence
f :X1 → X2 between such spaces, a path χh(f) in Ω∞J(X2) from f∗χh(X1) to
χh(X2). Interpretation of the assembly map as a forget control map gives, under
suitable conditions on X which include compactness, a lift of χh(X) across the
assembly map to an element χ(X) ∈ Ω∞(X+∧J(∗)). And under suitable conditions
on a homotopy equivalence f : X1 → X2 between compact spaces, the path χh(f)
lifts to a path χ(f) from f∗χ(X1) to χ(X2).

The main construction of this paper extends the (now more or less standard) con-
trolled algebra description [ACFP] of the homology theory on compact metrizable
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spaces associated with K(R) to a controlled algebra description of the correspond-
ing locally finite homology theory on locally compact spaces with countable base.

More precisely: Let L• be the category of locally compact spaces with countable
base, where a morphism from X1 to X2 is a pointed map X•

1 → X•
2 (the bullets

indicate one–point compactifications).
Important example (a): every proper map X1 → X2 determines a morphism
in L• from X1 to X2. Important example (b): every open embedding
j: X2 → X1 determines a collapse alias localization map X•

1 → X•
2 , wrong–

way; this is inverse to j on j(X2) ⊂ X1 ⊂ X•
1 and maps the complement of

j(X2) in X•
1 to the point at infinity in X•

2 .
Controlled algebraic K–theory methods are used here to construct a functor F from
L• to spectra such that F(X) ' X• ∧K(R) under mild conditions on X.

Motivation. The controlled algebra model of Ω∞(X•∧K(R)) constructed here will
be used in [DWW] as a receptacle for a characteristic element

χ(X) ∈ Ω∞(X• ∧K(R))

defined when X is an ENR, compact or not, and R = Z (linear case) or R = QS0

(nonlinear case). This extends the folklore χ described in examples (i) and (ii)
above, from compact ENR’s to arbitrary ENR’s (and, in the nonlinear setting,
refines it). If X is a compact ENR, therefore, χ(X) is still a refinement of χh(X) ∈
Ω∞(K(Z[π1X]). The extended χ, however, is also natural with respect to inclusions
of open subsets W ↪→ X (where X and of course W may be noncompact); that
is, the map Ω∞(X• ∧ K(R)) → Ω∞(W • ∧ K(R)) induced by the collapse map
from X• to W • takes χ(X) to χ(W ), up to a specified path. The naturality
property turns out to be a crucial ingredient in the proof of an index theorem
which states that χ(X) for a topological n–manifold X is Poincaré dual to a certain
characteristic class (better, generalized cocycle) evaluated on the tangent bundle
[Ki] of X. Indeed, naturality makes it possible to relate χ(X) to the ‘local indices’
χ(W ), where W runs through the open balls in X, alias tangent spaces of X. These
local indices χ(W ) essentially constitute the characteristic class.

The index theorem, in turn, can be used to show that χ(X) and hence χh(X) for
a smooth compact n–manifold are subject to rather severe restrictions. (The ho-
motopy theoretic implications can first be seen when χ or χh are applied fiberwise,
to a bundle of smooth compact manifolds; they amount to a refinement and gen-
eralization of the Bismut–Lott Riemann–Roch theorem [BiLo].) The point is that
the above characteristic generalized cocycle, which in principle can be evaluated on
any fiber bundle with fibers homeomorphic to Rn, behaves in a rather trivial way
when evaluated on n–dimensional vector bundles.

Admittedly, the construction here of controlled algebra models of Ω∞(X•∧K(R))
is routine, and the overlap with [ClPV], the earlier [ClP] and [ACFP] is considerable.
Both [ClPV] and [ACFP] construct controlled algebra models for the homology
theory on compact metrizable spaces associated with K(R). The constructions in
[ACFP] are better suited as receptacles for characteristic elements. However, [ClPV]
have a hard excision theorem in the tradition of Steenrod and Milnor [Mi] which,
for a compact metrizable pair (X, Y ), puts the homology groups of X, Y and X/Y
in a long exact sequence. By contrast [ACFP] only have the softer version where
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the mapping cone of Y ↪→ X replaces the quotient X/Y . This paper represents a
compromise between the two approaches: essentially the models of [ACFP], and
the hard excision theorems of [ClVP].

Organisation. Part I of this paper is about the case where the ring R is discrete,
and descriptions of the locally finite homology theory associated with K(R) along
the lines of [PW2], [ACFP] and [ClP]. Part II is about the case where R is one of
Waldhausen’s brave new group rings, and descriptions of the locally finite homology
theory associated with K(R) along the lines of [V2] and [ClPV]. Great care has
been taken to model Part II on Part I, in order to avoid pitfalls.

Part I:
K–Theory of categories of
controlled chain complexes

1. Additive Categories and K–Theory

Let A be a small additive category [ML]. The category A] of additive contravari-
ant functors from A to abelian groups is an abelian category. The Freyd embedding
A → A] takes an object A in A to the contravariant functor morA(?, A). It embeds
A as a full subcategory, by the Yoneda lemma [ML].

1.1. Observation. All objects of A become projective in A].

Proof. Given a diagram A
f−→ B

p←− B′ in A], where p is epic and A is in A, we
must produce f ′: A → B′ such that pf ′ = f . By the Yoneda correspondence, f
may be regarded as an element in the abelian group B(A), and this notation is
justified because B is a contravariant functor on A. Since pA: B′(A) → B(A) is
onto by assumption, we can find f ′ ∈ B′(A) such that pA(f ′) = f . By the Yoneda
correspondence again, this translates into f ′: A → B′ such that pf ′ = f . ¤

An A–complex is by definition a chain complex C, graded over Z and bounded
below, where each Cn and each dn: Cn → Cn−1 belong to A. The A–complexes
form a category

CA ,

where the morphisms are the chain maps. An A–complex C is finite if it is also
bounded above, and homotopy finitely dominated if id:C → C is homotopic to a
chain map f : C → C such that fn = 0 for all but finitely many n. The homotopy
finitely dominated objects in CA determine a full subcategory

DA ⊂ CA .

A chain map f :C → D of A–complexes is a cofibration if fn:Cn → Dn is split
monic, for all n ∈ Z ; ı.e., for each n there exists en: C ′n → Dn in A such that
fn⊕en : Cn⊕C ′n → Dn is an isomorphism. Chain homotopies between chain maps
of A–complexes are defined in the usual way, but we refrain from introducing a
homotopy category. For C in CA let

Hi(C) := ker di/ im di+1

which has meaning in A] ⊃ A. A chain map C → D in CA induces a map of graded
homology objects, H∗(C) → H∗(D).
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1.2. Corollary. A chain map e: C → D of A–complexes is a homotopy equivalence
if and only if e∗: H∗(C) → H∗(D) is an isomorphism.

Proof. It is enough to show that the mapping cone of e is contractible if e induces
an isomorphism in homology [D, 3.7]. Since the mapping cone has zero homology,
it is also enough to show that every A–complex E with vanishing homology is
contractible. We can regard such an E as an A]–complex with vanishing homology,
with the property that each En is projective, by 1.1. It is then easy to construct
a chain contraction by induction over the skeletons. Since A is full in A], this
contraction may also be regarded as a contraction of the A–complex E. ¤
Warning. The category A might be an abelian category in its own right. In such
a case it is important not to misread H∗ in 1.2 as homology of A–complexes; it is
really the homology functor on A]–complexes.

There are several accepted ways to define the algebraic K–theory of A, and we
can use 1.2 to show that they give essentially the same result.

(1) Call a sequence A1 → A2 → A3 in A short exact if it is short exact in A]

(equivalently, if it is split short exact). This makes A into an exact category
in the sense of Quillen [Q]. Hence we may define the K–theory of A as
Ω|QA|, where Q is Quillen’s construction in [Q].

(2) Call a morphism A1 → A2 in A a cofibration if it can be extended to a
short exact sequence A1 → A2 → A3 , and call it a weak equivalence if it is
an isomorphism. This makes A into a category with cofibrations and weak
equivalences in the sense of [Wd]. Hence we may define the K–theory of A

as Ω|S•A|, where S• is Waldhausen’s construction in [Wd, §1.3]. The spaces
Ω|QA| and Ω|S•A| are homotopy equivalent by [Wd, §1.9].

(3) Assume for simplicity that A is idempotent complete. (That is, for every
idempotent endomorphism p:A → A in A, there exist qi : Ai → A for
i = 1, 2 in M such that q1 ⊕ q2 : A1 ⊕ A2 → A is an isomorphism, and
pq1 = q1 , pq2 = 0.) We want to re–define the K–theory of A in terms of DA.
For this purpose we need to make DA into a category with cofibrations and
weak equivalences; we do so by using the notion of cofibration defined earlier,
and homotopy equivalences as weak equivalences. Now we may define the
K–theory of DA as Ω|S•DA|. We may also embed A in DA by identifying
it with the full subcategory consisting of the chain complexes concentrated
in dimension zero. Then [TT, Thm. 1.7.11] the inclusion A → DA, which
is an exact functor, induces a homotopy equivalence

Ω|S•A| ' Ω|S•DA| .
Proof. We want to apply [Wd, Thm. 1.7.1]. For this we need a homology
theory on A, which we have as in corollary 1.2. above, with values in A].
We also need an exact subcategory of A], for which we take A itself. Let
D0A ⊂ DA be the full subcategory consisting of all objects C for which
H0(C) belongs to A and Hi(C) = 0 for i 6= 0. By Waldhausen’s 1.7.1, the
inclusion

D0A → DA

induces a homotopy equivalence of the K–theories. Now observe that every
C in D0A has a canonical filtration by cofibrations

C ′ ↪→ C ′′ ↪→ C
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where C ′i = C ′′i = 0 for i < 0, and C ′i = C ′′i = Ci for i > 0, and C ′0 , C ′′0
are image of d1 and kernel of d0, respectively. This definition is meaningful
in A], and using idempotent completeness one verifies easily that C ′0 and
C ′′0 are indeed in the subcategory A, at least up to isomorphism. By the
additivity theorem [Wd], [MC], the identity map D0A → D0A is homotopic
to the sum of the three maps induced by the exact endofunctors

C 7→ C/C ′′ , C 7→ C ′′/C ′ , C 7→ C ′ .

But C ′ and C/C ′′ have vanishing homology and are therefore contractible,
so that two of the three maps are nullhomotopic. It follows that the inclusion
A → D0A induces a homotopy equivalence of K–theories. ¤

What is the homotopy type of K(DA) when A is not idempotent complete ?
This is answered by the following lemma, for which we introduce the idempotent
completion A∧ of A. Objects of A∧ are pairs (A, p) where A is in A and p: A → A
is idempotent. A morphism in A∧ from (A, p) to (A′, p′) is a morphism f from A
to A′ in A such that p′fp = f . There is a full embedding A → A∧ taking A to
(A, id). Note that A∧ is idempotent complete, and every object of A∧ is a direct
summand of some object in the subcategory A.

1.3. Lemma. The inclusion K(DA) → K(DA∧)) is a homotopy equivalence.

Proof. This will come out of the approximation theorem [Wd, 1.6.7], provided we
can establish the following:

Given C in DA and f :C → D in DA∧, there exist a cofibration C → C ′

in DA and a weak equivalence C ′ → D in DA∧ such that the composition
C → C ′ → D equals f .

Argument for this: By successively adding contractible chain complexes of the form

· · · ←− 0 ←− En

∼=←− En+1 ←− 0 ←− 0 ←− · · ·
to D, we can obtain an object C ′′ in DA. The projection p: C ′′ → D is a homotopy
equivalence by construction. Choose g:C → C ′′ and a homotopy h from pg to f .
Together, p and h define a map from the mapping cylinder C ′ of g to D which
extends f :C → D and which is a homotopy equivalence. ¤

Note that 1.3 and the preceding info tell us that K(A∧) ' K(DA). This descrip-
tion of K(A∧) is useful for the following reason. The category DA, with cofibrations
and weak equivalences, has a cylinder functor [Wd, 1.6]. The cylinder functor ap-
pears in the fibration theorem [Wd, 1.6.4] and in Carlsson’s product lemma [Cl1].
These are some of the best tools available to establish excision properties.

The following lemma asserts that the homotopy category associated with CA is
idempotent complete; it will be needed in the proof of theorem 3.1.

1.4. Lemma. Let C be an A–complex, and suppose that p: C → C is idempotent
up to homotopy (pp ' p). Then there exist an A–complex D and chain maps
r: C → D , s: D → C such that sr ' p , and rs ' idD.

Proof. Let λA be the following enlargement of A. An object of λA is a diagram
A0 → A1 → A2 → · · · in which all arrows are cofibrations. A morphism

(A0 → A1 → A2 → · · · ) −→ (B0 → B1 → B2 → · · · )
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is an element in limi colimj morA(Ai, Bj). We call such a morphism small if it
comes from limi morA(Ai, Bj) for some j ≥ 0. We call an object of λA small if its
identity morphism is small. The full subcategory of λA determined by the small
objects is equivalent to A.

In lemma 1.5 below, we will see that a λA–complex E for which idE is homotopic
to a (dimensionwise) small chain map is homotopy equivalent to an A–complex
(alias dimensionwise small λA–complex). Hence it is enough to construct the chain
complex D required in 1.4 as a λA–complex. This is easy: Let D be the mapping
telescope alias iterated mapping cylinder of

C
p−→ C

p−→ C
p−→ C −→ · · · .

Let r: C → D be the inclusion of the front of the telescope. To make s: D → C we
need chain maps s(i): C → D and homotopies s(i+1)p ' s(i) , for i = 0, 1, 2, . . . . We
get them by taking s(i) := p for all i, and using the hypothesis pp ' p. ¤
1.5. Lemma. Let E be a λA–complex with the property that id:E → E is homo-
topic to a dimensionwise small chain map. Then there exists a homotopy equiva-
lence D → E , where D is an A–complex.

Proof. Suppose for induction purposes that we have already managed to construct
a homotopy equivalence D → E where D is a λA–complex for which all Di with
i < k are small. The identity of D is still homotopic to a dimensionwise small
chain map D → D. Using the homotopy extension property for the inclusion of
the (k − 1)–skeleton, we can arrange the homotopy h = {hi: Di → Di+1} to be
trivial on the (k − 1)–skeleton. Then dhk + id: Dk → Dk is small, where d denotes
the differential in D. Let Dk

∼= D′
k ⊕D′′

k be a splitting such that D′
k is small and

dhk + id factors through D′
k ↪→ Dk. Let d′: Dk+1 → D′

k and d′′: Dk+1 → D′′
k be the

components of d: Dk+1 → Dk. Let B be the contractible chain complex

· · · ←− 0 ←− D′′
k

id←− D′′
k ←− 0 ←− · · ·

with the nontrivial terms in dimensions k and k + 1. There is a chain map B → D
given by

(−d′hk, id): D′′
k −→ D′

k ⊕D′′
k ,

−hk:D′′
k −→ Dk+1

in dimensions k and k + 1, respectively. If A happens to be idempotent complete,
then B → D is a cofibration of λA–complexes, and the cofiber D/B is the improve-
ment of D we have been looking for. (The projection D → D/B is a homotopy
equivalence and D/B has a k–skeleton which is dimensionwise small.) If A is not
idempotent complete, we can still say that D/B⊕ΣB is a meaningful construction,
and a λA–complex with a k–skeleton which is dimensionwise small. ¤
1.6. Remark. We can apply 1.4. to q = id−p and obtain an A–complex E and
a chain map g: C → E which is epic in homology, with kernel equal to that of q∗.
Then (f, g) : C → D⊕E induces an isomorphism in homology. Consequently (f, g)
is a homotopy equivalence. Hence D and E are complementary direct summands
of C, up to homotopy equivalence.
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2. Controlled Algebra

In this article, a control space is a pair of spaces (Z̄, Z) where Z̄ is locally compact
Hausdorff, and Z is open dense in Z̄. Informally, the set Z̄ r Z is the singular set,
whereas Z is the nonsingular set. A morphism of control spaces is a continuous
proper map of pairs f : (Z̄1, Z1) −→ (Z̄2, Z2) such that f−1(Z2) = Z1. Note that
we are less restrictive here than in [WWa, §4] because we allow pairs (Z̄, Z) with
noncompact Z̄. In any case these ideas come from [ACFP]. — A specific type of
control space which will be used frequently is

JX := (X × [0, 1], X × [0, 1[ )

where X is locally compact Hausdorff.

Fix an additive category A and a control space (Z̄, Z). Following [ACFP] except
for pedantic changes and notation, we make a new category A(Z̄, Z) whose objects
are certain covariant functors A from the poset of compact subsets of Z to A. To
state the conditions on these functors, we abbreviate A({z}) =: Az. The conditions
are:

• The set of all z ∈ Z such that Az 6= 0 is closed and discrete in Z.
• For each compact L ⊂ Z, the map

⊕
z∈L Az → A(L) induced by the inclu-

sions {z} → L is an isomorphism.
Given two objects A and B in A(Z̄, Z), a morphism f : A → B is a collection of
morphisms fx

y : Ax → By in A, subject to the following. Firstly, for each x, there
is only a finite number of y such that fx

y 6= 0 or fy
x 6= 0. Secondly, given any

z ∈ Z̄ r Z, and a neighbourhood V of z in Z̄, there exists another neighbourhood
W of z in Z̄ such that fx

y = 0 and fy
x = 0 whenever x ∈ W and y /∈ V . Composition

of morphisms is defined by
(gf)w

y :=
∑

x

gx
yfw

x .

Remark. The reader familiar with [ACFP] may have noticed that the control con-
dition here looks more restrictive than the one in [ACFP], which reads: . . . such
that fx

y = 0 whenever x ∈ W and y /∈ V . However, it is not hard to show that the
two conditions are equivalent when Z̄ is compact. In the general case, the more
symmetric condition is better, partly because we shall need it in §4 and partly
because it allows for dualization. (This is important in controlled L–theory.)

Remark. A morphism g: (Z̄1, Z1) → (Z̄2, Z2) of control spaces induces a functor
g∗: A(Z̄1, Z1) → A(Z̄2, Z2) given by (g∗A)(L) := A(g−1(L)). Note that (gh)∗ =
g∗h∗ for morphisms g, h between control spaces, assuming that gh is defined.

For A in A(Z̄, Z) and a closed neighbourhood U of Z̄ r Z in Z̄, let AU be the
object in A(Z̄, Z) defined by AU (L) = A(L ∩ U) ; this comes with a canonical
monomorphism to A, and we think of it as a subobject of A. Given A and A′

in A(Z̄, Z), a germ of morphisms from A to A′ is an equivalence class of pairs
(U, f :AU → A′). Here (U, f : AU → A′) and (W, g: AW → A′) are equivalent if fW

and gU (with domain AU∩W = (AU )W = (AW )U ) agree.

The morphism germs in A(Z̄, Z) are the morphisms in a new category A(Z̄, Z)∞
with the same objects as A(Z̄, Z). We will be interested in the functor

X 7→ F (X) := K(A(JX)∧∞) ,
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where A(JX)∧∞ is the idempotent completion of A(JX)∞ , and X denotes a locally
compact Hausdorff space with countable base. In what sense is it a functor ?
It is clear that F is a covariant functor on the category L of all locally compact
Hausdorff spaces with countable base, with proper maps as morphisms. However, F
extends to an enlarged category L• with the same objects as L, where a morphism
from X to Y is a continuous pointed map g: X• → Y • between the one–point
compactifications. To understand this extension, note that g determines a diagram

X ⊃ V
g|V−−−→ Y

where V = g−1(Y ) = Xrg−1(∞). Here V is open in X and g|V , as a map from V
to Y , is proper. We would like to define g∗ : F (X) → F (Y ) as the composition of
(g|V )∗ : F (V ) → F (Y ) (which is already defined) with a suitable restriction map

F (X) → F (V ) .

Unraveling the definition of F , we see that it is enough to define a restriction functor
A(JX)∞ → A(JV )∞. Now an object A in A(JX)∞ is a certain functor defined on
the poset of the compact subsets of X × [0, 1[ , and can indeed be restricted to the
poset of compact subsets of V × [0, 1[ . A morphism f :A → A′ in A(JX) can also
be restricted: discard all

fx
y : Ax → A′y

where x /∈ V or y /∈ V . While restriction does not respect composition of mor-
phisms in A(JX), it does respect composition of germs of morphisms, so that we
have restriction functors A(JX)∞ −→ A(JV )∞ , A(JX)∧∞ −→ A(JV )∧∞ and an
induced map F (X) → F (V ), as required.

3. Excision

3.1. Main theorem (linear version). Suppose that X is locally compact with
countable base. Let V ⊂ X be open. Then the commutative square

F (X r V ) restriction−−−−−−−→ F (∅) = ∗
yinclusion

yinclusion

F (X) restriction−−−−−−−→ F (V )

is a homotopy pullback square.

First part of proof. The proof is an application of the fibration theorem [Wd, 1.6.4]
and the approximation theorem [Wd, 1.6.7]. Notation: We have A(JX) as in §2,
and we indicate corresponding chain complex categories and germ categories by
attaching a prefix C or D or a suffix ∞ or both (when both, pass to germs before
making chain complexes). The chain complex categories have a preferred structure
of category with cofibrations and weak equivalences, as explained in §1. This will re-
main nameless. In addition, however, there is a coarse notion ω of weak equivalence
in DA(JX)∞. Namely, a chain map f : C → D in DA(JX)∞ is a weak equivalence
in the coarse sense if it becomes a weak equivalence in DA(JV )∞ under restriction.
This gives rise to three new categories with cofibrations and weak equivalences:

(1) DAω(JX)∞ , which is just DA(JX)∞ with the coarse notion of weak equi-
valence.
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(2) DAω(JX)∞ , which is the full subcategory of DA(JX)∞ consisting of those
objects C which become equivalent to zero in DAω(JX)∞. Here the pre-
ferred notion of weak equivalence is the one inherited from DA(JX)∞.

(3) DAω
ω(JX)∞ , which is DAω(JX)∞ with the coarse notion of weak equiv-

alence. This has contractible K–theory since all objects are equivalent to
the zero object.

The fibration theorem implies that the square of inclusion maps

K(DAω(JX)∞) −−−−→ K(DAω
ω(JX)∞) ' ∗

y
y

K(DA(JX)∞) −−−−→ K(DAω(JX)∞)

is a homotopy pullback square. Hence, and by 1.3, we only need to verify that, of
the maps

K(DA(J(X r V ))∞) −→ K(DAω(JX)∞) (inclusion),

K(DAω(JX)∞) −→ K(DA(JV )∞) (restriction),

the first is a homotopy equivalence, and the second is a map each of whose homotopy
fibers is empty or contractible. Both statements follow from the approximation
theorem, as we shall see. We interrupt for some definitions and remarks of a
technical nature, keeping V and X as in 3.1.

3.2. Definitions. An object A in A(JX) is good if, for each t < 1, there are
only finitely many z = (x, s) in X × [0, 1[ such that s < t and Az 6= 0. Note that
‘goodness’ is not invariant under isomorphism in A(JX). An A(JX)–complex C is
good if each Cn is good.

Homework. Verification of the following facts is left to the reader.
• If A is a good object in A(JV ), then A may also be regarded as a good

object in A(JX).
• Let f : A → B be a morphism between good objects in A(JV ). Then there

exists a closed neighbourhood U of V ×{1} in V × [0, 1] such that fU : AU →
B is a morphism in A(JX). (This is the difficult one; use the assumption
that X has a countable base.)

• Let f :C → D be a chain map between A(JV )–complexes, where D is also a
good A(JX)–complex. There exist closed neighbourhoods U(n) of V × {1}
in V × [0, 1], for n ∈ Z, such that C ′ ⊂ C defined by C ′n := CU(n) is a good
subcomplex of C, and moreover the restriction of f , as a chain map from
C ′ to D , is in fact a chain map of A(JX)–complexes.

• Let h: f ' g be a chain homotopy, where f, g:C → D are chain maps of
A(JV )–complexes, and D is also a good A(JX)–complex. There exist closed
neighbourhoods U(n) of V × {1} in V × [0, 1], for n ∈ Z, such that C ′ ⊂ C
defined by C ′n := CU(n) is a good subcomplex of C, the restrictions of f
and g are in fact chain maps of A(JX)–complexes, and the restriction of h
is a homotopy between these.

Warning. Two objects A and B in A(JV ) which are good, and isomorphic in
A(JV )∞ , need not be isomorphic when regarded as objects in A(JX)∞. A choice
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of representative fU :AU → B for an isomorphism A ∼= B in A(JV )∞ does deter-
mine a morphism AU → B in A(JX)∞ , but there is no reason to think that its
domain AU is isomorphic to A in A(JX)∞.

Second part of proof of 3.1. Here we check that the hypotheses of the approximation
theorem [Wd, 1.6.7] hold for the inclusion

DA(J(X r V ))∞ −→ DAω(JX)∞ .

We saw in the proof of 1.3 that one of the two hypotheses can sometimes be simpli-
fied when homotopies and mapping cylinders are in good supply, and the functor in
question is the inclusion of a full subcategory. (The other hypothesis did not appear
explicitly in the proof of 1.3 because it was obviously satisfied.) This simplification
applies here, too, and what remains to be established is the following.

(1) An arrow in DA(J(X r V ))∞ is a weak equivalence if and only if its image
in DAω(JX))∞ is a weak equivalence.

(2) Given D in DAω(JX)∞ , there exists D′ in DA(J(X r V ))∞ and a weak
equivalence D′ → D in DAω(JX)∞.

We can use 1.4 to deduce (2) from a rather simpler statement:
(3) Let D be an A(JX)∞ – complex such that the restriction res(D) is a con-

tractible A(JV )∞ –complex. Then there exist an A(J(X r V ))∞ –complex
E and a chain map g:E → D of A(JX)∞ –complexes which is a domination
up to homotopy (has a homotopy right inverse).

To see that (3) implies (2), start with D as in (2), and find g:E → D as in (3), and
a homotopy right inverse s: D → E, so that gs ' idD. Then p = sg is a self–map of
E which we can unambiguously view as a self–map of an A(J(X rV ))∞ –complex.
As such it satisfies pp ' p. We now use 1.4 to obtain a splitting up to homotopy,
E ' D′⊕?. The composition D′ → E → D is a homotopy equivalence of A(JX)∞ –
complexes. Since D is homotopy finitely dominated, p: E → E is homotopic to
a chain map vanishing in dimensions À 0 ; it follows easily that D′ belongs to
DA(J(X r V ))∞.

We now prove (1) and (3). Actually (1) is a straightforward consequence of the
fact that A(J(XrV ))∞ is a full subcategory of A(JX)∞. For (3), fix D as specified
there. The assumption that res(D) is a contractible A(JV )∞ –complex translates
into the following. There exists a cofibration C → D of A(JX)∞ –complexes with
the properties

(i) C ↪→ D is nullhomotopic;
(ii) the induced chain map res(C) → res(D) is an isomorphism;
(iii) C vanishes outside V × [0, 1[.

To be more precise, we can assume that D is a good A(JX)–complex. We construct
C as a subcomplex of D with the property that, for each n and each z ∈ X × [0, 1],
the object (Cn)z in A is equal to (Dn)z , or equal to zero.

(To ensure that (iii) holds, we must choose (Cn)z = 0 if z is not in V × [0, 1[ ; on
the other hand, to ensure that (ii) holds we must, for fixed n, choose (Cn)z = (Dn)z

for ‘many’ z ∈ V × [0, 1[. This is easily done by induction on n. If (i) is not
satisfied, use the homework and the hypothesis that res(C) ∼= res(D) is contractible
to construct a good A(JX) –subcomplex C ′ of C such that res(C ′) ↪→ res(C) is still
an isomorphism, and the inclusion C ′ → C is nullhomotopic as a chain map of
A(JX)–complexes. Then replace C by C ′.)
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Now D/C is a well defined and good A(JX)–complex. Since C ↪→ D is nullho-
motopic, we can say that D is a direct summand up to homotopy of D/C. Hence
we have

D/C
g−→ D

s−→ D/C

such that gs is homotopic to the identity. It only remains to show that D/C is
isomorphic, as an A(JX)∞–complex, to an A(J(X r V ))∞–complex E.

What we need at this point is a set map r: X• → X• r V which extends the
identity on X• r V and is continuous at every point of X• r V . To construct such
an r, we observe that X• is metrizable. Choose a metric, and for each x ∈ X• let
r(x) be some point in X•rV whose distance from x is less than twice the distance
from x to X• r V . We use r to make an A(J(X r V ))–complex E = r∗(D/C) ,
defined up to unique isomorphism by

(En)(x,t) :=
⊕

y∈X
r(y)=x

(Dn/Cn)(y,t)

for (x, t) ∈ X × [0, 1[. The direct sum on the right is finite for each (x, t) because
D/C is good; the differentials in E are defined in such a way that the evident
isomorphisms En → (D/C)n in A(JX), for n ∈ Z, constitute an isomorphism from
E to D/C. This completes the verification of condition (3).

Third part of proof of 3.1. It remains to check that the restriction functor induces
a map K(DAω(JX)∞) → K(DA(JV )∞) all of whose homotopy fibers are con-
tractible or empty. This will come out of a commutative diagram of categories and
functors

B −−−−→ D′′A(JV )∞y
y

res−1D′A(JV )∞ −−−−→ D′A(JV )∞y
y

DAω(JX)∞
res−−−−→ DA(JV )∞ .

All vertical arrows in the diagram are inclusions of full subcategories. Specifically,
D′ . . . and D′′ . . . are the full subcategories of DA(JV )∞ consisting of the chain
complexes which are homotopy equivalent to finite ones, and those which are actu-
ally finite, respectively; B is the full subcategory of DAω(JX)∞ consisting of the
finite chain complexes which vanish outside V × [0, 1[ . All categories in the diagram
inherit notions of cofibration and weak equivalence from the categories in the lower
row.

It is enough to show that the middle horizontal arrow is a homotopy equivalence.
A very easy application of the approximation theorem shows that the upper right–
hand vertical arrow is a homotopy equivalence. So it is enough to show that the two
arrows in the diagram with domain B satisfy the conditions of the approximation
theorem. The first of these conditions is trivially satisfied in both cases: morphisms
which induce weak equivalences are weak equivalences. It remains to check the
second condition in both cases.
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The inclusion B → res−1D′A(JV )∞ is full by definition, and homotopies as
well as mapping cylinders are available. Hence it is enough to verify the second
approximation condition, for this inclusion, in the weaker absolute form: given D
in res−1D′A(JV )∞ , there exist C in B and a weak equivalence C → D. Using the
old homework, and the hypothesis that res(D) is finite up to homotopy equivalence,
construct C in B and C → D such that res(C) → res(D) is a homotopy equivalence
in D′A(JV )∞. Then C → D is also a weak equivalence, by the very definitions
(since we are using the coarse notion ω of weak equivalence). This completes the
verification of the second approximation condition in this case.

Finally, to check the second approximation condition for the restriction functor
B → D′′A(JV )∞ , we suppose that g: res(C) → D is a morphism in D′′A(JV )∞ ,
with C in B. Without loss of generality, C is an A(JX)–complex vanishing outside
V × [0, 1[ , and D is an A(JV )–complex. By the old homework, we can find a good
A(JV ) –subcomplex D\ of D such that the inclusion D\ → D is an isomorphism
in D′′A(JV )∞ , and D\ is also an A(JX)–complex. By the old homework again,
we can then find a good A(JX) –subcomplex C\ of C such that the inclusion of
res(C\) in res(C) is an isomorphism in D′′A(JV )∞ , and g restricts to a chain map
of A(JX) –complexes from C\ to D\. Let C ′ be the homotopy pushout alias double
mapping cylinder of the diagram of A(JX) –complexes

C
⊃←−− C\ g|C\

−−−−→ D\ .

Then we have a canonical cofibration C → C ′ , and a canonical chain map of
A(JV )–complexes from res(C ′) to D which is a weak equivalence in D′′A(JV )∞ and
extends g: res(C) → D. This completes the verification of the second approximation
property in this case. ¤

4. Homotopy invariance

In the control business, it is customary to deduce homotopy invariance from
excision. However, it is also known that the deduction works better with a more
stringent notion of control. I shall roughly follow [ACFP] both in making precise
what the more stringent control means, and in comparing the more stringent with
the less stringent one.

4.1. Theorem. F (X× ]0, 1] ) is contractible for any X in L.

4.2. Corollary. The inclusion–induced map F (X × {0}) → F (X × [0, 1]) is a
homotopy equivalence.

Proof of 4.2 modulo 4.1. By 3.1 there is a fibration sequence up to homotopy

F (X × {0} ) −→ F (X × [0, 1] ) −→ F (X× ]0, 1] ) . ¤

The proof of 4.1 will take up the entire section. Let ρi = 1−2−i for i = 0, 1, 2, . . . .
We use the sequence ρ = (ρi) to define a subcategory Aρ(JX) ⊂ A(JX) , for X
in L. This subcategory contains all the objects. A morphism f : A → B in A(JX)
belongs to Aρ(JX) iff it has the following property. There exists an integer k
such that fx

y = 0 whenever the closed subinterval of [0, 1[ bounded by the second
coordinates of x and y contains more than k members of the sequence ρ. Let
F ρ(X) := K(Aρ(JX)∧∞).
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4.3. Proposition. F ρ(X× ]0, 1] ) is contractible.

Proof. Let Z = X× ]0, 1]. We use a familiar Eilenberg swindle. The control space
under investigation is (Z × [0, 1], Z × [0, 1[ ). It has an endomorphism given by
((x, s), t) 7→ ((x, s(1 + t)/2), t). This induces

σ: Aρ(JZ)∧∞ −→ Aρ(JZ)∧∞ .

There is an obvious natural isomorphism σ(A) → A, for arbitrary A in Aρ(JZ)∧∞.
Therefore

σ∗ ' id: F ρ(Z) −→ F ρ(Z) .

Further, the expression

A⊕ σ(A)⊕ σ2(A)⊕ σ3(A) . . .

is clearly meaningful in Aρ(JZ)∧∞ , and may be regarded as a functor τ in the
variable A. (This requires some checking which is left to the reader. The subscript
ρ is essential at this point.) Note that τ(A) ∼= A ⊕ στ(A) for any A in Aρ(JZ)∧∞.
For the induced map τ∗ from F ρ(Z) to itself we therefore get

τ∗ = id∗ τ∗ ' σ∗τ∗ ,

τ∗ ' id∗+σ∗τ∗ ,

using addition in the infinite loop space F ρ(Z). This shows that the identity map
of F ρ(Z) is nullhomotopic. ¤

The next lemma will help us reduce 4.1 to 4.3.

4.4. Lemma. Let S be a finite collection of morphisms in A(JY ), where Y is in
L. There exists an automorphism ψ: JY → JY , restricting to the identity on the
singular set, such that ψ∗(f) is a morphism in Aρ(JY )∞ for every f ∈ S.

Proof. We start by constructing a sequence of continuous functions λi: Y → [0, 1[ ,
for i = 0, 1, 2, . . . , with the following properties.

(1) λ0(y) = 0 , λi(y) ≥ ρi and λi(y) > λi−1(y) for all y ∈ Y and i > 0.
(2) If fv

w 6= 0 or fw
v 6= 0 for some f ∈ S and v, w ∈ Y × [0, 1[ , then v and w are

both contained in the closed region of Y × [0, 1[ bounded by the graphs of
λi−1 and λi+1 , for some i > 0.

Suppose that λ0, . . . , λn have already been constructed in such a way that conditions
(1) and (2) are not violated. From the very definition of morphism in A(JY ), we
deduce the existence of a neighbourhood U of Y ×{1} in Y × [0, 1] such that fv

w = 0
and fw

v = 0 whenever f ∈ S, v ∈ U , and w belongs to the closed region below the
graph of λn. We can also assume that U has empty intersection with the closed
region below the graph of λn. Now construct λn+1 in such a way that U contains
the closed region of Y ×[0, 1] above the graph of λn+1. For example, choose a metric
on Y inducing the topology, equip [0, 1] with the standard metric and Y × [0, 1]
with the product (box) metric; let

λn+1(y) = max{ρn+1 1− `y/2}
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where `y is the distance from (y, 1) to the complement of U . This completes the
inductive step, hence the construction of the sequence (λi).

Now it suffices to construct ψ in such a way that ψ takes the graph of λi to the
graph of the constant function with value ρi, for all i ≥ 0. This is easily arranged
as follows. Let ψ take each interval {y} × [0, 1] to itself, by the map which takes
(y, λi(y)) to (y, ρi) and is linear on the subinterval bounded by the points (y, λi(y))
and (y, λi+1(y)). ¤
Proof of 4.1. Let Y = X× ]0, 1]. Let T ⊂ F (Y ) be a finitely generated simplicial
subset. The simplices of T correspond to certain finite diagrams in A(JY )∧∞. Each
object of A(JY )∧∞ may in turn be regarded as an idempotent endomorphism in
A(JY )∞. Hence T involves only a finite set of morphisms in A(JY )∞ , which we
can also view as a finite set S of morphisms in A(JY ). Choose ψ: JY → JY as in
4.5. Then

ψ∗(T ) ⊂ F ρ(Y ) ⊂ F (Y )

and F ρ(Y ) is contractible by 4.3. It follows that the inclusion of ψ∗(T ) in F (Y )
is nullhomotopic. But ψ∗:F (Y ) → F (Y ) is homotopic to the identity. In fact the
functor induced by ψ, from A(Y )∧∞ to itself, is isomorphic to the identity functor.
Hence the inclusion of T in F (Y ) is nullhomotopic. ¤

5. The coefficient spectrum

5.1. Proposition. F (X) ' ΩF (X × R) for X in L.

Proof. By 3.1, the commutative square of inclusion–induced maps

F (X × {0}) −−−−→ F (X × [0,∞[ )
y⊂

y
F (X× ]−∞, 0] ) −−−−→ F (X × R)

is a homotopy pullback square. By 4.1, the upper right hand and lower left hand
terms are contractible. ¤

We can use 5.1 to define a spectrum F(X), essentially with n–th term F (X×Rn).
The details are left to the reader.

5.2. Lemma. Let X =
∐

i∈NXi where each Xi is in L. Restriction from X to Xi

for each i induces isomorphisms

π∗F (X) −→
∏

i

π∗F (Xi) ,

π∗F(X) −→
∏

i

π∗F(Xi) .

Proof. We know that F (X) ' K(DA(JX)∞) and F (Xi) ' K(DA(JXi)∞) , and

D(AJX)∞ ∼=
∏

i

DA(JXi)∞ .

Since each DA(JXi)∞ has a cylinder functor, we may apply the main result of
[Cl1] which states that the functor Ki from categories with cofibrations and weak
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equivalences and cylinder functor commutes with countably infinite products. (This
is nontrivial because the functor Z 7→ πi|Z| on the category of (bi–)simplicial sets
does not generally commute with infinite products.) ¤

Let E• ⊂ L• be the full subcategory consisting of the ENR’s. Together with
excision, 3.1, and homotopy invariance, 4.1, lemma 5.2 shows that F|E• is a pro–
excisive functor [WWp]. The main result of [WWp] now applies, showing that

F(X) ' · · · ' X• ∧ F(∗)

by a chain of natural weak homotopy equivalences, provided X is an ENR. The rest
of this section is devoted to the study of F(∗). Recall that F (∗) = K(A(J∗)∧∞) where
A is the additive category which we fixed early in §2. To stress the dependence on
A, we now write FA(∗) and FA(∗) instead of F (∗) and F(∗).

We begin with a definition which goes back to [K]; see also [PW2, §5] and [CdP].
Let A be a full additive subcategory of a small additive category T.

5.4. Definition. An A–filtration of T selects for each T in T a family of preferred
direct sum decompositions T = T ′α ⊕ T ′′α , with T ′α in A, subject to the following
conditions.

(i) For each T the decompositions form a filtered poset under the partial order
T ′α ⊕ T ′′α ≤ T ′β ⊕ T ′′β whenever T ′′β ⊂ T ′′α and T ′α ⊂ T ′β .

(ii) Every morphism A → T factors as A → T ′α → T ′α ⊕ T ′′α = T for some α
(assuming that A is in A and T is in T).

(iii) Every morphism T → A factors as T = T ′α ⊕ T ′′α → T ′α → A for some α
(assuming that A is in A and T is in T).

(iv) If S = S′α ⊕ S′′α and T ′ = T ′β ⊕ T ′′β are preferred decompositions, then
S ⊕ T = (S′α ⊕ S′β) ⊕ (T ′′α ⊕ T ′′β ) is a preferred decomposition of S ⊕ T ,
and the poset of these decompositions is dense in the poset of all preferred
decompositions of S ⊕ T .

In the situation of 5.4, define a new additive category T/A with the same objects
as T, and

homT/A(S, T ) := homT(S, T )/k(S, T )

where k(S, T ) consists of all morphisms S → T in T which factor through some
object of A. Note that T/A does not depend on the choice of a particular A–
filtration of T.

The example to have in mind is: A arbitrary, T = A(J∗). Up to an equivalence
of categories, A can be identified with the full subcategory of A(J∗) consisting of
all objects which become isomorphic to zero in A(J∗)∞. In this sense, A(J∗) has
an obvious A–filtration.

5.5. Theorem [PW2], [CdP]. Suppose that T has an A–filtration. The follow-
ing square, with vertical arrows induced by the ‘quotient’ functors, is a homotopy
pullback square:

K(A∧) ⊂−−−−→ K(T∧)
y

y
∗ ' K(A/A) ⊂−−−−→ K((T/A)∧) . ¤
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Recall from [K] that a small additive category M is flasque if there exist an
additive functor τ : M → M and a natural isomorphism

τ(M) ∼= M ⊕ τ(M) .

Then K(M) and K(M∧) are contractible because τ∗ is a self–map of K(M) , and
of K(M∧) , such that τ∗ + id ' τ∗.

5.6. Corollary. ΩFA(∗) ' K(A∧).

Proof. Let T = A(J∗) in 5.5. Then T/A can be identified with A(J∗)∞. Further-
more, K(T∧) ' ∗ because T is flasque. ¤
5.7. Corollary. In the situation of 5.4 and 5.5, the following is a homotopy
pullback square of spectra:

FA(∗) ⊂−−−−→ FT(∗)
y

y
∗ ' FA/A(∗) ⊂−−−−→ FT/A(∗) .

Proof. For any X in L the category T(JX) is A(JX)–filtered and the quotient
T(JX)/A(JX) is isomorphic to (T/A)(JX). This holds in particular for X = Ri ,
where i ≥ 0. ¤
5.8. Proposition. The functor A 7→ FA(∗) takes equivalences of small additive
categories to homotopy equivalences, and FA(∗) is contractible if A is flasque.

Proof. If A is flasque, then A(JX) is also flasque. This holds in particular when
X = Ri for i ≥ 0. ¤

Given any small additive category A, there exist a small additive category T and
a full additive subcategory A′ ⊂ T such that T is flasque, T is A′–filtered, and A′

is equivalent to A. This construction is due to Karoubi [K]. We have already seen
it, just after 4.2: let T := Aρ(J∗). Of course, T := A(J∗) is another possibility.

Now it is easy to see that 5.6, 5.7 and 5.8 determine the functor A 7→ FA(∗) up
to natural homotopy equivalence. Fix A = A(0). Choose A′ ⊂ T such that A′ is
equivalent to A(0) and T is flasque and A′–filtered. Let A(1) := T/A′. Repeat the
process to obtain A(2), A(3), and so on. Then 5.6, 5.7 and 5.8 imply immediately

Ω∞+1−kFA(∗) ' Ω∞+1FA(k)(∗) ' K(A(k)∧) .

Briefly, ΩFA(∗) is the usually non–connective K–theory spectrum of A.

Part II:
K–Theory of categories of

controlled retractive spaces

6. Retractive spaces over a control space

Throughout this chapter, we fix a control space (Z̄, Z) and a space S. The cat-
egory of retractive CW–spaces over S, subject to appropriate finiteness conditions,
will play a role similar to that of A in §§2–4.
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6.1. Definitions. Let Y be a CW–space relative to S. Let ¦Y be the set of cells
of Y . For e, e′ ∈ ¦Y write e ≥ e′ if the smallest relative CW–subspace containing e
also contains e′. Let sec(e) := {e′ ∈ ¦Y | e ≥ e′}.

Suppose that Y is dimensionwise locally finite, that is, for every cell e in Y and
every j ≥ 0 there are only finitely many j–cells which are ≥ e. We say that Y is
controlled over (Z̄, Z) if it comes equipped with a map κ: ¦Y → Z, subject to the
following conditions.

• For any compact L ⊂ Z and i ≥ 0, the set of i–cells in κ−1(L) is finite.
• For any z ∈ Z̄rZ and i ≥ 0 and any neighbourhood V of z in Z, there exists

another neighbourhood W of z in Z such that sec(e) ⊂ κ−1(V ) whenever e
is an i–cell of Y and sec(e) ∩ κ−1(W ) 6= ∅.

Next, suppose that Y ′ is another CW–space relative to S, also dimensionwise locally
finite and controlled over (Z̄, Z), with reference map κ′: ¦Y ′ → Z. Let f : Y → Y ′

be a cellular map relative to S. Let Y ′
f be the relative mapping cylinder of f ,

again a CW–space relative to S. There is an evident map κ′f : ¦Y ′
f → Z such that

κ′f (e) = κ′f (e× ]0, 1[ ) = κ(e) for e ∈ ¦Y ⊂ ¦Y ′
f and κ′f (e) = κ′(e) for e ∈ ¦Y ′ ⊂ ¦Y ′

f .
We say that f is dimensionwise locally finite if Y ′

f is dimensionwise locally finite.
We say that f is controlled if Y ′

f is controlled with κ′f as reference map.
Now suppose that Y and Y ′ come with retractions to S. If f is controlled, and

if it is also a map over S, then we call f a controlled morphism. The dimensionwise
locally finite retractive CW–spaces over and relative to S, controlled over (Z̄, Z),
and the controlled morphisms between them, constitute a category

Q(S; Z̄, Z)

which should be regarded as a nonlinear analogue of CA(Z̄, Z) defined in §2 and
§3. We wish to make Q(S; Z̄, Z) into a category with cofibrations and weak equiv-
alences. We begin with the observation that there is an obvious notion of con-
trolled homotopy between two controlled maps f, g:Y → Y ′ (not necessarily maps
over S) as above; namely, a controlled homotopy is a controlled map of the form
Y h [0, 1] → Y ′ , where Y h [0, 1] is the pushout of

Y × [0, 1] ←− S× [0, 1] −→ S .

A morphism in Q(S; Z̄, Z) is a weak equivalence if it is invertible up to controlled
homotopy as a controlled map. A morphism in Q(S; Z̄, Z) is a cofibration if, up to
isomorphism in Q(S; Z̄, Z), it is the inclusion of a relative CW–subspace.

Finally we call an object Y in Q(S; Z̄, Z) homotopy finitely dominated if the
identity Y → Y is controlled homotopic to a controlled map Y → Y whose image
is contained in the relative i–skeleton of Y , for some i. The homotopy finitely
dominated objects in Q(S; Z̄, Z) constitute a full subcategory

R(S; Z̄, Z) ⊂ Q(S; Z̄, Z)

which should be regarded as a nonlinear analogue of DA(Z̄, Z) defined in §2 and
§3. It inherits from Q(S; Z̄, Z) the structure of a category with cofibrations and
weak equivalences.
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6.2. Definitions. Let Y be in Q(S; Z̄, Z). A (relative) CW–subspace Y ′ ⊂ Y is
cofinal in Y if the following holds: For every i ≥ 0, there exists a neighbourhood
U of Z̄ r Z in Z̄ such that the portion of the i–skeleton of Y lying over U ∩ Z is
contained in Y ′.

A germ of controlled maps from Y1 to Y2 is an equivalence class of pairs (Y ′
1 , f)

where Y ′
1 is cofinal in X and f :Y ′

1 → Y2 is a controlled map. The equivalence
relation is generated by restriction, i.e. (Y ′

1 , f) ∼ (Y ′′
1 , f |Y ′′

1 ) whenever Y ′
1 and Y ′′

1

are both cofinal in Y and Y ′′
1 ⊂ Y ′

1 .
Similarly, a germ of morphisms from Y1 to Y2 is an equivalence class of pairs

(Y ′
1 , f) where Y ′

1 is cofinal in Y1 and f :Y ′
1 → Y2 is a morphism. The equivalence

relation is generated by restriction. The germs of morphisms are the morphisms in
a new category

Q(S; Z̄, Z)∞

which has the same objects as Q(S; Z̄, Z). An object Y in Q(S; Z̄, Z)∞ is germwise
homotopy finitely dominated if the identity of Y is homotopic, as a germ of controlled
maps, to a controlled map germ with image contained in the i–skeleton of Y ,
for some i. The germwise homotopy finitely dominated objects of Q(S; Z̄, Z)∞
determine a full subcategory

R(S; Z̄, Z)∞ ⊂ Q(S; Z̄, Z)∞.

Note that R(S; Z̄, Z)∞ will usually have more objects than R(S; Z̄, Z) ; put dif-
ferently, an object of Q(S; Z̄, Z) can be germwise homotopy finitely dominated
without being homotopy finitely dominated.

We make Q(S; Z̄, Z)∞ and R(S; Z̄, Z)∞ into categories with cofibrations and
weak equivalences in the expected way. A morphism is a cofibration if, up to iso-
morphisms, it is the germ of an inclusion of a retractive CW–subspace. A morphism
is a weak equivalence if it is invertible up to homotopy as a germ of controlled maps.

We need nonlinear analogues of 1.4, one for Q(S; Z̄, Z) and one for Q(S; Z̄, Z)∞.
A good notion of homotopy does not exist in these categories, but we can introduce
‘homotopy categories’ HQ(S; Z̄, Z) and HQ(S; Z̄, Z)∞ by adjoining formal inverses
for all weak equivalences. More details on how morphisms in HQ(S; Z̄, Z) and
HQ(S; Z̄, Z)∞ can be thought of will be given in the proof of 6.3.

6.3. Lemma. Let p: Y → Y be an idempotent endomorphism in HQ(S; Z̄, Z).
Then there exist Y ′ and morphisms q: Y → Y ′ , j:Y ′ → Y in HQ(S; Z̄, Z) such
that p = jq and qj = id.

Preliminaries for the proof. We need some more definitions. Write Q for Q(S; Z̄, Z).
Let Y1 and Y2 be objects of Q. A lax morphism Y1 → Y2 consists of a cellular map
Y1 → Y2 relative to S, and a structure of object of Q on the relative mapping
cylinder of g which extends the given structures on Y1 and Y2 (cylinder front and
cylinder back). A homotopy between lax morphisms from Y1 to Y2 is a lax morphism
from Y1 h [0, 1] to Y2.

Informally, a lax morphism from Y1 to Y2 consists of a cellular map g: Y1 → Y2

relative to S , and a homotopy h: r1 ' r2g subject to appropriate control and local
finiteness conditions. This reformulation allows us to define the composition of a
lax morphisms (g, h): Y1 → Y2 and a lax morphism (f, j): Y2 → Y3 ; namely, as
(fg, jg ∗ h) where jg ∗ h is a concatenated homotopy (first h, then jg). A choice of
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orientation–preserving homeomorphism [0, 2] → [0, 1] is involved, making the result
a little ambiguous, but this will hardly matter in the following.

It is an exercise to show that the morphisms Y1 → Y2 in HQ are (in canonical
bijection with) the homotopy classes of lax morphisms from Y1 to Y2.

More preliminaries. Let λQ be the following enlargement of Q. An object of λQ is
a sequence of cofibrations Y0 → Y1 → Y2 → · · · in Q. A morphism

(Y0 → Y1 → Y2 → · · · ) −→ (Y ′
0 → Y ′

1 → Y ′
2 → · · · )

is an element in limi colimj morQ(Yi, Y
′
j ). A lax morphism (between these objects)

is an element in limi colimj `morQ(Yi, Y
′
j ) where `morQ(Yi, Y

′
j ) denotes the set of

lax morphisms from Yi to Y ′
j .

Proof of 6.3. We can represent p by a lax morphism, also denoted p: Y → Y . The
mapping telescope Y ′ of

X
p−→ X

p−→ X
p−→ · · ·

is well defined as an object of λQ. It is easy to produce lax morphisms q: X → Y ′

and j:Y ′ → X such that jq ' p and qj ' id, where the symbol ' indicates lax
homotopies. It remains to show that Y ′ is lax homotopy equivalent to an object
in Q. Much as in lemma 1.5, this can be deduced from the fact that Y ′ admits a
domination (up to lax homotopy) by an object in Q, namely, the object Y . ¤
6.4. Lemma. Let p: Y → Y be an idempotent endomorphism in HQ(S; Z̄, Z)∞.
Then there exist Y ′ in HQ(S; Z̄, Z)∞ and morphisms q: Y → Y ′ , j: Y ′ → Y in
HQ(S; Z̄, Z)∞ such that p = jq and qj = id.

The proof is similar to that of 6.3.

7. Nonlinear controlled K–theory

We will now be interested in the functor F taking a locally compact space X
with countable base to the K–theory space

F (X) := K(R(S; JX)∞) .

In what sense is it a functor ? It is clear that a proper map g: X1 → X2 of locally
compact spaces (with countable base) induces an exact functor

R(S; JX1)∞ −→ R(S; JX2)∞ .

This in turn induces g∗:F (X1) → F (X2). So F is a functor on the category L

of locally compact spaces with countable base, with proper maps as morphisms.
However, F has additional functorial properties. Let X be locally compact with
countable base and let V ⊂ X be an open subset. There is an exact restriction
functor

R(S; JX)∞ −→ R(S; JV )∞
taking an object Y of R(JX)∞ to Y |JV , the largest relative CW–subspace of Y
whose cells are mapped to V × [0, 1[ under κ: ¦Y → X × [0, 1[ . The restriction
functor induces

F (X) −→ F (V ) .

We conclude that F extends to a functor on the enlarged category L• with the
same objects as L, where a morphism from X1 to X2 is a continuous pointed map
g:X•

1 → X•
2 between the one–point compactifications.
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7.1. Main theorem (nonlinear version). Suppose that X is in L. Let V ⊂ X
be open. Then the commutative square

F (X r V ) restriction−−−−−−−→ F (∅) = ∗
yinclusion

yinclusion

F (X) restriction−−−−−−−→ F (V )

is a homotopy pullback square.

Proof of 7.1. The proof is extremely similar to that of 3.1; the purpose of the
following outline is only to make that entirely clear.

First part of proof. This is mostly organization, and an invocation of the Wald-
hausen theorems. It concludes with the insight that it suffices to show that, of the
maps

K(R(S; J(X r V ))∞) −→ K(Rω(S; JX)∞) (inclusion),

K(Rω(S; JX)∞) −→ K(R(S; JV )∞) (restriction),

the first is a homotopy equivalence, and the second is a map all of whose homotopy
fibers are contractible. Here ω is a new, coarse notion of weak equivalence in
R(S; JX)∞ ; a morphism in R(S; JX)∞ is a weak equivalence in the coarse sense
if it becomes a weak equivalence in R(S; JV )∞. Again Rω(S; JX)∞ is R(S; JX)∞
with the coarse notion of weak equivalence, and Rω(S; JX)∞ is the full subcategory
of R(S; JX)∞ determined by the objects which are weakly equivalent to the zero
object in the coarse sense. In Rω(S; JX)∞ we use the standard (nameless) notion
of weak equivalence.

Second part of proof. Here the goal is to verify that the hypotheses of the approxi-
mation theorem hold for the inclusion

R(S; J(X r V ))∞ −→ Rω(S; JX)∞ .

In fact it is enough to verify the following statement, analogous to (3) in the second
part of the proof of 3.1.

Let Y be an object in Q(S; JX)∞ for which res(Y ) in Q(S; JV )∞ is weakly
equivalent to the zero object. Then there exist Y ′ in Q(S; J(X rV ))∞ and
a lax morphism from Y ′ to Y in Q(S; JX)∞ which is a domination up to
homotopy (has a homotopy right inverse as a lax morphism).

The proof of this proceeds exactly like the proof of (3) in the second part of the
proof of 3.1.

Third part of proof. The goal is to show that the map induced by the appropriate
restriction functor,

K(Rω(S; JX)∞) −→ K(R(S; JV )∞) ,

is a componentwise homotopy equivalence. This comes out of a commutative dia-
gram of categories and functors
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B −−−−→ R′′(S; JV )∞y
y

res−1R′(S; JV )∞ −−−−→ R′(S; JV )∞y
y

Rω(S; JX)∞
res−−−−→ R(S; JV )∞ .

All vertical arrows in the diagram are inclusions of full subcategories. Specifically,
R′ . . . and R′′ . . . are the full subcategories of R(S; JV )∞ consisting of the objects
which are weakly equivalent to (relatively) finite–dimensional ones, and the objects
which are actually (relatively) finite–dimensional. B is the full subcategory of
Rω(S; JX)∞ consisting of the relatively finite–dimensional objects which vanish
outside V × [0, 1[ . All categories in the diagram inherit notions of cofibration and
weak equivalence from the categories in the lower row.

It is enough to show that the two arrows in the diagram with domain B satisfy
the conditions of the approximation theorem. This is done very much as in the
corresponding passage of part three of the proof of 3.1. We omit the details. ¤

The following statements 7.2–5 can be proved exactly like 4.1, 4.2, 5.1 and 5.2,
respectively.

7.2. Theorem. F (X× ]0, 1] ) is contractible for any X in L.

7.3. Corollary. The inclusion–induced map F (X × {0}) → F (X × [0, 1]) is a
homotopy equivalence.

7.4. Proposition. F (X) ' ΩF (X × R) for X in L.

We can use 7.4 to define a spectrum F(X), essentially with n–th term F (X×Rn).
The details are left to the reader.

7.5. Lemma. Let X =
∐

i∈NXi where each Xi is in L. Restriction from X to Xi

for each i induces isomorphisms

π∗F (X) −→
∏

i

π∗F (Xi) ,

π∗F(X) −→
∏

i

π∗F(Xi) .

Together, 7.1, 7.3 and 7.5 imply that F|E• is a pro–excisive functor (compare
§5); hence

F(X) ' · · · ' X• ∧ F(∗)
by a chain of natural weak homotopy equivalences, for X in E•. For more informa-
tion on the spectrum F(∗), see the next §.

8. The coefficient spectrum (nonlinear case)

We keep the notation of the previous §, but assume in addition that S is path–
connected and pointed. Let A be the additive category of finitely generated free
left modules over Zπ1S. A retractive CW–space Y over S which is controlled over
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(Z̄, Z) has a cellular chain complex C(Y ) in CA(Z̄, Z). Namely, for a compact
L ⊂ Z and n ∈ Z we let

C(Y )n(L) :=
⊕

e

⊕

[ω]

H̃n(e•)

where e runs through the n–cells of Y rS with label in L, and [ω] runs through
the path classes in S connecting the label of e with the base point. We use this
construction with (Z̄, Z) = JX, where X is locally compact with countable base.
Passage from retractive CW–spaces over S which are controlled over JX to their
cellular chain complexes induces a natural transformation

F1(X) −→ F2(X) ,

where F1 is the functor that we called F in §7, and F2 is the functor that we called
F in §2. More precisely:

F1(X) = K(R(S; JX)∞) ,

F2(X) = K(DA(JX)∞) ' K(A(JX)∧∞) .

8.1. Theorem. The induced map π0F1(X) → π0F2(X) is an isomorphism.

Proof. We proceed by direct verification. Let us say that an object of DA(JX)∞ is
essentially concentrated in dimension k if, in the homotopy category HDA(JX)∞ ,
it can be dominated by an object which is actually zero in all dimensions except pos-
sibly k. Let U2(k) be the Grothendieck group generated by the isomorphism classes
(in HDA(JX)∞) of such objects. Also, an object of R(S; JX)∞ is essentially con-
centrated in dimension k if, in the homotopy category HR(S; JX)∞ , compare 6.3,
it can be dominated by an object which has all its cells in dimension k. Let U1(k)
be the Grothendieck group generated by the isomorphism classes (in HR(S; JX)∞)
of such objects. By inspection (and use of 6.4), linearization U1(k) → U2(k) is an
isomorphism for k ≥ 2. From the commutative diagram

U1(k) −−−−→ π0F1(X)
y∼=

y
U2(k)

∼=−−−−→ π0F2(X)

with k ≥ 2, we see that π0F1(X) → π0F2(X) is split onto. To complete the proof, it
is enough to show that every element of π0F1(X) is in the image of the tautological
homomorphism U1(k) → π0F1(X) for some k ≥ 2. Now every element of π0F1(X)
is a difference of classes [Y ] with Y in R(S; JX)∞. Since Y is homotopy finitely
dominated, there exists k À 0 such that the quotient of Y by its (k − 1)–skeleton
Y k−1 is essentially concentrated in dimension k. Then [Y ] equals

[Y/Y k−1] +
∑

j<k

[Y j/Y j−1] = [Y/Y k−1] +
∑

j<k

±[Σk−j
S (Y j/Y j−1) ] . ¤
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8.2. Corollary. Linearization F1(∗) → F2(∗) induces isomorphisms on πi for all
i ≤ 0.

Proof. Note that πiF1(∗) ∼= π0F1(R−i) and πiF2(∗) ∼= π0F2(R−i). ¤
8.3. Proposition. ΩF1(∗) ' K(R(S)) where R(S) := R(S; ∗, ∗).
Strategy of the proof. Here evidently we have to deviate a little from the pattern of
§5. The proof is an application of Waldhausen’s fibration theorem [Wd, 1.6.4] and
his approximation theorem [Wd, 1.6.7]. We work with the following commutative
diagram of categories and functors (explanations follow):

R(S; ∗, ∗) −−−−→ R(S; J∗) −−−−→ R(S; J∗)∞yψ1

y=

xψ2

Ru(S; J∗) −−−−→ R(S; J∗) −−−−→ Ru(S; J∗)
The upper row should be self–explanatory except possibly for the left hand ar-
row, which is induced by the inclusion of the control space (∗, ∗) ∼= ({0}, {0}) in
([0, 1], [0, 1[ ). To get the lower row, we consider two notions of weak equivalence in
R(S; J∗): the standard one (nameless), and the one pulled back from R(S; J∗)∞ ,
which we call u. The right–hand term in the lower row is R(S; J∗) with the u notion
of weak equivalence, and the left–hand term in the lower row is the full subcategory
of R(S; J∗) spanned by those objects which are u–equivalent to zero. The functor
ψ1 is again induced by the inclusion of (∗, ∗) ∼= ({0}, {0}) in ([0, 1], [0, 1[ ), and ψ2

is forgetful. — It is enough to show:
(i) The functor ψ1 induces a homotopy equivalence of K–theory spaces.
(ii) The functor ψ2 induces a homotopy equivalence of K(Ru(S; J∗)) with the

base point component of K(R(S; J∗)∞).
(iii) The lower row determines a homotopy fiber sequence of K–theory spaces.
(iv) The K–theory space of R(S; J∗) is contractible.

We will deduce (i) and (ii) from the approximation theorem, (iii) from the fibration
theorem, and (iv) from an Eilenberg swindle.

Proof of (i). We need to check that ψ1 has the properties App1 and App2
formulated in [Wd, §1.6]. It is clear that App1 holds. For App2, think of ψ1 as
an inclusion. Let a morphism f :Y1 → Y2 in Ru(S; J∗) be given, with Y1 in the
subcategory R(S; ∗, ∗) ; we are looking for a factorization

Y1 −→ ? −→ Y2

of f in which Y1 →? is a cofibration and ? → Y2 is a weak equivalence. — Since Y2

is homotopy finitely dominated (6.1), the identity Y2 → Y2 is controlled homotopic
(rel S) to a cellular map whose image is contained in the relative i–skeleton of
Y2 , for some i. Since Y2 is weakly equivalent to zero in R(S; J∗)∞ , the inclusion
of its i–skeleton is controlled homotopic (rel S) to a cellular map whose image is
contained in a relative CW–subspace Y ′

2 of Y2 with only finitely many cells. The
labels in [0, 1 [ of these finitely many cells are irrelevant for all control purposes, so
we may assume that they are all equal to 0. Then Y ′

2 is an object of R(S; ∗, ∗).
The inclusion Y ′

2 → Y2 is a finite domination up to lax homotopy, giving rise to
a lax endomorphism p: Y ′

2 → Y ′
2 which is idempotent up to lax homotopy. (Again,
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control is not an issue here.) By 6.3, we can find a morphism j: Y ′′
2 → Y ′

2 in
R(S; ∗, ∗) such that the composition Y ′′

2 → Y ′
2 ↪→ Y2 is a weak equivalence.

Remembering f :Y1 → Y2 now, we note that it factors through the weak equiv-
alence Y ′′

2 → Y2 up to ‘concordance’. That is, there exist a structure of object in
R(S; ∗, ∗) on Y1 h [0, 1], and a morphism f̄ :Y1 h [0, 1] → Y2 whose restriction to
Y1 h {0} ∼= Y1 is f , and a factorization of f̄ |Y1 h {1} through Y ′′

2 → Y2. We now
define Y ′′′

2 as the pushout of

Y1 h [0, 1] ←− Y1 h {1} −→ Y ′′
2 .

Using f̄ , we still have a weak equivalence Y ′′′
2 → Y2. We also have an inclusion of

Y1
∼= Y1 h {0} in Y ′′′

2 . The composition Y1 → Y ′′′
2 → Y2 is f . This completes the

proof of (i).
Proof of (ii). Let ezR(S; J∗)∞ ⊂ R(S; J∗)∞ and ezRu(S; J∗) ⊂ Ru(S; J∗) be

the full subcategories spanned by the objects having no cells in dimensions < 2. It
follows from [Wd, 1.6.2] that the inclusions of these subcategories induce homotopy
equivalences of the K–theories. Hence it is enough the verify (ii) with ezR(S; J∗)∞
and ezRu(S; J∗) instead of R(S; J∗)∞ and Ru(S; J∗). We will deduce this simplified
version of (ii) from the approximation theorem. The forgetful functor

ezRu(S; J∗) −→ ezR(S; J∗)∞

clearly satisfies App1. It remains to verify that is satisfies App2, weakened so as to
exclude the objects in ezR(S; J∗)∞ whose class in K0(R(S; J∗)∞) is nonzero. As
in the proof of (i), we can further reduce to a special case: thus we only have to
verify that, for every Y in ezR(S; J∗)∞ with [Y ] = 0 ∈ K0(R(S; J∗)∞), there exist
Y ′ in Ru(S; J∗) and a weak equivalence ψ2(Y ′) → Y . This amounts to saying that
Y is weakly equivalent to a finite (alias finite dimensional) object in ezR(S; J∗)∞.
To prove this, at last, choose k À 0 such that Y/Y k−1 is essentially concentrated
in dimension k. This is possible since Y is homotopy finitely dominated. By
hypothesis the image of [Y ] in K0(A(J∗)∞) is zero. Also, the image of [Y k−1] in
K0(A(J∗)∞) is zero, since it comes from K0(A(J∗)) = 0 (compare 5.6). Hence
the image of [Y/Y k−1] in K0(A(J∗)∞) is zero. It follows easily that there exist a
(k + 1)–dimensional object Y ′ with the same (k − 1)–skeleton as Y , and a weak
equivalence Y ′ → Y relative to Y k−1. (Here we use the assumption that Y has no
cells in dimensions < 2, relative to S.) This completes the proof of (ii).

Proof of (iii). This looks like a straightforward application of the fibration theo-
rem, but there is a slight difficulty. Namely, the weak equivalences in Ru(S; J∗) do
not satisfy the extension axiom [Wd, §1.2]. One way to fix this is to replace u by a
slightly coarser notion of weak equivalence, v , which is as follows. A morphism f
in R(S; J∗) is a v–equivalence if Σkf is an u–equivalence for k À 0. Then v does
satisfy the extension axiom. So the inclusion functors

Rv(S; J∗) −→ R(S; J∗) −→ Rv(S; J∗)

give a homotopy fiber sequence of K–theory spaces. But [Wd, 1.6.2] implies that the
inclusion Ru(S; J∗) −→ Rv(S; J∗) and the identity functor Ru(S; J∗) −→ Rv(S; J∗)
induce homotopy equivalences of the K–theory spaces. The proof of (iii) is com-
plete.
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Proof of (iv). Although R(S; J∗) is not an additive category, it is ‘flasque’ in the
following sense. There exists an exact functor τ : R(S; J∗) → R(S; J∗) such that
τ and idq τ are related by a chain of natural weak equivalences. To describe τ ,
we think of J∗ as ([0,∞], [0,∞[ ). Then J∗ has an endomorphism s 7→ s + 1 which
induces σ:R(S; J∗) → R(S; J∗). Define τ by

τ(X) = X q σ(X)q σ2(X)q . . . . ¤

9. A reformulation without cells

The definition in §6 of a retractive CW–space over S with control in (Z̄, Z) was
chosen to be as close as possible to the concept of a chain complex of A(Z̄, Z)–
objects. (Here A might be the category of finitely generated free Zπ1(S)–modules,
or just any additive category.) This made it possible to present §§6–8 as just a
minor variation on §§2–5. As a result, however, it will take us more than the usual
amount of work, and a π0–sacrifice, to get cell–free versions of the main results of
§§6–8. (The π0–sacrifice is more common than it might seem: there are places in
the controlled literature, such as [V1, Prop. 2.4], where it sneaks in undeclared.)

The idea is to trade retractive CW–spaces Y over S with control over (Z̄, Z)
for retractive spaces Y over S × Z. This works if (Z̄, Z) satisfies an appropriate
local contractibility condition. For now we fix S and and an arbitrary control space
(Z̄, Z).

9.1. Definitions. Let Y1 and Y2 be retractive spaces over S×Z, with retractions
ri: Yi → S × Z for i = 1, 2. Let f : Y1 → Y2 be a map relative to S × Z (not
necessarily over S × Z). We say that f is controlled if it satisfies the following
condition:

for every z ∈ Z̄ r Z and neighbourhood V of z in Z̄, there exists a smaller
neighbourhood W of z in Z̄ such that {r1(y), r2f(y)}∩(S×W ) 6= ∅ implies
{r1(y), r2f(y)} ⊂ S× V , for any y ∈ Y1.

Compare 6.1. In the same spirit, we can speak of controlled homotopies between
controlled maps Y1 → Y2 , and of controlled homotopy equivalences Y1 → Y2.

Suppose that Y is retractive over S×Z, with retraction r: Y → S×Z, and with
a relative CW structure. We say that the CW–structure is dimensionwise locally
finite and/or controlled if the pushout of Y ←− S × Z −→ Z has the corresponding
properties, as a CW–space relative to Z.

Remark. Suppose that Y is retractive over S × Z, with retraction r: Y → S × Z
and a controlled relative CW–structure. For each cell e of Y , choose a characteristic
map ξe:D|e| → Y mapping the interior of D|e| homeomorphically to e. Let Y ′ be
the pushout of

Y
s←− S× Z −→ S

where s is the structural section. Define κ: ¦Y ′ → Z by κ(e) = r(ξe(0)) (we are
identifying the relative cells of Y ′ with those of Y ). It is easy to verify that κ makes
Y ′ into a retractive space over S with control over (Z̄, Z), as defined in 6.1.

9.2. Definitions. We make a category tQ(S; Z̄, Z) with cofibrations and weak
equivalences, as follows. The objects are the retractive spaces Y over S × Z and
the morphisms are the retractive maps over S × Z. A morphism f : Y1 → Y2 is a
cofibration if, as a controlled map (controlled over (Z̄, Z), and relative to S×Z) it
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has the controlled homotopy extension property. A morphism f : Y1 → Y2 is a weak
equivalence if, as a controlled map, it is invertible up to controlled homotopy.

An object Y in tQ(S; Z̄, Z) is homotopy finite if there exists a weak equivalence
Y ′ → Y where Y ′ comes with a controlled relative CW–structure which is locally
finite and finite dimensional.

We now define tR(S; Z̄, Z) as the full subcategory of tQ(S; Z̄, Z) consisting of
the homotopy finite objects.

9.3. Definitions. Let Y1 and Y2 be objects of tQ(S; Z̄, Z). We say that a subspace
Y ′

1 of Y1, relative to S × Z, is cofinal if there exists a neighbourhood U of Z̄ r Z
in Z̄ such that the portion of Y ′

1 lying over U ∩ Z equals the portion of Y1 lying
over U ∩ Z. A germ of controlled maps from Y1 to Y2 is an equivalence class of
pairs (Y ′

1 , f) where Y ′
1 is cofinal in Y and f : Y ′

1 → Y ′ is a controlled map. The
equivalence relation is generated by restriction.

Similarly, a germ of morphisms from Y1 to Y2 is an equivalence class of pairs
(Y ′

1 , f) where Y ′
1 is cofinal in Y and f :Y ′

1 → Y2 is a morphism. The equivalence
relation is generated by restriction. The germs of morphisms are the morphisms in
a new category

tQ(S; Z̄, Z)∞

which has the same objects as tQ(S; Z̄, Z). A morphism f : Y1 → Y2 in tQ(S; Z̄, Z)∞
is a cofibration if, as a germ of controlled maps (relative to S × Z), it has the
controlled homotopy extension property. A morphism f : Y1 → Y2 in tQ(S; Z̄, Z)∞
is a weak equivalence if, as a germ of controlled maps, it is invertible up to controlled
homotopy.

An object Y in tQ(S; Z̄, Z)∞ is germwise homotopy finite if there exists a weak
equivalence Y ′ → Y in tQ(S; Z̄, Z)∞ where Y ′ comes with a relative CW–structure
which is locally finite and finite dimensional. The germwise homotopy finite objects
of tQ(S; Z̄, Z)∞ determine a full subcategory

tR(S; Z̄, Z)∞ ⊂ tQ(S; Z̄, Z)∞.

We are almost ready for a comparison theorem; what is still missing is the local
contractibility condition on (Z̄, Z).

9.4. Definition. The control space (Z̄, Z) is contractible at infinity if the following
holds. For every z ∈ Z̄ r Z and every neighbourhood V of z in Z̄, there exists a
smaller neighbourhood W of z in Z̄ such that the inclusion W ∩ Z → V ∩ Z is
homotopic to a constant map.

9.5. Theorem. Suppose that (Z̄, Z) is contractible at infinity and Z̄• has a
countable base. Then there is a chain of natural homotopy equivalences relating
K(tR(S; Z̄, Z)∞) to the base point component of K(R(S; Z̄, Z)∞).

Proof, part 1. Let B be the auxiliary category defined as follows. An object of B

is an object Y of tR(S; Z̄, Z)∞ with a controlled relative CW–structure which is
locally finite and finite dimensional. We also insist that a choice of points ye in
each cell e ⊂ Y has been made. A morphism Y1 → Y2 in B is a morphism Y1 → Y2

in tR(S; Z̄, Z)∞ which is cellular.
A straightforward application of the approximation theorem shows that the for-

getful functor B → tR(S; Z̄, Z)∞ induces a homotopy equivalence of the K–theory
spaces.
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Part 2. Let C ⊂ R(S; Z̄, Z)∞ be the full subcategory consisting of the finite di-
mensional objects. Our next goal is to show: (∗) the corresponding inclusion of
K–theory spaces is a homotopy equivalence from K(C) to the base point compo-
nent of K(R(S; Z̄, Z)∞).

An Eilenberg swindle shows that π0K(C) = 0. (The point is that every object
Y of C has a sequence of cofinal subobjects Yi with i = 1, 2, 3, . . . such that

∞ · Y :=
∐

i≥1

Yi

is still a well defined object of C. Then [∞·Y ] = [Y ]+[∞·Y ] in K0(C), hence [Y ] = 0,
hence K0(C) = 0 since [Y ] was arbitrary.) With the approximation theorem and
the usual arguments involving suspension, the proof of (∗) now boils down to the
following verification:

(∗∗) For any object Y in R(S; Z̄, Z)∞ with [Y ] = 0 ∈ K0(R(S; Z̄, Z)∞) and no
cells in dimensions < 2, there is a weak equivalence Y ′ → Y with Y ′ in C.

Indeed we can choose k À 0 such that Y/Y k−1 is essentially concentrated in di-
mension k (compare proof of 8.1); then

0 = [Y ] = [Y/Y k−1] +
∑

j<k

[Y j/Y j−1]

in K0(R(S; Z̄, Z)∞). Now the terms [Y j/Y j−1] are represented by objects which
come from C ; hence they are zero. Hence [Y/Y k−1] = 0, in K0(R(S; Z̄, Z)∞) and
a fortiori in K0(A(Z̄, Z)∞) where A is the category of finitely generated projective
left Zπ1(S)–modules. It follows (compare proof of 8.1) that there exist a (k + 1)–
dimensional object Y ′ with the same (k−1)–skeleton as Y , and a weak equivalence
Y ′ → Y relative to Y k−1.

Part 3. It remains to show that the forgetful functor ψ: B → C defined by the
remark after 9.1 induces a homotopy equivalence of K–theory spaces. We check that
it satisfies the hypotheses of the approximation theorem. The first approximation
property is satisfied by definition (a morphism in B is a weak equivalence if and
only if its image morphism in C is a weak equivalence). The second approximation
property simplifies to:

(\\) Given Y in B and a cofibration f : ψ(Y ) → Y ′ in C such that the cofiber
Y ′/ψ(Y ) is concentrated in dimension k, there exist a cofibration Y → Y ′′

in B and an extension of f to a weak equivalence ψ(Y ′′) → Y ′.
Given any (relative) cell e of Y ′/ψ(Y ), we first look for a partial solution of (\\),
namely: (\\\) a cofibration Y → Ye in B such that Ye/Y has exactly one cell (that
of dimension k) and an extension of f to a weak equivalence fe from ψ(Ye) to
ψ(Y ) ∪ e. Here is a systematic way to obtain such partial solutions.

Let N(e) be the smallest relative CW–subspace of Y ′ containing e. The inverse
image of N(e) in Y is a relative CW–subspace M(e) of Y with finitely many relative
cells, all of dimension < k. Let L(e) be the closure of the union of the images of
the cells of M(e) under

Y
r−→ S× Z −→ Z .

If L(e) is contractible in a larger subset L′(e) of Z, then it is easy to find a partial
solution as in (\\\) above — with a homotopy equivalence ψ(Ye) → ψ(Y )∪ e which
is relative to ψ(Y ).
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From a control point of view, the usefulness of such a partial solution depends on
how we can control the size of L′(e). Therefore choose a metric on Z̄• and let ε(e)
be the infimum of the diameters of those L′(e). If no such L′(e) exist, set ε(e) = ∞
and call e inadmissible. We can ignore the inadmissible e because the admissible
ones make up a cofinal subobject of Y ′ , due to the local contractibility at infinity
of (Z̄, Z).

For each admissible e, make a choice of L′(e) with diameter less than 2ε(e).
Using that particular L′(e), find a partial solution (Ye, fe) as in (\\\). Let Y ′′ be
the union of the Ye along their common subspace Y . The union of the fe is then a
morphism ψ(Y ′′) → Y which is a weak equivalence. ¤
Acknowledgment. I owe thanks to two Bruces, Williams and Hughes, for saving
an earlier version of this work from destruction; thanks also to Erik Pedersen for
directing my attention to [ClP] and [ClPV].
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Strasbourg, Lecture Notes in Math., vol. 136, Springer–Verlag, 1970.

[Ki]: J.M.Kister, Microbundles are fiber bundles, Ann. of Math. 80 (1964), 190–199.
[MC]: R.McCarthy, On fundamental theorems of algebraic K–theory, Topology 32 (1993), 325-

328.
[Mi]: J.Milnor, On the Steenrod homology theory, vol. 2 of proceedings of 1993 Oberwolfach

conference on Novikov Conjectures, Index Theorems and Rigidity, pp. 79–97.
[ML]: S.MacLane, Categories for the working mathematician, Springer–Verlag, 1971.
[PW1]: E.Pedersen and C.Weibel, A nonconnective delooping of algebraic K–theory, pp. 166–181

in Proc. of 1983 Rutgers conference on algebraic and geometric topology, Lecture Notes in
Math., vol. 1126, Springer–Verlag.

[PW2]: E.Pedersen and C.Weibel, K–theory homology of spaces, pp. 346–361 in Proc. of 1986
Arcata conference on algebraic and geometric topology, Lecture notes in Math., vol. 1370,
Springer–Verlag.

[Q]: D.Quillen, Higher algebraic K–theory I, in vol. 1 of Proc. of 1971 Battelle conference on
algebraic K–theory, Lecture Notes in Math., vol. 341, Springer–Verlag.



30 MICHAEL WEISS

[RY]: A.Ranicki and M.Yamasaki, Controlled K–theory, Topology and its Appl. 61 (1995), 1–59.
[TT]: R.Thomason and Trobaugh, Higher algebraic K–theory of schemes and of derived categories,

pp. 247–435 in vol. 3 of The Grothendieck Festschrift, Progr. in Math., vol. 88, Birkhäuser,
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