
HOMOLOGY WITHOUT SIMPLICES

MICHAEL WEISS

1. Introduction

Homology theory is the oldest part of algebraic topology. It was created in the
last years of the 19th century by Poincaré . In those days, our modern concepts
of topological space and metric space did not yet exist. Concepts like continuous
map and homeomorphism existed under different names. Many of the instances of
topological spaces (as we would say) which Poincaré studied were subsets of Rn
which could be decomposed into finitely many simplices.1 He saw that various in-
tegers which could be extracted from such a decomposition2 did not depend on the
decomposition: they were (suspected by him to be) homeomorphism invariants. He
did not prove all of that by himself, but it was all proved in the next 50 years as
his revolutionary ideas were developed in an orderly fashion.
It is safe to say that all algebraic topologists are in awe of Poincaré for his creation
of homology theory. Perhaps it is for this reason that even in the more modern
textbooks on homology theory, we still see those simplices all over the place. Many
influential and less influential mathematicians with a more detached view of alge-
braic topology have found this aspect of algebraic topology annoying. Although I
am as much in awe of Poincaré as anybody, I believe they have a point. Homology
theory can take some new viewpoints on board and ditch some old ones. And if
that makes it look less miraculous, then so be it.

2. Continuity is a local property

Topological spaces and continuous maps form a category.
A category C consists of a collection of objects, ob(C); for any two objects a, b , a
set morC(a, b), or mor(a, b) for short, whose elements are the morphisms from a
to b; and some additional data. The additional data are as follows: for any three
objects a, b, c, a map is specified called composition,

mor(b, c)×mor(a, b) −→ mor(a, c) ; (f, g) 7→ f ◦ g .

1Simplices is the plural of simplex. A simplex of dimension k in Rn is a (compact) subset of
Rn having the form { k∑

i=0

siv(i)
∣∣∣ si ≥ 0,

k∑
i=0

si = 1
}

where v(0), v(1), . . . , v(k) ∈ Rn are chosen vectors such that v(1)−v(0), v(2)−v(0), . . . , v(k)−v(0)
are linearly independent. A simplex of dimension 0 is a single point, a simplex of dimension 1 is

an edge, a simplex of dimension 2 is a triangle, a simplex of dimension 3 is a tetrahedron, and so
on.

2The simplest and best known example is the Euler characteristic r0 − r1 + r2 − r3 + r4 − · · ·
where rk is the number of k-simplices in the decomposition. You probably know this from Euler’s
polyhedron formula, V − E + F = 2.

1
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This is required to satisfy the associative law: (f ◦ g) ◦ h = f ◦ (g ◦ h) in mor(a, d)
whenever f ∈ mor(c, d), g ∈ mor(b, c) and h ∈ mor(a, b). It is also required to
have two-sided units: that is, for every object a there is a distinguished element
ida ∈ mor(a, a), the identity morphism of a, which acts like a two-sided unit for
composition.
In our example, the category T of topological spaces and continuous maps, the
objects are the topological spaces X,Y, ... and morT(X,Y ) is the set of continuous
maps from X to Y . Composition of morphisms is composition of continuous maps
and the identity morphism of X is the identity map X → X.

The following observation about continuous maps relates categorical notions to
the concept of an open covering. Let X and Y be topological spaces and let (Uj)j∈J
be an open covering of X. In other words each Uj is an open subset of X and the
union of all Uj is X.

Lemma 2.1. Let (fj :Uj → Y )j∈J be a family of continuous maps. Suppose that,
for all i, j ∈ J the maps fi and fj agree on Ui ∩ Uj. Then there exists a unique
continuous map f :X → Y such that f agrees with fj on Uj , for every j ∈ J .

The proof is easy. The lemma is a precise formulation of what I meant by
writing that continuity is a local property. The lemma could be formulated with
more category language. We could say: let a family of morphisms (fj)j∈J be given,
where fj ∈ mor(Uj , Y ). There are preferred morphisms in mor(Ui ∩ Uj , Ui) and
mor(Ui ∩ Uj , Uj), the inclusion maps. Composition with these defines maps from
mor(Ui , Y ) and from mor(Uj , Y ) to mor(Ui∩Uj , Y ) which we may call restriction
maps. Suppose that fj and fi are taken to the same element of mor(Ui∩Uj , Y ) by
these restriction maps, for all i, j ∈ J . Then there exists a unique f ∈ mor(X,Y )
such that ... (reader: finish sentence). The meaning of mor is morT throughout.

3. The spirit of algebra in topology

Let us think about ways to turn the category T of topological spaces into some-
thing else which feels more algebraic.

One brave step in that direction is to divide the morphism sets morT(X,Y )
into equivalence classes using the relation homotopic. We obtain a new category
HT with the same objects as T. The morphism set morHT(X,Y ) is morT(X,Y )
modulo homotopy, that is, the set of homotopy classes of continuous maps from
X to Y . (Reader: define composition of morphisms in HT. Explain why it is well
defined.) The category HT certainly feels more algebraic than T. For example,
morT(S1, S1) is uncountably infinite, but morHT(S1, S1) is countably infinite and
we have a preferred bijection from it to Z, the set of integers. Also, for a simply
connected space Y , the set morHT(Sn, Y ) has a preferred structure of abelian group
(where n > 1 is an integer). Every continuous map Y0 → Y1 between simply
connected spaces induces a homomorphism of abelian groups from morHT(Sn, Y0)
to morHT(Sn, Y1). This is all very good, but here we take the view that HT is too
difficult. Passing to homotopy classes is a good idea, but we keep it for later.

Right now we aim to conjure the spirit of algebra not by thinking homotopy,
but by thinking of ways to add and subtract elements of morT(X,Y ). One way to
achieve this is to enlarge the category T to a category PAT with the same objects
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as T, in such a way that

morPAT(X,Y ) = free abelian group generated by morT(X,Y ) .

This means that a morphism in PAT from a topological space X to a topological
space Y is a linear combination, with integer coefficients, of ordinary continuous
maps from X to Y . For example, if you have some continuous maps from X to Y ,
say f, g and h, then you may write down 5f −3g+2h and view that as a morphism
from X to Y in PAT. Composition of morphisms in PAT works like this: if I have
a morphism from X to Y , say 5f − 3g + 2h, and another morphism from W to X,
say −6p+ q + 7r, then the composition is

−30fp+ 5fq + 35fr + 18gp− 3gq − 21gr − 12hp+ 2hq + 14hr .

Simplifications can sometimes be made; for example if it happens that fp = hr,
then we may write −16fp+ 5fq+ 35fr+ 18gp− 3gq− 21gr− 12hp+ 2hq instead.

The definition of PAT is simple-minded. It looks as if it cannot possibly do much
good. We may want to scream out against the idiocy of it, but let us formulate
our objections in a more civilised manner. Then we shall see that it is a good
first attempt.3 A wise objection to PAT is that it does not satisfy the analogue of
lemma 2.1. The following examples illustrate that.

Example 3.1. Let X = {1, 2, . . . , p} and Y = {1, 2, . . . , q}, finite sets with the
discrete topology. For i ∈ X let Ui ⊂ X be the singleton {i}. The Ui form an open
covering of X, and clearly Ui ∩Uj = ∅ if i 6= j. The abelian group morPAT(∅, Y ) is
free on one generator (the unique map from ∅ to Y ), while morPAT(Ui, Y ) is a free
abelian group on q generators. It follows that the subgroup

B ⊂
p∏
i=1

morPAT(Ui, Y )

consisting of all (s1, s2, . . . , sp) such that s1, . . . , sp restrict to the same element of
morPAT(∅, Y ) is free abelian of rank pq−p+1. But morPAT(X,Y ) is a free abelian
group on qp generators. The homomorphism morPAT(X,Y ) → B determined by
the inclusions Ui → X cannot be injective if q ≥ 2 and p ≥ 2.

Example 3.2. Take X = RPn and Y = Sn ⊂ Rn+1. Make an open covering
of X with n + 1 open subsets U0, U1, . . . , Un where Ui consists of all the points
whose i-th coordinate is 6= 0. (Think of points in RPn as antipodal pairs in Sn ;
then the i-th coordinate of such a point is well defined up to sign. We number
the coordinates from 0 to n.) For every i there are two obvious continuous maps
fi, gi :Ui → Sn; one of these takes an element x in Un to the unique y ∈ Sn which
represents x and has yi > 0, while the other takes x in Un to the unique y ∈ Sn
which represents x and has yi < 0. The formal sum (alias linear combination)
fi + gi is an element in morPAT(Ui, Sn). It is clear that fi + gi and fj + gj agree
on Ui ∩ Uj . But there is no element of morPAT(RPn, Sn) whose restriction to Ui
is fi − gi for every i ∈ {0, 1, . . . , n}. The reason is that, for any fixed i, neither fi
nor gi extend continuously to RPn.

3The P in PAT does not stand for pre-anything, as you may have thought, but was chosen to

remind you of Perceval, knight of the Arthurian legends. He achieved much in his lifetime because
he had a simple mind and a pure heart.
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Therefore we proceed to make a new category AT by making certain improve-
ments to PAT. Many good features of PAT will be kept:

• The objects of AT are the topological spaces.
• The morphism sets morAT(X,Y ) are abelian groups.
• Composition of morphisms

morAT(X,Y )×morAT(W,X) −→ morAT(W,Y )

is bilinear.
• The abelian groups morPAT(X,Y ) and morAT(X,Y ) are related by a pre-

ferred homomorphism morPAT(X,Y ) −→ morAT(X,Y ) which respects
composition and, in the case X = Y , identity morphisms.

The method which we will use to make AT from PAT is old and well-established,
but not as old as homology theory4.

Definition 3.3. An element of morAT(X,Y ) can be specified by giving an open
covering (Uj)j∈J of X, and for each j ∈ J an element

sj ∈ morPAT(Uj , Y )

such that the following condition is satisfied. For i, j ∈ J and x ∈ Ui ∩ Uj , there
exists an open neighbourhood W of x in Ui ∩ Uj such that the images (under
restriction) of si and sj in morPAT(W,Y ) are the same.
Two such data sets (Uj , sj)j∈J and (Vk , tk)k∈K determine the same element of
morAT(X,Y ) if and only if for every x ∈ X there exist j ∈ J and k ∈ K such that
x ∈ Uj ∩ Vk , and an open neighbourhood W of x in Uj ∩ Vk such that the images
(under restriction) of si and tk in morPAT(W,Y ) are the same.

Example 3.4. For X = ∅ and arbitrary Y , there are many interesting open cover-
ings of X, but the best of them is the one which has no open sets at all. It follows
that morAT(∅, Y ) = 0. This makes an interesting contrast with morPAT(∅, Y ) ∼= Z.

Example 3.5. Suppose that X = ? is a singleton. Then clearly morAT(X,Y )
is the same as morPAT(X,Y ), which is a free abelian group generated by the set
underlying Y . More generally, let X = {1, 2, . . . , p} where p > 0 (finite set with the
discrete topology) and Y is arbitrary. Using the open covering of X with subsets
{i} for i ∈ X, we find that morAT(X,Y ) is a product of p copies of morAT(? , Y ).

Reader: explain in detail how composition of morphisms in AT should be defined
and why it is bilinear. Define the preferred homomorphism from morPAT(X,Y ) to
morAT(X,Y ). Formulate and prove the analogue of lemma 2.1 for AT.

Lemma 3.6. The set morAT(X,Y ) has a preferred structure of abelian group.

Idea of proof. Let elements a and b in morAT(X,Y ) be given by data sets (Uj , sj)j∈J
and (Vk , tk)k∈K , respectively. Then (Uj ∩ Vk)(j,k)∈J×K is an open covering of
X. For each (j, k) in J × K we have sj |Uj ∩ Vk ∈ morPAT(Uj ∩ Vk, Y ) and
tk|Uj ∩ Vk ∈ morPAT(Uj ∩ Vk, Y ). Form their sum rjk in morPAT(Uj ∩ Vk, Y ).
The data set (Uj ∩Vk , rjk)(j,k)∈J×K determines an element in morAT(X,Y ). That
element is a+ b. �

4It is called sheafification and belongs to sheaf theory, which goes back to the 1940s: Leray
1945, Cartan Seminar 1948 according to Wikipedia
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4. Homotopy relation, homology and cohomology

It is easy to talk about homotopy in the category AT. Say that two elements
a, b ∈ morAT(X,Y ) are homotopic if there exists an element

h ∈ morAT(X × [0, 1], Y )

such that hi0 = a and hi1 = b, where i0 :X → X × [0, 1] and i1 :X → X × [0, 1] are
defined by x 7→ (x, 0) and x 7→ (x, 1), respectively. In such a case we say that h is
a homotopy from a to b. Often it is convenient to use other intervals: [1, 2] or [0, 2]
etc. instead of [0, 1].

Lemma 4.1. The homotopy relation is an equivalence relation on

morAT(X × [0, 1], Y ) .

This may look obvious, but there is a small difficulty in proving transitivity
of the relation. Let h ∈ morAT(X × [0, 1], Y ) be a homotopy from a to b and let
g ∈ morAT(X×[1, 2], Y ) be a homotopy from b to c. We may hope to find an element
of morAT(X × [0, 2], Y ) which agrees with h on X × [0, 1] and with g on X × [1, 2].
But such an element of morAT(X× [0, 2], Y ) may not exist. One problem is that we
cannot easily make an open covering of X × [0, 2] from open coverings of X × [0, 1]
and X × [1, 2]. There is a trick to overcome this problem. Let ψ : [0, 1] → [0, 1] be
a continuous map which is constant with value 0 on [0, ε] and constant with value
1 on [1− ε, 1]. Replace h by hψ , the composition of h ∈ morAT(X × [0, 1], Y ) with
the map (x, t) 7→ (x, ψ(t)) from X× [0, 1] to X× [0, 1]. It is easy to show that there
exists an element of morAT(X × [0, 2], Y ) which agrees with hψ on X × [0, 1] and
with g on X × [1, 2].

Lemma 4.2. The homotopy relation is compatible with composition of morphisms
in AT. Consequently there is a homotopy category HAT, with the same objects as
AT and T, such that

morHAT(X,Y ) =
morAT(X,Y )

homotopy relation
.

The proof is straightforward.

We import HT notation to HAT by writing [f ] for the homotopy class of a
morphism f ∈ morAT(X,Y ) when it seems useful.

Example 4.3. Let ? be a singleton (topological space with one element). For
a topological space Y , the abelian group morHAT(? , Y ) is isomorphic to the free
abelian group generated by π0Y , the set of path components of Y . (Reader: prove
it.) More generally, suppose that X is a discrete space (a set with the discrete
topology where every subset is open). Then morHAT(X,Y ) is isomorphic to the
free abelian group generated by the set of all maps from X to π0Y . (Prove it.)

Example 4.4. For a topological space X, the abelian group morHAT(X, ? ) is
isomorphic to the abelian group of continuous maps from X to Z (where Z has
the discrete topology). (Prove it.) More generally, suppose that Y is a discrete
space. Then morHAT(X,Y ) is isomorphic to the abelian group of all continuous
maps from X to ZY . Here ZY is the free abelian group generated by the set Y ,
with the discrete topology. (Prove it.)
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Definition 4.5. For an integer n ≥ 0, the n-th homology group of Y is the abelian
group

Hn(Y ; Z) :=
morHAT(Sn, Y )
morHAT(? , Y )

.

Comment. Let c :Sn → ? be the constant map and let e : ? → Sn be the inclusion
of the standard base point, so that ce = id? . Pre-composition with c defines a
homomorphism c∗ : morHAT(? , Y ) −→ morHAT(Sn, Y ) and pre-composition with e
defines a homomorphism e∗ : morHAT(Sn, Y ) −→ morHAT(? , Y ). The composition
e∗c∗ is the identity on morHAT(? , Y ). This fact allows us to think of morHAT(? , Y )
as a direct summand of morHAT(Sn, Y ).

Example 4.6. Using example 4.3, it is easy to show that H0(X; Z) is (isomorphic
to) the free abelian group generated by π0X.

Definition 4.7. For an integer n ≥ 0, the n-th cohomology group of X is the
abelian group

Hn(X; Z) :=
morHAT(X,Sn)
morHAT(X, ? )

.

Example 4.8. Using example 4.3, it is easy to show that H0(X; Z) is (isomorphic
to) the abelian group of continuous maps from X to Z.

For topological spaces X1, X2, Y1 and Y2 and morphisms f ∈ morAT(X1, Y1)
and g ∈ morAT(X2, Y2), there is a morphism

f ⊗ g ∈ morAT(X1 ×X2, Y1 × Y2)

defined as follows. Represent f and g by data sets (Uj , sj)j∈J and (Vk , tj)k∈K
where (Uj)j∈J and (Vk)k∈K are open coverings of X1 and X2 respectively, each sj is
a Z-linear combination of continuous maps from Uj to Y1 and each tk is a Z-linear
combination of continuous maps from Vk to Y2. More precisely, suppose that

sj =
∑
p

αpup , tk =
∑
q

βqvq .

Let sj ⊗ tk =
∑
p,q(αpβq) up× vq where (up× vq)(x1, x2) := (up(x1), vq(x2)). Then

the data set
(Uj × Vk , sj ⊗ tk)(j,k)∈J×K

represents a morphism in AT from X1 ×X2 to Y1 × Y2.
This construction has some interesting consequences for cohomology. To formu-
late these let’s note that there is an important map µ :Sm × Sn −→ Sm+n. The
easiest way to understand this is to think of Sm, Sn and Sm+n as the one point-
compactifications of Rm, Rn and Rm × Rn , respectively. Then we can write

µ : (Rm ∪∞)× (Rn ∪∞) −→ (Rm × Rn ∪∞)

and define µ to be the identity on Rm ×Rn. Points in the source with at least one
coordinate equal to ∞ are mapped to ∞.

Definition 4.9. Let u ∈ Hm(X1; Z) and v ∈ Hn(X2; Z). The external product

u× v ∈ Hm+n(X1 ×X2; Z)
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is obtained by choosing representatives f in morAT(X1, S
m) and g in morAT(X2, S

n)
for u and v, respectively, and composing f ⊗ g ∈ morAT(X1 ×X2, S

m × Sn) with
µ :Sm × Sn → Sm+n. In the case X1 = X2 = X, the cup product

u ∪ v ∈ Hm+n(X; Z)

of u and v is obtained by choosing representatives f and g as before and composing
f ⊗ g ∈ morAT(X × X,Sm × Sn) with µ on one side and with the diagonal map
X → X ×X on the other.

Lemma 4.10. The cup product is bilinear and associative. Hence the cohomology
groups Hn(X; Z), taken together for n ≥ 0 and equipped with the cup product, form
a graded ring.

The proof is straightforward, but it is worthwhile to expand on the meaning.
A graded ring can be defined as a sequence of abelian groups A0, A1, A2, A3, . . .
together with bilinear maps fmn :Am × An → Am+n , subject to associativity. If
we insist on a unit, and here we do, that unit should be an element 1 ∈ A0.

The graded ring formed by the cohomology groups Hn(X; Z) for all n ≥ 0 has a
unit. This is the element 1 ∈ H0(X; Z) represented by the continuous map X → S0

which has the constant value not the base point. Beware that in the case where
X is empty, we have H0(X; Z) = 0 and so the unit element agrees with the zero
element.

5. Gluing and fracturing

Lemma 2.1 has a weak analogue in the homotopy category HT, as follows. Sup-
pose that X = V ∪W where V and W are open in X.

Proposition 5.1. Assume that the covering of X by V and W admits a subordinate
partition of unity5. Let a ∈ morHT(V, Y ) and b ∈ morHT(W,Y ) be any morphisms
such that the restrictions of a and b in morHT(V ∩W,Y ) agree. Then there exists
c in morHT(X,Y ) which restricts to a in morHT(V, Y ) and to b in morHT(W,Y ).

Proof. Choose a partition of unity {ψ1, ψ2} subordinate to the covering of X by V
and W . Choose continuous maps f : V → Y and g :W → Y representing a and b,
respectively, and a homotopy (ht)t∈[0,1] from f |V ∩W to g|V ∩W . The homotopy
exists by assumption. Define e :X → Y by e(x) = f(x) for x /∈W , e(x) = g(x) for
x /∈ V , and e(x) = hψ2(x)(x) for x ∈ V ∩W . Let c be the homotopy class of e. �

Comment. The partition of unity certainly exists if X is metrisable; more gen-
erally it exists if X is a normal space6.

It is straightforward to formulate and prove an analogue of proposition 5.1 in
HAT. Again suppose that X = V ∪W where V and W are open in X.

Proposition 5.2. Assume that the covering of X by V and W admits a subor-
dinate partition of unity. Let a ∈ morHAT(V, Y ) and b ∈ morHAT(W,Y ) be any
morphisms such that the restrictions of a and b in morHAT(V ∩W,Y ) agree. Then
there exists c in morHAT(X,Y ) which restricts to a in morHAT(V, Y ) and to b in
morHAT(W,Y ).

5This means that there exist continuous functions ψ1 :X → [0, 1] and ψ2 :X → [0, 1] such that
ψ1 + ψ2 ≡ 1 and ψ1 has support in V while ψ2 has support in W . The support of a continuous

u :X → R is the closure of {x ∈ X| u(x) 6= 0}.
6This means that two disjoint closed subsets of X admit disjoint open neighbourhoods.
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Proof. Choose a partition of unity {ψ1, ψ2} subordinate to the covering of X by
V and W . Choose f ∈ morAT(V, Y ) and g ∈ morAT(W,Y ) representing a and b,
respectively, and a homotopy (ht)t∈[0,1] from f |V ∩W to g|V ∩W . Together, the
morphisms f , g and h define a single morphism u in AT from the double mapping
cylinder7 Z of

V ←− V ∩W −→W

to Y . Define j :X → Z by j(x) = x ∈ V for x /∈ W , j(x) = x ∈ W for x /∈ V , and
j(x) = (x, ψ2(x)) ∈ V ∩W × [0, 1] for x ∈ V ∩W . Let c be the homotopy class of
the composition uj. �

Let us try to interchange the roles of X and Y in proposition 5.1. Let V and W
be open subsets of Y . Suppose that f :X → V and g :X → W become homotopic
when viewed as maps from X to Y . Does there exist a map e : X → V ∩W such
that e composed with the inclusion V ∩W → V is homotopic to f and e composed
with V ∩W →W is homotopic to g ? In general the answer is no.

Example 5.3. Let Y = S1 ∨D2 (wedge sum, obtained by identifying chosen base
points of S1 and D2). Choose open sets V and W in Y in such a way that V contains
S1∨S1 and the inclusion S1∨S1 → V is a homotopy equivalence, while W contains
D2 and the inclusion D2 → W is a homotopy equivalence. Then V ∪W = Y and,
when we pass from T to HT, the diagram of inclusions

V ∩W −−−−→ Vy y
W −−−−→ V ∪W = Y

becomes (isomorphic to)
S1 α−−−−→ S1 ∨ S1y yβ
? −−−−→ S1

where α is the inclusion of the first wedge summand and β is the collapse of the
first wedge summand. Now let X = S1. There is only one map g from X to
? . With some understanding of the fundamental group of S1 ∨ S1, it is easy to
construct a map f :X → S1 ∨ S1 which is not homotopic to a map of the form αe,
for e :X → S1, while βf is nullhomotopic.
In order to dispel the idea that this phenomenon might go away when all spaces
in sight are simply connected, I want to describe a similar example where higher
dimensional spheres take the place of circles. Let Y = S2 ∨ D3 and choose open

7The double mapping cylinder of a diagram of spaces

A
f←−−−−− B

g−−−−−→ C

is the quotient space of the disjoint union of A, C and B× [0, 1] by the relations (b, 0) ∼ f(b) ∈ A
and (b, 1) ∼ g(b) ∈ C for b ∈ B. In the situation above where A = V , C = W and B = V ∩W ,

the double mapping cylinder should not be confused with the union of V × {0}, W × {1} and
(V ∩W )× [0, 1] as a subspace of X × [0, 1]. There is an obvious bijection from one to the other

but it often fails to be a homeomorphism. For example, if X = [0, 1] and V = [0, 1), W = (0, 1],

then the double mapping cylinder of V ← V ∩W → W is not metrisable (thanks Larry Taylor),
whereas any subspace of X × [0, 1] is of course metrisable.
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sets V and W by analogy with the above, in such a way that V ∪W = Y and the
diagram in T of inclusions

V ∩W −−−−→ Vy y
W −−−−→ V ∪W = Y

becomes, in HT, isomorphic to

S2 α−−−−→ S2 ∨ S2y yβ
? −−−−→ S2

where α is the inclusion of the first wedge summand and β is the collapse of the
first wedge summand. Now let X = S3. There is only one map g from X to ? .
With some understanding of the third homotopy group of S2 ∨ S2 (which goes a
little beyond these lecture notes), it is possible to construct a map f :X → S2 ∨S2

which is not homotopic to a map of the form αe, for e :X → S2, while βf is
nullhomotopic.

The following theorem and especially its corollary should therefore come as a
surprise. Indeed we have reached the high point of the homology drama. Notation
for the theorem: V and W are open subsets of Y such that V ∪W = Y . The space
X is assumed to be paracompact8 and A is a closed subset of X.

Theorem 5.4 (Homotopy decomposition theorem). Let G : X × [0, 1] → Y be a
morphism in AT which is zero on a neighborhood of X × {0}. Then there exists a
decomposition G = GV +GW , where GV :X × [0, 1],→ V and GW :X × [0, 1]→W
are morphisms in AT, both zero on a neighborhood of X × {0}. If G is also zero
on some neighbourhood of A× I, then it can be arranged that GV and GW are zero
on a neighbourhood of A× I.

The proof of this is hard and we will postpone it for section 11.

Corollary 5.5. Let V,W ⊂ Y be open subsets, V ∪W = Y . Let a ∈ morHAT(X,V )
and b ∈ morHAT(X,W ) be such that the images of a and b in morHAT(X,Y ) agree.
Then there exists c ∈ morHAT(X,V ∩W ) whose image in morHAT(X,V ) is a and
whose image in morHAT(X,W ) is b.

Proof. Let f ∈ morAT(X,V ) represent a and let g ∈ morAT(X,W ) represent b.
Choose a homotopy K :X × [0, 1] → Y from 0 to g − f . It is easy to arrange this
in such a way that K is zero on a neighbourhood of X × {0}. Use the theorem
to obtain a decomposition K = KV + KW . Let KV

1 and KW
1 be the restrictions

of KV and KW to X × {1}. Then f and f + KV
1 are homotopic as morphisms

X → V , by the homotopy fp + KV , where p is the projection X × [0, 1] → X.
Similarly g = f + KV

1 + KW
1 and f + KV

1 are homotopic as morphisms X → W .
Finally, f +KV

1 = g −KW
1 lands in V ∩W by construction. �

8Look it up in any book on general topology. Metric implies paracompact and paracompact
implies normal.
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6. Mayer-Vietoris sequence in homology

A sequence of abelian groups (An)n∈Z together with homomorphisms

fn :An → An−1

for all n ∈ Z is called an exact sequence of abelian groups if the kernel of fn is equal
to the image of fn+1 , for all n ∈ Z. More generally, we sometimes have to deal
with diagrams of abelian groups and homomorphisms in the shape of a string

An → An−1 → An−2 → · · · → An−k .

Such a diagram is exact if the kernel of each homomorphism in the string is equal
to the image of the preceding one, if there is a preceding one.

Notation: Hn(Y ) is short for Hn(Y ; Z) and I is short for the interval [0, 1].

Definition 6.1. Alternative definition of homology : For a space Y , and n ≥ 0,
re-define Hn(Y ) as the abelian group of homotopy classes of morphisms In → Y in
AT which vanish on some neighbourhood of ∂In.

Comment. In this definition, we regard two morphisms In → Y which van-
ish on some neighborhood of ∂In as homotopic if they are related by a homotopy
In × I → Y which vanishes on some neighbourhood of ∂In × I.
To relate the old definition of Hn(Y ) to the new one, we make a few observations.
Given f : In → Y in AT which vanishes on some neighbourhood of ∂In, we imme-
diately obtain a morphism in AT from the quotient In/∂In to Y . To view this as
a morphism g :Sn → Y , we pretend Sn = Rn ∪∞ and specify a homeomorphism
u : In/∂In → Rn ∪∞ taking base point to base point. We are specific enough if we
say that u is smooth and orientation preserving on In r ∂In (i.e., the Jacobian de-
terminant is everywhere positive). Conversely, given g :Sn → Y in AT representing
an element of Hn(Y ) according to the old definition, we may subtract a suitable
constant to arrange that g is zero on the base point of Sn. We can also assume that
g is zero on a neighbourhood of the base point; if not, compose with a morphism
Sn → Sn in T which is homotopic to the identity and takes a neighbourhood of the
base point to the base point. Then gu is a morphism In/∂ → Y in AT which can
also be viewed as a morphism In → Y vanishing on a neighbourhood of ∂In.

Definition 6.2. Suppose that Y comes with two open subspaces V and W such
that V ∪W = Y . The boundary homomorphism

∂ : Hn(Y )→ Hn−1(V ∩W )

is defined as follows, using the alternative definition of Hn. Let x ∈ Hn(Y ) be
represented by a morphism G : In → Y in AT which vanishes near ∂In. Think of
G as a homotopy, G : In−1× I → Y . Choose a decomposition G = GV +GW as in
theorem 5.4. Arrange that GV and GW vanish on a neighbourhood of ∂In−1 × I.
Let ∂(x) be the class of the morphism

GW1 : In−1 → V ∩W

which vanishes near ∂In−1.

We must show that this is well defined. There were two choices involved: the
choice of representative G, and the choice of decomposition G = GV +GW . For the
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moment, keep G fixed, and let us see what happens if we try another decomposition
of G. Any other decomposition will have the form

(GV + E) + (GW − E)

where E : In−1 × I → V ∩W is a morphism in AT which vanishes on ∂In−1 × I
and on In−1 × {0}. We need to show that GW1 −E1 is homotopic (rel boundary of
In−1) to GW1 . But E1 is homotopic to zero by the homotopy E.
Next we worry about the choice of representative G. Let F be another represen-
tative of the same class x, and let L : I × In → Y be a homotopy from F to G.
(Writing the factor I on the left will help us to avoid confusion.) We can think of
L as a homotopy in a different way:

(I × In−1)× I −→ Y .

Then we can apply the homotopy decomposition theorem and choose a decompo-
sition L = LV + LW where LV and LW vanish on I × ∂In−1 × I. We then find
that LW1 is a morphism from X = I × In−1 to V ∩W which we may regard as a
homotopy (now with parameters written on the left). The homotopy is between
GW1 and FW1 , provided the decompositions G = GV +GW and F = FV + FW are
the ones obtained by restricting the decomposition L = LV + LW . �

The boundary homomorphisms ∂ can be used to make a sequence of abelian
groups and homomorphisms

· · · // Hn+1(Y )

∂

��
Hn(V ∩W ) // Hn(V )⊕Hn(W ) // Hn(Y )

∂

��
Hn−1(V ∩W ) // · · ·

where n ∈ Z. (Set Hn(X) = 0 for n < 0 and any space X. The unlabelled
homomorphisms in the sequence are as follows: Hn(V ) ⊕ Hn(W ) → Hn(Y ) is
jV ∗ + jW∗ , the sum of the two maps given by composition with the inclusions
jV :V → Y and jW :W → Y , and Hn(V ∩W )→ Hn(V )⊕Hn(W ) is (eV ∗ ,−eW∗),
where eV ∗ and eW∗ are given by composition with the inclusions eV :V ∩W → V and
eW :V ∩W → W .) The sequence is called the homology Mayer-Vietoris sequence
of Y and V,W .

Theorem 6.3. The homology Mayer-Vietoris sequence of Y and V,W is exact.9

Proof. (i) Exactness of the pieces Hn(V ∩W )→ Hn(V )⊕Hn(W )→ Hn(Y ) follows
from corollary 5.5, for all n ∈ Z. (Take X = Sn in corollary 5.5. Therefore it is
more convenient to use the standard definition of Hn at this point.)
(ii) Next we look at pieces of the form

Hn(V )⊕Hn(W ) −−−−→ Hn(Y ) ∂−−−−→ Hn−1(V ∩W ) .

9View this as a sequence of abelian groups and homomorphisms indexed by the integers, by

setting for example A3n = Hn(Y ) for n ≥ 0, A3n+1 = Hn(V ) ⊕ Hn(W ) for n ≥ 0, A3n+2 =
Hn(V ∩W ) for n ≥ 0, and Am = 0 for all m ≤ 0.
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The cases n < 0 are trivial. In the case n = 0, the claim is that the homomorphism
H0(V ) ⊕H0(W ) → H0(Y ) is surjective. This is a pleasant exercise. Now assume
n > 0. It is clear from the definition of ∂ that the composition of the two homo-
morphisms is zero. Suppose then that [G] ∈ Hn(Y ) is in the kernel of ∂, where
G : In → Y vanishes on a neighbourhood of ∂In. We must show that [G] is in
the image of Hn(V )⊕Hn(W )→ Hn(Y ). As above, we think of G as a homotopy,
In−1 × I → Y , which we decompose, G = GV +GW as in theorem 5.4, where GV

and GW vanish on a neighbourhood of ∂In−1 × I. We can also arrange that the
homotopies GV and GW are stationary (do not depend on the “time” variable) on
neighbourhoods of In−1 × {0} and In−1 × {1}. The assumption ∂[G] = 0 then
means that the zero map

In−1 → V ∩W

is homotopic to GW1 , say by a homotopy L : In−1×I → V ∩W which vanishes on a
neighbourhood of ∂In−1×I. We can arrange that L is stationary on neighbourhoods
of In−1 × {0} and In−1 × {1}. Then GV + L and GW − L are morphisms from
In−1 × I = In to V and W , respectively. Both vanish on a neighborhood ∂In.
Hence they represent elements in Hn(V ) and Hn(W ) whose images in Hn(Y ) add
up to [G].
(iii) We show that the composition

Hn+1(Y ) ∂−−−−→ Hn(V ∩W ) −−−−→ Hn(V )⊕Hn(W ) .

is zero. We can assume n ≥ 0. Represent an element in Hn(Y ) by G : In× I → Y ,
vanishing on a neighbourhood of the entire boundary; decompose as usual, and
obtain ∂[G] = [GW1 ]. Now GW1 = −GV1 viewed as a morphism In → V in AT is ho-
motopic to zero by the homotopy −GV vanishing on a neighbourhood of ∂In−1×I.
Therefore ∂[G] maps to zero in Hn(V ). A similar calculation shows that it maps
to zero in Hn(W ).
(iv) Finally let f : In → V ∩W be a morphism in AT which vanishes on a neigh-
bourhood of ∂In, and suppose that [f ] ∈ Hn(V ∩W ) is in the kernel of the homo-
morphism Hn(V ∩W )→ Hn(V )⊕Hn(W ). Choose a homotopy GV : In × I → V
from zero to −f , and another homotopy GW : In × I → W from zero to f , both
vanishing on a neighborhood of ∂In×I, and both stationary near In×{0, 1}. Then
G := GV +GW vanishes on the entire boundary of In× I, hence represents a class
[G] ∈ Hn+1(Y ). It is clear that ∂[G] = [f ]. �

7. Homology of spheres

Proposition 7.1. The homology groups of S1 are H0(S1) ∼= Z, H1(S1) ∼= Z and
Hk(S1) = 0 for all k 6= 0, 1.

Proof. Choose two distinct points p and q in S1. Let V ⊂ S1 be the complement of p
and let W ⊂ S1 be the complement of q. Then V ∪W = S1. Clearly V is homotopy
equivalent to a point, W is homotopy equivalent to a point and V ∩W is homotopy
equivalent to a discrete space with two points. Therefore Hk(V ) ∼= Hk(W ) ∼= Z
for k = 0 and Hk(V ) ∼= Hk(W ) = 0 for all k 6= 0. Similarly Hk(V ∩W ) ∼= Z ⊕ Z
for k = 0 and Hk(V ∩W ) = 0 for all k 6= 0. The exactness of the Mayer-Vietoris
sequence associated with the covering of S1 by V and W implies immediately that
Hk(S1) = 0 for k 6= 0, 1. The part of the Mayer-Vietoris sequence which remains
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interesting after this observation is

0 // H1(Y ) ∂ // Z⊕ Z // Z⊕ Z // H0(Y ) // 0

By example 4.6, the group H0(Y ) is isomorphic to Z. The homomorphism from
Z ⊕ Z to H0(Y ) is onto by exactness, so its kernel is isomorphic to Z. Hence the
image of the homomorphism Z ⊕ Z → Z ⊕ Z is isomorphic to Z, so its kernel
is again isomorphic to Z. Now exactness at H1(Y ) leads to the conclusion that
H1(Y ) ∼= Z. �

Theorem 7.2. The homology groups of Sn (for n > 0) are

Hk(Sn) ∼=

 Z if k = n
Z if k = 0
0 otherwise.

Proof. We proceed by induction on n. The induction beginning is the case n = 1
which we have already dealt with separately in proposition 7.1. For the induction
step, suppose that n > 1. We use the Mayer-Vietoris sequence for Sn and the open
covering {V,W} with V = Sn r {p} and W = Sn r {q} where p, q ∈ Sn are the
north and south pole, respectively. We will also use the homotopy invariance of
homology. This gives us

Hk(V ) ∼= Hk(W ) ∼=
{

Z if k = 0
0 otherwise

because V and W are homotopy equivalent to a point, and

Hk(V ∩W ) ∼=

 Z if k = n− 1
Z if k = 0
0 otherwise.

by the induction hypothesis, since V ∩W is homotopy equivalent to Sn−1. Fur-
thermore it is clear what the inclusion maps V ∩W → V and V ∩W →W induce
in homology: an isomorphism in H0 and (necessarily) the zero map in H0 for all
k 6= 0. Thus the homomorphism

Hk(V ∩W ) −→ Hk(V )⊕Hk(W )

from the Mayer-Vietoris sequence takes the form

Z −−−−→ Z⊕ Z

when k = 0, and
Z −−−−→ 0

when k = n− 1. In all other cases, its source and target are both zero. Therefore
the exactness of the Mayer-Vietoris sequence implies that H0(Sn) and Hn(Sn) are
isomorphic to Z, while Hk(Sn) = 0 for all other k ∈ Z. �

Theorem 7.3. Let f :Sn → Sn be the antipodal map. Then f∗ :Hn(Sn)→ Hn(Sn)
is multiplication by (−1)n+1.

Proof. We proceed by induction again. For the induction beginning, we take n = 1.
The antipodal map f : S1 → S1 is homotopic to the identity, so that f∗ : H1(S1)→
H1(S1) has to be the identity, too. For the induction step, we use the setup and



14 MICHAEL WEISS

notation from the previous proof. Exactness of the Mayer-Vietoris sequence for Sn

and the open covering {V,W} shows that

∂ : Hn(Sn) −→ Hn−1(V ∩W )

is an isomorphism. The diagram

Hn−1(V ∩W ) ∂←−−−− Hn(Sn)

f∗

x f∗

x
Hn−1(V ∩W ) ∂←−−−− Hn(Sn)

is meaningful because f takes V ∩W to V ∩W . But the diagram is not commutative
(i.e., it is not true that f∗ ◦ ∂ equals ∂ ◦ f∗). The reason is that f interchanges V
and W , and it does matter in the Mayer-Vietoris sequence which of the two comes
first. Therefore we have instead

f∗ ◦ ∂ = −∂ ◦ f∗
in the above square. By the inductive hypothesis, the f∗ in the left-hand column
of the square is multiplication by (−1)n, and therefore the f∗ in the right-hand
column of the square must be multiplication by (−1)n+1. �

8. The usual applications

Theorem 8.1. (Brouwer’s fixed point theorem). Let f : Dn → Dn be a continuous
map, where n ≥ 1. Then f has a fixed point, i.e., there exists y ∈ Dn such that
f(y) = y.

Proof. Suppose for a contradiction that f does not have a fixed point. For x ∈ Dn ,
let g(x) be the point where the ray (half-line) from f(x) to x intersects the boundary
Sn−1 of the disk Dn. Then g is a smooth map from Dn to Sn−1, and we have
g|Sn−1 = idSn−1 . Summarising, we have

Sn−1 j−−−−→ Dn g−−−−→ Sn−1

where j is the inclusion, g ◦ j = idSn−1 . Therefore we get

Hn−1(Sn−1)
j∗−−−−→ Hn−1(Dn)

g∗−−−−→ Hn−1(Sn−1)

where g∗j∗ = id. Thus the abelian group Hn−1(Sn−1) is isomorphic to a direct
summand of Hn−1(Dn). But from our calculations above, we know that this is not
true. If n > 1 we have Hn−1(Dn) = 0 while Hn−1(Sn−1) is not trivial. If n = 1 we
have Hn−1(Dn) ∼= Z while Hn−1(Sn−1) ∼= Z⊕ Z. �

Let f : Sn → Sn be any continuous map, n > 0. The induced homomorphism
f∗ : Hn(Sn)→ Hn(Sn) is multiplication by some number nf ∈ Z, since Hn(Sn) is
isomorphic to Z.

Definition 8.2. The number nf is the degree of f .

Remark. The degree nf of f :Sn → Sn is clearly an invariant of the homotopy
class of f .

Example 8.3. According to theorem 7.3, the degree of the antipodal map Sn → Sn

is (−1)n+1.
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Proposition 8.4. Let f : Sn → Sn be a continuous map. If f(x) 6= x for all
x ∈ Sn, then f is homotopic to the antipodal map, and so has degree (−1)n+1. If
f(x) 6= −x for all x ∈ Sn, then f is homotopic to the identity map, and so has
degree 1.

Proof. Let g :Sn → Sn be the antipodal map, g(x) = −x for all x. Assuming that
f(x) 6= x for all x, we show that f is homotopic to g. We think of Sn as the
unit sphere in Rn+1, with the usual notion of distance. We can make a homotopy
(ht : Sn → Sn)t∈[0,1] from f to g by “sliding” along the unique minimal geodesic
arc from f(x) to g(x), for every x ∈ Sn. In other words, ht(x) ∈ Sn is situated
t · 100 percent of the way from f(x) to g(x) along the minimal geodesic arc from
f(x) to g(x). (The important thing here is that f(x) and g(x) are not antipodes of
each other, by our assumptions. Therefore that minimal geodesic arc is unique.)
Next, assume f(x) 6= −x for all x ∈ Sn. Then, for every x, there is a unique
minimal geodesic from x to f(x), and we can use that to make a homotopy from
the identity map to f . �

Corollary 8.5. (Hairy ball theorem). Let ξ be a tangent vector field (explanations
follow) on Sn. If ξ(z) 6= 0 for every z ∈ Sn, then n is odd.

Comments. A tangent vector field on Sn ⊂ Rn+1 can be defined as a continuous
map ξ from Sn to the vector space Rn+1 such that ξ(x) is perpendicular to (the
position vector of) x, for every x ∈ Sn. We say that vectors in Rn+1 which are
perpendicular to x ∈ Sn are tangent to Sn at x because they are the velocity vectors
of smooth curves in Sn ⊂ Rn.

Proof. Define f : Sn → Sn by f(x) = ξ(x)/‖ξ(x)‖. Then f(x) 6= x and f(x) 6= −x
for all x ∈ Sn, since f(x) is always perpendicular to x. Therefore f is homotopic to
the antipodal map, and also homotopic to the identity. It follows that the antipodal
map is homotopic to the identity. Therefore n is odd by theorem 7.3. �

9. Mayer-Vietoris sequence in cohomology

Let X be a space with two open subsets V and W such that V ∪W = X. We aim
to construct a long exact sequence relating the cohomology groups of V ∩W , V , W
and X, analogous to the Mayer-Vietoris sequence in homology. The cohomology
version needs to rely very much on the fracturing results of section 5, especially
the homotopy decomposition theorem 5.4. Therefore we assume throughout this
section that X, V , W and V ∩W are paracompact.10

Choose a continuous map ψ :X → [0, 1] such that ψ has support in W and 1−ψ
has support in V . This amounts to saying that ψ and 1−ψ form a partition of unity
subordinate to the covering of X by V and W . The coboundary homomorphism

∂ :Hn(V ∩W ) −→ Hn+1(X)

is defined as follows. Any element of Hn(V ∩W ) can be represented by a morphism
f : V ∩ W → Sn in AT. Let q : Sn × [0, 1] → Sn+1 take (x0, . . . , xn) ∈ Sn to
(sx0, . . . , sxn, 2t− 1) ∈ Sn+1 where s =

√
1− (2t− 1)2. Make a morphism

F :X −→ Sn+1

10The paracompactness assumptions can be avoided at a high price: tampering with the
definition of the cohomology groups themselves. Some options will be looked at in later sections.
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in AT as follows. On V ∩ W ⊂ X let F be the composition of q with the self-
explanatory morphism f × ψ from V ∩W to Sn × [0, 1]. On the complement of
the support of ψ + 1, let F be constant with value (0, 0, . . . , 0,−1) and on the
complement of the support of 1− ψ, let it be constant with value (0, 0, . . . , 0,+1).
This defines F on three open subsets of X whose union is all of X; the definition
is consistent on overlaps. The homomorphism ∂ takes the class of f to the class of
F . (This is easily seen to be well defined, i.e., the class of F depends only on the
class of f , not on a choice of representative, nor on the choice of ψ.)

The coboundary homomorphisms ∂ can be used to make a sequence of abelian
groups and homomorphisms

· · · Hn+1(X)oo

Hn(V ∩W )

∂

OO

Hn(V )⊕Hn(W )oo Hn(X)oo

Hn−1(V ∩W )

∂

OO

· · ·oo

where n ∈ Z. (Set Hn(Y ) = 0 for n < 0 and any space Y . The unlabelled
homomorphisms in the sequence are as follows: Hn(X) → Hn(V ) ⊕ Hn(W ) is
(j∗V , j

∗
W ) for the inclusions jV : V → X and jW :W → X, and the homomorphism

Hn(V ) ⊕ Hn(W ) → Hn(V ∩ W ) is e∗V ⊕ −e∗W , where e∗V and e∗W are given by
composition with the inclusions eV : V ∩ W → V and eW : V ∩ W → W .) The
sequence is called the cohomology Mayer-Vietoris sequence of X and V,W .

Theorem 9.1. The cohomology Mayer-Vietoris sequence of X and V,W is exact.

For the proof we need a much better understanding of the coboundary operator,
and for that, lemma 9.2 and corollary 9.3 below. Let A be a paracompact space. Let
Jn+1(A) be the group of relative homotopy classes of morphisms A× [0, 1]→ Sn+1

in AT which are zero on A × {0, 1}. The word relative means that we only allow
homotopies (A× [0, 1])× [0, 1]→ Sn+1 which are zero on (A× {0, 1})× [0, 1].

Lemma 9.2. There is an isomorphism Hn(A)→ Jn+1(A).

Proof. Represent an element of Hn(A) by a morphism f :A→ Sn in AT such that
the composition of f with the unique map Sn → ? in T is zero (in AT). Let

Σf :A× [0, 1] −→ Sn+1

be the composition of f × [0, 1] :A × [0, 1] −→ Sn × [0, 1] in AT with the map
q : Sn × [0, 1] −→ Sn+1 in T. It is easy to check that Σf vanishes on A × {0, 1}.
The rule [f ] 7→ [Σf ] is a well-defined homomorphism from Hn(A) to Jn+1(A).
For a homomorphism in the other direction, represent an element of Jn+1(A) by
a morphism F :A × [0, 1] → Sn+1 which is zero on A × {0, 1}. Without loss of
generality, F is zero on a neighbourhood of A× {0}. Let M be the complement of
q(Sn×{1}) in Sn+1 and let N be the complement of q(Sn×{0}) in Sn+1. Choose
a decomposition F = FM + FN as in the homotopy decomposition theorem 5.4.
Then FN1 = −FM1 is a morphism from A ∼= A × {1} to M ∩N , and the inclusion
Sn →M ∩N is a homotopy equivalence. So FN1 represents an element in Hn(A).
(To verify that this depends only on the class of F in Jn+1(A), proceed as in
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section 6, after definition 6.2.)
We have constructed two homomorphisms; denote them by u :Hn(A) → Jn+1(A)
and v : Jn+1(S) → Hn(A). To show that vu is the identity on Hn(A), start with
f :A → Sn representing an element of Hn(A). Choose a continuous map ψ from
[0, 1] to [0, 1] which takes a neighbourhood of 0 to 0 and is the identity on [1/2, 1].
Put F = Σf ◦g where g :A× [0, 1]→ A× [0, 1] is defined by (x, t) 7→ (x, ψ(t)). Now
F is zero on a neighbourhood of A×{0}. Let FN be the composition of F with the
map A×[0, 1]→ A×[0, 1] taking (a, t) to (a, t) for t ≤ 1/2 and to (a, 1/2) otherwise.
Let FM = F − FN . The decomposition F = FM + FN has the properties that we
require, and FN1 = f . Therefore vu is the identity.
Finally we show that ker(v) = 0. Let F :A × [0, 1] → Sn+1 be a morphism in AT

which is zero on A × {1} and on a neighbourhood of A × {0}. Suppose that F
has a decomposition F = FM + FN as in the homotopy decomposition theorem,
and that FN1 represents zero in Hn(A). Then it follows that FN1 is homotopic
to zero as a morphism A → Sn. Using such a homotopy, it is easy to show that
[F ] = [G] ∈ Jn+1(A) where G :A× [0, 1]→ Sn+1 is another morphism in AT which
is zero on A×{1} and on a neighbourhood of A×{1}, and admits a decomposition
G = GM +GN as in the homotopy decomposition theorem, with GN1 = 0 (strictly,
not just up to homotopy). Then we can write [G] = [GM ] + [GN ] ∈ Jn+1(A). Now
it is enough to show that [GM ] = 0 and [GN ] = 0 in Jn+1(A). This is easy as M
and N are contractible. �

Corollary 9.3. Concatenation in Jn+1(A) agrees with addition; reversal is the
same as sign change.

Proof and explanation. For morphisms F,G :A× [0, 1]→ Sn+1 in AT, both vanish-
ing on a neighbourhood of A× {0, 1}, there is a morphism

A× [0, 2]→ Sn+1

restricting to F on a neighbourhood of A × [0, 1] and to G composed with the
translation (a, t) 7→ (a, t − 1) on a neighbourhood of A × [1, 2]. Reparameterising,
we view this as a morphism F ∗G :A× [0, 1]→ Sn+1 and call it the concatenation of
F and G. This operation is compatible with the homotopy relation and so induces
a well defined map

Jn+1(A)× Jn+1(A) −→ Jn+1(A)

which we still call concatenation. To show that it agrees with the addition in
Jn+1(A) we ask what happens to [F ∗G] under the abelian group isomorphism

v : Jn+1(A)→ Hn(A)

from the proof of lemma 9.2. By inspection, v[F ∗G] = v[F ] + v[G].
In a similar spirit, for a morphism F :A × [0, 1] → Sn+1 vanishing on a neigh-
bourhood of A × {0, 1}, there is a morphism rF :A × [0, 1] → Sn+1 obtained by
composing F with the homeomorphism (a, t) 7→ (a, 1 − t) from A × [0, 1] to itself.
By inspection, v[rF ] = −v[F ] so that the reversal operation [F ] 7→ [rF ] agrees with
sign change, [F ] 7→ −[F ]. �

Let Xe be the double mapping cylinder of

V ← V ∩W →W .
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The projection Xe → X is a homotopy equivalence.11 Therefore Hn(X) can be
identified with Hn(Xe) and the coboundary can be thought of as a homomorphism

∂ :Hn(V ∩W ) −→ Hn+1(Xe) .

By lemma 9.2, we may also describe it in the form

∂ : Jn+1(V ∩W )→ Hn+1(Xe)

And now there is a very elementary description. Namely, an element of Jn+1(V ∩W )
can be represented by a morphism F : (V ∩W ) × [0, 1] → Sn+1 which is zero on
a neighbourhood of (V ∩W ) × {0, 1}. The morphism F extends to a morphism
Xe → Sn+1 which is zero on V × {0} and W × {1}. That morphism represents
∂[F ]. It is not difficult (left to the reader) to prove agreement with the original
definition of the coboundary operator ∂.

Proof of theorem 9.1. Exactness at Hn(V )⊕Hn(W ) means that given a in Hn(V )
and b in Hn(W ) such that the images of a and b in Hn(V ∩ W ) agree, there
exists c ∈ Hn(X) restricting to a ∈ Hn(V ) and to b ∈ Hn(W ). Represent a by a
morphism f :V → Sn in AT such that the composition of f with the constant map
Sn → ? (in T) is homotopic to zero, and represent b by a morphism g :W → Sn in
AT such that the composition of g with Sn → ? is homotopic to zero. Then the
restrictions of a and b to V ∩W are homotopic as morphisms from V ∩W to Sn.
Apply proposition 5.2 to find a morphism k :X → Sn whose restrictions to V and
W are homotopic to f and g, respectively. Let c be the class of k in Hn(X).
The elements of Hn+1(V ) and Hn+1(W ) that we obtain by restricting an element
of the form ∂(b) ∈ Hn+1(X), where b ∈ Hn(V ∩W ), are represented by morphisms
V → Sn+1 and W → Sn+1 in AT which factor through a proper subset of Sn+1.
They are therefore zero. Showing exactness at Hn+1(X) then boils down to showing
that given c ∈ Hn+1(X) such that the restrictions of c in Hn+1(V ) and Hn+1(W )
are both zero, there exists b ∈ Hn(V ∩ W ) such that ∂(b) = c. To show this,
represent c by a morphism f :Xe → Sn+1 in AT such that the composition with
Sn+1 → ? is homotopic to zero. Then the restrictions f |V , from V to Sn+1,
and f |W , from W to Sn+1, are homotopic to zero. Without loss of generality
therefore, f is equal to zero on a neighbourhood of V ∪W in the double mapping
cylinder Xe. (If not, it is easy to make a homotopy from f to another morphism
Xe → Sn+1 having that property.) Therefore c = [f ] is in the image of ∂, viewed
as a homomorphism from Jn+1(V ∩W ) to Hn+1(Xe).
It remains to show exactness at Hn(V ∩W ). Using lemma 9.2, we can reformulate
the task as follows. Suppose that [F ] ∈ Jn+1(V ∩W ) has

∂[F ] = 0 ∈ Hn+1(Xe) .

Then we need to show that [F ] is in the image of the homomorphism e∗V ⊕−e∗W
from Jn+1(V )⊕ Jn+1(W ) to Jn+1(V ∩W ). Without loss of generality,

F : (V ∩W )× [0, 1]→ Sn+1

is zero on a neighbourhood of (V ∩ W ) × {0, 1}. Note that the composition of
F with the unique map Sn+1 → ? is strictly zero because it is strictly zero on
(V ∩W )× {0, 1}. The assumption ∂[F ] = 0 ∈ Hn+1(Xe) means that F , viewed as
a morphism from Xe to Sn+1, is homotopic to zero. Let G :Xe× [0, 1]→ Sn+1 be a

11A homotopy inverse is given by the map X → Xe taking x ∈ X to (x, 0) when x /∈ W , to

(x, 1) when x /∈ V , and to (x, ψ(x)) when x ∈ V ∩W .
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homotopy from F to 0. We can assume that it is stationary on a neighbourhood of
Xe×{0, 1}. The restrictions of G to V ×{0}× [0, 1] and W ×{1}× [0, 1] determine
elements of Jn+1(V ) and Jn+1(W ), respectively, which we may call [G′] and [G′′].
The homotopy G, restricted to (V ∩W )× [0, 1]× [0, 1], can be viewed as a homotopy
to zero from the concatenation of three morphisms (V ∩W ) × [0, 1] → Sn+1, all
vanishing on a neighbourhood of (V ∩W ) × {0, 1}: the reverse of G′ restricted to
(V ∩W )×[0, 1], then F , and then G′′ restricted to (V ∩W )×[0, 1]. By corollary 9.3,
this means that [F ] = e∗V [G′]− e∗W [G′′]. �

10. Products revisited

11. Proof of the homotopy decomposition theorem
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