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SMOOTH MAPS TO THE PLANE AND PONTRYAGIN CLASSES

PART II: HOMOTOPY THEORY

RUI REIS AND MICHAEL WEISS

Abstract. It is known that in the integral cohomology of BSO(2m), the
square of the Euler class is the same as the Pontryagin class in degree 4m.

Given that the Pontryagin classes extend rationally to the cohomology of
BSTOP(2m), it is reasonable to ask whether the same relation between the
Euler class and the Pontryagin class in degree 4m is still valid in the ratio-
nal cohomology of BSTOP(2m). In this paper we use smoothing theory and
tools from homotopy theory to reformulate the hypothesis, and variants, in a
differential topology setting and in a functor calculus setting.

1. Introduction

We are going to discuss several related types of hypotheses. Among them are
the A type which is a group of statements about characteristic classes of bundles
with structure group TOP(n) for some n, and the B type which is a group of
statements about spaces of smooth regular (i.e., nonsingular) maps to R2. Our
purpose here in Part II is to use smoothing theory and functor calculus to explore
logical dependencies between these hypotheses.
Our hypothesis’ labelling system has letters A,B and C for flavors, superscripts
s, m and w (strong, medium and weak) as strength indicators, and occasionally
superscripts e and o (even and odd) as parity indicators. Our aim in later parts,
such as [19], will be to prove some of the B hypotheses, which appear to be the
most accessible. We do not use results from Part I [18] here.
The A hypotheses relate TOP(n) to O(n) and to G(n), the grouplike topological
monoid of homotopy self-equivalences of the sphere Sn−1. There is a diagram of
inclusions

(1.1) O(n) // TOP(n) // G(n)

leading to a similar diagram of classifying spaces.

Hypothesis Aw . If 4i > 2n, then pi = 0 in H4i(BTOP(n);Q), where pi is the
rational Pontryagin class of Thom and Novikov [23, 17].

Hypothesis Am . In H4m(BSTOP(2m);Q) the equation e22m = pm holds, where
e2m is the Euler class.

Hypothesis As . The unique class in H4m(BG(2m + 1);Q) which extends the
squared Euler class in H4m(BSG(2m);Q) also extends the Pontryagin class in
H4m(BTOP(2m+ 1);Q).
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The analogues of these equations are well known to hold for BO(n), respectively
BSO(2m), respectively BO(2m + 1). They are nontrivial as stated. Indeed, al-
though BTOP is rationally homotopy equivalent to BO by [23, 17, 12], it is not
true that BTOP(n) is rationally equivalent to BO(n) for all or most finite n. The
reasons for the known discrepancies are quite deep. They were given in a short
paper by Farrell and Hsiang [5], building on smoothing theory, Waldhausen’s work
on h-cobordisms and algebraic K-theory, and on concordance stability theorems
which were only supplied some years later by Igusa [10].

For a formulation of the B hypotheses, fix a positive integer n. We will think
of the product Dn × D2 as a smooth manifold with corners. Let R = R(n, 2)
be the space of regular (alias nonsingular) smooth maps from Dn × D2 to R2

which agree near the boundary with the projection to the second factor D2 ⊂ R2.
Each f ∈ R has a derivative ∇f which is a map from Dn × D2 to the space
V = V (n, 2) of surjective linear maps Rn+2 → R2. Moreover ∇f is constant near
the boundary, with value the standard projection from Rn+2 to R2 which we regard
as the basepoint of V . So ∇f can be viewed as an element of the (n+ 2)-fold loop
space Ωn+2V , and it turns out (remark 2.12) to belong to the base point component
V = Ωn+2

0 V . Therefore we have

(1.2)
∇ :R −→ V

f 7→ ∇f ,

a map of based spaces, which is an embedding. It is equivariant for the conjugation
actions of S1 = SO(2) on source and target. In somewhat more detail, S1 acts on
the source of (1.2) by (a, f) 7→ af(In ⊕ a−1) for f in R and a ∈ S1. There is a
matching action of S1 on the target of (1.2). We leave it to the reader to make that
explicit; beware that S1 also acts nontrivially on the factor D2 of Dn ×D2 which
is concealed in the symbol Ωn+2 within the definition of V .
It is not very hard to produce an integral nullhomotopy for (1.2), both for odd and
even n, but we will not do so here. It is much harder to produce a nullhomotopy
which takes the S1-actions into account. This is what the B hypotheses are about.
As a matter of language, we shall say that an S1-map f :X → Y between based
spaces with S1-action is weakly S1-nullhomotopic if the composite map

Xcw
g // X

f // Y

is based S1-nullhomotopic. Here Xcw is a based S1-CW-space with free S1-cells
(away from the basepoint) and g is a based S1-map which is also a weak homotopy
equivalence.

Hypothesis Bw|o . For odd n, the S1-map ∇ :R −→ V admits a rational weak
S1-nullhomotopy.

Hypothesis Bm|e . For even n, the S1-map ∇ :R −→ V admits a rational weak
S1-nullhomotopy.

Remark 1.1. The space V is rationally an Eilenberg-MacLane space K(Q, n− 1)
when n is odd, and a K(Q, n− 3) when n is even, n > 2. Consequently, the action
of S1 on the target of ∇ is trivial in a weak (rational) sense so that ∇ determines a
cohomology class z ∈ Hn−1(RhS1 , ⋆ hS1 ;Q), respectively z ∈ Hn−1(RhS1 , ⋆ hS1 ;Q),
where hS1 denotes a homotopy orbit construction (alias Borel construction). In
this language the two hypotheses above state that z = 0.
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Remark 1.2. It will be shown in remark 2.13 that the S1-map ∇ :R −→ V does
not always admit an integral weak S1-nullhomotopy.

There are more hypotheses in the body of the paper. They are hypotheses Bs|o ,
Bs|e , Bm|o in section 2 and hypotheses Cs and Cm in section 3. The C hypotheses
sit between the A hypotheses and the B hypotheses, and are formulated in the
language of functor calculus. Our main business is to show that all the s hypotheses
are equivalent, and all the m hypotheses are equivalent.

2. Smoothing theory and further hypotheses

The main input from smoothing theory is the following general theorem due to
Morlet [16]. See also the thorough exposition of Morlet’s result in [12] and the
earlier work [7], which was later to appear in print.

Theorem 2.1. The space of smooth structures on a closed topological manifold M
of dimension m 6= 4 is homotopy equivalent to the space of vector bundle structures
on the topological tangent (micro-)bundle of M .
For a compact topological m-manifold M with smooth boundary, m 6= 4, the space of
smooth structures on M extending the given structure on ∂M is homotopy equivalent
to the space of vector bundle structures on the topological tangent bundle of M
extending the prescribed vector bundle structure over ∂M .

Remark 2.2. 1 There is a homotopy lifting principle for vector bundle structures
on fibre bundles with fiber Rm. Namely, if E → X × [0, 1] is such a fiber bundle
and a vector bundle structure has been chosen on E|X×0, then this vector bundle
structure admits an extension to all of E. This has the following homotopy the-
oretic consequence. Given a map c : X → BTOP(m), the space of vector bundle
structures on the associated fiber bundle on X with fiber Rm is homotopy equiv-
alent to the space of maps c̃ :X × [0, 1] → BTOP(m) which satisfy c̃(x, 0) = c(x)
and map X × 1 to BO(m) ⊂ BTOP(m).

Example 2.3. Let Yn be the space of smooth structures on Dn extending the
standard smooth structure on Sn−1. Then

Yn ≃ Ωn(TOP(n)/O(n)) .

Furthermore, there is a homotopy fiber sequence

R −→ Ω2Yn −→ Yn+2

where R = R(n, 2) as previously defined. It is obtained as follows: Any smooth
regular map f :Dn×D2 → D2 satisfying our boundary conditions is a smooth fiber
bundle by Ehresmann’s theorem. The underlying bundle of topological manifolds is
canonically trivial relative to the given trivialization over the boundary ∂D2. (Its
structure group, the group of topological automorphisms of Dn extending the iden-
tity on the boundary, is contractible by the Alexander trick.) Hence f determines
a family, parametrized by D2, of smooth structures on Dn extending the standard
smooth structure on Sn−1. This family is of course trivialized over the boundary
∂D2. The resulting “integrated” smooth structure on the total space of the bundle
is equal to the standard structure on Dn ×D2 by assumption. These observations
lead to the stated homotopy fiber sequence, and we conclude

(2.1) R ≃ Ωn+2hofiber[TOP(n)/O(n)→ TOP(n+ 2)/O(n+ 2)] .
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Example 2.4. Let Hn be the space of smooth structures onDn−1×[0, 1] extending
the standard structure on (Dn−1×0)∪ (∂Dn−1×[0, 1]). Reasoning as in the previous
example we have a homotoppy equivalence

Hn ≃ Ωn−1
(

hofiber
[

TOP(n− 1)/O(n− 1)→ TOP(n)/O(n)
])

,

if n ≥ 6. The space Hn can also be viewed as the space of smooth h-cobordisms on
Dn−1, since the space of topological h-cobordisms on Dn−1 is contractible by the
Alexander trick.

Example 2.5. With the notation of the previous examples, there is a homotopy
fiber sequence

Autdiff(D
n) −→ Auttop(D

n) −→ Yn

where Autdiff(D
n) is the space of diffeomorphisms Dn → Dn which extend the

identity Sn−1 → Sn−1, and Auttop(D
n) is the topological analogue. This homotopy

fiber sequence is obtained by considering the action of Auttop(D
n) on Yn, and the

stabilizer subgroup of the base point in Yn. By the Alexander trick, Auttop(D
n) is

contractible. Hence Autdiff(D
n) ≃ Ωn+1(TOP(n)/O(n)).

We now state a strong version Bs|o of hypothesis Bw|o , motivated in part by
smoothing theory. For this we introduce the space

VG = hofiber[BG(n)→ BG(n+2)], VTOP = hofiber[BTOP(n)→ BTOP(n+ 2)]

also known informally as G(n + 2)/G(n) and TOP(n + 2)/TOP(n), respectively.
Also, we define the spaces VG = Ωn+2

0 VG and VTOP = Ωn+2
0 VTOP. The composition

R
∇ // V

inc. // VG

admits a canonical integral weak S1-nullhomotopy. This is obvious from the smooth-
ing theory model for R which we saw in equation (2.1). The model amounts to a
homotopy fiber sequence of spaces with S1-action

R
∇ // V

inc. // VTOP .

Hypothesis Bs|o . For odd n, the S1-map ∇ :R −→ V admits a rational weak
S1-nullhomotopy which refines the canonical S1-nullhomotopy of the composition

R
∇ // V // VG .

The space SG(Rn) = SG(n) can be investigated using the homotopy fiber se-
quence

(2.2) Ωn−1
1 Sn−1 −−−−→ SG(n) −−−−→ Sn−1

where the right-hand map is evaluation at the base point of Sn−1. For even n > 0
we can deduce immediately

SG(n) ≃Q Sn−1 , BSG(n) ≃Q K(Q, n).

For odd n > 1 the connecting homomorphisms πn−1S
n−1 → πn−2Ω

n−1
1 Sn−1 in the

long exact homotopy group sequence of (2.2) are rational isomorphisms, as can be
seen by comparing (2.2) with the homotopy fiber sequence

SO(n− 1)→ SO(n)→ Sn−1 .
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Therefore

SG(n) ≃Q K(Q, 2n− 3) , BSG(n) ≃Q K(Q, 2n− 2) .

For BG(n) with arbitrary n ≥ 2 we obtain therefore

(2.3) BG(n) ≃Q

{

K(Q, n)hZ/2 n even, n > 0
K(Q, 2n− 2) n odd, n > 1

where Z/2 acts by sign change on the Q in K(Q, n). (Here we use an extended
notion of rational homotopy equivalence ≃Q, allowing for maps between path-
connected based spaces which induce an isomorphism of fundamental groups and
rational isomorphisms of the higher homotopy groups.) Furthermore, it follows
from (2.2) and (2.3) that for odd n > 1, the diagram

(2.4) SG(n− 1)
inc. // SG(n)

eval. at ⋆ // Sn−1

is a rational homotopy fiber sequence. These calculations can be summarized as
follows. In the case of even n, the twisted Euler class Hn(BG(n);Zt) (with local
coefficients Zt determined by the nontrivial action of π1BG(n) ∼= Z/2 on Z) detects
the entire rational homotopy of BG(n). In the case of odd n > 1, there is a class
in H2n−2(BG(n);Q) which detects the entire rational homotopy of BG(n), and
extends the squared Euler class e2 ∈ H2n−2(BSG(n− 1);Q). (This class made an
earlier appearance in hypothesis As .)

Remark 2.6. Let n be an odd integer. We have seen that V is rationally an
Eilenberg-Mac Lane K(Q, n−1). We saw above that SG(n) and SG(n+2) are also
rationally Eilenberg-Mac Lane spaces K(Q, 2n− 3) and K(Q, 2n+1), respectively.
It follows from this that

(2.5) πi(VG)⊗Q ∼=

{

Q if i = n− 1, n− 4
0 otherwise

The inclusion V → VG is an injection in rational homotopy and it follows from the
long exact homotopy sequence that hofiber[V → VG] is rationally an Eilenberg-
Mac Lane K(Q, n − 5). We can therefore think of hypothesis Bs|o as stating the
vanishing of a cohomology class z ∈ Hn−5(RhS1 , ⋆ hS1 ;Q).

To state a medium variant of hypothesis Bw|o and a strong variant of Bs|e we
need to introduce R!, the subspace of R consisting of those f ∈ R which satisfy

f(x1, . . . , xn, z1, z2) = (f1(x1, . . . , xn, z1, z2), z2)

for all (x1, . . . , xn, z1, z2) ∈ Dn×D2. There is an analogue V ! ⊂ V consisting of the
linear surjections Rn+2 → R2 which satisfy the same condition, and a corresponding
subspace V ! ⊂ V . There is a commutative diagram

R! ∇!

−−−−→ V !





y





y

R
∇

−−−−→ V

where the vertical arrows are inclusion maps. If n is odd, the term V ! is rationally
contractible as V ! ≃ Sn. Therefore ∇ has a preferred rational nullhomotopy on R!.
Suppose that n is even. Then by smoothing theory the composition

R! −→ V ! −→ V !
G
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has a preferred nullhomotopy, where V !
G = Ωn+2

0 hofiber[BG(n)→ BG(n+1)]. The
map from V ! to V !

G is a rational homotopy equivalence. Therefore again ∇ has a
preferred rational nullhomotopy when restricted to R!.

Hypothesis Bm|o . For odd n, the S1-map ∇ :R −→ V admits a rational weak
S1-nullhomotopy which (as an ordinary nullhomotopy) extends ??? the preferred
nullhomotopy of ∇ on R!.

Hypothesis Bs|e . For even n, the S1-map ∇ :R −→ V admits a rational weak
S1-nullhomotopy which (as an ordinary nullhomotopy) extends the preferred null-
homotopy of ∇ on R!.

In the remainder of this section we explain how the various A hypotheses are
related with each other and with some of the B hypotheses.

Proposition 2.7. Hypothesis As implies hypothesis Am .

Proof. We reformulate hypothesis Am as follows: pm ∈ H4m(BSTOP(2m);Q) is
the restriction of the squared Euler class in H4m(BSG(2m);Q). From this refor-
mulation, it is clear that hypothesis As implies hypothesis Am . �

Proposition 2.8. Hypothesis Am implies hypothesis Aw .

Proof. Assuming hypothesis Am holds, we have pi = e22i ∈ H4i(BSTOP(2i);Q) .
Hence pi is zero in H4i(BSTOP(n);Q) when n < 2i. The restriction homomor-
phism

H4i(BTOP(n);Q) −→ H4i(BSTOP(n);Q)

is injective, as BSTOP(n) is homotopy equivalent to a double cover of BTOP(n).
Therefore pi is zero in H4i(BTOP(n);Q) for n < 2i. �

Proposition 2.9. Hypothesis Aw implies hypothesis Bw|o .

Proof. Hypothesis Aw implies that for odd n, the inclusion of pairs

(BO, BO(n)) −→ (BTOP, BTOP(n))

has a rational left homotopy inverse. We justify that using obstruction theory:
to make such a left homotopy inverse, we only need to find a factorization up to
homotopy as in the diagram

BO(n)

��
BTOP(n)

66n
n

n
n

n
n

// BTOP ≃Q BO .

To find the factorization we use the Postnikov tower of BO(n)→ BO. The homo-
topy groups of the homotopy fiber O/O(n) are rationally nontrivial (of rank 1) only
in dimensions 4i− 1 when 4i > 2n, and the corresponding Postnikov invariants are
(images of) the Pontryagin classes pi ∈ H4i(BO) for 4i > 2n. As these pi map to
zero in H4i(BTOP(n)) by hypothesis Aw , the factorization exists.
It follows that for odd n, the inclusion

O/O(n)→ TOP/TOP(n)

has a rational homotopy left inverse. From that we want to deduce that the inclusion

O(n+ 2)/O(n)→ TOP(n+ 2)/TOP(n)
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has a rational homotopy left inverse respecting S1-actions in the weak sense. (Then
smoothing theory does the rest.) To begin with we observe that the commutative
diagram

O(n+ 2)/O(n)
a //

��

O/O(n)

b

��
TOP(n+ 2)/TOP(n)

c // TOP/TOP(n)

can be viewed as a diagram of S1-spaces and S1-maps. Moreover the S1 actions in
the right-hand column are trivial in the weak sense. For example we approximate
O by O(j) for some j ≫ 0 and write Rj = Rn × R2 × Rj−n−2 and let S1 act by
conjugation via its standard action on the R2 factor. It is clear that this action of
S1 is trivial on O(j − 2)/O(n) where we think of O(j − 2) as the orthogonal group
of Rn × 0 × Rj−n−2. Letting j tend to infinity we see that the action of S1 on
O/O(n) which we have used is trivial in the weak sense. At the same time it was
constructed to ensure that the upper horizontal map in the diagram is an S1-map.
Similar reasoning takes care of TOP/TOP(n) and the lower horizontal map.
Since the inclusion O(n + 2)/O(n) −→ O/O(n) admits a rational left homotopy
inverse and the S1-action on O(n+ 2)/O(n) is weakly (rationally) trivial, we now
have left homotopy inverses (respecting S1-actions in the weak sense) for arrows a
and b in the diagram. Composing these left inverses with c, we have the required
map TOP(n+ 2)/TOP(n)→ O(n+ 2)/O(n). �

Proposition 2.10. Hypothesis Am implies hypothesis Bm|e .

Proof. Hypothesis Am implies that for even n, the inclusion of pairs

(BSO, BSO(n)) −→ (BSTOP, BSTOP(n))

has a rational left homotopy inverse. Again we justify this by obstruction theory.
To make such a left homotopy inverse, we only need to find a factorization up to
homotopy as in the diagram

(2.6) BSO(n)

��
BSTOP(n)

66l
l

l
l

l
l

l

// BSTOP ≃Q BSO .

To find the factorization we use the Postnikov tower of BSO(n) → BSO. The
homotopy groups of the homotopy fiber O/O(n) are rationally nontrivial (of rank
1) only in dimensions 4i − 1 when 4i > 2n, and in dimension n. The Postnikov
invariant corresponding to π2n(O/O(n)) lives in H2n+1(BSO) = 0, and so the
corresponding stage of the Postnikov tower is rationally BSO × K(Q, n). The
next Postnikov invariant therefore lives in H2n(BSO × K(Q, n)) and is equal to
the difference between pn/2 ∈ H2n(BSO) and the square of the fundamental class
of K(Q, n), both pulled back to the product. We know this because the relation
pn/2 = e2 must hold in the next stage of the Postnikov tower. The higher Postnikov
invariants are simply pullbacks of the higher Pontryagin classes pi where 4i > 2n.
From the analysis of the Postnikov tower of BSO(n)→ BSO and hypothesis Am

it is clear that the required factorization in diagram 2.6 exists. From here we can
proceed as in the proof of lemma 2.9. �
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Proposition 2.11. Hypothesis As implies hypothesis Bs|o .

Proof. In this proof, we write ΦTOP(n) and ΦO(n) for the homotopy fibers of
TOP(n) → G(n) and O(n) → G(n), respectively. Hypothesis As implies that for
odd n, the inclusion of pairs

(BΦO, BΦO(n)) −→ (BΦTOP, BΦTOP(n))

has a rational left homotopy inverse. We justify that using obstruction theory:
to make such a left homotopy inverse, we only need to find a factorization up to
homotopy as in the diagram

BΦO(n)

��
BΦTOP(n)

66l
l

l
l

l
l

l

// BΦTOP ≃Q BΦO .

To find the factorization we use the Postnikov tower of BΦO(n) → BΦO. The
homotopy groups of

hofiber[BΦO(n)→ BΦO] = ΦO/ΦO(n)

are rationally nontrivial (of rank 1) only in dimensions 4i − 1 when 4i > 2n − 4,
and the corresponding Postnikov invariants are (images of) the Pontryagin classes
pi ∈ H4i(BΦO) for 4i > 2n − 4. As these pi map to zero in H4i(BΦTOP(n)) by
hypothesis As , the factorization exists.
It follows that for odd n, the inclusion of ΦO/ΦO(n) in ΦTOP/ΦTOP(n) has
a rational homotopy left inverse. From here we can proceed as in the proof of
lemma 2.9 to deduce that the inclusion

ΦO(n+ 2)/ΦO(n)→ ΦTOP(n+ 2)/ΦTOP(n)

has a rational homotopy left inverse respecting S1-actions in the weak sense. The
homotopy fiber of this inclusion is of course again an (n + 2)-fold delooping of R,
while Ωn+2(ΦO(n + 2)/ΦO(n)) is hofiber[V → VG]. Therefore we may conclude
that the forgetful map R −→ hofiber[V → VG] admits a rational nullhomotopy
with S1-equivariance in the weak sense. �

Remark 2.12. To show that ∇ :R −→ Ωn+2V lands in the base point component
of Ωn+2V , we introduce certain approximations X and X ′ to R and Ωn+2V ,
respectively. Let

E → RP 1 , E′ → RP 1

be the fiber bundles such that Eℓ for ℓ ∈ RP 1 is the space of regular maps from
Dn × D2 to R2/ℓ which extend the canonical projection on the boundary, and
E′

ℓ = Ωn+2(O(n + 2)/O(Rn ⊕ ℓ)). Let X and X ′ be the corresponding section
spaces. Then there is a commutative diagram

(2.7) R //

��

Ωn+2V

��
X // X ′

obtained by taking f ∈ R to the compositions pℓf where pℓ :R
2 → R2/ℓ is the

projection, and g ∈ V to pℓg. The right-hand vertical arrow induces a bijection in
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π0 when n ≥ 2. (This is based on the commutative diagram

Ωn+2Sn //

stab.

��

Ωn+2V //

��

Ωn+2Sn+1

=

��
Ωn+3Sn+1 // X ′ // Ωn+2Sn+1

where the rows are fibrations. It is known that the left-hand map induces an
isomorphism in π0 for n ≥ 2; see [22, ch 9, ex D6].) Therefore, in the cases n ≥ 2,
it is more than enough to show that the lower horizontal map in diagram 2.7 is
nullhomotopic. In fact the map E → E′ is fiberwise nullhomotopic over RP 1. This
follows easily from the smoothing theory interpretation of the fibers Eℓ. Namely,

Eℓ ≃ Ωn+2hofiber

[

O(n+ 2)

O(Rn ⊕ ℓ)
−→

TOP(n+ 2)

TOP(Rn ⊕ ℓ)

]

and the map to E′
ℓ = Ωn+2(O(n+ 2)/O(Rn ⊕ ℓ)) is the obvious forgetful map.

On the other hand, if n ≤ 1, the space R is homotopy equivalent to the space of
smooth automorphisms of Dn ×D2 extending the identity on the boundary. The
latter space is connected (well known in case n = 0, and a consequence of the
affirmed Smale conjecture in case n = 1).

Remark 2.13. We finish this section by showing, as promised in remark 1.2, that
the S1-map ∇ :R −→ V does not admit an integral weak S1-nullhomotopy. We
take n = 19 and, for a contradiction, make the assumption (i) that ∇ admits a weak
S1-nullhomotopy localized at the prime 691. In the remainder of this remark, we
always localize away from 2. There is a homotopy fiber sequence (see example 2.3)

Ω22
(

O(21)/O(19)
) g // Ω22

(

TOP(21)/TOP(19)
)

// R

of based S1-spaces, classified by ∇ :R → V . So if (i) holds, then (ii) the map g
admits a weak homotopy left inverse as a based S1-map, localized at 691.
We now recall the following construction of the looped Pontryagin classes on O(21).
Let B be the Grassmannian of oriented codimension 2 linear subspaces of R21. This
is the same as the orbit space of the Stiefel manifold of orthonormal 2-frames in R21

by a free action of S1. Since the Stiefel manifold is homotopy equivalent (away from
the prime 2) to S39, it follows that B has the same cohomology as CP 19. There
is a fiber bundle E −→ B whose fiber EH over H ∈ B (an oriented codimension
2 linear subspace of R21) is the coset space O(21)/O(H), which we consider as a
based space. An element x ∈ O(21) determines a section σx of E → B such that
σx(H) is the coset x ·O(H) ∈ O(21)/O(H). By adjunction this gives a based map

(2.8) O(21) −→ Γ(E → B)

where Γ(E → B) is the section space of the fiber bundle. Now let E? → B
be the fibration obtained from E → B by fiberwise killing of homotopy groups in
dimensions > 39. The fibers of E? → B are Eilenberg-MacLane spaces K(Z[ 12 ], 39),
each with a preferred base point, so that the section space can be identified with
the space of maps from B to K(Z[ 12 ], 39). In making this identification we have a
choice, and we make it so that the fundamental class of the manifold O(21)/O(H),
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for H ∈ B, corresponds to the number 2 ∈ Z[ 12 ] = H39(K(Z[ 12 ], 39)). Then,
composing (2.8) with the inclusion

Γ(E → B)→ Γ(E? → B) ,

we have constructed a map

(2.9) O(21) −→ map(B,K(Z, 39)) .

Since H∗(B) ∼= H∗(CP 19), the target has a canonical splitting (explain)

map(B,K(Z, 39)) ≃

19
∏

i=0

K(Z, 39− 2i)

so that we can write (2.9) in the form

O(21) −→

19
∏

i=0

K(Z[ 12 ], 39− 2i) .

We take it as known1 that this map is the (looped, total, integral) Chern alias
Pontryagin class away from the prime 2. We loop 22 times to obtain

(2.10) Ω22O(21) −→

19
∏

i=0

K(Z[ 12 ], 17− 2i)

which is still the 23 times looped total Pontryagin class. This map could also have
been obtained more directly from a map

Ω22O(21) −→ Γ(Ω22
B E → B)

analogous to (2.8). Note that the fiber bundle Ω22
B E → B is associated to the canon-

ical principal S1-bundle on B via the (base-point preserving) conjugation action of
S1 on Ω22(O(21)/O(19)) = ΩV . Therefore, using consequence (ii) of assumption
(i), we find that the map (2.10) admits a factorization through Ω22TOP(21) at
the prime 691. It follows that the 23 times looped Pontryagin classes on Ω22O(21)
extend to Ω22TOP(21), not just rationally, but at the prime 691. But it is well
known that this is false. Specifically [15, §20] the generator of

π1(Ω
22O(21)) ∼= π24BO(21) ∼=691 Z

has scalar product 11! times a small power of 2 with the Pontryagin class p6, but its
image in π1(Ω

22TOP(21)) ∼= π24BTOP(21) is known to be divisible by 691. (This
is due to the existence of elements of order 691 in π23(TOP/O), better known as
the group of oriented smooth homotopy spheres of dimension 23 modulo oriented
diffeomorphism.)

3. Orthogonal calculus

Let J be the category of finite dimensional real vector spaces with inner product.
For objects V and W in J , the morphism space mor(V,W ) is the Stiefel manifold
of linear maps V → W respecting the inner product. Let bo, bt and bg be the
continuous functors on J given for V in J by V 7→ BO(V ), V 7→ BTOP(V )
and V 7→ BG(V ), respectively, where G(V ) is the topological group-like monoid
of homotopy equivalences S(V )→ S(V ). By orthogonal calculus [27], the functors
bo, bt and bg determine spectra Θbo(i), Θbt(i) and Θbg(i) with an action of O(i),

1... but we do not know of a good reference.
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for any integer i > 0. These are the i-th derivatives at infinity of bo, bt and bg,
respectively. In the spirit of orthogonal calculus, we may assume that they are O(i)-
CW spectra and that only free O(i)-cells are involved (in particular the actions are
free away from base points). The inclusions

bo //

##HHHHHH bt

��
bg

determine a similar comutative triangle of maps of spectra

(3.1) Θbo(i) //

&&NNNNNNN
Θbt(i)

��
Θbg(i)

which respect the actions of O(i). The Taylor tower of bo consists of approximations
bo→ Tibo for every i ≥ 0, and homotopy fiber sequences

Libo→ Tibo→ Ti−1bo

for every i > 0, where Libo can be described as

Libo(V ) ≃ Ω∞

(

(

(V ⊗ Ri)c ∧Θbo(i)
)

hO(i)

)

(by a chain of natural homotopy equivalences). The functor T0bo is essentially
constant, T0bo(V ) ≃ BO by a chain of natural homotopy equivalences. The natural
transformation bo → Tibo has a universal property, in the initial sense: it is the
best approximation of bo from the right by a polynomial functor of degree ≤ i.
Similarly, bt and bg have a Taylor tower whose layers Libt and Libg for i > 0 are
determined by the spectra Θbt(i) and Θbg(i), respectively. Also, T0bt is essentially
constant with value BTOP and T0bg is essentially constant with value BG. There
is one aspect in which bt differs substantially from bo and bg : the Taylor towers
of bo and bg are known [2] to converge to bo and bg respectively, that is,

bo(V ) ≃ holim
i

Tibo(V ) , bg ≃ holim
i

Tibg(V ) .

It is not known whether this holds for bt, and Igusa’s work on concordance stability
[10] indicates that it will not be easy to decide.
This chapter analyses the Taylor towers of the three functors bo, bt and bg up
to stage 2 at most, concentrating on rational aspects. This is done in part for
illustration of methods and techniques, and we are quite aware that Arone [2] has
already given an exhaustive, integral and very pretty description of the Taylor tower
of bo.

We begin with the orthogonal calculus analysis of the functor c :J → T∗ given
by V 7→ V c, where T∗ is the category of based spaces and V c is the one-point
compactification of the vector space V . Below, we will denote the symmetric group
in n letters by Σn.

Proposition 3.1. The functor c is rationally polynomial of degree 2, except for a
deviation at V = 0. The first and second derivative spectra are

Θc(j) ≃ (O(j)/Σj)+ ∧ Ωj−1S0 ,
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for j = 1, 2, where the O(j)-action is trivial on the sphere spectrum and is the usual
action on O(j)/Σj.

Proof. We mainly have to show that the natural map from c(V ) to T2c(V ) is a
rational homotopy equivalence when V 6= 0. The EHP tradition gives us, for every
based connected CW-space X , a natural map

(3.2) X −→ hofiber[Ω∞Σ∞X
sq

−−−−→ Ω∞Σ∞((X ∧X)rhZ/2)] .

The subscript rhZ/2 is for a reduced homotopy orbit construction, that is

(X ∧X) ∧Z/2 EZ/2+ .

The map sq is defined as follows (sketch). We use configuration space models for
source and target of sq. In particular Ω∞Σ∞X is understood to be the classifying
space of a topological category C1 whose objects are pairs (S, f) where S is a finite
set and f : S → X is any map. (The f in (S, f) can vary continuously, which
makes the object set into a space.) A morphism from (R, g) to (S, f) is an injective
map h :R → S such that fh = g and f(k) = ∗ ∈ X whenever k /∈ im(h). We
describe Ω∞Σ∞((X ∧ X)rhZ/2) as the classifying space of a topological category
C2 whose objects are pairs (S, f) where S is a finite set with free action of Z/2
and f :S → X ∧X is a Z/2-map. A morphism from (R, g) to (S, f) is an injective
Z/2-map h :R → S such that fh = g and f(k) = ∗ ∈ X whenever k /∈ im(h). Now
sq is the map induced by the functor C1 → C2 which takes an object (S, f), with
f : S → X , to the object (S × S r d(S), f2) where d(S) ⊂ S × S is the diagonal,
with

f2(s, t) = (f(s), f(t)) ∈ X ∧X .

With these models, we can identify the subspace X of Ω∞Σ∞X as the classifying
space of the subcategory C0 ⊂ C1 spanned by the objects (S, f) where S is a
singleton. Then it is clear that the functor C1 → C2 just constructed is trivial
on C0. Therefore we have constructed a map from BC0 to the homotopy fiber of
BC1 → BC2, as promised. (The method is due to Segal [20].) It is well known that
the map (3.2) is a rational homotopy equivalence for simply connected X , and also
when X = S1.
Now we may specialize by taking X = V c = c(V ) for nonzero V in J . Then sq
becomes a natural transformation

(3.3) Ω∞Σ∞V c −→ Ω∞Σ∞((V c ∧ V c)rhZ/2)

defined for V 6= 0. It is clear that the source functor Ω∞Σ∞V c is homogeneous of
degree 1 and corresponds to the spectrum

O(1)+ ∧ S0 .

We will now show that the target functor is homogeneous of degree 2. This amounts
to writing Σ∞((V c∧V c)rhZ/2) in the form ((V ⊗R2)c∧Ψ)hO(2) where Ψ is a spectrum
with an action of O(2). This is easily done by taking

Ψ =
(O(2)

Z/2

)

+
∧ S0 .

Finally it remains to extend sq so that it is defined also for V = 0. For that we have
a formal argument which, unfortunately, does not tell us what sq looks like when
V = 0. Namely, any polynomial functor p of degree ≤ n from J to based spaces
is determined (up to natural equivalences) by its restriction to the full subcategory
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of J spanned by all objects of dimension ≥ k, for a fixed k. This is shown by the
formula

(3.4) p(V )
≃ // holim

06=U≤Rn+1
p(V ⊕ U) .

The same principle applies to natural transformations between polynomial functors.
In particular we have shown that (3.3) is defined for all V in J , including V = 0.
Now we can say that the functor

V 7→ q(V ) = hofiber[ Ω∞Σ∞V c
sq // Ω∞Σ∞((V c ∧ V c)rhZ/2) ]

is polynomial of degree 2. The EHP transformation

(3.5) c(V )→ hofiber[ Ω∞Σ∞V c
sq // Ω∞Σ∞((V c ∧ V c)rhZ/2) ]

is therefore defined for all V and factors through T2c. As (3.5) is (3d−c)-connected
where d = dim(V ) and c is a fixed constant, it follows (using the explicit formula
for T2c) that the induced map from T2c(V ) to q(V ) is a homotopy equivalence for
all V . This gives us the formulae for Θc(1) and Θc(2). As noted before, (3.5) is a
rational homotopy equivalence when V 6= 0.
Let us now look at the case V = 0. We can use the above configuration space model
to make a commutative square

∐

n≥0 BΣn //

��

∐

n≥0 B(Z/2 ≀ Σn)

��
Ω∞Σ∞S0

sq // Ω∞Σ∞((S0 ∧ S0)rhZ/2) .

Here the upper lefthand term is (homotopy equivalent to) the classifying space
of the category of finite sets with their isomorphisms and the upper righthand
term is the classifiying space of the category of finite sets with free Z/2-action
and their isomorphisms. The horizontal map on top is given as before by squaring
and deleting the diagonal. The lower horizontal map is defined as the canonical
extension of (3.3), via equation (3.4). Consequently, the map sq in the lower row
has the following effect on elements x ∈ π0(Ω

∞Σ∞S0) ∼= Z of nonnegative degree:

x 7→ x2 − x .

At first sight this suggests that the homotopy fiber of sq in the lower row might
have exactly two path components, like S0. But that is not the case because π1 of
Ω∞Σ∞((S0 ∧ S0)rhZ/2) is Z/2 × Z/2, larger than π1 of Ω∞Σ∞S0. Therefore the
homotopy fiber of sq in the lower row has at least four components, and so is not
rationally homotopy equivalent to S0. �

We now generalize the functor c of the previous proposition to include wedge
sums of shifts of c. Let J = (kj)j=1,2,... be a (finite or infinite) sequence of nonneg-
ative integers. Then we define cJ to be the functor

(3.6) V 7→
∨

j

c(V ⊕ Rkj ) .
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Proposition 3.2. The functor cJ is rationally polynomial of degree 2, except possi-
bly for a deviation at V = 0. The first and second derivative spectra are as follows:

Θc
(1)
J =

∨

j

O(1)+ ∧ Skj ,

Θc
(2)
J =





∨

j

O(2)+ ∧Σ2 ΩS
2kj



 ∨





∨

j<ℓ

O(2)+ ∧ ΩSkj+kℓ



 ,

where O(i) acts by translation on the first smash factor (and Σ2 acts on ΩS2kj =
Ω(Skj ∧ Skj ∧ S0) by permuting the two copies of Skj ).

Proof. The case where the sequence J is finite is very similar to proposition 3.1 and
we leave this to the reader. The general case can be deduced from the case where
the sequence J is finite by a direct limit argument. It is crucial to observe that the
operator T2 commutes with direct limits up to equivalence. �

Now we shall sketch the orthogonal calculus analysis of bo, concentrating on rational
aspects where that saves energy. Much more detailed results can be found in [2].

Proposition 3.3. The functor bo is rationally polynomial of degree 2, in the sense
that the canonical map bo(V ) → T2bo(V ) is a rational homotopy equivalence, for
every V 6= 0. The derivative spectra of bo are as follows

(i) Θbo(1) ≃ S0 with trivial action of O(1);
(ii) Θbo(2) ≃ ΩS0 with rationally trivial action of O(2).

Proof. By definition the spectrum Θbo(1) is made up of the based spaces

Θbo(1)(n) = hofiber[bo(Rn)→ bo(Rn+1)] ≃ Sn

and so turns out to be a sphere spectrum S0. The generator of O(1) acts on
Θbo(1)(n) alias Sn = Rn ∪ {∞} via −id :Rn → Rn. The structure maps

S1 ∧Θbo(1)(n)→ Θbo(1)(n+ 1)

are O(1)-maps, where we use the standard conjugation action on S1 and the result-
ing diagonal action on S1 ∧ Θbo(1)(n). Therefore, strictly speaking, the structure
maps are in a twisted relationship to the actions of O(1) on the various Θbo(1)(n),
but there are mechanical ways to untwist this (see also ??? below) and the result
is a sphere spectrum with trivial action of O(1).
For the description of the second derivative spectrum we reduce this to proposi-
tion 3.1. We have a natural homotopy fiber sequence

c(V ) −→ bo(V ) −→ bo(V ⊕ R)

inducing a corresponding homotopy fiber sequence of spectra

Θc(2) −→ Θbo(2) ∧ S0 −→ Θbo(2) ∧ S2 ,

where we think of S2 as (R2)c and the maps of this homotopy fiber sequence preserve
the O(2) actions (in particular, the O(2)-action on Θbo(2)∧S2 is the diagonal one).
Consequently, we have that

(3.7) Θc(2) ≃ Ω(Θbo(2) ∧ (S2/S0)) ≃ Θbo(2) ∧ S1
+.
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Taking homotopy orbit spectra for the action of SO(2) and using our previous
formula for Θc(2) we obtain that

ΩS0 ≃ Θbo(2) .

This equivalence does not fully keep track of O(2) actions, but it does allow us to
say that orientation reversing elements of O(2) act by self-maps homotopic to the
identity. Consequently the action of the orthogonal group on Θbo(2) is rationally
trivial in a weak sense. To see that bo is rationally polynomial of degree 2 we
consider the commutative diagram

c(V ) //

��

bo(V ) //

��

bo(V ⊕ R)

��
T2c(V ) // T2bo(V ) // T2bo(V ⊕ R) ,

where the rows are homotopy fiber sequences. If V 6= 0 the left-hand vertical arrow
is a rational equivalence (in particular, it induces an isomorphism of fundamental
groups) and so the right-hand square is rationally a homotopy pullback square.
Therefore, by iteration,

bo(V ) //

��

bo(V ⊕ R∞)

��
T2bo(V ) // T2bo(V ⊕ R∞) ,

is rationally a homotopy pullback square. Here the right-hand column is a homotopy
equivalence. So the left-hand column is a rational homotopy equivalence. �

Proposition 3.4. The functor bg is rationally polynomial of degree 2, for all V 6=
0. The derivative spectra of bg satisfy the following:

(i) the natural transformation Θbo(1) → Θbg(1) is a homotopy equivalence;
(ii) the inclusion induced map Θbo(2) → Θbg(2) fits into a commutative triangle

of spectra with O(2) action

Θbo(2)

�� ))SSSSSSSSSSS

map(S1,Θbo(2)) ≃Q

// Θbg(2)

where O(2) acts in the standard manner on S1 and the vertical arrow is
given by inclusion of the constant maps.

Proof. We begin by showing (i) and (ii). It is known [6, 26] that the map from
O(n+ 1)/O(n) to G(n+ 1)/G(n), induced by inclusion, is (2n− c)-connected (for
a small constant c independent of n). It follows immediately that the natural
map Θbo(1) → Θbg(1) is a homotopy equivalence. Therefore Θbg(1) is a sphere
spectrum with a trivial action of O(1). For the second derivative spectrum we use
the homotopy fiber sequence

(3.8) ΩV
±1c(V ) −→ Ωbg(V ⊕ R) −→ c(V ) ,

where ΩV (X) is the space of pointed maps from V c to X (X a based space) and
the ±1 singles out the degree ±1 components. In the lemma 3.6 below we show
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that the functor V 7→ ΩV
±1c(V ) is rationally polynomial of degree 1, for all nonzero

V . Therefore the homotopy fiber sequence (3.8) induces a rational equivalence of
second derivative spectra,

Ω(Θbg(2) ∧ S2) ≃ Θc(2) .

More precisely, we have a commutative diagram of second derivative spectra

(3.9) Ω(Θbo(2) ∧ S2)

��
eval.

))SSSSSSSSSSS

Ω(Θbg(2) ∧ S2)
eval. // Θc(2) ,

where the horizontal map is a homotopy equivalence. We saw in the proof of
proposition 3.3 that the diagonal arrow in the diagram is in fact the map

(3.10) Ω(Θbo(2) ∧ S2) −→ Ω(Θbo(2) ∧ (S2/S0)) ≃ Θbo(2) ∧ S1
+ ,

where we use (3.7). Therefore we can change triangle (3.9) into a commutative
triangle

(3.11) Ω(Θbo(2) ∧ S2)

��
(3.10)

**UUUUUUUUUU

Ω(Θbg(2) ∧ S2) ≃Q

// Θbo(2) ∧ S1
+ .

By undoing the looping and the double suspension, we obtain the commutative
triangle

(3.12) Θbo(2)

�� **VVVVVVVVVVVVV

Θbg(2) ≃Q

// Ω2(Θbo(2) ∧ (S2/S0)) .

There is a homotopy equivalence from Ω2(Θbo(2) ∧ (S2/S0)) to map(S1,Θbo(2)),
preserving O(2)-actions, which we describe in adjoint form by

S1
+ ∧ Ω2(Θbo(2) ∧ (S2/S0)) −→ Θbo(2).

Namely, every choice of point z in S1 determines a nullhomotopy for the inclusion
S0 → S2 and thereby a map S2/S0 → S2 ∨ S1 → S2. So we have

z+ ∧ Ω2(Θbo(2) ∧ (S2/S0)) −→ Ω2(Θbo(2) ∧ S2) ≃ Θbo(2)

for every z ∈ S1, and using these for all z gives the required map. It is equivariant
for the diagonal O(2)-action on the source.
The homotopy fiber sequence (3.8) implies that the approximation bg(V )→ T2bg(V )
is a rational homotopy equivalence when dim(V ) ≥ 2. We need to improvise to show
that it is also a rational homotopy equivalence when V = R. There is a commutative
diagram

bg(R) //

��

bg(R2)

��
T2bg(R) //

��

T2bg(R
2)

��
T1bg(R) // T1bg(R

2)
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where the outer rectangle and the lower square are rationally homotopy pullbacks
by inspection. See also remark 3.5 below. It follows that the upper square is
rationally a homotopy pullback. Therefore the map from bg(R) to T2bg(R) is a
rational equivalence. �

Remark 3.5. Let M be a closed smooth manifold and E a CW-spectrum. A
Poincare duality principle identifies map(M,E) with

F =

∫

x∈M

ΩTxME.

Here the spectra ΩTxME for x ∈M together make up a fibered spectrum over M ,
and F is the ordinary spectrum obtained by passing to total spaces and collapsing
the zero sections. Such an identification can also be used when M and E come with
actions of a compact Lie group G. In particular, for G = O(2) and M = S1 with
the standard action of O(2) and E = ΩS0 with the trivial action, the spectrum
map(M,E) can be described as Ω2(S1

+ ∧ S0) with the following action of O(2):

trivial on the S0 factor, standard on the S1
+ factor, adjoint action on one of the

loop coordinates (the action of O(2) on its Lie algebra).

Lemma 3.6. The functor V 7→ ΩV
±1c(V ) is rationally polynomial of degree 1, for

all nonzero V .

Proof. More precisely, we want to show that for nonzero V the approximation
ΩV

±1c(V ) → T1(Ω
V
±1c)(V ) is a rational homotopy equivalence of componentwise

nilpotent spaces. Let au(V ) = ΩV
±1c(V ) and let a be the slightly simpler functor

defined by a(V ) = ΩV c(V ). It is enough to show that a is rationally polynomial of
degree ≤ 1, because there is a homotopy pullback square

au(V ) −−−−→ a(V )




y





y

{±1} −−−−→ Z

(for V 6= 0) where the functors in the lower row are of degree 0 and hence of degree
≤ 1. From the proof of proposition 3.1 we have a rational homotopy fiber sequence

a(V ) −→ ΩV Ω∞Σ∞V c −→ ΩV Ω∞Σ∞(V c ∧ V c)rhZ/2 .

We want to show this is natural in V . Given a morphism j : V → W , a vector
w ∈ W perpendicular to its image, and a configuration (S, f) with f : S → V c,
we obtain a new configuration (S, jf + w) where jf + w is a map from S to W c.
Letting w vary, we obtain a map

(W/V )c ∧ Ω∞Σ∞V c −→ Ω∞Σ∞W c

and consequently

Ω∞Σ∞V c −→ ΩW/V Ω∞Σ∞W c .

After applying ΩV , we finally obtain

ΩV Ω∞Σ∞V c −→ ΩWΩ∞Σ∞W c.

This promotes V 7→ ΩV Ω∞Σ∞V c to a functor. Similarly, given j : V → W and
w as before, and a configuration (S, f) with f : S → V c ∧ V c, where S comes
with a free action of Z/2 and f is a Z/2-map, we obtain a new configuration
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(S, (j⊕ j)f +(w⊕w)) where (j⊕ j)f +(w⊕w) is a Z/2-map from S to W c ∧W c.
Letting w vary, we obtain therefore

ΩV Ω∞Σ∞((V c ∧ V c)rhZ/2) −→ ΩWΩ∞Σ∞((W c ∧W c)rhZ/2).

This promotes V 7→ ΩV Ω∞Σ∞((V c ∧ V c)rhZ/2) to a functor.

It is immediately clear that the functor V 7→ ΩV Ω∞Σ∞V c is polynomial of degree
0. We also need to show that V 7→ ΩV Ω∞Σ∞((V c ∧ V c)rhZ/2) is polynomial of
degree 1. At this point it is convenient to write V c ∧ V c ∼= (V ⊕V )c = (δV ⊕αV )c

where δV ⊂ V ⊕ V and αV ⊂ V ⊕ V are the diagonal and antidiagonal linear
subspaces, respectively. There is a natural equivalence

Ω∞Σ∞((αV c)rhZ/2) −→ ΩV Ω∞Σ∞((V c ∧ V c)rhZ/2)

obtained by adjunction from a map

δV c ∧Ω∞Σ∞((αV c)rhZ/2) −→ Ω∞Σ∞((V c ∧ V c)rhZ/2)

made by pushing configurations around. This leaves us with the task of showing
that

(3.13) V 7→ Ω∞Σ∞((αV c)rhZ/2)

is polynomial of degree 1. Here αV is V with the action of Z/2 = O(1) which has
the generator acting by −id. But (3.13) is exactly the definition of the homogeneous
functor of degree one associated with the sphere spectrum with the trivial action
of O(1). �

Remark 3.7. Let bgu be defined by bgu(V ) = hofiber[bg(V ) → T0bg(V )]. Then
clearly Libg

u = Libg for i > 0. From the rational homotopy fiber sequence (2.4)
we obtain, for odd n ≥ 2, another rational homotopy fiber sequence

Sn−1 −→ bgu(Rn−1) −→ bgu(Rn) .

It follows that the inclusion-induced map bgu(Rn−1) −→ bgu(Rn) is not rationally
nullhomotopic. As L2bg is concentrated in odd dimensions and L1bg is concentrated
in even dimensions, it follows also that bgu(V ) is not naturally rationally identifiable
with a product L2bg(V ) × L1bg(V ). The extension L2bg −→ T2bg

u −→ L1bg is
therefore rationally nontrivial.

We now turn our attention to the (rational) Taylor tower of the functor bt. The
inclusion bo → bt induces a rational homotopy equivalence T0bo → T0bt, which
just restates the Thom-Novikov result BO ≃Q BTOP. The spectrum Θbt(1) has a
complete rational description with action of O(1), due to Waldhausen, Borel and
Farrell-Hsiang [25, 4, 5]. Below, A(⋆ ) is Waldhausen’s A-theory spectrum, also
known as the algebraic K-theory spectrum of the ring spectrum S0, and K(Q) is
the algebraic K-theory of the ring Q.

Proposition 3.8. The functor bt has first derivative spectrum

Θbt(1) ≃ A(⋆ ) ≃Q K(Q).

The O(1) action is the standard duality action on K-theory. Hence,

Θbt(1) ≃Q Θbo(1) ∨
∞
∨

i=1

S4i+1

where the summand
∨∞

i=1 S
4i+1 has the sign change involution.
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Proof. By definition the spectrum Θbt(1) is made up of spaces

Θbt(1)(n) = TOP(n+ 1)/TOP(n)

with structure maps analogous to those of Θbo(1). The identification of the spec-
trum {TOP(n + 1)/TOP(n) |n ∈ N} with A(⋆ ) comes from [25]. It relies on the
smoothing theory description of spaces of smooth h-cobordisms over Dn, as in ex-
ample 2.4. Modulo that it is a central part of Waldhausen’s development of the alge-
braicK-theory tradition in h-cobordism theory, which started with the h-cobordism
and s-cobordism theorems [21, 14, 3, 11]. The identification of the canonical O(1)-
action on the spectrum {TOP(n+1)/TOP(n) |n ∈ N} with the Z/2-action on A(⋆ )
by (Spanier-Whitehead) duality is due to [24], again going through h-cobordism
theory. The inclusion-induced map Θ(1)bo → Θ(1)bt, alias S0 → A(⋆ ), admits an
integral homotopy left inverse (with weak O(1)-equivariance). The rational equiv-
alence A(⋆ ) ≃Q K(Q) is a consequence of the rational equivalence between the
sphere spectrum (as a ring spectrum) and the Eilenberg-MacLane spectrum HQ.
The calculation of the rational homotopy groups of K(Q) follows from the calcu-
lation of the rational cohomology groups of BGL(Q), due to Borel [4]. The result
is

πn(K(Q))⊗Q ∼=







Q n = 0
Q n = 5, 9, 13, 17, . . .
0 otherwise.

The action of O(1) on πn(K(Q)) is trivial for n = 0 and nontrivial (sign change)
for n = 5, 9, 13. . . . . �

4. Natural transformations between homogeneous functors

Our analysis of the functor cJ in proposition 3.2 gives us a tool for studying the
space of natural transformations

nat⋆ (a1, a2)

in certain situations where a1 is homogeneous of degree 1 and a2 is homogeneous of
degree 2. (For a detailed definition of these spaces of natural transformations, see
the beginning of section 5. We are assuming that all functors in sight are cofibrant.
Also the functors are typically from J to T⋆ , the category of based spaces. Natural
transformations are assumed to respect base points unless otherwise stated.) We
take a1 = T1cJ = L1cJ while a2 remains unspecified until later.

Lemma 4.1. There is a homotopy fiber sequence of spaces of natural transforma-
tions

nat⋆ (L2cJ , a2)← nat⋆ (T2cJ , a2)← nat⋆ (T1cJ , a2).

Proof. There is a more obvious homotopy fiber sequence

nat⋆ (L2cJ , a2)← nat⋆ (T2cJ , a2)← nat⋆ (m, a2)

where m is the mapping cone of the forgetful map L2cJ → T2cJ . Furthermore we
have nat⋆ (m, a2) ≃ nat⋆ (T2m, a2) by the universal property of T2m. Therefore it is
enough to show that the natural map m → T1cJ induces an equivalence of second
Taylor approximations,

T2m→ T2T1cJ ≃ T1cJ .

By a direct limit argument we may assume that J is a finite sequence. Also, from
the explicit form of the operator T2 , it is enough to show that m(V ) → T1cJ (V )
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is (3d− c)-connected for all V , where d = dim(V ) and c is a constant independent
of V . This is a special case of the following observation related to the Blakers-
Massey homotopy excision theorem: If f : Y → Z is a based map where Z is
k-connected and f is ℓ-connected, then the canonical map from the mapping cone
of hofiber(f)→ Y to Z is (k+ ℓ− c) connected. We apply this with f equal to the
map T2cJ (V )→ T1cJ (V ). �

Two of the spaces in the homotopy fiber sequence of lemma 4.1 are easy to
understand. The space nat⋆ (L2cJ , a2) can be understood, since we understand
natural transformations between homogeneous functors of the same degree (see
lemma 4.3). The space nat⋆ (T2cJ , a2) can be understood because

nat⋆ (T2cJ , a2) ≃ nat⋆ (cJ , a2)

and cJ behaves in many ways like a (co)representable functor as can be seen by the
following lemma.

Lemma 4.2. Let J [1] be the full subcategory of J spanned by the objects 0, R.

Then the functor cJ is freely generated by its restriction to J [1]. In particular, we
have

nat⋆ (cJ , a2) ∼= nat⋆ (cJ |J [1] , a2|J [1]) ∼=
∏

j

Ωkjhofiber[a2(0)→ a2(R)] .

Proof. We show this in the case cJ = c (the general case follows similarly). By the
free generation statement we mean that c is the left Kan extension of its restriction
c|J [1] . More explicitly, given V in J and a point y ∈ c(V ) we can find A in J [1],

an x ∈ c(A) and f :A → V such that f∗(x) = y. The triple (A, x, f) is unique up
to the obvious relations. In the cases where A = R, we can always choose x and f
such that x ∈ [0,∞]. Then we see that nat⋆ (c, a2) can be identified with the space
of pairs of based maps (f, g) making the diagram

{0,∞}
incl //

f

��

[0,∞]

g

��
a2(0)

incl∗ // a2(R)

commute, where {0,∞} = c(0) and [0,∞] ⊂ c(R). This space of pairs (f, g) is just
the homotopy fiber of the inclusion-induced map a2(0)→ a2(R). �

Lemma 4.3. Let g and f be two homogeneous functors, from J to based spaces,
of the same degree n > 0. Then

nat⋆ (g, f) ≃ maphO(n)(Θg(n),Θf(n)) ,

where the righthand side is the space of weak O(n)-maps.

This is obvious from the classification of homogeneous functors [27].

Example 4.4. Suppose that a2 is the homogeneous functor of degree 2 correspond-
ing to the spectrum HQ with trivial action of O(2), and a1 is T1cJ where kj > 0
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for all j = 1, 2, .... Then by lemma (4.1) we have

nat⋆ (T2cJ , a2) ≃ nat⋆ (cJ , a2)
≃

∏

j Ω
kjhofiber[a2(0)→ a2(R)]

≃
∏

j Ω
kjΩ∞hofiber[(S0 ∧HQ)hO(2) → (S2 ∧HQ)hO(2)]

≃
∏

j Ω
kj+1Ω∞

(

((S2/S0) ∧HQ)hO(2)

)

≃
∏

j Ω
kj+1Ω∞(S1 ∧HQ)

≃
∏

j Ω
kjΩ∞HQ

≃
∏

j Ω
kjQ

which is contractible. By lemma 4.3 we have the homotopy equivalence

nat⋆ (L2cJ , a2) ≃ maphO(n)(Θc
(2)
J , HQ)

and by lemma 3.2 the righthand side is contractible. From the homotopy fiber
sequence of lemma 4.1 it follows that nat⋆ (a1, a2) is contractible.
For another example which we will need, keep a1 as above and let a2 be the homo-
geneous functor corresponding to map(S1, HQ) with O(2) acting via its standard
action on S1. A calculation similar to the above shows that nat⋆ (a1, a2) is again
contractible.

Example 4.5. Let us look at spaces of natural transformations nat(a1, a2) where
base points are ignored, although we still assume that a1 and a2 are functors from
J to T⋆ . There is a homotopy fiber sequence

nat⋆ (a1, a2)→ nat(a1, a2)→ a2(0)

where the right-hand arrow is given by evaluation at the base point in a1(0). That
arrow has a right inverse given by the inclusion of constant natural transformations.
If nat⋆ (a1, a2) is contractible, and a2 takes values in infinite loop spaces, as in the
above example 4.4, then it follows that nat(a1, a2) is homotopy equivalent to a2(0).
In other words the space of all constant natural transformations from a1 to a2 is
homotopy equivalent (by inclusion) to the space of all natural transformations from
a1 to a2.

Example 4.6. Let J = (kj)j=1,2,... be a sequence of integers such that k1 = 0 and
kj > 0 for all j > 1. Let a1 = T1cJ and b = T1c, and a2 as in example 4.4. The
map p : cJ → c, collapse to the first wedge summand, gives a map a1 → b. We wish
to show that

(4.1) p∗ : nat(b, a2)→ nat(a1, a2)

is a homotopy equivalence. By the same reduction that we used in example 4.5, it
is enough to show that p∗ : nat⋆ (b, a2) → nat⋆ (a1, a2) is a homotopy equivalence.
Going through calculations as in example 4.4, we can see that

nat∗(T2c, a2)→ nat∗(T2cJ , a2) , nat∗(L2c, a2)→ nat∗(L2cJ , a2)

are homotopy equivalences, hence p∗ : nat⋆ (b, a2) → nat⋆ (a1, a2) is a homotopy
equivalence by lemma 4.1. Therefore the map (4.1) is a homotopy equivalence.

Example 4.7. There is a slight generalization of the previous example where we
assume a1 is a retract of T1cJ and b is a retract of T1c. More precisely we assume
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there exists a commutative diagram of natural transformations

a1 //

q

��

T1cJ //

T1p

��

a′1

��
b // T1c // b′

such that the horizontal compositions are homotopy equivalences. Then the same
conclusion holds, i.e. the map q∗ : nat(b, a2) → nat(a1, a2) is a homotopy equiva-
lence.

5. Splitting hypotheses

In our formulations of the C hypotheses below, we often use the word weak in
an informal way. As a rule this has an interpretation in the language of model
categories [8], [9]. Less formally, let us assume that we are dealing with a category
C which comes with a notion of homotopy between morphisms and with notions
of weak equivalence and cofibrant object. The following axiom should hold: any
diagram

B′

g
��

A
f

// B

in C , where g is a weak equivalence, can be completed to a triangle

B′

g
��

A
f

//

::t
t

t

B

commutative up to homotopy.
Then, for objectsA and B in C , a weak morphism fromA toB consists of a cofibrant
object A′, a weak equivalence ρ :A′ → A and a genuine morphism A′ → B. The
weak equivalence ρ :A′ → A is a cofibrant replacement (alias cofibrant resolution),
and where it exists it has some uniqueness features. If the category C has additional
structure (e.g. a model category structure), then it may be possible to define a
simplicial set of morphisms from A′ to B (in the examples stated below this is
clear) and this can play the role of a weak mapping space map(A,B). Its weak
homotopy type should be independent of the choice of cofibrant resolution of A.
Our examples are of two types.

Example 5.1. Let C be the category of all functors from J to spaces. Such a
functor is cofibrant if it is a retract of a functor which is built from functors of the
form

V 7→ Di ×mor(W,V )

for fixed W ∈ J and i ≥ 0. See [27, A.2] for more details. We write nat⋆ ( , )
instead of map( , ) for the spaces of natural transformations.

Example 5.2. Let C be the category of spaces with Γ-action, or a suitable category
of spectra with Γ-action, for Γ a fixed compact Lie group (often we take Γ = O(2),
or Γ = S1). Here the cofibrant objects are those which can be built from “free”
pieces such as Dk × Γ or stable analogues.
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With these instructions, the reader should be able to decode our formulations
of the C hypotheses in a mechanical fashion. As the mechanical method tends to
produce long-winded statements, we offer more hands-on formulations in remark 5.5
below.

Hypothesis Cs . As an O(2)-map, the inclusion Θbo(2) → Θbt(2) admits a (ra-
tional, weak) left inverse over Θbg(2).

Hypothesis Cm . As an O(2)-map, the inclusion Θbo(2) → Θbt(2) admits a (ra-
tional, weak) left inverse.

We now give alternative formulations of hypotheses Cs and Cm . The rest of this
chapter will be devoted to proving that these new statements are in fact equivalent
to our original hypotheses.

Proposition 5.3. Hypothesis Cs is equivalent to the statement that the inclusion
bo→ bt admits a (weak, rational) left inverse over bg.

Proposition 5.4. Hypothesis Cm is equivalent to saying that the inclusion bo→ bt

admits a (weak, rational) left inverse.

Remark 5.5. Explicit formulations of the 2 hypotheses and 2 propositions above
are as follows. In hypothesis Cm , we mean that there exists a spectrum Υ with
action of O(2) and an O(2)-map Θbt(2) → Υ such that the composition

Θbo(2) → Θbt(2) → Υ

is a rational homotopy equivalence. (There is no need to arrange that bt(2) is
cofibrant.) In hypothesis Cs we mean the same but in addition Υ comes with an
O(2)-map to Θbg(2) and the O(2)-map Θbt(2) → Υ is over Θbg(2). In proposition 5.4
we mean that there exist a third functor d and a natural transformation bt → d

such that the composition bo→ bt→ d is a rational equivalence. In proposition 5.3
we mean the same but in addition, d comes with a natural transformation to bg

and bt→ d is over bg.

We recall how a functor d from J to T∗ determines a sequence of spectra Θd(i),
for i = 1, 2, 3, . . . (for more details on this and what follows, see [27]). The category
J is contained in a larger category Ji enriched over based spaces and the functor

d has a right Kan extension d(i), from Ji to T∗. An explicit formula for d(i) is

(5.1) d(i)(V ) = hofiber
[

d(V ) −→ holim
06=U≤Ri+1

d(V ⊕ U)
]

where we use a topologically enhanced homotopy limit. Instead of saying that d(i)

is defined on Ji we can also pretend that d(i) is defined on J and comes with the
following additional structure: a natural map

(5.2) σ : (V ⊗ Ri)c ∧ d(i)(W ) −→ d(i)(V ⊕W )

with the expected associativity and unital properties. Moreover d(i) comes with
an action of O(i), obvious from the explicit formula, such that σ is equivariant.
(It is equivariant for the diagonal action of O(i) on the source. By specializing
to V = R and W = Ri we obtain a spectrum with twisted action of O(i) where
the structure maps involve smash product with a sphere (Ri)c on which O(i) acts
nontrivially. This can be untwisted. Besides, it is essential in the following that we
don’t specialize too soon.)
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Remark 5.6. We need to state and explain a few facts to be used later.

(a) The inclusion BO→ BTOP is a rational homotopy equivalence.
(b) The canonical actions of O on Θbo(i) and Θbt(i) for i ≥ 1 are special cases

of a “natural action” of O on all spectra.

Statement (a) is well known (see [12]). It can, of course, be restated as saying that
the inclusion of zeroth Taylor approximations T0bo→ T0bt is a rational homotopy
equivalence.
Regarding (b), suppose that d is a continuous functor from J to based spaces,

and that d(R∞) = hocolimnd(R
n) is path-connected. Then the spectra Θ(i)d (for

i = 1, 2, 3, . . . ) are defined, and each Θ(i)d comes with an action of O(i). What
matters here is that they also come with an action of Ωd(R∞), commuting (in the
weak sense) with the action of O(i). This can be seen along the following lines.
Fix n ≥ 0 and x ∈ d(Rn). Let sndx be defined by sndx(V ) = d(Rn ⊕ V ), with base
point equal to the image of x under the inclusion-induced map d(Rn)→ d(Rn⊕V ).
The functor sndx determines spectra

(5.3) Θsnd
(i)
x

for i ≥ 1. As x runs through d(Rn) these spectra constitute a fibered spectrum
over snd(0) = d(Rn), with fiberwise action of O(i). However it is also true by (5.2)
that there is a canonical homotopy equivalence

(5.4) σ : (Rn ⊗ Ri)c ∧Θd(i) −→ Θsnd
(i)
x

if x is the standard base point in d(Rn). In the left-hand side we have the diagonal
action of O(i), with O(i) acting on Ri in the standard way. In adjoint notation,
this becomes a homotopy equivalence

(5.5) Θd(i) −→ ΩR
n⊗R

i

Θsnd
(i)
x .

Letting x vary again, we conclude that Θd(i) extends to a fibered spectrum over
d(Rn). Now it is easy to let n tend to infinity. Instead of saying that Θd(i) extends
to a fibered spectrum over d(R∞), we can also say that Ωd(R∞) acts on Θd(i). This
action, for i = 1, . . . , k, is one of the ingredients in a “stagewise” description of the
k-Taylor approximation Tkd of d. That is also how we will use it below, with k = 2.

We now specialize by taking d = bo, while i remains unspecified. Then Ωbo(R∞)
is the group O. It is easy to see how the spectra (5.3) depend on x ∈ bo(Rn) =
BO(n) if we think of x as an n-dimensional vector space Vx (since BO(n) is a
Grassmannian). Indeed, we can make an identification of based spaces

snbox(W )
≃

−−−−→ bo(W ⊕ Vx)

(see also remark 5.7 below). Therefore

snbo
(i)
x (Rm)

≃
−−−−→ bo(i)(Rm ⊕ Vx)

so that we have an identification of spectra

Θsnbo
(i)
x

≃ // {bo(i)(Rm ⊕ Vx) | m ≥ 0} (Vx ⊗ Ri)c ∧Θbo(i)
≃oo

where the second map uses (5.2). Summarizing, we have a canonical homotopy
equivalence

Θsnbo
(i)
x
∼= (Vx ⊗ Ri)c ∧Θbo(i)



MAPS TO THE PLANE II 25

extending (5.4). This means that the action of O(n) ⊂ O on Θbo(i) is obtained
essentially by writing

Θbo(i) ≃ ΩRn⊗Ri
(

(Rn ⊗ Ri)c ∧Θbo(i)
)

and letting O(n) act exclusively on the Rn factor in (Rn⊗Ri)c. We now let n tend
to infinity and thereby complete our sketch proof of (b) in the case of bo. The case
of bt is similar, so long as we are not interested in the action of TOP ≃ Ωbt(R∞)
on Θbt(i), but only in the action of the subgroup O ≃ Ωbo(R∞).

Remark 5.7. We have used the following fact: for any n-dimensional real vector
space V , there is a canonical identification of BO(V ) with BO(n). More precisely,
we can specify a contractible space Y of (unbased) maps from BO(V ) to BO(n)
such that every element of Y is a homotopy equivalence. Let Y be the space of pairs
(f, g) where f :BO(V ) → BO(n) is continuous and g is an isomorphism from the
universal vector bundle on BO(V ) to f∗ of the universal vector bundle on BO(n).
This has the curious consequence that bo(V ) is “the same” for all V of a fixed
dimension n, if we are willing to ignore base points. That was the basis for our
proof of fact (b) in remark 5.6.

Remark 5.8. The Taylor tower in orthogonal calculus (of a functor d from J
to T∗) has considerable formal similarities with the Postnikov tower of a based,
connected CW-space X . The essentially constant functor T0d plays the part of
π1(X) in Postnikov theory. The spectra Θ(i) = Θd(i) for i > 0 play the part of
the homotopy groups πi = πi(X), where i > 1. The fact that πi is a module over

π1(X) is analogous to the fact that Θ(i) extends to a fibered spectrum z 7→ Θ
(i)
z

on the space T0d(0). The inductive construction of the stages Xi of the Postnikov
tower of X is best described by means of homotopy pullback squares

Xi
proj. //

proj.

��

Xi−1

κi

��
Bπ1(X)

0-section // (Bi+1πi)hπ1(X) .

Here the lower right-hand term is the homotopy orbit construction for the action of
π1(X) on Bi+1πi, so that there is a projection from it to Bπ1(X) with Eilenberg-
MacLane fiber Bi+1πi. By analogy with that, there is a homotopy pullback square

Tid
proj. //

proj.

��

Ti−1d

κi

��
T0d

0-section // f[Θ(i)
• ] .

Here f[Θ
(i)
• ] is a functor which is essentially determined by the space T0d(0) and

the fibered spectrum
z 7→ S1 ∧Θ(i)

z

on it, with the fiberwise action of O(i). There is a forgetful projection from f[Θ
(i)
• ]

to T0d, and for every point z ∈ T0d(0) the homotopy fiber of that projection at z
is the homogeneous functor of degree i from J to T∗ determined by the spectrum

S1 ∧Θ(i)
z
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with action of O(i).

Proof of prop. 5.4. Assuming hypothesis Cm , we will construct a functor d and a
map bt→ d such that the composition bo → bt → d is a rational equivalence. We
construct d inductively, starting with T0d and then building T1d and finally T2d.
Let T0d = T0bt and let T1d be the homotopy pullback of T0bt→ T0bg← T1bg. To
make T2d = d we need a fibered spectrum Υ• over T0d(0) = BTOP, with fiberwise
action of O(2), and a map κ2 :T1d → f[Υ•] which is a natural transformation over
T0d. Here f[Υ•] is the functor essentially determined as in remark 5.8 by the fibered
spectrum S1 ∧ Υ• over BTOP, with the fiberwise action of O(2). Then we define
T2d by a homotopy pullback square

T2d
proj. //

proj.

��

T1d

κ2

��
T0d

0-section // f[Υ•] .

We already have a spectrum Υ from our hypothesis, with an O(2)-map Θbt(2) → Υ
such that Θbo(2) → Θbt(2) → Υ is a rational equivalence. We may as well assume
that the homotopy groups of Υ are rational vector spaces. Given the shallow nature
of the actions of O on Θbo(2) and Θbt(2), as explained in remark 5.6, it is easy to
promote Υ to a fibered spectrum over BO. Furthermore since π∗Υ is rational, this
also promotes Υ to a fibered spectrum over BTOP and we now have a diagram of
fibered spectra over BTOP,

Θbo
(2)
• → Θbt

(2)
• → Υ• .

We now wish to define κ2 :T1d → f[Υ•] so as to make the following diagram com-
mutative:

(5.6) T1bt //

κ2

��

T1d

κ2

���
�

�

�

f[Θbt
(2)
• ] // f[Υ•]

(The horizontal maps are obvious.) The first thing to notice in the above is that
all the functors in the commutative diagram 5.6 are over T0bt, which is rationally
the same as T0bo. This, of course, we can regard as a space T0bo(0), since T0bo

is essentially a constant functor. We now pick a point x ∈ T0bo(0) and solve the
factorization problem over this point. Namely, we have a corresponding diagram of
homotopy fiber functors

(5.7) (L1bt)x
r1 //

κ2

��

(L1d)x

κ2

���
�

�

�

f[Θbt
(2)
x ]

r2 // f[Υx] .

The functors in the lower row are determined by the spectra Θbt
(2)
x and Υx with

action of O(2), viewed as fibered spectra over a point. Taking a1 = (L1bt)x ,
b = (L1d)x and a2 = f[Υx] we are in the situation of example 4.7. Therefore the
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map κ2 : (L1d)x → f[Υx] exists and, together with a homotopy from r2κ2 to κ2r1
in (5.7), is unique up to contractible choice. This establishes the existence and
uniqueness of κ2 in diagram (5.6). �

Proof. (of prop 5.3) This proceeds mostly like the proof of proposition 5.4. The
construction of T1d as the homotopy pullback of T0bt→ T0bg← T1bg automatically
gives us a functor over T1bg. The main difference arises when we wish to define
κ2 : T1d → f[Υ•] so as to make the following diagram commutative with preferred
homotopies:

(5.8) T1bt //

κ2

��

T1d

κ2

���
�

�

�
// T1bg

κ2

��

f[Θbt
(2)
• ] // f[Υ•] // f[Θbg

(2)
• ]

Notice that the outer rectangle is already commutative by our hypothesis. Again
we take x ∈ T0bo(0) with image y ∈ T0bg(0) and form the corresponding homotopy
fibers:

(5.9) (L1bt)x
r1 //

κ2

��

(L1d)x

κ2

���
�

�

�

s1 // (L1bg)y

κ2

��

f[Θbt
(2)
x ]

r2 // f[Υx]
s2 // f[Θbg

(2)
y ]

We then determine the broken arrow as in the previous proof to make the left-
hand square commute with preferred homotopy. Now the right-hand square is also
commutative with preferred homotopy because s2κ2 and κ2s1 are both solutions
to the problem of factoring s2r2κ2 through r1. Such solutions are again unique by
example 4.7. �

Proposition 5.9. Hypothesis Cm implies hypothesis Am .

Proof. We start by reformulating hypothesis Am as a statement about BTOP(2m)
instead of BSTOP(2m). The Euler class e in H2m(BSTOP(2m);Q) comes from
an Euler class et in H2m(BTOP(2m);Qt) where Qt is a “twisted” local coefficient
system, the twist being determined by the first Stiefel-Whitney class of the universal
euclidean bundle on BTOP(2m). The (hypothetical) equation

e2t = pm ∈ H4m(BTOP(2m);Q)

is equivalent to e2 = pm ∈ H4m(BSTOP(2m);Q).
By proposition 5.4, we have a functor splitting bo→ bt→ d such that the compo-
sition bo → d is a rational homotopy equivalence. Therefore, for 2m-dimensional
V , we can speak of the Euler class et in H2m(d(V );Qt) and the Pontryagin class
pm ∈ H4m(d(V );Q). For these we have e2t = pm. It is therefore enough to show
that under the map bt → d, the class pm ∈ H4m(d(V );Q) pulls back to the Pon-
tryagin class in H4m(bt(V );Q) and the class et ∈ H2m(d(V );Qt) pulls back to the
twisted Euler class in H2m(bt(V );Qt). For the Pontryagin classes this follows from
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the commutativity of the diagram

bt(V ) //

��

T0bt(V )

≃Q

��
d(V ) // T0d(V ) .

(The Pontryagin classes come from the right-hand column.) For the Euler classes
it follows from the commutativity of the diagram

bt(V ) //

��

T1bt(V )

≃Q

��
d(V ) // T1d(V ) .

(The Euler classes come from the right-hand column.) The right-hand vertical
arrow in the last diagram is a rational homotopy equivalence by proposition 3.8,
since V is even dimensional. �

Proposition 5.10. Hypothesis Cs implies hypothesis As .

Proof. Suppose hypothesis Cs holds. By proposition 5.3, we have a functor splitting
bo → bt → d over bg such that the composition bo → d is a rational homotopy
equivalence. Therefore, for 2m-dimensional V , we can speak of the Euler class et
in H2m(d(V );Qt) and the Pontryagin class pm ∈ H4m(d(V );Q). For these we have
e2t = pm. Let qm ∈ H4m(bg(V ⊕R);Q) be the unique class which extends the class
e2t ∈ H4m(bg(V );Q). It is then clear that qm also extends pm ∈ H4m(d(V );Q). It is
therefore enough to show that under the map bt→ d, the class pm ∈ H4m(d(V );Q)
pulls back to the Pontryagin class in H4m(bt(V );Q). This follows as in the proof
of proposition 5.9. �

6. Orthogonal calculus and smoothing theory

In this section we turn our attention to the relation between the B and C hy-
potheses. Smoothing theory allows us to reformulate the B hypotheses so that they
fit into the orthogonal calculus framework.

Remark 6.1. Let Γ be a compact Lie group. We are interested in spaces and
spectra with an action of the group Γ. Traditionally there are two frameworks
for this. In the “naive” framework, objects are ordinary spaces or spectra with
an action of Γ and a Γ-map between two such spaces or spectra is considered an
equivalence if it is an ordinary (weak) homotopy equivalence. In particular any
Γ-space X is considered equivalent to EΓ ×X , which comes with a free action of
Γ. In the equivariant framework, a Γ-space is still a space with an action of Γ,
but a Γ-map X → Y is not considered an equivalence unless it induces (ordinary)
equivalences XH → Y H of the fixed point spaces for closed subgroups H ≤ Γ.
Furthermore a Γ-spectrum Θ in the equivariant framework is a family of based
spaces ΘV indexed by (selected) finite dimensional real representations of Γ and
the structure maps V c ∧ΘW −→ ΘV⊕W are Γ-maps. There is an elaborate theory
of fixed point spectra corresponding to subgroups H ≤ Γ. See e.g. [1, 13].

For orthogonal calculus purposes, the naive setting is the right one. Nevertheless,
most examples of Γ-spectra which arise in orthogonal calculus have some features
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reminiscent of the equivariant setting which we strive to suppress. The following
questions arise frequently:

(i) Given a fixed representation V of Γ, a sequence of based Γ-spaces (XnV )n∈N

and based Γ-maps V c ∧XnV → X(n+1)V (with the diagonal action on the
source) can we build a naive Γ-spectrum X from these data? Also, given
two such sequences (XnV )n∈N and (YnV )n∈N, and compatible based Γ-maps
fn :XnV → YnV , can we build a Γ-map f :X → Y ?

(ii) In these circumstances, can the Γ-map f be recovered if we only know the
based Γ-maps ΩnW fn : Ω

nWXnV → ΩnWYnV for all n, where W is another
representation of Γ ? We are willing to assume that the YnV are Eilenberg-
MacLane spaces and the adjoints of the maps V c ∧ YnV → Y(n+1)V are

homotopy equivalences YnV → ΩV Y(n+1)V .

The following propositions try to answer these questions.

Proposition 6.2. Given a fixed representation V of Γ, a sequence of based Γ-spaces
(XnV )n∈N and based Γ-maps V c ∧XnV → X(n+1)V , the spaces

hocolim
n→∞

ΩnV (Sm ∧XnV )

(for m ≥ 0) form an Ω-spectrum X.

Proof. There are obvious structure maps

(6.1) hocolim
n→∞

ΩnV (Sm ∧XnV )→ Ω
(

hocolim
n→∞

ΩnV (Sm+1 ∧XnV )
)

We need to show that these are weak homotopy equivalences. Suppose to begin
with that there exists n0 such that, for all n ≥ n0, the Γ-map V c∧XnV → X(n+1)V

is a homeomorphism. Then XnV is (dim(nV ) − k)-connected for a constant k
independent of n. It follows by Freudenthal’s theorem that the maps (6.1) are
weak homotopy equivalences, since they can be written in the form

hocolim
n→∞

ΩnV (Sm ∧XnV )→ hocolim
n→∞

ΩnV
(

Ω(Sm+1 ∧XnV )
)

.

The general case follows from this special case by a direct limit argument. �

Proposition 6.3. Keeping the notation of proposition 6.2, let W be another rep-
resentation of Γ and assume Γ is connected. If d = dim(V ) is greater than
e = dim(W ), the canonical homomorphisms

gn :Hk(XhΓ;Q)→ Hk+nd−en((ΩnWXnV )rhΓ, ⋆ ;Q) ,

induce an injection

g :Hk(XhΓ;Q)→
∏

n

Hk+nd−en((ΩnWXnV )rhΓ, ⋆ ;Q) .

Proof. By the universal coefficient theorem in rational homology, it is enough to
show that the corresponding homology homomorphisms gn produce a surjection

⊕

n

Hk+nd−en((Ω
nWXnV )rhΓ, ⋆ ;Q) −→ Hk(XhΓ;Q) .
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We note that ⊕ngn is defined by the composition

(6.2)
⊕

n Hk+nd−ne((Ω
nWXnV )rhΓ, ⋆ ;Q)

��
⊕

n Hk+nd((S
nW ∧ΩnWXnV )rhΓ, ⋆ ;Q)

��
colim

n
Hk+nd((XnV )rhΓ, ⋆ ;Q) ∼= Hk(XhΓ;Q) ,

where the top arrow is the suspension isomorphism and the bottom one is induced
by the obvious maps SnW ∧ ΩnWXnV → XnV . Now we need to show the bottom
arrow is onto. By a direct limit argument (as in the previous proposition) we can
reduce this to the case whereXnV is (nd−p)-connected for a constant p independent
of n. It then follows that the map

SnW ∧ ΩnWXnV → XnV

is (2nd−ne− q)-connected for some constant q independent of n. For large enough
n we have 2nd− ne− q = n(d− e)− q + nd > k + nd, so that the n-th summand
in the middle term of diagram (6.2) maps onto Hk+nd((XnV )rhΓ, ⋆ ;Q). �

Remark 6.4. In proposition 6.3, we can interpret an element f of Hk(XhΓ;Q) as
a homotopy class of (weak) Γ-maps from X to Y ≃ Sk ∧HQ. We may also assume
that Y is constructed from based Γ-spaces YnV and Γ-maps

V c ∧ YnV → Y(n+1)V

whose adjoints are homotopy equivalences YnV → ΩV Y(n+1)V . The image of f

in Hk+nd−ne((ΩnWXnV )rhΓ, ⋆ ;Q) is the map ΩnW fn from ΩnWXnV to ΩnWYnV

induced by f . The content of the lemma is that f is determined by these images
ΩnW fn. This gives an affirmative answer to the question in (ii) of remark 6.1.

Remark 6.5. The proof of proposition 6.3 proves more than what is stated. In
fact, given any infinite subset S of the natural numbers, the composition of the
injection g with the projection

∏

n∈N

Hk+nd−en((ΩnWXnV )rhΓ, ⋆ ;Q) −→
∏

n∈S

Hk+nd−en((ΩnWXnV )rhΓ, ⋆ ;Q)

is still an injection.

Proposition 6.6. Hypotheses Bm|e implies hypothesis Cm .

Proof. Let Θbo = Θbo(2), Θbt = Θbt(2) and Θbo→bt = hofiber[Θbo → Θbt]. We
need to show that the forgetful map Θbo→bt → Θbo is rationally nullhomotopic
with weak O(2)-invariance. As Θbo is rationally an Eilenberg-MacLane spectrum
concentrated in dimension −1 with trivial O(2)-action, this amounts to showing
that a class δ in the spectrum cohomology H−1((Θbo→bt)hO(2);Q) vanishes. A
transfer argument shows that the restriction induced homomorphism

H−1((Θbo→bt)hO(2);Q) −→ H−1((Θbo→bt)hS1 ;Q)

is injective. Therefore we only have to show that δ is zero in H−1((Θbo→bt)hS1 ;Q),
or equivalently that the forgetful map Θbo→bt → Θbo is rationally nullhomotopic
with weak S1-invariance. This is equivalent to showing that the forgetful map

ΩV Θbo→bt → ΩV Θbo
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is rationally nullhomotopic with weak S1-invariance, where V is the standard 2-
dimensional representation of S1. Again this is equivalent to the vanishing of a
cohomology class η ∈ H−3((ΩV Θbo→bt)hS1 ;Q). By proposition 6.3 this will fol-
low from showing that the cohomology classes ηn ∈ H−3+2n−n((ΩnXnV )rhΓ, ⋆ ;Q)
determined by η are zero for all even n, where

XnV = ΩV hofiber[bo(2)(Rn)→ bt(2)(Rn)] .

To show this we use the commutative diagram of S1-spaces

ΩnΩV hofiber[bo(2)(Rn)→ bt(2)(Rn)]
ηn //

��

ΩnΩV bo(2)(Rn)

τ

��

ΩnΩV hofiber
[

O(n+2)
O(n) →

TOP(n+2)
TOP(n)

]

//

≃

��

ΩnΩV O(n+2)
O(n)

R(n, 2)
∇ // V .

OO

The map τ is a rational homotopy equivalence on base point components. (Indeed,
there is a homotopy fiber sequence

bo(2)(Rn)
τ

−−−−→
O(n+ 2)

O(n)
−−−−→ Γ(E → RP 1) ,

where E → RP 1 is the fiber bundle with fiber given by EL = O(Rn+2)/O(Rn⊕L).
It is easy to check that the base point component of ΩnΩV Γ(E → RP 1) is rationally
contractible.) Therefore by hypothesis Bm|e , all these classes ηn are zero. �

Proposition 6.7. Hypotheses Bm|o implies hypothesis Cm .

Proof. As in the previous proof, this is equivalent to the vanishing of a cohomology
class η ∈ H−3((ΩV Θbo→bt)hS1 ;Q). By proposition 6.3 this will follow from showing
that the cohomology classes ηn ∈ H−3+2n−n((ΩnXnV )rhΓ, ⋆ ;Q) determined by η
are zero for all odd n, where

XnV = ΩV hofiber[bo(2)(Rn)→ bt(2)(Rn)] .

We now use slightly unusual descriptions of hofiber[bo(2)(Rn) → bt(2)(Rn)] and
bo(2)(Rn) given by

bo(2)(Rn) ≃ holim
06=U≤R

2

O(Rn ⊕ U)

O(Rn)
,

hofiber[bo(2)(Rn)→ bt(2)(Rn)] ≃ holim
06=U≤R2

hofiber

[

O(Rn ⊕ U))

O(Rn)
→

TOP(Rn ⊕ U))

TOP(Rn)

]

.

The vanishing of the classes ηn will therefore follow if, in the commutative square

ΩnΩV hofiber
[

O(n+1)
O(n) →

TOP(n+1)
TOP(n)

]

f //

��

ΩnΩV O(n+1)
O(n)

��

ΩnΩV hofiber
[

O(n+2)
O(n) →

TOP(n+2)
TOP(n)

]

g // ΩnΩV O(n+2)
O(n) ,
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we can find compatible rational nullhomotopies for f and g, with weak O(1)-
invariance in the case of f and weak O(2)-invariance in the case of g. Because in
the upper right-hand term the base point component is rationally contractible and
in the lower right-hand term the base point component is rationally an Eilenberg-
MacLane space, finding these compatible nullhomotopies amounts to showing that
a certain rational cohomology class vanishes. A transfer argument then implies
that we can weaken the invariance requirements so that the groups are SO(2) in
the case of g and SO(1) in the case of f . But then, by smoothing theory, we have
exactly the content of hypothesis Bm|o . �

Proposition 6.8. Hypothesis Cm implies hypotheses Bm|e and Bm|o .

Proof. By proposition 5.4 we obtain a (rational, weak) splitting for the inclusion
bo→ bt. It follows that, for even n ≥ 2, the inclusion

(6.3) Ωn+2(O(n+ 2)/O(n)) −→ Ωn+2(TOP(n+ 2)/TOP(n))

admits a rational splitting with weak S1-invariance. Consequently, the map from
the homotopy fiber of (6.3) to the source is rationally nullhomotopic with weak
S1-invariance. But this is precisely the smoothing theory model for ∇ :R → V .
The proof for odd n is similar.

�

Proposition 6.9. Hypothesis Bs|o implies hypothesis Cs .

Proof. We reason as in the proof of lemma 6.6. Let Θbo→bg be the second derivative
spectrum of U 7→ hofiber[bo(U)→ bg(U)]. We have to show that the map of spectra

δ : Θbo→bt −→ Θbo→bg

induced by bt → bg is rationally nullhomotopic with weak O(2)-invariance. This
time Θbo→bg is again (rationally) an Eilenberg-Mac Lane spectrum Ω3HQ. As be-
fore, it is enough to show that δ is rationally nullhomotopic with weak S1-invariance.
This is equivalent to showing that the forgetful map

ΩV Θbo→bt → ΩV Θbo→bg

is rationally nullhomotopic with weak S1-invariance, where V is the standard 2-
dimensional representation of S1. Again this is equivalent to the vanishing of a
cohomology class η ∈ H−5((ΩV Θbo→bt)hS1 ;Q). By proposition 6.3 this will follow
from showing that the cohomology classes ηn ∈ H−5+2n−n((ΩnXnV )rhS1 , ⋆ ;Q)
determined by η are zero for all odd n, where

XnV = ΩV hofiber[bo(2)(Rn)→ bt(2)(Rn)] .

By remark 2.6 and the homotopy pullback square in lemma 6.10 below, we find
that ηn sits in a commutative diagram of S1-spaces

ΩnXnV
ηn //

��

hofiber
[

bo(2)(Rn)→ bg(2)(Rn)
]

≃Q

��
R(n, 2)

∇ // hofiber [V (n, 2)→ VG(n, 2)]

By hypothesis Bs|o , all these classes ηn are zero. �
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Lemma 6.10. For odd n, the following is a rational homotopy pullback square:

bo(2)(Rn) //

proj

��

bg(2)(Rn)

proj

��
hofiber [bo(Rn) −−−−→ bo(Rn+2)] // hofiber [bg(Rn) −−−−→ bg(Rn+2)] .

Proof. The homotopy fiber of the left hand vertical map is

hofiber















hofiber[ bo(Rn) −→ holim
06=U≤R2

bo(Rn ⊕ U) ]





y

hofiber[ bo(Rn) −→ holim
06=U≤R2

bo(Rn ⊕ R2) ]















which simplifies to

Ωhofiber















holim
06=U≤R2

bo(Rn ⊕ U)





y

holim
06=U≤R2

bo(Rn ⊕ R2)















.

By a Fubini argument this simplifies to

Ω holim
06=U 6=R2

hofiber[bo(Rn ⊕ U)→ bo(Rn ⊕ R2)].

The homotopy limit here is just the space of sections of a fiber bundle on RP 1

whose fiber over U ∈ RP 1 is O(Rn ⊕ R2)/O(Rn ⊕ U). An analogous calculation
gives

Ω holim
06=U 6=R

2
hofiber[bg(Rn ⊕ U)→ bg(Rn ⊕ R2)]

for the right-hand side vertical homotopy fiber. Now it is sufficient to show that

bo(Rn+1)

��

// bo(Rn+2)

��
bg(Rn+1) // bg(Rn+2)

is a rational homotopy pullback square. This follows easily, e.g. by looking at the
vertical homotopy fibers, from our rational calculations of SO(k) and SG(k). �

Proposition 6.11. Hypothesis Cs implies hypothesis Bs|o .

Proof. This comes from smoothing theory, similar to the proof of proposition 6.8.
Alternatively, we already know that hypothesis Cs implies hypothesis As (propo-
sition 5.10), which in turn implies hypothesis Bs|o (proposition 2.11). �

Proposition 6.12. Hypothesis Cs implies hypothesis Bs|e .

Proof. This follows from the same smoothing theory argument used in the previous
proof. �y

Proposition 6.13. Hypothesis Bs|e implies hypothesis Cs .
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Proof. Reasoning as in the proof of proposition 6.9, we need to show that the
cohomology classes ηn ∈ H−5+2n−n((ΩnXnV )rhΓ, ⋆ ;Q) determined by η are zero
for all even n, where

XnV = ΩV hofiber[bo(2)(Rn)→ bt(2)(Rn)] .

As in the proof of proposition 6.7, the classes ηn will vanish if, in the commutative
square

ΩnΩV hofiber
[

O(n+1)
O(n) →

TOP(n+1)
TOP(n)

]

f //

��

ΩnΩV hofiber
[

O(n+1)
O(n) →

G(n+1)
G(n)

]

��

ΩnΩV hofiber
[

O(n+2)
O(n) →

TOP(n+2)
TOP(n)

]

g // ΩnΩV hofiber
[

O(n+2)
O(n) →

G(n+2)
G(n)

]

,

we can find compatible rational nullhomotopies for f and g, with weak O(1)-
invariance in the case of f and weak O(2)-invariance in the case of g. The up-
per right-hand term has a rationally contractible base point component and in the
lower right-hand term the base point component is rationally an Eilenberg-MacLane
space. We can therefore weaken the invariance requirements so that the groups are
SO(2) in the case of g and SO(1) in the case of f . By smoothing theory, we have
exactly the content of hypothesis Bs|e . �
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(1974), 235-272.
[5] F.T. Farrell and W.-C. Hsiang, On the rational homotopy groups of the diffeomorphism

groups of discs, spheres and aspherical manifolds, Algebraic and geometric topology
(Proc.Sympos.Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1, 325–337, Proc.
Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978.

[6] A. Haefliger, Differentiable embeddings of Sn+1 in Sn+q for q > 2, Ann. of Math. 83 (1966),
402-436.

[7] M. Hirsch, B. Mazur, Smoothings of piecewise linear manifolds, Princeton University Press,
1974.

[8] P. Hirschhorn, Model categories and their localizations, AMS, 2003.
[9] M. Hovey, Model categories, AMS, 2008.

[10] K. Igusa, The stability theorem for smooth pseudo-isotopies, K-theory 2 (1988), 1-355.
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