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COBORDISM GROUPS OF IMMERSIONS

ROBERT WELLST

(Received 15 September 1965)

§ L.

THE general problem of describing the category of differential manifolds and maps is
extremely complicated. Thom has introduced the technique of cobordism to simplify this
problem in mnrh the eaema way thot 0 T o oF b Tsaw simplify the problem of
describing the structure of a topological space. The family of mumersions of differential
manifolds in Euclidean spaces is still a very complicated part of the above category. In
this paper we apply Thom’s technique to obtain a rough description of that family. As
often happens, the result is described in homotopy terms; just as the cobordism groups of
embeddings turn out to be the homotopy groups of the Thom spaces of the classifying vector
bundles, the cobordism groups of immersions turn out to be the reduced stable homotopy
groups of those spaces. This identification is made by relying heavily on Hirsch’s theorems
describing immersions.

Let R be the real numbers, eq,e,,e;, ... the standard basis vectors of R® and
m;: R® — R the jth co-ordinate projection. Also, G, is the r-planes through 0 in R™**
and &, the canonical r-plane bundle over G,,.

Leaving details aside for the moment, we will say roughly that the sum of two immer-
sions f and g of closed k-manifolds M and N respectively is f| | g if M) N = & and un-
defined otherwise. The two immersions will be said to be cobordant if there is a manifold
X such that #X is the disjoint union of M and N, and if there is an immersion F: X —
7ydes 1[0, 1], transverse regular along 7, 4 ({0} _]{1}), such that F|M =fand F(x) =
g(x) + €,144+1 if x€ N. The relation of cobordism turns out to be an equivalence relation
and the immersions of closed k-manifolds in R"** form an abelian group 4" (n) modulo
cobordism. The bigraded group X,,.# ,(9) has a natural structure of a bigraded ring,
commutative with respect to the total degree p + ¢q. Then,

THEOREM 5. Z,,. N (9) ® Z, is a bigraded polynomial algebra with generators fy, f1, fa, ...
such that f; € N 5 4 4:(2).

Thus there is a real difference between cobordism of immersions and the usual cobordism,
since in the latter case all elements have order 2—we make no orientation assumptions here.
A further difference is in the appearance of odd torsion,

+ The author was an NSF Fellow during the preparation of this paper.
281




282 R. WELLS

THEOREM 6. For p prime and odd and m 2 x, where x = (p — 1)[2, N (2m) has no
p-torsion for i < 2m + 2p* — 2p — 1 and does have p-torsion for i = 2m + 2p* — 2p — 1.

The case of odd codimension is more like the usual case,
THEOREM 4. A" (2n + 1) is 2-primary.

For k <4, the groups .",(n) are the following, with some domains of generating
immersions indicated:

codim=n= 1 2 3 4 5 6
dim=+k
1 Zy 0 0 0 0 0
Sl
) Zs | Z+2z, z, z, zZ, Z,
P, S%, Py Py
3 Zy Zy Z, 0 0 0
53 S3 S3
4 0 Z, Zy+Z,y Z+2Zy+2Z, Z,+2Z, Zy+Zy
Py, X Py

where S* is the k-sphere and P, is k-dimensional projective space.
A more general precise description is possible in a few cases,

PROPOSITION 3. A (k) = Ny + Z if k is even, N\ (k) = N, + Z, if k is odd, where A&
is the usual (unoriented) k-th cobordism group.

PROPOSITION 4. N 'y (4s = 1) =N 'ys + Z, if 5 is not a power of 2, and N ,(4s — 1 =)
N 4s/(Pas) + Z4 if s is a power of 2, where (P ;) is the usual cobordism class of P,,. A class of
order 4 is represented by any immersion of Pk with codimension 2* — 1 if k > 1.

For the case of odd codimension, the following proposition does something to explain
the appearance of 2-primary torsion other than 2-torsion,

PrOPOSITION 1. If f: M*— R¥*™ is an immersion with n odd and if the normal Stiefel-
Whitney class &, (M) # 0, then f is not weakly homotopic to o o f where a: R"** - R*"*¥ jg
affine and orientation reversing.

“Weak homotopy” is an equivalence relation among immersions that is coarser than
regular homotopy. In the computations of the above cases, it is usually an application of
Proposition 1 that gives rise to 2-primary torsion other than 2-torsion.

The computations are made possible by two theorems. The first is a modification of
Thom’s theorem on cobordism. If é” is a vector bundle of dimension n over a finite com-
plex X, then we will define cobordism groups 4" (€), for k£ + 2 < dim &, of “£-manifolds”,
where a ¢-manifold will consist of a manifold M* together with a bundle homotopy class
of bundle maps ©(M") x &" "% — £, Then, if T(£) is the Thom space of bundle & > X such
that £ @ € is trivial and dim & = m > k + 1, the first theorem is

THEOREM 1. There is an isomorphism N (£)5 1, 1 (T(8)).




COBORDISM GROUPS OF IMMERSIONS 283

The other theorem follows from Hirsch’s paper on immersions. Let G,, and &, be as
above. Then,

THEOREM 2. There is a natural isomorphism A ((n) =N (Ep v 0)

From Theorems 1 and 2 it follows that there is a natural isomorphism

N (1) = Aoy 22 (T(Ep s 2 X 3k+2—")) = KT p+2))s

where #(Y) is the reduced stable homotopy group of Y. Since ., (T(&,  +2) —
K+ (T(E)) is an isomorphism, it follows that Theorem 3 is true,

THEOREM 3. There is an isomorphism N (n) = H# (T (E).

Some of the groups #.(T(&,)) may then be computed by means of the Adams spectral
sequence, and by means of secondary Stiefel-Whitney numbers, defined as follows. If
B, is the classifying space for i-dimensional vector bundles, then by taking mapping cylinders
in the sequence ... — B;— B;,, — ..., one may assume that ...[_ B;(_ B;.,[_ .... Let
I' € H¥*(B,, B,; Z,). Then if f: M* - R"** represents an element of ker(A (n) ~ A" (m)),
where the map A (n) > A (m) is the natural map induced by R**"[C R**™ and
F:X - R****! is an immersion bounding f followed by R**"[” R**™ one may define
uniquely and naturally the class I'(F, f) e H*(X, M; Z,) by setting I'(F, f) equal to vF*I"
where vF: (X, M)—(B,, B,) is the classifying map for the normal bundles of the
immersions F and /. Now, H*(B,, B,; Z,)[_ H*(B,,; Z,), so I'(F, f) may be regarded as a
polynomial in the Stiefel-Whitney classes, and if dim I'(F, f) = k + 1, the relative Stiefel-
Whitney number I'(F, f).[X, M]is defined by evaluating on the fundamental class mod 2
of the pair (X, M). The usefulness of these numbers arises from the following proposition,

PROPOSITION 2. If f: M* — R**" is in the same cobordism class as g : N* — R**", and f
followed by R**" [ R**™ bounds the immersion F of X, and g followed by R***[_ R**™
bounds the immersion G of Y, and the Stiefel-Whitney number T'[Z] =0 for every closed
manifold Z immersible with codimension m, then

I'(F,f) - [X,M]=1I(G,g) LY, N}
Thus the secondary Stiefel-Whitney number I'[f] = I'(F, f).[X, M] is well defined, and
I' defines a homomorphism
ker(A (n) - A (M) — Z,.

In this paper we will prove the above theorems and defer the other proofs to a later
paper.

It is a great pleasure to express my thanks to Professor J. Milnor for his patience and

encouragement in directing this thesis, to Michael Spivak for useful conversations, and
Jonathan Sondow for critical interrogations.

§II. COBORDISM THEORIES

1. Definition of immersion cobordism groups

We begin with the definition of 4, (n), the cobordism group of immersions of k-
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manifolds in R**". First, let %,(n) be the set of all immersions of closed k-manifolds in
R*" If fe #(n) and g e #{n) and (domain f)| | (domain g) = &, letf+gbefllg.
If (domain f) [ (domain g) # ¥, let f + g be undefined. Then + is an associative, com-
mutative, not always defined pairing %, (n) x F(n) = L (n). For the rest of this section,
the projection 7, ,,, will be written #; in &(n) we introduce a relation ~ as follows.

Definition. Let fand g be two members of &#,(n). Let domain f= M and domaing =
N. Then fand g are said to be cobordant, or f ~ g, if and only if there is a (k + 1)-manifold X
and an immersion F: X — R"*¥*! such that

(1) 4X=MxO0[]Nx 1
(2 F(X)C =0, 1]
(3) F(x)en~'(0)|_] =~ (1) if and only if xe ZX.

(4) For some Riemannian metric on X, F(eXp(m,0yttt) = f(m) + te,, s, for 0< 1<
and (m,0)e M x 0, and F(eXP(m,1ytu) = g(m) + (1— Deyiwsy for 0=t <e and (m, e
N x 1, where & > 0 is sufficiently small, exp is defined by the Riemannian metric, and u is
the inward normal field to #X.

It is immediate that this relation is reflexive and symmetric. It is also transitive. The
next step is to see that &, (n)/(~) is an abelian group in a natural way; this group will be
A 'n). Butitisimmediate that if /; + g, and f, + g, are defined and Ji~f,and g, ~ g, then
JSi + 91 ~ f2 + 9,50 P(n)/(~) inherits an additive structure. It is also clear that representa-
tives with disjoint domains may be found for any two classes of S (n)/(~), so that the
addition + in A" (n) is defined for any two elements. Associativity follows from these
properties in &, (n). The empty immersion acts as a unit. It is easy to see furthermore that
any immersion ffollowed by reflection across any hyperplane of R"** represents the negative
of the cobordism class represented by f: in fact, Sffollowed by an affine transformation ¢ is a
representative of sign (det ¢).[f], where [f] is the cobordism class of f

The graded group 2,0V (@) has a natural structure of a bigraded ring, defined as
follows. First let ¢;;: R* x R/ — R**/ be defined by

Pijf(x1ey + ... + X8, X184 F ...+ Xipje) =Xy + ... + Xi4 €y

Then define the product of two immersions S and g into R® and R® respectively by

Pa(f X g) =f-g. Since @,y .o (@ X 1) = @Pap+co (1 X @), the product is associative. It is
clearly distributive in #,(n) and behaves with respect to cobordism, so that it defines an
associative, distributive product in 2oV p(g) such that 4 (n) x N (m) = N e+ i(m + n).

The immersion f-g is an immersion of M x N. Define the immersion f*g to be the
immersion of N x M given by f *9(y, x) = 9 4(f(x), g()).

Claim 1. If fis an immersion in R® and g an immersion in R’, then f*g is cobordant
to f-g. :

Claim 2. 1f f and g are as above, then f*g is cobordant to (—1)g- f. It follows from
these two claims that the product defined above is commutative with respect to the total
degree; the proofs of both claims are trivial.
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Finally, we will need also the fact that in any class of A",(r) there is a connected repre-
sentative. A straightforward construction based on connected sums proves this fact.

2. Definition of £-cobordism groups, Theorem 1

Let £ —» B be an n-plane bundle. If m < n, an m-manifold M will be said to have a
E-structure if there is a bundle map (M) x "™ = £, A &-structure for M will be a bundle
homotopy class f of bundle maps (M) x &""™ —£. A ¢-manifold will be a pair consisting
of an m-manifold M together with a &-structure f.

For n > m, define the bundle map j;: t(M) x &"" = (M) x ™™ by j(t, e, ..., €,
ces €um) = (8, €15 .0y —€45 oouy €4_p) Where te (M) and e, e Clearly, any two bundle
maps j; and j, are bundle homotopic. Thus foj; = f.jis well-defined. If n 2 m + 1, we
say that the two closed ¢-manifolds (M, f) and (M,, f;) are &-cobordant, or (M, f) ~
(M,, f,) if and only if there is a &-manifold with boundary (X, 4) such that

) 2X=Mx0_1M, x1

(2) hoyyx x 1" 1 =" where f'(x, 0) = f(x)

(3) hoyp,x x 1"™™ 1 =4 oj where f{(x,1) =f;(x) and where y, y is the bundle
homotopy class of bundle maps obtained by choosing any Riemann metric on X, letting u
be the inward normal field of M x O [C X and letting (¢, s) — (¢, su) be a representative of
Ym,x- Pm,x is similarly defined. A long but straightforward argument shows that this
relation is reflexive and transitive. If n = m + 2, then the cobordism relation will also be
symmetric, and so an equivalence relation. By defining (M, f) + (M, f;) to be (M |_] 4, ;M,,
f+f1), one obtains a commutative and associative pairing of £-manifolds which respects
the cobordism relation. Thus the pairing + will induce a pairing + on the equivalence
classes, which, being associative, commutative, always defined and possessing inverses,
turns the equivalence classes into a group, which will be denoted by A4, (). (The negative
of the equivalence class of (M, f) is the equivalence class of (M, f»j).)

Given ¢ — B, where B is a finite complex, one can always find a k-plane bundle n = B
such that £ @ n = B x &". Let T(n) be the Thom space of . The cobordism group A4 ,(n)
may be computed by means of Thom’s theorem suitably interpreted:

THEOREM 1. N (&) = 7, (T()) provided that n has been chosen so that k = dim n 2
m + 2.

The proof of this theorem is nearly identical to the proof of Thom’s cobordism theorems.
The following is a sketch of the necessary adjustments.

If « — A is an a-plane bundle, let GL(xx) - A4 be the associated bundle with fiber GL(q),

obtained from the principal bundle of « by letting the left action GL(a) x GL(a) » GL(a)

of the group GL(a) on the fiber GL(a) be given by (g, g;) = 99,9~ *. Thus, each cross-section
¢; of GL(x) will define a bundle map o — «, covering the identity. Every bundle map cover-
ing the identity will be defined by a unique cross-section of GL(«). The bundle V,(«) will be
the bundle of b-frames of «; the principal bundle of « is then V,(«); it is not GL().

If ¢, is a cross-section of GL(«), and f is another vector bundle over 4, then ¢, @ 1 will
be the cross-section of GL(x @ f8) corresponding to the bundle map a @ f —+ « @ § which is
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defined by ¢, on « and the identity on B. If ¢, is homotopic to ¢, via cross-sections then
¢; @ 1 is homotopic to ¢, @ 1 via cross-sections, s~ e may as well write ¢ @ 1 for the cross-
section homotopy class of cross-sections determined by the cross-section homotopy class
of cross-sections c.

LemMA 1. If (4, B) is a pair of regular cell complexes and dim(4 - B) <dima = q,
where « is a vector bundle over A, then Jor any vector bundle B of dimension b over A4, if ey
is a cross-section of GL(« @ B) such that ColB=dy @1 for some d,, then o Is homotopic
modulo B to a cross-section ¢, = dy ® 1 such that d, | B = d,.

CoROLLARY 1. If dim 4 < dim«, then Jor any B, every cross-section of GL(o. ® B) is
homotopic to one of the form ¢y @ 1 where ¢ is a cross-section of GL(x).

COROLLARY 2. Ifdim 4 < 1 + dim o, then for any B, the mapping ¢ - ¢ ® 1 establishes
a 1-1 correspondence between the homotopy classes of cross-sections of GL(&) and the
homotopy classes of cross-sections of GL(« @ p).

Let « and f be vector bundles over A, of dimensions a and » respectively, having trivial
Whitney sum. Let y and 6 be vector bundles over G, of dimensions « and & respectively,
also having trivial Whitney sum. Pick a framing e, ..., e,., of a@® B, and a framing
liy eooy Ly Of Y@ 8. Then for any map g, : A - G, we define a bundle map fr, :a® B
—y®d covering g, by setting fr, (z, pe,(2) + ... + Pa+s€a+s(2)) = (91(2), p144(9,(2)) ...
Pa+blas5(91(2))) for any ze 4 and D:€R. If ¢, is a cross-section of GL(a® f), let fr,.c,
be the composition of Jrg, and the map defined by ¢i. The bundle homotopy class of this
map depends only on the homotopy class of g, and the cross-section homotopy class of ¢,,
so we may speak of fr,c where gis a homotopy class of maps and ¢ is a cross-section class
of cross-sections of GL(x ® B).

LEMMA 2. The mapping (g, c) — Jryc establishes a 1-1 correspondence between the bundle
homotopy classes of bundle maps o @ B —y @ J and the set of pairs (g, c) consisting of a homo-
topy class g of maps A — G and a homotopy class of cross-sections.

LEMMA 3. If A is a complex such that dim A + 2 < dim B, then for each bundle homotopy
class of bundle maps o — y, there is a unique bundle homotopy class f’ of bundle maps § — &
covering the same homotopy class of maps A— G and satisfying f@ f' = Jr,

Proof. Pick representatives f, e S and g, e g such that f; covers g1 For any ze 4,
pick a basis xy, ..., x, of @ andlety,, ...,y, € (x @ B), be the points such that Jr0, ) = fi(x)).
Define the linear injection P10, > (@D f), by ¢,(x) = Yi. Then ¢, is well defined
independently of the choice of the basis X35 .- X, and the collection of @,,’s defines a
homomorphicinjection ¢y :a—a@® Bsuchthat fr, o ¢, = fi. With respect tosome Riemann
metric on a @ B, let { = ¢, (a)*. Now, dim { = dim ¢ and 0 () D =a®p is trivial so
there is a j such that { x &/ = B x ¢/. Since dim Bz dim 4 + 2, §is equivalent to (.

Lety : B— ¢ be an equivalence. Then ¢, @ Yi1:0@ B —>a® B will be a bundle map
covering the identity. Let 7@ 65 6 be the natural projection. Then
X1=pofry (¢, @Y,)

is a bundle map g — § covering g,.
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Now we have at least one bundle homotopy class 4 of bundle maps § — J, covering
the homotopy class of maps g : 4 =+ G. The bundle homotopy class f @ h of bundle maps
a® p—y® 4 also covers g so, by Lemma 2, there is a unique homotopy class ¢ of cross-
sections of GL(ax ® B) such that f@® h = fr,c. By Lemma 1, Corollary 2, there is a unique
homotopy class of cross-sections K of GL(B) such thatc =1 @ K. Let K ~1 be the class of
cross-sections defined by the class of bundle maps inverse to the class of bundle maps de-
fined by K. Then we may define f” to be s o K™'. As for uniqueness, suppose that both f”
and k satisfy f@®f' =fr,=f®k. Clearly there is a homotopy class s of cross-sections
of GL(B) such that f'os=k. Thus fr,=f@k=(f®f)c(1Ds) =fr,(1®s). By
Lemma 2, 1 @ s = 1. By Lemma 1, Corollary 2, this fact implies that s = 1, so f =k,and
£ is well defined.

CoROLLARY. If dim 4 + 2 < dim « too, then the mapping f—f' is a 1-1 correspon-
dence between the bundle homotopy classes of maps o —y and the bundle homotopy classes
of maps f§— 4. '

Now it is possible to prove the theorem. For each closed E-manifold (M, f), we define
a homotopy class of maps S™*k  T() which depends only on the £-cobordism class of
(M,f). SincekzZnzm+2 an embedding r : M [ R™** always exists, and any two em-
beddings are isotopic. Taking M as embedded, let M x &'~ be the trivial bundle over M
obtained by restricting the normal bundle of R™** in R™** x R*"™ to M. Let v(M) be the
normal bundle of r(M) in R™**. Pick a framing /, ..., [+, in £@n and let ey, ..., €1k
be the standard framing of R"**. For each r: M [ R™*¥, the standard framing will restrict
to a framing of ©(r(M)) @ v(r(M)) x &"~™. The bundle homotopy class f determines the
bundle homotopy class fo (ry % 1""™~1 1(r(M)) x &"~™ — €. By the corollary to Lemma
3, there is a unique bundle homotopyclass f* of bundle maps v(r(M)) =7 covering the same
homotopy class of maps r(M)— B as fo(ry x 1"~™~! and satisfying fo (rs X 1n-m-t
@Jﬂ =fryor - L

Identifying v(r(M)) with a suitable tubular neighborhood of r(M) in RmHk[ gmtk
and extending each f{ € f in the usual way to a map Smtk L T(n), f' defines a homotopy
class of maps Sm+k 5 T(y). Now, the argument follows the usual channel.

3. Relation between immersion cobordism and ¢-cobordism, Theorem 2 and Theorem 3

In the following, we will identify T(R®) with R® x R® by parallel translation. Also, let
G,, be the k-planes in n-space and let £, — Gy, be the canonical k-plane bundle over Gy,.
Let 7 : R****! & R be the projection parallel to R***. If M is a k-dimensional manifold
and f, and f; will be said to be weakly homotopic if there is an immersion H: M x I—
RrtE+1 guch that

(1) H(m, ) = fo(m) + tegiry for0 =t <g,
(2) H(m, t) =fi(m) + tegpe  forl —e <t <1,
where 0 <& < 4.

LeMMA 4. The weak homotopy classes of immersions of M in R*** are in one to one
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correspondence with the bundle homotopy classes of bundle maps ©(M) x e > ¢, , 1.n Under the
correspondence f—p,, o (f, x 1) where Prnt SinXE—> &y 1, IS the standard map.

Proof. Hirsch shows that the bundle homotopy classes of vector bundle monomorphisms
(M) - t(R"* %)y are in 1-1 correspondence with the regular homotopy classes of immersions
M- R"**, However, the vector bundle monomorphisms (M) — t(R"**), define bundle
maps t(M) — &, and vice versa, in such a way that bundle homotopy classes go into bundle
homotopy classes. Thus, the regular homotopy classes of immersions M — R"*are in 1-1
correspondence with the bundle homotopy classes of bundle maps ©(M)— &,. The same
argument shows that the regular homotopy classes of immersions M x 0, 1) — R****+1 510
in 1-1 correspondence with the bundle homotopy classes of bundle maps (M x (0,1)) -
Ce+1,.- However, these are just the same as the bundle homotopy classes of bundle maps
(M) x &= &y ,. On the other hand, each immersion M x (0, 1) > R****+1 determines an
immersion M — R"***1 with normal field. Hirsch shows that this immersion with normal
field is regularly homotopic in R****! to an immersion f: M - R"** with normal field
m— (f(m), v). Thus every bundle homotopy class of bundle maps ©(M) x ¢ — ¢, +1m
contains a bundle map of the form Pin o (g4 x 1) where g, : (M) — &, arises from an
immersion. It follows that the mapping f—p, o (f; x 1) sends the regular homotopy
classes of immersions of M in R"** onto the bundle homotopy classes of bundle maps
M) xe &, 1,8

Let f, and £, be weakly homotopic via H. Then we define a homotopy from
Pin o (fox X 1) t0 pry o (f4 X 1) as follows: If Ve ©o(M),, and r e R, then

&
BV, (V1 ), HanofeM 4 Dy,

Thus, the map above may be factored through weak homotopy classes of immersions to
obtain the result that the map f'- p,, o (fi x 1) sends the weak homotopy classes of immer-
sions M — R*** onto the bundle homotopy classes of bundle maps 1(M) x ¢ —» St tne

Now suppose that f, and Ji are immersions and that Pino(fox X 1) is Lomo-
topic to py, o (fix x 1) via the homotopy H, We may assume that H, is constant for
tef0,4)1 ] (3, 1]. This homotopy defines a bundle map (M xI) Lo Cerrn by
HW, r(d|4t)) = H(V, r) for V. r(&|dt)) & o(M x D)msy- This map in turn defines an
equivariant map (M x )5 ©(R"***1),. Pick any continuous map J: M x I-» 1[0, 1]
such that

Jm, )=fy(m)+tv for 0<t< 1
Jm, ) =fi(m)+t for 3< t< 1.
Then, identifying t(R****1) with Rr+k+1 i ©(R****1), by parallel translation, the map
s H) : (V, (2] d1)) > (J(m, 1), G(V, r (<] 1)),
where (V, r(Z]|41)) € t(M x Dmysy, is an equivariant map (M x I) - t(R****1y which is
induced by an M x Limmersion of M x [0, %) and M x (3, 1] on these two sets. Then by

Hirsch’s Theorem 5.7, [3], there is an immersion M x [ — 710, 1] extending the above two
immersions. In other words, Jo and f; are weakly homotopic and the lemma is proved.
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Before continuing, we need the following lemma.

LEMMA 5. Let s - ¢, be a C® path in S™~'. Then there is a unique path s— p, in
SO (m) such that

(1) psleo) = ¢
(2) pox : T(S™ 1), = T(S™Y),, is parallel translation along the given path from ¢, to c,.

LEMMA 6. Let o — A and f — B be C* vector bundles of the same dimension. Suppose
that any two non-zero vector fields in o x & are homotopic via non-zero fields. If fo,f : 0 — B
are two bundle maps such that fy x 1 and f, x 1 are bundle homotopic, then f, and f; are
already bundle homotopic.

Proof. The proof is a straightforward application of Lemma 5.
Now we arrive at the lemmas we were seeking, Lemmas 7 and 8.

LEMMA 7. The weak homotopy classes of immersions M* — R**" are in 1-1 correspondence
with the bundle homotopy classes of bundle maps ©(M) X € — &, , under the correspondence
S Prtrmo (o (fu X1) X 1).

Proof. Since (G,-,)’ C G, for I £i, every bundle homotopy class of bundle maps
(M) - ¢e? - &4, , contains an element of the form pyyy,0(fx 1) where f: (M) x ¢ -
& +1,n is a bundle map. Thus the mapping of the lemma is onto.

To show that it is one to one, it will suffice to show that if f, and f; are bundle maps
(M) X 6= &y and pyyy o (fo X 1) is bundle homotopic to py41, 0 (f; X 1), then fo is
bundle homotopic to f;. Since (G;;)'[_ G,; for I £i, we may suppose immediately that
fo % 1is bundle homotopic to f; x 1. The obstructions to finding homotopies between unit
fields in (M) x ¢ are zero so any two-unit fields in ©(M) x &* are homotopic. Then, by
Lemma 6, f, is bundle homotopic to f;, which proves Lemma 7.

Say #X**' =M x 0] M’ x 1and let F: o(X) x ¢ = &, , be a bundle map. We can
find a bundle map K : ©(X) - &4q,, such that p, ., , o K is bundle homotopic to F. Now,
K defines two bundle homotopy classes of bundle maps

Koyyx:t(M)xe— Eeripm
and
Kopyx:tM)xe=8iyyn

Each of these two classes defines a weak homotopy class of immersions of M, respec-
tively M’. Choose representatives f: M — R*** and g : M’ » R"**. Let X have a Riemann
metric, let u be its inward normal unit field along X and define the immersion G of a tubular
neighborhood of #X in R****! by

G(eXPm,0)tt) = f(m) + tey4ysy for meM and 0=St15e
G(expm,1)t4) = g(m) + (1 — )eys4s; for meM’ and 0=5t=e,
where ¢ > 0 is sufficiently small.

NOW, py+1 . o Gy is homotopic to K restricted to the tubular neighborhood above, so
we can find an extension H of p; . y,, o G4 Which is homotopic to K. Let J: X — n” 0, 11
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R****1 be any continuous extension of G. Then the map (J, 8o H): 1(X)— R**k+1
(R **1), (where §: $e+1,0—= R***1 is the natural equivariant map), is an equivariant
map given by an X-immersion on a neighborhood of #X. By Hirsch’s Theorem 5.7, there
is then an immersion # of X, arbitrarily close to J and agreeing with J in a neighborhood of
& X. By choosing J appropriately, we may insure that range (1) [_ =7'[0, 1]s0 fand g are
cobordant immersions via 4. Clearly any two weakly homotopic immersions are cobordant,
$O any immersion in the weak homotopy class of immersions determined by Fo(yyx x 1)
is cobordant to any immersion in the weak homotopy class determined by Fo(yprx x 1) 0.
That these bundle homotopy classes of bundle maps determine weak homotopy classes of
immersions follows from Lemma 7. Thus we have proved

Lemma 8. If domain f, P+ 2,0 (Prr1a(fa X 1) x 1)) and (domain g, Pr+2,m0 (Prsipo

(9+ x 1) X 1)) are cobordant S+ 2,-manifolds, then f and g are cobordant immersions.

Now, the mapping f— (domain S Prv 2o Orsgno (fi % 1) x 1)) induces a homo-
morphism A (n) -» & W(&e+2,,) by an argument similar to that proving Lemma 8. By
Lemmas 4 and 7, this mapping is onto, and by Lemma 8, it is one to one. Thus we have

THEOREM 2. The correspondence S— (domainf, p, , 20 Prsg (e x 1) x D) induces an
isomorphism N (n) - A WSkt 2,0)

We have that &, 22D &y k42 is trivial so that theorem [ implies that A/ (¢,, 2.a) 18
isomorphic to 7,,, T (Eopsr x e ™) for m>k + 1. However, this last group is just the
reduced stable homotopy group 3, (T(&, 1 +,)). Since GH'C Gy,; for I £ i, we have by
an application of the Whitehead theorem that s# T pi2)) > H# {T(E)) is an isomorphism
forigk.

THEOREM 3. There is a natural isomorphism
‘/V‘k(n) - '}fn+k(T(én))'

§III. GENERAL PROPERTIES
1. 2-torsion, Theorem 4

For any prime p # 2 and for p = 0, E. Thomasshows that H,(8,;Z,) = Zlf1s oes fousa]
with dim 4, = 4i. It follows that for n odd, Hy(B,, B,_,) is 2-primary. Thus H#w(B,, B,_y)
= # x(T(&,)) is 2-primary for » odd, and we have

THEOREM 4. If n is odd then & W(n) is 2-primary.

2. Free part, Theorem 5

For any ring X, let X, be the orientation sheaf of ¢, with coefficients in X, Then the
sheaf exact sequence

0- B, x F>(F+F)>Fy,-0
where Fis a field and (F + F) is the sheaf with fiber ¥ + F on which 7,(B,) acts by inter-
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changing terms, leads to the exact sequence
...= H*(B,; F) > H*(B,; (F + F)) -» H*(B,; Fy) — ...
which becomes .

n*
... > H*B,; F) —> H*(Bo,; F) > H*B,; Fy)....

on introducing = : Bo, — B,, the double cover of B,, and applying Leray’s theorem. If F
does not have characteristic 2 and # = 2m, then the sequence becomes

O*F[/‘l’ -"aﬁm] _’F[ﬁl’ -~"ﬁm—19 Xo(ﬁ)] - H*(Bn; FO) -0
where s, — 4, for i < m and 4, — xo(n)*>. Thus, additively,
H*(Bn’ FO) = X(n)F[/lly -",ﬁm—-lj’
where x(n) =image of yo(n). Under the Thom isomorphism ¢, we have o(x(n).#) =

fomeM € H*(T(£,); F) where . is any element of F[4,..., fiy—1]. If n=2m + 1, then
H*T(2m+1); F) = 0.

Using a filtration by skeletons, we obtain a spectral sequence for 5 ,(T(£,)) that shows
that the natural map

H# (T ()~ H(T(Gn)

is an isomorphism modulo finite group, so
H AT ®Zo— H(T(E,); Zo)
is an isomorphism.
Using the naturality of the Thom isomorphism, we obtain the equality

(9 - 147 = B ) - [ e et

for any bundle map f: o(M) - £, x & ~" where #(f) : '*" - T(£, x &) is the map defined
by fand b(f) is the base map of /. Thus we may find a basis of immersions
{fu| # an elementary monomial in Zo[ oy, ... fom] }

for & ,(n) ® Z,, where n is even, such that y.#-[f, 4] # 0 and y A" -[f, 4] # O for M #LX",
and where

4+[f1 = df*(#)-[fundamental normal class of domain f]

the map df: domain f— B, being the classifying map of the normal bundle of . Now we
can prove Theorem 5,

THEOREM 5. Z,, 4 (@)® Z,isabigraded polynomialring withgenerators f; € N »+4/(2) ®
Zy, wherei=0,1,2, ....

COROLLARY. Z,, A (q) ® Z,, is the tensor algebra of N x(2) ® Z,.

Proof of theorem. Consider the natural map &,, X 52,,,!»62,,”,,,. Let Zy,0' be the
orientation sheaf of &,, — B,, over Z, and Z,0" that of £,,, = B,,, and Z,o that of £, 2
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We have the commutative diagram
H*(Byy; Z50") ® H*(Bys Zyo") > H*(Bay X Byp; Zo0' @ Zy0")

le’@w 1¢
HYT(820); Zo) ® H*(T(E2m); Zo) = H¥(T(¢ 204 2m); Zo)

in which the vertical maps are given by Thom isomorphisms and the lower horizontal map
is an isomorphism. Thus the upper horizontal map is an isomorphism.

From the behavior of the may ¢o,, x é’oz,nﬂ—» £03n42m Of oriented classifying
bundles, we see that the map

H*(Ba s 2m; Z0) ~— H¥(By, X By WH(Z00)) = H*(Byy; Zo0') ® H *Bam; Zo0")
is described by
l/I*X(ZrH-Zm)V‘ﬂ("" P,,, ...)=(X(2n) X X(Zm))vjl(., Z ﬁi/x/ijn, ...)

i+j=r
where 3, P, is the Pontrjagin class of &,,, ;. = By, and Y': /4 is the Pontrjagin class of
$an—> By, and ) ; 43, is the Pontrjagin class of &,,, — B,,,.

From now on we follow with little change the proof in Milnor’s notes on characteristic
classes that the oriented cobordism ring is a polynomial ring. Let w=(ay, ...,q,) be a
partition of 4 and let s,(c) be the polynomial in the symmetric functions o, ..., 6, of the
indeterminates ¢, ..., z,, defined by 5o(0) = Z(1{" ... %), where the sum is taken over all
the proper permutations of ¢, ..., £,. Set 5p(0) =1. Forc=1+¢; + ... where deg ¢, = 4i,
define s,(c) to be s,(c) with ¢; replaced by the term of degree 4iinc. Leta=1+a, + ...
and b =1+ b, + ... where deg a; = deg b, = 4i. Then Thom has shown that

sw(a . b) = Z sm’(a) . sw"(b)'
Consequently,
Vo hansamalP) = T 2@MsulA) X 12m)s (47,

so that, if f: M*¥2% — R**47 and g : N4 +2m _, R4+4m 5re immersions, then

(0 12n+2mys,[f - gl = Z= A2n)s Lf 1x(2m)s,.-[g],

where we abbreviate b(f)*y(2n)s,, (Pontrjagin class). [fundamental normal class of M] by
1(2n)s,[f], etc.

Let /() be the length of the partition w. Then for n 2 l(w), define s,, to be x(2n)s,
(Pontrj. class). Recall that H*(T(£,,); Z,) is dual to H(T(;1); Z,), which is naturally
isomorphic to J (T(&,,)) ® Z,. It follows that we may pick immersions fj, f;, ... such that
S1.0Lfol # 0, 51,1 [/i1 # 0, 51 ,[f2]1 #0, ..., slfil1#0, ... If w=(ay, ...,a,) is a partition
of k then for n 2 /(w) define £, to be the immersion 77"« Jar o fo,. Then

Smul fool = 2 (sxofo)"-’(w)slu,fa, o S1p,Sa,
Bienttr)=a

by (). Thus, unless u refines w, we have Snulfaw] = 0. If we number the partitions of k in
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such a way that if w, refines w; then i < j, then the matrix |$nar, [ S, ]Il 1s triangular with
non-zero diagonal elements, so it is non-singular. It follows immediately that the cobordism
classes of the immersions f,, , are linearly independent in 3 4, ,,(2n) ® Z,,.

The number of such classes is number {w | |o| = k, l(w) < n}. But this number is just
number {® | (0| = k, max(w) < n}. Finally, number {® | jo| = k, max(w) < n} isthe rank of
H*(Byn3 Zo) & H i1 24(21) ® Zo,s0thef,, span i, , ,,(2n) ® Z, and the theoremis proved.

3. p-torsion, Theorem 6

We can use the facts outlined so far and the Adams spectral sequence to find the smallest
i for which 4" (2m) contains p-torsion. Let p be an odd prime and let x = (p — /2.

THEOREM 6. If m 2 k, then A" (2m) has no p-torsion for i < 2m + 2p* — 2p — 1, but it
does have p-torsion if i = 2m + 2p* — 2p — 1. If the partition w with |} < kp contains no
entry equal to k, then there is an immersion f(w) with dimension 2m + 4|w| and codimension
2m such that y(2m)s,[f(w)] is not divisible by p. If w does contain an entry equal to x, then
x(2m)s,[f] is divisible by p for every immersion f.

Proof. Let s, denote the same polynomial in the Pontrjagin classes as above. Let
n > 8m* + 2m. For each partition o, let K(w), K(w, 1), and K(w, 2) be Eilenberg-Maclane
spaces of types K(Z, n + 4m + 4|wl), K(Z, n + 4m + 4|o| + 5), and K(Z, n + 4m + 4lo] +
10) with fundamental classes g(w), A(w), and /(w) respectively. Recall that X — K(Z,r)
may be factored through K(Z, r) — K(Z,, r) if H™*'(X; Z) = 0. Then consideration of the
Adams spectral sequence constructed with a minimal resolution supplies us with three maps,

S"T (&) — TI{K(w)| @ is x-free, lof < px} =K,
G
IM{K(w, 1)| w is x-free, |o| < px} = K,
L
M{K(w, 2) | w is k-free, |w| < px} = K,
such that F*g(w) = S"pps,, G*h(w) = B4'g(w), and L*N(w) = B 4*h(w), where p,, is the m-th
Pontrjagin class and 4' is the first Steenrod p-th power, and § is the Bockstein operator,

E(C,)
2
/
//
//
/
o] C;———E(Ky)
Va VA
/ 6y /
Fy/ /
/ /
/ / 3

S"T(¢3m) —— K, —%5 K, —55 K,
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For any space X, let E(X) - X be the fiberspace of paths of X. Let C, — K, be the
bundle induced from E(K;)— Ky by L. 1t is easy to check that 1(Cy) = m(Ky) + 1,4 (Ks)
and that G lifts to G, 1Ky > C,. Let C, - K, be the bundle induced from E(C;)— C, by
Gy. It is easy to check that 7(Cy) = n(Ky) + m41(Ky) + 74 ,(K5) and that F lifts to
Fy : S"T(&,,) = C,. Then one may check that F, induces an isomorphismin Z,-cohomology
up to dimension 4m +n + 4 + P~ 1 and so an isomorphism in homotopy modulo non-p-~
torsion up to dimension 4m +n + 4 +p — 2. Also, the differentials in the Adams spectral
Sequence are zero up to dimension 4m +n + 4 + P — 2, so the duals of the g(w)’s above
survive to the E® term and there determine duals of the S"PmS,’s. It remains only to show
that s#,,,, 2p2=2p-1(T(¢2y)) does have p-torsion. This will follow from the fact that if
ue H'(X; Z,) is spherical and Bf'u =0 then Hr12p-3(X) has p-torsion. It suffices to
exhibit u; let w, be the partition of 2x? consisting of s entries 2 and 2(x — s) entries «.
Then u = (2s,,, — Sor + 5w, = 8, + .ot + (= 1)s,,0p, Will do.
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