WHITEHEAD GROUPS OF GENERALIZED FREE PRODUCTS
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The generalized free products referred to are of two types.

The first one generalizes "taking the free product of A and B",

C
one generalizes in a similar way "taking the free product of A

and is the usual free product with amalgamation, Ax B. The other

with an infinite cyclic group {t}, generated by t ", and is
defined as follows. Let C,1 and C2 be subgroups of A, and

b: C, * C, an Lsumorphinm.ﬁFurm the free product Ax{t}, and
introduce the relations t ~ct = ¥(e), for c € Cl' The reculting
group is denoted Pvﬁﬁtﬁ. There is a pushout definition of Atb{t},

using groupoids however.

The construction A‘%{t} occurs implicitly in Magnus' analysis
of one-relatcr groups. Subsequently, it has been employed in
deriving embedding theorems for groups. It has become guite
popular among logicians, and is sometimes called the Higman-

Neumann~-Neumann-Britton extension.

As an example consider a CW palr X,Y which, for convenience,
is a codimension 1 pair in the sense that Y is closed in X, and
has a neighborbood U in X so that U,Y is cellularly equivalent

to the pair YX[-1,+1},YxO. 1f nlY > nlx tuv g monomorphism, theon

'nlx is a genceralized tree product A kB oor A ﬁ,{t}, respectively,

according to whether Y does or does not separvate X, with C = nlY.

This is our main result:

Let a: C - A, 8: C - B be the inclusions defining A*CB, and

a, B: C » A those defining Ax.{t}, respectively.



In the situation D = Ax%B, there is a natural direct sum

splitting
(%) { Wh(D) = Wh(A,B3C) 8 K (C;A,B) @ Cecsa,B) L
Here, by defiﬁition,

Wh(A,B;C)

= coker(a,®-8 : Wh(C) - Wh(A) & Wh(B))
KO(C;A,B) = ker(a, -8, : KO(C) > KO(A) ® KO(B))

(we omit the "Z" in the notation for projective class groups

of (integral) group rings).
In the situation D = AJ%{t}, there is a similar splitting

(x)  Wh(D) = Wh(A,A;C) & K (C3A,A) @ D(C3A,A)

Here,
Wh(A,A3C) = coker(a, - By Wh(C) - Wh(A))
Ko(C3A,8) = ker(a, = B, : Ky(C) » K (A)) .

The definitions of E(C;A,B) and 5(C;A,A) are long, and are

given in section 2.

There is an appealing geometric interpretation of the
formulas (%), Let X,Y be a codimension 1 pair of finite CW com-

plexes, as described above, and w,Y¥ - nlx a monomorphism, so

1
_ le is a generalized free product AX%XB or A#b{t}, in a natural

way. Let W be a finite CW complex ang f: W+ X a homotopy
equivalence. We ask for the obstruction to finding a formal
deformation from f:W to f':W' so that, for V' = f'_l(Y) , V' is
a subcomplex of W', and f'|V' is a homotopy equivalence. It
turns out that these obstructions are classified by the term
Kyccsa,my 8 Cesn,B  or Eb(C;A,A) @ D(C3;A,A), respectively,

ctf. section b.

This geometric interpretatioﬁ is closely related to the very
way of proving (*). The underlying idea is just, given f: W -~ X
as above, to attempt to make flf—l(Y) a homotopy equivalence.
Our proof is essentially a translation into algebra of this
idea. The relevant machinery, leading eventually to the proof
of the sum theorem (%), occupies the bulk of the paper, sections
3 through 5.



The present work was motivated by a comparison of classific-
ation results in ﬁigh-dimensional and low-dimensional manifolds,
respectively. Whereas in the former the Whitehead group enters
in an essential way (via the s-cobordism theorem), it frequently
is totally absent in the latter. On the other hand, 3-dimensional
lens spaces show that dimension 3 does have sufficient room for
the Whitehead group to enter. This suggested that for the mani-
folds considered in [11], Wh(ﬂl) should be trivial, and my
original attempt was to mimick the techniques of [Tﬂ in the world
of simple homotopy types. The outcome is however somewhat differ-

ent.

An application of the sum theorem (%) is in deriving vanishing
theorems for the Whitehead group, cf. section 7. Cur results in

this direction justify the above guess.

For a while, I thought that prop. 1.4 could be proved without
the.assumption of coherence. This would have verified conjecture
7.3, of which [12] was conceived as an application. [12} certainly

makes it clear enough why conjecture 7.3 is important.

Before publishing this material (probably under some title
like "Algebraic K-functors of generalized free products"), I will
try for some time to get hold of conjecture 7.3 in some other
way. The plan is to recast the proof of the sum theorem in such
a way that it applies to other K-functors as well. - It would
be easy to obtain analogues of the sum theorem for the functors
derived from the Whitehead group as "contracted functors" [1],
just by working with various coefficient rings, and comparing.

The problem is with the exotic nil-functors of sections 1 and 2.

References in the paper are by page numbers.
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1. A SPECIAL SPLITTING OBSTRUCTION GROUP

Let R be a ring, and S a R-bimodule which is free (or pro-
jective - this doesn't matter) both as a left or right R-module.
S need not be finitely generated as a module. We will define a

functor, defined on pairs (R,S), using the following category.

An object is a pair (P,p), P a finitely generated projective

(left) R-module, and p a R-homomorphism

p: P ~» S ®R P,

a morphism (P,p) » (Q,q) is a commutative square

| P g S @R P
m ¥ v 18m
Q a S ®R Q

for some R-map m.
For an object (P,p), a filtration
0 = AO C A1 [ & Aj = P
is called an assailable filtration if

i+1) <

It is a finitely assailable filtration if, in addition, all

the Ai are finitely generated. The object is nilpotent if it

has an assailable filtration.

Lemma. Given an assailable filtration O ¢ Bl(""c Bj = P,
there exists a finitely assailable filtration Alc,,..( Aj = P
so that Ai c Bi'

Proof. By induction on decreasing i, we define Ai so that

P(Ai+1) C S@Ai < S@Bi. Suppose Ai+ has been defined already.

1

Let a be an element of A. Since a & Bi

i+1° +1°
p(a) = L Sa®ba with ba € Bi' We let Ai be generated by the ba’

there is an expression

for a running through a generating set of Ai+1'

A sequence of morphisms (Pl’pl) > (PQ’PZ) > (P5,p3) is short
exact, if it induces a short exact sequence on the P's. In that

and by

case, there 1is a direct sum splitting P, = P, 8 Pgs



definition of a morphism we must have p2|P1 = Pys and
p2|P3 = p, ® some R-map P, » S8P,. In particular, (P,,p,)
is nilpotent if and only if both (Pl’pl) and (P3,p3) are.

An object (F,f) is a standard trivial object if there exists

a finitely assailable filtration O = FO C FI.C"' C Fj = F ,

so that all the Fi and all the quotients Fi/Fi_1 are free.

Given a nilpotent object (P,p), there exists a surjective
morphism (F,f) » (F,p), for some standard trivial object (F,f).
Namely, if A1 c... ¢ Aj = P is a finitely assailable filtration
of P, we pick a free module l"i with generators corresponding to
a generating set of Ai’ and a surjection hi: Fi > Ai’ i =1,..,73.

And by induction we define f!: oo S®Fi—1 so that

1 !
Fi #r 58 F; 4
i
1
hi ¥ ‘ ¥ 1®hi-1
A Bla, 8% Mg
- - ' 1 - 1 '
commutes. We now set Fi = Fi & .. @ Fl’ fi = fi & .. & fl’
and hi = h} + ..+ h{ . With this we have
Fl > S 8 Fl—l
f.
1
h. ¢ ¥ 18h.
hi 1-1
Ai -+ S 8 Al_1
p]Ai .

and the F. give the desired filtration of (F,f) = (Fj,fj).

Define (Q,q) = (ker(F - P), f|ker(F - P)). Then
(Q,q) » (F,f) » (P,p) is short exact, and the B, = F.onQ give
a (not necessarily finitely) assailable filtration of (Q,q).

We refer to this construction as suspension, and call (Q,q) a

suspension of (P,p) (there is of course no question of unique-

ness).

We now introduce an equivalence relation on.the nilpotent

objects. The equivalence relation is to be generated by this

is a suspension of (P,p). (So far, inverse is just a language,
exploiting the convention (-1)-(-1) = (+1).)



It is clear that the equivalence classes form a group under
direct sum. On the other hand, we can form the Grothendieck
group of the subcategory of nilpotent objects, and can pass to
the quotient in which a free module with the zero homomorphism
represents zero. From the following lemma it is clear that these

two groups are in fact the same.

Lemma. Any suspension can be suspended to a split exact

sequence.

Proof. Suppose we have a diagram

(Q'l’ql) > (Ql’ql) ® (Q33Cl3) * (QSaQ3)

v A\ 7
v \ ¥
(Pl’pl) - (P2,p2) > (P3,p3)

with short exact rows and cclumns, but with the middle term
missing, and we want to fill in the middle term. For the
moment replace (PZ’PQ) by (Pl’pl) ® (P3,p3). Then we can fill
in (Fl,fl) ® (Fa’fa) as the middle term. And we have

F, = Fl  Fy = Qy ® P, & Qy & Pj. Now (Pz,p2) differs from
(Pyspy

P3 > S@Pl. But this can be taken care of nicely by redefining

f2|P3 in adjoining a component P, -+ S@pP,. The only non-trivial

thing about the whole business 1s to verify that the (Fz,fz) so

1
) ® (P3,p3) precisely by some (arbitrary R-) homomorphism

obtained is standard trivial. But this is obvious.

Definition. The above group is denoted C(R,S). There are

mappings
KJ(R) > C(R,8) » Ky(R) ,

defined by P » (P,0), and by forgetting the homomorphism,

respectively. Hence there T oa patural direet sum splitting
C(R,8) = K (R) & C(R,5) ,

defining 61&,3).



Proposition.' Suppose R is coherent, and its global homo-

logical dimension is finite. Then E(R,S) = 0.

Proof. Let p: P » S 8 P be an object, and 0 ¢ A, ¢ ... CP

1
‘a finitely assailable filtration of (P,p). Pick a suspension

c
F1 C F2 c . . . F
¥ ¥ ¥
A1 C A2 ¢ . . .CP

for some standard trivial (F,f). As we obseved earlier, the
Bi = ker(Fi > Ai) form an assailable filtration of (Q,q) =
(ker(F + P), flker(F » P))

Now R is coherent, so all the Bi are finitely generated,
cf. 4.4, so they form a finitely assailable filtration of (Q,q).

Use this filtration to suspend again.

Going on this way, it is clear that in particular we are
building up a projective resolution of A1. But A, has finite
homological dimension. So after finitely many steps, we will
have replaced (P,p) by an object (P',p'), equiValent to (P,p)
up to sign, which has a finitely assailable filtration starting
with Ai,
Ai & P" is free. The object (P',p') & (P",0) is equivalent to

(P',p') in E(R,S), and it has a finitely assailable filtration

and Ai is projective. Let P" be an inverse for A!, i.e.,

with first term free. So, performing one more suspension, we

can reduce the length of the assailable filtration. By induction
on this length it follows then that (P,p) represents zero in
C(R,S). '



2.1

2. THE SPLITTING OBSTRUCTION GROUPS

Case D = A*CB.

As part of the structure of A*CB, we have inclusions C » A
and C » B, inducing inclusions ZC » ZA and ZC » ZB. By pullback
along the inclusion, ZA is both a left and right‘free ZC-module.

And there is a natural splitting of bimodules,
raY
7A = ZC 8 ZA ,

A
where ZA is generated (either as a left or as a right module)
by the non-trivial cosets of C in A. Similarly, ZB = ZC & ZB.

We define a category as follows. An object is a quadruple
(P,Q5p,q), with P and Q finitely generated (left) projective

ZC-modules, and p and q ZC-homomorphisms

p: P > ZB 8,.Q

q: Q ~ ik 8 P
ZC >

- a morphism (Pl,Ql;pl,ql) > (PQ,Q2;p2,q2) is a pair of ZC-homo-
morphisms m: P, - P2 and n: Q1 > Q? so that |

1
P1 Bl ZB 8 Q1 Q1 31 ZA 8 P1
m ¥ + 16n and n ¥ + 18m
P2 52 ZB 8 Q2 Q2 32 ZA 8 P2

comnute. A short exact sequence is the obvious thing.

An assailable filtration is a pair of converging filtrations,

by submodules,

P

0 = KO C K1 <. . . C Kj

0= Lyc Lyc. . .cly=Q

-~ ”\
so that p(K;) ¢ ZB 8 L;_, and q(Li) < ZA 8 K. 4,

it is finitely assailable if all the K; and L. are finitely

for all 1ij

generated.

An object is nilpotent if it has an assailable (and hence

also a finitely assailable) filtration. It is standard trivial

if it has a finitely assailable filtration so that all the Ki

and L., and all the K./K. and L./L. are free.
i i"7i- i’ 7i-

1 1



We now have by arguments analogous to those in the preceeding
section: Given a nilpotent object (P,Q;p,q), there exists a
surjective morphism (F,G;f,g) + (P,Q;p,q), for some standard
trivial object (F,G;f,g). We define the kernel of this morphism,
(P',Q';p',q') (with, of course, P' = ker(F - P), Q' = ker(G ~» Q),
p' = f£|P', q' = g]Q'), also called a suspension of (P,Q3;p,q),

to be equivalent to the inverse of (P,Q;p,q). Then the equivalence

classes of nilpotent objects form a group under direct sum,
denoted C(C;A,B). This is just the quotient of the Grothendieck
group of the subcategory of nilpotent objects, in which

(F,6;0,0), with F,G free, represents zero.
There are natural maps
KO(ZC) & KO(ZC) + C(C3;A,B) -~ KO(ZC) & KO(ZC) )

defined by P & Q » (P,Q;0,0), and by forgetting the homomor-

phisms, respectively. Therefore
~ ~ ~
C(C3A,B) = K,(ZC) & K (ZC) & C(C3A,B) ,

defining E(C;A,B). And we have the vanishing theorem that
E(C;A,B) = 0, provided ZC is coherent and its global homolog-

ical dimension 1is finite.

Case D = Axb{t}.

As part of the structure of A>%{t}, we have inclusions
a: C > A and B: C » A ,
inducing inclusions ZC + ZA also denoted by a and B8.

With respect to cither inclusion o or B, ZA may be considered
as a ZC-bimodule which is free both as a left or right ZC-module.

And there are splittings of bimodules

. - . o .
ZA = 4C 8 ZAT ,7 and
B
ZA = 2C 8 ZAT
o NB. . . ’
where Z2A° (resp. ZA7) is generated (either as a left or as a

right module) by the non-trivial cosets of the inclusion
a: C » A (resp. B: C > A).
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Our interest is in the category the objects of which are
quadruples (P,Q;p,q) where P, Q are finitely generated (left)
projective ZC-modules and p, q are ZC-homomorphisms

78
p: P > ZA 8 P 6 ZA® @, Q

78 8 e 7Za% @ P

: >

Q: Q =, g Q a

(the tensor products are taken over ZC, the subscript a or B
indicates that the action comes from the inclusion a: C + A

or B: C » A, respectively; similarly for the homomorphisms).

With morphisms in the obvious way, and nilpotency similarly

as above, we have a Grothendieck group of nilpotent objects.
Its maximal quotient in which (F,G;0,0), with F, G free, repre-
sents zero, is denoted D(C3;A,A). There is a further quotient,
namely the cokernel of the natural (split) inclusion

KO(ZC) ® K,(ZC) » D(C3A,A); it is denoted D(C;A,A).

We may now formulate propositions, analogoué to the above,
concerning D(C;A,A) and 5(C;A,A). In particular, there is the
vanishing theorem saying that 5(C;A,A) =0, provided ZC is

coherent and its global homological dimension is finite.

Remark. If both o, B: C = A are isomorphisms,l\%ﬁt} is
an extension A XY Z, witﬁ Y given by a—18 (or its inverse).
Just as it ought to do, D(C3;A,A) in this case reduces to twice
Farrell's group (or Bass' group in case y = id.),

E(ZC,Y) ] EkZC,Y—l) in the customary notation.
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3.1

3. MAYER VIETORIS SPLITTINGS

A based free ZE-module, E a group, has a basis which is
well defined up to order, sign, and multiplication by elements
of E. A based isomorphism is the obvious thing. A short exact
sequence is based, if the middle term splits as a direct sum,
the summands being generated by complementary subsets of the
basis, so that there result two based isomorphisms; similarly

for a based monomorphism.

A based ZE-complex is a (positive) chain complex of based

(free) ZE-modules. A short exact sequence of based ZE-complexes

is based if each short exact sequence of chain modules, one for

each dimension, is based. If Ca >0, z% is a based short exact

sequence of ZE-complexes, the bases give a splitting (of chain
modules only) Eo = ti ® tb. And L, may be canonically identified
with the algebraic mapping cone of a certain map Cy > Cq5 this
map is that part of the boundary operator in [2 which goes from
C3 to Z,4-

In what follows (fD denotes a based chain complex over ZD.

We will investigate structures on KD, called Mayer Vietoris

presentations (or MV presentations, for short), which in some

sense reflect the generalized free product structure on D.

Case D = A*CB.
he data of a MV presentation of iD consist of bafsed chain
complexes (C’ tAﬁ CB over ZC, ZA, ZB, respectively, and mono-
morphisms
- fc > Ups g ¢ %C ~ g over ZC, and
VIR SRR )k ké t g T &p over ZA, resp. ZB,

inducing based monomorphisms

ZA 8, ZC - CA » ZB 8, fc - tB over ZA resp. ZB,
so that :
18 8 (-1)% N7 N
a NG, |
0 » 2D 8, £, > (ZD 8, C, ®(2D 8 KB/)
1@(‘ + 1®L
Bs C_ >0




Case D

is exact, and the given basis of fD coincides with the induced

one.

A*C{t}.

The data of a MV presentation consist of based chain complexes
., C, over 7ZC, ZA, respectively, a monomorphism ¢ : &, -
c*> “A { A

over ZA and monomorphlisms
o
. > . ,
‘as (’(‘ (IZ:’\" LRe K(’f Hr/\
over ZC, inducing based ZA-monomorphisms

Zh, 8, €. > Cys ZAg 8, Co > €
(here the subscript o, resp. B8, on a ZA- module indicates that.
we are using the ZC-structure induced from the inclusion

a; C * A, resp. B: C * A) so that

18, - t8, 18 ¢
o 8,
> 2D 8, T, —

. ZD 8, CC

is short exact, and the given basis of tb coincides with the

induced one (notice t@LB, in contrast to 1@La)’

A finite MV presentation has all chain complexes finitely

generated.
Morphisms, and (possibly based) exact sequences, and mapping

cones, of MV presentations are the obvious things. E.g., in case

D = A% B, a morphism of MV presentations consists of chain

(o
mappings

,_ P . ot L f'

tc’(c’(A*tA’fB*CB’(D* D °?

all over the appropriate rings, so that the obvious diagram

commutes.

Again it i1s a convenient fact that for a based short exact
sequence of MV presentations, M1 > M? > M3, M2 may be canonically
identified with the algebraic mapping cone of a certain morphism

M3 > Ml .

We now describe our basic operations on MV presentations. The
most important one is surgery; 1t is given by a MV presentation,

M*, which admits the following description. There are precisely



e

e

six basis elements in MT, four in dimension n, denoted a, and
two in dimension n+l, denoted b, subject Lo mappings and boundar:

maps as follows

b SR B
A, o
o ¥ D
Lo a + 9
A
an — ™ a
D F
:;\9 a — ¢ -
B

or similarly with A and B interchanged (in case D = Aﬁ%{t}, both

ay and a, are of course elements of a ZA-module). And a surgery

B
from M1 to M2 is a based short exact sequence of MV presentation:
X
Mi-» M2~% M™.

There are also various sorts of simple expansions.An elementa:
A-expansion is given by a MV presentation M like this. There are
four basis elements, two in dimension n, denoted a, and two in

dimension n+l, denoted b, subject to these maps

ba
3 4 by
a Y 9
A~ : f
D

an elementary B-expansion is similar, with A and B interchanged.

An elementary C-expansion is this

A .
3 ¥ \\\\\;

aA D

-»> a a -
C 3 C D 3 D
\ /’/
a
B ///////7

\a+

by

And an elementary A- (resp. B- or C-) expansion from M, to M

~

2
is a based short exact sequence of MV presentations Ml-a M2 - M,

where M is of the appropriate type.



Two finite MV presentations M and M' are equivalent if there

is a MV presentation M" which can be reached from both M and M'

by finitely many surgeries and elementary expansions.

Proposition. Up to simple homotopy type of ZD-complexes, any

finitely generated ZD-complex has a finite MV presentation which

e : i
; I8 o is \

Sy
¥

is unique up to equivalence of MV presentations. (W”‘*

Proof. The proof is a translation of geometric arguments. We
will always have in mind the geometry, and not be too explicit

about the algebra.

If X is a connected CW complex, Y a closed connected subcomplex
with a trivial normal bundle of dimension 1 in X, so that
ker(ﬂlY - niX) = 0, then, by the van Kampen theorem, we have
m,X = AXCB or = A*C{t}, with C = 7

1 1
does or does not separate X. In the universal cover of X, the

Y, according to whether Y

subspace covering Y gives a certain decomposition pattern which
may be described by a graph, I', a sort of dual to the decompositios

I' is a tree and may abstractly be described thus.

Case D = Ax.B. Vertices of I' are the A-cosets and B-cosets of D
(occasionally we will speak of A-vertices or B-vertices), and
segments are the C-cosets of D. (We are having H1X act from the
left, so our cosets are right cosets). Representatives for all
the cosets can be fixed by merely choosing representatives for
the right C~-cosets in A and B. Whenever a choice has to be made,
we will make this one.) For each C-coset there are precisely one
A-coset and one B-coset which contain it. Hence with inclusion of
cosets as incidence, we obtain an honest graph which is a tree. -
Algebraically, these statements are less obvious than geometric-
ally. They contain,. for example, the proposition that any element
of D can be written in the usual normal form in an essentially

unique way.

Case D = Awt{t}. Vertices of T are the A-cosets, and segments

are the C-cosets. For each C-coset there is precisely one A-coset
which contains it via the inclusion a: C - A or B: C + A, respect-
ively. So again we get an honest graph which agair is a tree. (Si-
milarly as in the other case, representatives of all the cosets
can be specified by merely fixing representatives for the right

cosets of both the inclusions a, B: C - A.)



3.5

We now specialize to the case D = AtCB, the other case being
similar.

We describe a MV presentation which we call a subdivided

n-cell, or, more explicitly, a n-cell subdivided according to
A, where A is a finite tree in I'. Let a; bi,_ci be basis
elements indexed respectively by the A-vertices, the B-vertices,
and the segments of A, and let X:5 Y55 23 be representatives

of the respective cosets. We let the (n-1)-chain module of each
of CC’ c, CB’ KD be generated by the cys and the n-chain
module of C,, CB’ CD by the a,, the b., and the a; and b,, re~
spectively. All other modules are trivial, and the chaln maps
are the obvious ones, except for a change of sign in (C + ﬁB.

The non-trivial boundary maps are given by
5x.a. (resp. =93y.b.) = L all those z.c. for which there
33 17 11

is incidence of the corresponding segment to the given verte
(notice that 3a. = Y x. Yz.c. does not lead out of Z,).
| 3 171 A

Let (5 be the ZD-complex which is trivial, except for dim-
ension n where it is free of rank one, generated by e, say.

There is a chain map Cﬁ—* tD over ZD, defined by

e -+ Y a. + L b.
1 i

whicﬁ both is an inclusion and induces a simple homotopy equi-
valence. Let there be given a map f: Cﬁ-ﬁfﬁg , some CB , and

a MV presentation of CB'. Then, we claim, if A has been chosen
suitablxﬁhere is a morphism of MV presentations covering an
extension CD-A-CB of £. In fact, write f(e) in terms of the
basis elements of ¢!, and then spell out each coefficient in
terms of cosets. In some more detail, first normalize the basis
elements of ¢! so that each comes from a basis element of either
tx'or Tp. Let Tp, (resp. 858) be the submodule of n-chains

of CB generated bv all those basis elements which come from

tx (resp. Cg). Consider it as a sum of ZA-modules (resp. ZB-
modules) by taking as generators all the basis elements mult-
iplied by all the right A-cosets (resp. B-cosets). And now assume

A chosen so large that it contains all the vertices corresponding



3.6

to cosets occuring in the expression for f(e). The required
morphism of MV presentations can then be defined: There is a
canonical way of defining the maps on n-chains. And one verifies
that this automatically, and consistently, gives the map on

(n-1)-chainyg.

Now any finitely generated ZD-complex can be built up by
repeatedly "attaching a (n+1l)-cell at a n-cycle" which by
definition is just taking the mapping cone of some map fﬂ > CB

as above. This verifies the existence part of our proposition.

We now turn to uniqueness. If (1 and C2 are finitely generated

based ZD-complexes, then an elementary expansion from Cl to 52

is a based short exact sequence Cl > CQ - 63, where C} has
precisely two non-vanishing chain modules, generated respect-
ively by a and b, with boundary relation 3b = a. We have the
lemma. If ¢ and ¢' have the same simple homotopy type, then

there is ¢ which can be reached from both € and ¢' by elementary
expansions. (More precisely, it should be stated that the identity
on &' is in the given homotopy class £ » T' ). This is just the
algebraic analogue of a well-known geometric lemma, due to
Whitehead.

So if we have MV presentations of Qland Cé, and a simple
homotopy equivalence Cl~$ CQ’ we can perform elementary expans-
ions to make this map an identity, on ¢, say. Covering the
expansions by operations on MV presentations, namely by the
process of attaching subdivided cells, we then obtain complexes

€' and Z" which are both obtained from ¥ by subdividing cells.

Let I be the interval, i.e., the Z-complex with two base
elements, x and y, in dimension 0, and one base element, z, in
dimension 1, and boundary relation 3z = x + y. We may consider
€' ® €" as a subdivision of ¢ 8 3z, and we already have a
"MV presentation of ¢' 6 ¢". So, attaching one at a time the
cells of €8 z, and subdividing, we get a MV presentation of
a complex ¢*which is a subdivision of € 8 I. And this MV pres-
entation has the property it can be obtained from both the
MV presentations of €' and ¢", and therefore also of those of

c

1 and 62, by repeatedly performing an elementary expansion on



the ZD-complex, and subdividing the two cells involved according

to the receipt given.

Our uniqueness assertion will thus follow when we show that
if M1 > M2 > M3 is a short exact sequence of MV presentations,
and M3 is obtained by subdividing the two cells in an elementary
expansion, then we can obtain isomorphic MV presentations by

surgery on M and by elementary (A-, B-, C-) expansions on Ml'

2’
We first treat the special case M1 = 0. Let the subdivided

n-cell of M3 be described by the tree A, and the subdivided

(n+1)-cell by the tree V. Clearly, V contains A. If V # A, then

there is an extreme vertex v in V which is incident to a single

segment, s, both not contained in A. The segment s corresponds

to an n-cycle in Zb which bounds in either Ck or Cé, according
to whether v is an A- or B-vertex, respectively. So we can per-

form a surgery to make this n-cycle bound in Cé (prime denoting

the MV presentation resulting after the surgery has been performed).

Let A' be the collection of segments and vertices used in the con-

struction (there are s and v to begin with). If now s', v' is an
)

extreme pair in V - A - A', then the n-cycle corresponding to s'

again bounds in either ZA or Cé because the still more extreme
stuff already has been killed by surgery. So we can continue to
perform surgery until all of V - A has been used.

Let Mg be the resulting MV presentat%gﬁéﬁgorresponding to each
segment or vertex of V, there are precisely(%wo base elements in
each of ", x, ,E, ,B, namely a (n-1, n) pair for segments of A,
a (n+l, n+2) pair for vertices of V - A, and a (n, n+l) pair
otherwise. And it is obvious that Mg can be built up from the
trivial MV presentation by expansions: first C-expansions to
accomodate the situation at the segments, and then A- and B-

expansions.

Actually, we have done a bit more than just treating that

very special case. For, M, is the mapping cone of a certain mor-

2

ﬁhism M3 > Ml' Sc our assertion will be established generally
"

if we can show that this morphism extends to Mg > Ml’ where M3
is the MV presentation constructed above. But doing surgery is
itself taking a mapping cone. So there 1s a unique way of obtain-

ing M! » M namely, at each step we take the composition of the

3 12
attaching map defining the surgery, and of the attaching map

Mt L M alveadu ~rAarctriicsted .

i T Ak y - - g - Sy i



" 4. HOMOLOGY OF MAYER VIETORIS PRESENTATIONS

Homology groups will have universal coefficients. So, for
example, Hn(Cb) is a ZD-module in a natural way. Since ZD is a
free ZC-module, the functor 7D ®ZC is exact; similarly for other
such functors. So we have a natural isomorphism Hn(ZD 80 ZC) e

Y =

ZD ch Hn(zc), say, and a natural equivalence H(1 8 o
These fagti

1 8 H(,), say, where 18 : ZD 8,, z:c + ZD @ZACA. ‘These

will henceforth be used without further mentioning:

We will be considering CD as a Z-complex for the purpose of
presenting it in various ways as a sum of subcomplexes, and
comparing homology. Whenever there is extra structure on such

a decomposition, this will be mentioned.

It will be convenient to make extensive use of the tree T
introduced in the previous section. Recall that the vertices
of T correspond bijectively to the right A-cosets and B-cosets

of D (resp. A-cosets in the Axb{t} case), and the segments to the

C-cosets. We may then consider ZD @ as a direct sum of

ZA CA
Z-complexes, each isomorphic to CA, and indexed by the A-vertices
of T (more precisely, we are considering the symbol d® as an .
index, and the action occurs to the right of the symbol d8 );

and zZD ®,., C .. We refer to the

: ZB 2:B ZC —C
summands as vertex-complexes and segment-complexes, respectively.

and similarly for ZD 8

Under the projection;ZD GZAkCAjeiZD 8,5 e }—a- CD (resp.
ZzD 8,, &, — CD), and the composite projection ZD ®ZCt:C — tD’

ZA TA
any vertex-complex or segment-complex 1s embedded in CD. Any
segment-complex is the intersection of the two vertex-complexes
corresponding to the vertices incident to the segment. And there

is no other intersection.

If V is any collection of vertices of I', we define C(V) to
be the subcomplex of CD which is the union of all the vertex-com-
plexes corresponding to vertices in V; similarly C(s), for S a

collection of segments.

Lemma. Let x be any vertex v or segment s of ', and o any
element of ker(H (L(x)) -~ Hn(CD)). Then a can be killed by a

finite number of (n-dimensional) surgeries.




Proof. Cp is the direct 1limit, via inclusion, of the C(V),

V ranging over the collections of vertices of finite trees in [.

. Therefore there is such a tree that o € ker(Hn(C(x)) > Hn(C(V))).

We now proceed by induction on the number of vertices in V. If V
has but one vertex, and v is this vertex, the assertion is
trivial. If s is incident to this vertex, our task is precisely
to kill an element of ker(y( y: Hn(CC) > Hn(CA)), say. But this

is exactly what n-dimensional surgery can do.

In the general case, let v be x or a vertex incident to x,
respectively, and S the collection of segments incident to both
x and V' = V - x. There is a short exact sequence [(S) ~
C(x) & &V')Y > ¥(V) . Moreover Z(S) = esesf(s) , and
Z(v'y = $seSt(Vs) , where the C(VS) have been indexed by their
intersection with ¥(x). From the above short exact sequence,

we have an exact sequence

eseSHn(C(S)) - Hn(C(x)) ® @Séan(Z(VS)) > Hn(Z(V))

whére the first mapping is a diagonal of inclusion induced
mappings (with the second component going componentwise). Hence,
looking at elements B80®...60, we see that any element of
ker(Hn(C(x)) > Hn(t(V))) is a sum of elements of the

ker(Hn(f(s)) > Hn(Z(Vg)))’ or rather of their images in Hn(f(x)).
The induction step now tollows on observing that a n-dimensional
surgery does not create any new homology below dimension n+l, so

that no unwanted things resulted from previous steps.

Lemma. Suppose the inclusion induced homomorphism

Hn(fc) - Hn(fD) is a monomorphism. Then so is
(18 +® (-1)8
= A (zD @

(1@\0.*‘ t@kga '

ZD 8, H_(ro) A anzA)> GB(ZD o, Hn(CB)>,

ZD ®A Hn(ZA)

resp. ZD 8, Hn(tc)

Note the assertion Ls not about an inclusion induced homo-
morphism, but about a diagonal of two such. There is no corre-

sponding result for, say, ZD ¢~ H (r.) -+ ZD g, H (Z,)
P ¢ "ntc A ntta



Proof. Let o be an eiément of the kernel. Then

for some finite collection of segments, S. Let S be chosen as
small as possible; suppose S is non-empty, and let V be the
smallest tree in I' containing S. Pick a segment s' which is
incident to an extreme vertex v of V. Then Ao is the only
component of o which is mapped into Hn(t(v)). But then it must
be an element of ker(Hn(C(S')) > Hn(C(v))). Therefore

a_, € ker(Hn(C(s')) > Hn(ZD)) > Gy B 0 , and we have a contra-

diction to ocur choice of S.

We now turn to a first application of the results derived
so far, an estimate for the global homological dimension of

group rings of generalized free products.

Proposition. Let D :‘AitB or = Aﬁ%{t}, respectively. Then

gl.dim.(ZD) ¢ max(gl.dim.(ZA), gl.dim.(ZB), gl.dim.(ZC) + 1).

Proof. We wish to prove that any ZD-module has a projective
resolution of length at most the number given above. It suffices
to prove this for countable ZD-modules, in fact: for quotients
of ZD. Let Fl > FO be a map of free ZD-modules, with cokernel
the given module. We consider F1 > FO as a ZD-complex. By

prop. (3.4) (and direct limit, if necessary) there is a

MV presentation of a ZD-complex homotopy equivalent to our

original complex, giving an exact sequence

ZD @C HO(ZC)~* ZD ®A HO(CA) & 7D @B HO(ZB) > HO(CD) + 0

or ZD GC HO(CC) +~ 7D @A HO(CA) - HO(CD) > 0 ,

respectively. Then, by lemmas (4.1) and (4.2) (and direct limit,
if necessary) we can perform surgery on the MV presentation to
make the sequence short exact. Now by assumption the first two
terms have projective resolutions of lengths at most gl.dim.(ZC)
and max(gl.dim.(ZA), gl.dim.(ZB)) (resp. gl.dim.(ZA)), respect-
ively. There is a map of resolutions, covering the monomorphism

in our short exact sequence. Taking its mapping cone, we obtain

a resolution of HO(CD), which is the given module. This resolution

has the required length.



There are some variants of the proposition, like this

Complement to proposition. If every ZC-, ZA-, ZB-module

has a finite projective resolution (over the appropriate ring),

then so has every ZD-module. - Same proof.

Complement to complement. Before each of ZA-, ZB-, ZD~module

insert finitely presented, provided ZC is noetherian. - Cf. below.

Definition. A ring R is coherent, if it has any of the

properties (a), (b), (c¢) below.

(a) TFor any finitely presented R-module coker(F1 > FO), there

exists a partial projective resolution

' P, » P, > Py > coker(F

with all the Pi finitely generated.

4 FO) > 0

(b) Any finitely generated submodule of a free R-module

is finitely presented.
(¢) For any R-map f: M, =~ Mz,.M1 finitely generated, and M,
finitely presented, ker(f) is finitely generated. :

(Ca) = (b) follows by comparison of partial resolution;

(b) = (¢) may be proved using a presentation of M,, and an

23
obvious pullback diagram; the other implications are trivial)

Proposition. Let D = Abe or = Atb[t}, respectively,

Suppose ZA and ZB are coherent, and ZC is noetherian. Then ZD

is coherent.

Proof. This is a corollary of the proof of prop. (4.3). If the
given ZD-module is finitely presented, we can choose a finite
MV presentation to start with. Then the kernel to be killed is
finitely generated because ZC is noetherian. So we need only
perform finitely many surgeries to kill the kernel, ending up
with a finite MV presentation. By assumption there exist then
finitely generated partial projective resolutions of arbitrary
length. Combining these into a mapping cone gives the required

thing.
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5. THE SUM THEOREM

Case D = A*CB.

a: C > A, B: C » B are, as usual, the inclusions which are

part of the structure of Ach. An asterisk denotes an induced

functor.

Definition. Wh(A,B;C) and EB(C;A,B) are defined by exact
sequences (as a pushout or copushout, respectively)

ax $ —B*
Wh(c) -~——— Wh(A) & Wh(B) - Wh(A,B3C) -» O

~ A 0’*9—6* a~r L ~
o - KO(C;A,B) > KO(C) _— KO(A) @_KO(B)

E(C;A,B) is the group introduced in section 2.

Theorem. There is a natural isomorphism

Wh(D) = Wh(A,B;C) ® K (C3A,B) ® C(C3A,B) . | = = 0

For 1 € Wh(D), we will write T = 0 & ¥« @& p.

Case D = Atc{t}.
a: C + A and B: C » A are, as usual, the inclusions which

are part of the structure of A!b{t}.

Definition. Wh(A,A;C) and ﬁb(C;A,A) are defined by exact

sequences (as an equalizer or coequalizer, respectively)

Ox — B¢ :
Wh(C) ~—————> Wh(A) ~» Wh(A,A;C) > O

~ ~ al-B* ~
o - KO(C;A,A) - KO(C) — KO(A)

~
D(C3;A,A) is the group introduced in section 2.

Theorem. There is a natural isomorphism

Wh(D) & Wh(A,A;C) ® K (C3A A) 8 D(C;3a,A)

For 1 € Wh(D), we will write 7 = 0 8 ¥ & p.

In both cases, we have this interpretation of the exotic terms.



Addendum. The component «k & p of 1 is zero, if and only if
there is a finite MV presentation of an acyclic ZD-complex

wilh torsion 1t such that CC is acyclic.

Similarly, the component p is zéro, if and only if there is
lgx® HelCQ) > H L) and
\gs’ H*(ZC) > HF(CB) (resp. H*(ZA) in case A‘%{t}) represent

H*(CC) as a direct sum of the kernels.

such a MV presentation that the maps

The proof of the sum theorem and its addendum will occupy
the present section. We treat both cases simultaneously, unless

otherwise stated.

By the realization lemma, prop. (3.4), there is a finite
MV presentation of an acyclic ZD-complex CD so that the torsion-

of CD is a prescribed element of Wh(D).

Let j be the smallest index such that Hj(lc) is non-trivial.
Denoting Xi and Zi the i-th chain- and cycle-module of CC’ re-
spectively, we have, for 1 ¢ j, a short exact sequence
Zi > Xi > Zi-l . So, by induction, Zi is stably free, and
finitely generated, for i < j.

Any element of Hj([C) maps to zergounder the inclusion
induced homomorphism Hj(CC) - Hj(CD). So, by lemma (4.1), it
can be killed by finitely many surgeries in dimension j. The
effect of this on CC is to attach (j+1)-cells; in particular,
CC does not acquire any new homology, except possibly in

dimension j+1. Working up dimensions, we can thus achieve that

Ze

observation above, this implies Hn(CC) is stably free and

is both (n-1)-connected and n-dimensional, for some n. By an

finitely generated.

It is slightly inconvenient to require n to be the top
dimension. So from now on we only ask that the homology of CC

be concentrated in dimension n, some n, and stably free.

We will have to decompose ED in various ways. This is most

conbeniently expressed in terms of the tree I (cf. the two

previous sections). Let the segment s, &€ I correspond to the

0
inclusion Zb > fb which 1s the composite Zb > CA > CD . Let



5.3

vy and v, ("left" and "right") be the vertices incident to 502

numbered so that the incidence vy ¢ 380 corresponds to the

c CA (hence v, ¢ 384 corresponds to \g* (C > CB’

resp. tg&B: CC —*t@CA). Denote by T
' = s

inclusion  : C
1 and Fr the components of
0 (Fl containing Vl)' There is a Mayer Vietoris sequence

0 - L’(so) + T(ry) e C(rr) - CD + 0,

and ZC acts naturally on this decomposition. Hence from the

exact homology sequence we obtain an isomorphism’
(1) 0 > () > H X)) @ H X)) > 0

of ZC-modules. We abbreviate

LP - _?n(((rln and Q = anigl"r))&

Similarly, let A be any tree in TI', and T the complementary
graph, i.e., S = T - (A v A) consists of segments only, each

A~

incident to both A and A. Each component of A is a tree, and

isomorphic to either T, or Fr above. Via incidence, these

. 1
components are in one-one correspondence to the components

of S. We denote them FS, s € S. For each s, let FS be the tree
complementary to Fs. There is a Mayer Vietoris sequence (of

Z-complexes, in general)

0 =+ Z(s) + (A 8 ) - ¢, - o,

whence
0 » H_(£(S)) + H(C(A)) @ H (M) + 0.
n n n

Evaluating terms using sum splittings, and isomorphisms of

type (!), we obtain an isomorphism
['

® s

(Hn(C(FS)) ® Hn(C( ))) -+ Hn(C(A)) ® eseS Hn(C(FS)) .

Now the map into the second component is just the projection.

s&S

Hence the map into the first component is the sum of an iso-

morphism - ,
~ !
Pl .

(! ) (-QseSHHn(C(FS)) - ‘Hn(C(A){M;

and a map

GRED QseS Hn(C(FS)) -+ Hn(C(A))

It is easy to identify the maps, namely the components of the



inverse of (!!) are given by the inclusions I(A) - C(FS), and

the components of (!!!) are given by the inclusion homomorphisms
ker(Hn(f(S)) - Hn(((Fs))) > Hn(C(S)) ud Hn(((A))

In special cases, we can be even more specific about the
isomorphism (!!). Let A = vy and S =‘6vl, the collection of

segments incident to v

1’
Then, in case D = Ax&B, the A-action on I'y, fixing Vi is
transitive on dvl (with isotropy group a(C)), and (!!) is an

isomorphism of ZA-modules

Hn(CA) ~ ZA 8, P

e et e A st e e e

In case Ax&{f}, the A-action on ', fixing vy has two

orbits in 8v, (with isotropy groups o(C) and B(C), respectively),

1
and (!!) is an isomorphism of ZA-modules

H (£) =~ ZA 8P & ZA; 8 Q
(tensor products over ZC; the subscript a or B on ZA indicates
which ZC-structure is used).

‘We are now through the preliminaries to proving

Proposition. (1) The pair of inclusion induced homomorphisms
lg “n((C) > H“((A) vy Hn(CC) » Hn((B) (resp In(CA) in

case Axc{t}) determines a nilpotent object in the sense of

section 2.
(2) The equivalence class of this object depends only on the
torsion of CD'
(3) The map Wh(D) = C(C;A,B) (resp. D(C;A,A)) so obtained is
i split surjection onto Kb(C;A,B) ® C(C3A,B) (resp. ﬁb(C;A,A) &
D(C3A,A)). »
(4) p = 0 if and only if there is a MV presentation (of some
CD representing t) so that ker(tu*) and ker(\B*) present Hn(CC)
as a direct sum. And p8k = 0 if and only if CC can be made
acyclic.

Addendum. If p®x = 0, and if Hi(CC) = 0, for i ¢ j, then
the ncrmalization of Cciunder (4) can be achlieved by surgeries

in dimensions exceeding j-1.



Proof. Ad (1). We treat the case D = A #.B, the other case
being similar. Above we obtained a natural splitling

Hn(CC) = P ® Q, and a natural isomorphism Hn(CA) = ZA @C P
The latter splits as a ZC-module,

C
(cf. section 2). Now the discussion preceeding the proposition
shows us what the map P & Q » P @(iﬁ 2] P)looks like: it is

: C
a direct sum of an identity P » P, and a map

A N
ZA 8, P =(zcecp>@(zA® P)

Q » fre, P, )

which is Jjust
ker(Hn(C(so)) > Hn(C(Fl))) > Hn(C(so)) > Hn(ZA) .
Similarly, Hn(C(sO)) > Hn(C(Vr)) splits into an isomorphism

Q + Q, and a map'

P Py
‘» ZB @, Q
whilch is just
P > Hn(C(sO)) > Hn(C(vr)).

So we indeed have an object in the sense of section 2. This
object is nilpotent: We must show that iteration eventually

gives a zero map. Consider, e.g., the composite

-~ ”~
Q - ZA8P -+ ZA ® ZB 8 Q

‘This can be identified to Q ¢ Hn(C(sO)) - Hn(C(A)) where

A is the subtree of T any vertex of which has distance at

13
most 1 from vy And similarly, the n-th iterate describes the
map induced on homology by the inclusion of g into the tree

any vertex of which has distance at most n from v, or Vo But

1
the direct limit of this is the zero map, induced from 5y € r.

Ad (2). According to the uniqueness part of the realization
lemma, prop. 3.4%, if we have MV presentations M and M' of
acyclic ZD-complexes CD and Cﬂ with the same torsion, there

is a MV presentation M" which can be reached from both M and M'
by surgery and elementary expansions. By executing some more
surgery on M", we can get M" into our normal form, so that

Hj(CE) = 0 unless j = n", for some n" > n, n'. So we now assume
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M'" has this property. We will investigate what happens in

passing from M, say, to M".

Clearly we can arrange the surgeries in order of 1ncrea51ng
dimension. Let MO = M, and let Mj+1 be obtained from MJ by per-
forming the surgeries of dimension j. There is a short exact
sequence of MV presentations, MJ > Mj+1 > Nj, deflnlng N3
N] may be described as being obtained from the tr1v1al MV pre-
sentation by j-dimensional surgerles Suppose Nj oomprlses '
only one surgery. Then Hj (( (N])) is free of rank one, and
j+1(KC(N3)) 21 (Ca I,

is a zero map. In the general case, there 1s a short exact

one of the induced maps, say g e’

sequence of MV presentations, NJ > N] > NJ ,iwhere N] is
given by all j-dimensional surgeries except the last one,‘and
Nj" by that last one. By induotlon, this shows that the nil-
potent object determined by NJ is a standard trivial object in

the sense of section 2.

For i ¢ n-2, we have a short exact sequence
i+1

[goatthy o +1(ccm ) > H b))

By naturalltr of the maps, we see that if the i-th homology

of M determines a nilpotent object, then the maps H (N ) -

H (M ) just describe the operatlon on objects called suopen51on
in sections 1 and 2. So, by induction, H (M ), for i ¢ n-1,
indeed describes an object, and this object is equivalent to

2ero.

For i = n-1, a somewhat longer sequence is obtained. We may

write down instead a short exact sequence

i i+1
Hi+1(CC(M )) - 1+1(C (M )) >

i N i
ker(H, ,(£.(NT)) - H (L (M )‘))
By the above argument there is an object (equivalent to zero)
corresponding to the third term. So we have objects corre-

sponding to the extreme terms. We must then also have an object

corresponding to the middle term, and these three objectq form
i+l

~a short exact sequence. So “i+](M ) indeed describes an object,

and this object is equivalent to the one given by Hi+1(M)'
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For i 2 n, finally, we again have a short exact sequence

{$ (Ml+1)) €, ity - Hi(Cc(Mi)) ,

1+1 1+1
and other sequences of the same type, and natural maps between
them. We conclude that the object determlned by H (W1+1) is
obtained from the one determined by H (Mh) by suspen51on. So
the former has the same equivalence class as the latter, multi-
plied by (-1). And so we have verified that if we normalize

a MV presentation of an acyclic CD as in (1), determine the
equivalence class of the object obtained (which lives in
C(C3A,B), resp. D(C3;A,A)), and multiply it by (~1)", then the

result depends on T(CD) only.

Ad (3). We assume the normalization of (1). So the homology

of each of £, Chs (B’ is concentrated in dimension n, and is

a stably free module over the appropriate ring.

In case D = A*CB H (CA) ~ ZA @C P. Therefore
[P] ¢ ker(K (c) ~ K (A)). Similarly, -[P] = [Q] ¢ keP(K (C) »

KO(B))

In case D =A§:%{t},~ﬁn(CA) ~ ZA 8, P 8 ZAB 8. Q. Therefore
(with a,, By: K (C) ~ K (A)), a [P] + B, (-[P]) = O.

To construct a right inverse for the projection, we will
again consider cases.

Case D = Ax.B. Let p: P » 7B ® Q, q: Q ~ 7A 8 P be a nilpotent
object so that P & Q, ZA 8 P, ZB 8 Q-are stably free over the
appropriate rings. On adding to P and Q free modules, with the
zero homomorphism, we can assume that these modules are in fact
free. We must now endow these modules with bases. We cannot
choose any odd base for any of them, as there would result a
big ambiguity from this. Fortunately, however, we can manage

to do with a choice of just two bases, and then it will turn

out the ambiguities cancel.

We choose some basis for P & Q, and some stgw, >(
meaning a fixed isomorphism class from P to a reference module
Py € Py ® QO. This determines a stable basis for Q, namely a

class of isomorphisms Q - QO, such that P & Q ~» PO & QO has
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zero torsion. The choices made so far, determine stable bases

for ZA @ P and ZB‘Q Q. On adding some more free modules to P

and Q, we may assume these are actual bases,.

We now construct a MV presentation from our data. Let n be
even (to accomodate our sign convention). We define the n-~th
chain module of CC’ Chs CB_to be P®Q, ZA © (P8&Q), ZB & (P8Q),
respectively. The (n+1)-th chain module of Cp (resp. CB) is
ZA 8 Q (resp. ZB 8 P); the boundary map is induced from

Q 2989, 09 7A8P < a8 (QO P or

s ”\
p 2:9 P, pgzReq ¢ zBS (PO Q

respectively, by ZA ®A’ resp. ZB 85 . All other chain modules
are, trivial, and the chain maps are the obvious ones. CD is

now given by the pushout of

‘CD is a free chain complex, and endowed with canonical bases.

That it is acyclic may be seen by manipulating with Mayer

Vietoris sequences as in the beginning of this section.

It is clear that our construction gives a right inverse for
the projection Wh(D) = ?b(C;A,B) 9 EYC;A,B). We are left to
verify that it gives a homomorphism. Now if we have a short
exact sequence of nilpotent objects (and keep it exact on adding
all those free modules) then it is also clear that our con-
struction gives a short exact sequence of MV presentations. All
we have to worry about, is the torsion of the sequence of’
ZD-complexes. But for an obvious choice of stable bases in the
middle term, this torsion is zero, all right. So if indeed our
construction is well defined at all, it will also give a homo-
morphism. We must now investigate the arbitrariness involved

in choosing those stable bases.

Suppose the basis of P®Q is altered by an isomorphism with

torsion T ¢ Wh(C). The exact sequence

0 - ZD@CCC -> ZD@ACA@ZD@BCB -> CD + 0



shows that this induces an isomorphism of the n-th chain

module of (D with torsion Im(-t) + Im(t) + Im(t) = Im(t). But

by our conventions, this alteration in addition induces a change
of the stable basis of Q, also with torsion 1. This in turn
contributes another Im(t), this time on the (n+1)-chains of Cp

So eventually the two cancel.

If on the other hand, we alter the stable basis of P by an
isomorphism with torsion 1, we must simultaneously alter that
of Q, by -17. This time there is no torsion on the n-chains, and

on the (n+l)-chains we get a contribution Im(t) + Im(-t) = O.

Case D = A!&{t}. This is eﬁtirely similar, and is left to

1the reader.

Ad (4). This is, in fact, a trivial consequence of the other
parts of the prcoposition. Given a MV presentation of an acyclic
ZD-complex with k@&p = 0, normalize it according to (1), to con-
centrate all homology in dimension n, say, n even. This gives

a nilpotent object. Use this to get a MV presentation as under

'kéi (while mimickiné the adding of free modules to P and Q,

by performing (n-1)-dimensional surgeries on the old MV pfe— "
sentation). There is an obvious morphism of MV presentations
from the new one to the old one. The mapping cone of this mor-

phism has the desired property.

Concerning the other part, observe that if we have an object
representing Kk, and with zero homomorphisms, then the MV pre-
sentation resulting from (3) has the desired property. In the
general case, first perform the above trick. This gives the
desired result, but kills k. And then form the directAsum with

a MV presentation of the special type.

Proof of addendum. Let M be a MV presentation of an acyclic
ZD-complex with k@p = O. According to (4) there is a MV pre-
sentation M' of a ZD-complex with the same torsion, and with

Cé acyclic. And by prop. 3.4, there is a MV presentation M"
which can be reached from both M and M' surgeries and elementary
(A-, B-, C-) expansions. We claim Ca can be made acyclic. To see

this, observe that sometimes a surgery can be cancelled by an-
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other surgery. Specifically, if M* is a MV presentation with
Hi(CE) = 0, then any i-dimensional surgery on MY will add a
direct summand (free of rank one) to Hi+1(CE), and this summand
can then be killed by & (i+1)-dimensional surgery. The total
effect of these surgeries is then also the resultant of element-
ary expansions (a C-expansion and an A- (resp. B-) expansion).
We now apply this remark to the surgeries leading from M' to M".
Arrange these in order of increasing dimension, with lowest
dimension i, say. We start by performing some new surgeries

in dimension i+1, to cancel the old surgeries in dimension i.
This way we get rid of the i-dimensional surgeries at the expense
of introducing elementary expansions instead. Afterwards we are
in the same position as before, except that now the lowest
dimensional surgeries are in dimension i+1, corresponding to

{he original (i+1)-dimensional surgeries. And so, working up
dimensions, we will eventually replace M" by M" which can be
reached from M' by elementary expansions only, and from M by

elementary expansions and surgeries.

Having verified half the assertion, we are left to show that
we can do without low-dimensional surgeries on M. But here we
can apply the same cancelling trick as before, thus eventually
replacing by elementary expansions the surgeries below dimension
j. In the end we write down all operations to be performed on M,
and from this list omit the elementary expansions. This gives

the desired result.

Proposition. There is a natural isomorphism

R

ker(@h(D) + K (c3a,B) @ 6YC;A,Bi) Wh(A,B;C) or

~

ker(Wh(D) > K (C3A,A) ® Becsa,a))

¥

Wh(A,A;C),

respectively.

Proof. Let M be a MV presentation of a ZD-complex representing
an element of that kernel. Call M split, if C% is acyclic. Accord-

ing to prop. 5.4.4, we can assume M is split.

In case D = AxtB, we then have an exact sequence of acyclic

ZD-complexes

0 » 2D 8,C, > (ZD 8, CA\@(ZD oy Lg) > Cp = O



Hence Ty = Im(TA) + Im(TB) - Im(TC).

Similarly, in case D = A*b{t}, there is an exact.sequenée,

O - ZD®8,C, » ZD 8, ¢, -~ KD'-’*_ 0

which gives us 1, = Im(t,) - Im(TC).

D A

Now consider this construction. Perfofmvsurgeries on M in
some dimension, n, say, with result M';_Then Hn+1(Cé) is free
(with rank the number of surgeries), and is represented as a
. Las n+1(f ) > Hn+1((}'\)
and g Let Hn+1(€é) = P 8@ Q be this splitting (Q = ker(ka‘));
P and Q are both free. Next perform (n+l)-dimensional surgeries
The effect of this on (é

direct sum by the kernels of the mappings

e . . ,
(minimal in number) to kill Hr+1(CC)

is fully described by giving based free modules P' and Q'; and

Q"
TQ € Wh(C), arbitrary). Call the total operatlon

isomorphisms P' » P, Q' - Q, with tor81ons, say, Tp and T

respectively (TP,

a twist cancelled surgery.

The effect of the twist cancelled surgery ]ust descrlbed on‘m“
the chain complexes in M is this: To CC’ a summand Tp + TQ is
added. In case D = Ah%@, Tp inherits a summand a,(TP), and g
inherits a summand B*(TQ) (the change of sign in (-1) 8 g of
course doesn't matter). And in case D =AA¥b{t}, Tp similarly
inherits a summand a,(rp) + B‘(TQ). Of course, T, is unaltered
in both cases.

We can use twist cancelled surgery to normalize a split»MV pre-
sentation so that o = 0. This normalization is not unique. But
the ambiguity in Wh(A) & Wh(B) (resp. Wh(A)) resulting from nor-
malizing by different twist cancelled surgeries, is precisely
that which is killed under the projection Wh(A) & Wh(B) ~

Wh(A,B;C) (resp. Wh(A) » Wh(A,A;C)).

The preceding arguments show that there is a map (obviously
a homomorphism) Wh(A,B;C) (resp. Wh(A,A;C)) > Wh(D) which is
onto the kernel we are investigating. We must now show that it
is injective. Essentially, we will show that all ambiguity there

is, comes from something like twist cancelled surgery. As this
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is no harder, we will in fact show more: There is a‘natural

map Wh(D) » Wh(A,B;C) (resp. Wh(A,A;C)) which is a left inverse
to the map above (of course, the existence of such a map follows
from injectivity of the above map, and our other results; the

interest is in an explicit description).

Let 1, € Wh(D) be any element, let it be the torsion of an:'”
acyclic ZD-complex CD of which M is a MV presentation. We' assume
the homology of M is concentrated in dimension n. .Then Hn(CE)
is stably free, and is naturally split into a sum of projectives,
Hn(CC) = P ® Q. We now make a choice: we choose some stable
basis for each of Hn(Cb)’ and P. This determines a stable basis
for Q (which is such that P&Q - Hn(CC) has zero torsion), and
induces stable bases for Hn(CA) %~ ZA 8, P and Hn(CB) ~ 7B ®C Q
(respectively, Hn(CA) = ZA, 8. P ® ZA8 8. Q ). '

Once we made this choice, a torsion is defined for each of
CC’ ¢ N CB’ though theée complexes may not be-acyglic [ ]. We
like to know the ambiguity in these torsions which comes from
the cholces made. Choose another basis in Hh((é), related to
the first one by torsion 1', say. By our conventions, the stable
basis for Q must then also be altered by T'. So we get contribut-
ions t' on 15, and B,(1') on 1y (resp. fA, in case Auﬁ{t}). If,
on the other hand, we have some 1" on P, we must have -1" on Q.
And so Ta and Tp (resp. TA) acquire contributions a, (") ahd

Be(-T") (respectively, a,(t") - B,(t")).

Hence, if we associate to 1, the element (TA - a*(rc) s TB)

D
€ Wh(A) & Wh(B), respectively (TA - a*(TC» e Wh(A), then the
ambiguity is cancelled when we pass to the quotient Wh(A,B;C)

or Wh(A,A3;C), respectively.

We are left to investigate the ambiguity resulting from the
choice of the MV presentation M. As it turns out, we can do this
by arguments we had already: We know that if M' is another such
MV presentation, there is M" which can be reached from both M
and M' by elementary expansions and surgery. Performing some
more surgeries, if necessary, we may assume M" is in normal form,
too, i.e., its homology is concentrated in some dimension n'",

n" > n, n'. And then (as we observed in the proof of prop. 5.4.2)



to pass from M, say, to M", we can collect the surgeries
according to their dimension, and in dimension j the total
surgery gives a short exact sequence of MV presentations
Ml > MItl

sional surgeries on a trivial MV presentation, so has its homo-

> N3, N may be considered as the resultant of j-dimen-

logy concentrated in dimension J+1. Hj+1(CC(Nj)) splits into
free modules Pj and Qj’ corresponding to the surgeries performed
at the left or right, respectively. (We ignore extra structure,
like nilpotent objects.) And the above sequence induces a sur-
jection Hj+1(CC(Nj)) > H. (CC(MJ)) which in turn splits into sur-
jections P; > Pj and Q Qj

Now consider first the special case that no surgeries below

dimension n are needed. Then the homology of M3 and Mj+1 is con-

. centrated in dimensions j and j+1, respectively. And we have

short exact sequences Pj+1 - Pg > Pj and Q3+1 Q. - Q The
actual individual surgeries determine a basis for each of Pj
and Qj' As we do not know which bases are determined we must
treat these as an ambiguity. But this ambiguity is of no harm
since we can absorb it into the one treated earlier. Namely, we

give P; ® Qf its natural basis, obtained by composition. There

9 Q.
J+1 j+1
such that the sequences P:]+1 - Pg - -, Qj+1 Q* - Q and

P.. .9Q. - PY¥6Q% - P.8Q. all hav tor51on Zero. And f we
34198541 > F30Q5 = P48 IS T oo ;

choose these bases, we find that Ta = To s Th = Th o and
T%+1 = T% . Moreover, and this is the point, with these stable
bases, the sequence Pj+1 >

are now unlque stable bases for P]+1, Q3+1, and P.

j+1®Qj+1 - Qj+1 has . torsion zeroc.
So, whatever the new ambiguity may be, it results in no more
than a choice of two out of three of the stable bases of P3+1’

Qj+1’ and P]+1®Qj+1 And this, as we saw earlier, is permissible.

In the general case, we may have to perform surgery in dim-
ensions less than n also. Again we understand that surgery is
performed in order of increasing dimension. Then, if j <« n, it
may no longer be true that fhe homology of MJ is concentrated
in one dimension, rather we have homology in dimensigns j and n.
But in both dimensions, we have free modules (H(C (M3))), canon-

ically split into projectives. And so we can agair define torsions



in fixing arbitrarily two out of three stable bases in each
of these dimensions. The resulting ambiguity is the same as

before.

Finally, if j ¢« n-1, the same argument as above shows that
the torsions obtained are unaltered in passing from M3 to M3,
This argument will also work for j = n~-1, provided there is no
interference between these dimensions. And in fact there is no
such interference because an exact sequence of projectives,

ending in a surjection, splits completely.

The proof of the sum theorem is now completé.



6.1
6. A GEOMETRIC INTERPRETATION OF THE SUM THEOREM

We work in the category of finite CW complexes and topolog-

ical maps. An elementary expansion of a map f: W » X is an

- elementary expansion applied to W, together with some extension

of f. An elementary contraction is the inverse process. A formal

deformation of f:W is the resultant of a finite sequence of

elementary expansions and contractions applied to f. Formal

deformations include homotopic deformations.

- A pair X,Y is a codimension 1 pair if, in some subdivision

of X, there is a cellular neighborhood U of Y, so that the pair
U,Y is cellularly equivalent to the pair'Yx'E1,+1],YxO with its.

netural cell structure.

Given such a pair XY, and a map f: W » X, this map can be
formally deformed into general position, meaning V = f-i(Y)
is a codimension 1 subcomplex of W, and VXI—1,+1J is mapped
fibrewise, and homeomorphically on each fibre. Such normal-
ization can be achieved by working up the cells of W, using
formal deformations of W, if necessary, to vary each attaching

map in its homotopy class.

Typically, a codimension 1 pair is obtained from maps
fi: Y » Xi (X1 and X2
complex) by forming the mapping cylinders, and identifying the

different complexes, or one and the same

common subcomplexes Y (and similarly identifying the common

subcomplexes Xl’ in case X1 = X2).

If both X, Y are connected, and nlY > nix is a monomorphism,
then (by the van Kampen theorem) Tr1X ~ Ax¥.B or xA Jé{t}, respect-
ively, according to whether Y does or does not separate X, with

Ca~n Y (and A~ 1_,X B';::Trlxz).

1 171 2

Theorem. Let X,Y be a codimension 1 pair with X, Y connected,
and nlY - nlx a monomorphism. And let f: W » X be a homotopy
equivalence. Then f:W can be formally deformed into a homotopy
equivalence of pairs f':(W',Vf)+(X,Y> with V' = f'_i(Y), if

and only if k®p = O.
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Proof. We only treat sufficiency. Necessity will be obvious
from the proof of sufficiency. Also we assume throughout that
Y separates X (into X1 and XZ’ say), leaving it to the reader

to modify our arguments in the other case.

We assume f:W is given both in general position and as a
cellular map. We now describe the operation we use for alter-
ing f£f. This is a very special kind of elementary expansion of
f:W which we call surgery on f.

Let E be a (n+l)-cell with boundary JE, and hemispheres
E+ and E° in 3E. Suppose we are given a map g: E » W such
that g_l(V) = 3E~ . Then, using g|3E~ we can attach E¥ to V, and
afterwards we can attach E to W v ET by the attaching map
glE” v id.|E+. The total effect is an elementary expansion of W
inducing on V the attaching of EY. We can modify the construct-
ion slightly by attaching instead of EY a thickened EY (and
pulling in a bit E). This gives the same result, and in addition

makes V v E¥ a codimension 1 subcomplex of W u E.

Now assume the above map g is part of a device representing
an element of ker(mw (£|V) - m (£3) (= 7w _(£]V) since f is a
homotopy equivalence), where as usual ﬂn(f) means nn(T(f),W),
T(f) the mapping cylinder of f.. Then this device also gives us
an extension of fog|E to h: E » X with h(ET) ¢ Y. If indeed
our construction is to kill the given element, we have but one
choice for extending f, namely h|E. Half of this presents no
problem. Namely, we use hIE+ to extend f|V over E+, and mapping
the thickened stuff fibrewise we keep f in general position. But
now we must insist that h(Int(E)) be disjoint to Y. Otherwise,
f—i(V) would inherit new things in a rather uncontrollable
fashion, and our construction would not promise to simplify
anything. Conversely, under this hypothesis our construction

is all right.

So it transpires that ker(ﬂn(f[V) > m (f)) is not really
relevant to our problem. Rather we must consider ker(nn(fIV) >
nn(flwi)), where W, = f-i(Xi), i =1, 2. And indeed, for any
given element of one of the latter sets, we can perform a con-
struction as above to kill this element. It is this construct-

ion to which we refer as surgery (in dimension n).



Lemma. Surgery can be performed to make V connected, and

f:w, V> 7,¥Y an isomorphism.

1 1
The proof uses special arguments which are however fairly
well known, so we do not give them here (a description of these

arguments is given in [12]).

The lemma enables us to pass to universal covers. Let X and W
be the universal covers of X and W. Tilda on top of something
else denotes induced covering, e.g., Y is the subspace of f
covering Y. And T(f) denotes the mapping cylinder of f. There

is a Mayer Vietoris sequence of (cellular) chain complexes
TV, CECE D 8 e(TE W), i, » e, .

Lemma. This sequence gives a finite MV presentation of

f(?(f),ﬁd in the sense of section 3.

Proof. Exactness and bases are all right. We must verify that
certain terms, and maps, are obtained by tensoring. But this is
rather obvious: If, say, V denotes the universal cover of V, then

(V) = ZD'®C €¢(V) as a ZD-complex, where C = m,Y, and D = m, X.

Now in pairs like %kfIV),v, and ?(flwi);ﬁi, all spaces are
simply connected, and the pairs are 1-connected. Hence the
Hurewicz homomorphism is an isomorphism in the lowest dimension
n ( 22) where not everything is trivial. And by naturality of

the Hurewicz homomorphism, we can conclude that for this lowest n,

~ ~ ~ . ~
ker(ﬂn(T(fIV),V) - ﬂn(T(flwi),wi))
+ .
ker(Hn(T(f!V),V) > Hn(T(lei),Wi))

is an isomorphism. But the first group classifies geometric sur-
geries (on f), and the second group classifies algebraic surgeries
(on the MV presentation). Hence in (the lowest) dimension n, these

notions agree.

Finally, we are assuming k®p = 0. So, by 5.4.4, algebraic
surgeries can be performed to make C(T(f|V),v3 acyclic. These
can be arranged in order of increasing dimension, and by the
addendum 5.4, ndsurgeries below dimension n are needed. Therefore
the whole procedure can be performed geometrically, and we are

finished.
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7.1

7. ITERATED GENERALIZED FREE PRODUCTS

Let X,Y be a pair of CW complexes which is a codimension 1
pair in the sense of section 6. We do not ask that X or Y be
finite. We do ask that X be connected and countable, and that
for any component YO of Y, ﬂiYO > nlx be a monomorphism. For
the latter it is sufficient to ask that the homomorphisms
induced by inclusion in the adjacent component(s) of X-Y be
injective.

In this situation, we call m,X a very generalized free

product of the win over the nlYi, where the Xj and Yi are the
components of X-Y, and Y, respectively. The structure of ﬂ1X
may be described somewhat more algebraically using the graph
V, as follows. To the component Yi of Y, we associate the
edge Y3 of V,’and to Yi in turn, we associlate ﬂlYi. To the
component Xj of X-Y, we associate the vertex xj of {, and to

X, in turn, we associate nlxj. And whenever Yi is adjacent to

Xj, X3 is incident to y;» and to this incidence there corresponds
an inclusion of MY in nlxj. From the graph V, and the groups
and injections it carries, W1X may be recovered. V is connected,
but otherwise it may have any shape, in particular, it may be
infinite.

We now introduce classes of groups, ( indexed by pairs

) ,
myh
of integers in lexicographical ordering. Every class will

contain all the preceding ones. We abbreviate Lé.G =G,

m,n m
and LJ% G, =G
(1) Sy.0 contains only the trivial group
9
(2) D € G if and only if D is a very generalized free product
of gréups Aj over groups C., all of which are contained in G.»

for some fixed m.

(3) If De G, then DeGm<.:>allAj6 Gmn,for some

-
fixed n , and all C, € Gm—i

(4) If D e Gm’ then D ¢€G < all Aj 13 Gm_1

m,0

DeC & all Ay €6
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Lemma. If D ¢ Gm,n, and E is a subgroup of D, then E ¢ Gm,n .

Proof. By induction on (m,n). Represent D by a CW pair X,Y as

1

above. Form the covering X of X with m.X = E. The induced cover-
ing'? of Y gives the desired decomposition. o '

Remark. This lemma is the reason for introducing very
generalized free products. If instead we had defined Gm,n by
(non-iterated) generalized free product, then if D ¢ Gm,n,'there
does not seem to be any reason to suppose that the subgroup E

is in G,> even if E be finitely presented.

Examples. (1) G is closed under extensions.

Proof. Let 1 -+ ker(p) » E E D » 1 be exact, with ker(p), D ¢ G.
Let D ¢ Gm . The proof is by induction on (m,n). Let D be the
?

very generalized free product of the groups Aj over the gfoups

Ci’ Then E is the very generalized free product of the groups

p_l(Aj) over the groups p_i(Ci).

(2) If M is a closed 2-manifold other than a 2-sphere or
projective plane, then ﬂlMtv.AXb{t}, with A free (of finite
rank), and C cyclic. Hence ﬂlM € G, 0

>

(3) If M is a knot space or, more generally, a compact
3-manifold as considered in D?], then ﬂlM is in either 82 or G3’
according to whether M is bounded or not. This is non-trivial,
and is essentially due to Haken [4]. The only known upper bound
for n is given by an iterated exponential function involving

the number of simplices of M [4].

(4) A one-rclator group is in G, if (and only if) the
relator is not a proper power. In fact, an essential element
in Magnus' analysis of these groups (cf. [7&) is this. Given
a one-relator group Al’ there is a sequence of groups Al’ Al
Ay, Aé, coey Ak’ so that (a) Aj is a subgroup of finite index
in A! ;3 (b)) A! = Aj+1*b'{t}’ with Cj a free group ; (c) A is

J J
a finite group with exponent the power of the relator of A,

(5) Ch. Miller III has informed me that there is a finitely
presented group in G3 (or maybe even GZ) with unsnlvable word

problem.



Proposition. If D ¢ G, > then gl.dim}(ZD) < m+l.

Proof. If D is a very generalized free product, then one can
define MV presentations of ZD-complexes, similarly as in

section 3. One cannot define finite MV presentations, in general,
but otherwise the only difference is in notation. In particular,
prop. 4.3.can be proved in this framework. But this is just what

we are after.

Digression. It is not true (but for non-trivial reasons)

that G contains all groups of finite homological dimension. The
counter-examples I know are however finite extensions of groups
in GS,O‘ It might thus be worth asking the following question.
Is there a group of finite homological dimension which cannot
be built up by these processes: forming a generalized free
product, taking a direct limit of inclusions, and taking

a supergroup of finite index ?

Conjecture. If E € G, then Wh(E) = C. f

i

The following is a partial result in this direction. It
verifies the conjecture for the class G,, and the examples
(2), (3), and (4).

1

Definition. Let G~ be the subclass of those D € G such

that ZD is noetherian; and for r = 2, 3, let GY be the subclass
consisting of those D € G which can be built up so that at any

stage, all the amalgamating subgroups Ci are in Gr—l.

Lemma. If D € G2, then ZD is coherent.

Proof. Since a direct limit (via inclusion) of coherent rings
is again coherent, this follows from prop. 4.4,
The followihg observation is quite useful.

(!) If D is a very generalized free product of the groups Aj
over the groups Ci’ then D x Z is a very generalized free product

of the groups Aj x 7Z over the groups Ci X 7.
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Corollary. If D& G', r =1, 2, 3, then D x 2 € G",

Proof. For r = 1, this is well known. For r = 2, 3, it follows

from (!) by induction.

Theorem. If E € G°, then Wh(E) = K (E) = 0.

Proof. Write E = D X F, where D € Gm 0’ and F is a finitely

?
generated free abelian group. The proof is by induction on (m,n).

So the induction beginning is the free abelian groups. The
induction beginning is all right by [2]. '
Since D is a very generalized free product, it is a direct

limit, via inclusion, of groups Dj’ j =0, 1, ..., where

D.:,; = D. ¥ B. or ',.\_,/D.*é {t} ,

J+ 17C¢5 3 3¢y
respfftively, and DO’ Bj’ Cj € Gm,n—l . The functors Wh

and KO commute with direct limit. Therefori it suffices to
prove by induction on j that Wh(Dj x F) = KO(Dj x F) = 0 .

By (!) above, we can apply the sum theorem 5.1. This expresses
Wh(D. x F) as the sum of a Wh term and a KO tezm which are both
zero by the induction hypothesis, and a C (or D) term which is
zero since Z(Cj X F) is coherent, and has finite global homo-
logical dimension. '

We must now take care of ?b(Dj X F). But this is a direct

summand of Wh(Dj x F x Z), so it has been taken care of already.
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