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WHITEHEAD GROUPS OF GENERALIZED FREE PRODUCTS

Friedhelm Waldhausen

The purpose of these notes is to describe a splitting theorem for the White-
head group. Its application is in vanishing theorems of the sort that Wh(G)

= 0 if G is a classical knot or link group.

An example of such a link group is the group with generators a, b, c,

and relators

(aylbye™ 11, (b,0c,a™*]], [c,la,071]]

where [x,y] denctes the commutator xyx-i

y-i. This group may look complicated,
but it happens to be the group of one of the simplest links (the 'Borromean

rings'),

It is not their presentations that make knot groups tractable. What
makes them tractable is the fact that they can be built up out of nothing
by iterating a construction that I call 'generalized free product'. As this

construction {or at least the motivation to look at it} is of topological

origin, I will start by giving the topology flavored description.

Let X be a 'nice' topological space, €.g., a CW complex (or, if the
reader prefers, a simplicial complex, or even a smooth manifold; all that
matters for our purpese, is the global picture), and let Y be a closed 'nicef
subspace, e.g.y, a subcomplex. We assume Y is bicollared in X, this means
there exists an open embedding i: YXR ~ X {where R is the euclidean line)
so that i(¥Yx0) = Y. We do not ask that Y be connected, in fact, Y may have

infinitely many components.
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components of Y. The groups ﬁixi ar

structure, and the groups ﬁin are called the amalgamations. For th

A recipe says that in this situation, the fundamental groupoid of X

can be calculated as the colimit of certain other groupoidss

Now assume that for every component Yj of ¥, the inclusion induced

homomorphism of fundamental groups, ﬂin > i X, is a monomorphism. Then the

1

diagram obtained is called a generalized free product (gef,ps) sStructure

on T X

Let us demote X., i € I, the components of X ~ ¥, and Yj’ j €J, the

uniform notation, we write

=T =
G X0 B UiEIﬁx

1 0 A=U3'€JTr1Y:j '

where 'Ut denotes the sum (1disjoint union') in the category of groupoids.

(1)
{2)

(3)
(&)
(5}
(6)

but forever) and denote it tleft', and the other one ‘right'.

and similariy with F(A), we have well defined maps F(1):

F(r): F(a) > F(B), and F(1)s F(B) = F{G}, satisfying F{1)eF(1)})

As Yj locally dissects X, we may pick one of its sides,(arbitrarily,

There are in-

jections of groups (well-determined up to inner automorphisms)

and r.:

1.: j

ﬂY.”ﬁx 'Y -
3 173 1%r(3)

TY, > UX .
173 171(3)

Let F be a functor from groups +o abelian groups which sends inner

automorphisms to jdentities. Letting

F(B) = $161 F(TX,)
#{A) - F(B),

= F(1)eF(r).

Examples of such functors F are
HO(G}, the integral homology in dimension O
KO(RG), the projective class group of the group algebra of G over R,

and in particulaf, KO(G): = KO(ZG)

’x‘éoce) = coker(H (6) = K, (6))
Z2 & Hi(G)
Ki(RG)

whiGg) = coker(Zzeﬂi(G) - Ki(G)) , this map being induced from

GL(Z,1) X 6 > GL(ZG,1)
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of the group algebra of G over R,

:his map being induced from

We can now formulate the splitting theorem.

Proposition. There is an abelian group N and a map b éo that the following

sequence is exact
Vn(a) ATk yn(B) &5 Wn(G) —0 M & %, (a) {0y1y-ry), &, (3

There is a gimilar sequence for the unreduced functors; the one with
integral coefficients maps onto the one given, and the kernel is the Mayer
Vietoris sequence of homology (as indicated in (3) and (6)). One can continue

the sequence to the right {(by Bass' 'contracted functor' argument).

The splitting theorem contains as special cases both the splitting
theorem for a free product of groups, and the Kiinneth formula for extensions
of the integers.

In order to deduce vanishing results from the splitting theorem, one
uses the five lemma and some a priori information about the vanishing of the
exqtic term R, The trick here is not to work with an individual group G, but
with the totality of groups G xF, where ¥ is a free abelian group. One can
thus exploit the fact that EB(G:(F) is a direct summand of Wﬁ(G xFxZ) =
Wh(G x F1), The trick works well since a gef.p. structure on G (with building
blocks B and amalgamation A, say} induces a g.f.p. structure on G xF {with

building blocks BXF and amalgamation AXF, and the obvious maps).

The next proposition describes such a vanishing result for the

exotic term.

In order that % =0 g it is sufficient that for-any component

Proposition.

Aj of A, the group algebra ZAj be regular coherent.

Note that no condition is asked of the building blocks or the structure
mapss. In the case of the more general splitting theorem with R coefficients,

one would correspondingly ask that RAj be regular coherent.

{A ring is called coherent if its finitely presented modules form an
abelian category$ it is called regular coherent if, in addition, each

finitely presented module has a finite dimensional projective resolution).
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The sort of arguments used in deriving the splitting theorem , also
gives information on this type of structure of rings:

ProEosition. Let G have & Ge«f«Ps structure with building blocks B and

amalgamations Ae For RG to be regular coherent, it is sufficient that the

group algebras RBi be regular coherent and that the group algebras RAj be

regular noetherian.

if G is a free group, or 2 2-mani-

The proposition says, for example,

fold group, then ZG is regular coherents

1 will now indicate how gofep. structures occur in nature. This

necessitates the notion of iterated gefep. structure. The main peint in the

definition is an appropriate transfinite recursions

Notationally, it is convenient to introduce classes of groups, Cm n?
T

indexed by pairs of non-negative integers in lexicographical orderings Bach

class contains the preceding onese. We abbreviate

c U c '

= c=U ¢ .
m n myn m m

Definition. (1} 5.0 contains only the trivial group
— 1

(2 & € ¢ if and only if G has a g«fePs structure with all puilding

blocks, B, and all amalgamations, A, in Cm, for some fixed m

{3) ifr G €¢C , then G € C, if and only if

a1l B, € ¢ _, for some fixed n, and
i m,n

all Aj EcC -1

(k) if G €C_, then & €cC if and only if all B, €c {here C
m myn i myn-1 my=1

L
is to be interpreted as Cm-i) .
is closed under taking subgroupses

Examples. (1) Cm,n

(2) ¢ is closed under extensions. (Proof: Let 1 > ker{p) @ F ; G = 1 be

exact, with ker{p), G € C. Let G € Cm n® The proof is by induction on (m,n)
s

Let G have a gef+Ppe structure with building blocks Bi, and amalgamations Ajc

Then F has a gefePe gtructure with building blocks p-i(Bi) and amalgamations

-1
P (Aj)- )
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locks p-i(Bi} and amalgamations

(The assertions under (1) and (2) will be obvious from the definition of

gefeps structure to be given in the next section).

{3) c,=¢ is the class of free groups.
- | 1,0
(&} If M is a closed 2-manifold other than the projective plane, then
m .
M € -::2’0

{5) There is a large class of 3-dimensional manifolds (esgey all compact

submanifolds of the 3-sphere} whose fundamental groups are in ¢, (and even

3

in C2 if the manifold has non-empty boundary)}, however, the 'n' may be quite
large. -

(6) A one~relator-group is in 02 if (and only if) the relator is not a
proper power, This can be checked from Magnus' analysis of these groups
{(note that the groups encountered on the way as building blocks, need not

be one~relator-groups). Consequently, if G is a one-relator-group, and its

relator is not a proper power, then Wh{G) = ﬁo(G) = O,

To conclude this section, we exploit the geometric picture to see
that the general type of g.f.p. structure can be reduced, in a sense, to two
rather special types. For, let X and Y be as in the beginning. We can break
X at ¥, and can then reconstruct X, by glueing, one by one, at the components

of ¥, and eventually taking a direct limit.

Each of the steps in the above procedure corresponds 1o a gefe.p.

structure in which (by abuse of the old notation)} the subspace Y is connected,

There are two cases left, according to whether X - Y is connected or not.

Denote by G, A, B (resp. By, Bz) the fundamental groups of X, Y, and

X-Y {or its components), respectively.

In the case where X - Y has two components , G is the pushout in the

diagram

159




In a classical terminology, G is the 'free product of B1 and Bz, amalgamated

at A ' 4, G =B, *, By in customary notation.

There is yet another description available, namely G is also the

pushout in the category of groupcids in the diagram-

U U
A A —> B1 82

! !

AXI —> G

Here 'U' is the sum in the category of groupoids, and I is the connected

groupoid with two vertices and trivial vertex groups.

In the case where X -~ Y is connected, let ¢, p ¢+ & 7 B denote the
two inclusion maps. Then G is the pushout in the category of groupoids in
the diagram

AUA“—"'B>B

| |

A X1 —> G

A classical terminology is not available for this construction. Logicians
have used it to construct groups with weird properties (unsolvable word
problem, etc.}s They sometimes refer to it (and also to a more general con-
struction) as the 'Higman-Neumann-Neumann-Britton-extension', cf. Miller's
book, It can be checked, incidentally, that for quite a few of the weird

groups in this book, our method shows their Whitehead group is trivial.
An explicit description of G is this. Let T be a free cyclic group,
with generator t. Then G is isomorphic to the quotient of the free product

B * T by the normal subgroup generated by
tala) 72 (gan”t, a €a.
In the next section, I will give the definition of g.f.p. structures
which is the most useful one to actually work with. The subsequent section

is mostly devoted to a discussion of the exotic term in the splitting

theorem. In the final section, some indication of proof is given for the
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ation of proof is given for the

splitting theorem itself,

Up to reformulation of some parts, essentially all of the present ma-
terial has been taken from a preliminary report which was issued in fall '69
in mimeographed form. I have not included here the full proof of the splitting
theorem, as I doubt if those details have any relevance te the conjecture

described in the appendix,

2. Generalized free product structures, revisited.

Let the spaces X and Y be as in the preceding section. Denote X the
universal covering space of X, and ¥ the induced covering space over Y.
Identify G (&~ nlx) to the covering translation group of X, acting from the

right.

The subspace ? induces on E a certain decomposition whose nerve is a
graph, T, on which G acts. By a 'graph' we mean here a certain combinatorial
device, consisting of its set of vertices, Io, set of segments, Id, and in-
cidence relations ('initial vertex' and 'terminal vertex! of a segment, de~
noied vi(s) and vt(s), respectively). The elements of ™ correspond to the
components of E - ?, and the orbits IO/G correspond to the components of
X - Y. Similarly, the elements of Pi correspond to the components of ?, and

the orbits Ti/G correspond to the components of X,

As the realization [T} of I' can be embedded as a retract in X, I’ must

be a tree (i.e., the i-complex |T] is connected and simply connected),

Another property is obtained from the 'two~sidedness' of Y in X,
namely the action of G on I preserves local orientations. By this we mean
R 1 R : Cesa
if g €G and s €T7, then (s)g = s implies that g preserves the initial
vertex of s. Consequently we can assume the segments of I are oriented in

such a way that G preserves all orientations. We now define
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Definition. A generalized free product structure on a group G consists of a

tree I and an action (from the right) of G on I', preserving local orientat-

ions,

Remarks. (1) This is of course equivalent to our original definition. To
recover that one, we need only construct Eilenberg~-MacLane spaces K(Gs,i) and
K(Gv,i) (corresponding to the stability groups of segments and vertices, one
for each orbit), construct mapping cylinders and glue as prescribed by the
quotient graph I'/G. Since for the component YO of Y, the map ﬂiYO ad n1X

is a monomorphism, 1T YO is indeed detected as the stability group of a cer-

1
tain segment,

(2) By our definition of g.f.p. structure, the 'set of g.f.p. structures on
a group' is a certain contravariant functor, indéed a sum of representable
ones. There is no corresponding assertion if wé restrict attention to the tws
special types of g.f.p. structure considered at the end of the previous

section,

We will now analyse g.f.p. structures a bit. By a basic tree in T we
shall mean a subtree with the property that its set of vertices contains one
and only one representative of every orbit IO/G. A basic tree exists, e.g.,
one can lift a maximal tree from I'/G. We choose a basic tree and keep it

fixed henceforth, it will be denoted I‘s.

A segment in I is called non-recurrent if it is equivalent, under the
action of G, to a segment in Ts (this notion depends on the choice of the
basic tree, in general). Otherwise, it will be called recurrent. There exists
a basic set of recurrent segments, denoted T:. This means, Pi contains one
and only one representative of any orbit of recurrent segments, and if
s € r:, then the initial vertex of s is in r$ (the terminal vertex of s is
then necessarily not in r#). We fix a group element, denoted ts’ with the

property that ts-1 carries the terminal vertex of s inte [,.

$

The element tS Jjust described, acts necessarily without fixed points

on T'. This can easily be seen from the existence of the distance function
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» and any vertex v of A, we let Ai(v) denote the set of

those segments in A which are incident to ¥+ Then clearly, for any v € To
¥

vi . B
the set I"(v) is in one-one correspondence to the union of cosets

1
tL Gs\Gv y 8 € Ié .
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3. Modules over generalized free product structures.

The centralinotion is that of a certain diagram which I call a

I‘I_ 0 - r)
object, and which I will now describe, after some preliminaries.

Following the notation set up before, we denote building blocks of the

gefups structure the groupoid

and amalgamation the groupoid
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A

1 1
USGS, sEI‘gurr,

Let ModRG be the category of modules over the group algebra RGv’
v

where R is some fixed ring with unit, We define ModB to be the restricted

product

ModB

X, ModRGV , v € ,

L3
and similarly

- 1, pt
Mod, = X_ ModRGs » s ETLUT

e s s N .
If M Mod,, then M ®B G is defined: If, say, M = Xv M, M € ModRGv '
v € Ig s thén

M®BG @ vErO
v

M & e

v RG RG ,
v

It is clear from the definition that, as an abelian group, M ﬁb G is a direet
sum, indexed by all of IO,
Me, 6= B , ver®,

If g € 6 is such that (vo)g = v, where v

€ s
o Ig, we can write

Mv
0

v %ra

Yo

We can also consider Mv as a module over RGV.

Similarly, if N € Mod,, then N ®, G is defined, and there is a direct

sum decomposition of abelian groups,

N 6= D n , s € rt
s s

Definition. A I'-object consists of modules N € ModA and 4 € ModB, and a map

over G,
s M -
1+ M @b G N 83 G

satisfying: if {for any v and s) the restriction of 1 to Mv has a non-zero

projection to Ns’ then the segment s is incident to the vertex v.

A map of T-objects is a pair of maps, one in ModB and one in ModA, s0

that the obvious diagram commutes. The resulting

category is abelian since

nf
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1
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ng category is abelian since

Hsatisfying the same sort of condition. The duality functor Hom

.{%he functors GEG and ghG are exact,

Dually, & I*-object consists of modules, and a map
[
M Gb G N Gh G

RG( +RG) maps

E[-objects to T*—objects and vice-~versa (however, in crder to stay with right
[-obJ ) [

EmodU1eEv we may have to replace the coefficient ring by its opposite).

We can be somewhat more explicit about the structure map

. -
1t M Gh G N 81 G

in a I-object. Let us write

for the composition

&, n

s' - N L]

- -
H e%' Mv' s s

v

T

for fixed v, those components assemble to an (arbitrary) RGv—map

1
Then t is of course determined by its components et Y € s € Ié: and
L

L 4 @s N, s€I‘1(v).

Definition. A I~module is a T-object 1: M 8% G *N Qh G satisfying that 1 is

an isomorphism. The resulting category is denoted Modr; it is abelian.

A Tumodule is called elementary if N is finitely generated projective
’ i
and, in addition, at most one of the component maps s v € To, s € Té, is
k4

not the zerc map; this tv must then itself be an isomorphism,

L]
A T'-module is called triangular if it has a finite filtratibn with

elementary subguotients.

We denote KO(Modr,R) the class group of those objects in Modp which
are made up of finitely generated projective modules, the relations coming
from all exact sequences (not just split ones). Using elementary I'-modules,

we obtain a map

it X, (RA) ® K (RA) = K, (Modp,R)
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12

which is a split-injeqtion by an argument below (the construction of the
modules denoted P(s,v)}. The cokernel of j is denoted %, This is the W that
appears in the splitting theorem. The definition of N is related to maps
which are 'nilpotent' if this term is taken in a suitable sense. The vanish-
ing theorem for ® will come in in somewhat disguised form: under the hypo-~

thesis that RA is regular coherent, the proposition below implies that the

above map j is an isomorphism.

We now proceed to the analysis of I'-modules. Let s be a segment of T,
and v a vertex incident to s, Define T; v to be the maximal subtree of T
)
vhich contains v but not s. Given s, there are two such‘trees, Ts v (s)
WV,
- i
and T;’v (s)
t
Given M € Mod_, then M ® G, considered as a module over RG_, splits
B? B s
naturally as a direct sum
ﬁ(s,vi(s)) @ ﬁ(s,vt(s)}

where, as an abelian group,

v €19

ﬁ(s,vi(s)) = e% L 8,v, (5) ¢

v

Similarly, if N € ModA, then N Gk G, considered as a module over RGs’
splits as
: N(s,v,(s)) @ N @ N(s,vt(s))
where,

as an abelian group,

N(s,v,(s)) = EBS, N, , s' €T!

. .
s s,vi(s)

If now 1: M Gh G?N® Gisa T-module, then
1(E(S,Vi(5))) < ﬁ(s,vi(s)) @ N_
and
(s, v, () € Fils,vi())
Whence the canonical splitting
N, = P(s,v,(s)) @ P(s,v (s))
where P(s,vi(s)) = Im(ﬁ(s,vi(s)} > ﬁ(s,vi(s)) @ N2 Ns)

e ker(ﬁ{s,vi(s)) = i(s,vi(s))) ’
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If again t: }

of RGv-modules in tt

M oe &
v S

Now the restriction

Hence we obtain a m:

M & I P
v S

whose restriction tu

the restriction to
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:he construction of the
>ted M. This is the R that
»f T is related to maps
suitable sense. The vanish-

sed form: under {the hypo-

i)n below implies that the

' 5. Let 5 be a segment of T,

4

'

| 1e maximal subtree of I'

| ) such trees, I
. ? S,Vi(s)

a module over RGs’ splits

v,(s) *®

lered as a module over RG_,
=]

:))

s,vi(s)

| en

i)

D) B N 2N
B8 s

N—

),

13
and analogously with P(s,vt(s)).

On the other hand, if v is & fixed vertex, and s a segment incident

to v, let us denote TV s the maximal subtree of I which is incident to s, but

*

does not contain v. We have TV s = rs k> where v is the other end point of s.
1 ]

As before, let us denote ri(v) the set of segments of I which are incident

to v. Let r;ep(v) denote a set of representatives for the gquotient set

ri(v)/Gv; eegey if v € rg, then Ii(v) is such a set of representatives.
Given M € ModB, then M 8% G, considered as a module over RGV, splits

naturally as a direct sum
: ’ 1
e P w
M © & Mv,s), s €T (V)
where, as RGv-module,
Miv,s) = M(s,v) ®RGs RG_

H{s,¥) is defined as above, and ¥ is the other end point of s.

Similarly, if N € ModA, then N @, G, considered as & module over RGV,
splits as

@ N @

o oo . |
® v €T .
s s RG_ RG, eé N(s,¥) 8%G RG, , = rep(v)
If again t: M 8% G >N Gh G is a I-module, we can write ! as a map

of RGv-modules in the form

M, © €Bs M(s,v) ®RGS RG, = ﬂL/s Ny ®RGS R, & j\% N(syv) ®RGS RGy

s € Tt (v) .
rep

Now the restriction to the second summand is of a type considered before,

Hence we obtain a map

n

. - . &
Mv ¢ &i P{s,v) Gth RGV a% Ns gth RGV

@, pls,v) G ko, @ D P, ®aa_ RS

whose restriction to the second summand is the obvious identity. Therefore

the restriction to the first summand is the sum of an isomorphism

. -
K, Mv 6% P(s,v) gth RG
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and some map

. -5 S
At M 6% P{s,¥) Shas RG, .

For fixed s € Tl (v), the composition A o# ~1 induces an RG ~-map
rep v v v
P(s,v) ®s RG, ° & p(s',¥) ® RG st €Tt (v)
' 6, v -y ' RG v ? rep
which in turn is determined by the induced RGs-map

3 ~ 1
us,v‘ Pl{s,v) -~ €%| P(s',v) Sth RG , s' € Trep(v).

The target of this latter map is in fact slightly smaller since the composit~
ion of Mg o with the projection to P(s,¥) is zero (inspection of the defin-
¥

itions shows that this composition can be factored through M(s,v)).

The map now reads
Y : P(s,v) = P(s,v) ® ﬁé e P prst,v) @ RG
5yV * ' RG_ v at ! RG, v ’
s* € T1 (v) s' £ s
rep L] )

A
where RGV(S) is the summand in the canonical splitting of RGs9bi—modules

”
RG = RG @ RG (s) .
v s v

It is clear now that there is an (exact} functor

N -
F: ModA x ModA NodA X ModA

which depends only on the g.f.p. structure (in particular it does not depend

on the choice of the sets Tiep(v)) so that the collection of maps

1 1
vs’v , s € T$ U T; ,

assembles to a map

v: P 2 F(P)

where the first component of P € ModAX ModA is given by the collection

P(s,v,(s)), s € 1‘; u I‘i.

The original I'-module is determined by the pair (P,V}. Conversely,

14

?;
[
|
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that the map V be nilpotent
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Then we call V nilpotent if

Remark. If the g.f.p. struc

that we are in the situation

potent V in our sense is jus

We will not prove her
from fhe lemma below. We not
then x € P1 (the first term

y € M_ so that 1(y) = x.

Given v: Q@ = F{Q}, it
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v(Qj+3

We say it is of finite lengl

generated, if all the Qj are

The filtration origir
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need not itself be finitely
exists some finitely generat

original one, and is of the

We will now describe
finitely generated nilfiltr:

finitely generated projectir

Then we can find maps uj: U



RG_
v

. .xn "1 induces an RG_-map
sk, v

i
RG st € rrep(v)

. 1ap

1
i, st €TL, ().

.y smaller since the comgosit-
-0 {inspection of the defin-

-ed through M{s,v)).

61' P(s*yv) @th RG, 4

litting of RGS-bi-modules

functor
X ModA

particular it does not depend

collection of maps

given by the collection

:he pair (P,V). Conversely,

+

a necessary and sufficient condition for (P,V) to arise from a I'-module, is

that the map Vv be nilpotent in the following sense.
Define a filtration 0 = Po c P1 C ase © Pj C eee © P by the rule

'Pj+1

-1
v (F(Pj)) .

P -

Then we call ¥V nilpotent if LFPj

Remark. = If the g.f.p. structure comes from a product with the integers (so
remarxs
that we are in the situation of the classical Kiinneth formula} then a nil-

potent V in our sense is just a pair of nilpotent maps in the usual sense.

We will not prove here that Vv is nilpotent as this follows directly
from the lemma below. We note the fellowing interpretation of V. If x € P{s,v)
then x € P, (the first term of the filtration) if and only if there exists

y € Mv so that 1{y} = =x.

Given W: Q - F(Q), it is convenient to consider a more general type of

filtration, 0 C Q@ C ..o © Qj C +.ee © Q, which we call a nil-filtration if -
c =Q .
V(Qi+1) F(Qj) s and U Qj Q

We say it is of finite length, q, if Qq = Q, and we say it is finitely

generated, if all the Qj are.

The filtration originally derived from a I'-module, dencted .. C Pj T ae
above, will certainly be of finite length if N is finitely génerated, but it
need not itself be finitély generated. It is clear nevertheless that there
exists some finitely generated nil-filtration which is a subfiltration of the

original one, and is of the same length.

We will now describe our resolution argument. Let .. C Qj C +s be a
finitely generated nilfiltration of length g, associated to a [-module. Pick

finitely generated projectives Uj in ModAthodA, and surjections

U, = aq, =1 .
b QJ’J

Then we can find maps ugs Uj - F(Uj-i) so that the diagrams
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1§

u. = ru,
=

| )

. ™ F(Q,
o, (Q;_

.

4!

commute. Define a filtration 0 C VI <

eee &V = V_ b
q + by

V. = U

@-.. $ . -
i 1 Ul

It is a nil-filtration for the map

viV 2 FV), v = IG “j . i
This map is associated to a certain triangular I'-module in which the A—module]

is V, considered as an A-module via @®: ModAx ModA. Furthermore there is a

surjection of erodules, compatible with the surjection of nil-filtrations,

v, = Qj' Define ., © W& c

4 +« to be the kernel filtration, it is a nil-

filtration for the map w = vfw, where W = Wq. If Q1 was projective to begin

with, we could have chosen V1 = Qi’ and the new filtration would be of

shorter length,

Now assume the amalgamation A is coherent,

and Q is finitely presented

Then, as fup ModA is an abelian category, it follows that Qj and W, are

finitely presented. Therefore we can repeat our construction using the

filtration Wj .

On iterating the procedure we are building up,

projective resolution of Qi' Therefore, if A is regular coherent, we can

eventually reduce the length of the filtration, and 80, by induction on

this length, we have proved:

Proposition,

has a resolution by triangular T-modules.

If A is regular coherent, then any finitely presented [-module

‘.
in particular, a i
|
|
|
|

(By abuse of language, we have called a I-module ffinitely presented'

if the A~module involved is. Note that the main interest of the proposition

is in the case where this A-module is actually projective),

Above we referred to the following lemma. The above application of the

lemma just exploits
triangular T-module.

ular I-modules as we

Lemma. Let t: M Gh

(1) Let y ENS, s €

from a triangular I-

(2) Let x € M, v €

T~module.
Proof. Ad (1). Let

finite subtree of I,
free modules over th
vertex and segment i
segment s, Each of t}
it sends the basis e)
each incidence relati

The definition of the

Ad (2), This follows

k. Mayer Vietoris pr

Let L be a G-n

Yietoris presentation

the right part of whi

Bually, a righ

involving a I'*-~object
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lemma just exploits the obvious fact that a nil-filtration does exist for a

triangular I-module. The lemma says that there are as many maps from triang-

ular T-modules as we can expect at ali,

1 vy by ) Lemma. Let t: M 8, G N 81 G be any I'-object,
Dy . (1) Let y € N, s € ri, and y € Im(1), Then y is in the image of some map

from a triangular I-module.

ZG uj . . {(2) Let x € M, v € r°. Then x is in the image of some map from a triangular
Temodule

T-module in which the A-module :

od,. Furthermore there is a . Proof. Ad {1). Let y = Ev 1(zv) vz, € M, v € a® ; where A is some

urjection of nil-filtrations, finite subtree of I, The sought for triangular I'-module is made up of rank-one

filtration, it is a nil- ; free modules over the appropriate rings. There is one basis element for each

If Q1 was projective to begin vertex and segment in A, and there is an additional basis element for the

v filtration would be of ' segment s. Each of the components of the structure map is an tidentity! (i.e.,

it sends the basis element to the basis element}, and there is one such for

. L. each incidence relation in &, and one additional one into the extracomponent.
1ty and Q is finitely presented,
2 The definition of the map is automatic,
‘llows that Qj and W, are
construction using the Ad {2), This follows from (1) by the same sort of splicing argument.

ng up, in particular, a

4. Mayer Vietoris presentations of G-modules.

regular coherent, we can

and so, by induction on Let L be a G-module (more precisely, an RG-module). A left Mayer

Yietoris presentation of L is a short exact sequence

* finitely presented I'~module % o 2 L 2 M ® 6 2 N ® 6 2 o

the right part of which is a rlcbject, as defined in the previous section.
“module tfinitely presented!
Dually, a right Mayer Vietoris presentation is a short exact sequence

interest of the proposition

O 2 N® G ®* M® G 2 1, 2 g
rojective), T A B

involving a I'*-object.
The above application of the
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A left or right Mayer Vietoris presentation is called f.g.p. if all
the modules involved are finitely generated projective, F.g.p. left and right
Mayer Vietoris presentations are interchanged by the: duality map Hom

RG

{with the usual proviso on the coefficient ring R)., Hence it is sufficient to

( 4RG)

concentrate on either one. For us this will be the left Mayer Vietoris pre- (

sentations, abbreviated MV presentations henceforth.

Remark. The concept of MV presentation is an axiomatization of a Mayer
Vietoris type situation that occurs if one looks at chain complexes in the

universal cover of a pair X,Y as considered in the introductory section,

Namely, if L is a chain complex over G ~ T_X, then 'subdividing at Y !

1

produces an MV presentation of chain complexes

O"L"M@BG’:N®AG"’0.

P

After the subdivision, L will have been replaced (up to a dimension shift) by
the mapping cone C{1}. And the Mayer Vietoris segquence of chain complexes

that one is accustomed to read off, now appears as the right Mayer Vietoris

presentation which is the sequence of cones

o - C(li) i C(la) * c(1) * o }

where t1 is the trivial inclusion O - N @h G, and . i
1.: -

ot M@ @ Ng GONB® G |

is the map whose components are ti and 1t in the canonical sum decomposition [

of 1. The B-structures on the two copies of N 81 G come, respectively, from
the two natural maps A = B, The proposition below is the 'subdivision lemma'

that one would naturally expect. L

We will now verify that there exist quite a few MV presentations, and
maps thereof, Our main tool will be certain 'standard' MV presentations,
defined for a free G-module; part of the data will be a basis of the G-modulé;

P

in the description we will assume that it has cardinality one. {Inspection !

shows that the construction below can actually be carried through for any
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G-module equipped with a reduction to ModA). In describing free modules of
the type M eh G, it is sometimes convenient to use a basis which does not

come from ModB.

Let F be a free G-module, with basis element f. Let A be a

finite subtree of I, Then the standard MV presentation of F,f, associated

to &4, is the fellowing
(1) ™ Gb G is the free G-module on basis elements ﬁv' v €480
(2) N ®, G is the free G-module on basis elements fi_, s € at

{3) the G-struéture on M G% G is such that Ev generates a free RGv-moduie;
similarly with N 83 G

{4) the structure map #: F 7 M &, G is given by R{f) = Zv ﬁv , v € a°

the sfructure map 3

(5)

M 8% G 2 N 81 G is given in terms of its compo-

nents 1 M 2 N by
ves ¥ 8
t (n)=n_, if v = v, (s), the initial vertex
STV s i
1 &) = % - nal
v,s(mv) ) if v vt(s),.the terminal vertex
1 (%) =0, if v is not incident to s
v,s ¥V

{6) to define M,

in order to describe the reduction of M Gh G to ModB, ie€ey
we must pick representatives of coseis for the various inclusions involved
in the g.f.p. structure, so we assume this has been done once and forever.
It is crucial here that we need only choose representatives of cosets for the
jnclusions of amalgamation groups in building block groups, and the elements
denoted ts in section 2, and that this choice determines representatives of

all the cosets in G (this statement is the general version of the existence

of the usual normal form for an elgment of a free product with amalgamation,
it is easily proved by the use of the distance function on I). In particular
the

e

1

s -1 O
then, we have picked for every Vv € ° an x, € 6 so that (v)x € T$ s
basic tree. By definition now, M is the B-module whose component at v'
= v,

is the direct sum G%_Mv-xv_i, taken over those v € 2% for which (v)xv-
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- -1 : . .
In terms of the basis elements o = mv-xv {which live in M}, we could

now redefine H(f) =L m ex
vy v v

(7) the reduction of N Gh G to ModA is described similarly.

Before proceding, let us note that for any MV presentation (or even

T-object), there is a canonical decomposition

where li is .defined so that its non-zero components are those tv,s for which
v = vi(s), the initial vertex {(this decomposition was used in the remark
above). For the standard MV presentation just described, we have the import-
ant property

() =S R, s € At .

Proposition. Let 0 2 L 7 M' &, G N @ 6 2 0 be any MV presentation. Let
F be the free G-module on the basis element f, and let g: F 2 L be any G-map.
Then for suitable 4, ?he standard MV presentation of F,f, associated to b,
admits a map of MV presentations, inducing g. Moreover, this map is uniquely

determined by gd.

Proof. By definition, M' @% G is a direct sum

O
' € .
EBVMV«@RG RG , v €T
v
Let Ev denote the projection of #H'sg to M"r ®RG RG. Then we can write
v

gv(f) = Ew v
where a_ €M', x_ € G is a representative of a coset G \G as chosen before,
: W W W v
and w € T° runs through the vertices with (w)xw-i = v, From this formula
and the fact that

w(£) = T, m_-x w € a0

wow oow ! '

it is clear that the required B-map can be defined as soon as the finite
tree A has been chosen so large that it contains all the vertices w for

vhich a_ # O.
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: Vo From this formula
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1 the vertices w for
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it
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Next we define the required A-map, ) directly, by decomposing

similarly the map

ToK'vg @ -> '
1ioK a F N ®A G

using
- 1
1 = = . -
i(K(f)) Es n_ Es nex 4 8 € b
and it is

The sum decompositions involved in our construction were canonical,

now easily seen that the maps g, 9p9 g, are compatible as required. We record

the uniqueness part in a separate lemma.

Lemma. If in the above proposition, ¢ is the zero map, then 95 and 9y must

be zero maps, too.

Proof. It is enough to treat 9,0 Since the source MV presentation is stand-

ard, we have

t, () = I nex,

and on application to this element of the map g, ® G, no cancellation is

possible between the individual summands.

I will now indicate how the splitting theorem can be obtained. Follow-

_ing Whitehead's original treatment, a torsion element can be represented by

a based free acyclic chain complex. The relations come from certain short

exact sequences, called elementary expansions.

Using our machinery of MV presentations, we can novw say that any chain

complex over G comes, via the forgetful map, from a chain complex of MV pre-

sentations {with bases suitably). And we can also say what, in the framework

of MV presentations, corresponds to elementary expansions.

Technically, the analysis boils down to situations which are blown up

versions of the following simple prototype. If we have a chain complex which

on the G-level (i.e., apply the forgetful map to ModG) is acyclic, there is

still no reason that it be acyclic on the A-level (a T-module is an example

for this). So we can try to make it acyclic on the A-level as well, using
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simple operations. The details are standard and there are no surprises: one
just goes on killing homolegy groups, working up in dimension. It turns out ;

that there is a global obstruction, and this gives the connecting map.
To illustrate the technigue, we prove l

Proposition. Let G have a g.f.p. structure with building blocks B and

amalgamation A,

(1) If gl.dim.Mod, < n-1, and gl.dim.Mod

= im. < ne
4 S n, then gl.dim ModG =n

B
{2) 1If the building blocks are ccherent, and the amalgamations noetherian,

then G is coherent.

Proof. Ad (1). Let L. be a free (n-1)-dimensional resolution of
coker(L1 - LO). By the subdivision lemma, there is a complex of standard
MV presentations over L.,

¢ 2 L. 7 M, Gh a 2 N, ® & + 0 .

Since n¢ conditions had to be met in dimension 0, we can assume No = 0. Now
the last lemma of the previous section tells us that we can add a triangular

T-module (or maybe a big sum of such) to the 2-chains to kill
=Y
Im(H, (M, 8, ) H (N, @, &)}

and hence Hi(M' 8% G). Again it tells us that we can kill Hz(N. @k G}, and so
on. But once we killed Hn_z(N. Gh G),.we know that (using H_(N. @h G) =~

. . - R . s
H,(N.} ®, 6, etc ) ker(Nn_1 Nn-z) must be projective since we resolved

Hi(N.). Similarly, ker(Mn_1 - Mn_z) is projective, and we are done.

Ad (2), By a bit of diagram chasing, the assertion is reduced to proving
that ker(L1 e Lo) is finitely generated once L, and L, are finitely generated
free RG-modules. Again the subdivision lemma gives us a map of standard MV

presentations over L1 hed LO' We regard it as a complex in dimensions 1 and O,

and can assume as before that NO = 0, Arguing as before, we can introduce

-,
v

a big sum of triangular ['-modules into the 2-chains in order to kill

Im(#, (M. & G) - H,(N. ®, 6)) .
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re is a complex of standard
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n 0, we can assume No = 0. Now

us that we can add a triangular

2-chains to kill
H,(N. & G))

we can kill HZ(N‘ 83 G), and so
that (using H,(N. ®, ¢) =~
rojective since we resolved

tive, and we are done.

:ertion is reduced to proving

L1 and L0 are finitely generated
gives us a map of standard MV

1 complex in dimensions 1 and O,

J as before, we can introduce

-chains in order to kill

H (M. ®, G)) .

This time we would like to have N, finitely generated. But Im(N2 2 Ni} is

finitely generated by the noetherian hypothesis. Therefore some finite part
of the big sum is already sufficient for our purpose. We have achieved now
that the sequence

H, (N, &, ¢) - H/(L.) ° H, (M. & &)
is short exact. But the base changes are exact. So the extreme terms can be
rewritten HZ(N') ®, G and H1(M') 8, G, respectively. So they are finitely

generated by the coherence hypothesis, and we are done.

5. ARBendix.

Let E(C) denote Quillen's K-theory associated to the category-with-~
exact-seguences C. Here C is assumed to be equivalent to a small category,
and, by definition, K(C) & (homotopy equivalent to) £l Q'{C), the loop space
of the nerve of the category Q'(C}, where Q'(C} is small and equivalent to
Q{c), and Q(C) is constructed from certain diagrams in C, involving the

notions of ‘'admissible monomorphism’ and tadmissible epimorphism'.

If MV denotes the category of MV presentations over a gefep. structure
{of a group G, with building blocks B, and amalgamations A), we define Q(MV}
by the rule
(1) an identity map is admissible if all the modules involved in the object

are finitely generated preojective
(2} an epimorphism is admissible if its source and target are

{3) a monomorphism is admissible if its source, target, and cokernel are.

Similarly, we define Q(Modr).

There is a natural embedding

whose composition with the natural projection, induced from the forgetful map,
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KQ) > K(Mod)

is trivial.
There is evidence that the following should be true

The seguence

Conjecture 1.

K(Modp) = K(MV) > K(Mod )

has the homotopy type of a fibration, or equivalently, the long sequence of

homotopy groups is exact.

(It is not conjectured that the map K(Mv) *.E(ModG) is locally fiber

homotopy trivial: indeed this is almost certainly net the case, Similarly

below).

For the amalgamation A, define

K(Mod,) = Xj l(_(ModAj} ,

the resiricted product (the direct 1imit over the finite products) over the

component groups. Similarly with E(ModB).
There is a natural embedding _
K(Moay) = K(Mv)
so that the composition with the natural projection
K(Mv) = K(Med,)
is trivial, The latter map has a section {in fact, there are three obvious

such).

Conjecture 2. The sequence

K(Modp) = K(MV) = K(Mod,)
is a homotopy fibration. Consequently

KMV} = K(Mod,) X K(Moed)) .

From the retraction Modn~ = Mod, X Mod we can conclude that
T A A?

K(Modp) = K(Mod,) X K(Mod ) X N ,
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defining N. (And T N = R, our old exotic term). Combining conjectures 1 and 2,

0_

and noting that two terms cancel, we obtain

Conjecture 3. There is a homotopy fibration

K(Mod,) x N = K(Mody) - K(Mod.) .

Concerning the exotic space N, there is the vanishing
Conjecture &, If A is regular coherent, then N is contractible.

Conjecture & happens to be true, for under the regular coherence
hypothesis, we can replace in the definitions of both‘g(ModAx‘ModA) and
E(Modr), respectively, finitely generated projectives by finitely presented
modules, and can then conclude that the two spaces are equivalent. This uses
the resolution of I'-modules by triangqlar ones, and Quillen's theorems on

reduction by resolution and devissage, respectively.
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Waldhausen, Friedhelm

Whitehead groups of generalized free products.

Algebraic K-theory, II: *“Classical’’ algebraic K-theory and connections with arithmetic (Proc.
Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 155-179. Lecture Notes in Math., Vol.
342, Springer, Berlin, (1973).

Suppose that X is (say) a CW-complex, Y a bi-collared sub-complex, Y; the components of Y,
and X; the components of X — Y. Suppose that the natural maps Y; — X induce monomorphisms
on m1(Y};). Then G = m;(X) may be obtained as the generalized free product of the groups in
the union B = | Jn(X;) with amalgamated subgroups in the union A = | Jm(Y;). If F is any
functor from groups to abelian groups sending inner automorphisms to identities, define F(4) =
®F (m(Y;)), F(B) = @F(m(X;)). The author proves that Wh(A) — Wh(B) — Wh(G) —
N R"O(A) — f{o(B) is exact for some abelian group 91. Among numerous consequences is the
vanishing of Wh(G) for G the group of a knot or link in S°.
{For the entire collection see MR0325308 (48 #3656b).}
Reviewed by L. Neuwirth
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