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SELE-LINKING AND THE GAUSS INTEGRAL IN
HIGHER DIMENSIONS.

By James H. WHITE.*

Introduction. Let M be an oriented compact differnetiable manifold
of dimension n (with or without boundary) and let ¢: M —> S* be a differen-
tiable map of M into the unit sphere of dimension n. Let dO, denote the
pull-back of the volume element of S» under ¢ and O, the volume of the S™.
Then

1

A dOn
0% M

is called the Gauss integral for ¢. In this paper we shall prove a number
of differential topological and integral geometric formulas for submanifolds
of Euclidean spaces which arise from the application of this integral to
certain geometric constructions.

The Gauss integral has numerous applications in geometry. In case M
has no boundary, it gives the degree of ¢. It was used by Kronecker to give
a formula for the intersection number of two submanifolds of Euclidean space.
In case M is an immersed hypersurface and ¢ is the Gauss map, it gives the
total curvature of M. In connection with this, Chern [3], in his work on
the Gauss-Bonnet theorem, expressed the Gauss integrand as the exterior
derivative of a differential form. Gauss himself used the integral in his
investigation of electromagnetic theory to give a formula for the linking
number of two spaces curves. In fact, if C; and C, are two closed disjoint
space curves and if ¢: €y X C;— 82 is the map which assigns to each (z,y)
the unit vector from z to y, then the Gauss integral gives the linking number
of C; and C,. (If C, and C, are not disjoint, however, the linking number
is indeterminate.) In [2] Cilugireanu raised the question of the significance
of the Gauss integral for this last map ¢: C; X C,— 8% if 0;=(C,=C.
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He found that if C is differentiable of class C* and has non-vanishing curva-

ture then
if 40 +if +ds — 8L
drJexe F ) e

is an integer, where = is the torsion. He also worked out a number of geo-
metric interpretations for this integer. In [12] Pohl gave a much simplified
proof of Cilugireanu’s results using the space S(C) of secants of C, and he
called the integer SL, appropriately, the self-linking number of the curve C.
This work was the starting point of the present paper.

Pohl’s approach can be generalized by using the space of secants S (M)
of an n-dimensional differentiable manifold M to give a higher dimensional
version of Cilugireanu’s formula. (This approach is summarized in Appendix
B.) However, we have found a new approach to these formulas which gives
a much greater variety of results. Instead of using the space of secants of
a differentiable manifold M, we introduce the space S(M,N) of secants of
a differentiable manifold N relative to a submanifold M and study differential
forms on it. A striking feature of our results is that in spite of their diver-
sity they all follow from a single main equation.

Section 1 deals with the definition of S(M,N) and the proof of the
main equation. In Sections 2 through 5 we consider the case of an n-
dimensional submanifold M of Euclidean (2n - 1)-space. If n is odd, we
define the torsion of M, generalizing the torsion of a space curve, and prove
the generalized Célugireanu formula. If n is even, we show that the terms
in Cilugiireanu’s formula are zero, but our construction leads to differential
topological results. We show that if v is a normal vector field on M (for
example, the mean curvature vector field), then one-half the Euler charac-
teristic of the subbundle of the normal bundle complementary to the sub-
bundle of lines spanned by the vector v is equal to the negative of the linking
number of the submanifold M with the submanifold moved a small distance
along the vector field v.

The method of proof in these sections relies heavily on the use of
differential forms, in particular, the forms introduced by Chern in his intrin-
sic proof of the Gauss-Bonnet formula. We show, in fact, that these forms
actually arise in a natural and geometric fashion.

Section 6, which contains differential topological results, deals with a
generalization of the even-dimensional case mentioned above. Suppose we
have an imbedding f of an n-dimensional differentiable manifold, n even or
odd, into Euclidean (n--s)-space, and suppose there exists an oriented
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k-plane subbundle NV of the normal bundle such that 0 <s—k=n and s—Fk
is even. We define the mormal intersection locus to be f(M) N (N-the zero
section of N). Then we show that the Poincaré dual of this locus is the
Euler class of hhe (s—k)-plane subbundle of the normal bundle comple-
mentary to the k-plane subbundle. This result is closely related to the work
of Lashof-Smale [9].

Section 7 is concerned with the case in which M is the boundary of N,
the most striking result being one for curves and surfaces in ordinary space.
Let C be a simple closed curve which bounds a compact surface immersed
in E5. Let a be the angle between the surface normal and the binormal
vector of the curve at the points of C. Let SL be the self-linking number
of the curve and I the sum of the indices of the non-trivial intersections of
the curve with the surface. Then we show that

Oifda=SL+1.
fmJ C

Section 8 introduces the concept of the Gauss integral for submanifolds
and deduces further formulas. Section 9 proves a higher-dimensional version
of the Fenchel-Jacobi theorem to the effect that the total torsion of a closed
spherical space curve is zero. Finally, Section 10 deals briefly with deforma-
tion theory, showing the invariance of the self-linking number under non-
degenerate isotopy.

The author wishes to thank his advisor, W. Pohl, for his helpful guidance
and encouragement during the preparation of this paper.

1. The secant manifold S(M,N) and the main equation. We begin
by recalling the definition of the abstract space S(J) of secant directions
of a differentiable manifold M with or without boundary. If M has no
boundary, S(M) =M X M —DU T(M) where D= {(m,m) € M X M} and
T (M) is the space of oriented tangent directions of M. S(M) has been
constructed in a canonical fashion by Pohl in [11]. If M has a boundary,
he extends M a bit beyond its boundary to obtain an open manifold M* and
defines S (M) to be the closure of M X M —D in S(M*). In this case S(M)
is essentially the same as above, i.e., S(M) =M X M —DU T (M) ; how-
ever, we understand that, at points m of the boundary, T'(M) at m is to be
taken as T'(M*) at m.

Let N—N¢ be a differentiable manifold of dimension ¢ possibly with
with boundary and let M = M be a closed submanifold of dimension n(n = q)
with no boundary. We define S(M,N) to be the closure of M X N — Dy
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in S(N), where Dy = {(m,n) € M X N | m=mn}. It follows from the con-
struction of (V) that

S(M,N) =M X N—DyUMXNUT)ux,

where T'(N)y is the restriction of T'(N) to M, and where we understand
that, if M is a part of the boundary of N, T'(N)x consists of T(M) and
tangent directions of N pointing to the interior of N from M. S(M,N) is
a manifold with boundary M X N and T'(N ).

Let g be a smooth C® map of N into oriented Euclidean (n - ¢)-space,
Era, guch that g is a C® imbedding (or possibly immersion in the case
N = M) in a neighborhood of M. In case N has boundary, we extend N a
bit beyond its boundary to form an open manifold N* and then extend the
map g to N*. From now on we assume M and N are compact.

We denote the restriction of g to M by f. It is quite possible that g(&V)
and f(M) may intersect in points other than the obvious intersection. Such
non-trivial intersection points will be denoted by I, i.e.,

I={(mn) € MX N | ms&n, g(n) =f(m)}.

By means of the Thom Transversality Theorem it can be shown that, under
a small deformation of g, these intersections may be made transverse. Under
such a deformation the geometric entities we shall be discussing vary con-
tinuously. Hence we shall assume that the intersections of I are transverse.
Because of the compactness of f(M) and g(M), they will be finite in number,
say . We denote them by (m@,n®), a=1,- - -,r. We surround these
points by disjoint ‘boxes’ of small width e

B,= {(m:n) = (’m'i)nl) €EMXN—Dy I | My — m;@ l é%'
[nj—nf® | Sei=1,- - -,n;j=1,- - -, q}.
We define a map
et S(M,N) —I— Swed,
where S§m+¢-t is the unit (n - ¢—1)-sphere in E**2, For each

(m,n) € M X N—Dy—1,

we set

 g(n)—f(m)
(1) =Ty —F(m)] "

For each t € T(N)u, we set e,(t) = regarded as a unit vector in E#+¢, That
e, is a differentiable map is a clear consequence of the argument of [11].
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We now assume that M and N are both oriented and we orient M X N
in the canonical fashion. This induces an orientation on S(M,N) and on
the boxes B, and hence on T (N)y, M X 0N and 9B,. We will take the
orientation on 9B, to be that given from the “inside.” Let dOn. be the
pull-back of the volume element of §**¢* under the map e,. Then d(dOnig-1)
=0, since dOp.q, is the pull-back of an (n - g—1)-form defined on an
(n 4 g—1)-dimensional manifold. We apply Stokes’ theorem to get

0 =’f d0n+q—1 'l" J d0n+q—1 - 2 d0m+q—1-
MX3N T(N)y

a=1v/ 0Ba

The minus sign preceding the last integral sum is due to the orientation
given 9B, above.

As is shown in [1], each of the integrals in the sum is an index of an
intersection times Oy.q1, Where Opiqy is the volume of the (n-+4g—1)-
sphere. Hence the sum gives Oyu.q-11 (g, f), Where I(g,f) denotes the algebraic
number of (non-trivial) intersections of ¢g(V) with f(M), or simply the sum
of the indices of the intersections. We recall that the volume of the k-
sphere is

0. — Qrhlfer1)
TTEGE+1)
where
T(3(k+1)) =3(b—1)T(3(E—1));T(3) —=;T(1) =1.

We now find an expression for dOy,.e in the second integral in order to
integrate over the fibre. First, we choose local fields of orthonormal frames
fes,* * -, enq such that ey, - -,e, are tangent to N at f=7F(m), e, being
the map defined above, considered now as a vector-valued map, such that
€g+1,° * ', 6neg SPan the normal space to N at f=7F(m), and such that the
frames agreed with the orientation of T'(NV)y and E™e. We set de;- ;= wy;.
Clearly, we have dOyig-1 =012 * * Aoypug.

Next, we choose local fixed fields of orthonormal frames on M and
write the fields defined above in terms of our new fields. Accordingly, let
fay, - + -, @n.q be local fixed fields of orthonormal frames such that ay,- - -, a,
are tangent to N at f=7f(m), m € M, and such that a4, * -, @i are normal
to N and hence to M at f=7f(m). We also require that the orientation of
the frames agree with the orientation of the manifolds on which they are

defined. We set da;*a;—m; and note that the ms are defined on the base
manifold M.

We write
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€=Ul +* * " - Uiglq
, (uy) orthogonal;

b ="Uql1 +* * * ~ Ugqllq

es=0g S=—q-1, - Hng.
Then
012N * A wineg =N * A g Nog14g A Aoinig =

(*) = (dOga -+ terms in mis) A (Usgmigen A+ " A UaiTineg) 5

where we use the Einstein’s summation convention for repeated indices, the
range of indices of the i, being from 1 to ¢. Since the m’s are defined on
base manifold M, we have that any form of degree > n in the =;’s is iden-
tically zero. Hence (*) becomes

qu—l Ay s UstTigreq Ao e oA Tin+qe

Thus, we arrive at our main equation, one which we shall use again
and again.

1 1
V() d0. . A S Ui Nt A .
(E) 0n+q—1j;|4><6N0n e + 0n+q—1 T(N)u ot Ml UiMiairg Tt
=1I(g,1).

We observe here that in the second term on the left-hand side we could
integrate over the fibre now and obtain an integral over M. However, it
proves to be simpler to do each case separately in what follows.

The major portion of this paper is devoted to the application of equation
(B) to various situations depending in particular on the choice of M, N
and the map g. The obvious first choice for N is simply M. In the cases
where this is of interest, namely those in which M is even dimensional,
equation (E) yields a result of Whitney, Lashof and Smale [13], [14], and
[8]. This case is presented in Appendix A.

2. The case N=M XL, L=[0,e]. In this section we present
results generalizing the formula of Cilugireanu [2] and the notion of self-
linking of space curves [12]. We digress briefly from our main argument
to recall some well-known facts about the linking of manifolds.

Let M» and K be two closed smooth oriented manifolds of dimensions
n and I, and let f and g be continuous maps of them into oriented Euclidean
space En' of dimension n--1-1 such that f(M») and g(K') do mnot
intersect. Let §"*! be the unit n - I-sphere centered at the origin of Emn+i+,
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Consider the cartesian product M» X K' given the canonical orientation.

We define a map
e: Mr X Kt— Sn+

by associating to each (m,k) € M X K the unit vector in En*¥*

|9 (k) —f(m)]
The degree of this map is the linking number L (f(M"),g(K?)), or simply
L(f,9). Let dO,. be the pull-back of the volume element of the (n--17)-
sphere under the map e (we assume now that the maps f and g are C*).
Then, clearly

1
L — A0y
(1) (f> g) 0n+l MK L

where O,,; is the volume of the n - I-sphere.

It is clear that if the maps f and g vary continuously, i.e., f=7;, g=g¢:
in such a way that the sets f;(M") and g¢,;(K?) intersect for no value of %,
then the integral in (1) varies continuously, and hence, since it is integer-
valued, remains constant.

Furthermore, let ¢’: K X M*»—> 8™t be the map ¢ (k,m) =-—e(m, k).
Let a be the map of K!X M onto M* X K! which transforms (k,m) into
(m, k), and let B be the antipodal map of §**! onto itself. The degree of «
is (—1)% and the degree of B is (—1)™ Since ¢’ = Bex, we obtain

(?) L(g,f) = (—1)=UDL(f, g).

We return now to our main line of argument. We consider the case
N =M X L where L is the closed interval of real numbers [0,e] and where
we make the obvious identification M = M X {0}. We orient L in the positive
sense and then orient M X L in the canonical fashion.

We will use equation (E) where, as we have stated, N—= M X L and
hence is of dimension n-1, i.e, g=n-+1. Let f: M—> E?* he a (®
imbedding of M into Euclidean (2n - 1)-space. Let v be a non-vanishing
unit differentiable normal vector field on M (which always exists). We let
g in the main equation (E) be defined as follows:

g(m, 1) =F(m) + Wrm),
for (m,l) € N, where v;(m) is the normal vector at the point f(m). We
choose ¢ small enough so that f(M) and f(M) -+ tv=/1:, (M) do not inter-
sect for any value of ¢, 0 < ¢=e. This will insure that in the main equation
(E) I(g,f) =0, for there can be no non-trivial intersections of g(N) and
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f(M). Finally, we denote the linking number of f(M) and f, (M) by
L(f, fo,) and M X {e} by Me.

We choose the frames fa,, - *,@sm.: as follows. ay,- - -,a, are to be
tangent to M at f=7(m), @n. is to be along vm), and Gz, * *, Gonsy 8TE
to span the rest of the normal space at f=7F(m).

We apply equation (E) to get

(3) —_—J d02n +—-‘J d02y + 1 A0w Ay * *  UriyTimez
MXMe T(N)u

A - "\m,.mu=0-
Using formula (1), we see that

1 1
(4) Osza. deb? " Oom. T(Nl)ionl\um. Wi A7 e
¢ s

=L (f > f ev) .
The first integral on the left-hand side we call the Gauss integral for the map
f and the manifold M.

Before stating the general theorems of this section, we proceed with a
few special cases.

a. n=1.
For n—1, we have

A0y AUy = d0, A (141171'13 + ulzﬂ'zs) .
T(N)u T(N)u
Let F stand for the fibre. We choose for our positive coordinate system giving
us the proper orientation for T'(N )y that which places the base coordinates
first and the fibre coordinates last. Thus,

dO; N uygmis = "‘f r (u117713 + u12‘ﬂ'23) d0,.
T(N)x M JF

Using polar coordinates, u:; = cos9, u;,—sin 6, and

w
—'—f f (0089113+Sin0wz3)d0=—2fvrzs.
MJo M

Equation (4) becomes

1 1
i), 30 45 f mu— L fe)-

We notice immediately that if » is the principal normal vector field,
we obtain a new proof for the formula of Cilugireanu [2]
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)., 90: 4 5o f xas— L(f,fu) = ST

If v is the binormal vector field, we obtain a new proof of Pohl’s result [12]
that SL is indeed the linking number of a curve and the same moved a small
distance along the binormal. In fact, we have also shown that SL is the
linking number of & curve and the same curve moved a small distance along
the principal normal.

b. n=2.
For n =2, we have

A0z A (Ui Uyigmiye N miys) = —f f (U4 Ut s, A rigs) O
T(N)xu MJF

We use polar coordinates to integrate and observe that, unless the power of
the u,, is even, the integral of the term involved is zero. Hence, our equation
becomes

2
—f fuu 1r4¢/\1r15d02=—f d"“f rfcoszasmadadb
____f d774a
1

2r (°
o 40+ 50 | dma—L(f o).

MXM

Equation (4) becomes

From [4] we know that

1
o

is the Euler characteristic of the oriented subbundle of the normal bundle
complementary to the bundle fibred by the line spanned by the vector . We
shall denote this Euler characteristic by x(v°). (More precisely, this integral
is the Euler class of the subbundle evaluated on the fundamental class of M.)
We combine our results and obtain

d’r45

o-) 80— 1) =L (k1.

We shall show in the next section that the Gauss integral for even dimensional
manifolds is zero. Hence, we have

—3x(v°) = L(f, fe.)-
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If we choose for v a unit vector along the mean curvature vector h of M,
we might define the self-linking number of f(M) to be

SL=L(f,fe) =—3x(1°).

We remark here that an imbedding with non-vanishing mean curvature
vector is the generic situation, that is, close to every C® imbedding of an n-
dimensional closed smoothed manifold into Euclidean (2n +-1)-space, there
is an imbedding with non-vanishing mean curvature vector [10].

One final remark. Since L(f,fc,) is an integer, the Euler characteristic
must always be even.

c. n=3.
For n=23, we have

d03 A (ulhulizuuavrm A iy A 71%7)

T(N)u
= —f f Ui, U131 557515 A iy A 7ri37d03.
M JF

We use polar coordinates to integrate and observe that, for all summation
indices 4 except 4, if the power of u,; is not even, an integral containing such
a term is zero. Hence, we have two types of contributing terms, terms con-
taining u,,* and terms containing a u,, and a w2, r=—1, 2, or 3. Hence,
our equation becomes

- f f Ur4®mes N mag N rggdOy
M F

—fM Luu-zuu [7Tr5 Amrg Nar = mrs Aag Ny —+ 745 Ampe A 1r,-7] dOs

8= 4 »
=_T5— M""45A"r46/\7"47 + _1_5fM {7747AA56 — e N Agy +W45AAG7},

where

3
Aog =k2 Tak N Trg.
=1
Equation (4) becomes

1 1
—0—6 MX(%WOG + 53‘.[]1[{4_ Ty5 A 46 A Ty — %(71'47 A Ase —— 46 AA 57 —l— T4s5 A A67)
= L(f,fe.)-

If v is a unit vector along the mean curvature b of M, we have a definition
of the self-linking of a three dimensional manifold in seven-space, i.e.

SL=L(f,fa) ;
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hence the integrand in the second term on the left-hand side may be con-
sidered as a generalization of rds of a space curve. We therefore write

1 1 (
51,800+ G- f raV =L 1) = 5L,

where dV is the volume element of the manifold /. We call +dV the torsion
form of the imbedding with respect to the mean curvature vector h.

We proceed now briefly with the cases n=4,5 and then shall state the
general equations for n even and odd.

d. n=4.
For n=4, we have, using polar coordinates,

f J‘ U4, U1, W14 U136, N Tigr Agig A 7ri49d04

3 35f{37m/\‘"'z7/\17'8»/\7"¢9+7Tm/\77w/\7l'sj/\7";9

+ moi Amrjg Aoy Ao+ g Aty Mg Ay} G54 g

Equation (4) becomes
1 1
'O_fM;(igs - é;;f {967 A Qg — Qg A 979 + Qe A\Q'rs} = L(f, e.,),

where Oap—gak/\quﬂ Since the Gauss integral for even dimensional mani-

folds is zero, we obtain, similarly to 2,

—3x(v?) =L(f, fe),

where x(v°) is the Euler characteristic of the complementary (to v) oriented
subbundle of the normal bundle.

e. n==>5.
For n =15, we have, using polar coordinates,

—_ f f Ui Uiy * * * Upggmrgg Mg A o = A 7Ti511d05

5rfﬁﬁf%“w””“ms

1 167
3151 m} e Toay A oay N ooy N Aayay

1 8z
- 4:—1- m I‘Meaf"“s’rﬁ% A Aa2a3 A Aaﬂs}

._I_.
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where
+ 1 if ay@a50405 is an even permutation of V891011
ey == | — 1 if @ 0,050,405 is an odd permutation of 7891011
0 otherwise,
and

5
Aap = X 7ar N migp.
=1

Equation (4) becomes

1 1 1
010 M(;Z(?llo + O-—ea‘a"a“a‘a‘[gTﬁu oo N ooy A ey A e, N ooy
s !
1 1 3 1
-7 Wﬁuﬂeal A ooy Aoy N Aayery 1+ g ar), e A Aoy, N Aaer ]

=L(f,fe)-

Once again, if v is a unit vector along the mean curvature vector A,
we define the self-linking of the imbedded five-manifold to be

1 d010+1—f +dV — L(f, fo,) =L,
05 M

O10d Mxnm

where 7dV is the torsion form of the imbedded manifold with respect to the
mean curvature vector field, dV being the volume element of the five-manifold.

f. The general theorems. In order to obtain the general theorems, we
integrate as in the cases n=1,- - -,5 the second term on the left-hand side
of equation (4). For n odd, we obtain

1 1
0. AOp AUys,* *  UnigTignae N 0 A iane = "‘—f 7*dV,
an Ty OsJ M

where 7+*dV is defined as follows. Let

D = eapanmuiion N 0 Apsaanar A A gpintnans N0 N May o,
where
n
Aaﬁ = Eﬂai A TiBs
i=1
and where
+1if @ - -a, is an even permutation of n +2- - -2n 41
€y-a, |—11if @+ -a, is an odd permutation of n42- - -2n 41

0 otherwise.
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Define
1 En-1) . 1
A=7r;(n+1) go (—1 13- - - (n— 2k)_m+1)+E | P

Then
7*dV = 0,A.

We call +*dV the torsion form of the imbedded manifold with respect to the
vector field v.

We remark that such forms were first introduced by Chern [8] in his
proof of the Gauss-Bonet formula. We, in a sense, have dualized his forms
and have interpreted them as “torsion” forms.

THEOREM 1. Let f: Mr—> E*»** be a C° imbedding of a closed oriented
differentiable manifold into Euclidean (2n --1)-space. Let v be a non-
vanishing unit normal differentiable vector field on M». If n is odd,

1 1
= d0s+ | AV =L(f,f),
0= 1 10m+ 5 fo dV — L (f, f,)

where L(f,fe,) is the linking number of the imbedded manifold with the
same manifold deformed a small distance e along the vector field v, and
where v*dV 1is the torsion form of the imbedded manifold with respect to
the vector field v.

If we choose for v a unit vector along the mean curvature vector % of
M=, we have a definition of the self-linking of an odd n-dimensional manifold
in (2n 4 1)-space, i.e.

SL = L(f, fa)>
and we write
1 1
2 0. ——f av — 8L,

O2n MXM ot On MT

where 7dV is the torsion form of the imbedding with respect to the mean
curvature vector .
We proceed now to the general theorem for n even. We have

1
—_—a do, A Uy " Ugi Tz N 0 AN rgong =
O2n

T(N)y
(1)
T 9nel a2 (%n) [ fMAo;
where

A= €a1~-~a”9a1a2 At A ‘Qan-lan;
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€0, 18 a8 above and
n+l

Qag = 2 war A mip.
k=1

But the integral on the right-hand side is simply —3%x(v°) where x(v°) is
the Euler characteristic of the complementary (to v) subbundle of the normal
bundle.

THEOREM 2. Let f: Mr— E* be a C® imbedding of a closed oriented
differentiable manifold into Euclidean (2n -+ 1)-space. Let v be a non-
vanishing unit normal differentiable vector field on M". If n is even,

—%X(vc) =L(f’f€v),

where x(v°) is the Euler characteristic of the complementary (to v) oriented
subbundle of the normal bundle and L(f,f.,) is as in Theorem 1.

We remark that the proof of Theorem 2 is not yet complete since we
still must show that the Gauss integral for even dimensional manifolds is
zero. This will be done in the next section.

If we choose for v a unit vector along the mean curvature vector 2 of
Mn, we have a definition of the self-linking of an even dimensional manifold
in (2n - 1)-space, i.e.

SL=L(f, fa) =—3x(°),

3. The case N—=M X L, L. = [—=<,<]. In this section we prove that
for n even the Gauss integral is indeed zero. We consider the case N =M X L,
where L= [—e¢,¢]. Everything in equation (E) will be the same as in
Section 2 with the exception of N, which in Section 2 was M X L, L = [0, ¢].
g again is the map

g(m, 1) =f(m) + Wrm).

We choose € small enough so that f(M) + tv=7F, (M) and f(M) + sv =7, (M)
do not intersect for any value of ¢ and s, —e=s%4¢=e This will insure
that in the main equation (E) I(g,f) =0, for there can be no non-trivial
intersection of g(&N) and f(M). The linking numbers of f(M) and f., (M),
fee,(M) will be denoted respectively by L(f,fe,), L(f,f-). Finally, we
choose our frames fa,,* - *, @ as in Section 2.
We apply equation (E) to get
1 1 1

(5) —0 d02n+ d02n+ dOn/\Ulil’ © O Ugi, Tignee
on I MXM-e  Oan J Mx, O2n J TNy

A-e 'A7Ti,.2n+1=0-
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Using formula (1), we see that

1
AOp Ayt UaiyTignaz A ° " AN Tionae

L(f}f-ev) _L(f’fe") = Oun T(N)u

We integrate the right-hand similarly to the manner in Section 2. The only
difference is the range of integration of the fibre. In fact, letting N* be the
N of Section 2 and N* the N of this section, one can easily verify (writing
d0sy for A0y Ay, * * Ugsmimes N* * * Arioni) that for n odd

1

A0y, =0
O rveyy
and for n even
1 2
d0,, — d0 .
Oon ) rveyy " Oan Jrvnyy

Consider next f(M), f.,(M), f-.(}M) and their respective linking numbers.
By deforming f(M) and f,(}) along v continuously a distance —e¢, we find
that

L(f,fe) = L(f-e 1)-

Using equation (2), we have

L(fe,, ) = (= 1) V°L(f, f-,)-

Therefore, for 7 even

L(f-e, 1) = L(f,fe) = — L(fs f-e)-

Thus, for n even

1 .
L ) =— d0sy.
(f} fex ) Ozn T(N+)‘2l
Hence, using equation (4), we have
1
d0,, =0.
02n- M)(M2

TuroreMm 3. Let f: M*»— E*» be a C* imbedding of an oriented closed
differentiable manifold M» of dimension n into Euclidean 2n -+ 1-space. Then,
if n is even,

1
d0.,, = 0.
Oond Mxar”

We observe now that this also completes the proof of Theorem 2.

4, The case N=M X L, L= 1[0, «]. In this section we interpret
L(f,fe,) as an intersection number. We consider the case N = M X L, where
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L is the full half-line [0,00] including the point at infinity. Everything in
equation (E) will be the same as in Section 2 with the exception of N. The
map ¢ is again

g(m, 1) =f(m) + Wrem,
(m,1) € N. We choose the frames fa,,* * -, @zq.1 as before and apply equation
(E) to get

1 1 1 *
- dozn + - dozn '+‘ J dOn A Uqjy » " Uri,Tign+2 Aee A Tip2n+1
O2zn J MxM Oon I txsty, = O2nd TNy

=I(g,f)’

where M, =M X {®} and where, we recall, I(g,f) is the algebraic number
of (non-trivial) intersections of g(N) with f(M). We also recall that I(g,f)
is the sum of the indices of the intersections. Because of the connection of
the intersections with the normal field v we will also call I(g,f) the sum of
the indices of the normal intersections. We will further call these inter-
sections forward mormal intersections because one finds the points of inter-
section by proceeding in a positive or “forward” sense along the vectors
Vsamy. The second integral on the left-hand side is zero because the image
of M X M, under the map e, is at most n-dimensional, since clearly
ey(my,m, 0) = e;(ms, m, ), m,my, m,€ M. Hence the degree is zero and
thus the integral

1
40y,
Ozn‘ MXM:,

vanishes. We remark that these notions may be made precise by considering
E?*n+t a5 the open “upper hemisphere” of S2"+* go that the map of g ix well
defined on M X {oo} and so that the map e, is guaranteed differentiable at
points (m,m, 0) E M X M X {0} =M X M.

The other two integals on the left-hand side are clearly the same as the
respective integrals in Section 2, equation (3). Therefore, using equation
(4), we have

L(f,fe) —=—1(g,f)-

We make one final observation in this section. For the case of space
curves with v equal to the principal normal, L(f,f.,) =SL. In this case,
Pohl [12] has called —I(g,f) the sum of the indices of forward cross-
normals. There is a difference in sign because of the manner of definition

of I(g,f).
5. The case N—=M X L, L — [— 0, o ]. We consider the case where
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¥ =M X L, L being the full line including both points at infinity. We use
equation (E), all things being the same as in Section 4 except, of course,
for N, to get

—_— 1 dOzn + 1 f dOzn + —}‘— d0, A Uiy * * " Ui, Tigme2 A sA Tip2n+1
Oon Ittt OonJ Mxdiy aned PNy
=1(9,1)-

The first two integrals vanish for reasons analogous to those of Section 4.
The third integral is clearly the same as the respective integral in Section 3,
equation (5). Hence, we obtain, for n odd

I(g,f) =L(f,f-e.) —L(f,fe.) =0

and for n even,

I(g,f) = L(f,f«) —L(f,fe) =—2L(f, fe.)-

If we define the sum of the indices of “backward” normal intersections
analogously to the manner in which we define forward cross normals in
Section 4, these two equations simply say that for n odd the sum of the
indices of the forward normal intersections is equal to the sum of the indices
of backward normal intersections and for n even the former is equal to minus
the latter.

6. The case where N is a subbundle of the normal bundle. In this
section we prove some purely differential topological results which generalize
Theorem 2. Throughout this section, as always, all bundles discussed will
be oriented.

Let F': M»— E™s be a C* imbedding of an oriented connected closed
n-dimensional differentiable manifold into E***. Suppose there exists a k-
plane subbundle N of the normal bundle such that 0 <s—k=<n and s—Fk
is even. The normal bundle IV of M consists of pairs (m, ¢) where m € Mr=M
and e is a point in the normal s-plane through f(m). For the discussion that
follows, to each oriented k-plane of N we add the oriented (k-—1)-sphere
of points at infinity thereby “compactifying” N ; thus, in the pairs (m,e),
e may take on points of the (k¥— 1)-sphere at infinity. We make the obvious
identification of the zero section of the normal bundle with M.

We define a map H: N—> E"* by setting H(m,e) —e¢ and a map g to
be the restriction of H to N. Finally, we define a normal intersection to be
a point m € M such that F(m) —g(n) where n= (m,,e), any m, 4 m.

THEOREM 4. Let F': M"— E™s be a C° imbedding of an oriented closed
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n-dimensional differentiable manifold into Em+s. Suppose there ewists an
oriented k-plane subbundle N of the normal bundle such that 0 <s—k=n
and s—¥k is even. Then the Poincaré dual of the locus of normal inter-
sections is the Euler class of the complementary (to N) (s—Fk)-plane sub-
bundle of the normal bundle.

Remark. All classes are considered with real coefficients.

COROLLARY 5. Let F': Mr— E*n*k be g C= imbedding of an even dimen-
sional closed oriented differentiable manifold into E*+*, Let N be a k-plane
subbundle of the normal bundle (which always exists). Then the sum of
the indices of the normal intersections is equal to the Euler characteristic of
the complementary (to N) n-plane subbundle of the normal bundle.

The proofs use the secant manifold S(A4,N) where A is an arbitrary
closed compact oriented differentiable singular (s—#%)-chain in M and N
is the (compactified) k-plane subbundle of the normal bundle. Our discussion
in Section 1 considered S(M,N) only where M was a closed submanifold of
N. However, in our present case all details of that section go over since A
is contained in a closed submanifold M.

We use equation (E) where for the map g we have the map defined
above and for the map f we have F |4=g¢ |4. We choose frames on 4,
fa,* ¢+, n such that a,,- - -,a, are tangent to M at f=f(a), a€ A4,
@ni1,* * 5 Qe SPan the fibre of NV and agree with its orientation at f =f(a),
and @p.x,* * *,0ns Span the rest of the normal space to M at f=j(a)..
Finally, we define a normal A-intersection to be a point (a,n) € A X N such
that f(a) =g(n), where n= (m,,e), mos%4a. Equivalently, a normal A-
intersection is a point a € A C M of the normal intersection locus. We apply
equation (E) to get

1
(6) 0 T(N‘)ZOnﬂo—l A Uiy ® ° * Unig g Timader A0 A Ty pmes = I(g, f) 5
n+s—1 A

where I(g,f) is clearly the sum of the indices of the normal A-intersections.
The terms involving the boundaries at infinity vanish for reasons similar to
those presented in Section 4.

We integrate in a maner similar to Section 2 and obtain

—1)w
(6)=—f§—2u—;ﬁ.}{;m, w—=13(s—F),

where

Ay =ea;a,  Qoya, Nt A Qo0
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@ + - dsy being permutations of n+%k-+1- - -n-4s, and where

n+k

Qapg = S rai A mig.
=1
But the integral is simply
x(NVe) [4],

that is, the Euler class of the complementary (to N) (s—Fk)-plane sub-
bundle of the normal bundle evaluated on the fundamental class of A.
Combining our results, we have

(7) x(No)[A]=1(y,]).

If we denote by N the locus of normal intersections, then the intersection
number I(N,A) of N with A equals I(g,f). Hence we obtain

x(N)[A]=I(T,4).

But A was an arbitrary closed differentiable oriented singular (s — k)-chain.
Hence we use the Poincaré Duality Theorem to obtain that the Euler class
x(V°) is nothing other than the Poincaré dual of the locus of normal inter-
sections, i.e. ’

x(No)=2DN

where D denotes the Poincaré dual. This completes the proof of Theorem 4.

Corollary 5 is just the statement of equation (¥) when s—Fk—n and
Aek = Jfn,

7. The case oON — M. 1In this section we consider the case where the

boundary of N is M. We start by proving a theorem about curves bounding
surfaces in three-space.

a) Let C be a simple closed curve with non-vanishing curvature which
bounds a compact surface 4,C® immersed in Euclidean 3-space. We use
the secant manifold S(C,A) and the main equation (E), where for N we
have 4, for the map g we have the immersion of the surface 4, and for f
the restriction of g to C, g |, which as we have stated is an imbedding. We
recall that the non-trivial intersection locus is I={(c,a) €0 X A |¢54a,
f(¢) =g(a)}. TFinally, we choose the frames fa,a.a; as follows. @, is to be
tangent to ' at f={f(c), c€ C, a, is to be the surface normal at f—f(c),
and @, =as X @, so that a, is tangent to A and normal to C at f —f(c).

We apply equation (E) to obtain
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——];- d02+—}— A0y Nuymis = 1(g,f),
O0:Jexe” " 0:J 1),
where I(g,f) is clearly the sum of the indices of the non-trivial intersections
of ¢ with A. We integrate the second term on the left-hand side as in

Section 2 to get

'l- d01 AUyymig =— — f f unﬂ'«isdol = 2f 23y
0:J 1(4), cJr c

where F is the fibre. g3 =r,ds where 7, is called the relative torsion [7]
and ds is the arc element of the curve. Hence,

1 1
(8) [ 404 o | mas=—I(1).

We next recall again the Formula of Cilugireanu

1 d02+-}—f«rds=SL
2 CXC 01 (o]

and subtract equation (8) from it to obtain

oL rds— [ nis]—SL+1(a.1).

But rds—r, ds= da, where o is the angle between the surface normal and
the binormal of the curve. See the definition of r,ds in [7].
We state our theorems.

THEOREM 6. Let C be a simple closed curve with non-vanishing curva-
ture which bounds a compact surface A,C® immersed in Euclidean 3-space.
Then

1 1

2 0o | reds=—1(g.1),

where T, is the relative torsion of the curve C and I(g,f) is the sum of the
indices of the non-trivial intersections of the curve with the surface.

TaeorEM 7. Let C be as in Theorem 6. Then, the total turning of
the binormal vector of the curve with respect to the normal of the surface
1s equal to the sum of the indices of the non-trivial intersections of the curve
with the surface plus the self-linking number of the curve, i.e.

1 1
o, r—mds— o | da=SL+1(gf),

where o is the angle between the surface normal and the binormal of the curve.




GAUSS INTEGRAL. 13

We make a final remark about equation (8). In light of Theorem 1,
this states that
L(f:feu) =_I(9:f):

where v is either the surface normal vector field or the normal vector field
to the curve which is tangent to the immersed surface 4. In particular, if
the surface is imbedded

L(f,fe,) =—1(g,f) =0.
b) We generalize Theorem 6.

TueorEM 8. Let f: M»— E* be a O° imbedding of a closed oriented
n-dimensional differentiable manifold which bounds an oriented (n-1)-
dimensional differentiable compact manifold N,C3? immersed in Euclidean
(8n 4 1)-space. Then, 1) if n is even

Ix(v) =1(9,7),

where x (v°) is the Euler characteristic of the subbundle of the normal bundle
complementary to the bundle fibred by the line spanned by the vector v
which is normal to M and tangent to N, and where I(g,f) is the sum of
the indices of the non-trivial intersections of g(N) with f(M).

2) If n is odd,

1 1
L (a0t av——
Oum MXMM+ 0. MT av I(g:f):

where % dV s the torsion form of the imbedding of M with respect to the
vector field v.

The proof uses the secant manifold S(M, N) and the main equation (E),
where for the map g we have the immersion of the manifold N, and for f
the restriction of g to M which is the imbedding. We choose the frames
fas,* ¢, @1 as follows. ay,- - -,a, are to be tangent to M at f—=f(m),
@ney 18 to be tangent to IV along v at f=Ff(m), and @ns,* * *, 8o are to
span the rest of the normal space to M at f=f(m).

We apply equation (E) to obtain

1 1
- d n b Ungy i Aot =
Ozn fMXM2n+ On T(Iidf)(a)l At i Tians2 Aw'i’lz"“‘l I(g: f):

where I(g,f) is clearly the sum of the indices of the non-trivial intersections

of g(N) with f(M). We integrate the second term on the left-hand side
and proceed precisely as in Section 2 to get for n even
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3x(v°) =1(g,f),
and for n odd

L 0,42

o £ 4V ——1(g,
02,“ MXM O" M T (g f):

where r*dV is the torsion form of the imbedding with respect to the vector
field », dV being the volume element of the manifold M.
Finally, we remark similarly to part (a) that

L(f’ffu) =_I(g)f))

and, in particular, if the manifold N is imbedded

L(f,va) =—I(g)f) =0.

8. The Gauss integral for submanifolds. Until now, we have been
concerned with the (Gauss integral for a map f and a manifold 3* of the form

1
d0.,,.
Oan J pmsensn™

In this section we present a discussion of the Gauss integral for a map f and
a restriction map f |45, and a manifold M* and a closed submanifold 4¢ of

the form
1 »
- T dOru—s'
0. jA'xM"

We now make these notions precise.

Let F': M»— I+t be a C® imbedding of a closed orviented differentiable
manifold of dimension 7 into Euclidean (n s 1)-space. Let As=A4 be
a closed oriented differentiable submanifold on M*=213I and suppose there
exists a non-vanishing unit normal differentiable vector field » on M. We
consider the secant manifold S(4,N) where N=2M X L, L=1[0,¢]. As
in Section 2 we denote M X {0} and M X {e} by M and M. respectively.
We assume that e is small so that F (M) and F(M) +tv=F,; do not
intersect for any value of ¢, 0 < ¢{ =e This will insure in the use of equation
(E) which follows that I(g,f) =0. As always, we orient L in the positive
senge and 3 X L in the canonical sense.

We employ again equation (E), where for the map f we have F |4 and
for map g:

g(m, 1) =1F(m) + lwpm,

(m,1) € N. We choose the frames fa,,- * *, @psq such that ay,- - -, a, are
to be tangent to 3 at f=7F(a), a € A, ay,; is along vs(q), AN Apya,” = . Crisis
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span the rest of the normal space to M at f—f(a). The orientation of the
frames is to be consistent with the orientations of N and En+s*t,
We apply equation (E) to obtain

(_ 1 ) n+8+1 (__ 1 ) n+8+l

AOpes — AO0ns
Onss AXM n+8 AXM,
1
AOu N bygy s * * Uniy Ty N A ipagn =0,
0n+8 T(N)a

the signs, as always, being determined by the induced orientation and in this
case being (—1)7*#*1 or — (—1)"*s** because of the dimension and orienta-
tion of A X N. Hence,

1
dOM
0n+8 LXM :

(_ 1 ) n+8+1
+ 0 (‘T(N;iO" A Wiy ® * Ui oz A0 T N Tigniser == L (f: Fe.:)’
n+s . 4

where L(f,Fe,) is the linking number of the imbedded submanifold f(4)
with the imbedded manifold F (M) deformed a small distance e along the
vector fleld .

We integrate the second term on the left-hand side similarly to the
manner of Section 2. We omit the details. For s odd we obtain

(_ 1 ) n+8+l 1
— A dOn A Uiy ® ° ° Uri,Tigns2 Aes Amnign = ‘0—

Onis T(N) .
where 7,*dV is defined as follows, dV being the volume element of A. Let

| ravar,

Dy = €a; -, Tni1ey A oA Tn+10 o A Aat, a4 o As Aoy e,
where

n
Agg =#21 wai N mig
and i
+1if a;- - -a, is an even permutation of n 42 - -n-s--1
€oyq,=4{—1if a;+ + <o is an odd permutation of n42- - ‘n4s41
0 otherwise.
Define
A=__1_.%(§1)(_1)k 1 &
i) S 1-3- - - (s—2k) D] ~F

Then
74%dV = O,A.

We call +4* AV the torsion form of the imbedded manifold F (M) with respect
to the vector field v relative to the imbedded submanifold f(4).
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We now proceed to the case s even. TFor s even we obtain

(__1)n+3+1 A (__1)8/2
0n+s T(N(ion AUygy w0 " Ui Tignan A Njniser = 98+, 8/2 (%,;S) ILAO*

where
Ao = 5011"'0!390(10!2 Asc oA Qaa—lal 5
€a,-e, 18 as above and

n+1l

Qop = 2, mar, N .
k=1

But the integral on the right-hand side is simply

—x(v) [4],

where x(v°)[A4] is the Buler class of the complementary (to v) subbundle
of the normal bundle of M evaluated on the fundamental class of 4.
We state our theorem.

TuEoREM 9. Let A2 be a closed oriented differentiable submanifold of
dimension s on an oriented closed differentiable manifold M» of dimension n.
Let F: M»— Enst pe a C® imbedding of M» into Kuclidean (n-s--1)-
space and suppose there exists a non-vanishing wnit normal vector field v on
Mn, Then,

1) o s is odd

1 .
A0ps+ | ¥ dV =L(f,F.,),
Onss J asxcarn Os J 4

where f 1s the restriction of F to A, r,* dV is the torsion form of the imbedded
manifold F (M) with respect to the vector field v relative to the imbedded
submanifold f (A), and where L(f, F.,) is the linking number of the imbedded
submanifold f(A) with the imbedded mamfold F (M) deformed o small
distance e along the vector field v.

R) If s is even,

1

O-n+s As

d0n+s"— %X(Uc) [As] =1L (.f) Ffv)}
XMn

where x(v°) [A%] is the Euler class of the complementary (to v) subbundle of
the normal bundle of M evaluated on the fundamental class of As.

We notice immediately that for s even Theorem 9 implies that the
(Gtauss integral
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1
do,.
Onss J ascan ™

is an integer. From Section 2 we know that, when s=n and A®= M", the
Gauss integral is zero. It would be interesting to have more information
in the general case.

9. Discussion of torsion. We now explore briefly why we have chosen
to name our forms +*dV in Section 2 torsion forms. In this section we
concern ourselves only with torsion forms with respect to the mean curvature
vector field +dV. Of course there is the obvious fact that such forms are
generalizations of the form rds for space curves.

The rest of this section deals with a generalization of the Fenchel-Jacobi
Theorem [6], namely that the total torsion

1
51? c‘l’dS

of a space curve lying on a sphere is zero.

THEOREM 10. Let f: M"»— S be a C® imbedding of an n-dimensional
oriented closed differentiable manifold into the 2n-dimensional sphere con-
sidered as a submanifold in E*». Then, if n is odd

1
o) .V =0,

where dV denotes the torsion form with respect to the mean curvature
vector field.

Remark. It can easily be shown that the mean curvature vector field
of such an imbedding never vanishes and, in fact, has a non-zero constant
component along the outward normal of §2».

The proof uses the secant manifold S(M",N), where N— M» X L,
L =10, ] and the main equation (E), where for f we have the imbedding
and for ¢ the map
g(m, 1) =f(m) + lym,
where v is the outward normal unit vector field of the sphere §2* on which
Mn is imbedded.
We choose the frames fa;,* - -, @, as follows. ay,- - -, a, are to be

tangent to M" at f —f(m), adu.. is to be along v at f —f(m) and uys, - - * 5 Ganea
are to be normal to M* but tangent to S2* at f —f(m).
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We apply equation (E) and obtain

1 . 1
—_— dO *dV =0,
(9) + Ozn Mnx Mn + Ozn J;ll’:r

where 7* dV is the torsion form with respect to the vector field v. The term
at infinity is zero for similar reasons to those of Section 4. I(g,f) =0,
since there clearly can be no normal intersections, v being along the outward
normal of S,

In what follows we assume for the sake of simplicity that 82 is a unit
sphere.

The form +*dV contains terms of the form

Oy = €oyory -, a1y A° 0 ° A T R+100-o1; AAOln,-zkuan-zmz As oA Aan-ﬂn’

n
Aag=— 2 Tai A Tig,

i=1

and where €a,0,-o, is as in Section 2. Hence, every term of 7*dV contains
a term involving a term mnyie,, Where @, is n-4-2,n-38,- - -, or 2n 1.
Since 827 is a unit sphere o

Tn+10, = T,y

where 7o, —df-a,. But e, vanishes identically on 3", since @, is normal
to the imbedding of M». Hence

*dV =0.

1
. JOon = O.
Osn an;Mn“

But this in turn implies by definition of SL

é-frdV=SL,

This implies

where 7dV is the torsion form of the imbedding with respect to the mean
curvature vector field.

There is left only to show that SL is zero. But this is an immediate
consquence of the definition of SL and the fact that the mean curvature
vector at each point of the imbedding has a component along the outward
.normal to S*". We simply use the same method as was used to obtain
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equation (9), the only difference being that » is now along the mean curva-
ture vector. We have

SL— d0m+1—ffd17=o,
On. M

02n J MXM

since I(g,f) in this case is zero for essentially the same reason it was zero
in equation (9). This completes the proof of Theorem 10.

10. Deformation theory. We next investigate briefly the behaviour
of the self-linking of imbedded manifolds of higher dimensions by exhibiting
the invariance of SL under non-degenerate isotopy. The case of the self-
linking of space curves has been investigated in [12].

By a smooth regular deformation of closed manifolds we mean a C® map
F: M» X I— E*, where M is the manifold and I =1[0,1] is the closed
unit interval of real numbers, such that for fixed ¢, fi(M) =F(m,t) is a
closed immersed manifold. F is called a non-degenerate deformation if
each f; is non-degenerate i.e. has a non-vanishing mean curvature vector at
each point. We call a smooth regular deformation an isotopy if each f; is
imbedded.

Under a non-degenerate isotopy the mean-curvature vector varies con-
tinuously, which implies that the integral of the torsion form

1
‘On—fM"T dV

varies continuously. Now, under an isotopy the Gauss integral varies con-
tinuously. Since SL is an integer and since

1 ( 1
B d02”+aLITdV=SL

M Mn n
varies contiuously, SL remains an integer and is thus invariant under non-
degenerate isotopy.

For the case where n is even, the invariance is obvious since x (%°) remains
constant, where h is the mean curvature vector field, and

—3x(h°) =8L

TueorEM 11.  The self-linking number of an n-dimensional closed
oriented differentiable manifold M» C° imbedded in Fuclidean (2n-1)-
space remains invariant under non-degenerate isotopy.
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Appendix A.

This portion of the appendix is devoted to the proof of the following
theorem due to Whitney, Lashof and Smale [13] and [8].

TureorEM. Let f: Mn— E** be a C* immersion of a closed orientable
differentiable manifold M of even dimension n into Euclidean 2n-space.
Then, twice the algebraic number of self-intersections of f is equal to the
Euler characteristic of the normal bundle, 1. e. the normal characteristic of f.

The proof uses equation (E) of Section 1 in the case where N =M
and where f=g is the immersion. I(g,f) is clearly twice the algebraic
number of self-intersections. We choose the frames fa,,- - -, a., as follows.
ay," * *,0, are to be tangent vectors to M» at f=jf(m), me€ M», and
Gns1y° * *5Q2q are to be normal vectors at f=7F(m). The orientation of the
frames are to be consistent with the orientation of M and E?n.

Equation (E) gives, since 4N is empty,

1
401 Abailaty * * Ustgmimar A+ Ao =1(g,f).

Al
(A1) O J 000

One may proceed in a manner similar to Section 2 to integrate the left-hand
side of equation (A1) and obtain
1

O2na

.L'(M)don—l/\um’ C O U N 'Aﬂ'inzn=X(cn)’

where x(7) is the Euler characteristic of the normal bundle.
For the sake of clarity we present the details for the case n —2. We have

1 1
(A?) 05 Jran 401 A Uty Uty riyg N rgge = —O_J;u L Usi Uiz N i A0y
3

Using polar coordinates, we have

1 o
(A2) =b_3‘fM ‘fo [COS2 611"13 A 14 + CoSs 0 Sin 0 (11'13 A o4 + o3 A 71'14)
—I— Sinz"eﬂ’gg A‘7l'24] CM

1
_0_3. - fM1rl3 A4 + T3 Aoy == — —g—;fMd’Ws‘L - g;fMNdA

where d denotes the exterior derivative, and were NdA is the curvature form
of the connection in the normal bundle. That dry, ——NdA may be found
in Chern [5]. But

+ -g—anNdA — él;—fMNdA=x(‘h).
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We make the final observation that the integral in (A1) is also the
tangential degree of the map f.

Appendix B.

In this portion of the appendix we present a different approach to some
of the ideas in Section 2. The approach is a direct generalization of Pohl’s
proof of Cilugireanu’s formula for the self-linking of a space curve [14],

L d02+—1—f r ds — SL.
4w Joxe Rw J ¢

In his proof, he uses the secant manifold S(C), as opposed to the secant
manifold §(C, N) which we use in Section 2. We now give a brief indication
of some of the ideas in Section 2 using only the secant manifold S(M).

Accordingly, let f: Mn—> E*»! be a C® imbedding of a closed orientable
n-dimensional differentiable manifold M — M into oriented Euclidean space
of dimension 2n 4 1. Let S(M) be the space of abstract secant directions
of M. We recall S(M) =M X M —DU T(M), where D = {(m, m) € M X M}
and T (M) is the space of oriented tangent directions of M.

Let v be a non-vanishing unit normal vector field on M. We will call
the line spanned by v at a point f(m) the normal line at f(m). The manifold
of all normal lines to f we shall call the normal manifold.

To each (my,m,) € M X M —D we associate the unit vector e, (m,, m,)
in B> directed from f(m,) to f(m,) i.e.

f(ms) —f(my)
| f(ms) —F(ma) |

To each t€ T (M) we associate ¢, (t) = ¢ regarded as a unit vector in E*"+,
The map e,: S(M)— S?» thus defined on all of S(M) is shown to be
differentiable in [11].

To each (my,m,) € M X M- D such that the normal line to f at f(m,)
does not pass through f(m,), we associate the vector €...;, the unit vector
in the plane spanned by the normal line to f at f(m,) and the secant line
f(my)f(ms.), orthogonal to e,, and so oriented that ¢ ..., agrees with the
orientation e;vf(m, Where v(m,) is the normal vector to the imbedding f at
f(my.). The vector function e, clearly extends smoothly to the boundary
of S(M), where it simply becomes vym).

However, €., is not defined at points where the imbedding intersects
the normal manifold. We call these points the cross-normals of f. We will
assume that f£(3/) crosses the normal manifold tranversally at the cross-

e (mq, m,) =

10
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normals. Because of the compactness of M, the cross-normals will be finite
in number, say 7. We shall denote them (m,@,m,®), a=1,---,r. We
surround each of the cross-normals by a box B, of small width ¢ in
MXM—DcCS(M),

Bae= {(m1,m2) = (Maiy mzi) € M X M —D | | mas—m@ |

S| My—m@| =S¢ i=1,- - -0}

We orient M X M in the canonical fashion. This induces an orienta-
tion on S(M), hence on 7 (M) and the boundaries of the boxes B, 0B,
a=1," - -,7. We will speak of the canonical orientation on T'(M) to be
the usual one and on 9B, to be that given from the ‘inside’ of the boxes.

We denote the pull-back of the volume element of the 2n-sphere, S27,
under the map e, by dO., and apply Stokes’ Theorem to get

(B1) 10pm— | A—lim S | a
R1e2) T(M) €50 a=14J 3Bae

where A is a differential form of degree 2n—1 such that its exterior deriva-
tive dA is equal to dO;,. We will show such a form exists. The second term
on the right is preceded by a minus sign since the orientation induced is from
the ‘outside’ of the boxes and hence is opposite to the canonical orientation.

We now find an expression for A and for dA — d0,,, using the formalism
introduced in [3]. We define local fields of orthonormal frames on f(M),
fei,* * -, o such that e, and e,,., are the maps above now considered as
vectors and such that e,,- - -, ¢,, complete the orthonormal frame. We set
wj=de;-e;, 1,j=1,---,2n41. Clearly, dOs—0w12A" * ‘Aoyp,. In
order to apply the formalism of [3], we need a well-chosen vector orthogonal
to e;; we have such a vector es.;.

We set

Qaﬂ == a1 \ w18

for any o, B8, and

(I))‘=€a,---ag,,0a2a3/\' : 'Aﬂazxazxell\‘”“zx+22ﬂ+1 Ae s Nogy,oni,
where
+1if @ - - ay, is an even permutation of 2- - -2n
€ogeag, =< —1 if @ - -, is an odd permutation of 2- - :2n
0 otherwise.
We set

I

LS !

A% = A Dy
e 1-3- - - (2n—2x—1)2m 1 *
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Finally, we set
22 |

A=D1

Then A is the form we are looking for, that is, it is the form whose exterior
derivative dA is equal to dOgp.

We will now present the cases n=2,3 as examples of the cases n even
and n odd. We first notice that the first integral on the left-hand side of
(B1) is simply the Gauss integral times Oa,

v

dOzn == dO'ln:
S(M) MXM

since the removed points of M X M to form S(M) have measure zero.
a) The case n=2.

We have n =2

Substituting for ®, and ®;, we get
A=— ‘%{20’25 Awgs A W45 — {w21 Naog A w45 —war A 014 N g + w31 Ao w‘.’ﬁ} }

Let us first integrate A over T'(M). To do this, we apply Fubini’s
Theorem by choosing local fields of orthonormal frames fe,,- - -, es such that
eie; are tangent to f(M) at f—f(m), e, being the map defined above, and
such that ese,e; are normal at f — f(m), e; being along vs(m). Next, we choose
local fixed fields of orthonormal frames fa.,- - -,as, such that a,, a, are
tangent and as, a4, a5 are normal. To integrate A, we write

e; = cos fa, + sin fa,
e, ——sin fa, + cosfa.;
es=—a;, §$=23,4,5.

We set da;-a;=m; and note that the m’s are defined on the base manifold
M hence, any form of degree greater than 2 in the ;s is identically zero.
The first term in A:

Wos A [OFY3 A Wy5 == (* Sin 07!'15 -I"‘ COoS ‘077'25) A T35 A Ty5 = 0.
The second :

021 Awig Nwgs = (a1 — df) A (COS Omyg -+ Sin Orray) Ay
= dﬂ A (COS 077'13 "'— Sin 0’77'23) A T4a5.
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Integrating over T'(M), we get

2
f v Ao N oy =— f f (cos fry5 -+ sin Orras) Arysdf =0.
(M) M0

The third term gives a similar analysis to the second. Hence,

J a—o.
T(M)

We remark here that clearly any term not containing an w;, could not con-
tribute to the integral.
So we have now

r
A0 sy = —1im >, A.
oJ MXM €>0 q=1 o/ dBae

To integrate the right-hand side, we replace, i.e. blow up, each cross-normal
(m:@, my;@) Dby the sphere of oriented tangent directions B, to M X M at
(m,@, m)®),  We obtain thus a manifold with boundary consisting of
Ry, - +,R. and T(M). Tt can be shown that the frames defined on the
interior of S (M) above can be extended smoothly to the boundary components
R.,- - -, R,, which is all we need to integrate. Now e¢; is constant on the
spheres; hence, any term in A containing an wy; is identically zero. Thus,
we have

a» r
J A0y =+ % f w25 A wgs N wys.
MXM a=1 o

The right-hand side is recognized as a sum of indices times the volume of
the three-sphere times 2/3. Thus, we have established:

TaEOREM. Let f: M2— E° be a C° imbedding of a two-dimensional
ortented closed manifold into Kuclidean five-space and let v be a normal
vector field defined on M2 Then

1
L a0,=1¢
04 fMXM = 1),

where I(v) is the sum of the indices of the cross-normals.

We remark that we need the machinery of Section 3 to prove

1
d0, =0.
04 LIXAI

This gives us the fact that I(v) =0.

b) The case n—3.
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0
[

GAUSS INTEGRAL.

We have for n=3

1.1 1 1
*__ —f_— . -
At= 73{ 120 2718 ®: + 64‘1”}’
where

Dy = €qy- gyt A ANpgg = 120027 A+ * A wer,
D) = ey 0Qazay A 0oz A vag N wag
— 12{ Q3 A 047 A 057 N wer — Qs Awgr Awgg Awgr -+ Qsa A wgr Awgr Ao
+ -+ Qus Aogr Awzr Awgr + 0+ Qe Nz A wzr A g},
Dy = eay gy, N Qoyos N Oogr
= 24{ Q25 A Qus A wg7 — Q2g N Qs N 0a7 — Qg A Qg A wsq
+ Qg6 A Qs A wgg — Qg3 AQyy A m27}.

We further have

8

A=75

A*,
where dA = dQ.

We proceed as in the case n =2 to integrate A over 7' (M) by means of
Fubini’s Theorem. We choose local fields of orthonormal frames fe;,* « -, e7
such that e,, e, e; are tangent to M at f=7F(m), e, being the map defined
above, and such that e,,- - -, e; are normal at f=7f(m), e; being along vsm).
Next we choose local fixed fields of othonormal frames fa,,- - -, a; such that
@y, a5, a3 are tangent and as,- - -,a; are normal. To integrate A, we write

€ = U101 + U202 + U133

€3 = Uz @y ~+ U@y —+ Ugs@s, (uy) orthogonal;
€3 = Us1(y ~+ Uszlls | Ussls

es=as;, $=4,5,6,"7.

We make two important observations. Since the base manifold M is three-
dimensional and since the m’s==da,-a/s are defined on M, any form of
degree greater than three in the s is identically zero. Secondly, corres-
ponding to the remark in the case n==2 for w,,, any form not containing
012 A w;z Will not contribute to the integral.

Hence, no form from ®, contributes. Only the form

12021 AN 013 N wgr Aoy A wer
from &, contributes. Finally, the forms

24wz Noyg A wgg Nogs A We71y — 4w A w1z A\ g1 Aoz A W47,
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and — 24wz; A w1 A wer Aw 1A ws; contributes from @, Hence,

f f A¥ = {——0)1'» A w13 A wgr A W57 A We7
(M) (M) 15 ron 1

=+ %{ww Aw1g A 014 A 015 A wgr ++ 013 Aoz Aoy Aoig N oy
— o Aoz N o Ao /\‘057}}-
We now investigate these forms in terms of the my’s. First
w12 A wig = d0, - terms in the s,

where dO, is the area element of the tangent 2-sphere. Thus,

» 2 »
J ——‘012/\6013/\0’47/\0’57/\0’67— 15 7747A7fs7A7Ts7d02
T 15 uJ s

8
= 1‘5_ mi Nsr Nrer.
Next,
f ’15‘(012 Ao Ao Aos N ogr = % f f (U117T14 A+ Upomos U omyy)
T(M) MJI S

A (U117T15 —+ Uromas + uls'ﬂ'as) A7grd0,
= %f J (Uye P10 Ay Uno?moy A ras = UsgPmas Aras) AmerdOo.
MJS

The cross-terms vanish and only the terms involving the squares of the u’s
contribute, since the integral is over the entire two-sphere. Using polar
coordinates to integrate, the above expression becomes

4
(77’14/\71'15+7724/\7l':5 +7734A7T35) A mer.
15 Jur

Similarly, we analyze the other forms and we obtain

(M) f {R7ar Aoz Aror — Aus Aoy — Ase N raq -+ Ayg Arsc
T

where
3
Aoy = 2 mai A g
i1

The similarity between the expression here under the integral sign and that

in Section 2c is immediate. We point out that here a; is along vs(m), whereas

in Section 2¢ a, is along v. This accounts for the differences in subscripts.
We have thus far
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f dO(} — ﬁf {27747 Ams: Ngr — Ags Ao — Asg N mar + AN 71'57}
MxM 15 Jm

r
=—1lim X A.

€50 g=1 </ 9Bae
To integrate the right-hand side, we proceed as in the case n—2 and replace
each cross-normal (m,@®,m,@) by the sphere of oriented tangent directions
R, to M X M at (m,®, m,®). Arguing as before, we find that any term
in A containing an o,; is identically zero. Thus we get

r r 8
—Ilim 2 A=‘—'2 ot werwu7Aw47A‘057Awe7~
€50 ¢=1 0By, a=1 Ra

The right-hand side gives the sum of the indices of the cross-normals times
the volume of the five-sphere times 8/15. Thus, we have established:

TueoreM. Let f: M3*— E7 be a C® imbedding of a three-dimensional
oriented closed manifold M? into Euclidean seven-space and let v be a normal
vector field defined on M. Then

1 1
5“ dOs""a‘j {"—‘71'47/\71'57/\7767 +%(A45A7"67+A56A”47'—A46A757)}
3 J MXM 6 M I( )
_ — v s

where I(v) is the sum of the indices of th ecross-normals.
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