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SELF-LINKING AND THE GAUSS INTEGRAL I N  

HIGHER DIMENSIONS. 


Introduction. Let d l  be an oriented compact differnetiable manifold 
of dimension n (with or without boundary) and let +: A1 += AS'" be a differen- 
tiable map of 171 into the unit sphere of dimension n. Let do,  denote the 

pull-back of the volume elenlent of Sn under + and 0, the volume of the 8%. 
Then 

is called the Gauss integral for +. I n  this paper we shall prove a number 
of differential topological and integral geometric formulas for submanifolds 
of Euclidean spaces which arise from the application of this integral to 
certain geometric constructions. 

The Gauss integral has numerous applications in geometry. I n  case Al  
has no boundary, i t  gives the degree of +. It was used by Eronecker to give 
a formula for the intersection number of two submanifolds of Euclidean space. 
I n  case ill is an immersed hypersurface and + is the Gauss map, i t  gives the 
total curvature of M. I n  connection with this, Chern [3], in his work on 
the Gauss-Bonnet theorem, expressed the Gauss integrand as the exterior 
derivative of a differential form. Gauss himself used the integral in his 
investigation of electromagnetic theory to give a formula for the linking 
number of two spaces curves. I n  fact, if C, and C2 are two closed disjoint 
space curves and if +: C, X C2+=S2is the map which assigns to each (3,y) 
the unit vector from x to y, then the Gauss integral gives the linking number 
of C, and C,. ( I f  C, and C, are not disjoint, however, the linking number 
is indeterminate.) I n  [2] C5lugZreanu raised the question of the significance 
of the Gauss integral for this last map 9: C ,  x C2+8-f C, =C, EC. 
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He found that if C is differentiable of class C3 and has non-vanishing curva- 
ture then 

is an integer, where r is the torsion. He also worked out a number of geo- 
metric interpretations for this integer. I n  1121 Pohl gave a much simplified 
proof of CHlugZreanu's results using the space S ( C )  of secants of C, and he 
called the integer SL, appropriately, the self-linking number of the curve C. 
This work was the starting point of the present paper. 

Pohl's approach can be generalized by using the space of secants S ( M )  
of an n-dimensional differentiable manifold d l  to give a higher dimensional 
version of Ciilugheanu's formula. (This approach is summarized in Appendix 

B.) However, we have found a new approach to these formulas which gives 
a much greater variety of results. Instead of using the space of secants of 
a differentiable manifold 31, we introduce the space S ( J f , N )  of secants of 
a differentiable manifold N relative to a submanifold d l  and study differential 
forms on it. A striking feature of our results is that in spite of their diver- 
sity they all follow froill a single main equation. 

Section 1 deals with the definition of S (M,N)  and the proof of the 
main equation. I n  Sections 2 through 5 we consider the case of an n-
dimensional submanifold 31 of Euclidean (2.11+1)-space. If n is odd, we 
define the torsion of 31, generalizing the torsion of a space curve, and prove 
the generalized C5lugBreanu formula. If n is even, Tve show that the terms 
in CHlugXreanu's formula are zero, but our construction leads to differential 
topological results. We show that if v is a normal vector field on II1 (for 
example, the mean curvature vector field), then one-half the Euler charac- 
teristic of the subbundle of the normal bundle co~plementary to the sub- 
bundle of lines spanned by the vector v is equal to the negative of the linking 
number of the submanifold d1 with the submanifold moved a small distance 
along the vector field v. 

The method of proof in these sections relies heavily on the use of 
differential forms, in particular, the forms introduced by Chern in his intrin- 
sic proof of the Gauss-Bonnet formula. TT7e show, in fact, that these forills 
actually arise in a natural and geometric fashion. 

Section 6, which contains differential topological results, deals with a 

generalization of the even-dimensional case mentioned above. Suppose we 
have an imbedding f of an n-dimensional differentiable manifold, n even or 

odd, into Euclidean (n+s)-space, and suppose there exists an oriented 
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k-plane subbundle N of the normal bundle such that 0 < s -k (=n and s-k 
is even. We define the normal intersection locus to be f(lCl) n (N-the zero 
section of 3) .  Then we show that the Poinear6 dual of this locus is the 
Euler class of hhe (s-k)-plane subbundle of the normal bundle comple-
mentary to the k-plane subbundle. This result is closely related to the work 
of Lashof-Smale [9]. 

Section 7 is concerned with the case in which A1  is the boundary of N, 
the most striking result being one for curves and surfaces in ordinary space. 
Let C be a simple closed curve which bounds a compact surface immersed 
in Ed. Let a be the angle between the surface normal and the binormal 
vector of the curve at the points of C. Let S L  be the self-linking number 
of the curye and I the sum of the illdices of the non-trivial intersections of 
the curve with the surface. Then we show that 

Section 8 introduces the concept of the Gauss integral for submanifolds 
and deduces further formulas. Section 9 proves a higher-dimensional version 
of the Fenchel-Jacobi theorem to the effect that the total torsion of a closed 
spherical space curve is zero. Finally, Section 10 deals briefly with deforma- 
tion theory, showing the invariance of the self-linking number under non-
degenerate isotopy. 

The author wishes to thank his advisor, W. Pohl, for his helpful guidance 
and encouragement during the preparation of this paper. 

1. The secant manifold S ( M , N )  and the main equation. We begin 
by recalling the definition of the abstract space S ( U )  of secant directions 
of a differentiable manifold 111 with or without boundary. If 111 has no 
boundary, S(11) =1lX 31-D U T(M) where D ={ (m, m) E A 1  X 11) and 

T ( M )  is the space of oriented tangent directions of M. S(,11) has been 
constructed in a canonical fashion by Pohl in [ll]. If 1l has a boundary, 
he extends ill a bit beyond its boundary to obtain an open manifold .ill+and 
defines S(11) to be the closure of A1 X M -D in S(dl'). I n  this case S(dl)  
is essentially the same as above, i. e., S(dl) =A1 X 111- D U T(31) ; how-
ever, we understand that, a t  points m of the boundary, T ( d l )  a t  m is to be 
taken as T(M+)  at  rn. 

Let N =Nq be a differentiable manifold of dimension q possibly with 
~ r i t hboundary and let M =Hnbe a closed submanifold of dimension n(n 5 q) 
with no boundary. We define S(111, N )  to be the closure of H X N - D M  
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in S ( N ) ,  where DM ={ (m, n )  E M X N I m =n). It follows from the con- 
struction of S ( N )  that 

where T(N)M is the restriction of T ( N )  to ill, and where we understand 
that, if M is a part of the boundary of N, T ( N ) M  consists of T ( M )  and 
tangent directions of N pointing to the interior of N from M. X(M,N) is 
a manifold with boundary M X 8N and T ( N ) M .  

Let g be a smooth C3 map of N into oriented Euclidean ( n  +q)-space, 
En+q,  such that g is a C3 imbedding (or possibly immersion in  the case 
N =M) in a neighborhood of M. I n  case N has boundary, we extend N a 
bit beyond its boundary to form an open manifold N+ and then extend the 
map g to N+. From now on we assume A 1  and N are compact. 

We denote the restriction of g to M by f. It is quite possible that g ( N )  
and f (M) may intersect in  points other than the obvious intersection. Such 
non-trivial intersection points will be denoted by I, i. e., 

By means of the Thom Transversality Theorem it can be shown that, under 
a small deformation of g, these intersections may be made transverse. Under 
such a deformation the geometric entities we shall be discussing vary con-
tinuously. Hence we shall assume that the intersections of I are transverse. 
Because of the compactness of f ( N )  and g(M) ,  they will be finite in number, 
say r. We denote them by (mc5), n(a)), a =1,. . . ,r .  We surround these 
points by disjoint 'boxes' of small width e 

We define a map 

el :X (M, N )  -I +Sn+q-l, 


where Xnfq-l is the unit ( n  +q-1)-sphere in En*. For each 

(m,n) E M  XN-DM-I,  

we set 

For each t E T(N)M,  we set e,(t) =t regarded as a unit vector in En+q. That 
el is a differentiable map is a clear consequence of the argument of [Ill. 
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We now assume that 21f and N are both oriented and we orient M X N 
in the canonical fashion. This induces an orientation on S ( M , N )  and on 
the boxes B, and hence on T(N).M, M X aN and dB,. We will take the 
orientation on aB, to be that given from the "inside." Let do,,,-, be the 
pull-back of the volume element of Sntq-lunder the map el. Then d(dOn,,-,) 
=0, since do,+,, is the pull-back of an ( n  + q -1 )  -form defined on an 
(n + q -1 )  -dimensional manifold. We apply Stokes' theorem to get 

The minus sign preceding the last integral sum is due to the orientation 
given aB, above. 

As is shown in [I], each of the integrals in the sum is an index of an 
intersection times On+,,, where On+,-, is the volume of the (n  + q- 1 ) -
sphere. Hence the sum gives Om,-,I (g, f )  ,where I(g, f )  denotes the algebraic 
number of (non-trivial) intersections of g ( N )  with f ( M ) ,  or simply the sum 
of the indices of the intersections. We recall that the volume of the k- 
sphere is 

where 
r ( i ( k +  I)) = + ( h - i ) r ( 4 ( k - 1 ) )  ;r($)= & ; r ( l )  =I .  

We now find an expression for dO,,,, in  the second integral in order to 
integrate over the fibre. First, we choose local fields of orthonormal frames 
fe,, . . .,en,, such that el, . . ,eq are tangent to N a t  f -- f ( m ) ,  el being 
the map defined above, considered now as a vector-valued map, such that 
e,,,,. . ., e,,, span the normal space to N a t  f =f ( m ) ,  and such that the 
frames agreed with the orientation of T ( N ) M  and E n t q .  We set dei. ej =oij. 

Clearly, we have dO,,,, =o,,A .  . .A w,,,,. 

Next, we choose local fixed fields of orthonorlilal frames on M and 
write the fields defined above in terms of our new fields. Accordingly, let 
fa,, . . 0 ,  am, be local fixed fields of orthonormal frames such that a,; . . ,a, 
are tangent to N a t  f =f (m), m E Jf, and such that a,+,, . . .,an+,are normal 
to N and hence to M a t  f =f (m) .  We also require that the orientation of 
the frames agree with the orientation of the manifolds on which they are 
defined. We set da+.ajr=~ij and note that the ,$j's are defined on the base 
manifold M. 

We write 
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el =ullal +. . +ulqaq 

, (Q!) orthogonal; 

eq=uqlal +' ' ' + 
e,=a8, s = q + l ;  . . , n + q .  

Then 

w l z A .  . .Awlmq = o J ~ z A .  . 'A wlq  A A .  . .A %n+q --

(*) = A (Uih~ila+l . .A ui i ,~~n+q) ,(dOq-l + terms in ?rij)~) A .  

where we use the Einstein's summation convention for repeated indices, the 
range of indices of the ik being from 1 to q. Since the ~ i j ) s  are defined on 
base manifold M, we have that any form of degree > n in  the ~4:s is iden- 
tically zero. Hence (*)  becomes 

Thus, we arrive a t  our main equation, one which we shall use again 
and again. 

We observe here that in the second term on the left-hand side we could 
integrate over the fibre now and obtain an integral over M. However, it 
proves to be simpler to do each case separately in what follows. 

The major portion of this paper is devoted to the application of equation 
( E )  to various situations depending in particular on the choice of 111, N 
and the map g. The obvious first choice for N is simply dl. I n  the cases 
where this is of interest, namely those in which Ai is even dimensional, 
equation ( E )  yields a result of Whitney, Lashof and Smale [13], [14], and 

[8]. This case is presented in Appendix A. 

2. The case N = M  X L, L = [0, E.]. I n  this section we present 
results generalizing the formula of C5lug&reanu [B] and the notion of self- 
linking of space curves [I%]. We digress briefly from our main argument 
to recall some well-known facts about the linking of manifolds. 

Let Mu and EL be two closed smooth oriented manifolds of dimensions 
n and 2, and let f and g be continuous maps of them into oriented Euclidean 
space En+Z+lof dimension n +1 +1 such that f (&In) and g(K1) do not 
intersect. Let S n t z  be the unit n +1-sphere centered at  the origin of EntZt1. 
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Consider the cartesian product illn X K z  given the canonical orientation. 
We define a map 

e : Jlnx El +Stl+z 

by associating to each (m, k) E M@X K 1  the unit vector in En+1+I 

The degree of this map is the linking number L ( f  (All%), g ( K 1 )  ), or simply 
L (f, g ) .  Let dOn+z be the pull-back of the volume element of the (n  + 2 )  -
sphere under the map e (we assune now that the maps f and g are C1). 
Then, clearly 

where On+Z is the volume of the n +2-sphere. 
It is clear that if the maps f and g vary continuously, i. e., f =ft, g =gt 

in such a may that the sets ft(Jln) and g t ( E z )  intersect for no value of t, 
then the integral in (1) varies continuously, and hence, since it is integer- 
valued, remains constant. 

Furthermore, let e' : K l  X A l n  -+ Sn+lbe the map e'(k, m) =-e (m, lc) . 
Let a be the map of E I X  onto 11" X El which transforms (k, m)  into 
(m, k), and let p be the antipodal map of X n + z  onto itself. The degree of a 
is (- 1 )"l, and the degree of ,B is (- 1 )"+l+l. Since e' =pea, we obtain 

L (g, f )  =(- (f, 9 ) .  1 )  ("+l)(l+l)L 

We return now to our main line of argument. We consider the case 
N =111X L where L is the closed interval of real numbers [0, €1 and where 
we make the obvious identification 11r11X (0).  TVe orient L in the positive 
sense and then orient M X L in the canonical fashion. 

We will use equation ( E )  where, as we have stated, N = Y  X L and 
hence is of dimension n +1, i. e., q =n +1. Let f : Jl-+ Ez7bf1be a C3 
imbedding of N into Euclidean (2n +1)-space. Let v be a non-vanishing 
unit differentiable normal vector field on Jl (which always exists). We let 
g in the main equation ( E )  be defined as follows: 

for (m, 1) E N, where vf(,, is the normal vector at  the point f (nz). We 
choose E small enough so that f (31) and f (11)+ tv =ft, ( J I )  do not inter- 
sect for any value of t, 0 < t 5 6. This mill insure that in the main equation 
(E) I (g, f )  =0, for there can be no non-trivial intersections of g (N) and 
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f ( M ) .  Finally, we denote the linking number of f ( M )  and f,,(M) by 
L(f,f,,) and M X ( 6 )  by ME. 

We choose the frames fa,, . . . ,a,,+, as follows. a,, . . .,a,, are to be 
tangent to M at f = f ( m ) ,  a,,, is to be along uf(,), and &+Z,. . ., am, are 
to span the rest of the normal space a t  f = f ( m ) .  

We apply equation (E) to get 

Using formula ( I ) ,  we see that 

The first integral on the left-hand side we call the Gauss integral for the map 
f and the manifold M. 

Before stating the general theorems of this section, me proceed with a 
few special cases. 

a. n=l. 

For n = 1,we have 


Let F stand for the fibre. We choose for our positive coordinate system giving 
us the proper orientation for T ( N ) Mthat which places the base coordinates 
first and the fibre coordinates last. Thus, 

Using polar coordinates, ul,= cos 8, u12= sin 8, and 

-JM L Y c o s  0 x13+ sin B na)dB= -2 SMTz3. 
Equation (4) becomes 

We notice immediately that if v is the principal normal vector field, 
we obtain a new proof for the formula of Ciiluglreanu [2] 
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If v is the binormal vector field, we obtain a new proof of Pohl's result [12] 
that SL is indeed the linking number of a curve and the same moved a small 
distance along the binormal. I n  fact, we have also shown that SL is the 
linking number of a curve and the same curve moved a small distance along 
the principal normal. 

6. n=2. 
For n=2, we have 

We use polar coordinates to integrate and observe that, unless the power of 
the u,, is even, the integral of the term involved is zero. Hence, our equation 
becomes 

Equation (4) becomes 

1 2.r --OISM$' +~ J h f =L (f, fe,) a 7 4 5  

From [4] we know that 

is the Euler characteristic of the oriented subbundle of the normal bundle 
complementary to the bundle fibred by the line spanned by the vector v. We 
shall denote this Euler characteristic by X(vc). (More precisely, this integral 
is the Euler class of the subbundle evaluated on the fundamental class of M.) 
We combine our results and obtain 

We shall show in the next section that the Gauss integral for even dimensional 
manifolds is zero. Hence, we have 

- + x ( v ~  =L(f,fe,). 
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If we choose for v a unit vector along the mean curvature vector h of M ,  
we might define the self-linking number of f ( M )  to be 

We remark here that an imbedding with non-vanishing mean curvature 
vector is the generic situation, that is, close to every C3 imbedding of an n-
dimensional closed smoothed manifold into Euclidean (2%+1)-space, there 
is an imbedding with non-vanishing mean curvature vector [lo]. 

One final remark. Since L( f ,  f,,,)is an integer, the Euler characteristic 
must always be even. 

c. n = 3 .  

For n =3, we have 


We use polar coordinates to integrate and observe that, for all summation 
indices i except 4, if the power of uld is not even, an integral containing such 
a term is zero. Hence, we have two types of contributing terms, terms con- 
taining u , , ~and terms containing a u,, and a ulT2, r =1, 2, or 3. Hence, 
our equation becomes 

where 
3 

Equation (4)  becomes 

h a g  = 
k.1 

raii A T ~ B .  

I f  v is a unit vector along the mean curvature h of ill,we have a definition 
of the self-linking of a three dimensional manifold in seven-space, i. e. 
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hence the integrand in the second term on the left-hand side may be con-
sidered as a generalization of rds of a space curve. We therefore write 

where dV is the volume element of the manifold 31. We call rdV the torsion 
form of the imbedding with respect to the mean curvature vector h. 

We proceed now briefly with the cases n =4,5 and then shall state the 
general equations for n even and odd. 

d. n =4. 

For n =4, we have, using polar coordinates, 


+7 6 4  A r j 7  A ~ s Ai ~ ~ 9  -/- T G ;  A 7rj7 A 81 A 7 r j 9 )  i # j. 
Equation (4) becomes 

1 1
-
o8JMtirGs~a67A a 7 9  + a 6 9  A % a )  = ~ ( f )e,,))

A 

5 

here f l a ~=X orb A T @ .  Since the Gauss integral for even dimensional mani- 
k=1 

folds is zero, we obtain, similarly to 2, 

where X ( ~ C )  is the Euler characteristic of the complementary (to v )  oriented 
subbundle of the normal bundle. 

e. n = 5 .  

For n =5, we have, using polar coordinates, 
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where 

+1if ala,a3a4a5is an even permutation of 7 8 9 10 11 
-1 if alaza3a4a5is an odd permutation of 7 8 9 10 11 

0 otherwise, 

and 
5 

Aag =xWork A W k g .  
k=1 

Equation (4)becomes 

Once again, if v is a unit vector along the mean curvature vector h, 
we define the self-linking of the imbedded five-manifold to be 

where T ~ Vis the torsion form of the imbedded manifold with respect to the 
mean curvature vector field, dV being the volume element of the five-manifold. 

f. The general theorems. I n  order to obtain the general theorems, we 
integrate as in the cases n =1,. 5 the second term on the left-hand side a ,  

of equation (4). For n odd, we obtain 

where r*dV is defined as follows. Let 

where 

and where 

+1 if a,. .a,, is an even permutation of n +2 .  . .2n +1 
-1 if a,. .a, is an odd permutation of ?t +2. .2n +1 

0 otherwise. 
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Define 

Then 
r*dV =OnA. 

We call r*dV the torsion form of the imbedded manifold with respect to the 
vector field v. 

We remark that such forms were first introduced by Chern [3] in his 
proof of the Gauss-Bonet formula. We, in a sense, have dualized his forms 
and have interpreted them as "torsion" forms. 

THEOREX1. Let f :  ill.+ Ezn+lbe a C3 imbedding of a closed oriented 
differentiable manifold into Euclidean (2n+1)-space. Let v be a non-
vanishing unit normal differentiable vector field on ill". If n is odd, 

where L( f , fE , )  is the linking number of the imbedded manifold with the 
same manifold deformed a small distance r along the vector field v, and 
where r*dV is the torsion form of the imbedded manifold with respect to 
the vector field v. 

If we choose for v a unit vector along the mean curvature vector h of 
Mn, we have a definition of the self-linking of an odd n-dimensional manifold 
in (2n+1 )-space, i. e. 

and we write 

-1 7dV= SL, 
02.sM&02n +E S M  

where rdV is the torsion form of the imbedding with respect to the mean 
curvature vector h. 

We proceed now to the general theorem for n even. We have 

where 

9 
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E ~ ~ . . . ~ , ,is as above and 
n+l  

nU8=2 Zak A x k ~ .  
k.1 

But the integral on the right-hand side is simply -Qx(vc) where X ( v c )is 
the Euler characteristic of the complementary (to v )  subbundle of the normal 
bundle. 

THEOREX2. Let f :  dln+ EZn+lbe a C3 imbedding of a closed oriented 
differentiable manifold into Euclidean (272 +1)-space. Let v be a non-
vanishing unit normal differentiable vector field on 1.". If n is even, 

where x ( v ~ )  is the Euler characteristic of the complementary (to v )  oriented 
subbundle of the normal bundle and L(f ,  f e u )  is as in Theorem 1. 

We remark that the proof of Theorem 2 is not yet complete since we 
still must show that the Gauss integral for even dimensional manifolds is 
zero. This will be done in the next section. 

If we choose for v a unit vector along the inean curvature vector h of 
Mn, we have a definition of the self-linking of an even dimensional manifold 
in (2n+1) -space, i. e. 

3. The case N= M X L, E = [- s,s]. I n  this section we prove that 
for n even the Gauss integral is indeed zero. We consider the case N =M X L, 
where L = [ - r , ~ ] .  Everything in equation (E) will be the same as in 
Section 2 with the exception of N ,  which in Section 2 was d l  X L, L = [0, e l .  
g again is the map 

g(m, 1 )  = f ( m )  + Zvf,m,. 

We choose E small enough so that f(M) + tv =ft,(.Jl) and f (31)+sv =f,,(nl) 
do not intersect for any value of t and s, -E f s # t f E. This will insure 
that in the main equation (E)  I ( g ,  f )  =0, for there can be no non-trivial 
intersection of g (N) and f (11).The linking numbers of f ( d l )  and f,, (X), 
f-,,(Jl) will be denoted respectively by L (f, f E L ) ,  L (f, f - ,L) .  Finally, we 
choose our frames fa,; . .,a,,,+, as in Section 2. 

We apply equation ( E )  to get 
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Using formula ( I ) ,  we see that 

1KST$p;A l i ~ i ~ '' ~ L l i t c ~ i I ~ : ~ ~L(f ,  f-,*) --L(f,  f,,) = ' A '  ' ' Ardt,2nt1. 

We integrate the right-hand similarly t o  the manner in Section 2. The only 

difference is the range of integration of the fibre. In  fact, letting N' be the 

N of Section 2 and N' the N of this section, one can easily verify (writing 
dozn for do, A ulh. . . I L ~ ~ , T ~ , ~ ~ + ~. .A i~i ,? , ,+~)A .  that for n odd 

and fo: n even 

Consider next f(M), f,,(M), f_,,(ill) and their respective linking numbers. 
By deforming f(N) and f,,(X) along v continuously a distance - 6 ,  we find 
that 

L(f,fE") =L(f-ct; f ) .  

Using equation (2), we have 

L (f-E,,, f )  = (- 1) ("'l)" (f; f-E,) 

Therefore, for n even 

L(f-Eu,f)=L(f, f,") =-L(f, f-,,). 

Thus, for n even 

Hence, using equation (4), we have 

1 '-ozn .  =0.fMtL 

THEOREM Let f : illn+E2"+lbe a C3 imbedding of an oriented closed 3. 

differentiable manifold M" of dimension n into Ez~clidean 2n + l-space. Then, 
if n is even, 

LJao,,.=o. 
Onn M X M  

We observe now that this also completes the proof of Theorem 2. 

4. The case N =M X L, L = [O, cc 1. In  this section we interpret 
L(f,  fE0) as an intersection number. We consider the case N =J l  X L, where 
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L is the full half-line [O,co] including the point a t  infinity. Everything in 

equation ( E )  will be the same as in Section 2 with the exception of N. The 

map g is again 

9 (m, 1) =f (m)  + lvf(n), 

(m, I) E N. We choose the frames fa,, . . . ,a,,+, as before and apply equation 
( E )  to get 

where M ,  =M X { co ) and where, we recall, I(g, f )  is the algebraic number 
of (non-trivial) intersections of g ( N )  with f (11). We also recall that I (g ,  f )  
is the sum of the indices of the intersections. Because of the connection of 
the intersections with the normal field v we will also call I ( g ,  f )  the sum of 
the indices of the nornzal intersections. We will further call these inter- 
sections forward normal intersections because one finds the points of inter-
section by proceeding in a positive or "forward" sense along the vectors 
vf(,,. The second integral on the left-hand side is zero because the image 
of Al X M ,  under the map el is at  most n-dimensional, since clearly 
el (m,, m, m ) =el (m,, m, m ), m, m,, m, E 31. Hence the degree is zero and 
thus the integral 

vanishes. We remark that these notions may be made precise by considering 
E 2 n + l  as the open "upper hemisphere" of S2,+lSO that the map of g i - veil 
defined on D l  X { a )  and so that the map el is guaranteed differentiable at  
points (m,m, co) E M X M X  { w ) = M X H , .  

The other two integals on the left-hand side are clearly the same as the 
respective integrals in Section 2, equation ( 3 ) .  Therefore, using equation 
(4), we have 

L(f,fC"> =-I(9 , f ) .  

We make one final observation in this section. For the case of space 
curves with v equal to the principal normal, L( f ,  f,,) =SL.  I n  this case, 
Pohl 1121 has called --I(g, f )  the suin of the indices of forward cross-
normah. There is a difference in sign because of the manner of definition 

of I ( g , f ) .  

5. The case N =M x L ,  L  =[- a , a ] .  We consider the case where 
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N =M x L, L being the full line including both points a t  infinity. We use 

equation (E),  all things being the same as in Section 4 except, of course, 
for N ,  to get 

The first two integrals vanish for reasons analogous to those of Section 4. 
The third integral is clearly the same as the respective integral in Section 3, 
equation ( 5 ) .  Hence, we obtain, for n odd 

and for n even, 

1 (9?  f )  =L (f, f+") -L (f, feu) =-2L (f, fe,) 

If we define the sum of the indices of "backward" normal intersections 
analogously to the manner in which we define forward cross normals in 
Section 4, these two equations simply say that for n odd the sum of the 
indices of the forward normal intersections is equal to the sum of the indices 
of backward normal intersections and for n even the former is equal to minus 
the latter. 

6. The case where N is a subbundle of the normal bundle. I n  this 
section we prove some purely differential topological results which generalize 
Theorem 2. Throughout this section, as always, all bundles discussed will 
be oriented. 

Let P :  illn+Ent8 be a Cm imbedding of an oriented connected closed 
n-dimensional differentiable manifold into Eptts. Suppose there exists a L-
plane subbundle N of the normal bundle such that O < s-k 5 n and s-k 
is even. The normal bundle 8 of $1 consists of pairs (m, e) where m E I f n=$1 
and e is a point in the normal s-plane through f (m) .  For the discussion that 
follows, to each oriented k-plane of N we add the oriented (k-1)-sphere 
of points a t  infinity thereby "compactifying" N ;  thus, in the pairs (m, e), 
e may take on points of the (k- 1)-sphere a t  infinity. We make the obvious 
identification of the zero section of the normal bundle with Jf.  

We define a map H : fl+ en+^ by setting H(m, e) =e and a map g to 
be the restriction of H to N. Finally, we define a normal intersection to be 
a point m E 211 such that F (m)  =g (n)  where n = (nz,, e), any m, # m. 

4.THEOREM Let F: illn+ Ents be a C* imbedding of an 07-iented closed 



n-dimensional differentiable ma?iifold into E?"S. Suppose there exists an 
oriented k-plane subbundle N of the nol-nzal bundle such that 0 < s- k 5 n 
and s-k is even. Then the Poincarg dual of the locus of normal inter- 
sections is the Euler class of the complementary (to N )  (s- k)-plane sub- 
bundle cf the normal bundle. 

Remark. All classes are considered with real coefficients. 

COROLLARY5 .  Let F: &In+ E 2 n + k  be a Cm imbedding of an even dimen- 
sional closed ol-iented differentiable nzanifold into EZntk.Let N be a k-plane 
subbundle of the normal bundle (which always exists). Then the sum of 
the indices of the normal intersections is equal to the Euler characteristic of 
the conzplementary (to N )  n-plane subbundle of the normal bundle. 

The proofs use the secant manifold S ( A , N )  where A is an arbitrary 
closed compact oriented differentiable singular (s- k)-chain in JI and N 
is the (compactified) 16-plane subbundle of the normal bundle. Our discussion 
in Section 1 considered S(A1,iV) only where ;IIwas a closed submanifold of 
N. However, in our present case all details of that section go over since A 
is contained in a closed submanifold 31. 

We use equation (E)  where for the map g we have the map defined 
above and for the map f we have P l a = g  la. We choose frames on A, 
fa,; . .,an+,, such that a,,. . .,an are tangent to 211 at f =f ( a ) ,  a E A, 
a,+,,. . . ,a,+k span the fibre of N and agree with its orientation at  f =f (a) ,  
and an+k,.. . ,an+, span the rest of the normal space to Jl at  f =f ( a )  .. 
Finally, we define a normal A-intersection to be a point (a, n )  E A x A7 such 
that f (a)  =g (n) ,  where n = (m,, e),  m, #a .  Equivalently, a normal A- 

intersection is a point a E A C 41 of the normal intersection locus. We apply 
equation ( E )  to get 

where I (g ,  f )  is clearly the sum of the indices of the normal A-intersections. 
The terms involving the boundaries at  infinity vanish for reasons similar to 
those presented in Section 4. 

We integrate in a maner similar to Section 2 and obtain 

where 

A, = . .AQu,.,.,~ ,-,,~u, . . .~~ . ,Q~,u ,A .  
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a,. . . a,k being permutations of n +k +1. . . n +s, and where 

But the integral is simply 

that is, the Euler class of the complementary (to N )  (s-k) -plane spb- 
bundle of the normal bundle evaluated on the fundamental class of A. 
Combining our results, we have 

If me denote by Ch the locus of normal intersections, then the intersection 
number I (%, A) of 92 mith A equals I(g, f )  . Hence we obtain 

But A was an arbitrary closed differentiable oriented singular (s- k)-chain. 
Hence me use the Poincari: Duality Theorem to obtain that the Euler class 
X(Nc)  is nothing other than the Poincari: dual of the locus of normal inter- 
sections, i. e. 

x ( ~ c )=an 

mhere a) denotes the Poinear6 dual. This completes the proof of Theorem 4. 
Corollary 5 is just the statement of equation ( 7 )  mhen s- k =n and 
As-a =Mn. 

7. The case i3N =M .  I n  this section we consider the case where the 
boundary of N is JI. We start by proving a theorem about curves bounding 
surfaces in three-space. 

a)  Let C be a simple closed curve mith non-vanishing curvature which 
bounds a compact surface A, C3 immersed in Euclidean 3-space. We use 
the secant manifold S(C, A) and the main equation ( E ) ,  where for N we 
have A, for the map g we have the immersion of the surface A, and for f 
the restriction of g to C, g 10, which as we have stated is an imbedding. We 
recall that the non-trivial intersection locus is I={ (c, a )  E C X A I # a, 
f (c)  =g ( a ) ) .  Finally, we choose the frames fala,a3 as follows. a, is to be 
tangent to C at f =f (c), c E C, a, is to be the surface normal a t  f =f ( c ) ,  
and a, = a 3  X a,, so that a, is tangent to A and normal to C at f =f (c).  

We apply equation ( E )  to obtain 
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where I (9 , f )  is clearly the sum of the indices of the non-trivial intersections 
of C with A. We integrate the second term on the left-hand side as in 
Section 2 to get 

where P is the fibre. T,,=r,ds where 7,. is called the relative torsion ['7] 
and ds is the arc element of the curve. Hence, 

We next recall again the Formula of C&lug&reanu 

and subtrad equation ( 8 )  from it  to obtain 

But 7 ds-r,ds =da, where a is the angle between the surface normal and 
the binormal of the curve. See the definition of T,. ds in [?'I. 

We state our theorems. 

THEOREN6. Let C be a simple closed curve with non-vanishing curva-
ture which bounds a compact surface A, GS immersed in Euclidean 3-space. 
T h e n  

where T~ is the relative torsion of the curve C and I ( g , f )  is  the sum of the 
indices of the non-trivial intersections of the curve with the surface. 

THEOREM7. Let C be as in Theorem 6.  Then,  the total turning of 
the binormal vector of the curve with respect to the normal of the surface 
is equal to the sum of the indices of the non-trivial intersections of the curve 
with the surface plus the self-linking number of the curve, i.e. 

where a is the angle between the surface normal and the binormal of the curve. 



We make a final remark about equation (8). I n  light of Theorem 1, 

this states that 
L(f,fCv)= - - T ( g , f ) ,  

where v is either the surface normal vector field or the normal vector field 
to the curve which is tangent to the immersed surface A.  I n  particular, if 
the surface is imbedded 

b) We generalize Theorem 6. 

THEOREM8. Let f : Mn+ E2"+l be a C3 imbedding of a closed oriented 
n-dimensional differentiable manifold which bounds an oriented ( n+ 1 )-
dimensional differentiable compact manifold N,C3 immersed in Euclidean 
(2n+ 1 )  -space. Then, 1 )  if n is even 

where X ( ~ C )  is the Euler characteristic of the subbzcndle of the normal bundle 
complementary to the bundle fibred b y  the line spanned b y  the vector v 
which is normal to J l  and tangent to N ,  and where I ( g ,  f )  is the sum of 
the indices of the non-trivial intersections of g ( N )  with f ( i l l ) .  

2 )  If n .is odd, 

where T* dV is the torsion form of the imbedding of ill with 1.espect to the 
vector field v. 

The proof uses the secant manifold S(iII ,N) and the main equation (E), 
where for the map g we have the immersion of the manifold N ,  and for f 
the restriction of g to ill which is the imbedding. We choose the frames 

fa,, . ,a,,, as follows. a,, - . . ,an are to be tangent to M at f =f ( m ) ,  
a,,, is to be tangent to N along v at f = f ( m ) ,  and a,+2,. . .,a,+, are to 
span the rest of the normal space to Ill at f = f ( m ). 

We apply equation (E) to obtain 

1 
? ( I ,  A .--0, J'iz2n + $1d o n  A I ~ I L ~ , , . , , ~  . A,,, a =I ( g ,  f),

T(N)ar 

where I (g , f )  is clearly the sum of the indices of the non-trivial intersections 
of g ( N )  with f ( M ) .  We integrate the second term on the left-hand side 
and proceed precisely as in Section 2 to get for n even 
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and for n odd 

vrhere r*' dV is the torsion form of the ilnbeddllig nit11 respect to tlle vector 
field v, dT7 being the volume e1c:l;ent of l l ~ e  manifold 11. 

Finally, we remark similarly to part ( a )  that  

L(f,.fE")=-1(g , f ) ,  

and, in particular, if the nlanifold X is inlbeilcied 

8. The Gauss integral for submanifolds. Until now, we have been 

concernecl with the Gauss integral for a map f and a manifold J I n  of the form 

I n  this section we present a discu~sion of the Gauss integral for a map f and 
a restriction map f /As, and a manifold and a closed submanifold AS of 

the f o r n  

We now nlali-e these notiono precise. 
Let F : 11In+En+~+lbe a C3 imbedding of a closed orienie(1 cliEert,n tial~le 

manifold of climenqion lz into Eucliclean (11.+s +1)-space. Lct -1 be 
a closed oriented difrerentiable slthnianifold on J l n  =11 and sllppoqe there 
exists a non-~anishing unit normal d~ffererltiablr vector field 1%011 J/. ')ye 
conoider the secant manifold S(A,  Y)  n-here II'=?,I X L, L = r0, €1. As 
in Section 2 we denote JlX 10) ancl M X { E )  by ?l and d l ,  respecti~cly. 
T e  assume that  E is small so that  F(X)and F ( U ) + tv-J ' t ,  do no1 
intercect for any value of t ,  0 < L 5 E. This will insure in the use of eyuatior; 
( E )  which f o l l o ~ ~ s  = -1s al~~-ays,  in the 1)oh;ti~e that I ( g ,  f )  0. Tve orient 
sense and M X L in the canonical sense. 

ITe employ again equation ( E ) ,  T~ llcre for the map f n-e have P I A and 
-for ill:ll) 9 : 

g ( n z .  7 )  = F ( m )  +Zuri,,,,, 

( 1 , ~ . 7 )  S. \Ye choose the -Cr:Lmes f i r , ;  . . .a,lLR+lsuch that o,, . . .,a,, arc 
t o  1 , ~tn~lgc?nt 3! to a t  f =f (ci), a E -!;" , I . . l  i' along ~ ' f ( ~ i :a i d  ( I , : , ~ ,  . . . ,.n.:,I 
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span the rest of the normal space to Jf at  f =f ( a ) .  The orientation of the 

frames is to be consistent with the orientations of N and EntBt1. 
We apply equation (E) to obtain 

the signs, as always, being determined by the induced orientation and in  this 
case being (- 1 )  or -(- 1 )"+,+lbecause of the dimension and orienta- 
tion of A X N. Hence, 

where L ( f ,  F,,) is the linking number of the imbedded submanifold f ( A )  
with the imbedded manifold F ( M )  deformed a small distance e along the 
vector field v. 

We integrate the second term on the left-hand side similarly to the 
manner of Section 2 .  We omit the details. For s odd we obtain 

where ~ ~ " d v  Letis defined as follows, dB being the volume element of A. 

@L =~ a l . ~ ~ a , ~ n + i a l' ' A nntia,-plc A . . . A Aaa.las, A A Aa,-2k+la,-2k+a 
where 

n 
A a S = z ~ a i A w  

i = 1  

and 
+1 if a l .  . .a,  is an even permutation of n +2 . .n +s +1 
-1 if a , .  . a,  is an odd permutation of n + 2 . . .n +s +1 

0 otherwise. 
Define 

1 $(a-1)  1A = -
,%is+l) (- l k  1.3 . . . ( s-2 k )  2l(b+l)+Xk ah. 

Then 
TA* dV =OsA. 

We call rA*dV the torsion form of the imbedded manifold P ( M )  with respect 
to the vector field v relative to the imbedded sz~bnzanifold f ( A ) .  



We now proceed to the case s even. For s even me obtain 

where 
A,, =E ~ l . . . O l b ~ n ( l O I ZA .  . . A Q a 3 - 1 a * ;  

E ~ , . . . ~ ,is as above and 

But  the integral on the right-hand side is simply 

where X ( v C )[ A ]  is the Euler class of tile colllplerrientary (to v )  hubbundle 
of the normal bundle of JI evaluated on tlie funclalnental class of A. 

We state our theorem. 

THEOEEX9. L e t  AS b e  a closed ol.ienLed d i j ' e r e n t i c ~ b l e  o u b m a n i f o l d  of 
d i m e n s i o n  s o n  a n  o ~ i e n t e d  closed d i v e y e n t i a b l e  m a n i f o l d  JItL of d i m e n s i o n  n. 
L e t  P :  Afn-+ E*+s+lbe a C3 i m b e d d i n g  of 31f~i : t to E u c l i d e a n  ( n$- s +1)-

s p u c e  a n d  s u p p o s e  t l i ere  e x i s t s  a n o n - v a n i s h i n g  unit n o ~ n z n l  v e c t o ~  field v o n  
Mn. T h e n ,  

1 )  i f s i s o d d  

w l ~ c r ef is t h e  yes t r ic t ion  of F t o  A" ,.I* dV i s  t h e  t o r s i o n  f o r m  of Ihe  i m b e d d e d  
7iznnijold P ( H )  wiih r e ~ p e c t  t o  t h e  v e c t o r  field v r e l a t i v e  t o  t h e  i m b e d d e d  
s z ~ b ~ i z a n i f o l d  L ( f ,  Pen)i s  t h e  l i n k i n g  n u m b e r  of t h e  i m b e d d e d  f ( A ) ,a n d  w h e ~ e  
szlb?nanifold f ( A )  w i t h  t h e  i m b e d d e d  m a n i f o l d  P ( M )  d e f o r m e d  a s m a l l  
d i s t a n c e  E a l o n g  t h e  v e c t o ~  field v .  

2 )  If s i s  e v e n ,  

auhere * ( v C )  [A81 is t h e  E z ~ l e r  class of t h e  c o m p l e m e n t a r y  ( t o  v )  s z ~ b b z ~ n d l e  of 
t l i e  n o r m a l  b ~ ~ n d l e  of Mf)e v n l u n t e d  o n  t h e  f u n d a m e ~ ~ t a l  class of As. 

We notice immediately that  for s even Theorem 9 implies that  the 
Gauss integral 
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is an integer. From Section 2 we know that, when s =n and A8 =Mn, the 
Gauss integral is zero. It would be interesting to have more information 
in the general case. 

9. Discussion of torsion. We now explore briefly why we have chosen 
to name our forms 7* dV in Section 2 torsion forms. I n  this section we 
concern ourselves only with torsion forms with respect to the mean curvature 
vector field T ~ V .Of course there is the obvious fact that such forms are 
generalizations of the form T ds for space curves. 

The rest of this section deals with a generalization of the Fenchel-Jacobi 
Theorem [6], namely that the total torsion 

of a space curve lying on a sphere is zero. 

THEOREM10. Let f :  M*+S2n be a C3 imbedding of an n-dimensional 
oriented closed differentiable manifold into the 2n-dimensional sphere con-
sidered ds a submanifold in E2Mf. Then, if n is odd  

where T dV denotes the torsion form with respect to the mean curvature 
vector field. 

Remark. It can easily be shown that the mean curvature vector field 
of such an imbedding never vanishes and, in  fact, has a non-zero constant 
component along the outward normal of S2*. 

The proof uses the secant manifold S(Mn,N),  where N = M *  X L, 
L = [0, oo] and the main equation (E),  where for f we have the imbedding 
and for g the map 

s(m, l> = f ( m )  +Zvf(m), 

where v is the outward normal unit vector field of the sphere SZnon which 
Mn is imbedded. 

a ,  a ,We choose the frames fa,, - a,,+, as follows. a,, a,, are to be 
tangent to Mn at f =f ( m ) ,&+, is to be along v a t  f =f ( m )  and G,,,- a ,  a,,, 
are to be normal to Mn but tangent to S2*a t  f =f ( m ) .  
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We apply equation (El  and obtain 

where r* dV is the torsion form with respect to the vector field v. The term 

at infiriity is zero for similar reasons to those of Section 4. I (g ,f )  =0, 
since there clearly can be no normal intersections, v being along the outward 
normal of SZn. 

In  what follows me assume for the sake of simplicity that X2* is a unit 
sphere. 

The form T* dV contains terms of the form 

where 

and where f,,,, ...,, is as in Section 2. Hence, every term of T* dV contains 
a term involving a term T,+,,,, where a, is n + 2, n + 3, .  . ., or 2% + 1. 
Since S2*is a unit sphere 

where =df . a,.. But T,, vanishes identically on illn,since a, is normal 
to the imbedding of M*. Hence 

r* dV =0. 
This implies 

But this in turn implies by definition of XL 

where T dV is the torsion form of the imbedding with respect to the mean 
curvature vector field. 

There is left only to show that XL is zero. But this is an immediate 
consquence of the definition of XI, and the fact that the mean curvature 
vector a t  each point of the imbedding has a component along the outward 
normal to 8'". TTe simply u3c the same method as was used to obtain 
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equation (9) ,  the only difference being that v is now along the mean curva- 
ture vector. We have 

1 1SL=-- [ d O , , + - f r d ~ = 0 ,
O z n ,  MXM O n .  M 

since I ( g ,  f )  in this case is zero for essentially the same reason i t  was zero 
in equation ( 9 ) .  This completes the proof of Theorem 10. 

10. Deformation theory. We next investigate briefly the behaviour 
of the self-linking of imbedded manifolds of higher dimensions by exhibiting 
the invariance of SL under non-degenerate isotopy. The case of the self- 
linking of space curves has been investigated in [ 1 2 ] .  

By a s m o o t h  regu lar  de format ion  of closed nzanifolds we mean a C3 map 
F: Mn X I+ EZn+l,where 11" is the manifold and I=[O, 11 is the closed 
unit interval of real numbers, such that for fixed t, f t ( J f )  =F ( m ,  t )  is a 
closed immersed manifold. F is called a non-degenerate deformation if 
each f t  is non-degenerate i.e. has a non-vanishing mean curvature vector a t  
each point. We call a smooth regular deformation an isotopy if each ft is 
imbedded. 

Under a non-degenerate isotopy the mean-curvature vector varies con-
tinuously, which implies that the integral of the torsion form 

saries continuously. Now, under an isotopy the Gauss integral varies con-
tinuously. Since SL is an integer and since 

varies contiuously, SL remains an integer and is thus invariant under non- 
degenerate isotopy. 

For the case where n is even, the invariance is obvious since x ( h C ) remains 
constnnt, where h is the mean curvature vector field, and 

THEOREM T h e  ~ t u ~ ~ z b e ) .  a1b closed11. self-lin7i.ing of ?~-dirne?zsio~zaZ 
orielzted d i . f fe~elz t iable  m a n i f o l d  Mfi C3 i m b e d d e d  in Ewcl idea~z  ( 2 n +  1 ) -  
spnce I emcii?zs i nvar ian t  u n d e r  non-degenerate  i so topy .  
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Appendix A. 

This portion of the appendix is devoted to the proof of the following 
theorem due to Whitney, Lashof and Smale 1131 and [8]. 

THEOREM.Let f : Mn-+ E 2 n  be a C3 immersion of a closed orientable 
differentiable manifold J l n  of even dimension n into Euclidean 2n-space. 
Then, twice the algebraic number of self-intersections of f is equal to the 
Euler characteristic of the normal bundle, i. e. the normal characteristic of f .  

The proof uses equation (E) of Section 1 in the case where N =,I4 
and where f =g is the immersion. I(g, f )  is clearly twice the algebraic 
number of self-intersections. We choose the frames fa,, a,, as follows. a ,  

a,, . . ,a;, are to be tangent vectors to 2CIn a t  f =f (m), m E Mn, and 

awl, ., a,, are to be normal vectors st f =f (m) . The orientation of the 
frames are to be consistent with the orientation of M and EZ". 

Equation (E) gives, since ON is empty, 

One may proceed in a manner similar to Section 2 to integrate the left-hand 
side of equation ( A l )  and obtain 

where x (%) is the Euler characteristic of the normal bundle. 
For the sake of clarity we present the details for the case n =2. We have 

Using polar coordinates, we have 

[cos2 8r13 A 7 1 4  +cos 0 sin 0 (T,, + a 2 3  A a,,) 

+ sin2Oa23 A T,,] dB 

where d denotes the exterior derivative, and were NdA is the curvature form 
of the connection in the normal bundle. That d ~ , ,  =-NdA may be found 
in Chern 151. But 



We make the final observation that the integral in (91) is also thc 
tangential degree of the map f. 

Appendix B. 

I n  this portion of the appendix me present a different approach to some 
of the ideas in Section 2 .  The approach is a direct generalization of Pohl's 
proof of Ciilugiireanu's formula for the self-linking of a space curve 1114.1, 

I n  his proof, he uses the secant manifold S ( C ) ,  as opposed to the secant 
ll~anifold S(C, N )  which we use in  Section 2. We now give a brief indication 
of some of the ideas in Section 2 using only the secant manifold #(ill). 

Accordingly, let f :  Mn-+ E 2 n + l  be a C3 imbedding of a closed orientable 
n-dimensional differentiable manifold &In =Jl into oriented Euclidean space 
of dirnension 2n +1. Let S(J1)  be the space of abstract secant directions 
of 31. We recall S(M) =JI X 31- D U T(H), where D = {(m, m) E M X 31) 
and T ( M )  is the space of oriented tangent directions of ill. 

Let v be a non-vanishing unit normal vector field on Jf. We will call 
the line spanned by v at  a point f (m) the normal line at  f (m).  The manifold 
of all normal lines to f we shall call the norw~al manifold. 

To each (m,, m2) E M X N-D me associate the unit vector e,(m,, m2) 
in EZn+l directed from f (m,) to f (m,) i. e. 

To each t E T(il1) we associate e i ( t )  =t regarded as a unit vector in EZnt1. 
The map el: S ( M )  4 X2n thus defined on all of S ( M )  is shown to be 
differentiable in [II]. 

To each (m,, m,) E Ji' X Jl- D such that the normal line to f at  f (ml)  
does not pass through f (m,), we associate the vector el,+,, the unit vector 
in the plane spanned by the normal line to f at  f (m,) and the secant line 
f (ml)f (m,), orthogonal to el, and so oriented that e,e,,+, agrees with the 
orientation e,vf(,, where vf(,,, is the normal vector to the imbedding f a t  

f (m,). The vector function e?,,,, clearly extends smoothly to the boundary 
of S ( M ) ,  where i t  simply becomes vf(,,. 

However, e?,+, is not defined a t  points where the imbedding interqecats 
the normal manifold. We call these points the cross-normals of f .  I\-e \\.ill 
assume that f ( J1)  crosses the normal manifold tran~ersally a t  the cross-
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normals. Because of the compactness of J l ,  the cross-normals will be finite 
in number, say r .  We shall denote thern (rn,(a), m,ca)), a =1,. . . ,T .  We 

surround each of the cross-normals by a box R,, of small wizth E in 
Jf X M-D C S ( J f ) ,  

Bae={ (ml ,  m,) = (mli, m.i) E ill X M -D I I mli-mli(') I 

We orient J f  X I11 in the canonical fashion. This induces an orienta-
tion on S ( A l ) ,  hence on T ( U )  and the boundaries of the boxes B,. 8R,,, 
a =1, . . ,r .  SITe will speak of the canonical orientation on T (111) to be 
the usual one and on dB,, to be that given from the 'inside' of the boxes. 

SVe denote the pull-back of the volume element of the 2n-sphere, 8'": 
under the map e ,  by do?,and apply Stokes' Theorem to get 

where h is a differential form of degree 2n- 1 such that its exterior deriva- 
tive d h  is equal to do?, .  We will show such a form exists. The second term 
on the right is preceded by a minus sign since the orientation induced is from 
the 'outside' of the boxes and hence is opposite to the canonical orientation. 

We now find an expression for h and for d h  =do,,, using the formalism 
introduced in [3]. ITe define local fields of orthonormal franies on f (M). 
fe l ;  . ., e2,+, such that el and e,,,, are the maps above now considered as 

vectors and such that e,,. . ., ezn  complete the orthonormal frame. We set 
( t j i j=  d e i  ej, i,j=1, . . . , 2n  + 1. Clearly, do , ,  =o,,A .  . . A w,,,,,. In 
order to apply the formalism of [3] ,we need a well-chosen vector orthogonal 
to e l ;  we have such a vector e,,,,. 

We set 

flag =W f f 1A W1,3 

for any a, p, and 

@A a A .  A . . . A ~ a ~ , , ? v t + ~ ,~a,~~.cu,Gz,a, . . A f&Wa2htl A ~ff2A+2?11+1 

where 

i+ 1 if a? . . x,,, is an even permutation of 2 .  . . 2 n  
c%...a,== -1 if a 2 .  . . a,, is an odd permutation of 2 . . . 2n  

0 otherwise. 
lSTe set 

1 "-1 1A* =-
( ' "  . 3 .  . . (YIL-2h-l)2?l+A).! 'A' 





Integrating over T(M),we get 

S o121 A ,,,I? A o14 j  =- 1 2 i c o sBnl, + sin 0 ~ : ~ )  =l1 Ar,,dO 0. 
T ( J I )  

The third term gives a similar analysis to the second. Hence, 

We remark here that  clearly any term not containing an w,, could not con-
tribute to the integral. 

So me have now 

f do, , ,  =-11111 2: 1. . MX.11 E+O La€ 

To integrate the right-hand side. me replace, i. e. blow up, each cross-normal 
(?n,ca), n ~ ~ ( ( ~ ) )  to Jf X Jf atby the sphere of oriented tangent directions I?, 
(?nl(,),?n2(a)). TVe obtain thus a manifold with boundary consisting of 
El,. . ., R, and T ( X ) .  It can be shown that the frames defined on the 

interior of S ( X )  above can be extended smoothly to the boundary components 
I?,,. . . .E,, m-hich is all m-e need to integrate. Now el is constant on the 

spheres; hence, any term in A containing an w , ,  is identically zero. Thuc, 

we have 

The right-hand side is recognized as a sulli of indices tilnes the volume of 
the three-sphere times "3. Thus, Tve have established: 

THE ORE^^. L e t  f : JIL+ 8"bc a C' imbedding of a tzco-~li?nensio?zal  
o r i e n t e d  closed m a n i f o l d  i n t o  E z ~ c l i d e c ~ i z  und l e t  c b c  n~ ~ Z ' ~ - S ~ J I I C P  nornzn7 

v e c t o r  field de f ined  o n  X2 .  T h e n  


iij1~ei.e I (v) is  i l te  szrm o f  t h e  i n d i c e s  of tilt c ~ ~ o s s - n o r , ~ z ( ~ Z ~ .  

TTe remark that n e need the m:rchinery of Sectloll 3 to ~ ) r o ~ c '  

This gives us the fact that  T(v) =0. 

b)  The case n=3. 
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We have for n-3 

where 

We further have 

where d A =d o 6 .  
We proceed as in the case =2 to integrate A over T ( N ) by means of 

Fubini's Theorem. We choose local fields of orthonormal frames fe,. . . . ,e7 
such that el, e2, e, are tangent to Jf st f =f ( m ) ,  el being the map d e h e d  
above, and such that e,, . . . ,e7 are normal at f =f ( m ) , e, being along uf,,,. 
Next we choose local fixed fields of othonormal frames fa,,. . . ,a ,  such that 
a,, a,, a, are tangent and a,, . . . , a 7  are normal. To integrate A, we write 

el =ullal + u12a2+ u13a3 

e2=~~~a~+ u2,a2+ u2,a3, ( ~ j )orthogonal ; 

e3=u31al+ u3,a2 + u3,a3 

e,=a,, s=4,5,6,7.  


We make two important observations. Since the base manifold iM is three- 
dimensional and since the ~ i j ' s  =dale a{s are d e k e d  on M y  any form of 
degree greater than three in the j's is identically zero. Secondly, corres- 
ponding to the remark in the case n=2 for o12,any form not containing 
o12A w,, will not contribute to the integral. 

Hence, no form from a, contributes. Only the form 

from @, contributes. Finally, the forms 
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and -24w2,A 0 1 3  A wql  A 0,,A o,, contributes from a,. Hence, 

8rr3 2 
{ - < w l 2  A W13 A 0 4 7  A 0 6 7  A 0 6 7  

= S T ( M j  -J T ( M ) l a  

$- * { 0 1 2  /\ 0 1 3  A 0 1 4  A 0 1 5  A 0 6 7  + 0 1 2  A W13 A 0 1 5  A Wi6 A 0 4 7  

- w l 2  A 0 1 3  A 014 A 0 1 6  A 0 5 7 ) ) .  

We now investigate these forms in terms of the mis. First 

w12 A m l 3  =do2+ terms in the .xii)s, 

where doz  is the area element of the tangent 2-sphere. Thus, 

Next, 

The cross-terms vanish and only the terms involving the squares of the uij)s 
contribute, since the integral is over the entire two-sphere. Using polar 
coordinates to integrate, the above expression becomes 

Similarly, we analyze the other forms and we obtain 

where 

The similarity between the expression here under the integral sign and that 
in Section 2c is immediate. We point out that here a, is along v ~ ( ~ ) ,whereas 
in Section 2c a, is along v. This accounts for the differences in subscripts. 

We have thus far 
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To integrate the right-hand side, we proceed as in the case n. =2 and replace 
each cross-normal (ml(a), m,(a)) by the sphere of oriented tangent directions 
Ra to 31 X M at (m,("),m,(")). Arguing as before, we find that any term 
in A containing an wlj  is identically zero. Thus we get 

The right-hand side gives the sum of the indices of the cross-normals tiines 
t,he volume of the five-sphere times 8/15. Thus, we have established: 

TI-IEOREII. Let f :  1113+E7 b e  a C3 imbedding of a three-dimensional 
oriented closed manifold A13 into Euclidean seven-space and l e t  v b e  a normcll 
vector field defined on 3f. Then 

where I ( v )  is t h e  sum of the indices of f h  ecross-normals. 
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