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ON THE HOMOTOCPY TYPE OF MANIFOLDS
By JI. H. . WHITEHEAD
(Received July 15, 1939)

1. The object of this note is to call attention to certain theorems, which
follow very essily from some results due to E. Stiefel,' H. Seifert,” Hassler
Whitney," and myself.® They refer to a class of manifolds which we call the
class 1, and are intended to throw light on the question, raised by W. Hurewicz,’
whether two closed manifolds of the same homotopy type are necessarily homeo-
morphic. The theorems depend hoth on M. H. A. Newman’s® theory of com-
binatorial equivalence, as re-developed by J. W. Alexander’ and carried further
in 8. &, and on theorems concerning differentiable manifolds. Therefore it is
necessary to give a precise meaning to the term ‘manifold’.

By an n-dimensional manifold, M", we shall mean a class of combinatorially
equivalent, simplicial complexes covering the same space, each complex being a
formal manifold, meaning that the complement’ of each vertex is combina-
torially equivalent to A™ or to A", according as the vertex in question is
inside M™ or on M", where A* stands for a closed k-simplex and M" is the
houndary of M", These covering complexes will be called proper friangulations
of M™ (of course any simplicial complex covering M" is a proper triangulation if
the ‘Hauptvermulung' is true). The proper triangulations of an unbounded
manifold of class C', or smooth manifold, are to be C'-triangulations.” By a
smooth, bounded, n-dimensional manifold we shall mean the manifold of which
a sub-complex K¢ C K" is a proper triangulation, where K” is a C" triangula-
tion of a smoath, unbounded n-dimensional manifold and K3 is a formal mani-
fold. By the topological product M* X A* we shall mean the manifold having
a normal subdivision of the cell-complex K* X A* as a proper triangulation,
where K" is a proper triangulation of M". We shall use = to indicate combi-
natoridl equivalence, and M = M7 will mean that KT = K7, where K{ is a
proper triangulation of M{ |

L E. Stiefel, Comm. Math. Helvetici, 8 (1935), 305-53.

t H. Seifert, Math. Zeit., 41 (19368), 1-17,

3 Hassler Whitney, Proc. N. A. 8., 21 (1935}, 464-8; Bull. American Math. Scc., 43 (1937),
785-805. Page references will refer to the sesond of these papers.

+J. H. C. Whitehead, Proc. London Math, Soe., 45 (1939), 243. Thia paper will be
referred to as 8. 8.

8 W. Hurewicz, Akad. Wet. Amsterdam, 29 (1938), 125,

¢ M, H. A, Newman, Akad. Wet. Amsterdam, 29 {1926), 61141, 30 (1927), 670-3.

7], W, Alexander, Annals of Math., 31 (1930}, 292-320.

= J. H. C. Whitehead, Annals of Math. this number, 809-824. This paper will be
referred to as C. C. Relevant to the present paper are thearems 4, 5, 7 and 8 of C. C.
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826 J. H. €. WHITEHEAD

We now state some of our theorems, postponing the proof of theorem 1 and
the definition of the class I Gl §2. It is to be understood that the manifolds
referred to in these theorems are connected and covered by finite complexes.

Tarorem 1. If M ¢II (i = 1, 2) and M7 and M7 have the same nucleus,* then

M? X A* = M} x 4*

Jor sufficiently large values of k.

It is shaown in 8. 8. that, provided their fundamental group satisfies a certain
condition,® two (finite) complexes have the same nucleus if they are of the
same homotopy type. For manifolds with such a group, theorem 1 ean there-
fore be restated with ‘have the same nucleus’ replaced by ‘are of the same
homotopy type'.

A bounded manifold M”", which is an absolute retract (i.e. is of the same
homotopy type as a single point) belongs to the elass IT if it is combinatorially
equivalent to 2 smooth manifold. If M® js smooth we may assume that’
M®c M? < R™* for any k > 0, where M7 is an unbounded analytic manifold
and RB"is Euelidean m-space. Since M ™ has the same homology and cohomology
groups as a cell its normal sphere-space™ in B**** is simple. Taking k =
we have, from theorem 5, below, and 8. 8., theorem 28, corollary 3:

TasoreM 2. If°m(M™) = 1,8(M™ =0(r =1, -.-,n) and M" is smooth,
then

Mﬂ X Aﬂ“f’ﬁ = A2ﬂ+5.

It will be seen that any (bounded) polyhedral M C R" belongs to I. There-
fore M* X A™ = A™* if M™ is the finite region bounded by a polyhedral
(n — 1)-sphere in R”, or even if M" is of the same homotopy type as A™.

The Poincaré hypothesls, in its combinatorial form and as generalized by
Hurewicz® from n = 3 to any n, is equivalent to the hypothesis.

If M" is an (n — 1)-sphere and if M™ is an absolute retract, then M™ = A™.

Digearding the condition that M™is an (n — 1)-sphere, we have what may be
called the extended Poincaré hypothesis, namely:

A bounded, n-dimensional manifold, which is an absolule retract is an n-element.

From theorem 2, since a k-element is the topological produet of k linear seg-
ments, we have:

THaeoREM 3. The extended Poincaré hypothesis, for smooth manifolds at least,
18 equisalent to the hypothesis:

If M? X At = A™, then M* = A",

This theorem raises various questions, one of which can be answered very

1 8ee 8. B. p. 287. See also a paper by (3. Higman to be published shortly by the London.
Math. Soe.

% Hasaler Whitney, Annals of Math., 37 (1936), 645-80,

* Appendix, Theorem 2, corollary.

1 x(M") denotes the {multiplicative) fundamental group and g.(M*) the (additive)
r& homology group of M»,
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simply, namely: ‘are there manifolds M7 # M} such that M7 X A' =
M} X A The answer is in the affirmative. For let M7 = M X A', where
M1 is a torus with one hole and M: is a 2-sphere with three holes. Then
M} % M:. On the other hand, taking M: C R’, it is easily verified that
M} = M3, since M? R’ is obviously a regular neighborhood (8. 8., p. 293)
of two simple circuits with a single point in common. As another, and perhaps
more interesting example, let MY (i = 1, 2) be a lens space of type™ (p, ¢1),
from which the interior of a 3-simplex A has been removed, where i # +1
mod p. Then M{ contracts (S. 8., pp. 248 and 258) inte the 2-cell, bounded
by a circuit taken p times, which, taken twice, bounds a lens model of M .
Therefore M? and M3 have the same nucleus. It will be seen that M? ¢ I,
whence, by theorem 1, M? X A* = Mj X A* for large values of k (actually
for k = 6). But M} and M2 are not combinatorially equivalent. For if they
were, the lens spaces M1 4+ Al and M7 + A} would be combinatorially equiva-
lent, which they are not since” qig2 # %1 mod p.

2. Let a proper triangulation, K*, of a given manifold, M", be represented
as a recti-linear complex in R™™*, and let U(K", R™"") be a regular neighbor-
hood™ of K*. Then our definition of II is: M" ¢ 11 if, and only if,

(2.1) UK", R*™) = K" x A*

for large values of k. Provided ¥ = n + 3 it follows from 8. 8., theorems 23
and 24, that this definition is independent of the choice of the proper triangula-
tion K", of the choice of the regular neighborhood U(K", R™™) and of the
way in which X" is imbedded in R*™, If K" < R"™™ c R"™" = R"™ X R’
(I > 0) we may take

DK™, R™™Y = DK™, R™™) X A1 X - X 41 .

For the latter is a manifold and, by an obvious induetion on I, it contracts into
(K>, R™™), and hence into K". Therefore, if the condition (2.1) is satisfied
by some K™ < R™* it is satisfied for every ki > k and a suitable K" C R
Theorem 1, above, is now seen to be an immediate consequence of 8. 8., theo-
rem 25.

It follows from an argument in 8. 8. (p. 298) that an n-sphere belongs to II
for each value of n. Moreover, if M™ ¢IT and M¢ € M", then M7 ¢II.  For
let ¢ be & semi-linear homeomorphism of K* X A* on U(K", R™*), where K"
is a proper triangulation of M" which contains a sub-complex, K¢ , covering
M» . Then 4Ky X A*) is a manifold and contracts geometrically into

1 H. Secifert and W. Threlfall, Lehrbuch der Topologie, Leipzig (1934), 210.

12K, Reidemeister, Abh. Math. Sem. Hamb., 11 (1935}, 102-9; Journal f. d. r. u. a. Math.,
173 (1935), 164-73.

1 § & p.203. Observe that regular neighbourhoods are not necessarily neighbour-
haods in the sense of topology.
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H{K5 X p), for any point p e A*, and (2.1) is satisfied by t{(Ks X p) € R™™.
Therefore t{(Ks X A*) is a regular neighborhood of Kf . More generally, let
Mi C M" and let a proper triangulation Kj, of Mg, be a sub-complex of K*.
If a regular neighborhood Ud = U(K5, K™) = Kij X A" we shall say that
M is in regular position” in M™. This is always the case if r = n, for then
we may take Ug to be Kj itself,

TuroreM 4. If M5 < M" is in regular position in M™ gnd M" ¢1I, then
M € I1

For, with the above notation, Ug is an n-dimensional manifold in M™ and we
have shown that if M" ¢ II, then Ug ¢ 0. That is to say

Uﬂ.+k — U(Ué‘ , Rn+k} = L)fg. X A.ﬂ:

for some value of k and some recti-linear UJ§ < K™ < R™*™. But U"™ eon
tracts into U757 and the latter contracts into Kj. Therefore U™ is also a
regular neighborhood of Kg , and if Uf = K; X A" we have

U™ = U X A* = Ko X A" X A* = Ki X A",

and the theorem is established.

With the help of theorem 4 we can dispose of the case n = 2. No non-
orientable manifold ean belong to II. For its regular neighborhood in R™**,
being an (n + k)-dimensional manifold in R™**, is orientable, while its topo-
logical product with a cell is not. On the other hand any orientable surface
may he represented as a polyhedron in R and is necessarily in regular position.
Therefore it belongs to II.  Also any orientable, polyhedral surface in B™ is in
regular position it m = 7. Of course theorem 1 is trivial for any closed surface,
whether orientable or not. Also it follows from special arguments, as in the
remarks following theorem 3, that theorem 1, with k = 1, is true of bounded,
orientable surfaces.

Now let M™ < R™* be a smooth manifold which, without loss of generality,
we may assume to be analytic.’

THEOREM 5. M" ¢ I1 ¢f its normal sphere-space’ in R™* is simple.

Since M" is compact there is a positive 5 such that the flat k-spaces normal
to M7 at two different points do not meet at a distance less than 28 from M".
Therefore no two of the k-cells E*(p) meet each other, where E*(p) is the interior
and boundary of a (k — 1}-sphere with centre p and radius 3 in the normal flat
k-space at p. To say that the normal sphere-space is simple is to say that k
mutually orthogonal, unit vectors ei(p), - - - , ex(p) are defined in the normal
flat k-space at each point p ¢ M", and that e,(p) varies continuously with p.

Atk

13 Hageler Whitney, Annals of Math., 37 (1936), 865-78.

1 Though this lower limit for m can probably be reduced from 7 to 5 it cannot be dis-
carded. For if K i3 a knotted ¢ircuit in a 3-sphere, 5%, it may be verified that the 2-aphere
{a + B)K is not in regular positicn in the 4-sphere (o + 5)5", where a and b are vertices
not in 82 (Cf. E. Artin, Abh. Math. Sem. Hamb., 4 (1925}, 174-7.}
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After a process of approximation, projection in E“(p), and a final normaliza-
tion, we may assume that e(p) varies analytically with ». The bounded
manifold M ™, which is swept. out by E*(p) as p describes M”, is then seen to
be the image of M™ X E*(po) = M" X A" in an analytic transformation which
maps M" on itself. Therefore a suitable triangulation of M™ X A* deter-
mines a C'-triangulation, P*** of M™™, which contains a proper triangulation
of M™ as a sub-complex. Let K" be a rectilinear model of P™ and let
K" & K™ be the subeomplex representing M". By C. C., theorem 4, there
is a semi-linear, topological map F(K"™)  R™*, Then F(K™) (= M™ X 4%
is a regular neighborhood of F(K™) (= M"), and the theorem is established.

It follows from this theorem, and the results referred to at the beginning of §1,
that M"™ & T, where M" is a smooth, orientable manifold, if any one of the
following conditions is satisfied:

1. M" is closed and admits an internal parallelism, as is always the case if'

n = 3, or for example, if M™ is a Lie group.

2. M" is closed and can be represented as a manifold of class C* in B™" or in
R™ (Seifert?).

3. M” is bounded and all its cohomology groups vanish with integral, and
hence with all coefficients. It can be shown that this follows from the
general theory of sphere-spaces.’

The sufficiency of the first condition follows from a theorem similar to theorem
23 on pp. 48 and 44 of Stiefel’s paper.! For let M" < R™* where k = n + 1,
and let. K" be a triangulation of M". Then we suecessively set up outer paral-
lelisms (i.e. parallelisms in the normal flat k-spaces) over K°, K*, - - , K", where
K’ is the r-dimensional skeleton of K", An outer parallelism over K™ (0 =
r < n) determines an (r -+ 1)-dimensional cocycle in K™™', whose coefficients
are elements of r,(Gy), where G, is the group of rotations in R*. The paral-
lelism over K™ may be extended throughout K™™' if this eoeyele is zero. If it
is not zero, but cohomologous to zera, then the parallelism over K may be
replaced by one for which the carresponding cocyele is zero.™ Thus K™
admits an outer parallelism if the cocycle determined by the outer parallelism
over K is cohomologous to zera. Since r + 1 < k it follows from the analysis
of Gy (= Vi) in §1 of Stiefel’s paper, that a map f(8") C Gr C Gpyw, which
is hamatopic to a point in G, , 1s homotopic to a point in Gy ; also that any
J(8) < G4 can be deformed into a map in G, . Therefore a lemma, analogous
to the one in Stiefel’s theorem 23, follows from arguments similar to those in
his §3. Therefore the (r + 1)-dimensional cocyele in K™™', whieh is determined
by an outer parallelism over K’ is cohomalogous to zero. Finally, Stiefel’s
assumption that some triangulation of M" is a sub-complex of a triangulation
of R™™* need not, in this case, be taken as an additional axiom. For we may
assume M" to be analytiec and sub-divide it and a reeti-linear triangulation of

s Cf, 8. Eilenberg, Annals of Math., 41 (1940}, 231-51.
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R™* by the van der Waerden-Lefschetz method.” The result will not, in
general, be a C-triangulation, but it will suffice in setting up the outer paral-
lelism. Alternatively we may replace M"™ by a homeomorphic polyhedral
F(K"), as in the proof of theorem 5, and attach a flat n-space and a flat k-space
to each point of F(K"), which are respectively parallel to the tangent and
normal flat spaces at the corresponding point of ", Then an inner parallelism
in M" determines a parallelism in the n-spaces attached to the points of F(K"),
and a parallelism in the k-spaces at points of F(K™) will determine an outer
parallelism for M*".

APPENDIX

{ Extract from a letler of the author to Hassler Whitney under date of Jan. 26, 1940.—
The Editors.)

** * I omitted to prove that .., the group of rotations in Euclidean metric
space R™™, is r-simple for each r = 1, as the term is used by 8. Eilenberg.™
This condition may be expressed as follows. Let X be any arcwise conneeted
topological space, let X be its universal covering space and let T, be the group
of covering transformations of X (i.e. the group of homeomorphisms y1(X) = X,
such that wy, = u, where u(X) = X is a locally (1-1) map of X on X). Then
X is said to be 1-simple if =1 (X) is Abelian, and r-simple (r > 1) if, and only if,
any spherical map f(S) < X is homotopic in ¥ to the map y.f(87), for each
v1e¢T'y. Let us assume that T, is a sub-group of some arewise connected,
topologieal group T, of homeomarphisms ¥(X) = X, whose topology agrees
with that of X, meaning that y(x) varies continuously with z¢ X and y e T.
Then the identity in T, say 4o is Joined to a given 4, € Ty by a segment y, e T
(0 £ t < 1). Therefore v,fo(8) = fi(§"), say, is the image of a given map,
Jo(8) € X, in the deformation f, = y.fo, whenee X is r-simple for any r > 1.
Therefore, and since I'; is isomorphic to m(X), we have the theorem:

Taeorem 1. If T, satisfies the above condition and 15 also Abelian, then X is
r-simple for each r 2 1,

Let X be an arcwise connected topological group and let X be its universal
covering group. Then Ty is Abelian, and is also a sub-group of the ‘left. trans-
latione” § — £ (also of the ‘right translations’ £ — %y, since Ty is not only
Abelian but, if the translation £ — £ is identified with the element ¥ ¢ X, then
T', belongs to the centre of X). Since X is arcwise connected, so is X = T,
and we have the corollary:

8B, L. van der Waerden, Math. Ann., 102 (1929), 337-62. 8. Lefschetz, Topology,
New York (1930), 364. See also B, 0, Koopman and A. B. Brown, Trans, American Math,
Soc., 34 (1932), 231-52 and S. Lefschetz and J. H. C. Whitehead, ibid., 35 (1933), 510-17.
14 3, Eilenberg. Fund. Math, 32 (1939), 167-75.
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CorOLLARY. Any arcwise connected topological group is r-simple for eachr = 1.

The consequence of this condition which interests us here is that, if X is
r-simple, then a unique element of II,(X) is determined by a ‘free’ map f(S") C X,
meaning & map which is independent of the base point for IL.(X).

Now let an orientable sphere-space S(K") be given, where K" is a simplicial
complex and the associated spheres are »-dimensional, and let S(K") be simple
in the r-dimensional skeleton, K7, of K" (0 < r < n). We shall assume that
S{K™) 15 not only orientable but oriented, meaning that the associated spheres
S*(n) (p ¢« K™} and the base sphere S; are oriented, and that the defining maps
£E{p, 8'(p)} = 8o are all direct. Thus the (orthogonsal) transformations of Sg
into itself by which ‘transformations of codrdinates’ are determined will be
rotations. Let AI™ ({ = 1,2, ... ) be the (oriented) (r 4+ 1)-simplexes in K™
and, using the rotation, let ¢ — £(p, ¢) €85 (p € AT, g ¢ 8 (p)) be a local
codrdinate system for A;7'. Since S(K’) is simple there is 2 map ¢ — 5(p, ¢} € St
defined for each*p ¢ K7, q ¢ 8'(p), such that the rotation

g0 — $(a0) = Eiip, 7 (D, q0)} (peAi™, g 8D

varies continuously with p. In other words, p — ¢, is a continuous map of
AT in G4, and since G, is r-simple p — ¢, defines a unique element
o; em((y). The element a; is independent of the codrdinate system £;.
For if f;(p, ¢) is a second codrdinate system for Ai™, then p — g8 = vo(p),
say, is 2 map of Ai™ in Guyy. Since A:™' can be shrunk into a point there
is a deformation ¢, (0 £ ¢ =< 1), of o{p) into the map given by ¢1(p) = 1, the
identity in G,,,. Therefore the codrdinate system £ (= £i) may be deformed
into £ (= E:l): Thus

£:p, @ = D) {&(p, O,

remembering that ¢,(p) is a rotation of Sy into itself. Therefore the map of

A G , whieh is defined by tiand 3, is homotopie to the above map p — ¢, ¢
and hence determines the same element a: € m((F,;1). Let B be an oriented
r-simplex, which is common to 47" and to A7 and let g1(p, ¢) be any coérdinate
system for B} , which coincides with (p, g) in Bf . Then the map £m ", of Bj
in G,y , together with the map £ ", in which the orientation of Bj is reversed,
determine an element 8y € r(G,.1). It follows from a similar argument to the
one just given that the same element, 8, , is determined by 7, m and a codrdinate
gystem §£; for A}, Thus, if m is constructed in such a way that 1, m and &
determine a given element f, then 1, m and £; lead back to the same ele-
ment 8y .

After these preliminaries it follows from arguments which are similar to some
of those used by E. Stiefel' and by Eilenberg!* that

1. Cr+1 = Z a‘_A;'H

is a co-cycle, with coefficients in m(G.y1),
2. If "' ~ 0, then S(K™) is simple in K™, For this is obviously so if
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C™* = 0. If € = but ~ 0, then the codrdinate system n may be re-
placed by one for which the corresponding co-eyele vanishes.

Since S(K") is orientable by bypothesis, it 'fallows that it is simple in K',
and we have the theorem:

TerOREM 2. If the (r 4+ 1)-dimensienal eo-hamolagy group of K™ vanishes for
each r = 1, - .., n — 1, with coeflicients in 7.(G.,.), then any orientable sphere-
space S(K™), in which the associated spheres are v-dimensional (v > 0), 18 simple.

If the 1-dimensional co-homology group of K" vanishes with integral coeffi-
cients, reduced mod 2, then any sphere-space S(K") is orientable. Also the
co-homology groups vanish with all coefficients if they all vanish with integral
coefficients. Hence we have the corollary:

CoroLLarY. If all the co-homology groups of K" vanish, with integral coeffi-
cients, then any sphere space S(K™) is simple.

Notice, on the ather hand, that no condition is imposed on the (r + 1)-
dimensional cohomology groups for those values of r such that (G, = 0.
Do you know if there are any, beyond r = 2, for any v > 1?

We also have, for the reasons indicated in my paper on homotopy types:

TarorREM 3. If a differentiable. n-dimensional manifold admits an absolute
parallelism, then its normal sphere-space in R*™™ (k > 0) {s simple.

In the paper on homotopy types I was interested only in finite (i.e. closed or
bounded) manifolds. But this theorem is obviously true in general, provided
one Ee%lcjires the manifold to be a closed, but not necessarily compact, sub-set
of BT,

Bairron CoLLear, OXFORD.



