
ON THE WHITEHEAD GROUP OF NOVIKOV RINGSDIRK SCH�UTZAbstrat. We show that the natural map i� : Wh(G)!Wh(G; �) from theWhitehead group ofG to the Whitehead group of the Novikov ring is surjetive.The group Wh(G; �) is of interest for the simple hain homotopy type of theNovikov omplex. It also ontains the Latour obstrution for the existene ofa nonsingular losed 1-form within a �xed ohomology lass � 2 H1(M ;R),where M is a losed onneted smooth manifold.1. IntrodutionGiven a group G and a homomorphism � : G ! R to the additive group of realnumbers the Novikov ring dZG� is a ompletion of the ordinary group ring ZG.Elements ofdZG� an be thought of as funtions � : G! Z suh that for every realnumber r 2 R there are only �nitely many g 2 G with �(g) 6= 0 and �(g) � r.This ring arises naturally in the Morse theory of losed 1-forms on losed smoothmanifoldsM and was introdued by Novikov [14℄. A losed 1-form ! on M induesa homomorphism � = �[!℄ : �1(M) ! R via its ohomology lass. Provided that !satis�es a Morse ondition one an de�ne the so alled Novikov omplex C�(M;!).This is a hain omplex whih is �nitely generated free over dZG�, where G is aquotient of �1(M) by a normal subgroup ontained in ker �. For details on severalonstrutions we refer the reader to Novikov [15℄, Latour [12℄, Pajitnov [17℄, Farber[6℄ or Sh�utz [24℄. It turns out that its hain homotopy type is that of C�(M ;dZG�).In reent years there has been onsiderable interest also in the simple homotopytype of the Novikov omplex, see Latour [12℄, Pajitnov [18℄, Damian [4℄, Sh�utz [23℄or Cornea and Raniki [3℄. Notably Latour [12℄ introdued the Whitehead group ofthe Novikov ring Wh(G; �), a quotient of K1(dZG�) by so alled trivial units. Thesetrivial units onsist of �g 2dZG� for all g 2 G and units of the form 1 � a 2dZG�where a : G! Z satis�es a(g) = 0 for �(g) � 0.An important feature of this group is that it ontains an obstrution for the exis-tene of a nonsingular losed 1-form ! in a �xed ohomology lass. More preisely,Latour [12℄ gives two onditions for a nonzero ohomology lass � 2 H1(M ;R). The�rst, homotopy theoretial ondition, assures that the Novikov homology vanishes.The seond ondition is then that the Whitehead torsion of the Novikov omplex,measured in Wh(G; �), vanishes. We give a brief aount of this in Setion 7.For this reason we would like to get a better understanding of Wh(G; �). There isan obvious homomorphism i� : Wh(G) ! Wh(G; �) from the ordinary Whiteheadgroup of G indued by the inlusion ZG�dZG� . Although it is known that Wh(G)2000 Mathematis Subjet Classi�ation. Primary 19B28; Seondary 57Q10.Key words and phrases. Whitehead group, Novikov ring, Latour obstrution.1



2 DIRK SCH�UTZan be very ompliated, there are also many examples where this group vanishes.The main theorem of this paper states that i� is surjetive, so that the vanishingof Wh(G) indeed implies the vanishing of Wh(G; �).Theorem 1.1. Let G be a group and � : G ! R a homomorphism. Then i� :Wh(G)!Wh(G; �) is surjetive.In the ase where � fators through the integers this theorem was known before.Namely it follows immediately from the Main Theorem in Pajitnov and Raniki[19℄. In the ase where G = H � Z and � is projetion to Z it also follows fromPajitnov [18, Prop.7.7℄.In [19℄ atually more is shown. If � is a homomorphism to the integers, then theNovikov ring an be identi�ed with a twisted Laurent series ring A�((t)). NowPajitnov and Raniki obtain a diret sum deomposition for K1(A�((t))) analogousto the Bass-Heller-Swan deomposition of K1(A[t; t�1℄). From this deomposition,whih we desribe in Setion 7, it follows that i� is not an isomorphism in general.Yet Wh(G; �) annot be signi�antly less ompliated than Wh(G), as the nexttheorem shows.Theorem 1.2. Let G be a group and � : G ! R a homomorphism. Then thediagonal map Wh(G)!Wh(G; �)�Wh(G;��) is injetive.If � fators through the integers, this follows immediately from the deompositionof Pajitnov and Raniki [19℄, and the methods used to prove Theorem 1.1 allow usto dedue the general ase from that.In order to prove Theorem 1.1 it is not important that the Novikov ring is formedover the integers. Also there is no need to fator out trivial units of the form �g forg 2 G as they are already in the group ring. Let W � be the subgroup of K1(dRG�)generated by units of the form 1� a 2dRG� with a(g) = 0 for �(g) � 0. The moregeneral version then readsTheorem 1.3. Let G be a group, � : G ! R a homomorphism and R a ring withunit. Then i� : K1(RG)! K1(dRG�)=W � is surjetive.In order to prove Theorem 1.3 we want to apply the methods of Pajitnov andRaniki [19℄. This does not work diretly sine their tehniques make strong useof the Laurent series ring desription. But in general the Novikov ring annotbe desribed as a twisted Laurent series ring in several variables. Instead we willapproximate the Novikov ring by subrings to whih the tehniques of [19℄ an beapplied indutively.We start by looking at �nitely generated groups G. Then G= ker � �= Zk for somek � 1. The �rst step is to show that every � 2 K1(dRG�)=W � an be represented bya matrix A invertible over a subring �0 depending on � . This ring has the propertythat there exist surjetive homomorphisms �i : G! Z for i = 1; : : : ; k suh that �0is also a subring of every dRG�i . Now RG�i an be identi�ed as a twisted Laurentseries ring and in partiular has a twisted power series subring denoted dRGo�i . Wethen get a sequene of subrings �k � : : : � �1 � �0, where �j is also a subring ofdRGo�i for i � j.



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 3The seond step is then to show that given �j 2 K1(�j), we an �nd �G 2 K1(RG)and �j+1 2 K1(�j+1) suh that i��j = i��G + i��j+1 2 K1(dRG�). This implies thetheorem sine i��k 2W � .The ase of a group whih is not �nitely generated is dedued by a diret limitargument. 2. Novikov ringsLet G be a group, � : G ! R a homomorphism to the additive group of realnumbers and R a ring with unit. We denote by RG the abelian group of all funtions� : G! R. For � 2 RG denote supp� = fg 2 G j�(g) 6= 0g.De�nition 2.1. The Novikov ring dRG� is de�ned asdRG� = f� 2 RG j 8 r 2 R supp� \ ��1([r;1)) is �nitegwith � � �(g) =P�(g1)�(g2) for �; � 2dRG�. The sum is taken over all g1; g2 2 Gwith g1g2 = g.For � 2dRG� letk�k� = infft 2 (0;1) j supp� � ��1((�1; log t℄)gbe the norm of � with respet to �. Note thatdRG� is a ompletion of the group ringRG with respet to the metri indued by this norm. We an extend the de�nitionof the norm to n�m matries over dRG� by settingkAk� = max fkAijk� j i 2 f1; : : : ; ng; j 2 f1; : : : ;mg g :It is easy to see that kA �Bk� � kAk� � kBk�(1)for an n�m matrix A and an m� k matrix B.Sine the multipliation in dRG� does not depend on � and dRG� is a subgroup ofRG, we an interset Novikov rings for di�erent homomorphisms � : G ! R andobtain a ring again.De�ne dRGo� = f� 2dRG� j k�k� � 1g:Beause of (1) we get that dRGo� is a subring of dRG�.Lemma 2.2. For i = 1; : : : ; k let �i : G! R be a homomorphism and ti 2 (0;1).Denote � =Pki=1 ti�i : G! R. Then(1) dRG�1 \ : : : \dRG�k is a subring of dRG�.(2) dRGo�1 \ : : : \dRGo�k is a subring of dRGo�.Proof. It is enough to assume k = 2. Sine dRG�1 = dRGt1�1 for t1 > 0 we analso assume t1 = t2 = 1. Let � 2 dRG�1 \dRG�2 . There is r2 2 R with supp� \��12 ([r2;1)) = ;. For r 2 R we now getsupp� \ ��1([r;1)) � supp� \ ��11 ([r � r2;1)):Sine supp� \ ��11 ([r � r2;1)) is �nite, we get (1).



4 DIRK SCH�UTZTo see (2) note that for � in the intersetion we get that g 2 supp� implies that�i(g) � 0, hene also �(g) � 0. �Lemma 2.2 shows that the intersetion dRG�1 \dRG�2 is not just a subring of eahNovikov ring, but also a subring of the Novikov ring orresponding to a onvexombination of �1 and �2.Remark 2.3. Mihael Farber has developed a similar onept by looking at onvexones C � Rk whih have the property, that if x 2 C�f0g, also the half-in�nite raystarting at 0 and going through x is ontained in C. Given a group G whih surjetsonto Zk, he de�nes a ompletion RC [G℄ of the group ring whih is a subring of aNovikov ring. It seems likely that the two onepts agree, that is, every intersetionof Novikov rings an be realized by a one C and vie versa.3. TorsionLet R be a ring with unit. Then K1(R) is the abelian group generated by �(f) foreah automorphism f : M ! M , where M is a �nitely generated projetive leftR-module subjet to the following relations.(1) For a short exat sequene of automorphisms0 // L //e
��

M //f
��

N //g
��

00 // L // M // N // 0we have �(e)� �(f) + �(g) = 0.(2) For automorphisms f; g :M !M we have �(f Æ g) = �(f) + �(g).Notie that for every automorphism f :M !M of the �nitely generated projetiveR-module M there exists an automorphism g : Rn ! Rn of the �nitely generatedfree R-module Rn with �(f) = �(g). We an think of g as an invertible n � nmatrix over R. This leads to another way to desribe K1(R). Let GL(n;R) bethe group of invertible n � n matries over R. We have the standard inlusionGL(n;R) � GL(n+ 1; R) and let GL(R) be the diret limit. ThenK1(R) = GL(R)=[GL(R); GL(R)℄;the abelianization of GL(R). Indeed the ommutator subgroup is generated byelementary matries, see Cohen [1, x10℄. Reall that an elementary matrix over aring R with unit is an n � n matrix Exij for i 6= j and x 2 R whih has 1 in everydiagonal spot, x in the (i; j)-spot and zero everywhere else.Let � : G ! R be a homomorphism and let H = ker �. Restrition de�nes a ringhomomorphism " :dRGo� ! RH with " Æ i = id : RH ! RH , where i : RH !dRGo�is the natural inlusion. Let a 2dRGo� satisfy kak� < 1. Then 1�a is a unit indRGo�with inverse 1+a+a2+ : : : and as suh it represents a torsion �(1�a) 2 K1(dRGo�).Let W� � K1(dRGo�) be the subgroup of suh torsions.The proof of the next proposition is basially ontained in Pajitnov [17, Lm.1.1℄,ompare also Pajitnov and Raniki [19, Prop.2.11℄.



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 5Proposition 3.1. We haveK1(dRGo�) = K1(RH)�W�Proof. We get K1(dRGo�) = K1(RH) � ker("� : K1(dRGo�) ! K1(RH)) by funto-riality. Let B be a matrix with �(B) 2 ker "�. Then there exist matries E;E0 2[GL(RH); GL(RH)℄ with E"(B)E0 = I . Note that E;E0 2 [GL(dRGo�); GL(dRGo�)℄,so EBE0 = I �A with kAk� < 1. Using elementary row and olumn operations itfollows that �(I �A) = �(1� a) for some 1� a 2dRG� with kak� < 1. �For K1(dRG�) we do not obtain a similar formula as in Proposition 3.1, instead wewill ontent ourselves with a ertain quotient of this group. Let W � be the imageof W� under the natural map i� : K1(dRGo�) ! K1(dRG�). Sometimes we will writeW �(G) to emphasize the group G. The inlusion of rings RG � dRG� indues anatural homomorphism i� : K1(RG)! K1(dRG�)and the omposition of this with the projetion to the quotient K1(dRG�)=W � willbe denoted by i� as well. Our main result now readsTheorem 3.2. Let G be a group, � : G ! R a homomorphism and R a ring withunit. Then i� : K1(RG)! K1(dRG�)=W � is surjetive.For geometri appliations the following quotients are partiularly important.De�nition 3.3. Let G be a group and � : G ! R be a homomorphism. Then wede�ne the Whitehead group of G asWh(G) = K1(ZG)=h�(�g) j g 2 Giand the Whitehead group of the Novikov ring asWh(G; �) = K1(dZG�)=h�(�g); �(1 � a) j g 2 G; 1� a 2dZG�; kak� < 1i:The Whitehead group Wh(G; �) of the Novikov ring �rst appeared in Latour [12℄.Corollary 3.4. Let G be a group and � : G ! R a homomorphism. Then i� :Wh(G)!Wh(G; �) is surjetive.Before we proof Theorem 3.2 we will �rst take a loser look at homomorphisms ofthe form � : Zn! R.Remark 3.5. In the ase of an injetive homomorphism � : Zn! R it was shownby Jean-Claude Sikorav that dZZn� is a Eulidean ring, ompare Pajitnov [16, x1℄.Therefore K1(dZZn�) is given by the group of units. It is easy to see that thegroup of units in this ase is exatly the group fatored out in the de�nition of theWhitehead group of the Novikov ring. Thus Wh(Zn; �) = 0. Unfortunately thisargument does not even generalize to homomorphisms � : Zn ! R whih are notinjetive.



6 DIRK SCH�UTZ4. Homomorphism from free abelian groups to the realsAssume that G is a �nitely generated group and � : G ! R a nonzero homomor-phism. Then � fators through the abelianization of G whih is a �nitely generatedabelian group. Thus Hom(G;R) is a �nite dimensional vetor spae and has anatural topology. We also de�neS(G) = Hom(G;R) � f0g= �where � � � means that there is a  > 0 suh that � = �. This is a sphere ofdimension rank(G=[G;G℄) � 1. We will write [�℄ 2 S(G) for the equivalene lassof a nonzero homomorphism � : G! R.Now if � : G ! R is a nonzero homomorphism, there exists a unique n 2 Z suhthat � fators as �� Æ p with p : G! Zn surjetive and �� : Zn! R injetive. This nis alled the rank of n. If rank � = 1, we all � rational. We also write SQ(G) forthe image of the rational homomorphisms in S(G).We will now take a loser look at the ase G = Zn.Lemma 4.1. For every � 2 Hom(Zn;R) and a neighborhood U of � there is arational � 2 U with ker � � ker �. In partiular SQ(G) is dense in S(G) for every�nitely generated group G.Proof. We an assume that � is injetive. Let e1; : : : ; en be a basis of Zn. De�ne� : Zn! Q by �(ei) a rational number lose to �(ei). By hoosing �(ei) lose enoughto �(ei) we an assure that � 2 U . Now im � is a �nitely generated subgroup of Q,hene yli. �Lemma 4.2. Let � 2 Hom(Zn;R)�f0g and U a neighborhood of � in Hom(Zn;R).Let k � 1 be the rank of �. Then there exist ti 2 (0; 1℄ and rational �i 2 U fori = 1; : : : ; k with 1 = kXi=1 ti and � = kXi=1 ti�i:Proof. The proof proeeds by indution on k. The ase k = 1 is trivial so we assumek � 2. Then im � is dense in R.By Lemma 4.1 we an �nd a rational �1 2 U suh that ker � � ker �1. Let ��; ��1 :Zn= ker � �= Zk ! R be the indued homomorphisms. Let e1 2 Zk be an elementwith �1(e1) > 0 a generator of the in�nite yli group im �1. Write Zk = he1i �Zk�1. Let m be a positive integer. Then we an �nd xm 2 Zk�1 suh that 0 <��(me1 + xm) is arbitrarily lose to 0. Also ��1(me1 + xm) = m��1(e1) an be madearbitrarily large. Choose t 2 (0; 1) suh that ��(me1 + xm) = t��1(me1 + xm). Sinet�1 is lose to t�, we get that � � t�1 is lose to (1 � t)�. We an assume t > 0to be so small that � � t�1 2 (1 � t)U . Sine ��(me1 + xm) = t��1(me1 + xm) withme1 + xm 6= 0 we get that � � t�1 has rank < k.Now let V = (1� t)U . By indution there exist rational �02; : : : ; �0k 2 V , t02; : : : ; t0k 2(0; 1℄ with Pki=2 t0i = 1 and � � t�1 = kXi=2 t0i�0i:Setting t1 = t, ti = t0i(1� t) and �i = 11�t�0i for i = 2; : : : ; k gives the result. �



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 7Lemma 4.2 shows that an injetive homomorphism � : Zn! R an be written as aonvex ombination of n rational homomorphisms whih an be hosen arbitrarilylose to �. But we still need to improve on this.Denote e1; : : : ; en the standard basis of Zn � Rn and let h�; �i be the standard innerprodut on Rn , that is, the ei form an orthonormal basis with respet to this innerprodut.Now for every homomorphism � : Zn ! R there exists a unique vetor v� 2 Rnsuh that �(x) = hx; v�i. For i = 1; : : : ; n let yi = �(ei) 2 R. Then the rankof � is equal to the dimension of the Q-subspae of R generated by the yi. Notethat we get a surjetive homomorphism � : Zn ! Z if and only if all yi 2 Z andgd(y1; : : : ; yn) = 1.Assume now that � : Zn ! R is injetive and let U be a neighborhood of [�℄ inS(Zn). By Lemma 4.2 there exist homomorphisms �i : Zn ! Z and ti 2 (0; 1℄ fori = 1; : : : ; n with [�i℄ 2 U and [�℄ = [ nXi=1 ti�i℄:Thus there exist vi 2 Zn suh that �i = h�; vii for i = 1; : : : ; n and a  > 0 suh thatv� =Pni=1 tivi. Sine � is injetive, we get that v1; : : : ; vn is an R-basis of Rn . Ingeneral v1; : : : ; vn need not be a Z-basis of Zn.Now let�(v1; : : : ; vn) = ( nXi=1 sivi 2 Rn j 0 � si � 1 for i = 1; : : : ; n and nXi=1 si � 1)be the onvex hull of the n+ 1 points 0; v1; : : : ; vn, an n-simplex in Rn .Lemma 4.3. Let v1; : : : ; vn 2 Zn be linearly independent. Then v1; : : : ; vn is aZ-basis of Zn if and only ifZn \�(v1; : : : ; vn) = f0; v1; : : : ; vng :Proof. Assume that v1; : : : ; vn is a Z-basis and let x 2 Zn\�(v1; : : : ; vn). So thereexist xi 2 Z for i = 1; : : : ; n suh that x =Pni=1 xi � vi. Sine x 2 �(v1; : : : ; vn) wemust have 0 � xi � 1 and Pni=1 xi � 1. Thus we an have at most one xi = 1. Itfollows that x 2 f0; v1; : : : ; vng.Now assume that Zn\�(v1; : : : ; vn) = f0; v1; : : : ; vng. Sine v1; : : : ; vn are linearlyindependent, they form an R-basis of Rn . Let x 2 Zn. Thus there exist xi 2 R fori = 1; : : : ; n with x =Pni=1 xi � vi. We an �nd a y 2 Zn in the Z-span of v1; : : : ; vnsuh that we have x� y = nXi=1(xi � yi)viwith 0 � xi � yi � 1. Without loss of generality we assume y = 0.So v1; : : : ; vn is a Z-basis if and only if for every x = Pni=1 xi � vi 2 Zn with0 � xi � 1 for i = 1; : : : ; n we have xi 2 f0; 1g for all i = 1; : : : ; n.Let 2(v1; : : : ; vn) = ( nXi=1 sivi 2 Rn j 0 � si � 1 for i = 1; : : : ; n) :



8 DIRK SCH�UTZWe need to show thatZn \ 2(v1; : : : ; vn) = ( nXi=1 Æivi j Æi 2 f0; 1g for i = 1; : : : ; n) :(2)Let H : Rn ! Rn be the linear map given by H(ei) = vi for i = 1; : : : ; n. Then Hsends [0; 1℄n to 2(v1; : : : ; vn) and�n = ( nXi=1 siei 2 [0; 1℄n j nXi=1 si � 1)to �(v1; : : : ; vn).We laim that [0; 1℄n has a triangulation whose 0-simplies is the set [0; 1℄n \ Znand whose n-simplies are of the form K(�n) with K 2 GL(n;Z). Then we geta triangulation of 2(v1; : : : ; vn) whose set of 0-simplies is the right hand side of(2). Any other element of Zn \ 2(v1; : : : ; vn) lies in some n-simplex of the formH(K(�n)). Sine K 2 GL(n;Z) we get an extra element of Zn in H(�n) =�(v1; : : : ; vn) whih is not possible by assumption. Therefore (2) follows.It remains to show the triangulation statement, whih we will prove by indution.If n = 1 the statement is lear, so assume that [0; 1℄n�1 has a triangulation with 0-simplies the set [0; 1℄n�1\Zn�1 and whose n�1-simplies are of the formK(�n�1)with K 2 GL(n� 1;Z).To get a triangulation of �n�1 � [0; 1℄, look at the triangulation generated by then-simplies �j for j = 0; : : : ; n� 1 where �j has as verties the points(0; 0); (e1; 0); : : : ; (ej ; 0); (ej ; 1); : : : ; (en�1; 1) 2 Rn�1 � R:Rewrite ej = (ej ; 0) and ej + en = (ej ; 1) for j = 1; : : : ; n � 1. We also writeen = (0; 1). So �j has the verties 0; e1; : : : ; ej ; ej + en; : : : ; en�1 + en for j =1; : : : ; n� 1 and �0 has the verties 0; en; e1+ en; : : : ; en�1+ en. Clearly there is anHj 2 GL(n;Z) for j = 0; : : : ; n� 1 suh that Hj(�n) = �j .The argument an be repeated for n� 1-simplies of the form K(�n�1) with K 2GL(n;Z). Indeed this is triangulated suh that the n-simplies are of the formK(Hj(�n)), where K = i(K) with i : GL(n � 1;Z) ! GL(n;Z) the standardinlusion. This �nishes the proof of the lemma. �Proposition 4.4. Let � : Zn ! R be an injetive homomorphism and U an openneighborhood of [�℄ 2 S(Zn). Then there exist homomorphisms �i : Zn ! Z fori = 1; : : : ; n and a Z-basis t1; : : : ; tn of Zn suh that(1) [�i℄ 2 U for all i = 1; : : : ; n.(2) nTi=1 dRZn�i � dRZn�.(3) �i(tj) = Æij = � 1 i = j0 else for all i; j = 1; : : : ; n.Proof. By Lemma 4.2 there exist homomorphisms �0i : Zn ! Z and ti 2 (0; 1℄ fori = 1; : : : ; n suh that [�0i℄ 2 U and [�℄ = [P ti�0i℄. Sine Hom(Zn;R) is loallyonvex we an also assume that [P si�0i℄ 2 U for every (s1; : : : ; sn) 2 [0; 1℄n.Let v0i 2 Zn be suh that �0i(x) = hx; v0ii and v 2 Rn suh that �(x) = hx; vi.Look at �(v01; : : : ; v0n). Note that the R-subspae hvi generated by v has nontrivial



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 9intersetion with the interior of �(v01; : : : ; v0n). Also, if y 2 �(v01; : : : ; v0n)\Zn, then[�y℄ 2 U where �y(x) = hx; yi by the onvexity property that we assume.By ompatness of �(v01; : : : ; v0n) the setA = Zn\�(v01; : : : ; v0n)� f0; v01; : : : ; v0ngis �nite. Let B � Hom(Zn;R) be the ball around 0 of radius 1, that is, B = fv 2Rn j hv; vi � 1g.For y 2 A and j = 1; : : : ; n let �j = �(y; v1; : : : ; v0j�1; v0j+1; : : : ; v0n), that is, wereplae v0j by y. Then we an writeB \�(v01; : : : ; v0n) = n[j=1B \�jand �j \ �i has empty interior for i 6= j. Sine � is injetive there is a uniquej suh that hvi \ int�j 6= ;. We an think of y; v01; : : : ; v0j�1; v0j+1; : : : ; v0n giving abetter approximation of v than v01; : : : ; v0n, ompare Figure 1, where �(x; z) shouldbe replaed by �(x; y).
zy

x
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v

Figure 1.LetA1 = Zn\�(y; v01; : : : ; v0j�1; v0j+1; : : : ; v0n)� f0; y; v01; : : : ; v0j�1; v0j+1; : : : ; v0ngfor this j. Clearly A1 � A � fyg, so after �nitely many steps we get vetorsv1; : : : ; vn 2 Zn suh thatZn\�(v1; : : : ; vn) = f0; v1; : : : ; vngand hvi \ int�(v1; : : : ; vn) 6= ;. By Lemma 4.3 we have that v1; : : : ; vn is a Z-basisof Zn.For i = 1; : : : ; n De�ne �i : Zn ! Z by �i(x) = hx; vii. Then [�i℄ 2 U and[�℄ = [P si�i℄ for some s1; : : : ; sn 2 (0; 1℄. Therefore we get (1), and (2) by Lemma2.2.1.Let T : Zn ! Zn be the linear map given by T (vi) = ei for i = 1; : : : ; n. De�nethe inner produt (x; y) = hTx; Tyi and let T � : Zn! Zn be the adjoint of T withrespet to (�; �). Note that v1; : : : ; vn is an orthonormal basis with respet to thisinner produt. Now let ti = TT �vi for i = 1; : : : ; n. Then t1; : : : ; tn is a Z-basis ofZn and �i(tj) = hTT �vj ; vii = (T �vj ; T�1vi) = (vj ; vi) = Æij :



10 DIRK SCH�UTZThis �nishes the proof. �5. Proof of Theorem 3.2Lemma 5.1. Let � : G ! R be a nonzero homomorphism and � 2 K1(dRG�)=W �.Then there exists a matrix A over RG whih is invertible over dRG� with �(A) =� 2 K1(dRG�)=W �. Furthermore, if G is �nitely generated, there is a neighborhoodU of [�℄ in S(G) suh that A is invertible over T[�℄2VdRG� for every subset V � U .Proof. Let �A be an invertible n � n matrix over dRG� with �( �A) = � . Let �A�1 beits inverse. Choose a matrix A over RG suh that kA � �Ak� < minf1; k �A�1k�1� gand a matrix B over RG suh that kB� �A�1k� < minf1; k �Ak�1� g. To do this de�neAij(g) = � �Aij(g) for exp(�(g)) � minf1; k �A�1k�1� g0 otherwiseand similarly for B. ThenA �B = ( �A+ (A� �A)) � ( �A�1 + (B � �A�1)) = I � CB �A = ( �A�1 + (B � �A�1)) � ( �A+ (A� �A)) = I � C 0with kCk�; kC 0k� < 1. Sine A and B are matries over RG, so are C and C 0. Alsothere is an " > 0 suh that kCk�; kC 0k� � 1� ". LetF = n[i;j=1 suppCij [ suppC 0ij ;a �nite subset of G. In partiular �(g) < 0 for all g 2 F . There is a neighborhoodU 0 of � in Hom(G;R) suh that �(g) < 0 for every g 2 F and every � 2 U 0. LetU be the projetion of U 0 to S(G). Then kCk�; kC 0k� < 1 for every � 2 U and weget that I � C is invertible over dRG� with inverse I + C + C2 + : : : and the samefor I �C 0. Then A has a left and a right inverse over intersetions of suh Novikovrings.To see that �(A) = �( �A) 2 K1(dRG�)=W � note thatA � �A�1 = ( �A+ (A� �A)) � �A�1 = I �Dwith kDk� < 1. �Now assume that G is �nitely generated, so that there is a k � 1 suh thatG= ker � �= Zk. Now let U be neighborhood of [�℄ in S(G). By Proposition 4.4 we an�nd homomorphisms �i : G ! Z for i = 1; : : : ; k with [�i℄ 2 U , Tki=1dRG�i �dRG�,and g1; : : : ; gk 2 G suh that �i(gj) = �Æij for i; j = 1; : : : ; k. Piking gi with�i(gi) = �1 instead of +1 has mainly osmeti purposes.For j = 0; : : : ; k let�j = dRGo�1 \ : : : \dRGo�j \dRG�j+1 \ : : : \dRG�k= n� 2dRG�1 \ : : : \dRG�k j k�k�i � 1 for i = 1; : : : ; joNote that �0 = Tki=1dRG�i and that the ring �j is obtained from �j+1 by invertinggj+1.



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 11Also de�ne for j = 1; : : : ; kGj = fg 2 G j �i(g) � 0 for i � jgKj = fg 2 Gj j �j(g) = 0gWe then have subrings RKj � RGj � �j for j = 1; : : : ; k.Denote i� : K1(�j)! K1(�0) and i� : K1(RG)! K1(�0) the natural maps.Proposition 5.2. Let n be a positive integer and A : (�j)n ! (�j)n an au-tomorphism for some j 2 f0; : : : ; k � 1g. Then there exist �1 2 K1(RG) and�2 2 K1(�j+1) with i��(A) = i�(�1) + i�(�2) 2 K1(�0):The proof of this proposition uses the methods of Pajitnov and Raniki [19, Lm.2.18-2.19℄. Sine our notation di�ers quite a bit from theirs we give a full proof, butdefer it to the next setion. Assuming Proposition 5.2 we an now proof Theorem3.2.Proof of Theorem 3.2. Assume G is �nitely generated. Let � 2 K1(dRG�)=W �. Wean represent � by an invertible matrix A. By Lemma 5.1 we an assume that Ahas entries in RG and that there is a neighborhood U of � suh that A is invertibleover T�2VdRG� for every subset V � U .Choose the �i as above so we get that A is invertible over �0. In partiular we get� = i��(A) where i� : K1(�0) ! K1(dRG�) is indued by the inlusion of Lemma2.2.1.Iterating Proposition 5.2 we get� = i�(�k) + i�(� 0)(3)with �k 2 K1(�k) and � 0 2 K1(RG). But the inlusion �k �dRG� fators throughdRGo� by Lemma 2.2.2 and therefore we geti�(�k) = i�(�(w)) + i�(� 00) 2 K1(dRG�)(4)with �(w) 2 W� and � 00 2 K1(RG) by Proposition 3.1. But i�(�(w)) 2 W � soby ombining (3) and (4) we get � = i�(� 0 + � 00) 2 K1(dRG�)=W � with � 0 + � 00 2K1(RG). This �nishes the proof for �nitely generated G.For the general ase we need two more lemmas.Lemma 5.3. Let A be an invertible n � n matrix over dRG� with �(A) = 0 2K1(dRG�)=W �. Then there exist elementary matries E1; : : : ; Ek over RG and amatrix E over dRG� with kEk� < 1 suh that for a stabilization of A we get� A I � = E1 � � �Ek � (I �E)Proof. Sine i��(A) = 0 we get � A I � = F1 � � �Fl with the Fi being eitherelementary matries overdRG� or matries of the form I �D with kDk� < 1. Sinethe elementary matries generate the ommutator of GL(R) for any ring R withunit we an assume that Fl = I � D with kDk� < 1 and the remaining matriesare elementary.



12 DIRK SCH�UTZIt remains to show that we an replae the elementary matries over dRG� by ele-mentary matries over RG. For this we will prove the following:Given elementary matries E01; : : : ; E0k overdRG� and " 2 (0; 1), there exist elemen-tary matries E1; : : : ; Ek over RG and a matrix E over RG with kEk� < ", suhthat E01 � � �E0k = E1 � � �Ek � (I �E)(5)We prove it by indution on k. The ase k = 0 is trivial. Now assume the statementis true for k�1. Then E01 � � �E0k = E01 � � �E0k�1 �E0k . By indution hypothesis we an�nd elementary matries E1; : : : ; Ek�1 over RG and E0 with kE0k� < " � kE0kk�2�suh that E01 � � �E0k�1 = E1 � � �Ek�1 � (I �E0). Now(I �E0) �E0k = E0k � (I � (E0k)�1 �E0 � E0k):Sine we an write E0k = Ek �Rk = Ek(I �E�1k Rk) with Ek an elementary matrixover RG and kRkk� < "�kE0kk�1� we get the laim. Notie that kE0kk�1� = kEkk�1� =kE�1k k�1� and kFk� � 1 for every elementary matrix F .This shows (5) and the lemma follows. �If H � G is a �nitely generated subgroup, we get a subring dRH� � dRG� and anindued map i� : K1(dRH�)=W �(H) ! K1(dRG�)=W �(G). Furthermore we get adiret system (Hj)j2I of �nitely generated subgroups of G ordered by inlusionwhih indues a diret system of abelian groups �K1([RHj�)=W �(Hj)�j2I .Lemma 5.4. Let G be a group and � : G! R a homomorphism. Then K1(dRG�)=W �(G) is the diret limit of �K1(dRHj�)=W �(Hj)�j2I , where (Hj)j2I are the �nitelygenerated subgroups of G.Proof. We need to show that(1) for every � 2 K1(dRG�)=W �(G) there is a �nitely generated subgroup Hand � 0 2 K1(dRH�)=W �(H) with � = i�� 0.(2) If � 2 K1([RH1�)=W �(H1) satis�es i�� = 0 2 K1(dRG�)=W �(G) for a�nitely generated H1, there exists a �nitely generated subgroup H2 on-taining H1 suh that i�� = 0 2 K1([RH2�)=W �(H2).For (1) represent � by an invertible matrix �A overdRG�. Choose matries A; B overRG with kA � �Ak� < minf1; k �A�1k�1� g and kB � �A�1k� < minf1; k �Ak�1� g. ThenA � B = I � C with kCk� < 1 and A is invertible with A�1 = B � (I � C)�1. AlsoC = I �A �B is a matrix over RG. HeneF = n[i;j=1 suppAij [ suppBij [ suppCijis a �nite subset of G whih generates a �nitely generated subgroup H . AlsoB � (I � C)�1 is a well de�ned matrix over dRH� and we get � = i��(A).



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 13Now let A be an invertible matrix over[RH1� with i��(A) = 0 2 K1(dRG�)=W �(G).By Lemma 5.3 we get � A I � = E1 � � �Ek � (I �E)with Ei elementary matries over RG and kEk� < 1. LetF = n[i;j=1 k[l=1 supp (El)ij ;a �nite subset of G, and let H2 be the subgroup of G generated by H1 and F , a�nitely generated subgroup of G. As above it follows that I � E is an invertiblematrix over [RH2� and we get i��(A) = 0 2 K1([RH2�)=W �(H2). �We note that Lemma 5.4 is not true in general if we replae K1(dRG�)=W �(G) byK1(dRG�).For a �nitely generated subgroup H of G we already know that i� : K1(RH) !K1(dRH�)=W �(H) is surjetive. Thus we get a surjetion of diret systems�i� : K1(RHj)! K1([RHj�)=W �(Hj)�j2I :Sine the diret limit is an exat funtor we get a surjetion between the diret lim-its. By Lemma 5.4 this means we get a surjetion i� : K1(RG)! K1(dRG�)=W �(G)whih is learly the map in Theorem 3.2. �6. Proof of Proposition 5.2We keep the notation established above Proposition 5.2. We will frequently write�nj for the �nitely generated free �j-module (�j)n. Similarly we will write glj for(gj)l, where l is an integer.Reall that �j+1(gj+1) = �1, so gj+1 de�nes a left �j+1-module morphism gj+1 :�j+1 ! �j+1 by x 7! x � gj+1.Lemma 6.1. Let l be a positive integer. Then the �j+1-module morphism glj+1 :�nj+1 ! �nj+1, x 7! x � glj+1 is suh that okerglj+1 is a �nitely generated freeRKj+1-module.Proof. It suÆes to look at the ase n; l = 1. Let x 2 �j+1. If g 2 suppx, then�i(g) � 0 for i � j + 1. If �j+1(g) < 0, then g � g�1j+1 2 �j+1. Hene we an writex = x1 + x2 with x1 2 RKj+1 and x2 � g�1j+1 2 �j+1, and this deomposition isunique. But x2 2 im gj+1 and so okergj+1 = RKj+1. �We have that A : �nj ! �nj is an automorphism. Choose l � 0 so that for x 2 �nj+1we get A(x) � glj+1 2 �nj+1 � �nj . Then we an de�ne an injetive �j+1-modulemorphism ~A : �nj+1 �! �nj+1x 7! A(x) � glj+1Let Pj+1 = oker( ~A : �nj+1 ! �nj+1):



14 DIRK SCH�UTZThe next lemma is the analogue of Pajitnov and Raniki [19, Lm.2.18℄.Lemma 6.2. We have(1) Pj+1 is a �nitely generated projetive RKj+1-module.(2) The map � : Pj+1 ! Pj+1, x 7! gj+1 � x is nilpotent.Proof. Let B : �nj ! �nj be the inverse of A. Choose m � 0 so that for all x 2 �nj+1we get B(x � g�lj+1) � gmj+1 2 �nj+1 � �nj . De�ne the �j+1-module morphism~B : �nj+1 �! �nj+1x 7! B(x � g�lj+1) � gmj+1Restrition de�nes an RKj+1-module morphism r : �nj ! �nj+1 with the propertythat r Æ i = id : �nj+1 ! �nj+1. Thus de�ne the RKj+1-module morphism~C : �nj+1 �! �nj+1x 7! r(A(x � g�mj+1) � glj+1)We get the ommutative diagram0 // �nj+1 ~A
// �nj+1 //~B

��

Pj+1 //

��

00 // �nj+1 gmj+1
// �nj+1 //~C

��

mLs=1RKnj+1 //

��

00 // �nj+1 ~A
// �nj+1 // Pj+1 // 0It is easy to see that ~C Æ ~B = id : �nj+1 ! �nj+1 and therefore Pj+1 is �nitelygenerated projetive over RKj+1 as a diret summand of a �nitely generated freeRKj+1-module. Here the middle row follows from Lemma 6.1.To see that � is nilpotent, let x 2 �nj+1. In �nj we getgm+lj+1 � x = gm+lj+1 � x � g�lj+1 � glj+1 = A ÆB(gm+lj+1 � x � g�lj+1) � glj+1= A(gmj+1 � B(glj+1 � x � g�lj+1) � gmj+1 � g�mj+1) � gl= A(gmj+1 � ~B(glj+1 � x) � g�mj+1) � glj+1 = ~A(y)with y = gmj+1 � ~B(glj+1 � x) � g�mj+1 2 �nj+1. Thus gm+lj+1 � x 2 im ~A. �We have that Pj+1 is also a �j+1-module. De�ne a �j+1-module morphism� : �j+1 
RKj+1 Pj+1 �! Pj+1�
 x 7! � � xLet �j+1gj+1 = f�gj+1 2 �j+1 j� 2 �j+1gThen (�j+1gj+1)n is a free �j+1-module. Also RKj+1 ats on the right by ordinarymultipliation. Notie that if we write �gj+1 for the elements of �j+1gj+1 this



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 15means �gj+1 � r = �(gj+1rg�1j+1)gj+1 for r 2 RKj+1. De�ne the �j+1-modulemorphism � : �j+1gj+1 
RKj+1 Pj+1 �! �j+1 
RKj+1 Pj+1�gj+1 
 x 7! �gj+1 
 x� �
 gj+1 � xLemma 6.3. The following sequene is a �nitely generated projetive �j+1-moduleresolution of Pj+1.0 // �j+1gj+1 
RKj+1 Pj+1 �
// �j+1 
RKj+1 Pj+1 �

// Pj+1 // 0Proof. We an split the sequene over RKj+1 using the RKj+1-module morphisms� : Pj+1 �! �j+1 
RKj+1 Pj+1x 7! 1
 xand� : �j+1 
RKj+1 Pj+1 �! �j+1gj+1 
RKj+1 Pj+1�
 x 7! �
 x+ �g�1j+1 
 gj+1x+ �g�2j+1 
 g2j+1x+ : : :where � : �j ! �j+1gj+1 denotes restrition. Notie that we have a �nite sumonly, sine gm+lj+1 �x = 0 by Lemma 6.2.2. This shows that the sequene is exat. �The two projetive �j+1 resolutions an be related by a ommutative diagram0 // �nj+1 ~A
//f

��

�nj+1 //g
��

Pj+1 // 00 // �j+1gj+1 
RKj+1 Pj+1 �
// �j+1 
RKj+1 Pj+1 �

// Pj+1 // 0We an think of (f; g) as a hain homotopy equivalene between 1-dimensional�nitely generated projetive �j+1-hain omplexes. Notie that after tensoringwith �0 we get that both 1
 ~A and 1
 � beome automorphisms, sine�0 
RKj+1 Pj+1 �! �0 
�j+1 �j+1gj+1 
RKj+1 Pj+1�
 p 7! �g�1j+1 
 gj+1 
 pis a anonial isomorphism.The sequene0 // �nj+1 0� f~A 1A
// �j+1gj+1 
RKj+1 Pj+1 � �nj+1� � �g �

// �j+1 
RKj+1 Pj+1 // 0splits, so denote ( d1 d2 ) : �j+1gj+1 
RKj+1 Pj+1 � �nj+1 ! �nj+1 a morphismwith d1f + d2 ~A = id�nj+1 . Denoteh = � � �gd1 d2 � : �j+1gj+1 
RKj+1 Pj+1 � �nj+1 ! �j+1 
RKj+1 Pj+1 � �nj+1



16 DIRK SCH�UTZthe resulting isomorphism. Restrition de�nes a ring homomorphism Tj+1 : �j+1 !RKj+1 suh that Tj+1Æi : RKj+1 ! RKj+1 is the identity. We get an isomorphism(i Æ Tj+1)�h : �j+1gj+1 
RKj+1 Pj+1 � �nj+1 ! �j+1 
RKj+1 Pj+1 � �nj+1sine �j+1 
RKj+1 RKj+1 
�j+1 �j+1gj+1 
RKj+1 Pj+1 = �j+1gj+1 
RKj+1 Pj+1.Therefore we get an automorphismh Æ ((i Æ Tj+1)�h)�1 : �j+1 
RKj+1 Pj+1 � �nj+1 ! �j+1 
RKj+1 Pj+1 � �nj+1whih de�nes a torsion �(f; g) 2 K1(�j+1):SineRG
RKj+1 Pj+1 �! RG
RKj+1 RKj+1 
�j+1 �j+1gj+1 
RKj+1 Pj+1x
 p 7! xg�1j+1 
 1
 gj+1 
 pis a anonial isomorphism, we get an automorphism(iG Æ Tj+1)�h : RG
RKj+1 Pj+1 ! RG
RKj+1 Pj+1where iG : RKj+1 ! RG denotes inlusion. It follows thati��(f; g) + i��((iG Æ Tj+1)�h) = �(1�0 
 h) 2 K1(�0):(6)Note that �0 
RKj+1 Pj+1 is anonially isomorphi to �0 
RKj+1 RKj+1 
�j+1�j+1gj+1 
RKj+1 Pj+1, so 1�0 
 h de�nes an automorphism.But over �0 we have the ommutative diagram�n0 0� f ~A�11 1A
//~A�1

��

�0 
RKj+1 Pj+1 � �n0 � 1 �f ~A�1 �
//0� � �gd1 d2 1A

��

�0 
RKj+1 Pj+1�
���n0 0� 01 1A

// �0 
RKj+1 Pj+1 � �n0 � 1 0 �
// �0 
RKj+1 Pj+1where we have written ' instead of 1
 ' for all the morphisms involved. Sine allvertial arrows are automorphisms and the rows are short exat sequenes we get�(1
 h) = �(1
 �)� �(1
 ~A) 2 K1(�0):(7)Now �(1
 ~A) = i��(A) + �(glnj+1)(8)and �(1
 �) = i��(1� p)(9)where 1� p : RG
RKj+1 Pj+1 �! RG
RKj+1 Pj+1g 
 x 7! g 
 x� g � g�1j+1 
 gj+1 � xis an automorphism with inverse 1+ p+ p2+ : : :+ pm+l�1. Combining (6), (7), (8)and (9) �nishes the proof of Proposition 5.2.



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 177. Further remarks and questionsIn the ase of a rational homomorphism � : G! R we get a short exat sequene0 // H // G // Z // 0with H = ker �. In that ase RG an be identi�ed with a twisted Laurent poly-nomial ring RH�[t; t�1℄ where � : RH ! RH is an automorphism indued by theation of Z on H . Similarly dRG� an be identi�ed with a twisted Laurent seriesring RH�((t)) = RH�[[t℄℄[t�1℄:The lassial Bass-Heller-Swan deomposition in the twisted ase, see Farrell andHsiang [10℄, Siebenmann [27℄ and Pajitnov and Raniki [19℄, then readsK1(RH�[t; t�1℄) = K1(RH; �)� fNil0(RH; �)� fNil0(RH; ��1)(10)where fNil0(RH; ��1) is the redued lass group of pairs (P; �) with P a �nitelygenerated projetive RH-module and � : P ! P a nilpotent ��1-endomorphism.Also K1(RH; �) �ts into an exat sequeneK1(RH) 1��
// K1(RH) i

// K1(RH; �) j
// K0(RH) 1��

// K0(RH) :Pajitnov and Raniki [19℄ obtained the orresponding deomposition for the Novikovring whih is K1(RH�((t))) = K1(RH; �)�W� � fNil0(RH; ��1):(11)The two deompositions are related in that the natural map i� : K1(RH�[t; t�1℄)!K1(RH�((t))) maps the opy of fNil0(RH; �) into W� and is the identity on theremaining diret summands. In partiular this implies Theorem 3.2 in the ase of arational homomorphism. It also shows that i� : K1(RG)! K1(dRG�)=W � is not anisomorphism in general. But it follows that the diagonal map indued by inlusion� : K1(RH�[t; t�1℄) �! K1(RH�((t))) �K1(RH�((t�1)))is injetive. The analogous result for an arbitrary homomorphism � also holds.Theorem 7.1. Let � : G ! R be a nonzero homomorphism. Then the diagonalmap � : K1(RG) �! K1(dRG�)=W � �K1(dRG��)=W��;indued by inlusion, is injetive.Proof. It is enough to onsider the ase when G is �nitely generated. Let � 2K1(RG) satisfy �(�) = 0. Let A be an invertible matrix over RG with �(A) = � .In partiular i��(A) = 0 2 K1(dRG�)=W �. By Lemma 5.3 there exist elementarymatries E1; : : : ; Ek over RG and a matrix E over dRG� with kEk� < 1 suh thatA = E1 � � �Ek(I �E), possibly after stabilizing A. Sine A and the Ei are matriesoverRG, we get that E is also a matrix overRG. Now there is a small neighborhoodof U of [�℄ in S(G) suh that kEk� < 1 for all � with [�℄ 2 U . In partiulari��(A) = 0 2 K1(dRG�)=W �.Sine we also have i��(A) = 0 2 K1(dRG��)=W��, there is a small neighborhoodV of [��℄ with i��(A) = 0 2 K1(dRG��)=W�� for all � with [��℄ 2 V . Sine



18 DIRK SCH�UTZ�V is a neighborhood of [�℄ we an �nd a rational � with [�℄ 2 U \ �V so that�(�) = 0 2 K1(dRG�)=W � � K1(dRG��)=W��. But sine � is rational we get� = 0. �Corollary 7.2. Let G be a group and � : G! R a nonzero homomorphism. ThenWh(G; �) = 0 if and only if Wh(G) = 0.Proof. Observe that g ! g�1 indues a ring isomorphism of dZG� to the oppo-site ring of dZG��. This indues an isomorphism Wh(G; �) �= Wh(G;��) and theorollary follows from Corollary 3.4 and Theorem 7.1. �A natural question is whether the diret sum deomposition of (11) has a general-ization to K1(dRG�), in partiular one an ask if W � is a diret summand. It maybe possible to arry over the tehniques of Pajitnov and Raniki [19℄ at least forthe ring �0 of Setion 5.A similar question is whether we always have W� = W � as in the rational ase.This would allow us to get a better understanding ofW � sine Sheiham [26, Thm.B℄gives a detailed desription of W� . To see this, note that the ring homomorphism" :dRGo� ! RH given by restrition is a loal augmentation in the sense of [26℄.The Latour obstrution. Let M be a losed onneted smooth manifold withdimM � 6 and denote G = �1(M). Then Hom(G;R) = H1(M ;R) and suh oho-mology lasses an be realized by losed 1-forms. Latour [12℄ gives two neessaryand suÆient onditions for the existene of a nonsingular losed 1-form within a�xed ohomology lass �. To desribe the �rst homotopy theoretial ondition letX be a �nite CW omplex, G = �1(X), � 2 H1(X ;R) and ~X the universal overof X . Sine R is ontratible we an de�ne a map h : ~X ! R suh thath(gx) = h(x) + �(g)(12)for all x 2 ~X and g 2 G. Note that we regard � as a homomorphism � : G ! Rhere. A map h : ~X ! R satisfying (12) is alled a height funtion for �.De�nition 7.3. Let X be a �nite CW omplex, G = �1(X) and � 2 H1(X ;R).Then X is alled �-ontratible, if there exists a G-equivariant homotopy H : ~X �I ! ~X with H0 = id ~X andh(H1(x)) � h(x) � �" for all x 2 ~Xfor some " > 0 and height funtion h : ~X ! R.It is easy to see that �-ontratibility does not depend on the height funtion or the" > 0. Furthermore it is a homotopy invariant. For several equivalent onditionsfor �-ontratibility we refer the reader to Latour [12, Prop.1.4℄. By [12, Prop.1.10℄�-ontratibility implies that the ompleted ellular hain omplexdZG�
ZGC�(X)is ayli. In that ase we de�ne�L(X; �) = �(dZG� 
ZGC�(X)) 2Wh(G; �)Latour's theorem then readsTheorem 7.4. [12℄ Let M be a losed onneted smooth manifold with dimM � 6and � 2 H1(M ;R). Then there exists a nonsingular losed 1-form ! representing� if and only if M is (��)-ontratible and �L(M; �) = 0 2Wh(G; �).



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 19In the ase of an integer valued ohomology lass � 2 H1(M ;Z) = [M;S1℄ theexistene of a nonsingular losed 1-form representing � is equivalent to the existeneof a �bre bundle map f :M ! S1 whose homotopy lass represents �. This questionwas solved by Farrell [8, 9℄ and Siebenmann [27℄ who obtain an obstrution inWh(G). An exposition of this ase is given in Raniki [20, x15℄, who also showsthat the Farrell-Siebenmann obstrution is mapped to Latour's obstrution underthe natural map i�, see also [25℄.Beause of Corollary 3.4 we know in general that there is an element of Wh(G) thatgets mapped to the Latour obstrution, but the question remains whether there isa natural geometri way to de�ne an obstrution in Wh(G) that gets mapped tothe Latour obstrution under i� as in the rational ase. A partial answer to thisis given in [25℄. Let � : �M ! M be the regular overing spae orresponding toker �. By [25, Thm.1.3℄ we have that �M is �nitely dominated if and only if M is�-ontratible for every nonzero homomorphism � : �1(M)! R with ker � � ker �.In partiular all Latour obstrutions �L(M; �) are de�ned. Furthermore it is shownin [25℄ that all Farrell-Siebenmann obstrutions for suh rational � agree and an beused as an obstrution for �. Note that �M being �nitely dominated is not neessaryforM to be (��)-ontratible if � is not rational. Nevertheless we get the followingorollary of Theorem 7.4.Corollary 7.5. Let M be a losed onneted smooth manifold with dimM � 6suh that Wh(�1(M)) = 0 and let � 2 H1(M ;R). Then there exists a nonsingularlosed 1-form ! representing � if and only if M is (��)-ontratible. �Whitehead groups an be very ompliated but it is onjetured for example thatWh(�1(M)) = 0 for aspherial manifolds M . This onjeture has been veri�edin many speial ases, in partiular if M is a ompat manifold whih admits aRiemannian metri of nonpositive setional urvature, see Farrell and Jones [11℄.For more examples of vanishing Whitehead groups of torsion-free groups see L�ukand Reih [13, Thm.5.20.1℄ and the referenes given there.Loalization. In order to study the Morse theory of losed 1-forms, Farber [5℄introdued a subring of the Novikov ring dZG� with � : G ! R injetive usingloalization. For this let S� = f1� a 2 ZG j kak� < 1g;a multipliatively losed subset of ZG. This gives rise to the inlusions of ringsZG � S�1� ZG � dZG�. This loalization has some tehnial advantages over theNovikov ring.In the ase of an arbitrary homomorphism � : G! R we an use a nonommutativeloalization in the sense of Cohn [2℄. For this let M(ZG) be the set of all (�nite)diagonal matries over ZG and�� = fI �A 2M(ZG) j kAk� < 1g:Then there exists a ring ��1� ZG together with a ring homomorphism " : ZG !��1� ZG suh that "(M) is invertible for everyM 2 �� having the following universalproperty: For every ring R and ring homomorphism � : ZG! R suh that �(M)is invertible for every M 2 ��, there exists a unique ring homomorphism �1 :��1� ZG! R suh that � = �1".



20 DIRK SCH�UTZIn partiular the inlusion ZG�dZG� fators as ZG! ��1� ZG!dZG�.This ring was �rst introdued in Farber and Raniki [7℄ in the ase of a rationalhomomorphism � : G ! Z and more generally in Farber [6℄. The main theorem ofthese papers an be stated asTheorem 7.6. Let M be a losed smooth manifold with G = �1(M) and let � 2H1(M ;R). Then for any losed 1-form ! having only Morse zeros and representing� there exists a free hain omplex C!� over ��1� ZG suh that C!� is hain homotopyequivalent to the loalized hain omplex ��1� ZG 
ZG C�( ~M) and eah ��1� ZG-module C!j has a anonial free basis whih is in a one-to-one orrespondene withthe zeros of the losed 1-form ! of index j.To disuss the torsion of this equivalene, letWh(G; ��) = K1(��1ZG)=h�(�g); �(I �A) j g 2 G; I �A 2 ��i:Clearly we get a fatorizationWh(G) �!Wh(G; ��) �!Wh(G; �):Furthermore, if we denote the hain homotopy equivalene desribed in Theorem7.6 by ' : C!� ! ��1� ZG
ZG C�( ~M), we get �(') = 0 2 Wh(G; ��). For rational� this is shown in Raniki [21℄, and the tehniques of [21, x1℄ an be used to showthat the hain ollapse of [6℄ has zero torsion in Wh(G; ��).Proposition 7.7. The natural map i� : Wh(G; ��) ! Wh(G; �) is an isomor-phism.Proof. It is surjetive by Corollary 3.4, but note that we only need the proof ofLemma 5.1 to show surjetivity.Let A be an invertible matrix over ��1� ZG. By Sho�eld [22, Thm.4.3℄ there existmatries B and B0 over ZG and a matrix A0 over ��1� ZG suh thatB� I A00 A � = B0 with B = 0B� B1 0. . .� Bn 1CAwhere eah Bi 2 ��. In partiular B represents an invertible matrix over ��1� ZGwith �(B) = 0 2 Wh(G; ��). Therefore B0 is also invertible and �(A) = �(B0) 2Wh(G; ��).Now if i��(B0) = 0 2Wh(G; �), then by Lemma 5.3 there exist elementary matriesE1; : : : ; Ek over ZG and a matrix E neessarily over ZG with kEk� < 1 and B0 =E1 � � �Ek(I �E). Note that I �E 2 �� , so �(B0) = 0 2Wh(G; ��). �Referenes[1℄ M.M. Cohen, A ourse in simple-homotopy theory, Springer-Verlag, New York, 1973.[2℄ P.M. Cohn, Free rings and their relations, London Mathematial Soiety Monographs, No. 2,Aademi Press, London-New York, 1971.[3℄ O. Cornea and A. Raniki, Rigidity and glueing for Morse and Novikov omplexes, J. Eur.Math. So. 5 (2003), 343-394.[4℄ M. Damian, Formes ferm�ees non singuli�eres et propri�et�es de �nitude des groupes, Ann. Si.�Eole Norm. Sup. (4) 33 (2000), 301-320.[5℄ M. Farber, Sharpness of the Novikov inequalities, Funtional Anal. Appl. 19 (1985), 40-48.
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