
ON THE WHITEHEAD GROUP OF NOVIKOV RINGSDIRK SCH�UTZAbstra
t. We show that the natural map i� : Wh(G)!Wh(G; �) from theWhitehead group ofG to the Whitehead group of the Novikov ring is surje
tive.The group Wh(G; �) is of interest for the simple 
hain homotopy type of theNovikov 
omplex. It also 
ontains the Latour obstru
tion for the existen
e ofa nonsingular 
losed 1-form within a �xed 
ohomology 
lass � 2 H1(M ;R),where M is a 
losed 
onne
ted smooth manifold.1. Introdu
tionGiven a group G and a homomorphism � : G ! R to the additive group of realnumbers the Novikov ring dZG� is a 
ompletion of the ordinary group ring ZG.Elements ofdZG� 
an be thought of as fun
tions � : G! Z su
h that for every realnumber r 2 R there are only �nitely many g 2 G with �(g) 6= 0 and �(g) � r.This ring arises naturally in the Morse theory of 
losed 1-forms on 
losed smoothmanifoldsM and was introdu
ed by Novikov [14℄. A 
losed 1-form ! on M indu
esa homomorphism � = �[!℄ : �1(M) ! R via its 
ohomology 
lass. Provided that !satis�es a Morse 
ondition one 
an de�ne the so 
alled Novikov 
omplex C�(M;!).This is a 
hain 
omplex whi
h is �nitely generated free over dZG�, where G is aquotient of �1(M) by a normal subgroup 
ontained in ker �. For details on several
onstru
tions we refer the reader to Novikov [15℄, Latour [12℄, Pajitnov [17℄, Farber[6℄ or S
h�utz [24℄. It turns out that its 
hain homotopy type is that of C�(M ;dZG�).In re
ent years there has been 
onsiderable interest also in the simple homotopytype of the Novikov 
omplex, see Latour [12℄, Pajitnov [18℄, Damian [4℄, S
h�utz [23℄or Cornea and Rani
ki [3℄. Notably Latour [12℄ introdu
ed the Whitehead group ofthe Novikov ring Wh(G; �), a quotient of K1(dZG�) by so 
alled trivial units. Thesetrivial units 
onsist of �g 2dZG� for all g 2 G and units of the form 1 � a 2dZG�where a : G! Z satis�es a(g) = 0 for �(g) � 0.An important feature of this group is that it 
ontains an obstru
tion for the exis-ten
e of a nonsingular 
losed 1-form ! in a �xed 
ohomology 
lass. More pre
isely,Latour [12℄ gives two 
onditions for a nonzero 
ohomology 
lass � 2 H1(M ;R). The�rst, homotopy theoreti
al 
ondition, assures that the Novikov homology vanishes.The se
ond 
ondition is then that the Whitehead torsion of the Novikov 
omplex,measured in Wh(G; �), vanishes. We give a brief a

ount of this in Se
tion 7.For this reason we would like to get a better understanding of Wh(G; �). There isan obvious homomorphism i� : Wh(G) ! Wh(G; �) from the ordinary Whiteheadgroup of G indu
ed by the in
lusion ZG�dZG� . Although it is known that Wh(G)2000 Mathemati
s Subje
t Classi�
ation. Primary 19B28; Se
ondary 57Q10.Key words and phrases. Whitehead group, Novikov ring, Latour obstru
tion.1



2 DIRK SCH�UTZ
an be very 
ompli
ated, there are also many examples where this group vanishes.The main theorem of this paper states that i� is surje
tive, so that the vanishingof Wh(G) indeed implies the vanishing of Wh(G; �).Theorem 1.1. Let G be a group and � : G ! R a homomorphism. Then i� :Wh(G)!Wh(G; �) is surje
tive.In the 
ase where � fa
tors through the integers this theorem was known before.Namely it follows immediately from the Main Theorem in Pajitnov and Rani
ki[19℄. In the 
ase where G = H � Z and � is proje
tion to Z it also follows fromPajitnov [18, Prop.7.7℄.In [19℄ a
tually more is shown. If � is a homomorphism to the integers, then theNovikov ring 
an be identi�ed with a twisted Laurent series ring A�((t)). NowPajitnov and Rani
ki obtain a dire
t sum de
omposition for K1(A�((t))) analogousto the Bass-Heller-Swan de
omposition of K1(A[t; t�1℄). From this de
omposition,whi
h we des
ribe in Se
tion 7, it follows that i� is not an isomorphism in general.Yet Wh(G; �) 
annot be signi�
antly less 
ompli
ated than Wh(G), as the nexttheorem shows.Theorem 1.2. Let G be a group and � : G ! R a homomorphism. Then thediagonal map Wh(G)!Wh(G; �)�Wh(G;��) is inje
tive.If � fa
tors through the integers, this follows immediately from the de
ompositionof Pajitnov and Rani
ki [19℄, and the methods used to prove Theorem 1.1 allow usto dedu
e the general 
ase from that.In order to prove Theorem 1.1 it is not important that the Novikov ring is formedover the integers. Also there is no need to fa
tor out trivial units of the form �g forg 2 G as they are already in the group ring. Let W � be the subgroup of K1(dRG�)generated by units of the form 1� a 2dRG� with a(g) = 0 for �(g) � 0. The moregeneral version then readsTheorem 1.3. Let G be a group, � : G ! R a homomorphism and R a ring withunit. Then i� : K1(RG)! K1(dRG�)=W � is surje
tive.In order to prove Theorem 1.3 we want to apply the methods of Pajitnov andRani
ki [19℄. This does not work dire
tly sin
e their te
hniques make strong useof the Laurent series ring des
ription. But in general the Novikov ring 
annotbe des
ribed as a twisted Laurent series ring in several variables. Instead we willapproximate the Novikov ring by subrings to whi
h the te
hniques of [19℄ 
an beapplied indu
tively.We start by looking at �nitely generated groups G. Then G= ker � �= Zk for somek � 1. The �rst step is to show that every � 2 K1(dRG�)=W � 
an be represented bya matrix A invertible over a subring �0 depending on � . This ring has the propertythat there exist surje
tive homomorphisms �i : G! Z for i = 1; : : : ; k su
h that �0is also a subring of every dRG�i . Now RG�i 
an be identi�ed as a twisted Laurentseries ring and in parti
ular has a twisted power series subring denoted dRGo�i . Wethen get a sequen
e of subrings �k � : : : � �1 � �0, where �j is also a subring ofdRGo�i for i � j.



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 3The se
ond step is then to show that given �j 2 K1(�j), we 
an �nd �G 2 K1(RG)and �j+1 2 K1(�j+1) su
h that i��j = i��G + i��j+1 2 K1(dRG�). This implies thetheorem sin
e i��k 2W � .The 
ase of a group whi
h is not �nitely generated is dedu
ed by a dire
t limitargument. 2. Novikov ringsLet G be a group, � : G ! R a homomorphism to the additive group of realnumbers and R a ring with unit. We denote by RG the abelian group of all fun
tions� : G! R. For � 2 RG denote supp� = fg 2 G j�(g) 6= 0g.De�nition 2.1. The Novikov ring dRG� is de�ned asdRG� = f� 2 RG j 8 r 2 R supp� \ ��1([r;1)) is �nitegwith � � �(g) =P�(g1)�(g2) for �; � 2dRG�. The sum is taken over all g1; g2 2 Gwith g1g2 = g.For � 2dRG� letk�k� = infft 2 (0;1) j supp� � ��1((�1; log t℄)gbe the norm of � with respe
t to �. Note thatdRG� is a 
ompletion of the group ringRG with respe
t to the metri
 indu
ed by this norm. We 
an extend the de�nitionof the norm to n�m matri
es over dRG� by settingkAk� = max fkAijk� j i 2 f1; : : : ; ng; j 2 f1; : : : ;mg g :It is easy to see that kA �Bk� � kAk� � kBk�(1)for an n�m matrix A and an m� k matrix B.Sin
e the multipli
ation in dRG� does not depend on � and dRG� is a subgroup ofRG, we 
an interse
t Novikov rings for di�erent homomorphisms � : G ! R andobtain a ring again.De�ne dRGo� = f� 2dRG� j k�k� � 1g:Be
ause of (1) we get that dRGo� is a subring of dRG�.Lemma 2.2. For i = 1; : : : ; k let �i : G! R be a homomorphism and ti 2 (0;1).Denote � =Pki=1 ti�i : G! R. Then(1) dRG�1 \ : : : \dRG�k is a subring of dRG�.(2) dRGo�1 \ : : : \dRGo�k is a subring of dRGo�.Proof. It is enough to assume k = 2. Sin
e dRG�1 = dRGt1�1 for t1 > 0 we 
analso assume t1 = t2 = 1. Let � 2 dRG�1 \dRG�2 . There is r2 2 R with supp� \��12 ([r2;1)) = ;. For r 2 R we now getsupp� \ ��1([r;1)) � supp� \ ��11 ([r � r2;1)):Sin
e supp� \ ��11 ([r � r2;1)) is �nite, we get (1).



4 DIRK SCH�UTZTo see (2) note that for � in the interse
tion we get that g 2 supp� implies that�i(g) � 0, hen
e also �(g) � 0. �Lemma 2.2 shows that the interse
tion dRG�1 \dRG�2 is not just a subring of ea
hNovikov ring, but also a subring of the Novikov ring 
orresponding to a 
onvex
ombination of �1 and �2.Remark 2.3. Mi
hael Farber has developed a similar 
on
ept by looking at 
onvex
ones C � Rk whi
h have the property, that if x 2 C�f0g, also the half-in�nite raystarting at 0 and going through x is 
ontained in C. Given a group G whi
h surje
tsonto Zk, he de�nes a 
ompletion RC [G℄ of the group ring whi
h is a subring of aNovikov ring. It seems likely that the two 
on
epts agree, that is, every interse
tionof Novikov rings 
an be realized by a 
one C and vi
e versa.3. TorsionLet R be a ring with unit. Then K1(R) is the abelian group generated by �(f) forea
h automorphism f : M ! M , where M is a �nitely generated proje
tive leftR-module subje
t to the following relations.(1) For a short exa
t sequen
e of automorphisms0 // L //e
��

M //f
��

N //g
��

00 // L // M // N // 0we have �(e)� �(f) + �(g) = 0.(2) For automorphisms f; g :M !M we have �(f Æ g) = �(f) + �(g).Noti
e that for every automorphism f :M !M of the �nitely generated proje
tiveR-module M there exists an automorphism g : Rn ! Rn of the �nitely generatedfree R-module Rn with �(f) = �(g). We 
an think of g as an invertible n � nmatrix over R. This leads to another way to des
ribe K1(R). Let GL(n;R) bethe group of invertible n � n matri
es over R. We have the standard in
lusionGL(n;R) � GL(n+ 1; R) and let GL(R) be the dire
t limit. ThenK1(R) = GL(R)=[GL(R); GL(R)℄;the abelianization of GL(R). Indeed the 
ommutator subgroup is generated byelementary matri
es, see Cohen [1, x10℄. Re
all that an elementary matrix over aring R with unit is an n � n matrix Exij for i 6= j and x 2 R whi
h has 1 in everydiagonal spot, x in the (i; j)-spot and zero everywhere else.Let � : G ! R be a homomorphism and let H = ker �. Restri
tion de�nes a ringhomomorphism " :dRGo� ! RH with " Æ i = id : RH ! RH , where i : RH !dRGo�is the natural in
lusion. Let a 2dRGo� satisfy kak� < 1. Then 1�a is a unit indRGo�with inverse 1+a+a2+ : : : and as su
h it represents a torsion �(1�a) 2 K1(dRGo�).Let W� � K1(dRGo�) be the subgroup of su
h torsions.The proof of the next proposition is basi
ally 
ontained in Pajitnov [17, Lm.1.1℄,
ompare also Pajitnov and Rani
ki [19, Prop.2.11℄.



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 5Proposition 3.1. We haveK1(dRGo�) = K1(RH)�W�Proof. We get K1(dRGo�) = K1(RH) � ker("� : K1(dRGo�) ! K1(RH)) by fun
to-riality. Let B be a matrix with �(B) 2 ker "�. Then there exist matri
es E;E0 2[GL(RH); GL(RH)℄ with E"(B)E0 = I . Note that E;E0 2 [GL(dRGo�); GL(dRGo�)℄,so EBE0 = I �A with kAk� < 1. Using elementary row and 
olumn operations itfollows that �(I �A) = �(1� a) for some 1� a 2dRG� with kak� < 1. �For K1(dRG�) we do not obtain a similar formula as in Proposition 3.1, instead wewill 
ontent ourselves with a 
ertain quotient of this group. Let W � be the imageof W� under the natural map i� : K1(dRGo�) ! K1(dRG�). Sometimes we will writeW �(G) to emphasize the group G. The in
lusion of rings RG � dRG� indu
es anatural homomorphism i� : K1(RG)! K1(dRG�)and the 
omposition of this with the proje
tion to the quotient K1(dRG�)=W � willbe denoted by i� as well. Our main result now readsTheorem 3.2. Let G be a group, � : G ! R a homomorphism and R a ring withunit. Then i� : K1(RG)! K1(dRG�)=W � is surje
tive.For geometri
 appli
ations the following quotients are parti
ularly important.De�nition 3.3. Let G be a group and � : G ! R be a homomorphism. Then wede�ne the Whitehead group of G asWh(G) = K1(ZG)=h�(�g) j g 2 Giand the Whitehead group of the Novikov ring asWh(G; �) = K1(dZG�)=h�(�g); �(1 � a) j g 2 G; 1� a 2dZG�; kak� < 1i:The Whitehead group Wh(G; �) of the Novikov ring �rst appeared in Latour [12℄.Corollary 3.4. Let G be a group and � : G ! R a homomorphism. Then i� :Wh(G)!Wh(G; �) is surje
tive.Before we proof Theorem 3.2 we will �rst take a 
loser look at homomorphisms ofthe form � : Zn! R.Remark 3.5. In the 
ase of an inje
tive homomorphism � : Zn! R it was shownby Jean-Claude Sikorav that dZZn� is a Eu
lidean ring, 
ompare Pajitnov [16, x1℄.Therefore K1(dZZn�) is given by the group of units. It is easy to see that thegroup of units in this 
ase is exa
tly the group fa
tored out in the de�nition of theWhitehead group of the Novikov ring. Thus Wh(Zn; �) = 0. Unfortunately thisargument does not even generalize to homomorphisms � : Zn ! R whi
h are notinje
tive.



6 DIRK SCH�UTZ4. Homomorphism from free abelian groups to the realsAssume that G is a �nitely generated group and � : G ! R a nonzero homomor-phism. Then � fa
tors through the abelianization of G whi
h is a �nitely generatedabelian group. Thus Hom(G;R) is a �nite dimensional ve
tor spa
e and has anatural topology. We also de�neS(G) = Hom(G;R) � f0g= �where � � � means that there is a 
 > 0 su
h that � = 
�. This is a sphere ofdimension rank(G=[G;G℄) � 1. We will write [�℄ 2 S(G) for the equivalen
e 
lassof a nonzero homomorphism � : G! R.Now if � : G ! R is a nonzero homomorphism, there exists a unique n 2 Z su
hthat � fa
tors as �� Æ p with p : G! Zn surje
tive and �� : Zn! R inje
tive. This nis 
alled the rank of n. If rank � = 1, we 
all � rational. We also write SQ(G) forthe image of the rational homomorphisms in S(G).We will now take a 
loser look at the 
ase G = Zn.Lemma 4.1. For every � 2 Hom(Zn;R) and a neighborhood U of � there is arational � 2 U with ker � � ker �. In parti
ular SQ(G) is dense in S(G) for every�nitely generated group G.Proof. We 
an assume that � is inje
tive. Let e1; : : : ; en be a basis of Zn. De�ne� : Zn! Q by �(ei) a rational number 
lose to �(ei). By 
hoosing �(ei) 
lose enoughto �(ei) we 
an assure that � 2 U . Now im � is a �nitely generated subgroup of Q,hen
e 
y
li
. �Lemma 4.2. Let � 2 Hom(Zn;R)�f0g and U a neighborhood of � in Hom(Zn;R).Let k � 1 be the rank of �. Then there exist ti 2 (0; 1℄ and rational �i 2 U fori = 1; : : : ; k with 1 = kXi=1 ti and � = kXi=1 ti�i:Proof. The proof pro
eeds by indu
tion on k. The 
ase k = 1 is trivial so we assumek � 2. Then im � is dense in R.By Lemma 4.1 we 
an �nd a rational �1 2 U su
h that ker � � ker �1. Let ��; ��1 :Zn= ker � �= Zk ! R be the indu
ed homomorphisms. Let e1 2 Zk be an elementwith �1(e1) > 0 a generator of the in�nite 
y
li
 group im �1. Write Zk = he1i �Zk�1. Let m be a positive integer. Then we 
an �nd xm 2 Zk�1 su
h that 0 <��(me1 + xm) is arbitrarily 
lose to 0. Also ��1(me1 + xm) = m��1(e1) 
an be madearbitrarily large. Choose t 2 (0; 1) su
h that ��(me1 + xm) = t��1(me1 + xm). Sin
et�1 is 
lose to t�, we get that � � t�1 is 
lose to (1 � t)�. We 
an assume t > 0to be so small that � � t�1 2 (1 � t)U . Sin
e ��(me1 + xm) = t��1(me1 + xm) withme1 + xm 6= 0 we get that � � t�1 has rank < k.Now let V = (1� t)U . By indu
tion there exist rational �02; : : : ; �0k 2 V , t02; : : : ; t0k 2(0; 1℄ with Pki=2 t0i = 1 and � � t�1 = kXi=2 t0i�0i:Setting t1 = t, ti = t0i(1� t) and �i = 11�t�0i for i = 2; : : : ; k gives the result. �



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 7Lemma 4.2 shows that an inje
tive homomorphism � : Zn! R 
an be written as a
onvex 
ombination of n rational homomorphisms whi
h 
an be 
hosen arbitrarily
lose to �. But we still need to improve on this.Denote e1; : : : ; en the standard basis of Zn � Rn and let h�; �i be the standard innerprodu
t on Rn , that is, the ei form an orthonormal basis with respe
t to this innerprodu
t.Now for every homomorphism � : Zn ! R there exists a unique ve
tor v� 2 Rnsu
h that �(x) = hx; v�i. For i = 1; : : : ; n let yi = �(ei) 2 R. Then the rankof � is equal to the dimension of the Q-subspa
e of R generated by the yi. Notethat we get a surje
tive homomorphism � : Zn ! Z if and only if all yi 2 Z andg
d(y1; : : : ; yn) = 1.Assume now that � : Zn ! R is inje
tive and let U be a neighborhood of [�℄ inS(Zn). By Lemma 4.2 there exist homomorphisms �i : Zn ! Z and ti 2 (0; 1℄ fori = 1; : : : ; n with [�i℄ 2 U and [�℄ = [ nXi=1 ti�i℄:Thus there exist vi 2 Zn su
h that �i = h�; vii for i = 1; : : : ; n and a 
 > 0 su
h that
v� =Pni=1 tivi. Sin
e � is inje
tive, we get that v1; : : : ; vn is an R-basis of Rn . Ingeneral v1; : : : ; vn need not be a Z-basis of Zn.Now let�(v1; : : : ; vn) = ( nXi=1 sivi 2 Rn j 0 � si � 1 for i = 1; : : : ; n and nXi=1 si � 1)be the 
onvex hull of the n+ 1 points 0; v1; : : : ; vn, an n-simplex in Rn .Lemma 4.3. Let v1; : : : ; vn 2 Zn be linearly independent. Then v1; : : : ; vn is aZ-basis of Zn if and only ifZn \�(v1; : : : ; vn) = f0; v1; : : : ; vng :Proof. Assume that v1; : : : ; vn is a Z-basis and let x 2 Zn\�(v1; : : : ; vn). So thereexist xi 2 Z for i = 1; : : : ; n su
h that x =Pni=1 xi � vi. Sin
e x 2 �(v1; : : : ; vn) wemust have 0 � xi � 1 and Pni=1 xi � 1. Thus we 
an have at most one xi = 1. Itfollows that x 2 f0; v1; : : : ; vng.Now assume that Zn\�(v1; : : : ; vn) = f0; v1; : : : ; vng. Sin
e v1; : : : ; vn are linearlyindependent, they form an R-basis of Rn . Let x 2 Zn. Thus there exist xi 2 R fori = 1; : : : ; n with x =Pni=1 xi � vi. We 
an �nd a y 2 Zn in the Z-span of v1; : : : ; vnsu
h that we have x� y = nXi=1(xi � yi)viwith 0 � xi � yi � 1. Without loss of generality we assume y = 0.So v1; : : : ; vn is a Z-basis if and only if for every x = Pni=1 xi � vi 2 Zn with0 � xi � 1 for i = 1; : : : ; n we have xi 2 f0; 1g for all i = 1; : : : ; n.Let 2(v1; : : : ; vn) = ( nXi=1 sivi 2 Rn j 0 � si � 1 for i = 1; : : : ; n) :



8 DIRK SCH�UTZWe need to show thatZn \ 2(v1; : : : ; vn) = ( nXi=1 Æivi j Æi 2 f0; 1g for i = 1; : : : ; n) :(2)Let H : Rn ! Rn be the linear map given by H(ei) = vi for i = 1; : : : ; n. Then Hsends [0; 1℄n to 2(v1; : : : ; vn) and�n = ( nXi=1 siei 2 [0; 1℄n j nXi=1 si � 1)to �(v1; : : : ; vn).We 
laim that [0; 1℄n has a triangulation whose 0-simpli
es is the set [0; 1℄n \ Znand whose n-simpli
es are of the form K(�n) with K 2 GL(n;Z). Then we geta triangulation of 2(v1; : : : ; vn) whose set of 0-simpli
es is the right hand side of(2). Any other element of Zn \ 2(v1; : : : ; vn) lies in some n-simplex of the formH(K(�n)). Sin
e K 2 GL(n;Z) we get an extra element of Zn in H(�n) =�(v1; : : : ; vn) whi
h is not possible by assumption. Therefore (2) follows.It remains to show the triangulation statement, whi
h we will prove by indu
tion.If n = 1 the statement is 
lear, so assume that [0; 1℄n�1 has a triangulation with 0-simpli
es the set [0; 1℄n�1\Zn�1 and whose n�1-simpli
es are of the formK(�n�1)with K 2 GL(n� 1;Z).To get a triangulation of �n�1 � [0; 1℄, look at the triangulation generated by then-simpli
es �j for j = 0; : : : ; n� 1 where �j has as verti
es the points(0; 0); (e1; 0); : : : ; (ej ; 0); (ej ; 1); : : : ; (en�1; 1) 2 Rn�1 � R:Rewrite ej = (ej ; 0) and ej + en = (ej ; 1) for j = 1; : : : ; n � 1. We also writeen = (0; 1). So �j has the verti
es 0; e1; : : : ; ej ; ej + en; : : : ; en�1 + en for j =1; : : : ; n� 1 and �0 has the verti
es 0; en; e1+ en; : : : ; en�1+ en. Clearly there is anHj 2 GL(n;Z) for j = 0; : : : ; n� 1 su
h that Hj(�n) = �j .The argument 
an be repeated for n� 1-simpli
es of the form K(�n�1) with K 2GL(n;Z). Indeed this is triangulated su
h that the n-simpli
es are of the formK(Hj(�n)), where K = i(K) with i : GL(n � 1;Z) ! GL(n;Z) the standardin
lusion. This �nishes the proof of the lemma. �Proposition 4.4. Let � : Zn ! R be an inje
tive homomorphism and U an openneighborhood of [�℄ 2 S(Zn). Then there exist homomorphisms �i : Zn ! Z fori = 1; : : : ; n and a Z-basis t1; : : : ; tn of Zn su
h that(1) [�i℄ 2 U for all i = 1; : : : ; n.(2) nTi=1 dRZn�i � dRZn�.(3) �i(tj) = Æij = � 1 i = j0 else for all i; j = 1; : : : ; n.Proof. By Lemma 4.2 there exist homomorphisms �0i : Zn ! Z and ti 2 (0; 1℄ fori = 1; : : : ; n su
h that [�0i℄ 2 U and [�℄ = [P ti�0i℄. Sin
e Hom(Zn;R) is lo
ally
onvex we 
an also assume that [P si�0i℄ 2 U for every (s1; : : : ; sn) 2 [0; 1℄n.Let v0i 2 Zn be su
h that �0i(x) = hx; v0ii and v 2 Rn su
h that �(x) = hx; vi.Look at �(v01; : : : ; v0n). Note that the R-subspa
e hvi generated by v has nontrivial



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 9interse
tion with the interior of �(v01; : : : ; v0n). Also, if y 2 �(v01; : : : ; v0n)\Zn, then[�y℄ 2 U where �y(x) = hx; yi by the 
onvexity property that we assume.By 
ompa
tness of �(v01; : : : ; v0n) the setA = Zn\�(v01; : : : ; v0n)� f0; v01; : : : ; v0ngis �nite. Let B � Hom(Zn;R) be the ball around 0 of radius 1, that is, B = fv 2Rn j hv; vi � 1g.For y 2 A and j = 1; : : : ; n let �j = �(y; v1; : : : ; v0j�1; v0j+1; : : : ; v0n), that is, werepla
e v0j by y. Then we 
an writeB \�(v01; : : : ; v0n) = n[j=1B \�jand �j \ �i has empty interior for i 6= j. Sin
e � is inje
tive there is a uniquej su
h that hvi \ int�j 6= ;. We 
an think of y; v01; : : : ; v0j�1; v0j+1; : : : ; v0n giving abetter approximation of v than v01; : : : ; v0n, 
ompare Figure 1, where �(x; z) shouldbe repla
ed by �(x; y).
zy

x

0

v

Figure 1.LetA1 = Zn\�(y; v01; : : : ; v0j�1; v0j+1; : : : ; v0n)� f0; y; v01; : : : ; v0j�1; v0j+1; : : : ; v0ngfor this j. Clearly A1 � A � fyg, so after �nitely many steps we get ve
torsv1; : : : ; vn 2 Zn su
h thatZn\�(v1; : : : ; vn) = f0; v1; : : : ; vngand hvi \ int�(v1; : : : ; vn) 6= ;. By Lemma 4.3 we have that v1; : : : ; vn is a Z-basisof Zn.For i = 1; : : : ; n De�ne �i : Zn ! Z by �i(x) = hx; vii. Then [�i℄ 2 U and[�℄ = [P si�i℄ for some s1; : : : ; sn 2 (0; 1℄. Therefore we get (1), and (2) by Lemma2.2.1.Let T : Zn ! Zn be the linear map given by T (vi) = ei for i = 1; : : : ; n. De�nethe inner produ
t (x; y) = hTx; Tyi and let T � : Zn! Zn be the adjoint of T withrespe
t to (�; �). Note that v1; : : : ; vn is an orthonormal basis with respe
t to thisinner produ
t. Now let ti = TT �vi for i = 1; : : : ; n. Then t1; : : : ; tn is a Z-basis ofZn and �i(tj) = hTT �vj ; vii = (T �vj ; T�1vi) = (vj ; vi) = Æij :



10 DIRK SCH�UTZThis �nishes the proof. �5. Proof of Theorem 3.2Lemma 5.1. Let � : G ! R be a nonzero homomorphism and � 2 K1(dRG�)=W �.Then there exists a matrix A over RG whi
h is invertible over dRG� with �(A) =� 2 K1(dRG�)=W �. Furthermore, if G is �nitely generated, there is a neighborhoodU of [�℄ in S(G) su
h that A is invertible over T[�℄2VdRG� for every subset V � U .Proof. Let �A be an invertible n � n matrix over dRG� with �( �A) = � . Let �A�1 beits inverse. Choose a matrix A over RG su
h that kA � �Ak� < minf1; k �A�1k�1� gand a matrix B over RG su
h that kB� �A�1k� < minf1; k �Ak�1� g. To do this de�neAij(g) = � �Aij(g) for exp(�(g)) � minf1; k �A�1k�1� g0 otherwiseand similarly for B. ThenA �B = ( �A+ (A� �A)) � ( �A�1 + (B � �A�1)) = I � CB �A = ( �A�1 + (B � �A�1)) � ( �A+ (A� �A)) = I � C 0with kCk�; kC 0k� < 1. Sin
e A and B are matri
es over RG, so are C and C 0. Alsothere is an " > 0 su
h that kCk�; kC 0k� � 1� ". LetF = n[i;j=1 suppCij [ suppC 0ij ;a �nite subset of G. In parti
ular �(g) < 0 for all g 2 F . There is a neighborhoodU 0 of � in Hom(G;R) su
h that �(g) < 0 for every g 2 F and every � 2 U 0. LetU be the proje
tion of U 0 to S(G). Then kCk�; kC 0k� < 1 for every � 2 U and weget that I � C is invertible over dRG� with inverse I + C + C2 + : : : and the samefor I �C 0. Then A has a left and a right inverse over interse
tions of su
h Novikovrings.To see that �(A) = �( �A) 2 K1(dRG�)=W � note thatA � �A�1 = ( �A+ (A� �A)) � �A�1 = I �Dwith kDk� < 1. �Now assume that G is �nitely generated, so that there is a k � 1 su
h thatG= ker � �= Zk. Now let U be neighborhood of [�℄ in S(G). By Proposition 4.4 we 
an�nd homomorphisms �i : G ! Z for i = 1; : : : ; k with [�i℄ 2 U , Tki=1dRG�i �dRG�,and g1; : : : ; gk 2 G su
h that �i(gj) = �Æij for i; j = 1; : : : ; k. Pi
king gi with�i(gi) = �1 instead of +1 has mainly 
osmeti
 purposes.For j = 0; : : : ; k let�j = dRGo�1 \ : : : \dRGo�j \dRG�j+1 \ : : : \dRG�k= n� 2dRG�1 \ : : : \dRG�k j k�k�i � 1 for i = 1; : : : ; joNote that �0 = Tki=1dRG�i and that the ring �j is obtained from �j+1 by invertinggj+1.



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 11Also de�ne for j = 1; : : : ; kGj = fg 2 G j �i(g) � 0 for i � jgKj = fg 2 Gj j �j(g) = 0gWe then have subrings RKj � RGj � �j for j = 1; : : : ; k.Denote i� : K1(�j)! K1(�0) and i� : K1(RG)! K1(�0) the natural maps.Proposition 5.2. Let n be a positive integer and A : (�j)n ! (�j)n an au-tomorphism for some j 2 f0; : : : ; k � 1g. Then there exist �1 2 K1(RG) and�2 2 K1(�j+1) with i��(A) = i�(�1) + i�(�2) 2 K1(�0):The proof of this proposition uses the methods of Pajitnov and Rani
ki [19, Lm.2.18-2.19℄. Sin
e our notation di�ers quite a bit from theirs we give a full proof, butdefer it to the next se
tion. Assuming Proposition 5.2 we 
an now proof Theorem3.2.Proof of Theorem 3.2. Assume G is �nitely generated. Let � 2 K1(dRG�)=W �. We
an represent � by an invertible matrix A. By Lemma 5.1 we 
an assume that Ahas entries in RG and that there is a neighborhood U of � su
h that A is invertibleover T�2VdRG� for every subset V � U .Choose the �i as above so we get that A is invertible over �0. In parti
ular we get� = i��(A) where i� : K1(�0) ! K1(dRG�) is indu
ed by the in
lusion of Lemma2.2.1.Iterating Proposition 5.2 we get� = i�(�k) + i�(� 0)(3)with �k 2 K1(�k) and � 0 2 K1(RG). But the in
lusion �k �dRG� fa
tors throughdRGo� by Lemma 2.2.2 and therefore we geti�(�k) = i�(�(w)) + i�(� 00) 2 K1(dRG�)(4)with �(w) 2 W� and � 00 2 K1(RG) by Proposition 3.1. But i�(�(w)) 2 W � soby 
ombining (3) and (4) we get � = i�(� 0 + � 00) 2 K1(dRG�)=W � with � 0 + � 00 2K1(RG). This �nishes the proof for �nitely generated G.For the general 
ase we need two more lemmas.Lemma 5.3. Let A be an invertible n � n matrix over dRG� with �(A) = 0 2K1(dRG�)=W �. Then there exist elementary matri
es E1; : : : ; Ek over RG and amatrix E over dRG� with kEk� < 1 su
h that for a stabilization of A we get� A I � = E1 � � �Ek � (I �E)Proof. Sin
e i��(A) = 0 we get � A I � = F1 � � �Fl with the Fi being eitherelementary matri
es overdRG� or matri
es of the form I �D with kDk� < 1. Sin
ethe elementary matri
es generate the 
ommutator of GL(R) for any ring R withunit we 
an assume that Fl = I � D with kDk� < 1 and the remaining matri
esare elementary.



12 DIRK SCH�UTZIt remains to show that we 
an repla
e the elementary matri
es over dRG� by ele-mentary matri
es over RG. For this we will prove the following:Given elementary matri
es E01; : : : ; E0k overdRG� and " 2 (0; 1), there exist elemen-tary matri
es E1; : : : ; Ek over RG and a matrix E over RG with kEk� < ", su
hthat E01 � � �E0k = E1 � � �Ek � (I �E)(5)We prove it by indu
tion on k. The 
ase k = 0 is trivial. Now assume the statementis true for k�1. Then E01 � � �E0k = E01 � � �E0k�1 �E0k . By indu
tion hypothesis we 
an�nd elementary matri
es E1; : : : ; Ek�1 over RG and E0 with kE0k� < " � kE0kk�2�su
h that E01 � � �E0k�1 = E1 � � �Ek�1 � (I �E0). Now(I �E0) �E0k = E0k � (I � (E0k)�1 �E0 � E0k):Sin
e we 
an write E0k = Ek �Rk = Ek(I �E�1k Rk) with Ek an elementary matrixover RG and kRkk� < "�kE0kk�1� we get the 
laim. Noti
e that kE0kk�1� = kEkk�1� =kE�1k k�1� and kFk� � 1 for every elementary matrix F .This shows (5) and the lemma follows. �If H � G is a �nitely generated subgroup, we get a subring dRH� � dRG� and anindu
ed map i� : K1(dRH�)=W �(H) ! K1(dRG�)=W �(G). Furthermore we get adire
t system (Hj)j2I of �nitely generated subgroups of G ordered by in
lusionwhi
h indu
es a dire
t system of abelian groups �K1([RHj�)=W �(Hj)�j2I .Lemma 5.4. Let G be a group and � : G! R a homomorphism. Then K1(dRG�)=W �(G) is the dire
t limit of �K1(dRHj�)=W �(Hj)�j2I , where (Hj)j2I are the �nitelygenerated subgroups of G.Proof. We need to show that(1) for every � 2 K1(dRG�)=W �(G) there is a �nitely generated subgroup Hand � 0 2 K1(dRH�)=W �(H) with � = i�� 0.(2) If � 2 K1([RH1�)=W �(H1) satis�es i�� = 0 2 K1(dRG�)=W �(G) for a�nitely generated H1, there exists a �nitely generated subgroup H2 
on-taining H1 su
h that i�� = 0 2 K1([RH2�)=W �(H2).For (1) represent � by an invertible matrix �A overdRG�. Choose matri
es A; B overRG with kA � �Ak� < minf1; k �A�1k�1� g and kB � �A�1k� < minf1; k �Ak�1� g. ThenA � B = I � C with kCk� < 1 and A is invertible with A�1 = B � (I � C)�1. AlsoC = I �A �B is a matrix over RG. Hen
eF = n[i;j=1 suppAij [ suppBij [ suppCijis a �nite subset of G whi
h generates a �nitely generated subgroup H . AlsoB � (I � C)�1 is a well de�ned matrix over dRH� and we get � = i��(A).



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 13Now let A be an invertible matrix over[RH1� with i��(A) = 0 2 K1(dRG�)=W �(G).By Lemma 5.3 we get � A I � = E1 � � �Ek � (I �E)with Ei elementary matri
es over RG and kEk� < 1. LetF = n[i;j=1 k[l=1 supp (El)ij ;a �nite subset of G, and let H2 be the subgroup of G generated by H1 and F , a�nitely generated subgroup of G. As above it follows that I � E is an invertiblematrix over [RH2� and we get i��(A) = 0 2 K1([RH2�)=W �(H2). �We note that Lemma 5.4 is not true in general if we repla
e K1(dRG�)=W �(G) byK1(dRG�).For a �nitely generated subgroup H of G we already know that i� : K1(RH) !K1(dRH�)=W �(H) is surje
tive. Thus we get a surje
tion of dire
t systems�i� : K1(RHj)! K1([RHj�)=W �(Hj)�j2I :Sin
e the dire
t limit is an exa
t fun
tor we get a surje
tion between the dire
t lim-its. By Lemma 5.4 this means we get a surje
tion i� : K1(RG)! K1(dRG�)=W �(G)whi
h is 
learly the map in Theorem 3.2. �6. Proof of Proposition 5.2We keep the notation established above Proposition 5.2. We will frequently write�nj for the �nitely generated free �j-module (�j)n. Similarly we will write glj for(gj)l, where l is an integer.Re
all that �j+1(gj+1) = �1, so gj+1 de�nes a left �j+1-module morphism gj+1 :�j+1 ! �j+1 by x 7! x � gj+1.Lemma 6.1. Let l be a positive integer. Then the �j+1-module morphism glj+1 :�nj+1 ! �nj+1, x 7! x � glj+1 is su
h that 
okerglj+1 is a �nitely generated freeRKj+1-module.Proof. It suÆ
es to look at the 
ase n; l = 1. Let x 2 �j+1. If g 2 suppx, then�i(g) � 0 for i � j + 1. If �j+1(g) < 0, then g � g�1j+1 2 �j+1. Hen
e we 
an writex = x1 + x2 with x1 2 RKj+1 and x2 � g�1j+1 2 �j+1, and this de
omposition isunique. But x2 2 im gj+1 and so 
okergj+1 = RKj+1. �We have that A : �nj ! �nj is an automorphism. Choose l � 0 so that for x 2 �nj+1we get A(x) � glj+1 2 �nj+1 � �nj . Then we 
an de�ne an inje
tive �j+1-modulemorphism ~A : �nj+1 �! �nj+1x 7! A(x) � glj+1Let Pj+1 = 
oker( ~A : �nj+1 ! �nj+1):



14 DIRK SCH�UTZThe next lemma is the analogue of Pajitnov and Rani
ki [19, Lm.2.18℄.Lemma 6.2. We have(1) Pj+1 is a �nitely generated proje
tive RKj+1-module.(2) The map � : Pj+1 ! Pj+1, x 7! gj+1 � x is nilpotent.Proof. Let B : �nj ! �nj be the inverse of A. Choose m � 0 so that for all x 2 �nj+1we get B(x � g�lj+1) � gmj+1 2 �nj+1 � �nj . De�ne the �j+1-module morphism~B : �nj+1 �! �nj+1x 7! B(x � g�lj+1) � gmj+1Restri
tion de�nes an RKj+1-module morphism r : �nj ! �nj+1 with the propertythat r Æ i = id : �nj+1 ! �nj+1. Thus de�ne the RKj+1-module morphism~C : �nj+1 �! �nj+1x 7! r(A(x � g�mj+1) � glj+1)We get the 
ommutative diagram0 // �nj+1 ~A
// �nj+1 //~B

��

Pj+1 //

��

00 // �nj+1 gmj+1
// �nj+1 //~C

��

mLs=1RKnj+1 //

��

00 // �nj+1 ~A
// �nj+1 // Pj+1 // 0It is easy to see that ~C Æ ~B = id : �nj+1 ! �nj+1 and therefore Pj+1 is �nitelygenerated proje
tive over RKj+1 as a dire
t summand of a �nitely generated freeRKj+1-module. Here the middle row follows from Lemma 6.1.To see that � is nilpotent, let x 2 �nj+1. In �nj we getgm+lj+1 � x = gm+lj+1 � x � g�lj+1 � glj+1 = A ÆB(gm+lj+1 � x � g�lj+1) � glj+1= A(gmj+1 � B(glj+1 � x � g�lj+1) � gmj+1 � g�mj+1) � gl= A(gmj+1 � ~B(glj+1 � x) � g�mj+1) � glj+1 = ~A(y)with y = gmj+1 � ~B(glj+1 � x) � g�mj+1 2 �nj+1. Thus gm+lj+1 � x 2 im ~A. �We have that Pj+1 is also a �j+1-module. De�ne a �j+1-module morphism� : �j+1 
RKj+1 Pj+1 �! Pj+1�
 x 7! � � xLet �j+1gj+1 = f�gj+1 2 �j+1 j� 2 �j+1gThen (�j+1gj+1)n is a free �j+1-module. Also RKj+1 a
ts on the right by ordinarymultipli
ation. Noti
e that if we write �gj+1 for the elements of �j+1gj+1 this



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 15means �gj+1 � r = �(gj+1rg�1j+1)gj+1 for r 2 RKj+1. De�ne the �j+1-modulemorphism � : �j+1gj+1 
RKj+1 Pj+1 �! �j+1 
RKj+1 Pj+1�gj+1 
 x 7! �gj+1 
 x� �
 gj+1 � xLemma 6.3. The following sequen
e is a �nitely generated proje
tive �j+1-moduleresolution of Pj+1.0 // �j+1gj+1 
RKj+1 Pj+1 �
// �j+1 
RKj+1 Pj+1 �

// Pj+1 // 0Proof. We 
an split the sequen
e over RKj+1 using the RKj+1-module morphisms� : Pj+1 �! �j+1 
RKj+1 Pj+1x 7! 1
 xand� : �j+1 
RKj+1 Pj+1 �! �j+1gj+1 
RKj+1 Pj+1�
 x 7! �
 x+ �g�1j+1 
 gj+1x+ �g�2j+1 
 g2j+1x+ : : :where � : �j ! �j+1gj+1 denotes restri
tion. Noti
e that we have a �nite sumonly, sin
e gm+lj+1 �x = 0 by Lemma 6.2.2. This shows that the sequen
e is exa
t. �The two proje
tive �j+1 resolutions 
an be related by a 
ommutative diagram0 // �nj+1 ~A
//f

��

�nj+1 //g
��

Pj+1 // 00 // �j+1gj+1 
RKj+1 Pj+1 �
// �j+1 
RKj+1 Pj+1 �

// Pj+1 // 0We 
an think of (f; g) as a 
hain homotopy equivalen
e between 1-dimensional�nitely generated proje
tive �j+1-
hain 
omplexes. Noti
e that after tensoringwith �0 we get that both 1
 ~A and 1
 � be
ome automorphisms, sin
e�0 
RKj+1 Pj+1 �! �0 
�j+1 �j+1gj+1 
RKj+1 Pj+1�
 p 7! �g�1j+1 
 gj+1 
 pis a 
anoni
al isomorphism.The sequen
e0 // �nj+1 0� f~A 1A
// �j+1gj+1 
RKj+1 Pj+1 � �nj+1� � �g �

// �j+1 
RKj+1 Pj+1 // 0splits, so denote ( d1 d2 ) : �j+1gj+1 
RKj+1 Pj+1 � �nj+1 ! �nj+1 a morphismwith d1f + d2 ~A = id�nj+1 . Denoteh = � � �gd1 d2 � : �j+1gj+1 
RKj+1 Pj+1 � �nj+1 ! �j+1 
RKj+1 Pj+1 � �nj+1



16 DIRK SCH�UTZthe resulting isomorphism. Restri
tion de�nes a ring homomorphism Tj+1 : �j+1 !RKj+1 su
h that Tj+1Æi : RKj+1 ! RKj+1 is the identity. We get an isomorphism(i Æ Tj+1)�h : �j+1gj+1 
RKj+1 Pj+1 � �nj+1 ! �j+1 
RKj+1 Pj+1 � �nj+1sin
e �j+1 
RKj+1 RKj+1 
�j+1 �j+1gj+1 
RKj+1 Pj+1 = �j+1gj+1 
RKj+1 Pj+1.Therefore we get an automorphismh Æ ((i Æ Tj+1)�h)�1 : �j+1 
RKj+1 Pj+1 � �nj+1 ! �j+1 
RKj+1 Pj+1 � �nj+1whi
h de�nes a torsion �(f; g) 2 K1(�j+1):Sin
eRG
RKj+1 Pj+1 �! RG
RKj+1 RKj+1 
�j+1 �j+1gj+1 
RKj+1 Pj+1x
 p 7! xg�1j+1 
 1
 gj+1 
 pis a 
anoni
al isomorphism, we get an automorphism(iG Æ Tj+1)�h : RG
RKj+1 Pj+1 ! RG
RKj+1 Pj+1where iG : RKj+1 ! RG denotes in
lusion. It follows thati��(f; g) + i��((iG Æ Tj+1)�h) = �(1�0 
 h) 2 K1(�0):(6)Note that �0 
RKj+1 Pj+1 is 
anoni
ally isomorphi
 to �0 
RKj+1 RKj+1 
�j+1�j+1gj+1 
RKj+1 Pj+1, so 1�0 
 h de�nes an automorphism.But over �0 we have the 
ommutative diagram�n0 0� f ~A�11 1A
//~A�1

��

�0 
RKj+1 Pj+1 � �n0 � 1 �f ~A�1 �
//0� � �gd1 d2 1A

��

�0 
RKj+1 Pj+1�
���n0 0� 01 1A

// �0 
RKj+1 Pj+1 � �n0 � 1 0 �
// �0 
RKj+1 Pj+1where we have written ' instead of 1
 ' for all the morphisms involved. Sin
e allverti
al arrows are automorphisms and the rows are short exa
t sequen
es we get�(1
 h) = �(1
 �)� �(1
 ~A) 2 K1(�0):(7)Now �(1
 ~A) = i��(A) + �(glnj+1)(8)and �(1
 �) = i��(1� p)(9)where 1� p : RG
RKj+1 Pj+1 �! RG
RKj+1 Pj+1g 
 x 7! g 
 x� g � g�1j+1 
 gj+1 � xis an automorphism with inverse 1+ p+ p2+ : : :+ pm+l�1. Combining (6), (7), (8)and (9) �nishes the proof of Proposition 5.2.



ON THE WHITEHEAD GROUP OF NOVIKOV RINGS 177. Further remarks and questionsIn the 
ase of a rational homomorphism � : G! R we get a short exa
t sequen
e0 // H // G // Z // 0with H = ker �. In that 
ase RG 
an be identi�ed with a twisted Laurent poly-nomial ring RH�[t; t�1℄ where � : RH ! RH is an automorphism indu
ed by thea
tion of Z on H . Similarly dRG� 
an be identi�ed with a twisted Laurent seriesring RH�((t)) = RH�[[t℄℄[t�1℄:The 
lassi
al Bass-Heller-Swan de
omposition in the twisted 
ase, see Farrell andHsiang [10℄, Siebenmann [27℄ and Pajitnov and Rani
ki [19℄, then readsK1(RH�[t; t�1℄) = K1(RH; �)� fNil0(RH; �)� fNil0(RH; ��1)(10)where fNil0(RH; ��1) is the redu
ed 
lass group of pairs (P; �) with P a �nitelygenerated proje
tive RH-module and � : P ! P a nilpotent ��1-endomorphism.Also K1(RH; �) �ts into an exa
t sequen
eK1(RH) 1��
// K1(RH) i

// K1(RH; �) j
// K0(RH) 1��

// K0(RH) :Pajitnov and Rani
ki [19℄ obtained the 
orresponding de
omposition for the Novikovring whi
h is K1(RH�((t))) = K1(RH; �)�W� � fNil0(RH; ��1):(11)The two de
ompositions are related in that the natural map i� : K1(RH�[t; t�1℄)!K1(RH�((t))) maps the 
opy of fNil0(RH; �) into W� and is the identity on theremaining dire
t summands. In parti
ular this implies Theorem 3.2 in the 
ase of arational homomorphism. It also shows that i� : K1(RG)! K1(dRG�)=W � is not anisomorphism in general. But it follows that the diagonal map indu
ed by in
lusion� : K1(RH�[t; t�1℄) �! K1(RH�((t))) �K1(RH�((t�1)))is inje
tive. The analogous result for an arbitrary homomorphism � also holds.Theorem 7.1. Let � : G ! R be a nonzero homomorphism. Then the diagonalmap � : K1(RG) �! K1(dRG�)=W � �K1(dRG��)=W��;indu
ed by in
lusion, is inje
tive.Proof. It is enough to 
onsider the 
ase when G is �nitely generated. Let � 2K1(RG) satisfy �(�) = 0. Let A be an invertible matrix over RG with �(A) = � .In parti
ular i��(A) = 0 2 K1(dRG�)=W �. By Lemma 5.3 there exist elementarymatri
es E1; : : : ; Ek over RG and a matrix E over dRG� with kEk� < 1 su
h thatA = E1 � � �Ek(I �E), possibly after stabilizing A. Sin
e A and the Ei are matri
esoverRG, we get that E is also a matrix overRG. Now there is a small neighborhoodof U of [�℄ in S(G) su
h that kEk� < 1 for all � with [�℄ 2 U . In parti
ulari��(A) = 0 2 K1(dRG�)=W �.Sin
e we also have i��(A) = 0 2 K1(dRG��)=W��, there is a small neighborhoodV of [��℄ with i��(A) = 0 2 K1(dRG��)=W�� for all � with [��℄ 2 V . Sin
e
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an �nd a rational � with [�℄ 2 U \ �V so that�(�) = 0 2 K1(dRG�)=W � � K1(dRG��)=W��. But sin
e � is rational we get� = 0. �Corollary 7.2. Let G be a group and � : G! R a nonzero homomorphism. ThenWh(G; �) = 0 if and only if Wh(G) = 0.Proof. Observe that g ! g�1 indu
es a ring isomorphism of dZG� to the oppo-site ring of dZG��. This indu
es an isomorphism Wh(G; �) �= Wh(G;��) and the
orollary follows from Corollary 3.4 and Theorem 7.1. �A natural question is whether the dire
t sum de
omposition of (11) has a general-ization to K1(dRG�), in parti
ular one 
an ask if W � is a dire
t summand. It maybe possible to 
arry over the te
hniques of Pajitnov and Rani
ki [19℄ at least forthe ring �0 of Se
tion 5.A similar question is whether we always have W� = W � as in the rational 
ase.This would allow us to get a better understanding ofW � sin
e Sheiham [26, Thm.B℄gives a detailed des
ription of W� . To see this, note that the ring homomorphism" :dRGo� ! RH given by restri
tion is a lo
al augmentation in the sense of [26℄.The Latour obstru
tion. Let M be a 
losed 
onne
ted smooth manifold withdimM � 6 and denote G = �1(M). Then Hom(G;R) = H1(M ;R) and su
h 
oho-mology 
lasses 
an be realized by 
losed 1-forms. Latour [12℄ gives two ne
essaryand suÆ
ient 
onditions for the existen
e of a nonsingular 
losed 1-form within a�xed 
ohomology 
lass �. To des
ribe the �rst homotopy theoreti
al 
ondition letX be a �nite CW 
omplex, G = �1(X), � 2 H1(X ;R) and ~X the universal 
overof X . Sin
e R is 
ontra
tible we 
an de�ne a map h : ~X ! R su
h thath(gx) = h(x) + �(g)(12)for all x 2 ~X and g 2 G. Note that we regard � as a homomorphism � : G ! Rhere. A map h : ~X ! R satisfying (12) is 
alled a height fun
tion for �.De�nition 7.3. Let X be a �nite CW 
omplex, G = �1(X) and � 2 H1(X ;R).Then X is 
alled �-
ontra
tible, if there exists a G-equivariant homotopy H : ~X �I ! ~X with H0 = id ~X andh(H1(x)) � h(x) � �" for all x 2 ~Xfor some " > 0 and height fun
tion h : ~X ! R.It is easy to see that �-
ontra
tibility does not depend on the height fun
tion or the" > 0. Furthermore it is a homotopy invariant. For several equivalent 
onditionsfor �-
ontra
tibility we refer the reader to Latour [12, Prop.1.4℄. By [12, Prop.1.10℄�-
ontra
tibility implies that the 
ompleted 
ellular 
hain 
omplexdZG�
ZGC�(X)is a
y
li
. In that 
ase we de�ne�L(X; �) = �(dZG� 
ZGC�(X)) 2Wh(G; �)Latour's theorem then readsTheorem 7.4. [12℄ Let M be a 
losed 
onne
ted smooth manifold with dimM � 6and � 2 H1(M ;R). Then there exists a nonsingular 
losed 1-form ! representing� if and only if M is (��)-
ontra
tible and �L(M; �) = 0 2Wh(G; �).
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ase of an integer valued 
ohomology 
lass � 2 H1(M ;Z) = [M;S1℄ theexisten
e of a nonsingular 
losed 1-form representing � is equivalent to the existen
eof a �bre bundle map f :M ! S1 whose homotopy 
lass represents �. This questionwas solved by Farrell [8, 9℄ and Siebenmann [27℄ who obtain an obstru
tion inWh(G). An exposition of this 
ase is given in Rani
ki [20, x15℄, who also showsthat the Farrell-Siebenmann obstru
tion is mapped to Latour's obstru
tion underthe natural map i�, see also [25℄.Be
ause of Corollary 3.4 we know in general that there is an element of Wh(G) thatgets mapped to the Latour obstru
tion, but the question remains whether there isa natural geometri
 way to de�ne an obstru
tion in Wh(G) that gets mapped tothe Latour obstru
tion under i� as in the rational 
ase. A partial answer to thisis given in [25℄. Let � : �M ! M be the regular 
overing spa
e 
orresponding toker �. By [25, Thm.1.3℄ we have that �M is �nitely dominated if and only if M is�-
ontra
tible for every nonzero homomorphism � : �1(M)! R with ker � � ker �.In parti
ular all Latour obstru
tions �L(M; �) are de�ned. Furthermore it is shownin [25℄ that all Farrell-Siebenmann obstru
tions for su
h rational � agree and 
an beused as an obstru
tion for �. Note that �M being �nitely dominated is not ne
essaryforM to be (��)-
ontra
tible if � is not rational. Nevertheless we get the following
orollary of Theorem 7.4.Corollary 7.5. Let M be a 
losed 
onne
ted smooth manifold with dimM � 6su
h that Wh(�1(M)) = 0 and let � 2 H1(M ;R). Then there exists a nonsingular
losed 1-form ! representing � if and only if M is (��)-
ontra
tible. �Whitehead groups 
an be very 
ompli
ated but it is 
onje
tured for example thatWh(�1(M)) = 0 for aspheri
al manifolds M . This 
onje
ture has been veri�edin many spe
ial 
ases, in parti
ular if M is a 
ompa
t manifold whi
h admits aRiemannian metri
 of nonpositive se
tional 
urvature, see Farrell and Jones [11℄.For more examples of vanishing Whitehead groups of torsion-free groups see L�u
kand Rei
h [13, Thm.5.20.1℄ and the referen
es given there.Lo
alization. In order to study the Morse theory of 
losed 1-forms, Farber [5℄introdu
ed a subring of the Novikov ring dZG� with � : G ! R inje
tive usinglo
alization. For this let S� = f1� a 2 ZG j kak� < 1g;a multipli
atively 
losed subset of ZG. This gives rise to the in
lusions of ringsZG � S�1� ZG � dZG�. This lo
alization has some te
hni
al advantages over theNovikov ring.In the 
ase of an arbitrary homomorphism � : G! R we 
an use a non
ommutativelo
alization in the sense of Cohn [2℄. For this let M(ZG) be the set of all (�nite)diagonal matri
es over ZG and�� = fI �A 2M(ZG) j kAk� < 1g:Then there exists a ring ��1� ZG together with a ring homomorphism " : ZG !��1� ZG su
h that "(M) is invertible for everyM 2 �� having the following universalproperty: For every ring R and ring homomorphism � : ZG! R su
h that �(M)is invertible for every M 2 ��, there exists a unique ring homomorphism �1 :��1� ZG! R su
h that � = �1".



20 DIRK SCH�UTZIn parti
ular the in
lusion ZG�dZG� fa
tors as ZG! ��1� ZG!dZG�.This ring was �rst introdu
ed in Farber and Rani
ki [7℄ in the 
ase of a rationalhomomorphism � : G ! Z and more generally in Farber [6℄. The main theorem ofthese papers 
an be stated asTheorem 7.6. Let M be a 
losed smooth manifold with G = �1(M) and let � 2H1(M ;R). Then for any 
losed 1-form ! having only Morse zeros and representing� there exists a free 
hain 
omplex C!� over ��1� ZG su
h that C!� is 
hain homotopyequivalent to the lo
alized 
hain 
omplex ��1� ZG 
ZG C�( ~M) and ea
h ��1� ZG-module C!j has a 
anoni
al free basis whi
h is in a one-to-one 
orresponden
e withthe zeros of the 
losed 1-form ! of index j.To dis
uss the torsion of this equivalen
e, letWh(G; ��) = K1(��1ZG)=h�(�g); �(I �A) j g 2 G; I �A 2 ��i:Clearly we get a fa
torizationWh(G) �!Wh(G; ��) �!Wh(G; �):Furthermore, if we denote the 
hain homotopy equivalen
e des
ribed in Theorem7.6 by ' : C!� ! ��1� ZG
ZG C�( ~M), we get �(') = 0 2 Wh(G; ��). For rational� this is shown in Rani
ki [21℄, and the te
hniques of [21, x1℄ 
an be used to showthat the 
hain 
ollapse of [6℄ has zero torsion in Wh(G; ��).Proposition 7.7. The natural map i� : Wh(G; ��) ! Wh(G; �) is an isomor-phism.Proof. It is surje
tive by Corollary 3.4, but note that we only need the proof ofLemma 5.1 to show surje
tivity.Let A be an invertible matrix over ��1� ZG. By S
ho�eld [22, Thm.4.3℄ there existmatri
es B and B0 over ZG and a matrix A0 over ��1� ZG su
h thatB� I A00 A � = B0 with B = 0B� B1 0. . .� Bn 1CAwhere ea
h Bi 2 ��. In parti
ular B represents an invertible matrix over ��1� ZGwith �(B) = 0 2 Wh(G; ��). Therefore B0 is also invertible and �(A) = �(B0) 2Wh(G; ��).Now if i��(B0) = 0 2Wh(G; �), then by Lemma 5.3 there exist elementary matri
esE1; : : : ; Ek over ZG and a matrix E ne
essarily over ZG with kEk� < 1 and B0 =E1 � � �Ek(I �E). Note that I �E 2 �� , so �(B0) = 0 2Wh(G; ��). �Referen
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