THE GENERAL TYPE OF SINGULARITY OF A SET
OF 2n — 1 SMOOTH FUNCTIONS OF n VARIABLES

By HassLER WHITNEY

1. Introduction. Let a region R of n-space E", or more generally, of a differen-
tiable n-manifold, be mapped differentiably into m-space E™. If m > 2n, it is
always possible [1; 818], [3], by a slight alteration of the mapping function f
(letting also any finite number of derivatives change arbitrarily slightly), to
obtain a mapping f* which is everywhere regular. That is, for any p in R, and
any set of independent vectors u, , --- , u, in R at p, f* carries these vectors
into independent vectors. Here, vector equals the vector in ‘“‘tangent space”
equals the differential. As a consequence, some neighborhood U of p is mapped
by f in a one-one way. The object of this paper is to determine what can be
obtained by slight alterations of f in case m = 2n — 1. It turns out that any
singularities may be made into a fixed kind. (It will be shown in other papers
that any smooth n-manifold may be imbedded in (2n)-space, and may be im-
mersed (self-intersections allowed) in (2n — 1)-space.)

There are two main theorems in the paper, roughly:

(a) We may alter f arbitrarily slightly, forming f*, for which the singular
points (points where f* is not regular) are isolated, and such that a certain
condition (C) below holds at each singular point. (The self-intersection may
also be made simple; cf. [3; 655, (D)].)

(b) Let f* satisfy the condition mentioned. Then for any singular point p,
we may choose coordinate systems z, , - - - , z, in a neighborhood of p and y, ,
-+, Yan—1 10 a neighborhood of f(p) such that f* is given exactly by the equations
(4.2). Here, f* must have many derivatives.

Remark. As a consequence, there is a slight deformation of £*~* which carries
f(U) (U a neighborhood of p) into the set of points given by (4.2).

The transformations in (b) may lower the class of f* considerably; but if f*
is of class C”, or analytic, the transformations will be also. The condition
mentioned in (a) is the following:

(C) There is a direction through p with the following properties: (C,) f* maps
any vector in this direction into the null vector in E*™', but maps any other
vector at p into a non-null vector. (C,) If g(p’) is the derivative of f*(p’) in the
direction given above, for p’ near p, then there is no vector in E**~! which is the
image both of a vector under f* and a vector 5 0 under g, both at p.

We may phrase the second condition as follows:

(C$) Suppose a coérdinate system is chosen in which the given vector is in
the z,-direction. Then
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taken at p, are independent vectors.

We shall show first that the two conditions (C,) and (Cj}) are equivalent, and
independent of the coordinate system chosen (with the same or opposite direc-
tion of the z,-axis). Next we show that (C) implies regularity near p, so that
p is an isolated singularity. (This fact follows also from (b); a proof is given
here to help in understanding condition (C).) We then study the typical singu-
larity mentioned in (b). Next we prove (b), and finally (a). The proof of (a)
uses methods found in [3]; the other proofs are straightforward analysis.

2. Equivalence of (C,) and (C}). We use f in place of f*. Having chosen a
coordinate system as in (Cf), we note that g(p’) = 9f(p’)/0z, . If e; is the unit
vector in R at p in the direction of z; , then by definition, f carries it into the
vector 9f(p)/dx; . Hence, for any vectorsu = (u,, -+, u,) andv = (v, , *
v,) at p, f and g carry these into

fa) = 3w B = 3, )

k2
i=1 i=2 or;

)

g0) = Z v, ax,az

i=1

Suppose (C}) holds. Then if f(u) = ¢g(v), since the vectors (1.1) are independent,

the coefficients s, - -+ , u,, v, - -+, v, are all 0, and » = 0, proving (C,). Sup-
pose conversely that (C,) holds. If there is a linear relation between the vectors
(1.1) with coefficients, say u,, - -+ , u,, — vy, -+ - , —0,, not all 0, then defining

u and v as above, with u; = 0, we have f(u) = ¢g(), and u % O or v # 0. By
(Cz), v = 0, and hence f(u) = 0. By (C,), u is in the x,-direction, that is, u, =
-+ = u, = 0, which is a contradiction.

We shall show that condition (Cj), and hence (C), is independent of the
codrdinate system employed. Take two systems, each with the first axis (at p)
in the given direction; then dx,/dx |, = aé; , @ ¥ 0. Let 7"* be the plane
(in E*Y) of all directional derivatives of f at p, i.e., all vectors f(w). Let u ~ v
denote u — v ¢ T"*. If we suppose that (C}) holds in the first but not in the

second system, we have, for some v/ = (v}, --- ,v}) # 0, if ¢’ = df/0z! ,
8’ i) of dx;
') = Q) v} = vi—p —— =
( ) Z ’6 x; |» Z 3.17{ ; ax,‘ ax{ »

axkax, axl 6x.

_az[z 390]_221_

axlax,-

b4
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Hence, all v; = Z vidx;/dx; are 0. But the Jacobian | dz;/dx} | # 0 at p, so

that the columns of || dz,/9z} || are independent, which contradicts the assump-
tion that not all the v} are 0.

3. Regularity near a singular point. Let (C) hold for f at p; we shall show
that f is regular in the rest of a neighborhood of p. Using (C%), let 7"7*(p’) and
T"(p") be the planes determined by the df/dx; (i > 1) and the 3°f/dx,dx; re-
spectively, taken at p’. Then in a neighborhood U, of p, they are of the dimen-
sions shown, and if p’ ¢ U, and 7’" is any n-plane sufficiently near T"(p), T""
and 7" '(p’) have only one point in common. Since the vectors dg(p)/dx,, -« - ,
dg(p)/dz, determine T"(p), we can take U, C U, so that for any p’’ £ U, , there
is a plane 7" as near T"(p) as required above which contains g(p’") — g(p); it
follows that if p” = p, g(»"”’") — g(p) is in no T"7*(p’) (p’ ¢ U,). Now, since
g(p) = 9f(p)/dx, = 0, we have in particular: for any p’ e U, , p’ # p, g(p’) is
not in 7" *(p’); that is, 9f(p’)/dx, is independent of df(p’)/dz, , - - - , 3f (p')/dx,, .
Thus f is regular in U, except at p, as required.

4. A typical singularity. As is well known, a mapping of a projective plane
into 3-space may be obtained by replacing a piece of the surface of a sphere by
a “cross cap”’. A crosscap (or rather the top of one) may be described as follows:
Let T'(y) be the plane in E® perpendicular to the y-axis at a given y. Take a
parabola in T'(y,) for y, < 0; say z = =+ yoz!. As we let y increase, pull in the
two sides of the parabola until they coincide (and thus form a half ray) at
y = 0 and become a parabola reversed in direction for y > 0. The locus of
these parabolas forms the top of the cross cap. A sphere about the origin cuts
the cross cap in a curve in the form of a bent figure 8.

Using coordinates y; , ¥» , ¥s in E°, the cross cap may be represented para-
metrically by the equations

(4.1) Yo=T2, Y=o, Y5 = DXy .
Generalizing this, let us map E” into E*~" by:

yl = X )
(42) Y: = X; (z = 2, ) ’ﬂ),
Yneio1 = TT; @=2--,n).

The matrix || dy./dx; ||, transposed, is

2z, 0 0 0 o s T,
0 1 0 0 x, 0 0
0 0 1 0 0 x,
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If we call the mapping y = f(z), f is clearly regular except at the origin; only
af/0x, is O there. Also, the matrix || 9°y,/0x,dx; ||, transposed, has a 2 in the
upper left corner, a diagonal of n — 1 ones in the lower right, and zero elsewhere.
Combining the two matrices, with the first row dy,/dx; omitted, we obtain a
diagonal matrix, except for an interchange of rows, at the origin. Hence, the
vectors (1.1) are independent, and (C) holds.

To determine the self-intersections, suppose f(a{, - -+, z}) = f(xy, -+ , ),
where the points are distinet. Then 2} = z; for + > 1, since y; = y. ; hence,
2] # x,,and, sincey; =y, , 2 = — 2z, ¥ 0. Since y.,:-, = Yps:; and x, = 0,
x; =0 (@ >1). Thus,

f(a?()) )0) =f(_a70) )0)7

and there are no other self-intersections.
Examining the matrix || dy,/dz; ||, we see that at any such self-intersection, the
two tangent planes have only the y,-axis in common.

5. Proof of (b). We shall prove:

THEOREM 1. Let f be a mapping of class C°, s = 4r + 8, r > 1, of the region
R of E" into E**7*, and let (C) hold at the origin (assumed in R). Then there are
curvilinear codrdinate systems about 0 and f(0), of class C", in terms of which f has
the form (4.2). If f is analytic, or of class C*, so are the codrdinate systems.

Probably s need not be taken so large in terms of ». We shall consider the
case where f is of class C°; in the other cases, the transformations employed are
clearly analytic or of class C”, respectively.

As a first step, choose coordinates a, , - - - , x, in E™ as in (C}); since the vectors
(1.1) are independent, we may choose oblique axes , , - - - , Y2n—1 in E* ! s0 that
these vectors are unit vectors (except for 3°f/dx?) on the axes of

Y2, ) Yn Y, Yn+1 ) Yon—-1 ,

respectively. Now take each y, , expand it in terms of x, to the third order,
expand the coefficient of z; in terms of z, to the order 3 — 4, ete. This gives

Yr = A" + Z Blgxi + Z C’:ixixi + Z -thii(xl y T xn)xhxixi .

Y hLi<i

(Many of the D%;; are actually functions of fewer variables.) The A*, B} and
C*%; are the ; and first and second derivatives (except for a factor) at the origin.
By the choice of the y-codrdinate system, therefore, many of these may be
determined, and we find

Y = ai + Ry, -, ),
(5.1) Yi o+ Ry, -0, ) =2 ,mn),
Ynsi-1 = L1&; -+ Rn+i~1(xl gyt ,-’Un) (Z = 2; Tty n),
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where

(5.2) R, = Z C’:ixixi + E D:ii(xl ) T

2<i<d h<i<i

the R, being of class C”.
Set x{ = z, , and

(5.3) i =z, + Ri(x,, -, 20) @=2-,n).

Then dz}/dz; | = &:; , so that this is a transformation of coordinates of class
C° near the origin. Furthermore, dx,/d0z} |, = 6., , so that

zoo=al 4+ D anl, -, a)aial
isk

Substituting in (5.1) and dropping primes gives

Y = -’L'f + Ry, -, x),
(5,4) Y: = X; ('L = 27 ) n)y
Ynsi-1 = T1T; + Rn+i—l(x1 y ,-'L'n) ('L = 2, Tty n):

where the new R; have the same form (5.2).
Next we simplify the form of ¢, . Since

Y,

Iy Oy
oy o

=2
) )
0 dx:

0

we may solve dy,/9z, = 0 in a neighborhood of the origin, obtaining a function
2 = ¢(xs, +-+ , x,), of class C°™*. Then, by definition,

G5 %W, o m) g R, @), @, e, ) = 0.

Set

(5.6) =2, — ¢y, -, x), xh = x; @ >1).
Foreach (z,, - - -, x,) near (0, - - - , 0), expand y, in terms of z{ . Since dy,/dz] =
0 for x] = 0, this gives

(5.7) Vi =Yo(@s, -, @) + 2l e, 0, w);

¥, and ¢, are of class C*™' and C°*~®, respectively, by [2; Theorem 3]. Differen-
tiating (5.5) gives
2
[2 L+ OBy ] 3
o 0;

dx;
Since 9°R,/dz,dx; |, = 0 for all 7, this gives d¢/dz.], = 0; hence dz!/dz; |, =
8:; . It follows that the Jacobian of the transformation is 1 at the origin; also
d(at, --) = D ¢ii(ah, -+ )aka) , so that the y; are given by the same kinds
of expressions in terms of x{ , x,, --- asin terms of @y , x,, + - - .

R,

R alr vy ey =0 (Z>1).

0
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Next, set
(5 8) x{I = x{[\bz(x{ y "0 ,x,’.)]*, 1::/ = Ty (Z > 1):
Yi =Y — YWz, -+, Yn), yi =Yy (Z>1).
Now
'y 3’y
2= = =2 ;
9zt lo xf® lo do |

hence ¢, |, = 1, and the transformations to the z!’ and y/ are allowable and are
of class C*”? in a neighborhood of the origin. Dropping primes again, we have
the same equations as (5.4), with R, missing; the R, are of class C*™%, and have
again the form (5.2). To prove this for %,.;_, , we note that if z{ =

o(x{,’ Tt xn)y then 30/3:1,‘{/ lo = 1, and hence
62 . .
ax{’ax,’-’ [oxz + ern+i—1(0, tet a:,,)] o = 5,’,‘ (7, = 1' J 2 1)'
Next, set 4! = y; (¢ = 1, --- , n), and
(5‘9) yl’: = Yr — Rk((); Yoy =, yn) (k =N + 1, ctt 2n —_ 1).

Setting £ = n 4+ 7 — 1 and using (5.2), we find
Yr = T; + E D’fiz(xl y Ty BT,

i<t
+ E [D:il(xl y Tz y 0t) — D:il(oy R ) O 2 T

2<h<igt

if we expand the first bracketed term D in terms of x, , and drop primes, we have

=.’L'2, =y 1:=2 ...,n,

(5.10) Y1 1 Yy ( ’ )
Ynrio1 = Ta[X: + Rn+¢'—-l(xl y Tt ;xn)] @@= 2, -, n),

where fork =n + 17 — 1)

(511) Rk(:vl y Tty x,,) = Zl E,;l(xl ) Ty xn)xixl .

The new R, are of class C°™*; the E5, are of class C*~°.
Our next job is to move the curve of self-intersection over onto the y,-axis;
this will result in the term in z3 in (5.11) dropping out.

Examples. Take n = 2. If y; = x,(x, + 2%), then the curve z, = —uz}
maps into the curve of self-intersection, which is (z} , — 2%, 0) in E®. Ify, =
z, (@, + 22 + 2,2,), the curveis 2, = — 2 again, mapping onto (2], — 23, — 7).

Asin §4, if the distinct points (], 25, ---) and (z,, 2., - - +) go into the same
point, then 2} = x,for7 > 1l,and 2] = —z, % 0. Usingy} = y,forn + 7 — 1 =
k > n gives

xl[xi + Rk(xl ) T2 y " .)] = —xl[xi + Rk(_xl ) T2 y ')]y
;= — 3[Rp(xy, 22, ) + Bi(—21, 22, -+ )]

(5.12)



SINGULARITY OF SMOOTH FUNCTIONS 167

If we write these in the form z; + 3[ ] = 0, then since dR,/dz; |, = 0, the
functional matrix is || 8,; || at the origin; hence, we may solve these for z, , - - -,
z, in terms of z; . The resulting functions are obviously even and of class
C*™* = (C*"**; hence, by the theorem of the preceding paper, the solutions may
be written as ¢.(2%), where the ¢, are of class C*"**>. Then

(5'13) 4”'(:&) = _%[Rk(xl ) ¢2(xf); o ) + Rk(""xl ,¢2(xf), o )]
Also, for k > n, we may define
(5.14)  $u(@D) = m[Ral®y, $a(aD), ---) — Ri(—21, $a(a), -~ -)].

(Then y, = ¢x(x?) for all k& on the curve of intersection.)

Make the transformation
(5.15) =T, r= @ — ¢¢(x3) ' (t=2---,m),
Y1 = Y, yvi=y; —¢i(yn) E=2,---,2n—1).

These have non-vanishing Jacobians near the origins, and are of class C* **.
Now y] = z{*,y, = 2/ (i = 2, --- , n), and using (5.13) and (5.14), we find for
n+i—1=k>n,

v = @izl 4+ ¢:i(@l’) + Rulat , 22, -+ -)] — $u(al’)
= zifz! — 3{Ru(@l , 6217, -+ ) + Ru(—2i , ¢u(al’), -+ -)}
+ Rl , o5 + ¢a(af?), -+ )
— #{Ru(al, ¢2(37;2): <+0) — By(—a1, ¢2(93{2); =91,

or
(5'16) yl’c = x{[x: + Rl’c(x{ ’ x3 y ')])
where the R} , of class C*"*?, are given by
Ri(@l, 25, -++) = Rulxl , x4 4 $2(x1?), -+ ) — Ru(@l , ¢2(217), -+ +).

Since Ri(x{, 0, ---) = 0, expanding, for each z] , in terms of x5 , - - - , z} to the
first order and dropping primes from the z! gives

(5.17) Ri(x, , 25, ) = 1; TRy , %2, ).
Using the definition of Rf and (5.11), we find
_OR| _ORy| _ .
Rki(O) 0’ "') = ax; o = 3z; |o = 0:

therefore,

(5.18) Ry, 2, ++ 1) = Z TiRji(Ty , T2y v 0 )
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Putting in (5.16) (with primes dropped) gives, if k = n 4+ ¢ — 1,

h=x, Y= @=2,--,m),

(5.19) "
Yr = xl[xi + Zz xiRki(xl y T xn)] (Z = 2) ) n)~

The R,; are of class C*"**,
Next, by the theorems of the preceding paper, we may write

Ppi(at, @, o) = 3Ry, 20, o) + Rus(—20, 20, -+ 0],
Qi (21, @5y v 0) = HRus(@r, 22y ++) — Rij(—21, 22, - )],

the P,; and @Q,; being of class C". This gives

(5.20)

n

Y = 2 + Z x;’Pki(x% y Loy Ol + -’lﬁi Z xiQki(x? y Xpy o ).

i=2 i=2

The next to the last transformation is: y; = y; ¢z < n),

(5.21) Y=y — 1 Z; YiQuiys , Ys , ) (k > n).

The Jacobian is 1 at the origin. Now, dropping primes again, we have

y,=xf, Y: = X (i=27"':n)’

(5.22) "
Ynti-1 = xl[xi + Zz xiPn+i—1,i(wi y Loy *° )] (7: = 2, ) n)

We are now ready for the final transformation. Define functions

Fkl(uly“')un) (k,l=n+1,"‘,27l'—1),
for each fixed k, as the solutions of the linear equations
2n—1
(5.23) hzl [Bnsicin + Py, «+ ) Fua(uy , +++) = Prs(uy , --+),

fori =2, .-+, n. By (5.20) and (5.18), the determinant | 8,,,-,,, + Pa: | is
near 1 in a neighborhood of the origin; hence, the F,, are defined and of class
C" there, and F,(0, --- ,0) = 0. Set

yi = (7;=17"')n))
(5.24) 2n=1
yi=yk—]Zleh(y1,~'~,yn)yh k=n+1,:--,2n — 1).
Since, for k > n + 1,
4
Qﬂﬁz O — Fu h > n),

oY
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and the F,, |, = 0, the Jacobian ¢ 0 at the origin, and so the transformation
is allowable, and of class C".

We find the ¥} in terms of the z; : Writing P,; for P,;(z2 , 2., - --), ete., and
takingk = n 4+ 7 — 1,4 > 1, we have

1 n
— Y= xi+ZPuxf -
X i=2 3

2n—

1 n
Fulthner + 22 Pyjx;]

=n+1

n 2n~1
=z; + szi[Plci - Fk.n+i-—1 - hzl FiiPyil

=; .

This proves the theorem.

6. Proof of (a). The other main theorem is:

THEOREM 2. Let f be a mapping of class C* of a region R of E" into E*".
Then arbitrarily close to f (together with first and second derivatives) there is a
mapping f* satisfying (C) at each singular point. f* may be made analytic.

Remark. 1t will be clear from the proof that the theorem holds equally well
with R and E**™* replaced by smooth manifolds M" and M*"'.

Let R, , R, , - - - be rectangular regions in B, and choose R} with R/ C R, , so
that the R} cover R. Suppose we have shown how to deform f slightly so that
(C) holds at any singular point in a given R’ . Then carrying out deformations
successively, we make it holdin R , R}, - - - , each time making the deformation
so slight that the property is not disturbed in any preceding R} , and so that the
limit will be a mapping with the property in every R! and hence in R. (Since
for any f, and 5(p), the property of f satisfying (C) at any singular point is an
(fo , 2, 9)-property, as in [3; §7], the statement follows at once from [3; Lemma
12].) We consider only functions f of class C", r > 2; the final function may be
made analytie, by [3; Lemma 9].

If f is not of class C°, approximate to it by a function f** of class C°; thus we
may suppose f is of class C° in the first place.

Let A(p) be a function of classC*inR, =1inR, ,=0inR — R,. (Use
[3; Lemma 11], or construct it directly.) We shall define certain kinds of map-
pings G,; , H;; , with which f may be combined to give the required function
satisfying (C) at all singular points in &/, .

First, by the proof of [3; Lemma 18], we may suppose also that df/dz, , - -+,
df/dz, are independent in R, .

Setm = 2n — 1. Letw,, ---, 0, be the unit vectors in E”. Let E = E*""
be a Euclidean space, with unit vectors (in a definite order)

Vii Wi =1 ,mj=1--,m).

Corresponding to any mapping g(p) of class C° of R,, into E™ such that dg(p)/dz, ,
-+, dg(p)/dx, are independent for each p = (x,, -+ - , 2,), define g*(p), - - - ,
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7" (p) as the numbers such that

) = WO _ 5 5 200

6:0 1<i ox; i

is orthogonal to dg(p)/dz. , - -- , dg(p)/dx, . If g:(p), --- , gu(p) are the coor-
dinates of g(p), define the corresponding mapping g*(p) of R, into E by

99;
9*=Zg?vli+ ~Z-6—f}vii

9 gi —i (9 gi —h—i azg :I
+E[6w 22,9 + 207 5am P

i<i 9x,0x; 1<

g, i 0%g; :I
+ -‘,g«' I:axlaxi § g 0x,0x; Wii -

Then the §° and ¢© are of class C* and g* is of class C".
Given g as above, if we take a fixed p, = (z,, - -+ , Z,) and make the change
of variables

=z + T, x; =i — gi@o)x{ + z; @ > 1),

we find

99:(Po) 9°9,(0o)
o) = 2L v+ 2 T Wy
7 @) E, oxt Z dxldxl
Remark. One could carry out the proof, using all dg/dx; and 9°g/dx,dx;
independently; then E will have m[n 4 in(n + 1)] dimensions.
For any sets of numbers 8;; ,v;; ¢ =1, -+ ,m;5 =1, --- , m), set

fox®) = flp) + )\(p)[; Biixw; + Z ¥iit1Z2;].

If the 8;; and v,; are small enough, dfs,/0z, , - -- , fs,/dz, are independent in
R. , so that the f5,(p) etc. are defined. To find f¥,(p,), make the change of
variables described above, differentiate fs, with respect to these variables, and
put in the second relation above for %, ; we find (at p, € R%)

fi, = Z ['6_];:_ + B1; — ; };'yﬁii + 2vi% + ; Yii%i — lz:, };77«'1'1”1]”11‘

i 61131

+ Z I:‘(i: + B8 + ’Yiiﬂ'?l]vu
i,951<i LOx]

+ Z l:a L + 2y, — 2 ; ?;v'Yii]wli + 2 [ a/ff + ‘Y”:Iw” )

oz iin<i Loxidx!
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It follows that (all at p,)

a 3 a £ 3 —; .

5%‘:—} =0y , 5;%1 = —fay1; + Vi @> 1,

a_fi»_,_ = 2ww; + 2wy, )

9715

0 *E i i ;

6£1 = T — fpa il + Twi; — 2fp,w15 + wy; @>1).
17

Clearly the f#, form a (2mn)-parameter family of mappings of R/ into E (see
[3; §18]).

We wish to find, for arbitrarily small 8;; and v,;; , a mapping fs, with the
property (C) at each singular point in R/, . We shall construct sets S, C E,
k > 1, and show that if a mapping g of R’ into E™ does not satisfy (C) at all
singular points, then g*(p) e Y, S, for some p ¢ R}, . Take (t;; , u;;) ¢ E, and let
¢; and u; be the vectors in E™ with components ¢;; and u;; , respectively. Then
(t, w) is in S, if the following hold:

(a) &, --- , t, are independent;
(b) if T"* is the plane in E™ determined by them, then ¢, ¢ T"';
(¢) the vectorst;, -++ , ¢, %, - - , u, determine exactly a plane 77",

Now take any mapping g, such that, at some singular point p, (C) does not
hold, but dg(p)/dz, , --- , dg(p)/dx, are independent. Let ¢;; and u,; be the
coodrdinates of the corresponding g*(p):

g*(p) = Z Live; + Z Ui Wi
1,17 t,7

i.e., g*(p) = (¢, u). Since p is a singular point of g, and the dg(p)/dz; are inde-
pendent for ¢ = 2, - - - , n, dg(p)/dx, lies in the plane 7""' determined by them.
Hence, if we change coordinates to the x/ as above,

W) — o) = o.
oxy

Since (C) does not hold, the vectors dg(p)/dx} (i > 1) and 8°g(p)/dxidx! are
dependent, and therefore determine a plane 7" * with k > 0. But the expres-
sions for g*(p) show that these vectors are exactly the {; ( > 1) and the u; ;
hence g*(p) € S, .

Next we show that S, is an analytic manifold, and determine its dimension.
Let (¢*, «*) be any point of S, . We shall show that the nearby points (¢, w)
of S, are obtained by varying the {,; and u,; under certain restrictions; if we
introduce d independent parameters describing them in an analytic fashion, we
will have an analytic regular mapping of a d-manifold, and the statement will
follow. First, ¢, , -- -, t, may be varied (of course slightly enough to keep them
independent) in any fashion; there are thus (n — 1)m parameters so far. Next,
keeping these fixed, vary ¢, , keeping it in the plane 7""'; n — 1 parameters are
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added. Next, we consider the positions of the plane 77", Given 7", we deter-
mined them by naming a plane 7" C T™* orthogonal to T"7%, since 7' C
T"*and (n — 1) + (n — k) = m — k. Now T" " is any plane in the maximal
plane T" orthogonal to 7""'; it may be varied by varying each of a set of n — k
vectors £; determining it, so that Ag; is in the plane T* C T" orthogonal to
T, thus it is determined by k(n — k) parameters; see also [3; §24]. Finally, vary
Uy , *++ , U, in any manner such that, with 7", they still determine T™".
Since they can vary (slightly) in any manner, so long as they remain in 777,
n(m — k) more parameters are introduced. Therefore,

dm (8;) =d=(n—1)m+ (n — 1) + k(n — k) + n(m — k)
= 4n® — 3n — k"

Consequently [3; §17], >_ 8, is a denumerable sum of compact sets, each of
zero (4n® — 3n)-extent. Therefore, using [3; Lemma 16] (see also [3; Lemma 12]),
since R/, is of finite n-extent, and the f5, form a (4n® — 2n)-parameter family,
there is an arbitrarily small (8, v), for which fs,(p) is not in any S, for any
p ¢ R, ; then f,, is the required mapping. This completes the proof of the
theorem. (The proof should be compared with that in [3; 677-679].)
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