
THE GENERAL TYPE OF SINGULARITY OF A SET
OF 2n 1 SMOOTH FUNCTIONS OF n VARIABLES

By HASSLER WHITNEY

1. Introduction. Let a region R of n-space E, or more generally, of a differen-
tiable n-manifold, be mapped differentiably into m-space Em. If m >_ 2n, it is
always possible [1; 818], [3], by a slight alteration of the mapping function f
(letting also any finite number of derivatives change arbitrarily slightly), to
obtain a mapping f* which is everywhere regular. That is, for any p in R, and
any set of independent vectors ul us in R at p, f* carries these vectors
into independent vectors. Here, vector equals the vector in "tangent space"
equals the differential. As a consequence, some neighborhood U of p is mapped
by f in a one-one way. The object of this paper is to determine what can be
obtained by slight alterations of f in case m 2n 1. It turns out that any
singularities may be made into a fixed kind. (It will be shown in other papers
that any smooth n-manifold may be imbedded in (2n)-space, and may be im-
mersed (self-intersections allowed) in (2n 1)-space.)

There are two main theorems in the paper, roughly:
(a) We may alter f arbitrarily slightly, forming f*, for which the singular

points (points where f* is not regular) are isolated, and such that a certain
condition (C) below holds at each singular point. (The self-intersection may
also be made simple; cf. [3; 655, (D)].)

(b) Let f* satisfy the condition mentioned. Then for any singular point p,
we may choose coSrdinate systems Xl Xn in a neighborhood of p and yl

y2-i in a neighborhood off(p) such that f* is given exactly by the equations
(4.2). Here, f* must have many derivatives.
Remark. As a consequence, there is a slight deformation of En-1 which carries

f(U) (U a neighborhood of p) into the set of points given by (4.2).
The transformations in (b) may lower the class of f* considerably; but if f*

is of class C, or analytic, the transformations will be also. The condition
mentioned in (a) is the following"

(C) There is a direction through p with the following properties: (C1) f* maps
any vector in this direction into the null vector in E-1, but maps any other
vector at p into a non-null vector. (C2) If g(p’) is the derivative of f*(p’) in the
direction given above, for p’ near p, then there is no vector in E2- which is the
image both of a vector under f* and a vector 0 under g, both at p.
We may phrase the second condition as follows:
(C) Suppose a coSrdinate system is chosen in which the given vector is in

the x-direction. Then
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(1.1) Of___* Of__._* 0 f____* O f* 02f*
Ox2’ OX,,’ Ox OXlOX2’

taken at p, are independent vectors.
We shall show first that the two conditions (C) and (C) are equivalent, and

independent of the c05rdinate system chosen (with the same or opposite direc-
tion of the x,-axis). Next we show that (C) implies regularity near p, so that
p is an isolated singularity. (This fact follows also from (b); a proof is given
here to help in understanding condition (C).) We then study the typical singu-
larity mentioned in (b). Next we prove (b), and finally (a). The proof of (a)
uses methods found in [3]; the other proofs are straightforward analysis.

2. Equivalence of (C2) and (.C). We use f in place of f*. Having chosen a
c05rdinate system as in (C), we note that g(p’) Of(p’)/Ox If e is the unit
vector in R at p in the direction of x then by definition, f carries it into the
vector Of(p)/Ox Hence, for any vectors u (ul u.) and v (vl
v.) at p, f and g carry these into

Of(p) Of(p)f(u) u, u

02f(p)g(v) ,..
OXlOX"

Then iff(u) g(), since the vectors (1.1) are independent,
u., Vl, v are all 0, and 0, proving (C2). Sup-

OXlOX

Suppose (C) holds.
the coefficients u2,
pose conversely that (C) holds. If there is a linear relation between the vectors
(1.1) with coefficients, say u2, u, v, -v, not all 0, then defining
u and v as above, with u 0, we have f(u) g(), and u 0 or 0. By
(C), v 0, and hence f(u) O. By (C1), u is in the Xl-direction, that is, u2

u 0, which is a contradiction.
We shall show that condition (C), and hence (C), is independent of the

co6rdinate system employed. Take two systems, each with the first axis (at p)
in the given direction; then Ox/Ox I a a O. Let T-1 be the plane
(in E-) of all directional derivatives of f at p, i.e., all vectors f(u). Let u v
denote u v T=-. If we suppose that (C) holds in the first but not in the
second system, we have, for some v’ (vf, v’) 0, if g’ Of/Oxf
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Hence, all v; v,Ox/Ox, are 0. But the Jacobian Ox/Oxi 0 at p, so

that the columns of il Ox/Ox [I are independent, which contradicts the assump-
tion that not all the v are O.

3. Regularity near a singular point. Let (C) hold for f at p; we shall show
that f is regular in the rest of a neighborhood of p. Using (C), let Tn-1 (p’) and
T’(p’) be the planes determined by the Of/Ox (i > 1) and the 02f/OxlOxi re-
spectively, taken at pr. Then in a neighborhood Uo of p, they are of the dimen-
sions shown, and if p’ Uo and T’ is any n-plane sufficiently near T’(p), T’’
and T’-(p’) have onlyone point in common. Since the vectors Og(p)/Ox,
Og(p)/Ox, determine T (p), we can take U C Uo so that for any p" U1, there
is a plane T’ as near Tn(p) as required above which contains g(p’) g(p); it
follows that if p" p, g(p") g(p) is in no T’-l(p’) (p’ Uo). Now, since
g(p) Of(p)/Oxl O, we have in particular: for any p’ t U1 p’ p, g(p’) is
not in T’-(p’); that is, Of(p’)/Ox, is independent of Of(p’)/Ox., Of(p’)/Ox,.
Thus f is regular in U except at p, as required.

4. A typical singularity. As is well known, a mapping of a projective plane
into 3-space may be obtained by replacing a piece of the surface of a sphere by
"cross cap". A cross cap (or rather the top of one) may be described as follows"

Let T(y) be the plane in E perpendicular to the y-axis at a given y. Take a
parabola in T(yo) for yo < 0; say z :i: yox1/2. As we let y increase, pull in the
two sides of the parabola until they coincide (and thus form a half ray) at
y 0 and become a parabola reversed in direction for y > 0. The locus of
these parabolas forms the top of the cross cap. A sphere about the origin cuts
the cross cap in a curve in the form of a bent figure 8.
Using coSrdinates y y y3 in E, the cross cap may be represented para-

metrically by the equations

(4.1) yl x, y x., y xx.
Generalizing this, let us map E into E:’- by"

y x

(4.2) yi x (i 2, ..., n),

Yn+- XlXi (i---- 2,’’’, n).

The matrix [I Oy,/Ox I1, transposed, is

2xx 0 0 0 x. xs

0 1 0 0 x 0

0 0 1 0 0 xx

0 0 0 1 0 0

Xn

0

0

Xl
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If we call the mapping y f(x), f is clearly regular except at the origin; only
Of/Oxl is 0 there. Also, the matrix II OY:/OxlOx 11, transposed, has a 2 in the
upper left corner, a diagonal of n 1 ones in the lower right, and zero elsewhere.
Combining the two matrices, with the first row Oyl/Ox omitted, we obtain a
diagonal matrix, except for an interchange of rows, at the origin. Hence, the
vectors (1.1) are independent, and (C) holds.
To determine the self-intersections, suppose f(x x:) f(x xn),

where the points are distinct. Then x x for i > 1, since y y hence,
x x, and, since y yl x xl 0. Since y/-i Yn+i- and xl 0,
x 0(i > 1). Thus,

f(, 0, .-., 0) f(-, 0, 0),

and there are no other self-intersections.
Examining the matrix II Oy/Ox. I], we see that at any such self-intersection, the

two tangent planes have only the y.-axis in common.

5. Proof o (b). We shall prove"

THEOREM 1. Let f be a mapping of class C, s 4r + 8, r >_ 1, of the region
R of E into En-, and let (C) hold at the origin (assumed in R). Then there are
curvilinear coSrdinate systems about 0 and f(O), of class C, in terms of which f has
the form (4.2). If f is analytic, or of class C, so are the coSrdinate systems.

Probably s need not be taken so large in terms of r. We shall consider the
case where f is of class C’;in the other cases, the transformations employed are
clearly analytic or of class C, respectively.
As a first step, choose coSrdinates xi, x in E as in (C); since the vectors

(1.1) are independent, we may choose oblique axes y, y._ in E- so that
these vectors are unit vectors (except for Of/Ox) on the axes of

respectively. Now take each y expand it in terms of x to the third order,
expand the coefficient of x in terms of x. to the order 3 i, etc. This gives

B,x + C’iXiXi - Z D:ii(xl Xn)XhX,Xi

(Many of the D are actually functions of fewer variables.) The A, B and
C are the y and first and second derivatives (except for a factor) at the origin.
By the choice of the y-coSrdinute system, therefore, many of these muy be
determined, and we find

y x - Rl(X ,..., Xn)

(5.1) y X + Ri(x Xn) (i 2, n),

y+i-1 xxi - Rn+i_(x, ..., x.,) (i 2, ..., n),
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where

(.2) R

the Rk being of class
Set xl xl and

(5.3) x; x + R,(x, ,..., x) (i 2,..., n).

Then Ox/Ox ]o ti. so that this is a transformation of coSrdinates of class
C" near the origin. Furthermore, Ox/Ox Io so that

Substituting in (5.1) and dropping primes gives

yl x - R(x,, ,x,),

(5.4) y x, (i 2, ..., n),

y,+_x xx. + R+i_l(X ,..-, x,) (i 2, "’", n),

where the new R have the same form (5.2).
Next we simplify the form of y Since

OYi 0,
02yl

2,OX OX
we may solve Oy/Oxl 0 in a neighborhood of the origin, obtaining a function
xl (x, xn), of class C’-. Then, by definition,

0(5.5) 2(x, x) + R,((x, x,3, x, x) 0.

Set

(5.6) x x (x:, .--, x), x x (i > 1).

For each (x, x) near (0, 0), expand yl in terms of x. Since Oy/OxI
0 for x’ 0, this gives

(5.7) y o(X, x,) + ,2 x);x 2(x ,x

bo and are of class C’-1 and C’-, respectively, by [2; Theorem 3]. Differen-
tiating (5.5) gives

2+-7-7 + --0 (i> 1).
OX OXOX.

Since OR/OxOx [o 0 for all j, this gives O/OXlo 0; hence Ox/Ox Io
ti It follows that the Jacobian of the transformation is 1 at the origin; also
(x ...) (x -..)xx so that the y are given by the same kinds
of expressions in terms of x x:, as in terms of xl x, ....
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Next, set

(5.8)
x’ x[2(x, x)] 1/2, x’ x, (i > 1),

y yl bo(y2, ..., y), y y, (i > 1).

Now
02yl 0 yl

222
OX OXl o

hence 2 Io 1, and the transformations to the x" and y are allowable and are
of class Cs- in a neighborhood of the origin. Dropping primes again, we have
the same equations as (5.4), with R1 missing; the Rk are of class C"-, and have
again the form (5.2). To prove this for y/_l we note that if x
O(x’, xn), then OO/Ox’ Io 1, and hence

[ex, + R:/_(e, . (i 1, j >_ 1).

Next, set y,’. y (i 1, n), and

(5.9) y yk R(0, y2, y.) (k n + 1, 2n 1).

Setting k n + i 1 and using (5.2), we find

Y xixl + E n[i(x- [D,(x, x2 ...) D,,(O, x ..)]zzx

if we expand the first bracketed term D in terms of x, and drop primes, we have

(5.10)
y x, y, x (i- 2,..., n),

y,,/_ x,[x, + R/_,(x, x)] (i 2, n),

where (for/ n - i 1)

(5.11) R,(xl x,) E(x x,)xx

The new/ are of class C*-; the E are of class C’-.
Our next job is to move the curve of self-intersection over onto the y,-axis;

this will result in the term in x in (5.11) dropping out.
Examples. Take n 2. If ys x(x2 + x), then the curve x2 -x

0) inE Ifymaps into the curve of self-intersection, which is (x, x
x,)x (x2 - x - xx), the curve is x2 x again, mapping onto (x, x,

As in 4, if the distinct points (xl, x, ...) and (x, x, ...) go into the same
point, thenx x fori > 1, andx -x 0. Usingy yfor n - i 1
/c > n gives

x[x z7 R,(x x ,...)] -x[x - R(-x x ,...)],
(5.12)

x, 1/2[Rk(x, x ,’. ") + R,(-x, x. ," ")].
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If we write these in the form x - 1/2[ 0, then since ORk/Ox Io O, the
functional matrix is !1 tii at the origin; hence, we may solve these for x2, "-,

xn in terms of xl The resulting functions are obviously even and of class
C"-4 C4r/; hence, by the theorem of the preceding paper, the solutions may
be written as ,(x), where the are of class C2r/2. Then

(5.13) (x) -1/2[Rk(xl, (x1), ..-) - Rk(--Xl, .(x), ...)].

Also, for k > n, we may define

(5.14) x(1) 1/2xl[R(xl .(x), .-.) R,(-x, (x),

X(Then y (1) for all/ on the curve of intersection.)
Make the transformation

Xfl Xl, X X, (XI) (i 2, n),
(5.5) y yl, y y,- i(yl) (i- 2, ..., 2n- 1).

These have non-vanishing Jacobians near the origins, and are of class C’/.
’ (i 2,Nowy xl,y x

n+i- 1 --k>n,

y xl[x, A- 4,(xl) -4- R(xl x:

or

n), and using (5.13) and (5.14), we find for

(x )x[x, 1/2{R(x;, ’.(x, ), ...) + R(-x;,

+ R(xl, x’ + (;), -..)

1/2{R,(x 2(xl ), ..-) R,(-x’ .(x;), ...)}],

---)],(5.16) y xl[x T R,(xl

where the R’, of class C/, are given by
72"(x’ ..-) R(x;, + 4,.( ),

Since R’,x’l, O, ...) O, expanding, for each x’, in terms of x,
first order and dropping primes from the x.’. gives

..-) R(,, x, ...)(5.17) R(xl x.
1<"

x to the

Using the definition of R and (5.11), we find

therefore,

(5.18)

OR ORR(O, O, ...)
o Ox 0;

R1(Xl x2 ...) E xRki(Xl xz ...).
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Putting in (5.16) (with primes dropped) gives, if k n + i 1,

yl x, y x (i-- 2, ..-, n),
(5.19)

y, Xl[X, + xiR(xl x.)] (i 2, n).

The Ri are of class C"r/l.
Next, by the theorems of the preceding paper, we may write

R )],P(x x2 "’) [ i(x x2 + Rj( x x2
(5.20)

XlOi(x2 x ...) 1/2[Rki(xa x2 ’’’) Ri(-Xl x2 ".’)],

the P and Q; being of class Cr. This gives

y, xl[x + xP,j(x x )] + x Q(x x2 ...).
i---2 ---2

The next to the last transformation is: y y (i

_
n),

(5.21) y. y, y, yQ,(yl y2 ") (k > n).
i=2

The Jacobian is 1 at the origin. Now, dropping primes again, we have

y xl, y x (i 2, n),
(5.22)

y./,_, xl[x., + xP,+,_l.(x, x2 ,...)] (i 2,..., n).

We are now ready for the final transformation. Define functions

F(Ul Un) (k, n 1, 2n 1),

for each fixed k, as the solutions of the linear equations
2n--1

(5.23) E [i+i-.h -" Pi(Ul "’’)]Fkh(U "’’) Pi(ul "’’),
hn+l

for i 2, n. By (5.20) and (5.18), the determinant ti+_. -t- P, is
near 1 in a neighborhood of the origin; hence, the F are defined and of class
C there, and F(0, 0) 0. Set

y y (i 1, n),

2n--!

y y F(yl y.)y, ( n + 1, 2n 1).
h=n+l

Since, for k >_ n -+- 1

(h > n),
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and the Fkh Io 0, the Jacobian 0 at the origin, and so the transformation
is allowable, and of class Cr.
We find the y in terms of the x Writing Pki for Pi(x, x2, .), etc., and

takingk n+i- 1, i > 1, wehave

--y x + P,x F,[x_+ + Px]
Xl i=2 h=n+l i=2

2n-1

x + xi[Pi Fk,,+i-1 FkhPh]
i--2 h=n+l

This proves the theorem.

6. Proof of (a). The other main theorem is"

THEOREM 2. Let f be a mapping of class C of a region R of E into E2-1.
Then arbitrarily close to f (ogeher with first and second derivatives) there is a
mapping f* satisfying (C) at each singular point, f* may be made analytic.

Remark. It will be clear from the proof that the theorem holds equally well
with R and E2-1 replaced by smooth manifolds M and M2n-.

Let R, R2, be rectangular regions in R, and choose R: with R C R, so
that the R cover R. Suppose we have shown how to deform f slightly so that
(C) holds at any singular point in a given -’R. Then carrying out deformations
successively, we make it hold in ;, ’2, each time making the deformation
so slight that the property is not disturbed in any preceding , and so that the
limit will be a mapping with the property in every and hence in R. (Since
for any fo and /(p), the property of f satisfying (C) at any singular point is an
(fo, 2, )-property, as in [3; 7], the statement follows at once from [3; Lemma
12].) We consider only functions f of class C, r >. 2; the final function may be
made analytic, by [3; Lemma 9].

If f is not of class C, approximate to it by a function f** of class Ca; thus we
may suppose f is of class C in the first place.

Let h(p) be a function of class C in R, 1 in ’ 0 in R R (Use
[3; Lemma 11], or construct it directly.) We shall define certain kinds of map-
pings Gi Hi with which f may be combined to give the required function
satisfying (C) at all singular points in -’

First, by the proof of [3; Lemma 18], we may suppose also that Of/Ox,
Of/Ox, are independent in -’
Setm 2n- 1. Letv, v be the unit vectors in E. Let E

be a Euclidean space, with unit vectors (in a definite order)

v,. wi (i 1, n;j 1, m).

Corresponding to any mapping g(p) of class C of into E such that Og(p)/Ox2,
Og(p)/Ox, are independent for each p (x x.), define (p),
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’(p) as the numbers such that

(p) 0(p)

is orthogonal to Og(p)/Ox2 Og(p)/Ox. If gl(P), g,(p) are the coSr-
dinates of g(p), define the corresponding mapping g*(p) of . into by

i, ";

< OXlOXi W
<, h OXhOXi _J

+ Z
i,i;l<i

F O2g
1<

-Oh Og 1Wi
Then the y and gO are of class C and g* is of class C.
Given g as above, if we take a fixed po (51, 5.) and make the change

of variables

we find

xl x + x, x -O’(po)x + -, (i > 1),

Og(po)*(po) Z:
c3
v,, + )

.i OxOx

Remark. One could carry out the proof, using all Og/Ox and 02g/OxhOx
independently; then will have m[n + 1/2n(n + 1)] dimensions.
For any sets of numbers g,, ,; (i 1, n; j 1, m), set

f,(p) f(p) + X(p)[ ,x,vi +

If the/ and ._are small enough, Of,/Ox, Of,/Ox. are independent in. so that the f, (p) etc. are defined. To find f(po), make the change of
variables described above, differentiate f, with respect to these variables, and
put in the second relation above for f’ we find (at po )

+ ",/,
OxfOx
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It follows that (all at po)

Of f - (i > 1),

Of. 2xjvli -4- 2Wli

XiYli fifl’yXlVli + XlYii (i>

form a (2mn)-parameter family of mappings of --’R, into (seeClearly the f’,
[3; lS]).
We wish to find, for arbitrarily small t and / a mapping f with the

R.. We shall construct sets S C /,property (C) at each singular point in -’
R, into does not satisfy (C) at allk > 1 and show that if a mapping g of m, E

singular points, then g*(p) Sk for some p ’, Take (t;, ui) , and let
t and u be the vectors in E with components t and u-, respectively. Then
(t, u) is in S if the following hold"

(a) t2, t. are independent;
(b) if T- is the plane in E determined by them, then t
(c) the vectors tl t, u u determine exactly a plane T"-.
Now take any mapping g, such that, at some singular point p, (C) does not

hold, but Og(p)/Ox Og(p)/Ox,, are independent. Let t; and u. be the
c06rdinates of the corresponding g*(p)"

i,i i,i

i.e., g*(p) (t, u). Since p is a singular point of g, and the Og(p)/Ox are inde-
pendent for i 2, n, Og(p)/Oxj lies in the plane T- determined by them.
Hence, if we change coSrdinates to the x as above,

Og(p) g)(p) O.
OxI

Since (C) does not hold, the vectors Og(p)/Ox (i > 1) and O=g(p)/Ox;Ox are
dependent, and therefore determine a plane T- with k > 0. But the expres-
sions for g*(p) show that these vectors are exactly the t (i > 1) and the u
hence g*(p) Sk
Next we show that S is an analytic manifold, and determine its dimension.

Let (t*, u*) be any point of S.. We shall show that the nearby points (t, u)
of S are obtained by varying the t; and u; under certain restrictions; if we
introduce d independent parameters describing them in an analytic fashion, we
will have an analytic regular mapping of a d-manifold, and the statement will
follow. First, t, t may be varied (of course slightly enough to keep them
independent) in any fashion; there are thus (n 1)m parameters so far. Next,
keeping these fixed, vary t keeping it in the plane T-I; n 1 parameters are
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added. Next, we consider the positions of the plane T"-k. Given Tn-l, we deter-
mined them by naming a plane Tn-k T"- orthogonal to Tn-l, since T-1 C
Tm- and (n 1) (n k) m k. Now T- is any plane in the maximal
plane T" orthogonal to T"-I; it may be varied by varying each of a set of n /

vectors i determining it, so that A is in the plane T C T orthogonal to
T"-k; thus it is determined by k(n k) parameters; see also [3; 24]. Finally, vary
ul un in any manner such that, with T-, they still determine Tm-k.
Since they can vary (slightly) in any manner, so long as they remain in Tm-k,
n(m k) more parameters are introduced. Therefore,

dim (S) d (n l)m -t- (n 1) -- k(n l) -+- n(m k)

4n- 3n- k.
Consequently [3; 17], Sk is a denumerable sum of compact sets, each of

zero (4n 3n)-extent. Therefore, using [3; Lemma 16] (see also [3; Lemma 12]),
since is of finite n-extent, and the f form a (4n 2n)-parameter family,
there is an arbitrarily small (, ), for which f(p) is not in any Sk for any
p R, then f is the required mapping. This completes the proof of the
theorem. (The proof should be compared with that in [3; 677-679].)
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