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In Theorem 12, we mean the (uniquely determined) products of 11 (a). In place of the
following paragraphs, read: As knowing all v? -u? for all 7 uniquely determines #?, and
the correct ~ satisfies (11.8), we have found the correct ~. (NoTe: Theorem 11 is
not used.) The end of the first paragraph in 12 should read: Find #? — #%? over I,
then over Ry, (p < 2), then for all p, by (5.12); then find ~ over o, by Theorem 12.
(We must know (11.15).) In Theorem 13, (a), add: ¢v* = 0 if O(7?) is acyclic. Rela-
tion (14.9) follows directly from (14.4). After (25.7),add: I?P—I? =17 *+1,

2 Augmentable in Tucker, Ann. Math., 34, 191-243 (1933). .

3 See Tucker, these PROCEEDINGS, 25, 371-374 (July, 1939). The theory was devel-
oped independently by S. Lefschetz and myself.

4 This case of the theory is due to de Rham; see Comm. Math. Helv., 4, 151-157 (1933).
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1. Introduction—We give here a brief sketch of some new results in the
theory of sphere-bundles;! in particular, further properties of the charac-
teristic classes, a duality theorem, theorems on tangent and normal bundles
to a manifold, and some examples. The results will be published later in
book form.

2. Fibre-Bundles.—Let Sy be a space, and G, a group of homeomorphisms
of S, into itself. Then over any space K, the base space, with neighbor-
hoods U;, we may define a fibre-bundle B(K) as follows. For p ¢ U, let
£;(p) be a homeomorphism of S, into a set of points S(p). Let S(p)-S(g) =
0if p = gq. Let S(K) be the space of all points on all S(p), the total space
(gefaserte Raum). Let £(p, g) be the image of ¢ in Sy under &(p). For
peUrUj, set £;(p, ) = £7'(p, £/(p, 9)); assume &;(p) ¢ G for each p, and
that it varies continuously with p. Then a topology is easily defined in &.
The part &(U;) of & over U, is a product U; X S,.

If Sy is a set of u points, and G is the group of permutations, we obtain the
covering spaces of K with u sheets. If S, is a subgroup of a continuous
group R, and G = S, then the left (or right) cosets of S, form a space K
(factor group if S, is normal); the total space is R,. If So = Sy is a »-
sphere, and G = G’ *, the orthogonal group, we have a sphere-bundle. 1t
So is a vector space, and G, the affine or orthogonal group, an equivalent
theory is obtained.

3. Particular Coérdinate Systems.—We use this section in the proof of
the duality theorem. Let K be a complex with ordered vertices. We may
use £,, defined over closed cells 6. (See TP.) We may choose them so
¢, = &, if o and ¢’ have the same first vertex. Let P" be a small closed
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region in K surrounding all D,(¢", ¢’), ¢’ of any dimension (see I, §2);
set Q' = K — P’. Then if K’ is the r-dimensional part of K, and e,, ...,
e, 4+ are the unit points of Sy°,

Eo(Dre) = € peQuod,i=1...,v— k).

Note that ¢;(p) = &+ —1(p, &) (peany o i =1, ...,» — r + 2) defines
orthogonal projections of K ~ ! into &.

4. Characteristic Classes.—Choose ¢y, ..., ¢, —, 4 as above over K’ ~ ;
then for each ¢’, studying these on d¢” gives W’-¢’, which is an integer
mod 2if r = 1 or r < »is even, and an integer otherwise. W” is a cocycle
whose class W’ is an invariant of 8; the W™ characterize 8 if » £ 1 or dim
(K) = 3 (see TP). We may use a general type of subdivision of the poly-
hedron K in defining the W".

If B is not orientable (TP, §4), and K’ is obtained from K by replacing
[o": ot by —[¢":6" ] when £, and £, +1give opposite orientations to
the S(p) (p € o") (see TP, p. 793, footnote), then K’ is locally isomorphic
with K, and W/ = W1 We call K’ the complex associated with B. The
characteristic classes are taken in K’; the theorems above hold still.

If f maps K into K,, and B,(K?) is defined, then a bundle 8,(K;) is de-
fined (TP, §8), and Wi = f'Wy (f’ = dual of ).

If v = 2,dim(K) = 4, and W! = 0, W2 = 0, then an invariant character-
izing B is obtained as follows. A triple ¢ = (¢1, ¢2, ¢s) of orthogonal pro-
jections of K3 into &(K?3) exists. Let ®(p) (p ¢ K?) map S into S(p) so that
d(p,e;) =e;(2=1,2,3). Foreach st set

Vo) = £ (D)D) (€ Da).

This maps Oc* into the orthogonal group G?*; as G® is homeomorphic with
projective 3-space P3, this defines an integer D*o¢*, the degree of ¥,.
D¢ is a cocycle. If we identify two cocycles if they are cohomologous, or
differ by a cocycle of the form X! — X! — X! — X! (X! a 1-cocycle),
the class determined is the invariant.

The classes W * ! are determined from the others as follows (see I, §11):

W¥ T = eW  (ifv = 27).

5. On Mappings into Gt '.—In the theorem just stated, and in the
duality theorem, we need the following (and other more complicated)
theorems. (a) Letfmap ¢’ into G+ so that if ¢(p) = f(p,e1), then ¢(p) =
e; in O¢”; let ¢ be of degree a. Let ¢ map ¢” into So” with the degree B,
and let Y(p) = e(p € dc”). Then 6(p) = f(p, ¥(p)) is of degree « + B.
(b) Take f as before; then ¢’(p) = f~ '(p, &1) (the point of Sy mapped into e,
by f(p)) is of degree —a. (Use (a).) (c) Let f map o” into G+, let ¢
map d¢” into Sy” ~ ' with the degree a, and suppose f(p, ¢(p)) = e (p €
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d¢’). Then y(p) = f(p, € +*) maps d¢” into the S ~ ! orthogonal to e
with a degree = « (mod 2).

6. The Duality Theorem.—Given bundles 8,*(K) and 8,*(K), there is a
uniquely determined bundle 83" (K), their product (v = X + u + 1; see TP,
p. 796); thus if M™ < M™", the tangent times the normal bundle gives the
part of the tangent bundle of M”* over M™. The formula for the character-
istic classes of Bs" is

Wo=2X Wi = Wy ~%, reducing mod 2 if necessary.

(See §4 and I, §12; we use W°® = sum of vertices.) The proof is very
difficult if » 2 4. We use the special §,, of §3 in By, and &, in B,, with a
replaced by @’ < a, so the P, and P, will be in ‘‘general position” (see I, §5).
The projections into S3(K” ~ ') are defined successively over Qy, Q/}, ....
For each ¢’, they are now deformed in d¢” into a simpler position, except in
each A* = P/-Py ~1~%¢" =1 (¢’ ! = face of ¢" opposite first vertex of ¢").
The terms shown come from the A%, two coming from A” ~*. The results of
§5 and the products of I, §6, are needed.

ReEMARK. We do not know whether or not the individual terms Wy’ <
W2~ have topologicial significance.

Reducing everything mod 2, write, for any 8B, the formal power series

W= ;W‘t‘, W=1W-= ;W‘t‘;
then
Wo =1, Wi=W,W?=W2+ W — W,
etc. The duality theorem gives then, as Wy = W/W, etc.,
Wy =X W —W7 ), W =YW/ — Wy /et (mod?2).

7. Tangent Bundles.—Let K be a simplicial subdivision of the manifold
M™, with ordered vertices. Each p in K may be written uniquely as p =

X m@®)n,ifpexy ... x,,. Define

n(®) = .‘.:0;%“(?) cem D)o, — o, ) (B =1,2,..0).

0

These are continuous in K, and the first » are independent except in K” ~ !

(anyr). If K*is the usual complex dual to K, these may be used to define
W7, a cocycle in K*. Its dual is a characteristic cycle C* ~ " in K/, the com-
plex associated with @ (which was studied in I, §13). Note that C* ~ @ +?
= 30wC"~¥. The value of C*¢" (s = n —r,0" =, ... %) is as fol-
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lows. Let K; be the subcomplex of the closed star of ¢° containing all
vertices x; with

As >8> N3O N >8> Ng_g0r....

(This includes all vertices below Ao if s is even.) Then C*¢° = 1 — x(K))
(x = Euler-Poincaré characteristic), or this mod 2.

From this we prove: If K is the first derived of a simplicial subdivision
of M, then C° is the sum of all s-simplexes of K (properly oriented if integer
coefficients are used).?

In the proofs of the following theorems, we study the classes over sub-
manifolds of the given manifold, and use the duality theorem and results
from §8. For M™ < M™, let W mean the part of W' (M™") in M™,

If a closed M™ can be imbedded in E* (with or without singularities), then

0= WN —ml2 = ZWl VTW‘T»—m—-i = Wrn—m.

Hence W™ = O always. This gives, if (X)2 = X — X, etc.,
closed M2: W2, = (W1)2; closed M?: (W) = 0;
closed M*: Wils + (W22 + W2 — (W12 + (W14 = 0; etc.

In any M?, for any 1-Is-cocycle X!, X! — X1« X! — W' In any M3,
W2 = W! — W1; hence (Stiefel) for orientable M3 (closed or not), the
tangent bundle is simple. In any orientable M* W? = 0. (The proof
uses facts from §10.) For any 2-I;-cocycle X2 in any M4, X? — X2 «» X2
~ W For any orientable M*in an orientable M”, W4 = Wy*.

8. Normal Bundles.—For any M™ in any M", W " ~ ™ is the intersection
of M™ with itself in M™, which is a cohomology class of the complex associ-
ated with the normal bundle; if M™ is closed and M”* = E", then Wy" ~ "‘], =
0, and if also M™ is orientable, then Wx” =™ = 0. Compare PC, §20, and
TP, p. 795.

If M™ is mapped regularly into M™", but with singularities, we may de-
form M™ slightly into M'™, and consider the intersections of the ¢’ with a
neighborhood of ¢’ in M; then W" ™ ™ is the local intersection thus defined.
For a closed orientable M™ & E*, the intersection vanishes, so that the distant
" intersection equals the local. This holds mod 2 in the non-orientable case.
If n = 2m, and the singularities are isolated points, the distant intersection
is of course 0 (mod 2); if misodd, it vanishes, because {o™,¢'"} = — {o'™,
a"y.

'Z}l‘ake an orientable M™ < E". Then the normal bundle is simple if m =
lor2,orn =m + lorm + 2, orm = 3 and M is closed, or M is a cell.
This holds if M™ is merely mapped regularly, provided that if n = m 4 2,
then m is odd, and we omit m = 2 if M is closed.

9. Examples—Consider a cylinder, the product 72 = T* X T2 of a
segment and a disc. Let P? be one end, let S;! be a segment crossing P?,
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let Q? be a rectangle cutting through 7 and ending on S,!, and let .S;! be the
center of Q2 ending at p,, the center of Sz; rather, let these be the sets after
the identifications below. (1) Join the ends of 7%, and shrink 072 to a
point; this forms M;® = S' X S?, with a simple tangent bundle. (2) Join
the ends, and identify opposite points of 072%; then characteristic cycles are
(mod 2) C* = Q% C* = S~ W23 0. (3) Join the ends, reflecting one so
that P? is joined to 1tse1f with orientation reversed, and shrink 072 to a
point. We obtain M33, with W2 = 0. (4) Join the ends as in (3), and
identify opposite points of 07% forming M,3. Now P?is a projective plane,
and Q?%is a Klein bottle. Intersections are (mod 2)

{Pz’ P’} ~0, {Qz’ Pz} ~ S, {Qz’ Qz} ~ Si' 4 St;
{P2, S5t} ~0, {P, S} ~ po, {Q2 2t} ~ po, {Q2 St} ~0;
characteristic classes are
C?~ (P 4 Q%3 C1~ (Si! + Sab)e.

Define 8,!(M,?), with C,? ~ P? Ci! ~ 0, and B.'(M,?), with G2 ~ Q?,
Gt ~ 0; let the total spaces be M4, Mst. We may pretend M, is in either
(because C;' = 0). Then

C® ~ &(0?), Ci2 ~ &(S1Y), Cit ~ S(po); =~ Cit ~0;
Gd ~ B(PY), G ~ B(SY), Gt ~ S(po); -~ Cot ~ S(po);

hence in M4, W3 5 0, W3 = 0. Hence (see §7) M,* cannot be imbedded in
E.

Define B2(M;?), with C* ~ P2 and C' ~ S;!. Then we may consider
M3 € M*® = &(Ms?), and prove (a) M*® is closed and orientable, (b) C2(M?®)
~ &(p); hence W? = W3 5 0, and M® cannot be imbedded in E2.

We may define M8 = S(S,*), with W* = W* » 0; hence M3 cannot be
imbedded in E*2.

The complex projective plane P*4 cannot be imbedded in ES, as W2 = 0.
(W2 — W2 = W4,; W*-P* = x(P*4) = 3.) Butitcanbein E".

For any closed orientable M*, and any cocycles X2, X* (mod 2) in M4,
we may imbed M*in an M®CE", so that the part over M*of the character-
istic classes of the normal bundle of M3C E' are X?2and X*. Hence we may
make Wx? = 0 and Wy* = 0 also.

If we put a Klein bottle Q? in E3, then the distant and local intersections
are equal (mod 2); these are Wy! = Wr!; Cr! = a closed curve in Q2
Hence the distant intersection, as a cycle, is a certain curve in Q? as is clear
in the usual immersion of Q% in E3. For P?in E3, we get the ‘“projective
line”’ similarly.

A direct study shows: If M2 C E* is closed (with or without singu-
larities), and C?is the fundamental cycle of the associated complex (integer
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coefficients), then W?. C? = 2[x(M?) + 2k] for some k; any k may be ob-
tained. Hence if x # 0 (mod 2), then a field of normal vectors never
exists. Also one imbedding cannot be deformed into another with a
different W2- C2.

10. Homology Groups of Total Spaces, Etc—Let K be connected.
Given B(K), the homology groups satisfy H' (&) =~ H'(K),r < v.kS(p) ~0
if and only if for some 4° ", 4 t1. W’ 1 = k. (We may use k, = kmod ),
and 4°* 1I)‘.) For B oriented, a (v 4+ 1)-I,-cycle 4 in K is the projection
of such a cycle in & if and only if 4 - W’ ! =0,. Now H’(€) may be de-
scribed in terms of W” T ! and properties of £S(p). If uis the smallest in-
teger such that uS(p) ~ 0, then H'(&) = I, @ H'(K) if and only if for each
Nand each (» + 1)-I,cycle 4, A - W*t'=0mod (\, ). A mapping fofa
complex K’ of dimension = » + 1 into K is the projection of a mapping into
& if and only if f/W* ! = 0.

1 We refer the reader to papers in these PROCEEDINGS, 21, 464-468 (1935), and in
Bull. Am. Math. Soc., 43, 785-805. We denote the latter by TP, and the preceding

note, by I. Sphere-bundles were formerly called “‘sphere-spaces.’’
2 This was a conjecture of Stiefel, Comm. Math. Hely., 8, 40 (1936).



