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In Theorem 12. we mean the (uniquely determined) products of 11 (a). In place of the 
following paragraphs. read: As knowing all vr '14" for all i uniquely determines 14". and 
the correct .--. satisfies (11.8). we have found the correct.--.. (NOTB: Theorem 11 is 
not used.) The end of the first paragraph in 12 should read: Find 14" '-' 14« over 10• 

then over Ri • (p ;:;; 2). then for aII P. by (5.12); then find.--. over 10• by Theorem 12. 
(We must know (11.15).) In Theorem 13. (a). add: ~" = 0 if O{,-") is acyc1ic. Rela­
tion (14.9) follows directly from (14.4). After (25.7). add: P '-'1« = P + «. 

I Augmentable in Tucker. Ann. Math .• 34,191-243 (1933). . 
3 See Tucker. these PROCBBDINGS. 25,371-374 (July. 1939). The theory was devel­

oped independently by S. Lefschetz and myself. 
4 Thiscase ofthe theory isdue tode Rham; see Comm. Math. Helv .• 4,151-157 (1933). 
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1. Introduction.-We give here a brief sketch of some new results in the 
theory of sphere-bundles;l in particular, further properties of the charac­
teristic classes, a duality theorem, theorems on tangent and normal bundles 
to a manifold, and some examples; The results will be published later in 
book form. 

2. Fibre-Bundles.-Let So be a space, and G, a group of homeomorphisms 
of So into itself. Then over any space K, the base space, with neighbor­
hoods Ui, we may define afibre-bundle SB(K) as follows. For p E Ui' let 
Mp) be a homeomorphism of So into a set of points S(P). Let S(p)·S(q) = 
o if P ~ q. Let @5(K) be the space of all points on all S(P), the total space 
(gefaserte Raum). Let ~i(P, q) be the imageof q in So under ~;(p). For 
p E Ui' Ujo set ~ij(P, q) = ~ ;1(p, ~j(P, q)); assume ~ij(P) E G for each p, and 
that it varies continuously with p. Then a topology is easily defined in @5. 
The part @5(Ui) of @5 over Ui is a product Ui X So. 

If So is a set of II- points, and G is the group of permutations, we obtain the 
covering spaces of K with II- sheets. If So is a subgroup of a continuous 
group Ra, and G = So, then the left (or right) cosets of So form a spaee K 
(factor group if So is normal); the total space is Ro. If So = So· is a JI­

sphere, and G = G" + 1, the orthogonal group, we have a sphere-bundle. Ii 
So is a veetor spaee, and G, the affine or orthogonal group, an equivalent 
theory is obtained. 

3. Partuular Coördinate Systems.-We use this seetion in tb.e proof of 
the duality theorem. Let K be a eomplex with ordered vertiees. We may 
use EO', defined over closed eells 11. (See TP.) We may ehoose them so 
EO' = ~O" if 11 and 11' have the same first vertex. Let P' be a small closed 
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region in K surrounding all Da(ur, u'), u' of any dimension (see 1, §2); 

set (! = K - P. Then if K' is the r-dimensional part of K, and eI. " ., 
e. + 1 are the unit points of So', 

(p E r/·u·u', i = 1, ... , p - k). 

Note that cf>i(P) = ~", - 1(P, ei) (p E any u' -1, i = 1, ... , p - r + 2) defines 
orthogonal projections of K' - 1 into ~. 

4. Characteristic Classes. -Choose cf>h •.. , cf>, _ r + 2 as above over K' - 1; 
then for each u', studying these on ()ur gives wr'ur, which is an integer 
mod 2 if r = 1 or r ~ p is even, and an integer otherwise. W' is a cocyc1e 
whose c1ass W' is an invariant of 513; the W' characterize 513 if p ~ 1 or dim 
(K) ~ 3 (see TP). We may use a general type of subdivision of the poly­
hedron K in defining the W'. 

If 513 is not orientable (TP, §4), and K' is obtained from K by replacing 
[u': ur + lJ by - [ur: u' + 1] when ~", and ~"r + 1 give opposite orientations to 
the S(p) (p E ur ) (see TP, p. 793, footnote), then K' is locally isomorphic 
with K, and W' = Wl. We call K' the complex associated witk 513. The 
characteristic c1asses are taken in K'; the theorems above hold still. 

If f maps K l into K 2, and 5132(K2) is defined, then a bundle 513l(Kl) is de­
fined (TP, §8), and W{ = j'W{ (f' = dual off). 

If p = 2, dim(K) = 4, and Wl = 0, W2 = 0, then an invariant character­
izing 513 is obtained as follows. A triple cf> = (cf>h cf>2, cf>3) of orthogonal pro­
jections of K3 into ~(K3) exists. Let 4.>(p) (p E K3) map So into S(p) so that 
4.>(p, ei) = ei (i = 1,2,3). For each u4, set 

This maps ()u4 into the orthogonal group G3; as G3 is homeomorphic with 
projective 3-space p3, this defines an integer D4·u4, the degree of w".· 
D4 is a cocyc1e. If we identify two cocyc1es if they are cohomologous, or 
differ by a cocyc1e of the form Xl '-' Xl '-' Xl '-' Xl (XI a l-cocyc1e), 
the c1ass determined is the invariant. 

The c1asses ~ + 1 are determined from the others as follows (see 1, §11): 

(if p ~ 2r). 

5. On Mappings into G' + I.-In the theorem just stated, and in the 
duality theorem, we need the following (and other more complicated) 
theorems. (a) Letf map u' into G" + 1 so that if cf>(p) = f(p, ei) , then cf>(p) = 
ei in ()u'; let cf> be of degree 01. Let ift map u" into So" with the degree (J, 
and let ift(p) = el(P E ()u"). Then 8(P) = f(P, ift(P)) is of degree 01 + (J. 
(b) Takef as before; then cf>'(P) = f- l(p, ei) (the pointof So mapped into ei 
by f(P)) is of degree - 01. (Use (a).) (c) Let f map u" into G" + 1, let cf> 
map ()u' into So' -1 with the degree 01, and suppose f(P, cf>(P)) = ei (p E 
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()u"). Then 1/!(p) = f(P, e' + 1) maps ()u' into the St - 1 orthogonal to ei 
with a degree = a (mod 2). 

6 .. The Duality Theorem.-Given bundles 58l'(K) and 58s"(K), there is a 
unique1y determined bundle 58å(K), their product (II = }. + p. + 1; see TP, 
p. 796); thus if M'" c: M", the tangent times the normal bundle gives the 
part of the tangent bundle of M" over M"'. The formula for the character­
istic c1asses of .583' is 

w { = L: W Ii v W { - i, reducing mod 2 if necessary. 
i 

(See §4 and 1, §12; we use WO = sum of vertices.) The proof is very 
difficu1t if r ~ 4. We use the special ~1 ... of §3 in .581, and ~2 ... in 582, with a 
replaced bya' < a, SO theP1 andP2 wi11 bein "generalposition" (see 1, §5). 
Theprojections into @)s(K" - 1) are defined successive1y over Q10, Q11, .... 
For each 0"', they are now deformed in ()uF into a simpler position., except in 
each Af = p/P{ - 1- i'UF - 1 (uF - 1 = face of uF opposite first vertex of uF). 

The terms shown come from the A', two coming from AF - 1. The results of 
§5 and the products of 1, §6, are needed. 

REMARK. We do not know whether or not the individual terms W / ;;:;;­
W{ - 'have topologicial significance. 

Reducing everything mod 2, write, for any .58, the formal power series 

W = L: wii, W = l/W = L: w't'; 
i i 

then 

WO = 112, W1 = W1, W2 = W2 + W1 '-' W1, 

etc. The duality theorem gives then, as W N = W /Wi-, etc., 

7. Tangent Bundles.-Let K he a simplicial suhdivision of the manifold 
M", with ordered vertices. Each p in K may be written unique1y as p = 
" fIA.(p)x).., if P E X). •.• XII' Define L...J... 0 , 

These are continuous in K, and the first r are independent except in K" - 1 

(any r). If K* is the usual complex dual to K, these may he used to define 
W", a cocyc1e in K*. Its dual is a characteristic cycle C" - F in K', the com­
plex associated with58 (which wasstudied in 1, §13). Note that C" - (2r + 1) 

= !C>wC" - 2r. The value of CS·us ($ = n - r, US = X). ... x).) is as fol-o S 
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lows. Let K l be the subcomplex of the closed star of US containing all 
vertices x. with 

As > i > As _ 1 or As _ 2 > i > As - 8 or .... 

(This includes all vertices below Ao if s is even.) Then cs.qS = 1 - x(Kl ) 

(X = Euler-Poincare characteristic), or this mod 2. 
From this we prove: Ii K is the first derived of a simplicial subdivision 

of M, then CS is the sum of all s-simplexes of K (properly oriented if integer 
coefficients are used). 2 

In the proofs of the following theorems, we study the classes over sub­
manifolds of the given manifold, and use the duality theorem and results 
from §8. For M'" c: M", letW mean thepartofWTr(M") in M"'. 

Ii a closed M'" can be imbedded in E' (with or without singularities), then 

O - W ,,- ml - "Tlri W ,,- m -. - W ,,- m - N 2-.t..." ....... T - T . 

Hence WTm = 0 always. This gives, if (X)2 = X ....... X, etc., 
closed M2: w212 = (Wl)2; closed MS: (Wl)8 = 0; 

closed M4: w412 + (W2)2 + W2 ....... (Wl)2 + (Wl)4 = 0; etc. 

In any M2, for any l-12-cocycleXl, Xl ....... Xl V"\ Xl ....... Wl. In any M8, 
W2 = Wl ....... Wl; hence (Stiefe1) for orientable M8 (closed or not), the 
tangent bundle is simple. In any orientabIe M', W8 = O. (The proof 
uses facts from §10.) For any 2-12-cocycle X2 in any M', X2 ....... X 2 V"\ X2 
....... W2. For any orientable M4 in an orientabIe M'", WT ' = WN'. 

8. Normal Bundles.-For any M'" in any M", W N" - m is the intersection 
of M'" with itself in M", which is a cohomology class of the complex associ­
ated with thenormal bundle; if M"'isclosedandM" = E', then W N" - ml2 = 
0, and if also M'" is orientable, then W N" - m = O. Compare PC, §20, and 
TP, p. 795. 

Ii Mm is mapped regularIy into M", but with singularities, we may de­
form um slightly into M,m, and consider the intersections of the q' with a 
neighborhood of q' in M; then W" - m is the local intersection thus defined. 
For a closed orientabIeM'" c: E', theintersection vanishes, so that thedistant 

. intersection equals the Iocal. This holds mod 2 in the non-orientabIe case. 
Ii n = 2m, and the singularities are isolated points, the distant intersection 
is of course 0 (mod 2); if m is odd, it vanishes, because {qm,q,m} = _ {q,m, 
um}. 

Take an orientable Mm c: E'. Then the normal bundle is simple if m = 
1 or 2, or n = m + 1 or m + 2, or m = 3 and M is closed, or M is a ce11. 
This hoIds if um is mere1y mapped regularly, provided that if n = m + 2, 
then m is odd, and we omit m = 2 if M is closed. 

9. Examples.-Consider a cylinder, the product P = Tt X T'2 of a 
segmen~ and a disc. Let p2 he one end, Iet Ssl be a segment crossing p2, 
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let Q2 be a reetangle cutting through 1" and ending on SI1, and let Sll be the 
eenter of Q2, ending at Po, the eenter of Ss; rather, let these be the sets after 
the identifieations below. (1) Join the ends of 1", and shrink c>P to a 
point; this forms M18 = S1 X S2, with a simple tangent bundle. (2) Join 
the ends, and identify opposite points of c>P; then eharacteristie eycles are 
(mod 2) C2 = Q2, G1 = Sll; :. W2::j::: O. (3) Join theends, refleetingone so 
that p2 is joined to itse1f with orientation reversed, and shrink c>P to a 
point. We obtain M a8, with W2 = O. (4) Join the ends as in (3), and 
identify opposite points of c>P, forming M,3. Now p2 is a projeetive plane, 
and Q2 is a Klein bottle. Interseetions are (mod 2) 

{p2,p2} '" 0, {Q2,p2} '" S21, {Q2, Q2} '" S11 + S11; 

{p2, S11} '" 0, {p2, Sll} '" Po, {Q2, S11} '" Po, {Q2, S11} '" 0; 

eharacteristie classes are 

G2 '" (P2 + QI)I' Gl '" (Sll + S2lh. 
Define SBl1(M,8), with G12 '" p2, GIl", 0, and SB21(M,8), with G22 '" Q2, 

G2l", 0; let the total spaces be Ml', Ml'. We may pretend M,8 is in either 
(beeause Gil = 0). Then 

G18", @l(Q2), G12 '" @l(S11), GIl", @l(Po5; :. GIl ro..J 0; 

G28 '" @l(P2), G22 '" @l(SI1), G21 '" @l(po); :. G21 '" @l(po); 

henee in Ml', W8 ~ 0, W3 ~ o. Henee (see §7) M2' eannot be imbedded in 
w. 

Define SB2(Ma8), with C2 '" p2, and G1 '" S11. Then we may eonsider 
Ma8 c:: Ml = @l(Ma3), and prove (a) M6 is closed and orientable, (b) G2(M6) 
'" @l(P); henee Wa = W3 ~ 0, and M6 eannot be imbedded in ES. 

We may define M8 = @l(So'), with W' = W' ~ 0; henee MS eannot be 
imbedded in E12. 

The eomplex projeetive plane p*' eannot be imbedded in E6, as W2 ~ O. 
(W2 '-" W2 = W'12; W'· p*' = x(P*') = 3.) But it ean be in W. 

For any closed orientable M', and any eoeycles X 2, X' (mod 2) in M', 
we may imbed M' in an M 8C::E17, so that the part over M' of the eharaeter- . 
istie classes of the normal bundle of MSc::E17 are X2 and X 4. Henee we may 
make WN 3 ~ 0 and WN ' ~ 0 also. 

If we put a Klein bottle Q2 in E3, then the distant and local interseetions 
are equal (mod 2); these are WN 1 = W T 1; GT 1 = a elosed eurve in Q2. 
Henee the distant intersection, as a eycle, is a eertain eurve in Q2, as is clear 
in the usual immersion of QI in EH. For p2 in E8, we get the "projective 
line" similarly. 

A direet study shows: If M2 c:: E' is closed (with or without singu­
larities), and G2 is the fundamental eycle of the associated complex (integer 
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coeffi.cients), then W2. 0 = 2 [X(M2) + 2k] for some k; any k may be ob­
tained. Hence if x jö!l 0 (mod 2), then a field of normal vectors never 
exists. Also one imbedding cannot be deformed into another with a 
different W2. O. 

10. Homology Groups 0/ Total Spaces, Etc.-Let K be connected. 
Given S8(K), the homology groups satisfy W(~) ~ W(K), r < 11. kS(P) '" 0 
if and only if for some AP + 1, A" + 1 • W' + 1 = k. (We may use k). = k mod A, 
and AV + 1\)..) For S8 oriented, a (II + 1)-I,.-cycle A in K is the projection 
of such a cycle in ~ if and only if A· w+ 1 = 0).. NowH'(~) may be de­
scribed in terms of V + 1 and properties of kS(P). If p. is the smallest in­
teger such that p.S(p) '" 0, then HP (~) ~ I,. EB H" (K) if and only if for each 
A and each (II + 1)-1). -cycle A, A . W" + 1. 0 mod (A, p.). A mapping / of a 
complex K' of dimension ~ II + 1 into K is the projection of a mapping into 
~ if and only if/'V + 1 = o. 

1 We refer the reader to papers in these PROCEEDlNGS, 21, 464-468 (1935), and in 
BuU. Am. Matk., Soc., 43, 785-805. We denote the latter by TP, and the preceding 
note, by 1. Sphere-bundles were formerly called "sphere-spaces." 

I This was a conjecture of Stiefel, Comm. Matk. Hel"., 8, 40 (1936). 


