
ON THE MAPS OF AN -SPHERE INTO ANOTHER -SlHERE

By HASSLER WHITNEY

1. Introduction. It is well known that to each maplf of an n-sphere S
into another one S (n >= 1 always) there corresponds a number d, the degree of
f, and d] d if f and g are homotopic (see 2). H. Hopf has proved the con-
verse theorem, that if d] d, then f and g are homotopic. The object of this
note is to give an elementary proof of the latter theorem. The methods will be
used and extended in later papers.

In an appendix we give somewhat briefly a proof of the theorem for the case
that d] 0. This is the only case needed in the following paper; the general
theorem then follows from that paper. The second proof is more intuitive
geometrically than the first, but complete details would make it perhaps more
lengthy.

2. On deformations. A deformation of one space S in another S0 is a family
Ct(p) (0 -< _<_ 1, p in S) of maps of S into So, continuous in both variables
together. Given maps f and g of S into So, if there exists a deformation Ct
such that 0 f and 1 g, we say f and g are homotopic. If f is homotopic to
g, where g(p) Po (all p in S), we say f is homotopic to zero, and f may be shrunt
to the point Po.

Suppose S and So are complexes, K0 is a simplicial subdivision of So, and
f maps S into So. Then, for a sufficiently fine simplicial subdivision K of S,
the following is true. To each vertex V of K we may choose a vertex g(V) of a
cell of K0 which contains f(V), so that the vertices of any cell of K go into the
vertices of a cell of K0. This determines uniquely a "simplicial map" g of K
into K0, affine in each cell (see 5); moreover, f is homotopic to g.

3. The degree of a map. Let S be the unit n-sphere in (n ,+ 1)-space, let
K be a siraplicial triangulation of S, and let z be an n-cell of K. We choose
K so that if P1 is a point of z and P0 is the antipodal point of S, each great
semicircle from P1 to P0 intersects the boundary 0 of z in exactly one point.
By pushing along these semicircles, we define a deformation tt of the identity
20(p) - p into a map tl, where tl(p) --- P0 for p in S .

Let zk be a k-cell (/c _<_ n), in fixed correspondence with a k-simplex, and.let
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f map a
k into S’. We say f is standard if ](p) Po, or, k n and for some

affine map
The map f of an n-complex K into S is standard if it is standard over each
k-cell (]c -< n).
We may orient S by orienting a. Let K be a simplicial triangulation of

the oriented n-sphere S and let f be
be an (oriented) n-cell of Kn. If f(p) Po in an, we set df(an) 0. Other-
wise, there is
gtl((p)) in an; we set df(an) 1 or -1 according as is positive or negative,.
We define the degree of f by
(3.1) d

4. The theorem. In homology theory it is shown how to attach to each map
f of S into S; (both spheres oriented) an integer dy, the degree of the map.
Moreover, if f is homotopic. ’to g, then dl d, and if S and S; are triangulated
and f is standard, then dy is given by (3.1).

Suppose f and g map S into S’, and d/= dg. Then for a sufficiently fine
subdivision K of Sn, both f and g can be deformed into simplicial maps and
hence into standard maps and h. As f and , also g and h, are homotopic,
d dt. By Theorem 1 below, is homotopic to b; hence f is homotopic to g.
Therefore this theorem furnishes the converse of the statements above.
THEOREM 1. If and b are standard maps of S into S, using the same sub-

division K of Sn, and d d then is homotopic to b.
From the proof below, the following corollary is apparet.
COROLLARY. If (V) "b(V) Po for a fixed vertex V of Kn, we can make V

remain at P0 throughout the deformation.
In fact, if n >__ 2, all vertices of K remain at P0. If n 1, we may choose

the chains of cells in 8 so that in no chain do we pass over V; then V is never
moved.
THEOREM 2. For any integer there is a map f of S into S with d] ..
To prove this, subdivide S into a >__ ],[ n-cells. Let map 1’1 of these

cells simplicially into a, positively or negatively according as / > 0 or , 0
(if , 0), and set f(p) 21((p)) in these cells and f(p) Po elsewhere.
Clearly df ,. Note that the degree of the identity map of S into itself is 1.
The remainder of the paper is devoted to the proof of Theorem 1.

5. CoSrdinates pt in a cell. Any simplicial complex K is homeomorphic
to a complex/n in euclidean space whose cells are straight. Using -nK we de-
fine straightness in Kn, the center of a cell (i.e., center of mass of its vertices),
etc. Hence an "affine map" of one cell into another has meaning. Let a be
a cell of Kn, and a, the center of a. For each point p of the boundary 0a of a
let pt be the point of the segment ap such that apt/ap t.

There are (n 1)! standard maps of a into S with (p) P0.
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6. Certain deformations of simplexes. We prove first a combinatorial lemma,
needed in Lemma 2.

LEMM/k 1. Any even permutation of the letters goal a, (n >= 2) may be made
by means of a succession of cyclic permutations, each on three of the letters.

This is clear if n 2; then any even permutation is cyclic. Suppose n > 2,
and let B a, a, be any even permutation. If am n, bring a, to the
right end by a cyclic permutation; bring a_ next to a. Suppose a0 0.
We then perform the two cyclic permUtations

ao ago aa._l aan ago aan-i aoaa----> ago ao aa. aa._.
If n >- 4 and a, is not now in the second place, we perform two cyclic permuta-
tions to bring it there, again interchanging a._ and a., etc. When a.0,
a._8 are in their correct places, a.._2 is also; as B is even and the above permuta-
tions are even, a,._ and a.. are also in their correct positions.
LEMMA 2. Let r" ao... am be a simplex, and let ao...a be an even

permutation of its vertices. Then there is a deformation of a in itself, such that
o(p) p, l(as) a,. l is ane, and for each is a homeomorphism both in
a" and in its boundary.

If n 0 or 1, the lemma is trivial. Suppose that n 2; say a.oa,a,
alaao. Let ,(a) be the point p of aa+ (setting 2 1 0)for which
ap/aa+ t. Let , map the segment aa+l into the broken line
(a+) so that, if the line were straightened, the map would be linear. For any
point p (see 5) interior to a, set (p) ((p)). As (a) a center
of mass of a*, l is easily seen to be affine.
Now suppose n > 2; consider first a cyclic permutation, changing say aoala,

’ and let [p, q, u] for p in a, q in a’,into aaao Set a aoaa. a a,
0 __< u <= 1, be the point r of the segment pq for which pr/pq u. Define
as above. For any point [p, q, u] not in z, set t[p, q, u] [t(p), q, u]. We
show that is a homeomorphism. Suppose t[p, q, u] t[p’, q’, u’]; then
[,(p), q, u] [t(p’), q’, u’], which implies t(p) t(p’), q q’, u u’; as

is a homeomorphism in , p p’ also. Further, given [p, q, u] and t, we may
find a p* for which ,(p*) p; then [p*, q, u] [p, q, u]. The other proper-
ties of are clear, and the lemma for this case is proved. Now take any permu-
tation. We may obtain it by cyclic permutations as in Lemma 2; the cor-
responding deformations together give the required deformation.

7. Two types of deformations of S in S’. Let ’ be a standard map of S
into S, and let and ’ be oriented n-cells of K with the common (n 1)-
face r"

o" goal ana goal an, r al an

(a) Suppose d,(z) 1, d,(z’) O; we shall deform ’ into " so that d,,(a)
O, d,,(z’) 1, leaving K (z -t- a’) fixed.
(b) Suppose d,(z) 1, d,(a’) -1;we shall obtain d,,(z) d,,(a’) O.
This is so if 0 < u < 1, as we may assume.
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In each case " will be a standard map.
or.if n 1, then 1(a) Set,l-- aoa as, aoa as,

Let 01 and t be the affine maps of 1 into r and 1 determined by sending a0
into al and a respectively. For each p in , let a(p, u) run linearly along the
segments p(p) and 81(p.)8(p) as u runs from 0 to 1 and from 1 to 2. Set

[4/[a(p, u- t)] (t

_
u),(7.1) ’t[a(p, u)] [’[a(p, 0)] (t > u),

and ’t (p) =- ’(p) in K" ( + a’). As ’(p) P0 in 01 + 0,, this is clearly
a deformation of ’ 0 into a map " 1. The map " in a’ is obtained
from the map ’ in by replacing a0, al, aN (which form

as (which form -’); hence do,,(z’) do,(z). Also do,,(a)
P0 in a, and (a) is proved.

(b) Let h and ),’ be the affine maps of and a’ into ’ such that ’(p)
21(},(p)) in and (X’(p)) in ’. Say a bo b,

(a,) b,, and h’(a) b, k’(a,) b, (i > 0).

As do,(a’) -do,(-a’), and hence

do,(a) d(aoal as) -do,(a’) do,(aal a),

bo b, is an even permutation of bo b.. Applying Lemma 2, we find
a deformation ’t of a’ in zo such that , M is affine, and

Xl(ao) X(ao), h’(a,) X(a,) (i > 0).(7.2)

Set

(7.3) (P) [!(p) p in K
p _in a!.a!’

Then as 21((p)) Po in Oa’, is a deformation of ’ into a map * ’.
For each p in , let t(p, u) be the point q of the segment aop of such that

aoq/aop u, and .let !(p, u) be the corresponding point of the segment ap in !.
As h and ), are affine, (7.2) and (7.3) give

(7.4) *[/(p, u)] *["(p, u)] (p in r, 0 =< u

_
1).

We deform * into !! by setting

(7.5) t*[(p, u)] t*[t’(p, u)] O*[/(p, (1 t)u)],

and O(p) *(p) in K ( - ’). This is clearly a deformatiori; (.4)
shows that -= *. As O"(p) -= b*(p) P0 in + z’, do,,(a) d,(a’) 0.

8. Proof of Theorem 1. Suppose there are cells of K mapped positively
over S by , and also cells mapped negatively. Then we can find a chain
0, of adjacent n-cells of K" such that

do(z0) 1, do(z) 0, do(z-) 0, do(a,) 1.
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Using (a), 7, we deform in 0 -{- al, then in 1 - as, etc.; then, using (b), 7,
we deform the map in -1 - . The new map ’ has d,() 0 (i 0,

). Continue in this manner till no cells are mapped positively or none
are mapped negatively over S; for definiteness, say the latter holds. Do the
same for . The new maps * and b* each have exactly d d cells mapped
positively over S.

Suppose d,() d,() for some . Then let a0, , be a chain of
adjacent n-cells such that

d,(0) d,() 1, d,(a) d,,(a0) 0,

(0 < i < ).

Let 0, zki, zk be the clls of the chain for which d, 1. Using (a), 7,
we deform * over zk -{- zk+ etc. until we have d() 0, d(z) 1;
another succession of deformations makes d;(zk_l) 0, d(z) 1, etc.
Finally d**(z0) 0, d**(z) 1 (all i), and d,,(z) 1. d,.(z) differs from
do() over fewer cells than d,(z). Continuing in this manner, we deform *into a map ’ with d,(z) dto(z), all z. ’ and * are standard. Applying
Lemma 2, we.deform ’ over each n-cell where necessary, to obtain b*. (Com-
pare the first half of the proof of (b), 7.) This completes the proof.

Appendix

Let f be a map of S into S with the degree 0. We first deform it into a
simplicial map and then into a standard map (see 2, 3). To shrink b to
a point is equivalent to extending through the interior R of S (see the fol-
lowing paper, 4). Let 1,..., and , .., be the simplexes of S
mapped positively and negatively over S respectively. Let T be a tube join-
ing to z inside R. We may choose these so no two intersect, and also (to
prove the corollary) so no one cuts the radius of R to the vertex V. Let a0 a
and a0 a be positive and negative orientations of z and respectively,
such that )(a) b and h’(a) b determine simplicial maps of and into
a0, which in turn determine in and z. Now carry through T to z,
turning it so that a goes into a let gt(o’) be the position of z after the time t.
We do this so that gt(o’) does not intersect gt,(z) if t’. (We are using a
deformation theorem on simplexes in euclidean space, similar to but simpler than
Lemma 2.) The definition of in R is as follows. For p not in any gt(o’), set
(p) P0. For p in g,(z), choose q in so that p gt(q), and set (p) (q).
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