THE MAPS OF AN 7-COMPLEX INTO AN 7n-SPHERE
By Hassuer WHITNEY

1. Introduction. The classes of maps of an n-complex into an n-sphere
were classified by H. Hopf' in 1932. Recently, W. Hurewicz’* has extended
the theorem by replacing the n-sphere by much more general spaces. Freu-
denthal’ and Steenrod* have noted that the theorem and proof are simplified
by using real numbers reduced mod 1 in place of integers as coefficients in the
chains considered. We shall give here a statement of the theorem which seems
the most natural; the proof is quite simple. As in the original proof by Hopf,
we shall base it on a more general extension theorem.

The fundamental tool of the paper is the relation of “coboundary’”’;® it has
come into prominence in the last few years.

In later papers we shall classify the maps of a 3-complex into a 2-sphere and
of an n-complex into projective n-space.

I. Elementary facts

2. Boundaries and coboundaries. Let K be a complex, with oriented cells ¢}
(not necessarily simplicial) of dimension r, r =0, ... ,n. Letd;; =1, —1,0r0
according as o7 is positively, negatively, or not at all, on the boundary of o}.
An r-chain C” is a linear form Za,o;, the a; being integers (or elements of an
abelian group). The boundary (or contraboundary) and coboundary of C™ are
defined by

2.1) 6(2 aia'z) = Z o dia7 5(2 anr;) = Z o 6:?_10;4_1.
i ] T t,]

As in the ordinary theory, we say C" is a cocycle if its coboundary vanishes,
and C" is cohomologous to D", C" — D, if C" — D" is a coboundary. The relation
86C" = 0 (easily proved; equivalent to 99C" = 0) says that every coboundary
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isa cocycle. Hence we may define the difference group of the group of r-cocycles
over the group of r-boundaries, forming the r-th cohomology group.®

3. Normal maps of cells into S;. Let Sy be the (oriented) unit n-sphere in
(n 4+ 1)-space. Let f map the (oriented) n-cell ¢” into S5. We say f is normal
if f(p) = Py, a fixed point of S, for p in the boundary 8s" of ¢”. This is equiva-
lent to identifying the points of d¢" in ¢", forming an n-sphere 8", and mapping
this sphere into S;. Hence we may define the degree’ d;(¢”). If f and g are
normal in ¢" and d;(¢") = d,(¢"), then we may deform f into g, keeping d¢"
at Py, by II, corollary.

Any map f of ¢ into S7, r < n, may be shrunk to P, : we deform f into a
simplicial map, and apply ©: (see II, §3). P, being assumed a vertex of Ky,
if 8¢” is at Py, it remains there during the deformation.

If K is any complex, let K be the subcomplex of K containing all its cells of
dimension < r. The map f of K into Sy is normal if f(p) = P, for p in K™
Suppose ¢" or 8" is subdivided into cells ¢;, and f is a normal map of it into Sg.
Then the d;(¢7) are defined, and

(31) df(a") or df(S”) = 2’: dj(d'?)

To show this, subdivide ¢" or S™ further, so that we can deform f into a sim-
plicial map, and apply @ (see II, §3). The above quantities are unchanged,
and (3.1) is now a consequence of II, (3.1).

4. On deformations. We shall need the following elementary results. Let
K X I be the product of K and the unit interval I, consisting of all pairs (p, t),
pin K,0 =<t £ 1. The deformation ¢.(p) of K in Sy is equivalent to the map
®(p, t) = ¢.(p) of K X I into Sy. Hence ¢, is homotopic to ¢, if and only if &,
defined over K X 0 4+ K X 1, may be extended over K X I.

Let f map the boundary 90" of 6" into Sg. Then f is homotopic to zero (in d¢”)
if and only if it may be extended through ¢". For the deformation f.(p) (p in
dc’) into fi(p) = P is equivalent to the map f(pi_.) (see II, §5) = fu«(p) of ¢
into S7.

Lemma 1. If ¢ = ¢ maps ¢” into S, and the deformation ¢: of ¢ is defined over
dc”, then s definition may be extended over o".

We define ¢, in ¢" by

¢(p(l+t)u) (O sSt= ;’l; - 1),

(4.1) ¢t(pu) =
¢, 1(P) (% —1sts 1).

¢ This is the character group of the homology group with numbers mod 1 as coefficient
group.
7 See pp. 46-50 of this volume of this Journal; we refer to this paper as II.
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LemMma 2. Any map ¢ of K into Sy may be deformed into a normal one; all cells
already at P, we may keep fixed.

We deform the map successively so that K°, K, ... , K" are at P,. Sup-
pose K" 'isat Py (if 0 < r < m). As each d¢” is at Py, we may deform each
o into Py, keeping 8¢” at Py (see §3). This deformation, defined over K’, is
extended over all (r + 1)-cells, (r + 2)-cells, etc., by Lemma 1. It is now de-
fined over K, and K" is at Py .

5. Parts of cocycles. Let K’ be a subcomplex of K. Any r-chain C of K
may be written C’ 4+ C”, the coefficients of cells of K — K’® [of K’] being zero
in ¢’ [in C”"]. We say C’ is part of C. Clearly the chain C’ in K’ is part of a
cocycle if and only if §C’ cobounds in K — K, i.e., if and only if for some chain
C"in K — K’,8C’ = §C”. The (r + 1)-chains are chains of K.

6. The product K X I. We subdivide K X I (see §4) by means of all cells
ot X I (¢iin K). Orient the cells o7 X 0 and ¢} X 1 like the o7, and orient each
(r + 1)-cell o7 X I so that ¢; X 1is on its boundary positively. Then

6.1) (i X0) = —0i XTI+ .-, (i X 1) =i XTI+ .-+,
(6.2) 8ei X I) = Z i (o X D).
To prove (6.2), say 6(o} X I) = Ajf' (o™ X I) 4+ ---. Then

86(c% X 1) = 8[(oF X I) + E i (oF™ X 1)]

(A:;H—l— ar+1)( r+1 X I) + A 0,

and 477" = —a}]". The first equation in (6.1) is clear for r = 0; it is proved in
succession forr = 1,2, - . . by considering the coefficient of ¢ X I in 66(s7 " X 0).

TeroreM 1. Let Cy and C be n-chains in K = K", and let Dy and D, be the
corresponding chains in K X 0 and K X 1. Then D, + D, (as a chain in K X I)
1s part of a cocycle if and only if Co —~ C1in K.

Say
Co = D aio}, Ci = D bist.
Consider any n-chain
(6.3) D = Do+ Di + 2 hi(ei™ X I);

then, by (6.1) and (6.2),
8D = — Y aio? X I) 4+ X bile? X I) — X h;dfi(e? X I)
> [ — ai — X hy oo} X D).

(6.4)

8 K — K'is in general not a subcomplex of K| i.e., is not closed in K.
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Suppose Dy + D is part of a cocycle D; then (6.4) set = 0 gives
5(2 hjﬂ';’l_l) = Zh]‘a;‘ia? = E (bi — ai)oi = C1 — Ch,
7 ) %

and Co C;. Conversely, suppose C; — Co = 6(D_h;o} ") ; then the last set of
equations shows that the bracket in (6.4) vanishes, and hence D, defined by
(6.3), is a cocycle.

II. The theorems

7. The extension theorem. We shall prove

TrEOREM 2. Let f be a normal map of the subcomplex K’ of K = K™ into S3.
Then f can be extended over K if and only if the chain
(7.1) D= 3 dal)o}

i ’
[ in K

in K’ is part of a cocycle.
First suppose D’ is part of a cocycle D = 3, a7

(7.2) a; = dy(o}) (o7 in K'), a5 =0 (allj).

f maps (K")" " into P, ; set f(p) = Py in K™™' Let f map each ¢7 not in K’
into Sg with the degree a; (see I1, Theorem 2); then (7.2) holds for all 7. Con-
sider any (n 4 1)-cell o7 %" of K — K’. Using (3.1), we find

d (907" = d,(z 3?,*10?) = > 05" d(h)

(7 3) - Z a;&j‘i"lai = 0.
Hence f, considered only in d¢7*", is homotopic to zero (II, Theorem 1), and f
may be extended over o7t (see §4). Thus we extend f throughout K.

Now suppose f is extended throughout K. By Lemma 2, we deform f into
a normal map, leaving (K’)"™", and hence also K’, fixed. Call the new map f
again, and define the a; and D by (7.2). Then D’ is part of D. By §4, f, in
each 8s7 ", is homotopic to zero; hence (7.3) holds, and D is a cocycle.

Remark. If fis any map of K’ into Sy, we may deform it into a normal map
¢, by Lemma 2. From Lemma 1, it is apparent that f can be extended over K
if and only if ¢ can be. Define D’ by (7.1). By Theorem 2, 8D’ has zero co-
efficients over cells of K’, and is therefore a chain, which is clearly a cocycle, of
K" = K — K'. By Theorem 3, Remark, if f is also deformed into the normal
map ¢, defining the chain C’ of K’, then C’ «~ D’ in K’, and hence for some
Hin K',

C'— D' = (bH) = 6H — (5H)".

Therefore 8C' — 8D’ = 8[(6H)"'], which lies in K””. Thus the cohomology class
in K" of 8D’ is uniquely determined by f, and we have (using Theorem 2): f may
be extended over K if and only if its cohomology class thus defined in K'' is «~ 0
in K.
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8. The classes of maps of K" into Sy. If we put two maps of K" into Sg
into the same class if they are homotopic, the maps fall into classes, the homotopy
classes. To any normal map f of K" into Sy we let correspond a chain C; as
in (7.1).

TuroreM 3. The normal maps ¢ and ¢ of K = K" into Sy are homotopic if
and only if Cy — Cy .

Set ®(p X 0) = ¢(p), ®(p X 1) = ¢¥(p); then ¢ is homotopic to ¢ if and only
if ® may be extended through K X I (see §4). If Dy, and D; correspond to
Csy and Cy in K X 0 and K X 1, Theorem 2 shows that this is possible if and
only if D’ = D, + D, is part of a cocycle in K X I. By Theorem 1, this is true
if and only if Cy « Cy .

Remark. If K is of any dimension and ¢ and ¢ are homotopic, then Cy and
Cy are cocycles and Cy ~~ Cy. The first statement follows from Theorem 2;
the second follows on considering ¢ and ¢ in K" alone.

TuroreM 4. The classes of maps of K" into Sg are in (1 — 1) correspondence
with the elements of the n-th cohomology group of K with integer coefficients. The
correspondence s given by deforming the map f into a normal one and taking the
cohomology class of the resulting cocycle. In particular, f is homotopic to zero if
and only if the corresponding cohomology class is zero.

The deformation is possible, by Lemma 2. The cohomology class is uniquely
determined by f, and non-homotopic maps determine different classes, by
Theorem 3. Finally, to each cohomology class corresponds a map; we take a
cocycle C of the class, and let f map each ¢" normally into S; with the degree
equal to its coefficient in C (see II, Theorem 2).

9. The Theorem of Hurewicz. Let @, be a fixed point of a space S. Then
the classes of maps of S into S for which P, goes into @, form an abelian group,
the r-th homotopy group of S.° If f maps ¢" [or Si] into S, and f(p) = @, in
30"[f(Py) = Qo], we may call the corresponding homotopy element the degree
d;(e™)[d;(Sg)]of f. (If 8 = 87, the n-th homotopy group is the group of integers,
as was seen in II, so that this is a natural generalization of the term degree.)
The fundamental formula (3.1) holds still. The theorems of the preceding
paper become matters of definition. The proofs in the present paper hold with-
out change, and we have a new version of the Theorem of Hurewicz:

TueoreM 5. Theorems 2, 3 and 4 hold if we replace S by any locally con-
tractible space Sy whose r-th homotopy groups vanish for r < m, and replace the
integers by the n-th homotopy group of S as coefficient group in the chains and co-
homology classes.

Hurewicz also shows that in the above space S, the n-th homotopy group is
the same as the n-th homology group with integer coefficients.

HarvARD UNIVERSITY.

9 See Hurewicz, loc. cit. We assume a knowledge of the fundamental properties of
homotopy groups.



