
THE MAPS OF AN n-COMPLEX INTO AN n-SPHERE

BY HASSLER WHITNEY

1. Introduction. The classes of maps of an n-complex into an n-sphere
were classified by H. Hopf in 1932. Recently, W. Hurewicz has extended
the theorem by replacing the n-sphere by much more general spaces. Freu-
denthal and Steenrod have noted that the theorem and proof are simplified
by using real numbers reduced mod 1 in place of integers as coefficients in the
chains considered. We shall give here a statement of the theorem which seems
the most natural; the proof is quite simple. As in the original proof by Hopf,
we shall base it on a more general extension theorem.
The fundamental tool of the paper is the relation of "coboundary"; it has

come into prominence in the last few years.
In later papers we shall classify the maps of a 3-complex into a 2-sphere and

of an n-complex into projective n-space.

I. Elementary facts

2. Boundaries and coboundaries. Let K be a complex, with oriented cells a,’.
(not necessarily simplicial) of dimension r, r 0, n. Let 0 1, -1, or 0
according as a- is positively, negatively, or not at all, on the boundary of a;.
An r-chain C is a linear form Zaa, the a being integers (or elements of n
abelin group). The boundary (or contraboundary) and coboundary of C are
defined by

(2.1) 0 a a0

As in the ordinary theory, we ay C is a cocycle if its coboundary vanishes,
and C is cohomologous to D, C D, if C’ D is a coboundary. The relation
C 0 (easily proved; equivalent to OOC 0) says that every coboundary
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is a cocycle. Hence we may define the difference group of the group of r-cocycles
over the group of r-boundaries, forming the r-th cohomology group.

3. llormal maps of cells into S’. Let S be the (oriented) unit n-sphere in
(n W 1)-space. Let f map the (oriented) n-cell a into S. We say f is normal
if f(p) =-- Po, a fixed point of S’, for p in the boundary 0a of a. This is equiva-
lent to identifying the points of 0a in an, forming an n-sphere S, and mapping
this sphere into S. Hence we may define the degree ds(a). If f and g are
normal in a and ds(a) dg(a), then we may deform f into g, keeping 0a
at P0, by II, corollary.
Any map f of a into S, r < n, may be shrunk to P0 we deform f into a

simplicial map, and apply 2 (see II, 3). P0 being assumed a vertex of K,
if Oa is at P0 it remains there during the deformation.

If K is any complex, let K be the subcomplex of K containing all its cells of
dimension -< r. The map f of K into S is normal if f(p) Po for p in Kn-1.
Suppose a or S is subdivided into cells aS, and f is a normal map of it into S.
Then the d](a) are defined, and

(3.1) d](a) or d](S’) . ds(a).

To show this, subdivide a or S further, so that we can deform f into a sim-
plicial map, and apply 21 (see II, 3). The above quantities are unchanged,
and (3.1) is now a consequence of II, (3.1).

4. On deformations. We shall need the following elementary results. Let
K X I be the product of K and the unit interval I, consisting of all pairs (p, t),
p in K, 0 =< =< 1. The deformation t(p) of K in S is equivalent to the map
(p, t) t(p) of K I into S. Hence 0 is homotopic to 1 if and only if ,

defined over K X 0 K X 1, may be extended over K X I.
Letf map the boundary Oa of a into S. Thenf is homotopic to zero (in Oar)

if and only if it may be extended through ar. For the deformation ft(p) (p in
Oar) into f(p) =- P is equivalent to the map f(p-t) (see II, 5) ft(p) of a

into S.
LEMMX 1. If o maps a" into S, and the deformation of is defined over

Oan, then its definition may be extended over a’.
We define t in a by

I(p’+)’) /O --< --< 1 1)’u-
(4.1) (P)

=+_(P) (-X__<t-<l).
This is the character group of the homology group with numbers mod 1 as coefficient

group.
See pp. 46-50 of this volume of this Journal; we refer to this paper as II.
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LEMMA 2. Any map ofK into S may be deformed into a normal one; all cells
already at Po we may keep fixed.
We deform the map successively so that K, K1, Kn-1 are at Po. Sup-

poseKr-lisatP0(if0 < r < n). As each Oa is at P0 we may deform each
a into Po, keeping 0at at P0 (see 3). This deformation, defined over Kr, is
extended over all (r 1)-cells, (r 2)-cells, etc., by Lemma 1. It is now de-
fined over K, and K is at P0.

5. Parts of cocycles. Let K’ be a subcomplex of K. Any r-chain C of K
may be written C’ + C", the coefficients of cells of K K’8 [of K’] being zero
in C’ [in C"]. We say C’ is part of C. Clearly the chain C’ in.K’ is part of a
cocycle if and only if tiC’ cobounds in K K’, i.e., if and only if for some chain
C" in K K’, tiC’ tiC". The (r 1)-chains are chains of K.

6. The product K X I. We subdivide K X I (see 4) by means of all cells
a X I (a. in K). Orient the cells a. X 0 and a. X 1 like the a., and orient each
(r + 1)-cell a. X I so that a X 1 is on its boundary positively. Then

(6.2) (a," X I) ,a’+(a;+ X I).

r+l[ r+lTo prove (6.2) say (a XI) =A ka XI)+ Then

+ +’ x 1) + o,
and A+t ar+

i -i The firs equation in (6.1) is clear for r 0; i is proved in
succession for r 1, 2, by considering he eoeeien of g X I in (- X 0).
Tog 1. Let C0 and C be n-chains in K K, and let Do and D be the

corresponding chains in K X 0 and K X 1. Then Do + D (as a chain in K X I)
is part of a toe,de if and onl if C0 C in K.

Consider any n-chain

(6.3) D D0 W Dx W h(a- X I);

then, by (6.1) and (6.2),

(6.4) [b,- a,- h 0](a$ X I).

K K’ is in general not a subcomplex of K, i.e., is not closed in K.
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Suppose Do - D is part of a cocycle D; then (6.4) set 0 gives

h(r- hiOa (b a)a C Co,
i,i

and Co C. Conversely, suppose C,- C0 ti(h.a-) then the last set of
equations shows that the bracket in (6.4) vanishes, and hence D, defined by
(6.3), is a cocycle.

II. The theorems

7. The extension theorem. We shall prove
THEOREM 2. Let f be a normal map of the subcomplex K’ of K K’+ into S.

Then f can be extended over K if and only if the chain

(7.1) D’-- d](a$)a.
in K

in K’ is part of a cocycle.
First suppose D’ is part of a cocycle D aa"

..+ 0 (all j)(7.2) a, d(, (, in K’), a,,

f maps (K’)"- into P0 set f(p) Po in K-. Let f map each $ not in K’
into S with the degree a (see II, Theorem 2); then (7.2) holds for all ’. Con-
sider any (n + 1)-cell a+ of K K’. Using (3.1), we find

d](Oa+) df oii a, .., dy(,
(7.3) +

Hence f, considered only in 0a+, is homotopic to zero (II, Theorem 1), and f
may be extended over g+l (see 4). Thus we extend f throughout K.
Now suppose f is extended throughout K. By Lemma 2, we deform f into

a normal map, leaving (K’) ’-, and hence also K’, fixed. Call the new map f
again, and define the a and D by (7.2). Then D’ is part of D. By 4, f, in
each 0a+, is homotopic to zero; hence (7.3) holds, and D is a cocycle.

Remark. If f is any map of K’ into S, we may deform it into a normal map, by Lemma 2. From Lemma 1, it is apparent that f can be extended over K
if and only if can be. Define D’ by (7.1). By Theorem 2, riD’ has zero co-
efficients over cells of K’, and is therefore a chain, which is clearly a cocycle, of
K" K K’. By Theorem 3, Remark, if f is also deformed into the normal
map b, defining the chain C’ of K’, then C’ D’ in K, and hence for some
H in K’,

C’- D’= (H)’ H- (tiH)".

Therefore tiC’ riD’ /t[(H)"], which lies in K". Thus the cohomology class
in K" of aD’ is uniquely determined by f, and we have (using Theorem 2): f may
be extended over K if and only if its cohomology class thus defined in K" is 0
in
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8. The classes of maps of K into S. If we put two maps of K into S
into the same class if they are homotopic, the maps fall into classes, the homotopy
classes. To any normal map f of K into S we let correspond a chain C] as
in (7.1).
THEOREM 3. The normal maps and b of K K into S are homotopic if

and only if C, C.
Set (p 0) (p), (p 1) (p); then is homotopic to 6 if and only

if )may be extended through K X I (see 4). If Do and D1 correspond to
C, and C in K X 0 and K 1, Theorem 2 shows that this is possible if and
only if D’ Do + D1 is part of a cocycle in K I. By Theorem 1, this is true
if and only if C, C.

Remark. If K is of any dimension and and are homotopic, then C, and
C are cocycles and C, C. The first statement follows from Theorem 2;
the second follows on considering and in K alone.
THEOREM 4. The classes of maps of K into S are in (1 1) correspondence

with the elements of the n-th cohomology group of K with integer coefficients. The
correspondence is given by deforming the map f into a normal one and taking the
cohomology class of the resulting cocycle. In particular, f is homotopic to zero if
and only if the corresponding cohomology class is zero.
The deformation is possible, by Lemma 2. The cohomology class is uniquely

determined by f, and non-homotopic maps determine different classes, by
Theorem 3. Finally, to each cohomology class corresponds a map; we take a
cocycle C of the class, and let f map each zn normally into S with the degree
equal to its coefficient in C (see II, Theorem 2).

9. The Theorem of Hurewicz. Let Q0 be a fixed point of a space S. Then
the classes of maps of S into S for which P0 goes into Q0 form an abelian group,
the r-th homotopy group of S. If f maps a [or S] into S, and f(p) =- Qo in
O(rn[f(Po) Q0], we may call the corresponding homotopy element the degree
ds(z’)[ds(S)] off. (If S S, the n-th homotopy group is the group of integers,
as was seen in II, so that this is a natural generalization of the term degree.)
The fundamental formula (3.1) holds still. The theorems of the preceding
paper become matters of definition. The proofs in the present paper hold with-
out change, and we have a new version of the Theorem of Hurewicz:
THEOREM 5. Theorems 2, 3 and 4 hold if we replace S by any locally con-

tractible space So whose r-th homotopy groups vanish for r < n, and replace the
integers by the n-th homotopy group of S as coefficient group in the chains and co-
homology classes.
Hurewicz also shows that in the above space So the n-th homotopy group is

the same as the n-th homology group with integer coefficients.

HARVARD UNIVERSITY.

See Hurewicz, loc. cit. We assume a knowledge of the fundamental properties of
homotopy groups.


