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HOMEOMORPHISM AND DIFFEOMORPHISM
CLASSIFICATION OF MANIFOLDS

C.T.C. WALL"

I want to compare the classification problems for four different
kinds of maniiolds. :

(i) Smooth (or dlﬂerentla) manifolds. These are comparatively
familiar mathematical objects: they are Hausdorff topological spaces
with additional structure which can be specified by an atlas of local
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coordinate systems (homecomorphisms of open sets in the manifold onlo
open sets in Euclidean space) in which transformations between

different coordinate systems are always given by smooth (i. . Cc™)
functions. Here we will only consider compact manifolds. /

(i) PL (or pieccwise linear, or combinatorial) manifolds. These are
defined analogously, with the modification that coordinate {rans-
formations must now be piccewise linear—i.e. lincar on cach simplex
for some locally finite decomposition in simplices of the open setin
question. :

(iii) Topological manifolds: here no restriction is made on the ccor-
dinate transformations beyond their being homcomorphisms.

(iv) It is also convenient to have a homotopy-theoretic analogue
of the above. The clue here is provided by the Poincar¢ duality theo-
rem, which holds for all manifolds. We define a Poincaré complex
to be a CW complex which satisfies a suitably strong form of the
Poincaré duality theorem (the detailed definition is somewhat techni-
cal; see Wall [1] or [2]).

A manifold of any of these types determines one of each subsequent
type, in an essentially unique manner:

(i) — (ii) by smooth triangulation (due to Whitehead [1], see

also Munkres [1]),

(it) — (iii) by just ignoring the PL-structure,

(iii) — (iv) by ignoring all but the homotopy type of our manifold
(this step ignores the local nice properties of a manifold to concen-
trate on the global structure). The problem I want to discuss is-ihat of
going in the opposite direction — i. e. imposing stronger structures.
First, we must construct invariants of the various types of structure.

(i). As is well-known from differential’s cometry, a smcoth mani-
fold has tangent vectors, which are assembled in a vector bundle cver M..
the tangent bundle. We can describe {his by saying that the vectors:
which form the fibre over a point P € M correspond diffecmorphically
(by the exponential map) with a neighbourhood of P in M. This bund--
le has structure group the orthogonal group, On, and herce is classi--
fied by a (homotopy class of) maps from M to the classifying space,
BO,, (see e. g. Milnor [1]). .

(ii) and (iii). At thelast international congress, J. Milnor intreduced
the theory of microbundles, which gives analogous results in cases’
(ii) and (iii) (Milnor [4], see also [3], [5]). There are several refinements
and variants of his original definition (see Kister [1], Mazur [2], [3],
Hirsch [1] and Kuiper and Lashof [1]): 1 choose the simplest, a bundle
- with fibre a FEuclidean space of dimension m, and structure group
known as PL,, or Top,, in the two cases: to be thought of as a group of
homeomorphisms leaving the origin fixed. (The former has to be defi-
ned as a semi-simplicial group.) It is shown in the papers cited that
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tangent bundles exist and are unique. Milnor also obtained corres-
ponding spaces BPL,,, BTop,,, maps into which classify such bundles,

(iv). It has been shown recently by Spivak [1] that an analogous
theory exists for this case also. The appropriate objects turn out to
be fibre spaces (not bundles) :

Y—E
. \L“
M

in which ¥ has the homotopy - type of a sphere of some (usually large)
dimension. Such fibrations are called spherical. The stable normal
fibration of a Poincaré complex M is characterised by the requirement
that its Thom space (the mapping cone of ) be reducible. It turns out
also that given two such fibrations, and supposing (as we may, by

suspension) that the fibres are homotopy equivalent to spheres of the

same dimension %k — 1, and that fi: S MU=x,CE; (i =1, 2)

have degree 1, then there exists a fibre homotopy equivalence (unique
up to fibre homotopy) of Ty 0N, which carries f, to f,. This result will
be important below: it reduces complicated problems about homotopy
groups of Thom spaces, which arose in the pioneering work of Novikov
[1], to much simpler questions concerning equivalence of fibrations.

Instead of a structure group for spherical fibrations, one has a

structure monoid G, the space of homotopy equivalences of S*—1 on
itself: it too possesses a classifying space BG, (Dold and Lashof [1],
Stasheff [1].)

The next important remark is as follows: there exist maps
BO,, — BPL,, —> BTop,, — BG,,

corresponding to natural transformations of bundle functors. Thus an
m-vector bundle over a simplicial complex X is classified by a map
X — BO,,; we form the composite X — BO,, — BPL,,, and this
induces a PL-bundle over X, which “triangulates™ the vector bundle
(see Lashof and Rothenberg [1], also Hirsch and Mazur [1]). Similarly
BPL,, — BTop,, corresponds to forgetting the PL-structure: this is
essentially due to Milnor [3, 4]. Finally given a bundle with fibre R™,
by removing the scction corresponding to 0 we change the fibre
to R" — 0, with the homotopy type of $™-1, and thus obtain a sphe-
rical fibration. |

We have described these transformations in geometrical terms:
it is now not difficult to see that if we take a smooth triangulation
of a smooth manifold M, its tangent PL-bundle is given by triangula-
ting the tangent vector bundle of M (proof in Lashof and Rothenberg
[1]). Even more clearly,the tangent bundleof a PL-manifold is unchan-
ged (as a bundle) by regarding the manifold as a topological mani-
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fold. The final step to BG,, is more complicated as we have only defi-
ned a normal bundle for that situation: it is an open problem whether
one can characterise a tangent spherical fibration & for a Poincar¢ coni-
plex X, e. g. by requiring a map of degree 1 from X % X to the Thom
space of § to satisfy some natural extra conditions. (With some restric-
tions on X, this has been solved by W. Sutherland.)

For this and other reasons, we now stabilise. On increasing m
by 1 we obtain a commutative diagram |

BO,, — BPL.,, — BTop,, — BG,,

| | | |

‘ BOm+1 —> BPL.mﬂ > BTOPan - éGnH 15
we denote the direct limit as m — oo by
BO — BPL —> BTop — BG.

Then the tangent bundle of a manifold M induces a map M — BTop —
-» BG which is homotopic to that induced by an inverse to the stable
normal fibration of M regarded as Poincaré complex. This follows from
Spivak’s work, and is also closely related to the earlier paper of Mil-
nor and Spanier [1].

The following may be regarded as the fundémental question in the
subject.

Prob!lem. Suppose given a manifold of one of our four lypes,
and a reduction of the structural group of its stable tangent bundle
to an earlier type: does the manifold similarly admit extra structure?
And is this extra structure‘unique up to some natural equivalence
relation? We can reformulate this using the classifying spaces above.
IFor example: suppose M™ to be a topological manifold, with stable
tangent bundle classified by ©: M— BTop. Suppose given a map

[+ M — BO, and a homotopy of the composite map M ', BO —> BTop
to t. Then can M be given a corresponding differentiable structure?
Is this unique up to equivalence? (Note the explicit homotopy: this
is an important part of the data.)

Before we go on to consider answers to this problem, I will mention
some generalisations which can be treated by similar methods, but
detailed consideration of which is outside the scope of this talk. First,
we may consider manifolds M with boundary oM (M still compact):
for case (iv) we insist that M be a Poincaré complex, and that the
CW pair (M, OM) satisfy the Lefschetz duality theorem. We do not
include the noncompact case, which can also be formulated, but pro-
bably not yet in the right form, and scems (except for the transition
(i)—>(ii)) to be apreciably harder. Next, we might consider submani-
folds of a fixed larger manifold: e.g. the problem of smoothing
P[L-submanifolds of a smooth manifold. The normal bundle plays a
dominant role here. For a discussion of the case (i) — (iv) c. f. the talk
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immediately preceding this one (W. Browder [2]) and for the case
(i) — (ii) compare the talk of A. Haefliger [1] at this congress, as also
recent work of Morlet [1] and Rourke and Sanderson [1]. Finally, one
can also classify automorphisms instead of objects, and even investi-
gate the homotopy type of groups of homeomorphisms or spaces of
~ embeddings. This problem is complicated by technical considerations
of concordance and isotopy: see the talk of Cerf [1] at this congress,
also a recent paper of Hudson [1].

We return to our own problem: theanswer depends, not surprisingly,
on the case investigated. The result is simplest for the case (i) — (ii):
the problem of smoothing PL-manifolds. This was discussed in M. W.
Hirsch’s talk [3] (following Hirsch and Mazur [1]): the answer to our
problem is yes. Furthermore, equivalence classes of smoothings of the
PI-manifold M correspond bijectively to homotopy classes of homo-
topy factorisations

M

VAR
BO— BPL,

We next consider the case (ii) — (iv): the problem here is to cha-
racterise the homotopy types of PL-manifolds. It is tackled as follows.
We are given a Poincaré complex X, and a homotopy factorisation
of the classifying map of its Spivak fibration

X

Y N
BPL — BG,;

or equivalently, a PL-bundle v over X, and a fibre homotopy equi-
valence with the Spivak fibration; or equivalently again, the PL-bun-
dle v, and a homotopy class of maps of degree 1 from a sphere to its
Thom space. A transversality argument due essentially to William-
son [1] and Browder [1] now shows that we can find at least a closed
PL-manifold M, and a map ¢: M — X of degree 1 such that ¢*v
is the stable normal bundle of M. Indeed, our data determine a bordism
class of such maps (M, ¢): we seek an (My, @o) in this class with ¢
a homotopy equivalence, and also want to know about uniqueness
of M, when it exists. The problem is now amenable to the method of
surgery (initiated by Milnor [2] and first applied to this situation by
Novikov [1]).

For technical convenience, it is more convenient to replace (iv)
by a new class (iv)’ of finite Poincaré complexes (the definition, even
more technical, involves Whitehead’s theory of simple homotopy
types, for which see Whitehead [2]). This is related to the other clas-
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ses of “manifolds™ by functors
‘\ (i) — (ii) —> (iii)
| |
(iv) — (iv).

(An oulstanding problem is whether one can define a transformation
of structures in the direction (iii) —> (iv)’; this contains the problem .
whether a compact manifold has the homotopy type of afinite com-
plex, also that of topological invariance of simple homotopy type.)
The map (iv)’ — (iv) is related to the projective class group and the
Whitchead group of the fundamental group gy (X) of the Poincaré
complex X. We define w to be the homomorphisii @ : 5y (X) — {41}

which takes the value —1 on orientation-reversing loops. Then surgery
leads to the following result.

Theorem. There exist functors L, depending only on the infcger
m modulo 4, and defining abelian groups Ly, (4 (X), w). Given a bordism
class of maps (M, ¢) of degree 1, as above, with m > 5, there is an ob-
struction in L, (i (X), w) to the existence of an element (Mg, ©o) Of
it with ¢, a simple homolopy equivalence, and an obstruction in
L1 0y (X),w) to its uniqueness, when it exists.

We can formulate this as an exact sequence (of based sets), which
can be extended in one direction ¥

. —> Lty (71 (X), w)—> PL-homeomorphism classes of (Mo, @o) —>
| —> Bordism classes of (M, @)—> Lu (74 (X), w).

Example 1 : X = S™. The transversality argument mentioned abo-
ve allows an easy proof that the bordism classes form the group
n,, (G, PL). A result of Smale [1] shows that the PL-homeomorphism

class is unique. The sequence (continued to the left) then provides an
isomorphism

ftm (G, PL)—> L (1)

for m>5 (in fact this holds for m>1 except for m == 4, when the
image has index 2). The group L,, (1) can be computed algebraically
(see also Kervaire and Milnor (1], Levine[l], where it is called P,y): it
is trivial for m odd, infinite cyclic for m = 0 (mod 4), and cyclic
of order 2 for m == 2 (mod 4). ’ |

Example 2 : X = S™ x St. A similar argument can be used here,
using results of Browder and Levine [1]. One finds that in the orien-
table case, L, (Z) == [S"™1\ 8™ :G/PL] (m=> 6). Similarly, using the
nontrivial bundle over S' with fibre 8™, in the nonorientable case,
L, (2Z) >~ [S™ 1™ : GIPL] (m>6).
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There are analogous results also for bounded manifolds, and in
one important case, the corresponding result is simpler. Suppose (Y, X)
a Poincaré pair, with X and Y connected, and such that inclusion
induces an isomorphism of 7ty (X) on sty (Y). Then the group corres-
ponding to L,, vanishes: provided m > 6, the corresponding M, exists
and is unique. (So the answer to our problem is yes in this case also.)

Armed with this, we can give a complete answer in the closed,
simply-connected case. Given a closed PL-manifold M, we write M’
for the manifold obtained by deleting the interior of an embedded
disc D". One can invent a corresponding decomposition X -
= X"[Jse™ for the case of Poincaré complexes: if m =£2, it is essen-
tially unique (see Wall [2]). Now suppose the Spivak fibration for X’
reduced to a PL-bundle:

X/
YN\
BPL — BG.

As (X', Sm-1} is a Poincaré pair, and both are simply connected, we
get a unique corresponding manifold M’ (m > 6): ‘moreover, oM’
is homotopy equivalent to Sm—!, hence is PL-homeomorphic to it. We
then attach a disc D™ along S™—! (this process is unique) to give a clos-
ed PL-manifold M. Thus in the closed, simply-connected case the
answer to our problem is: yes, provided we consider reductions over X’
instead of ones for all of X. Our proof assumed m > 6: the result holds
also for m — 5 and (trivially) for m< 2. In dimension 3, X is homoto-
Py unique and S® proves existence: uniqueness is equivalent to the
Poincaré¢ conjecture. The statement given above is due to D. Sulli-
van [1].

In the non-simply-connected case, the results are more complica-
ted. Let me cite by way of example that there are infinitely many
PL-manifolds homotopy equivalent to P, (R), all corresponding to
the same reduction from G to PL, but no two homeomorphic. This
comes from the fact that Lg(Z,) =~ Z @ Z (orientable case). We
can describe explicitly an invariant that distinguishes our manifolds
Q: note first that both they and their double covers are rational homo-
logy spheres, so if dW - QUJ Q' (W orientable) we can speak unambi-
guously of the signature of W. Now it is easy to show that for any of
our manifolds, say Q,, we can find oW -.- Q; — P; (R) with W orien-
ted, of signature 0, and =, (Q) = 7ty (W) >~ w1, (P; (R)) by inclusion.
The required invariant of Q is then the signature of the double cover
of W.

Sullivan has used the methods of surgery to gain insight into the
homotopy type of the quotient space G/PL. We have already seen how
to calculate its homotopy groups. Now suppose given a closed, 1-con-
nected PL-manifold M, and homotopy class of maps f: M — G/PL.
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Jow the tangent bundle of M is classified by a map v: M - BPL.
\Iso, we have a principal fibration

G/PL — BPL

BG:

nultiplication is induced by Whitney sum of bundles (see e. g. Lashof
nd Rothenberg [1]). Thus we can operate fibrewise on < by f, obtain-
ng a new map f-v : M — BPL whose projection on BG is the same
is that of t. Proceeding as above, we then reach a surgery obstruction
n L,, (1). This gives a retraction of the oriented PL-bordism group

QSPL(G/PL) —> 1, (GIPL).

(1 the case m = 4k--2 we need not suppose M l-connected or even
yriented, and can work with the unoriented bordism group. From these
-etractions, Sullivan deduces that all k-invariants of G/PL vanish mod 2
‘though not modulo the class of finite groups of odd order: the first
s-invariant already has order 2). Equivalently, there is a map

- GIPL > |45 K(Z2 4k-+2)

inducing epimorphisms of homotopy groups. A slightly stronger resulti
can in fact be obtained.

Work currently in progress is: aimed at studying the behaviour of
odd primes: it is conjectured that, modulo finite 2-groups, G/PL has
the homotopy type of BO (though, of course, the natural maps G/PL
_» BPL < BO do not correspond to a homotopy equivalence modulo
2-groups). .

We come finally to the case (iii) of topological manifolds. Some
information may be gathered here by observing that (iii) lies belween
(i) and (iv) (but not—at present—(iv)’). In addition to this, we have
Novikov’s recent proof [2] of topological invariance of rational Pontrja-
gin classes. It is easy deduction from this that if M is compact, the
kernel of the homomorphism :

[M: BPL] —>[M: BTop]

is finite. We can sharpen the method to prove that for any n,
n, (G, PL)—m, (G, Top) is asplit monomorphism. What does this tell
us about our problem? Unfortunately, it gives no method (and I know
none) for constructing topological manifolds (other than PL omnes),
or for proving given topological manifolds homeomorphic. Newman’s
recent solution [1] of the Poincaré conjecture for topological manifolds is
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a pointer in this direction, however. Thus we must abandon the case
(iif) — (iv) of our problem. ’

~ For the case (ii) —> (iii), one can obtain “stable” theorems by using
the results of Milnor: see Mazur [2, 3] and Hirsch [2]. Thus, given

a (not necessarily compact) topological manifold M, and a homotopy
factorisation :

M

AN
BPL—BTop

then for some n, M X R™ admits a PL-structure, and two such (both
inducing the above factorisation) determine equivalent PL-structures

on M x Rn+n for large enough n’. More interesting, however, are the
recent “unstable” theorems of Sullivan and Wagoner. These concern
only the uniqueness (Hauptvermutung) problem, and not the existerice
(Triangulation). Suppose given a homeomorphism 4 of compact
PL-manifolds M and M’. Then we have a: homotopy equivalence, and
the two reductions of structural group from G to PL are equivalent
in Top. Assume | ’
(A) The structural groups are already equivalent in PL. Then we
can apply the method of surgery to atfempt to prove the manifolds
L-homeomorphic (by constructing an s-cobordism, and applying the
s-cobordism theorem (Mazur [1], Kervaire[1])). We need to assume that
h is a simple homotopy equivalence M —~ M’; also (in the bounded
case) OM — oM’. If also

(B) Surgery can be performed, it follows that M and M"® are
PL-homeomorphic, as desired. A

It follows from the discussion above that (B) is all right in the clo-
sed, simply-connected case, or if m, (IM) =< =, (M) by inclusion, or
in certain other cases (e.g. closed, nonorientable, odd-dimensional,
with fundamental group of order 2). This assumes that the dimension
of the manifold M (and, if dM is nonempty, of M) exceeds 4: if
dim M <3 the Hauptvermutung and triangulation have also been -
proved, without further assumptions, by Moise [1} and Bing [1].

For (A) we encounter obstructions 0; in Hi (M; x; (G, PL)). For
t = 0 (mod 4), their image in rational cohomology can be identified
with the difference of the rational Pontrjagin classes (or rather,
L-classes) of M and M’. By Novikov’s result, this difference is zero.
Thus 0,), is a torsion element. Next consider 0;1+2 which, by the result
on k-invariants of G/PL, is a well-defined obstruction. If all lower 0,
vanish, this is annihilated by the homomorphism induced by G/PL —
-~ G/Top; on the other hand, we have seen that this homomorphism
is injective. Thus (A) can be justified on the sole assumption that for
all k, H™ (M; Z) is torsion free. I believe that the best known result
(due, again, to Sullivan) is slightly stronger—but in any case, the
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main obstacles to further progress are now presented by the White-
head group (simple homotopy equivalence) and by the surgery obstruc-
tions. |

Dept. of Pure Mathematics,
University of Liverpool, England
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