Actes, Congrés intern. math., 1970. Tome 1, p. 213 a 219.

GEOMETRIC TOPOLOGY:
MANIFOLDS AND STRUCTURES

by C. T. C. WALL

¢

The term “ geometric topology ” has gradually been gaining currency in the last
few years: you may wonder what the subject is all about. The object of this talk is
to explain just that: to introduce the concepts involved and the main problems, and
to discuss some of the most important results that have been obtained up to now.

The most basic concept in geometry is that of euclidean space, and the main branches
of geometry involve the study of the various structures which it carries: linear, algebraic,
differentiable, topological, etc. Many types of structure are defined by pseudogroups.

A pseudogroup ® on E is a category whose objects are the open subsets of E, and
whose morphisms must be continuous, invertible in @, and locally defined. Thus
if GO is the set of all germs (at all points) of morphisms of ®,and¢: U — V isa homeo-
morphism whose germ at each point of U belongs to G, then ¢ e ®.

® is transitive if for all x, y€ E there is a germ in G® with source x and target y.
The most important examples of pscudogroups are:

C": ¢ and ¢! must be of class C".  As special cases we have C° (the largest pseudo-
group), C* and C?, where C* denotes real analytic. In the complex case we have
the pscudogroup C? of complex analytic maps.

Lip, maps satisfying a local Lipschitz condition.

Maps preserving Lebesgue measure, or just orientation.

Nash, ¢ (and ¢ ') is an algebraic map, which is also C®.

Affine maps, or piecewise affine (usually called piccewise linear, or PL) maps: here
the picces come from a locally finite partition of U into polyhedra.

Trivial, identity maps only (the smallest pseudogroup) or translations (the smallest
transitive one).

For any (closed) subgroup G of GL(E), consider C" (for some r > 1) maps whose
derivative at each point is in G; interesting cases are the symplectic and orthogonal
groups, orthogonal similitudes (giving conformal structure), maps preserving a sub-
space (giving foliations) or—in the case E-is Hilbert space—invertible maps of the form I .
plus a compact operator, giving Fredholm structures.

Foliations lead to a wide variety of pseudogroups. Suppose E, F are Euclidean
spaces, @ a pscudogroup on E x F and ¥ a pseudogroup on F. Then #(®, V) is
the pseudogroup on E x F of maps whose germs ¢ belong to a commutative diagram

ExF> U % ExF

1% } i»
F >plU) % F
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with ¢ € ®, Yy € '¥. One can further specify a pseudogroup X on E, and require the
restriction of ¢ to cach leaflet U n (E x x) to belong to X.

We now come to manifolds. Let M be a topological space, E a euclidean space.

A chart on M with model E is a pair (U, ¢) where U is openin M, ¢: U — Ean

embedding with ¢(U)open.  An atlas is a collcction {(U,, ¢,)} of charts with U U, = M:
if M has such an atlas, it is called a manifold modeclled on E.  Usually one requires
also that M is Hausdorfl and paracompact. If two charts (U,, ¢,) and (U, ¢p)
overlap, we have a coordinate transformation

gt U, nUp &2t AU, B g U,nUY.

If ® is a pseudogroup onE, an atlas { (L', ¢,) } on M is a ®-atlas if each coordinate
transformation g,z is in ®.  Two ®-atlases 4, A are compatible if A v A’ is a d-atlas.
The union of all ®-atlases compatible with a given one, 4, is still a ®-atlas: clearly a
maximal one. A maximal ®-atlas on M is called a ®-structure: thus each ®-atlas
defines a unique ®-structure.

For examples, we have smooth (C*®) structure, real or complex analytic structure,
orientation, flat structure (take ® = affine maps), PL-structure, immersion in E (take
® = identity maps), and foliations of various kinds.

Having defined structures on manifolds, we must say what we mean by structures
on morphisms (i. e. maps) of manifolds. The corrcsponding notion (less standard) is
as follows. Given pseudogroups ® on E, ¥ on F a morphism Q: ® — ¥ is a locally
defined family of continuous maps from open sets in E to open sets in F, which is
closed under composition on the right with maps in ® and on the left with maps in‘V:
thus W o Qo ® < Q. This notion seems more fundamental than that of pseudogroup;
note also that in nearly all examples above of pscudogroups we first chose an Q with
Q-0 < Q and then considered the invertible morphisms of Q.

Examples are casy to supply, for example C" (non-invertible) maps define a mor-
phism C° — C' wheneverr < 5,t < . Sodo C’-immersions (note that embeddings
are not locally defined), or more generally maps whose jacobians everywhere have
rank > k. Another good example is provided by piccewise smooth maps: PL — Cc>;
here again we can restrict to immersions with jacobian of maximal rank cverywhere
it is defined. :

If M has a ®-structure, N a ‘P-structure, f: M — N is a continuous map and
Q:® — W, then we call £ an Q-morphism if for all charts (U, ¢) of M, (V, y) of N
with f(U) < ¥, the composite yofodp ' p(U) — (V) belongs to Q. Again, it
suffices to check this for each chart of a (non-maximal) ®-atlas of M.

Not all structures are defined by atlases. For example, we may be given a ‘¥-mani-
fold F, and a morphism Q: & - V; then an Q-map M — F can be regarded as
constituting a certain type of structure on the ®-manifold M. Write (M) for the
set of such maps: in many cases this will be endowed with a natural topology, €. g
C* (uniform convergence on compact sets: not the fine topology here).

More generally we may have a ®-bundle B with fibre F: by definition this assigns
functorially to each ¢: U — U’in® amap B(¢): U x F - U’ x F over ¢. Using
these to glue over charts defines a bundle B(M) over any ®-manifold M. Now a
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specificd by assigning a ®-sheaf & of sections of B.  Here for each open UinE, ¥ (U)is
a collection of maps U — F; & is locally defined, i. e. is a sheaf; and for ¢ € @, B(¢)
transforms the scctions U -» U x F which are graphs of members of #(U) into
graphs of members of S(U’). ' :

Note. — It is simpler axiomatically to define ¥ and omit B, but this takes us too
far away from the geometry. One should consider a ®-bundle or ®-sheaf as a bundle
or sheaf over E, endowed with the Grothendicck topology induced by ®.

The most obvious example of ®-bundle is the tangent bundle. This also has ana-
logues in the topological and PL cascs which originated with Milnor’s work on micro-
bundles. We also have the associated bpndles of tensors (with, perhaps, symmetry
conditions) in the traditional sense of differential geometry, the tangent bundles of
higher order, and the bundle of connections: note particularly the classical cases of
the Ricmann bundle, and the bundle of (tangent) p-forms. Another example is the
bundle normal to the foliation, if @ defines a foliation. Also for each of the vector
bundlcs above we have the associated projective bundle and frame bundle, and more
generally, Grassmann and Stiefel bundles.

The possible sheaves & have a wide varicty. In each case we may consider all
continuous, or (perhaps) all differentiable {of some class C") sections— holomorphic
in the complex case: examples are Riemann metrics, tangent 1-forms and conncctions.
More generally, we could restrict the local maps U F to lie in some suitable pre-
assigned class Q. E. g. for vector bundles in the differentiable case, we can consider
smooth sections transverse to the zero section. Indeed, some of the most fruitful
illustrations come by imposing such conditions on derivatives: assuming sufficient
differentiability, given a ®-bundle B there is an extended bundle E"B of r-jets of sections
of B. Now for any sub-®-bundle E5B of E'B, we can consider those sections of B
whose r-jets arc sections of EpB (equivalently, those sections of EjB which come from B:
the integrable ones in the usual terminology). ~ As one concrete geometrical illustration,
we can take B the Riemann bundle, r = 1 and consider metrics with everywhere positive
(or everywhere negative) sectional curvatures.

I now consider the problem of existence and classification of structures of a given
type on a given manifold: this is of course a global problem since Euclidean space
possesses structures of all types. More generally, I am interested in when the cxistence
of one type of structure implics the existence of another. For classification one needs
a notion of equivalence: a general definition which scems to cover all cases of interest
in geometric topology (though not in differential geometry) is this:

Two structures a, B of a given type on M are concordant if there is a structure y of
this type on M x I inducing « on M x 0 and on M x L

Of course, this needs to be made explicit in each case, but it is usually obvious how
to interpret the definition. A stronger relation is isotopy: here one demands a level-
preserving homeomorphism Fof M x I —1i.e. F(m, 1) = (fi(m), t) — with f, = identity
and fi*a = f. Frequantly, F and F =1 are alSo supposed differentiable. In many
cases (e. g. smooth or PL structures on topological manifolds of dimension > 6)
concordance and isotopy are equivalent: but this is always a tricky technical question.
The most interesting problem of this type, where a structure is a diffeomorphism

of the smooth manifold M onto a fixed manifold Mg, has been studied by Cerf and
N hvmanmn -
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Now suppose we are comparing structures of two different types, say ® and @',
We will suppose that a ®-structure implies a @”-structure-—this holds trivially, for
example, if we have two pseudogroups ¢ < @', or we are considering appropriately

_restricted sections of two bundles B, B" with a morphism B — B'. The simplest
sort of result is that for any M (perhaps satisfying some side conditions), each @'-struc-
ture is induced by a ®-structure, unique up to concordance. Some results of this
kind, where @ < @' are pseudogroups, are ‘

Whitney, 1936: for 1 € r < s < w, comparing C*> and C',
Nash, 1952: the same, with C* replaced by Nash,
Moise, 1952; Bing, 1959: comparing PL and C° in dimension 3;

the result is also known, due.to work of many authors, comparing topological, diffe-
rentiable and trivial structures in the infinite dimensional case (here, a trivial structure
is an open immersion in Hilbert space). For references see, for example, the talks of
Anderson and Kuiper at this congress.

When the above simple result does not apply, one looks for a theorem of the follow-
ing kind, which I will describe as an obstruction theory: it reduces the problem to one
in homotopy theory, concerning only continuous maps. Such a theorem specifics
first a space X and a functor providing for each ®-structure on M a continuous map
M - X, determined up to homotopy (typically, a structure of class C! on M™ gives,
via the tangent bundle-—which has structure group GL,, ~O,—a classifying map
M - BO,). Similarly for ® we have an X’. There should also be a map X — X',
which we may suppose a fibration, such that for any ®-structure on M and the induced
@'-structure, the diagram

X
M |
~ oy

commutes up to a (preferred) homotopy. The theorem will then say that (subject
perhaps to some side conditions on M), given M with ®’-structure, the equivalence
classes of ®-structures on M which induce it {or something equivalent—but usually
we can hit the structure on the nose) correspond bijectively to homotopy classes of
lifts M — X of the given map M —» X',

Such a theorem has some applications by its very nature—for example, take M
contractible. But for effective work, information on the spaces X and X’ is cssential,
and to obtain such information is often a central problem in geometric topology.
Some such theorems are as follows:

Smoothing theory (due to the work of many people) gives an obstruction theory
to imposing C" structures (r > 1) on PL-manifolds. This is technically difficult
since C" ¢ PL: instcad one needs the result of Whitehead, 1940. The correspond-
ing spaces here arc usually denoted by BO — BPL; the former has been familiar for
many years, some striking results on the latier were obtained by Sullivan, 1970. Next
we have the results of Kirby and Siebenmann, 1969 on imposing PL structures on
topological manifolds of dimension > 5. Here the only obstruction to existence of a
PL-structure on M is a cohomology class in H*(M; Z,). Sce also Eclls’ talk at this
conpress for an account of Fredholm structures. :
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Recent results of Hacfliger, 1970 (sce also below) have provided obstruction theories
for cxistence of foliations and of complex analytic structures: indecd 1 think that a
result is obtained for any pscudogroup ®. A side condition is needed: that M is
open (i. e. has no compact unbounded component). Nothing is known about the
obstruction groups except the results of Bott which he discussed yesterday.

For structures of the second type, most known results are subsumed in the following
thcorem of M. L. Gromov, 1969. Take ® = C™, let B be a differcntiable ®-bundle,
E'B the bundle of r-jets of sections of B (as above) and EyB an open subbundle of E'B.
Let (M) be the space of sections of B(M) whose r-jets map into EjB(M); T'(M) the
space of sections of EyB(M)—thus taking r-jets defines a map j: (M) — T(M).
Give T(M) the compact-open topology, and topologise &(M) as a subspace of it.

TueoreM — If M is open, j: (M) — T(M) is a weak homotopy equivalence.

The proof is an improvement of that of the Smale-Hirsch, 1959 classification of
immersions, and is not unduly difficult.

" Many examples of applications were mentioned in the talk of Gromov at the congress.
The immersion case is when B(M) is a trivial bundle M x F;a point of E' B(M) can be
identified with a linear map of a tangent space of M to one of F, so a section of E! B(M)
can be identified as a map of tangent bundles TM — TF, and we let E{ B(M) be the
injective linear maps. Results corresponding to this case can now also be formulated
in the PL and topological cases, and proved in the same manner—the difficult step
was an isotopy extension theorem. Sce Hacfliger and Poenaru, 1966 and Lees, 1969.

Other suitable EJB(M), for the same B, are maps of rank > k (some fixed k)—pre-
viously treated by Sidnie Feit, 1968—and maps whose projection on the normal
bundle of a prescribed foliation of F is surjective—this case was discovered indepen-
dently by Phillips.

It is clearly of great interest to determine in particular cases whether or not the
result is valid also for closed manifolds. For immersions M — F this is well-known
to be the case provided dim M < dim F. Mrs Feit’s result allows M closed if
k < dim F. A recent result of Feldman allows M to be a circle, considering curves
immersed in the Riemannian manifold F with everywhere nonzero geodesic curvature,
provided dim F > 3. The underlying condition scems to be that F has at least one
dimension “ to spare ”, Note that no advantage is gained by removing a point from M,
applying the result, and attempting to reinsert the point: consider submersions M — R.

The classification of immersions can be made the basis of a proof of many of the
theorems cited above. Put rather too crudely, the idea is this: if dim M = dim ¥,
we have an immersion M — V, and V carries a ®-structure, then one is induced on M
by using the immersion to pull charts on V back to M. There are two ways to make
this the basis of a proof. One is to take V = E and work by induction on coordinate
charts of M. This method, which needs a special argument if M is closed, was explained
in Lashof’s talk at the congress. The other is to use the theorem in the case
dim M < dim ¥, which leads (rather casily) to obtaining a ®-structure on M x R?
for some g, and then use a stability theorem of the type: a ®-structure on M x R is
concordant to the product of a ®-structure on M and the natural one on R. The
product theorem for comparison of C" and PL structures is due to Cairns, 1961 and
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A subtler use of Gromov’s result to obtain structure theorems was made by Hacfli-
ger, 1970. His idea is to contemplate bundles over any space X with fibre E with
(roughly) a ®-structure on each fibre and a * foliation ” transverse to the fibres. By a
general argument (Ed. Brown'’s representability theorem), he obtains a classifying space
for such structures on X. If now X is a manifold modelled on E, and the bundle is
equivalent to the tangent bundle of X, the theorem implies the existence of a section
transverse to the foliation. The local projections of the section on the fibres now
induce a ®-structure on M.

I will conclude with an example which docs not quite fit into the above framework.
Instead of beginning with a topological space which is locally cuclidean, start with a
space which is only prescribed up to homotopy type. To substitute for the local
condition, I insist that a strong form of the Poincaré duality theorem holds. The most
interesting question here is whether the prescribed homotopy type contains a manifold.
The simplest result concerns the relative case when we have a pair (Y, X) satisfying
Lefschetz duality. Suppose also that X, Y are connected and that the inclusion map
X - Y induces an isomorphism of fundamental groups. Then, in dimensions > 6,
there is an obstruction theory for existence of a corresponding manifold.

As with Gromov’s theorem one can define (semi-simplicially) spaces Z(Y) and
T'(Y) and generalise this theory to obtain a homotopy equivalence S(Y) - 7(Y).
If the corresponding map is considered now in the case when Y satisfies Poincaré
(not Lefschetz) duality, it turns out that the homotopy type of the mapping fibre Z(Y)
depends only on 7,(Y) and on dim Y (mod 4)—provided this dimension > 5.
Although explicit calculation is difficult, the spaces #(Y) are gradually being deter-
mined, and I have learnt several new results at this congress. For details of what is
known, sce my forthcoming book, Wall, 1970.
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