ON THE INERTIA GROUPS OF CERTAIN MANIFOLDS

DAVID L. WILKENS

1. Introduction

For a closed compact smooth *m*-manifold $M, m \ge 5$, the inertia group $I(M) = \{\Sigma \in \Theta_m; \text{ there is an orientation-preserving diffeomorphism between <math>M$ and $M \# \Sigma\}$, where # denotes the connected sum and Θ_m is the group of homotopy *m*-spheres. Where the inertia groups of specific manifolds have been determined, the results tend to fall into two extremes. Either necessary conditions for $\Sigma \in I(M)$ are strong enough to show that I(M) is trivial (for example Schultz [7] shows that $I(M) \simeq 0$ when M is a product of ordinary spheres) or sufficient conditions for $\Sigma \in I(M)$ are weak enough to show $I(M) = \Theta_m$ or $\Theta_m(\partial \pi)$ (for example Kawakubo [3] shows that $I(S^3 \times \Sigma^{10}) = \Theta_{13}$, where Σ^{10} is a generator of the 3-component of $\Theta_{10} \simeq Z_2 \oplus Z_3$). The purpose of this paper is to determine the inertia groups of a class of manifolds and so give examples where I(M) falls between 0 and Θ_m .

We consider closed (m-1)-connected (2m+1)-manifolds P, where m = 3 or 7, and in Theorem 1 determine the inertia groups I(P), the results depending on a tangential invariant $\hat{\beta} \in H^{m+1}(P)$. These results do not apply to the case where $H^{m+1}(P)$ and Θ_{2m+1} contain elements of the same order and here I(P) seems to depend on the divisibility of multiples of $\hat{\beta}$. As a contribution to this case we determine the inertia groups of certain of these manifolds in §6 and at the same time show that in general the inertia group of a connected sum is not the sum of the respective inertia groups. The methods employed in this paper apply to other (m-1)-connected (2m+1)-manifolds where $m \neq 3$ or 7, especially where m = 3(mod 4), but we restrict ourselves to m = 3 or 7 since the results here are more precise.

2. Invariants and Theorem 1

Let P be a closed (m-1)-connected (2m+1)-manifold where m = 3 or 7. The non-zero homology and cohomology groups of P occur in dimensions 0, m, m+1, 2m+1 and since $\pi_{m-1}(SO) \simeq 0$ it follows that P is m-parallelisable. $\pi_m(SO) \simeq Z$ and the obstruction to triviality of the tangent bundle over the (m+1)-skeleton is a well defined element

$$\hat{\beta} \in H^{m+1}(P; \pi_m(SO)) \simeq H^{m+1}(P).$$

Since $\pi_{2m}(SO) \simeq 0$ there is no further obstruction to triviality of the stable tangent bundle and so $\hat{\beta}$ is the obstruction to stable parallelisability of *P*. For *G* a finitely generated Abelian group and $\hat{\beta}$ an even element of *G* there exists a manifold *P* with $H^{m+1}(P) \simeq G$ and tangential invariant $\hat{\beta}$ (see [10] or [11]). By Lemma 1.1 of Kervaire [4] the Pontrjagin classes of *P* in terms of $\hat{\beta}$ are given by

$$2\hat{\beta} = p_1(P)$$
 for $m = 3$, $6\hat{\beta} = p_2(P)$ for $m = 7$.

The dimensions of the manifolds we are considering are 7 and 15 and here the

Received 26 October, 1973.

groups of homotopy spheres are $\Theta_7 = \Theta_7(\partial \pi) \simeq \mathbb{Z}_{28}$ and $\Theta_{15} \simeq \mathbb{Z}_{26,127} \oplus \mathbb{Z}_2$, $\Theta_{15}(\partial \pi) \simeq \mathbb{Z}_{26,127}$. The main result is

THEOREM 1. Let P be a closed (m-1)-connected (2m+1)-manifold, m = 3 or 7. (i) If $\hat{\beta}$ is of finite order then $I(P) \simeq 0$.

(ii) If $H^{m+1}(P) * \Theta_{2m+1} \simeq 0$ and r is the largest integer dividing $\hat{\beta}$ then I(P) consists exactly of those elements of $\Theta_{2m+1}(\partial \pi)$ divisible by r/4.

In (ii) * denotes the torsion product; so the condition $H^{m+1}(P) * \Theta_{2m+1} \simeq 0$ means that $H^{m+1}(P)$ and Θ_{2m+1} have no elements of the same order, i.e. $H^4(P)$ does not contain elements of order 2 or 7 for m = 3 and $H^8(P)$ does not contain elements of order 2 or 127 for m = 7. Where this condition does not hold and $\hat{\beta}$ is of infinite order the situation is more complex and will be considered in §6.

It follows from part (ii) of the theorem that any subgroup of $\Theta_{2m+1}(\partial \pi)$ occurs as the inertia group I(P) for some P and this is also true if we add the restriction $H^{m+1}(P) \simeq \mathbb{Z}$. By Theorem 3 of [11] the manifolds P with $H^{m+1}(P)$ torsion-free are classified up to the addition of homotopy spheres by invariants $(H^{m+1}(P), \hat{\beta})$. These are topological invariants, since by [6] rational Pontrjagin classes are topological invariants and these determine $\hat{\beta}$, and hence P admits exactly $|\Theta_{2m+1}/I(P)|$ differential structures. So for example we have

COROLLARY. If r is any divisor of 28 for m = 3 or of 2^7 . 127 and $r \ge 2$ for m = 7 then there exists a manifold P with $H^{m+1}(P) \simeq \mathbb{Z}$ which admits exactly r differential structures.

3. Proof of Theorem 1

As part of the statement of Theorem 1 we have $I(P) \subset \Theta_{2m+1}(\partial \pi)$, which has significance only for m = 7 when $\Theta_{15}(\partial \pi)$ is smaller than Θ_{15} , and as a first step we establish that this is so.

 $\mathscr{H}(n)$ denotes the collection of those handlebodies formed from the 2*n*-disc by attaching *n*-handles. The boundary ∂L of an element $L \in \mathscr{H}(m+1)$ is a closed *m*-parallelisable (m-1)-connected (2m+1)-manifold *P*.

PROPOSITION 2. If P is a closed m-parallelisable (m-1)-connected (2m+1)-manifold and $\Sigma \in I(P)$, then $\Sigma = \partial V$ for some $V \in \mathcal{H}(m+1)$.

COROLLARY. If P is a closed 6-connected 15-manifold then $I(P) \subset \Theta_{15}(\partial \pi)$.

The corollary follows from the proposition since, as we have already remarked, a 6-connected 15-manifold is automatically 7-parallelisable and by Theorem 4 of [8] the elements of $\Theta_{15}(\partial \pi)$ are exactly those homotopy spheres which occur as boundaries of elements of $\mathcal{H}(8)$.

To prove the proposition we refer to [9], where it is shown that the homotopy group $\pi_m(P)$ of a closed *m*-parallelisable (m-1)-connected (2m+1)-manifold *P* can be killed by surgeries of type (m+1, m+1). Thus *P* is χ -equivalent by surgeries of type (m+1, m+1) to an *m*-connected manifold which of necessity must be a homotopy sphere $\Sigma \in \Theta_{2m+1}$. It follows that $P \# (-\Sigma)$ can be formed by surgeries of type (m+1, m+1) from $S^{2m+1} = \Sigma \# (-\Sigma)$, where $-\Sigma$ denotes Σ with the opposite orientation.

Now since $I(P) = I(P \# \Sigma)$ for any $\Sigma \in \Theta_{2m+1}$, to prove the proposition we may assume without loss of generality that P is formed by surgeries of type (m+1, m+1) from S^{2m+1} . So for any homotopy sphere Σ it will follow that $P \# \Sigma$ is formed by surgeries of type (m+1, m+1) from Σ .

Suppose that $\Sigma \in I(P)$; then combining the surgeries above we have that Σ is formed by surgeries of type (m+1, m+1) from $P \# \Sigma = P$, which in turn is formed by surgeries of type (m+1, m+1) from S^{2m+1} . Thus Σ is formed by surgeries of type (m+1, m+1) from S^{2m+1} and so by attaching (m+1)-handles to the disc D^{2m+2} to correspond to these surgeries we obtain $V \in \mathscr{H}(m+1)$ with $\Sigma = \partial V$.

4. Necessary conditions for Theorem 1

In this section the necessary conditions for $\Sigma \in I(P)$ given by Theorem 1 are established under the assumption, justified by §3, that $\Sigma \in \Theta_{2m+1}(\partial \pi)$. The methods employed here are inspired to some extent by Browder's paper [1].

LEMMA 3. Let $L_1, L_2 \in \mathcal{H}(m+1)$ and $f: \partial L_1 \to \partial L_2$ be an orientation-preserving diffeomorphism. If $M = L_1 \cup_f (-L_2)$ then $\tau(M) = \tau(L_1) - \tau(L_2)$.

Here $-L_2$ denotes L_2 with the opposite orientation and M is formed by gluing L_1 to L_2 by the diffeomorphism f. τ denotes the signature of a manifold which is the signature of the intersection matrix for m odd and is zero for m even. The lemma is easily proved by using the relationship between the various cohomology sequences.

Now take m = 3 or 7 and for $L \in \mathscr{H}(m+1)$ with $\partial L = P$ suppose $\Sigma \in I(P)$ when $\Sigma \in \Theta_{2m+1}(\partial \pi)$ and there exists an orientation-preserving diffeomorphism $f: P \to P \# \Sigma$. $\Sigma = \partial W$ for some parallelisable manifold $W \in \mathscr{H}(m+1)$ (Σ bounds a parallelisable manifold which by surgery can be made *m*-connected and so an element of $\mathscr{H}(m+1)$) and we define $M = (L+W) \cup_f (-L)$ by identifying $P \# \Sigma$ and P by f; L+W denotes the boundary connected sum of L and W.

M is a closed *m*-connected (2m+2)-manifold and $\pi_m(SO) \simeq \mathbb{Z}$ so that the obstruction to a cross-section of the tangent bundle over the (m+1)-skeleton is a well-defined element

$$\gamma \in H^{m+1}(M; \pi_m(SO)) \simeq H^{m+1}(M).$$

PROPOSITION 4. Let M be as above and $\gamma \in H^{m+1}(M)$; then

$$\frac{\tau(W)}{8} = \frac{\tau(M)}{8} = \frac{\gamma^2}{8} \mod \begin{cases} 28 & \text{for } m = 3\\ 2^6 \cdot 127 & \text{for } m = 7. \end{cases}$$

Proof. $\tau(L+W) = \tau(L) + \tau(W)$ and so, by Lemma 3, $\tau(M) = \tau(W)$. Hirzebruch's Index Theorem and the integrability of the \hat{A} -genus (see [2]) are now used to relate $\tau(M)$ and γ^2 .

If m = 3 when M is an 8-manifold the \hat{A} -genus is given by

$$\hat{A}(M) = \hat{A}_2(p_1, p_2) = \frac{1}{2^7.45} (-4p_2 + 7p_1^2),$$

Hirzebruch's Index Theorem gives

$$\tau(M) = L_2(p_1, p_2) = (1/45)(7p_2 - p_1^2)$$

and eliminating the Pontrjagin class p_2 from these two equations gives

$$\tau(M) = p_1^2 / 4 - 8.28 \hat{A}.$$

Now M is a spin manifold and so \hat{A} is an integer, whence

$$\tau(M)/8 = (p_1^2/32) \mod 28.$$

By Lemma 1.1 of Kervaire [4] $p_1 = 2\gamma$ and so

$$\tau(M)/8 = (\gamma^2/8) \bmod 28.$$

If m = 7, when M is a 16-manifold the non-zero Pontrjagin classes are p_2 and p_4 and the \hat{A} -genus is given by

$$\hat{A}(M) = \hat{A}_4(0, p_2, 0, p_4) = \frac{1}{2^{15} \cdot 3^4 \cdot 5^2 \cdot 7} (-192p_4 + 208p_2^2).$$

Hirzebruch's Index Theorem gives

$$\tau(M) = L_4(0, p_2, 0, p_4) = \frac{1}{3^4 \cdot 5^2 \cdot 7} (381p_4 - 19p_2^2)$$

and eliminating p_4 from the two equations gives

$$\tau(M) = (p_2^2/36) - 2^9 \cdot 127\hat{A}.$$

M is a spin manifold and so \hat{A} is an integer, whence

$$\frac{\tau(M)}{8} = \frac{p_2^2}{8.36} \mod 2^6.127.$$

By [4], $p_2 = 6\gamma$ and so

$$\frac{\tau(M)}{8} = \frac{\gamma^2}{8} \mod 2^6.127.$$

PROPOSITION 5. Manifolds P and M are as above with tangential invariants $\hat{\beta} \in H^{m+1}(P)$ and $\gamma \in H^{m+1}(M)$.

- (i) If, for an integer N, $N\hat{\beta}$ is divisible by Nr then r/N divides γ^2 .
- (ii) If $H^{m+1}(P)$ has no element of order 2 and $N\hat{\beta}$ is divisible by Nr then 2r/N divides γ^2 .
- (iii) If $\hat{\beta}$ has finite order then $\gamma^2 = 0$.

COROLLARY. If $N\hat{\beta}$ is divisible by Nr and $\Sigma \in I(P)$, then Σ is divisible by r/(8N). Moreover, if $H^{m+1}(P)$ has no element of order 2 then Σ is divisible by r/(4N).

Before proving the proposition we use the result to establish the necessary conditions for Theorem 1 and also the corollary above.

For P a closed (m-1)-connected (2m+1)-manifold, m = 3 or 7, by Theorem 4 of [11] $P \# \Sigma = \partial L$ for some $L \in \mathcal{H}(m+1)$ and $\Sigma \in \Theta_{2m+1}$. Now $I(P) = I(P \# \Sigma)$ and so to determine the inertia group we may assume without loss of generality that $P = \partial L$ and so apply the results of this section. Now if $\Sigma \in I(P)$ there exists an orientation-preserving diffeomorphism $f: P \to P \# \Sigma$ and so the manifold M can be formed. By [5], Σ as an element of $\Theta_{2m+1}(\partial \pi)$ is determined by $(\tau(W)/8) \mod |\Theta_{2m+1}(\partial \pi)|$, and so by Proposition 4 and parts (i) and (ii) of Proposition 5 the corollary follows. Part (i) and the necessary conditions for part (ii) of Theorem 1 are given by Proposition 4 together with part (ii), taking N = 1, and part (iii) of Proposition 5.

Proof of Proposition 5

Consider the following commutative diagram of cohomology groups.

The diagram gives rise to the Mayer-Vietoris sequence

 $0 \to H^m(P) \xrightarrow{\Delta} H^{m+1}(M) \xrightarrow{\Phi} H^{m+1}(L) \oplus H^{m+1}(L+W) \xrightarrow{\Psi} H^{m+1}(P) \to 0,$ where

 $\Delta = m_1 * l_1 *^{-1} \delta_1 = -m_2 * l_2 *^{-1} \delta_2, \quad \Phi(x) = k_1 * (x) \oplus k_2 * (x) \quad \text{for} \quad x \in H^{m+1}(M),$ and

$$\Psi(y \oplus z) = i_1^*(y) - i_2^*(z) \quad \text{for} \quad y \in H^{m+1}(L), \quad z \in H^{m+1}(L+W).$$
$$H^{m+1}(L+W) \simeq H^{m+1}(L) \oplus H^{m+1}(W)$$

and

$$H^{m+1}(L+W, P) \simeq H^{m+1}(L, P) \oplus H^{m+1}(W, \Sigma)$$

and in this way j_2^* is identified with $j_1^* \oplus t^*$, where the isomorphism

$$t^*: H^{m+1}(W, \Sigma) \to H^{m+1}(W)$$

is induced by the inclusion map $t: W \to (W, \Sigma)$.

 $\partial(L+W) = P \# \Sigma$ and $H^{m+1}(P \# \Sigma) \simeq H^{m+1}(P) \oplus H^{m+1}(\Sigma) \simeq H^{m+1}(P)$ and so the induced homomorphism $H^{m+1}(L+W) \to H^{m+1}(P \# \Sigma)$ of the inclusion $P \# \Sigma \to L+W$ can be identified with the homomorphism given by i_1^* on $H^{m+1}(L)$ with $H^{m+1}(W)$ being mapped trivially. In forming $M, P \# \Sigma$ is identified with P by the diffeomorphism $f: P \to P \# \Sigma$ and by the identification

$$H^{m+1}(P \ \# \ \Sigma) \simeq H^{m+1}(P).$$

 f^* can be regarded as an automorphism $f^*: H^{m+1}(P) \to H^{m+1}(P)$, and so i_2^* is identified with the homomorphism given by $f^*i_1^*$ on $H^{m+1}(L)$ with $H^{m+1}(W)$ being mapped trivially. For convenience in what follows we write $n_1 = m_1^* l_1^{*-1}$ and $n_2 = m_2^* l_2^{*-1}$.

The obstruction to a cross-section of the tangent bundle over the (m+1)-skeleton of L is a well-defined element

$$\hat{\alpha} \in H^{m+1}(L; \pi_m(SO)) \simeq H^{m+1}(L)$$

and since W is parallelisable the corresponding obstruction for L+W is also $\hat{\alpha} \in H^{m+1}(L+W) \simeq H^{m+1}(L) \oplus H^{m+1}(W)$. Since γ , $\hat{\alpha}$ and $\hat{\beta}$ are all obstructions to cross-sections of the tangent bundle over the (m+1)-skeletons of the corresponding manifolds, it follows that $k_1^*(\gamma) = \hat{\alpha}$, $k_2^*(\gamma) = \hat{\alpha}$, $i_1^*(\hat{\alpha}) = i_2^*(\hat{\alpha}) = \hat{\beta}$.

(i) $N\hat{\beta}$ is divisible by Nr and so $N\hat{\beta} = Nrx$ for some $x \in H^{m+1}(P)$. Now since $i_1^*(\hat{\alpha}) = \hat{\beta}$ we have $N\hat{\alpha} = NrX + Y$ for $X, Y \in H^{m+1}(L)$, where $i_1^*(X) = x$ and $i_1^*(Y) = 0$. By exactness, $Y = j_1^*(a) = j_2^*(a)$ for some $a \in H^{m+1}(L, P)$. Suppose that the isomorphism $f^*: H^{m+1}(P) \to H^{m+1}(P)$ has $f^*(x) = x + z$;

Suppose that the isomorphism $f^*: H^{m+1}(P) \to H^{m+1}(P)$ has $f^*(x) = x+z$; then as f is a diffeomorphism $f^*(\hat{\beta}) = \hat{\beta}$ when $f^*(N\hat{\beta}) = N\hat{\beta}$ and we have Nrz = 0. So if $z = i_1^*(Z)$ for $Z \in H^{m+1}(L)$ then $i_1^*(NrZ) = 0$ and by exactness $NrZ = j_1^*(b)$ for some $b \in H^{m+1}(L, P)$.

Referring to the Mayer-Vietoris sequence, we have

$$\Psi(X+Z\oplus X) = i_1^*(X+Z) - i_2^*(X) = i_1^*(X+Z) - f^*i_1^*(X) = 0.$$

By exactness

$$X + Z \oplus X = \Phi(c) = k_1^*(c) \oplus k_2^*(c) \text{ for some } c \in H^{m+1}(M).$$

Now

$$\Phi(N\gamma - Nrc) = k_1^*(N\gamma - Nrc) \oplus k_2^*(N\gamma - Nrc)$$

= $(N\alpha - Nr(X+Z)) \oplus (N\alpha - NrX) = (Y - NrZ) \oplus Y$
= $j_1^*(a-b) \oplus j_2^*(a) = k_1^*n_1(a-b) \oplus k_2^*n_2(a)$
= $\Phi(n_1(a-b) + n_2(a))$

since $k_1 * n_2 = k_2 * n_1 = 0$. Therefore, by exactness of the Mayer-Vietoris sequence,

$$N\gamma - Nrc = n_1(a-b) + n_2(a) + \Delta(d)$$

for some $d \in H^m(P)$. Squaring this equation, $(n_1(a-b))^2 = -(a-b)^2$, since M is formed from -L i.e. L with the opposite orientation, and $n_2(a)^2 = a^2$. All other

products on the right-hand side are zero since they can be factored through $H^{2m+2}(M, L+W \cup L) \simeq 0$. Hence

$$N^{2} \gamma^{2} - 2N^{2} rc.\gamma + N^{2} r^{2} c^{2} = 2a.b - b^{2},$$

i.e. $N^{2} \gamma^{2} = 2N^{2} rc.\gamma - N^{2} r^{2} c^{2} + b.(2a - b)$
$$= 2N^{2} rc.\gamma - N^{2} r^{2} c^{2} + NrZ.(2a - b)$$

since $b (2a-b) = j_1^*(b) (2a-b)$ and hence

$$\gamma^{2} = 2rc.\gamma - r^{2}c^{2} + (r/N)Z.(2a-b), \qquad (*)$$

showing that γ^2 is divisible by r/N.

(ii) $\hat{\beta}$ is always an even element (see [11]) and so we can assume that r is even. Since Nrz = 0 and $H^{m+1}(P)$ has no element of order 2 we must have Nrz/2 = 0. Thus $i_1^*(NrZ/2) = 0$, when, since $H^{m+1}(L, P)$ is torsion-free, it follows that b is even and so from (*) γ^2 is divisible by 2r/N.

(iii) If $\hat{\beta}$ has finite order N then $N\hat{\beta} = 0$ is divisible by any integer, and so by (i) γ^2 is divisible by any integer, whence $\gamma^2 = 0$.

5. Sufficient conditions for Theorem 1

Suppose $P = \partial L$ for $L \in \mathcal{H}(m+1)$, where m = 3 or 7. We recall from [8] relations between invariants of L and P.

 $H = H_{m+1}(L)$ is torsion-free and intersection numbers give a symmetric bilinear map

$$\lambda: H \times H \to \mathbb{Z}.$$

The obstruction to triviality of the tangent bundle over the (m+1)-skeleton is an element $\hat{\alpha} \in H^{m+1}(L)$. By using the identification $H^{m+1}(L) \simeq \hat{H} = \text{Hom}(H, \mathbb{Z})$, $\hat{\alpha}$ can be regarded as a homomorphism $\hat{\alpha} : H \to \mathbb{Z}$ and λ and $\hat{\alpha}$ satisfy the relation $\lambda(x, x) = \hat{\alpha}(x) \mod 2$ for all $x \in H$. The manifolds of $\mathscr{H}(m+1)$ are classified by the invariants $(H, \lambda, \hat{\alpha})$.

A manifold L splits as a boundary connected sum $L_1 + L_2$ (when the boundary P splits as a connected sum $\partial L_1 # \partial L_2$) if and only if λ splits i.e. if $H = H_1 \oplus H_2$ and $\lambda(x, y) = 0$ for all $x \in H_1$, $y \in H_2$. Then $L = L_1 + L_2$, where L_1 and L_2 have invariants $(H_1, \lambda_1, \alpha_1)$ and $(H_2, \lambda_2, \alpha_2)$, where $\lambda_1 = \lambda |_{H_1 \times H_2}$, $\lambda_2 = \lambda |_{H_2 \times H_2}$ and $\alpha = \alpha_1 \oplus \alpha_2$.

 λ induces a homomorphism $\pi: H \to \hat{H}$ by the rule $\pi(x)(y) = \lambda(x, y)$. By identifying $H^{m+1}(L, P)$ with H and $H^{m+1}(L)$ with \hat{H} in the cohomology sequence

$$0 \to H^m(P) \to H^{m+1}(L, P) \xrightarrow{j^*} H^{m+1}(L) \xrightarrow{j^*} H^{m+1}(P) \to 0,$$

where $i^*(\alpha) = \hat{\beta}$, j^* is identified with π so that $H^{m+1}(P) \simeq \operatorname{coker} \pi$ and $H^m(P) \simeq \ker \pi$, which is isomorphic to the torsion-free part of $H^{m+1}(P)$. *P* is then a homotopy sphere Σ if and only if π is an isomorphism i.e. if and only if λ is unimodular. In this case α regarded as an element of \hat{H} determines a unique element

 $\chi \in H$ by the rule $\chi \cdot x = \alpha(x)$ for all $x \in H$, i.e. $\pi(\chi) = \alpha$ (here $\chi \cdot x$ denotes $\lambda(\chi, x)$) and by Theorem 4 of [8] Σ as an element of $\Theta_{2m+1}(\partial \pi)$ is given by

$$\frac{\chi^2 - \tau}{8} \mod \begin{cases} 28 & \text{for } m = 3\\ 2^6 \cdot 127 & \text{for } m = 7 \end{cases}$$

where τ is the signature of L i.e. the signature of λ .

To complete the proof of Theorem 1 the following must be proved.

Let $H^{m+1}(P) * \Theta_{2m+1} \simeq 0$ and r be the largest integer dividing $\hat{\beta}$. If $\Sigma \in \Theta_{2m+1}(\partial \pi)$ is divisible by r/4 then $\Sigma \in I(P)$.

We can as usual assume $P = \partial L$ with $L \in \mathscr{H}(m+1)$. Since $|\Theta_{2m+1}(\partial \pi)|$ has only factors 2 and p, where p = 7 for m = 3 and p = 127 for m = 7, it is only the powers of 2 and p in r that are of importance, and so we may assume that r has no other factors.

 $\pi: H \to \hat{H}$ and let $H_1 = \ker \pi$ when $H = H_1 \oplus H_2$ for some H_2 and L splits as a boundary connected sum $L_1 + L_2$ where $\lambda_1 = 0$. $P = P_1 \# P_2$ splits accordingly with $H^{m+1}(P_1) \simeq$ the torsion-free part of $H^{m+1}(P)$ and $H^{m+1}(P_2) \simeq$ the torsion subgroup of $H^{m+1}(P)$. The tangential invariant $\hat{\beta} = \hat{\beta}_1 \oplus \hat{\beta}_2$ and, since $H^{m+1}(P) * \Theta_{2m+1} \simeq 0, H^{m+1}(P_2)$ has no elements of order 2 or p and so $\hat{\beta}_2 \in H^{m+1}(P_2)$ is divisible by any power of 2 or p. Thus r is the largest integer dividing $\hat{\beta}_1$ and since $I(P_1 \# P_2) \supset I(P_1) + I(P_2) \supset I(P_1)$ it is enough to show that $\Sigma \in I(P_1)$.

It is enough therefore to prove the result for a manifold P with $H^{m+1}(P)$ torsionfree and $P = \partial L$ where L has $\lambda = 0$. Here $H^{m+1}(L)$ is mapped isomorphically onto $H^{m+1}(P)$ and so r is the largest integer dividing α . Thus if H has rank k there exists a basis $e_1, e_2, ..., e_k$ of H with $\alpha(e_1) = r, \alpha(e_i) = 0$ for $i \neq 1$. Then

$$L = L_1 + L_2 + \ldots + L_k$$

where $H^{m+1}(L_i) \simeq \mathbb{Z}$ with generator e_i . Correspondingly $P = P_1 \# P_2 \# ... \# P_k$ where $P_i = \partial L_i$ and $H^{m+1}(P_i) \simeq \mathbb{Z}$ and P_1 will have tangential invariant $\hat{\beta}$. Since

$$I(P) \supset I(P_1) + I(P_2) + \dots + I(P_k) \supset I(P_1),$$

it is enough to show that $\Sigma \in I(P_1)$.

It is enough therefore to prove the result for a manifold P where $H^{m+1}(P) \simeq \mathbb{Z}$ and $P = \partial L$ where $H^{m+1}(L) \simeq \mathbb{Z}$ with generator e. L has intersection matrix [0], i.e. $\lambda = 0$, and $\hat{\alpha}(e) = r$.

Let $V \in \mathscr{H}(m+1)$ have $H_{m+1}(V) \simeq \mathbb{Z}$ with generator f and intersection matrix [1] and $\mathscr{A}(f) = \pm 1$. Then $\chi = \pm f$ and the signature $\tau = 1$ so that $(\chi^2 - \tau)/8 = 0$, showing that $\partial V = S^{2m+1}$. L+V has intersection matrix

ΓO	רס
L0	1]

with respect to the basis e, f of $H^{m+1}(L+V) \simeq H^{m+1}(L) \oplus H^{m+1}(V) \simeq \mathbb{Z} \oplus \mathbb{Z}$. Consider the change of basis to e, F = e+f which gives the same intersection matrix. Then L+V = L+V', where V' has $H_{m+1}(V') \simeq \mathbb{Z}$ with generator F and intersection matrix [1]. Thus $\partial(L+V) = P = P \# \Sigma = \partial(L+V')$, where $\Sigma = \partial V'$, whence $\Sigma \in I(P)$. For V', $\partial(F) = \partial(e+f) = r \pm 1$ and so $\chi = (r \pm 1) F$ and

$$\frac{\chi^2 - \tau}{8} = \frac{(r \pm 1)^2 - 1}{8} = \frac{r(r \pm 2)}{8}$$

 Σ as an element of $\Theta_{2m+1}(\partial \pi)$ is given by

$$\frac{r(r\pm 2)}{8} \mod \begin{cases} 28 & \text{for } m=3\\ 2^6.127 & \text{for } m=7. \end{cases}$$

We consider the factors 2 and 7 or 127 of $|\Theta_{2m+1}(\partial \pi)|$ separately and show that if r is not divisible by 7 or 127 then either r(r+2)/8 or r(r-2)/8 is not divisible by 7 or 127, and if the highest power of 2 in r is 2^k then either r(r+2)/8 or r(r-2)/8 is divisible by 2^{k-2} but not by 2^{k-1} for $k \ge 2$ and either r(r+2)/8 or r(r-2)/8 is odd for k = 1 (r is always even). Once it is established that there is a homotopy sphere $\Sigma \in I(P)$ not divisible by 7 or 127 or divisible by 2^{k-2} and not by 2^{k-1} for $k \ge 2$ or not divisible by 2 for k = 1 then the required subgroup of $\Theta_{2m+1}(\partial \pi)$ can be generated to prove the result.

If 7 or 127 does not divide r then 7 or 127 does not divide (r+2) or (r-2) and so 7 or 127 does not divide r(r+2)/8 or r(r-2)/8.

For $k \ge 2$, if 2^k divides r but 2^{k+1} does not then (r+2) is divisible by 2 but not by 4 and hence r(r+2)/8 is divisible by 2^{k-2} but not by 2^{k-1} .

Finally, if 2 divides r but 4 does not then either (r+2) or (r-2) is divisible by 4 but not by 8 and hence r(r+2)/8 or r(r-2)/8 is odd.

6. Inertia groups of connected sums

In this section inertia groups of closed (m-1)-connected (2m+1)-manifolds P, m = 3 or 7, are considered where $H^{m+1}(P) * \Theta_{2m+1} \neq 0$. In this case the corollary to Proposition 5 can give a stronger condition for $\Sigma \in I(P)$ than that given in part (ii) of Theorem 1. For example if P has $H^{m+1}(P) \simeq \mathbb{Z} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_p$ (where p = 7 for m = 3 and p = 127 for m = 7) and $\hat{\beta} = 2^{10} p^2 \oplus 2 \oplus 1$ then $2p\hat{\beta}$ is divisible by $2^{11} p^3$, i.e. $r = 2^{10} p^2$, and so by the corollary $\Sigma \in I(P)$ is divisible by $2^{10} p^2/(8.2p) = 2^6 p$, showing that $I(P) \simeq 0$.

For any two manifolds P_1 and P_2 , $I(P_1 \# P_2) \supset I(P_1) + I(P_2)$ and if P_1 and P_2 each have $H^{m+1}(P_i) * \Theta_{2m+1} \simeq 0$ it follows from part (ii) of Theorem 1 that $I(P_1 \# P_2) = I(P_1) + I(P_2)$. This is also true if both P_1 and P_2 have tangential invariants of finite order when by part (i) of Theorem 1

$$I(P_1 \# P_2) = I(P_1) = I(P_2) \simeq 0.$$

If in general it were true that

$$I(P_1 \# P_2) = I(P_1) + I(P_2)$$

then Theorem 1 would determine I(P) for any of our manifolds P, since we have already shown that $P = P_1 \# P_2$, where $H^{m+1}(P_1)$ is torsion-free and $H^{m+1}(P_2)$ is finite, and in this case I(P) would depend on the torsion-free part of the tangential invariant $\hat{\beta}$. This is not, however, true in general, as we show by the following examples.

Let manifolds L_1 , L_2 , $L_3 \in \mathscr{H}(m+1)$, whose boundaries are P_1 , P_2 , P_3 , be given as follows, where p = 7 for m = 3 and p = 127 for m = 7, and where we take $k \ge 4$ for m = 3 and $k \ge 8$ for m = 7.

 L_1 has $H_1 = H_{m+1}(L_1) \simeq \mathbb{Z}$ with generator e_1 , intersection matrix [0], and tangential invariant given by $\hat{\alpha}(e_1) = 2^k p$ (i.e. $\hat{\alpha} = 2^k p \hat{e}_1 \in \hat{H}_1$). $P_1 = \partial L_1$ then has

 $H^{m+1}(P_1) \simeq \mathbb{Z}$ with a generator e_1' , where the tangential invariant is $\hat{\beta}_1 = 2^k p e_1'$. L_2 has $H_2 = H_{m+1}(L_2) \simeq \mathbb{Z}$ with generator e_2 , intersection matrix [p], and tangential invariant given by $\hat{\alpha}(e_2) = 1$ (i.e. $\hat{\alpha} = \hat{e}_2 \in \hat{H}_2$). $P_2 = \partial L_2$ then has $H^{m+1}(P_2) \simeq \mathbb{Z}_p$ with a generator e_2' where the tangential invariant is $\hat{\beta}_2 = e_2'$.

 L_3 has $H_3 = H_{m+1}(L_3) \simeq \mathbb{Z}$ with generator e_3 , intersection matrix $[2^{k-1}]$, and tangential invariant given by $\hat{\alpha}(e_3) = 2$ (i.e. $\hat{\alpha} = 2\hat{e}_3 \in \hat{H}_3$). $P_3 = \partial L_3$ then has $H^{m+1}(P_3) \simeq \mathbb{Z}_{2^{k-1}}$ with a generator e_3' , where the tangential invariant $\hat{\beta}_3 = 2e_3'$.

In addition let $V \in \mathscr{H}(m+1)$ have $H^{m+1}(V) \simeq \mathbb{Z} \oplus \mathbb{Z}$ with basis f_1, f_2 and corresponding intersection matrix

$$\begin{array}{ccc} f_1 & f_2 \\ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

and tangential invariant given by $\hat{\alpha}(f_1) = 2$, $\hat{\alpha}(f_2) = 0$. The signature τ of V is zero and $\chi = 2f_2$ so that $\chi^2 = 4f_2^2 = 0$, whence $\partial V = S^{2m+1}$.

 $L_1 + L_2 + V$ has intersection matrix

e_1	e_2	f_1	f_2
0	0	0	٥٦
0	р	0	0
0	0	0	1
0	0	1	0

Consider the change of basis of $H_{m+1}(L_1+L_2+V) \simeq \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ to e_1 , $E_2 = e_1 + e_2 - 2^{k-1} pf_1$, f_1 , $F_2 = 2^{k-1} e_2 - 2^{2k-3} pf_1 + f_2$, which gives the same intersection matrix.

$$\hat{\alpha}(E_2) = \hat{\alpha}(e_1) + \hat{\alpha}(e_2) - 2^{k-1} p \hat{\alpha}(f_1) = \hat{\alpha}(e_2) + 2^k p - 2^{k-1} p 2 = \hat{\alpha}(e_2) = 1.$$

So $L_1 + L_2 + V = L_1 + L_2 + V'$, where V' has intersection matrix

$$\begin{array}{ccc} f_1 & F_2 \\ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Thus $P_1 # P_2 = P_1 # P_2 # \Sigma$ where $\Sigma = \partial V'$. Now

$$\hat{\alpha}(F_2) = 2^{k-1} \hat{\alpha}(e_2) - 2^{2k-3} p \hat{\alpha}(f_1) + \hat{\alpha}(f_2) = 2^{k-1} (1 - 2^{k-1} p).$$

 $\hat{\alpha}(f_1) = 2$, so that $\chi = 2^{k-1}(1-2^{k-1}p)f_1+2F_2$. The signature of V' is zero and so Σ is an element of $\Theta_{2m+1}(\partial \pi)$ is given by

$$\frac{\chi^2}{8} = \frac{2 \cdot 2^{k-1} (1 - 2^{k-1} p) \cdot 2}{8} \mod \begin{cases} 28 & \text{for } m = 3\\ 2^6 \cdot 127 & \text{for } m = 7 \end{cases}$$
$$= 2^{k-2} \mod \begin{cases} 28 & \text{for } m = 3\\ 2^6 \cdot 127 & \text{for } m = 7. \end{cases}$$

 $\Theta_7 = \Theta_7(\partial \pi) \simeq \mathbb{Z}_4 \oplus \mathbb{Z}_7$ and $\Theta_{15}(\partial \pi) \simeq \mathbb{Z}_{26} \oplus \mathbb{Z}_{127}$ and so Σ generates the \mathbb{Z}_7 component of Θ_7 for m = 3 and the \mathbb{Z}_{127} component of $\Theta_{15}(\partial \pi)$ for m = 7.

Now 2^k divides the tangential invariant $\hat{\beta}_1 \oplus \hat{\beta}_2 = 2^k p e_1' + e_2'$ of $P_1 \# P_2$ and

so by the corollary to Proposition 5 with N = 1 any $\Sigma \in I(P_1 \# P_2)$ is divisible by 2^{k-2} . We therefore have

$$I(P_1 \ \# \ P_2) \simeq \begin{cases} \mathbb{Z}_7 & \text{for } m = 3 \\ \mathbb{Z}_{127} & \text{for } m = 7. \end{cases}$$

 $L_1 + L_3 + V$ has intersection matrix

$$\begin{bmatrix} e_1 & e_3 & f_1 & f_2 \\ 0 & 0 & 0 & 0 \\ 0 & 2^{k-1} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Consider the change of basis of $H_{m+1}(L_1+L_3+V) \simeq \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ to e_1 , $E_3 = e_1 + e_3 - 2^{k-1} pf_1$, f_1 , $F_2' = pe_3 - 2^{k-2} p^2 f_1 + f_2$, which gives the same intersection matrix.

$$\hat{\alpha}(E_3) = \hat{\alpha}(e_1) + \hat{\alpha}(e_3) - 2^{k-1} p \hat{\alpha}(f_1) = \hat{\alpha}(e_3) + 2^k p - 2^{k-1} p 2 = \hat{\alpha}(e_3) = 2.$$

So $L_1 + L_3 + V = L_1 + L_3 + V''$, where V'' has intersection matrix

$$\begin{bmatrix} f_1 & F_2' \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Thus $P_1 # P_3 = P_1 # P_3 # \Sigma$, where $\Sigma = \partial V''$. Now

$$\hat{\alpha}(F_2') = p\hat{\alpha}(e_3) - 2^{k-2} p^2 \hat{\alpha}(f_1) + \hat{\alpha}(f_2) = 2p(1 - 2^{k-2} p).$$

 $\&(f_1) = 2$, so that $\chi = 2p(1-2^{k-2}p)f_1 + 2F_2'$. The signature of V'' is zero and so Σ as an element of $\Theta_{2m+1}(\partial \pi)$ is given by

$$\frac{\chi^2}{8} = \frac{2.2p(1-2^{k-2}p)2}{8} \mod \begin{cases} 28 & \text{for } m=3\\ 2^6.127 & \text{for } m=7 \end{cases}$$

$$= p \mod \begin{cases} 28 & \text{for } m = 3\\ 2^6 \cdot 127 & \text{for } m = 7. \end{cases}$$

 Σ therefore generates the \mathbb{Z}_4 component of Θ_7 for m = 3 and the \mathbb{Z}_{26} component of $\Theta_{15}(\partial \pi)$ for m = 7. Now p divides the tangential invariant $\beta_1 \oplus \beta_3 = 2^k p e_1' + 2 e_3'$ of $P_1 \# P_3$ and so, by the corollary to Proposition 5 with N = 1, any $\Sigma \in I(P_1 \# P_3)$ is divisible by p. We therefore have

$$I(P_1 \# P_3) \simeq \begin{cases} \mathbb{Z}_4 & \text{for } m = 3 \\ \mathbb{Z}_{2^6} & \text{for } m = 7. \end{cases}$$

 $I(P_1 \# P_2 \# P_3)$ contains both $I(P_1 \# P_2)$ and $I(P_1 \# P_3)$ and so we have

$$I(P_1 \# P_2 \# P_3) \simeq \begin{cases} \mathbb{Z}_4 \oplus \mathbb{Z}_7 & \text{for } m = 3\\ \mathbb{Z}_{26} \oplus \mathbb{Z}_{127} & \text{for } m = 7 \end{cases}$$

i.e. $I(P_1 \# P_2 \# P_3) = \Theta_{2m+1}(\partial \pi)$.

Theorem 1 can be applied to the manifolds P_1 , P_2 , P_3 and $P_2 \# P_3$ to show that in each case the inertia groups are trivial. So, to summarize, the inertia groups of P_1 , P_2 , P_3 and their connected sums are

$$I(P_1) = I(P_2) = I(P_3) = I(P_2 \# P_3) \simeq 0$$

$$I(P_1 \# P_2) \simeq \begin{cases} \mathbb{Z}_7 & \text{for } m = 3 \\ \mathbb{Z}_{127} & \text{for } m = 7 \end{cases}$$

$$I(P_1 \# P_3) \simeq \begin{cases} \mathbb{Z}_4 & \text{for } m = 3 \\ \mathbb{Z}_{26} & \text{for } m = 7 \end{cases}$$

$$I(P_1 \# P_2 \# P_3) = \Theta_{2m+1}(\partial \pi) \simeq \begin{cases} \mathbb{Z}_{28} & \text{for } m = 3 \\ \mathbb{Z}_{26,127} & \text{for } m = 7 \end{cases}$$

The methods used in the examples above give sufficient conditions for $\Sigma \in I(P)$ for certain manifolds P where $H^{m+1}(P) * \Theta_{2m+1} \neq 0$. Together with necessary conditions as in the corollary to Proposition 5, it seems that the general result for I(P) should be along the following lines.

CONJECTURE. Let P be a closed (m-1)-connected (2m+1)-manifold, where m = 3 or 7. If r and s are the largest integers such that $2^k \beta$ and $p^l \hat{\beta}$ are divisible by 2^{2k+r} and p^{2l+s} respectively, for any integers k and l, then I(P) consists exactly of those elements of $\Theta_{2m+1}(\partial \pi)$ divisible by $2^{r-2} p^s$ (p = 7 for m = 3 and p = 127 for m = 7).

References

- 1. W. Browder, "On the action of $\theta^n(\partial \pi)$ ", Differential and combinatorial topology (Princeton University Press, 1965), 23-36.
- 2. F. Hirzebruch, Topological methods in algebraic geometry (Springer-Verlag, 1966).
- 3. Katsuo Kawakubo, "On the inertia groups of homotopy tori", J. Math. Soc. Japan, 21 (1969), 37-47.
- 4. M. A. Kervaire, "A note on obstructions and characteristic classes", Amer. J. Math., 81 (1959), 773-784.
- 5. and J. Milnor, "Groups of homotopy spheres I", Ann. of Math., 77 (1963), 505-537.
- S. P. Novikov, "Topological invariance of rational pontrjagin classes", Soviet Math. (Doklady) A.M.S., 6 (1965), 921–923.
- 7. R. Schultz, "On the inertia group of a product of spheres ", Trans. Amer. Math. Soc., 156 (1971), 137-153.
- C. T. C. Wall, "Classification of (n-1)-connected 2n-manifolds", Ann. of Math., 75 (1962), 163-189.
- 9. ——, "Killing the middle homotopy group of odd-dimensional manifolds", Trans. Amer. Math. Soc., 103 (1962), 421-433.
- -----, "Classification problems in differential topology, VI. Classification of (s-1)-connected (2s+1)-manifolds", Topology, 6 (1967), 273-296.
- 11. David L. Wilkens, "Closed (s-1)-connected (2s+1)-manifolds, s = 3, 7", Bull. London Math. Soc., 4 (1972), 27-31.

Department of Pure Mathematics, The University, Birmingham B15 2TT.