
ON THE INERTIA GROUPS OF CERTAIN MANIFOLDS

DAVID L. WILKENS

1. Introduction

For a closed compact smooth m-manifold M, m ^ 5, the inertia group
= { E e 0 m ; there is an orientation-preserving diffeomorphism between M

and M # £}, where # denotes the connected sum and 0 m is the group of homotopy
m-spheres. Where the inertia groups of specific manifolds have been determined, the
results tend to fall into two extremes. Either necessary conditions for Ee / (M) are
strong enough to show that I(M) is trivial (for example Schultz [7] shows that
I(M) ~ 0 when M is a product of ordinary spheres) or sufficient conditions for
£ e / ( M ) are weak enough to show I(M) = 0 m or ®m(dn) (for example Kawakubo
[3] shows that I(S3 x Z10) = 0 1 3 , where S1 0 is a generator of the 3-component of
0 1 O — Z2 0 Z3). The purpose of this paper is to determine the inertia groups of a
class of manifolds and so give examples where I(M) falls between 0 and 0m.

We consider closed (m— l)-connected (2ra+l)-manifolds P, where m = 3 or 7,
and in Theorem 1 determine the inertia groups /(P), the results depending on a
tangential invariant fteHm+1(P). These results do not apply to the case where
Hm+i(P) and 02 m+i contain elements of the same order and here I(P) seems to
depend on the divisibility of multiples of /?. As a contribution to this case we deter-
mine the inertia groups of certain of these manifolds in §6 and at the same time
show that in general the inertia group of a connected sum is not the sum of the
respective inertia groups. The methods employed in this paper apply to other
(m—l)-connected (2m+l)-manifolds where m ^ 3 or 7, especially where m = 3
(mod 4), but we restrict ourselves to m = 3 or 7 since the results here are more precise.

2. Invariants and Theorem 1

Let P be a closed (m — l)-connected (2m+l)-manifold where m = 3 or 7. The
non-zero homology and cohomology groups of P occur in dimensions 0, m, m + l,
2m +1 and since nm-l(SO) ^ 0 it follows that P is m-parallelisable. nm(SO) caZ
and the obstruction to triviality of the tangent bundle over the (m+ l)-skeleton is a
well defined element

PeHm+1(P; nm(SOj) * Hm+1(P).

Since n2m(SO) cz 0 there is no further obstruction to triviality of the stable tangent
bundle and so $ is the obstruction to stable parallelisability of P. For G a finitely
generated Abelian group and $ an even element of G there exists a manifold P with
Hm + 1(P) - G and tangential invariant j§ (see [10] or [11]). By Lemma 1.1 of
Kervaire [4] the Pontrjagin classes of P in terms of /? are given by

2/* = Pi(P) for m = 3, 6/? = p2(P) for m = 7.

The dimensions of the manifolds we are considering are 7 and 15 and here the
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groups of homotopy spheres are 0 7 = 07(d7r) ~ Z28 and 0 1 5 m Z26.i27 © Z2,
015(d7r) m Z26.127. The main result is

THEOREM 1. Let P be a closed (m — \)-connected (2m+l)-manifold, m = 3 or 7.

(i) / / fi is of finite order then I(P) ~ 0.

(ii) If Hm+1(P)*®2m+i - 0 and r is the largest integer dividing ft then I(P)
consists exactly of those elements of 02m+1(d7r) divisible by r/4.

In (ii) * denotes the torsion product; so the condition Hm+i (P) * 0 2 m + j cz 0 means
that Hm+1(P) and 02 m+i have no elements of the same order, i.e. H4(P) does not
contain elements of order 2 or 7 for m = 3 and H8(P) does not contain elements
of order 2 or 127 for m = 7. Where this condition does not hold and ft is of infinite
order the situation is more complex and will be considered in §6.

It follows from part (ii) of the theorem that any subgroup of 02,,,+ i(d7t) occurs
as the inertia group I(P) for some P and this is also true if we add the restriction
Hm+1(P) ~ 1. By Theorem 3 of [11] the manifolds P with Hm+1(P) torsion-free are
classified up to the addition of homotopy spheres by invariants (#m + 1(P) , /?). These
are topological invariants, since by [6] rational Pontrjagin classes are topological
invariants and these determine (1, and hence P admits exactly |02m+i/J(-P)l
differential structures. So for example we have

COROLLARY. / / r is any divisor of 28 for m = 3 or of 27.127 and r^-lform-l
then there exists a manifold P with Hm+1(P) ~ Z which admits exactly r differential
structures.

3. Proof of Theorem 1

As part of the statement of Theorem 1 we have I(P) c 02m+i(<37r), which has
significance only for m = 7 when 015(37r) is smaller than 0 1 5 , and as a first step we
establish that this is so.

3f(ri) denotes the collection of those handlebodies formed from the 2n-disc by
attaching n-handles. The boundary dL of an element L e J f (ra+1) is a closed m-
parallelisable (w —l)-connected (2m+l)-manifold P.

PROPOSITION 2. / / P is a closed m-parallelisable (m—\)-connected (2m + l)-mani-
fold and £ e / ( P ) , then S = dV for some V

COROLLARY. / / P is a closed ^-connected \5-manifold then I(P) c 0J5(d7i).

The corollary follows from the proposition since, as we have already remarked,
a 6-connected 15-manifold is automatically 7-parallelisable and by Theorem 4 of
[8] the elements of ®15(dn) are exactly those homotopy spheres which occur as
boundaries of elements of jf(8).

To prove the proposition we refer to [9], where it is shown that the homotopy
group 7im(P) of a closed m-parallelisable (m— l)-connected (2/n + l)-manifold P
can be killed by surgeries of type (m +1, m+1). Thus P is x-equivalent by surgeries
of type (m + 1, m+l) to an m-connected manifold which of necessity must be a
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homotopy sphere Ze©2m+1. It follows that P # (— Z) can be formed by surgeries
of type (m + 1, m+1) from S2m+1 = I # (-Z), where - Z denotes Z with the
opposite orientation.

Now since I(P) = I(P # Z) for any Ze0 2 m + 1 , t 0 prove the proposition we
may assume without loss of generality that P is formed by surgeries of type (m+1,
m+1) from S2m+1. So for any homotopy sphere Z it will follow that P # Z is formed
by surgeries of type (m+1, m+1) from Z.

Suppose that Ze/(P); then combining the surgeries above we have that Z is
formed by surgeries of type (m+1, tn+ 1) from P # S = P, which in turn is formed
by surgeries of type (m+1, m+1) from S2m+1. Thus Z is formed by surgeries of type
(m+1, m+1) from S2m+l and so by attaching (m + l)-handles to the disc D2m+2 to
correspond to these surgeries we obtain 7 £ / ( m + l ) with Z = dV.

4. Necessary conditions for Theorem 1

In this section the necessary conditions for Ze/(P) given by Theorem 1 are
established under the assumption, justified by §3, that Ze 02m+1(d7r). The methods
employed here are inspired to some extent by Browder's paper [1].

LEMMA 3. Let LuL2e Jf (m+1) and f: dLi -> dL2 be an orientation-preserving
diffeomorphism. If M = Lv Kjf ( — L2) then x{M) = T(LX) — T(L2).

Here — L2 denotes L2 with the opposite orientation and M is formed by gluing
Li to L2 by the diffeomorphism/. t denotes the signature of a manifold which is
the signature of the intersection matrix for m odd and is zero for m even. The lemma
is easily proved by using the relationship between the various cohomology sequences.

Now take m = 3 or 7 and for L e yf(m+l) with dL = P suppose Z e J(P) when
Ze02m+1(d7i) and there exists an orientation-preserving diffeomorphism / : P -*•
P # Z. Z = dW for some parallelisable manifold W e Jf (m+1) (Z bounds a paral-
lelisable manifold which by surgery can be made m-connected and so an element of
tf(m+l)) and we define M = (L+ W) uf (-L) by identifying P # Z and P by / ;
L + W denotes the boundary connected sum of L and W.

M is a closed m-connected (2m + 2)-manifold and nm(SO) ̂ Z so that the
obstruction to a cross-section of the tangent bundle over the (m + l)-skeleton is a
well-defined element

yeHm+1(M; nm(SOJ) ^ Hm+1(M).

PROPOSITION 4. Let M be as above and yeHm+1(M); then

x(W) T(M) y2 , (28 for m = 3
— —^— = ir mod { ,

8 8 8 [26.127 for m = 7.

Proof T(L + W) = T(L) + T(W) and so, by Lemma 3, t{M) = T(W). Hirze-
bruch's Index Theorem and the integrability of the it-genus (see [2]) are now used
to relate T(M) and y2.

If m = 3 when M is an 8-manifold the ^-genus is given by

A(M) =A2(pltp2) = 27-45 (
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Hirzebruch's Index Theorem gives

T(M) = L2(i71,j;2) = (l/45)(7p2-p1
2)

and eliminating the Pontrjagin class p2 from these two equations gives

t ( M ) = p 1
2 / 4 - 8.28,4.

Now M is a spin manifold and so A is an integer, whence

T(M) /8 = (p1
2/32)mod28.

By Lemma 1.1 of Kervaire [4] px = 2y and so

T(M)/8 = (y2/8)mod28.

If m = 7, when M is a 16-manifold the non-zero Pontrjagin classes are p2 and
and the ,3-genus is given by

A(M) = A^(0, p2, 0, p4) = 15 4 2 ( - 192p4 +208p2
2).

Hirzebruch's Index Theorem gives

T(M) = L4(0, p2> 0, pj = (381p4- 19p2
2)

and eliminating jp4 from the two equations gives

T(M) = (i?2
2/36)-29.127l

M is a spin manifold and so A is an integer, whence

By [4], JP2 = 6y and so

8 8

PROPOSITION 5. Manifolds P and M are as above with tangential invariants
j}eHm+1(P) and ye# m + 1 (M) .

(i) //, for an integer N, Nfi is divisible by Nr then r/N divides y2.

(ii) If Hm+1(P) has no element of order 2 and Nfi is divisible by Nr then 2r/N
divides y2.

(iii) / / /? has finite order then y2 = 0.

COROLLARY. If Nfi is divisible by Nr and I e / ( P ) , then 1 is divisible by r/(SN).
Moreover, if Hm+1(P) has no element of order 2 then £ is divisible by r/(4N).

Before proving the proposition we use the result to establish the necessary condi-
tions for Theorem 1 and also the corollary above.

For P a closed (m—l)-connected (2m+l)-manifold, m = 3 or 7, by Theorem 4
of [11] P # 2 = dL for some L e #(m +1) and S e 0 2 m + x. Now I(P) = I{P # I )
and so to determine the inertia group we may assume without loss of generality that
P = dL and so apply the results of this section. Now if I e / ( P ) there exists an
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orientation-preserving diffeomorphism / : P -> P # £ and so the manifold M can
be formed. By [5], 2 as an element of ®2m+i(dn) is determined by (i(Ff)/8)mod
\®2m+i(dn)\> and so by Proposition 4 and parts (i) and (ii) of Proposition 5 the
corollary follows. Part (i) and the necessary conditions for part (ii) of Theorem 1 are
given by Proposition 4 together with part (ii), taking N = 1, and part (iii) of
Proposition 5.

Proof of Proposition 5

Consider the following commutative diagram of cohomology groups.

The diagram gives rise to the Mayer-Vietoris sequence

0-»Hm(P) ^ ^ ^

where

and

and

= kt*(x) 0 k2*(x) for

for yeHm+1(L), zeHm+i(L + W)

Hm+\L + W, P) c* Hm+1(L, P)@Hm+1(W, Z)
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and in this way j2* is identified with ;x* © t*, where the isomorphism

t*:Hm+l(W,X)->Hm+l(W)

is induced by the inclusion map / : W -> (W, 2).
d(L + W) = P%?, and #m + 1(P # I) ^ # m + 1 ( P ) © # m + 1 ( I ) ^# m + 1 (P) and

so the induced homomorphism Hm+1(L + W) ->Hm+1(P # I) of the inclusion
P # E - > L + Ŵ  can be identified with the homomorphism given by it* on
Hm+1(L) with //m+1(FF) being mapped trivially. In forming M, P # 2 is identified
with P by the diffeomorphism f:P-+P#'L and by the identification

# m + 1 ( P # Z)*JJm+1(P).

/ * can be regarded as an automorphism / * : Hm+1(P) -•Hm+1(P), and so i2* is
identified with the homomorphism given b y / * / / on Hm+1(L) with Hm+l(W) being
mapped trivially. For convenience in what follows we write n^ =ml*li*~1 and
«2 — m2 i2

The obstruction to a cross-section of the tangent bundle over the (m+1)-
skeleton of L is a well-defined element

6teHm+1(L; nm(SO)) ̂  Hm+1 (L)

and since W is parallelisable the corresponding obstruction for L+W is also
6ieHm+1(L + W) ^Hm+\L)@Hm+1(W). Since y, & and j8 are all obstructions to
cross-sections of the tangent bundle over the (m + l)-skeletons of the corresponding
manifolds, it follows that ife1*(y) = &, k2*(y) = 6t, //(tf) = i2*(6i) = f.

(i) N$ is divisible by Nr and so JV$ = Nrx for some xGHm+1(P). Now since
^•(fi) = jg we have JVtf = iV/-X+Y for X, 7G//ffl+1(L), where i1*(J) = x and
1/(7) = o. By exactness, Y =jl*(d)=j2*(a) for some aeHm+\L, P).

Suppose that the isomorphism f*:Hm+l(P)-+Hm+l(P) has /*(*) = JC+Z;

then as / i s a diffeomorphism /*(j§) = /? when/*(N/?) = AT/? and we have Nrz = 0.
So if z = / / (Z) for ZeHm+1(L) then i^iNrZ) = 0 and by exactness NrZ=jl*(b)
for some beHm+1(L,P).

Referring to the Mayer-Vietoris sequence, we have
X¥(X+Z@X) = i1*(X+Z)-i2*(X) = il*(X+Z)-f*il*{X) = 0.

By exactness

X+Z®X = <^(c) = k1*(c)®k2*(c) for some ceHm+1(M).

Now

®(Ny-Nrc) = kx*(Ny-Nrc) 0 k2*(Ny-Nrc)

= (N6l-Nr(X+Z)) 0 (N&-NrX) = (Y-JVrZ) 0 Y

= h*(a-b) ®j2*(a) = kx*nx{a-b) © A:2*«2(a)

since /c^/ia = fc2*«! = 0. Therefore, by exactness of the Mayer-Vietoris sequence,

Ny-Nrc = nl(a-b) + n2(a) + A(d)

for some deHm(P). Squaring this equation, (n^a-b))2 = -(a-b)2, since M is
formed from — L i.e. L with the opposite orientation, and n2(a)2 = a2. All other
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products on the right-hand side are zero since they can be factored through
H2m+2(M,L + Wv L ) ~ 0 . Hence

N2 y2-2N2 rc.y+N2 r2 c2 = 2a.b-b\

i.e. N2y2 = 2N2rc.y-N2r2 c2 + b.(2a-b)

= 2N2rc.y-N2r2c2+NrZ.(2a-b)

since b.{2a—b) = j\*(b).(2a — b) and hence

y2 = 2rc.y-r2c2 + (r/N)Z.(2a-b), (*)

showing that y2 is divisible by r/N.

(ii) ft is always an even element (see [11]) and so we can assume that r is even.
Since Nrz = 0 and Hm+l(P) has no element of order 2 we must have Nrz/2 = 0.
Thus i1*(NrZ/2) = 0, when, since Hm+i(L, P) is torsion-free, it follows that b is
even and so from (*) y2 is divisible by 2r/N.

(iii) If ft has finite order N then N[i = 0 is divisible by any integer, and so by (i)
y2 is divisible by any integer, whence y2 = 0.

5. Sufficient conditions for Theorem 1

Suppose P = dL for L e J^(m+\), where m = 3 or 7. We recall from [8] rela-
tions between invariants of L and P.

/ / = Hm+1(L) is torsion-free and intersection numbers give a symmetric bilinear
map

X:HxH->l.

The obstruction to triviality of the tangent bundle over the (m+l)-skeleton is an
element 6ieHm+l(L). By using the identification Hm+1(L) c~ fi = Hom(i / , Z), 6t
can be regarded as a homomorphism &: H -*• Z and A and & satisfy the relation
X(x, x) = 6t(x) mod2 for all xeH. The manifolds of 3^(m+1) are classified by the
invariants (# , X, &).

A manifold L splits as a boundary connected sum Ly + L2 (when the boundary
P splits as a connected sum dL± # 5L2) if and only if X splits i.e. ifH = Hl@H2

and A(x, >>) = 0 for all xeHu yeH2. Then L = L1 + L2, where Lx and L2 have
invariants {HUXU^) and (H2, A2, fi2), where *i = A| HlXff2, A2 = A|H2Xffa and
A = <$! ©tf2.

A induces a homomorphism n\H-+ftby the rule 7i(;t)(}>) = A(JC, y). By identi-
fying Hm+1(L, P) with H and Hm+1(L) with # in the cohomology sequence

0->Hm(P)^Hm+1(L,P) ^Hm+i(L) 4#m+1(P)->0,

where i*(&) = ft, j * is identified with rc so that Hm+1(P) ~ coker 7i and
Hm(P) ~ ker rc, which is isomorphic to the torsion-free part of Hm+1(P). P is then
a homotopy sphere S if and only if n is an isomorphism i.e. if and only if X is uni-
modular. In this case $. regarded as an element of fi determines a unique element
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by the rule xx - &(x) for all xeH, i.e. n(x) = & (here x* denotes X(x, x))
and by Theorem 4 of [8] 2 as an element of ®2m+l(dn) is given by

X2-T , (28 for m = 3
modmod .

l26.127 for
where x is the signature of L i.e. the signature of X.

To complete the proof of Theorem 1 the following must be proved.
Let Hm+1 (P) • ©2m+1 - 0 and r be the largest integer dividing /?. / / 2 e ®2m +1(dn)

is divisible by rjA then 2e/(P).
We can as usual assume P = dL with L e tfijn + l). Since |©2m+i(d70l has only

factors 2 and p, where /? = 7 for /w = 3 and p = 127 for m — 7, it is only the powers
of 2 and p in r that are of importance, and so we may assume that r has no other
factors.

n\H-+fi and let Hx — ker n when H=Hl®H2 for some H2 and L splits as a
boundary connected sum Li + L1 where Xt = 0. P = Px # P2 splits accordingly
with Hm + 1(Pi)^the torsion-free part of Hm+1(P) and Hm+1(P2) a the torsion
subgroup of ifm+1(P). The tangential invariant $ = ^ © j$2

 and, since
Hro+1(P) * 02 m + 1 « 0,#m+1(P2) has no elements of order2orpandso}2eHm+i(P2)
is divisible by any power of 2 or p. Thus r is the largest integer dividing j5x and
since /(Pi # P2) => /(P1)+/(P2) => / (PJ it is enough to show that Se/CPO-

It is enough therefore to prove the result for a manifold P with Hm+1(P) torsion-
free and P = dL where L has X = 0. Here Hm+l(L) is mapped isomorphically onto
Hm+1(P) and so r is the largest integer dividing & Thus if if has rank k there exists
a basis eue2,...,ekofH with ($(6!) = r, 6t(et) = 0 for i ^ 1. Then

where Hm+i(Lt) cz Z with generator e,. Correspondingly P = Pt # P2 # . . .# Pk

where P{ = dLx and Hm+1(Pt) ^ Z and Px will have tangential invariant /?. Since

/(P) 3 /(P1)+/(P2) + ...+/(PJk) r, 1{PY\

it is enough to show that 2e/(P1).
It is enough therefore to prove the result for a manifold P where Hm+1(P) c- 2

and P = dL where Hm+1(L) ^ Z with generator e. L has intersection matrix [0],
i.e. X — 0, and <£(e) = r.

Let V eJ^(m+l) have i/m+1(F) c* Z with generator / and intersection matrix
[1] and <$(/) = ± 1. Then x = + / and the signature x = 1 so that (X2-T)/8 = 0,
showing that 3F = S2m+1. L + F has intersection matrix

TO 0
Lo 1

with respect to the basis e, f of Hm+1(L + V) ca Hm+\L) @Hm+i(V) ~ Z © Z.
Consider the change of basis to e, F = e+f which gives the same intersection matrix.
Then L + V = L + V, where V has # m + 1 ( 7 ' ) ^ Z with generator F and inter-
section matrix [1]. Thus d(L + V) = P = P # 2 = d(L + 7'), where 2 = dK',
whence 2e/(P). For V, 6t(F) = 6i(e+f) = r± 1 and so x = (^± 1) P and

X 2 - T _ ( r ± r
8 8 8
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as an element of ©2m+i(d7r) is given by

r(r±2) J (28 for m = 3
mod '8 l26.127 for w = 7.

We consider the factors 2 and 7 or 127 of |€)2fn+1(d7r)l separately and show that
if r is not divisible by 7 or 127 then either r(r + 2)/8 or r(r—2)/8 is not divisible by 7
or 127, and if the highest power of 2 in r is 2* then either r(r+2)/8 or r(r -2)/8 is
divisible by 2*~2 but not by 2k"1 for fc ^ 2 and either r(r+2)/8 or r(r-2)/8 is odd
for & = 1 (r is always even). Once it is established that there is a homotopy sphere
£e/(P) not divisible by 7 or 127 or divisible by 2k~2 and not by 2*"1 for k ^ 2 or
not divisible by 2 for k = 1 then the required subgroup of ®2m+i(dn) c a n ^e

generated to prove the result.
If 7 or 127 does not divide r then 7 or 127 does not divide (r+2) or (r-2) and so

7 or 127 does not divide r(r+2)/8 or r(r-2)/8.
For k ^ 2, if 2* divides r but 2ft+1 does not then (r+2) is divisible by 2 but not

by 4 and hence r(r+ 2)/8 is divisible by 2k~2 but not by 2*"1.
Finally, if 2 divides r but 4 does not then either (r+2) or (r—2) is divisible by 4

but not by 8 and hence r(r+2)/8 or r(r-2)/8 is odd.

6. Inertia groups of connected sums

In this section inertia groups of closed (m— l)-connected (2m + l)-manifolds
P, m = 3 or 7, are considered where Hm+1(P) • 02m+i ^ 0- In this case the corollary
to Proposition 5 can give a stronger condition for 2 e/(P) than that given in part (ii)
of Theorem 1. For example if P has Hm+i(P) ca 1 © Z4 © 1P (where p = 7 for
m = 3 and p = 127 for m = 7) and /? = 210/>2 © 2 © 1 then 2pft is divisible by
21 V , i.e. r = 2l0p2, and so by the corollary 2e/(P) is divisible by 2lop2/(%.2p) =
26p, showing that I(P) sa 0.

For any two manifolds Px and P2, /(Px # P2) =3 /(P!)+/(P2) and if Px and P2

each have #m+1(P;) * ©2m+i - 0 it follows from part (ii) of Theorem 1 that
/(Pi # P2) = /(P1)+/(P2). This is also true if both Pt and P2 have tangential
invariants of finite order when by part (i) of Theorem 1

If in general it were true that

KPl#P2)=I(P1)+I(P2)
then Theorem 1 would determine I(P) for any of our manifolds P, since we have
already shown that P = Pt # P2, where Hm+i(P1) is torsion-free and Hm+l(P2) is
finite, and in this case I(P) would depend on the torsion-free part of the tangential
invariant $. This is not, however, true in general, as we show by the following
examples.

Let manifolds Lx, L2, L3eJ^(m+l), whose boundaries are Pu P2, P3, be
given as follows, where p = 7 for m — 3 and p = 127 for m = 7, and where we take
k ^ 4 for m = 3 and A; ^ 8 for w = 7.

Lt has Hi = Hm+l(L1) c^I with generator elf intersection matrix [0], and
tangential invariant given by 6t(et) — 2kp (i.e. 6t = 2kp&1 eH,). P t = 3LX then has
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Hm+l(P{) ~ Z with a generator e / , where the tangential invariant is fit = 2kpex'.
L2 has H2 = Hm+l(L2) — Z with generator e2, intersection matrix [p], and

tangential invariant given by &(e2) = 1 (i.e. 6t = e2eti2). P2 = dL2 then has
Hm+1(P2) ca Zp with a generator e2 where the tangential invariant is fi2 = e2.

L3 has H3 =Hm+l(L2) caZ with generator e2, intersection matrix [2fc~1], and
tangential invariant given by &(e3) = 2 (i.e. # = 2e 3 e# 3 ) . P2 = dL3 then has
Hm + 1(P3) ^ Z2k-i with a generator e3', where the tangential invariant $3 = 2e3'.

In addition let V e Jf (m+1) have Hm + l(V) ^ Z © 1 with basis/ l s / 2 and corres-
ponding intersection matrix

ro n
Li oj

and tangential invariant given by #(/i) = 2, &(f2) = 0. The signature T of V is zero
and x = 2/2 so that x2 = 4/2

2 = 0, whence dF = S2m+1.
Ll + L2 + V has intersection matrix

0

0

0

0

0
p

0

0

0

0

0

1

0
0

1

0

Consider the change of basis of Hm+1(L1+L2 + V) ^ Z © Z © Z © 1 to <?l5

£ 2 = e1 + e 2 -2 f c ~ 1 £ / i ) / 1 , ^2 = 2 f c " 1 e 2 - 2 n " 3 p / 1 + / 2 5 which gives the same inter-
section matrix.

&(E2) = «(

, where K' has intersection matrix

TO n

Li oj
Thus Pi # P2 = Pi # P 2 # £ where S = dF' . Now

,) = 2, so that x = 2 * " 1 ( l - 2 * " 1 p ) / 1

£ is an element of ®2n.+i(dn) is given by

X2 2 .2 f c - 1 ( l -2 f c - 1
p).2

mod

The signature of V is zero and so

28 for m = 3

26.127 for m = 7

= 2k~2 mod
28 for m = 3

26.127 for = 7.

0 7 = Q1(dn) c± Z4 © Z7 and 0i5(d7r) ^ Z26 © Z127 and so I generates the Z7 com-
ponent of 0 7 for m — 3 and the Z]27 component of Qi5(dn) for m = 7.

Now 2k divides the tangential invariant fii © P2 — 2kpei' + e2 of Px # P2 and
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so by the corollary to Proposition 5 with N = 1 any
2k~2. We therefore have

# P2) is divisible by

1 + L

i # P2) «

has intersection matrix

Z7 for m = 3

Z127 for m = 7.

A
0

0

0
0

0

2fc~

0
0

0
1 0

0
1

0

0

1
0

Consider the change of basis of Hm+1(L1 m 1 © Z © 1 © Z to
£ 3 = e1 + e3 — 2k~1pf1, fu F2' = pe3 — 2k~2p2f1+f2, which gives the same inter-
section matrix.

&(E3) =

So L1+L3 + V =

-2k-lp2 = 6t(e3) = 2.

", where V" has intersection matrix

/1 iV

ro 11
Li oj

Thus Px% P3 = Px% Pz% I , where 2 = dV". Now

fi(JY) =^(^)-2f c-2
jp

2<S(/1) + ^(/2) = 2p(l-2k-2p).

i) = 2, so that x = 2p(l-2k~2p)fl + 2F2'. The signature of V" is zero and so

for

as an element of 02m+i(^7r) is given by

2.2p(l-2*-2j>)2 , (28
T;

 mod ,
8 l26.127 for m = l

28 for m = 3

26.127 for m = l.

Z therefore generates the Z4 component of 0 7 for m — 3 and the Z26 component of
015(d7r) for m = 7. Now p divides the tangential invariant fix © /?3 = 2kpel'+2e3'
of Px # P3 and so, by the corollary to Proposition 5 with N = 1, any E e/(Pj # P3)
is divisible by p. We therefore have

/(Pi # P3) «
Z4 for m = 3

Z2e for m = 7.

t # P2 # P3) contains both /(Pj # P2) and / (P t # P3) and so we have

Z4 © Z7 for m = 3
/(Pi # ^2 # P3) -

Z2s © Z 1 2 7 for m = 7
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Theorem 1 can be applied to the manifolds Pu P2, P3 and P2 # P3 to show
that in each case the inertia groups are trivial. So, to summarize, the inertia groups
of Pu P2, P3 and their connected sums are

/(PO = I(P2) = 7(P3) = /(P2 # P3) <- 0

(Z7 for m = 3

for m = l

for m = 3

for m = 1

>8 for m = 3

,6.i27 for rn = l.

The methods used in the examples above give sufficient conditions for Se/(P)

for certain manifolds P where Hm+l(P)*Q2m+1 % 0. Together with necessary

conditions as in the corollary to Proposition 5, it seems that the general result for

/(P) should be along the following lines.

CONJECTURE. Let P be a closed {m—\)-connected (2m+l)-manifold, where

m = 3 or 7. / / r and s are the largest integers such that 2k j? and pl ft are divisible by

22k+r and p2l+s respectively, for any integers k and I, then I(P) consists exactly of those

elements of ®2m+i(dn) divisible by 2r~2ps (p = 1 for m = 3 and p = 127for m = 7).
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