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Cobordism of combinatorial manifolds
By Robert E. Williamson, Jr.*

Introduction

The methods developed by Thom [14] to study the cobordism groups Q,
have been applied successfully to various classes of smooth manifolds, but not
yet to piecewise linear or topological manifolds. We recall that as a basic step
Thom developed the notion of transverse regularity, which is a notion of general
position involving smooth manifolds and their associated vector bundles, and he
proved an approximation theorem. The notion of general position is basic in the
piecewise linear, if not the topological, category, but one could not apply Thom’s
method because piecewise linear manifolds do not have tangent or normal vector
bundles. The theory of microbundles developed by Milnor [10], [11] suggests
that it might be possible to apply Thom’s ideas to the study of piecewise linear
manifolds, and it is the object of the present paper to do this. After introducing
basic facts in § 1 and § 2, we prove in § 3 a piecewise linear analogue of Thom’s
transverse regular approximation theorem. It is in the proof of this theorem
that we are forced to deviate farthest from Thom’s approach. Having estab-
lished the approximation theorem, Thom uses it to prove

Q, = lim,_.. 7, ,(MSO(k)) .

In § 4 we establish an analogue of this theorem for the oriented cobordism group
Qr" of PL manifolds. In §5 we define an injection Q, — QF*, also considered by
Wall [15] and Milnor (A survey of cobordism theory, Enseignement Mathema-
tique 8 (1962) 16-23), and obtain various results, which are listed in the ac-
companying table. Some of these have been obtained by Wall in [15] by quite
different methods. We use the abbreviation ‘2gp’ for ‘a group whose order is
a power of 2. The structure of the groups thus indicated on the table is not
known.

We note that for » = 8 the Stiefel-Whitney and Pontrjagin numbers do
not determine the cobordism class of a PL manifold, although these, together
with a mod 4 characteristic number defined from B, do determine it. The
author does not know of any example of a PL cobordism class that is not de-
termined by characteristic numbers from Bg;. It is a result of W. Browder,

* This research was supported in part by the National Science Foundation grant GP
812 and Air Force Office of Scientific Research grant 62-354. In addition, during the
completion of the paper the author held a postdoctoral fellowship from the National
Academy of Sciences, supported by the Air Force Office of Scientific Research.
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to appear, that unoriented piecewise linear cobordism classes are determined by
characteristic numbers defined from By;.

It will be observed that little is known about the 2 torsion of QLF. It can
be seen that the homomorphism

Fn—l - Q:L/an

defined by Wall in [15] is neither surjective nor injective in general; it isn’t
known whether the subgroup bP,=0,_,(07) of I',_, is always injected. We note
that the ring Q% Q) Z, has zero-divisors.

The author wishes to thank E. Spanier for his advice and encouragement.
Thanks are also due to M. Hirsch, W. Browder, and J. Milnor for several useful
discussions.

" Q, Qrr Qv /Q, ordI",_,
alln ces ce finite finite

0-3 0 0 0 1

4 Z Z 0 1

5 Z, Zy 0 1

6 0 0 0 1

7 0 0 0 1

8 27Z 27 + Z, Z, + Z, 28

9 27, 3Z, Z, 2
10 Z, Z, + 2gp 2gp
11 Z, Zy + Zy + 2gp Zy + 2gp 6
12 3z 3Z + 2gp Z, + Z, + 2gp 992
13 4z, 47, + 2gp 2gp 1
14 27, 27, + 2gp 2gp 3
15 3Z, 3Z, + 2gp 2gp 2
16 57 + Z, 57 + Z, + 2gp Zy+ Zy+ Zy + Ziyy + 2gp 16256
17 87, 8Z, + 2gp 2gp 2
18 57, 5Z, + 2gp 2gp 16

1. Complexes and PL maps

1.1. Following Milnor [3], we shall work in the category of locally finite
simplicial complexes (Ifs complexes) and piecewise linear maps (briefly, PL maps).
Subdivision always means rectilinear subdivision.

DEFINITION. A map f: K— L between Ifs complexes is piecewise linear if
there exists a subdivision K’ of K such that f maps each simplex of K’ linearly
into a simplex of L.
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If X is an Ifs complex and Y is a closed subspace of it, we shall sometimes
say Y is a PL subspace of X if Y can be triangulated so that the inclusion is
PL. It follows from Lemma 1.1.5 that some subdivision of X is a subcomplex
of some subdivision of Y. Given two such triangulations the identity is a PL

homeomorphism from one to the other.
In the remainder of § 1 we state, mostly without proof, some basic facts

about complexes and PL maps. Proofs can be found in [1], [3], and [10].

LeEMMA 1.1.1. The composite of PL maps s PL.
That is, there is a category whose objects are lfs complexes and whose

maps are PL maps.

LeEmMA 1.1.2. Given a PL map f: X — Y between finite simplicial com-
plexes, there exist subdivistions X' of X and Y’ of Y such that f s stmplici-
al from X' to Y.

LemMA 1.1.3. If X is a subcomplex of the Ifs complex Y, then any sub-
diviston of X can be extended to a subdivision of Y in which each simplex of
Y not in the star of X is unchanged.

As an easy consequence of this, suppose we are given a locally finite family
{K:} of compact PL subspaces in an Ifs complex X. Note that {stK;} is again
locally finite. Then one can subdivide X so that each K can be triangulated as
a subcomplex of the subdivision of X. Thus:

LemMA 1.1.4. Given {K;} as above with X = U K;, and a map f: X—Y
that is PL on each of the K;, it follows f is PL on X.

We say amap f: X— Y is proper if f~Y(K) is compact for each compact
K. Using 1.1.4, 1.1.2, and local compactness, one concludes the following
slightly sharper form of 1.1.2.

LEMMA 1.1.5. If f: X— Y s a proper PL map between lfs complexes,
one can subdivide X and Y so f is simplicial.

LEMMA 1.1.6. If f,g: X— Y are homotopic PL maps, then there is a PL
homotopy between them.

Milnor’s proof of 1.1.6 [3, p. 6] in fact shows that one can suppose the PL
homotopy is itself homotopic to the original homotopy. From this one can prove
by induction over the skeletons of X the following lemma.

LEMMA 1.1.7. If f: X— Y 4s PL, X s a subcomplex of Z, and f has
a continuous extension to Z, then f has a PL extension to Z.

1.2. A locally finite convex cell complex can be subdivided into a simplicial



4 ROBERT E. WILLIAMSON, JR.

complex in a manner unique up to PL. homeomorphism, because any such com-
plex has a simplicial subdivision, and any two subdivisions into cell complexes
have a common refinement. If Y, and Y, are cell complexes, then Y, x Y, has
a natural convex cell structure, whose cells are products A x X of cells A of Y,
and % of Y,. The complex Y, x Y, is independent up to subdivision in Y, and
Y,. Y, X Y, also has a natural simplicial structure if Y, and Y, are simplicial
complexes, and the map (simplicial complex Y, x Y,) — (cell complex Y, x Y,)
is linear on each simplex. One can also see that piecewise linear maps can be
defined for cell complexes as for simplicial complexes, and for a simplicial com-
plex, the conditions are equivalent.

LeMMA 1.2.1. Let X,Y,, Y, be complexes and let P;: Y, x Y,— Y, be the
projection. Then a map f: X — Y, x Y, 4s PL 4f and only if P.f and P,f
are PL.

Proor. If fis PL then P,f and P,f are PL by 1.1.1. Suppose P, f is linear
on the subdivision X’ of X, and P,f is linear on the subdivision X", so both are
linear on a common refinement X; of X’ and X”. It follows that f is linear on
each cell of X,.

We also mention that any open subset of a locally finite simplicial complex
can be triangulated as an Ifs complex so that the inclusion is PL, and in a man-
ner unique to within PL. homeomorphism.

1.8. The basic combinatorial fact for the transverse regularity approxi-
mation theorem (§ 3) is the linear regularity Theorem 1.3.1. Let X and Y be
finite complexes and let f: X — Y be PL. For any PL subspace Y, Y (§1.1),
f7'Y, is a PL subspace of X.

DEFINITION. We shall say fis regular at y € Y if there is a PL subspace
UCY that is a neighborhood of ¥ and a PL. homeomorphism h: f~(y) x U—
S7(U) such that fh = P, where f~(y) x U has the product structure of §1.2
and P is the projection f(y) x U—U CY. For Z a (closed) simplex, we shall
write IntZ for the open simplex. We will not always distinguish between a
simplex or complex and its space.

THEOREM 1.3.1. Let X be an Ifs complex, Y a simplex, and f: X—Y a
simplictal map. Then fis regular at y for any y € IntY and we may choose
h so that for any subcomplex L of X, h—'L = (L N f~y) x U.

ProoF. If one omits the requirement that & be PL, the result is well known,
as follows. Let y =) a,Y* where the simplex Y has vertices Y°, --+, Y and
the a; are barycentric coordinates. Suppose for the moment that X is a single
simplex. If fx e IntY, say fo =Y ¢, Y, Y ¢, =1, ¢ >0, then x can be written
uniquely as ) t,x; where «; € f~'Y"; in particular f~'y consists exactly of the
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points Y ax;, «; € f~'Y,. Thus we have a PL homeomorphism
Sy~ Y0 X e x YT
and we shall identify these spaces by this PL. homeomorphism. Then for any
closed simplex Z < Int Y that is a neighborhood of ¥ we also have a homeomor-
phism g: f~'y X Z ~ f~'Z, which sends (%,, * * +, @,, Y t,Y)— > t;x;. Toreturn
to the case of an arbitrary complex X, one pieces g : f~'y X Z ~ f~'Z together,
which can be done because g restricts properly on forces of simplexes of X. For
any simplex L of X, hence for any complex, one then has g7'L = (f~y N L) X Z
so f~'y X Z has a triangulation which is the product given by
Y X eee X YY" X Z

in each simplex, so that g—'L is a subcomplex of f~'Z. Unfortunately g has the
quadratic terms ¢;x; and is not piecewise linear. However ¢ is a C-embedding
in the sense of Munkres [12, § 8] and it follows that, in Munkres’ terminology,
any sufficiently close 3-approximation (i.e., strong C’-approximation) is again
an embedding. Suppose then that d is a function on f~'y x Z such that any
J-approximation to g is an embedding. The secant map % induced by ¢ [12, § 9]
is a linear map agreeing with ¢ on the vertices. It will be a S-approximation
for any sufficiently fine subdivision of f~'y x Z of the proper sort, and one can
find such that are refinements of the subdivision we imposed on f~y x Z. We
have defined g so that g—'L is the subcomplex ( f~y N L) x Z for any simplex L
of X, and it follows that the secant map h again carries (f 'y N L) X Z into the
simplex L. Since this holds for every simplex of X, we must have k'L =
(fTwNL) x Z for every simplex L, hence every subcomplex L. In order to
check that & defines a homeomorphism f~'y X Z ~ f ~'Z and satisfies fh = P
it suffices to consider each simplex of X individually, so we can suppose X is a
simplex. Although ¢ is not linear, fg, which is the projection

f—lYOX__.Xf—-lY’nXZ_)Z’

is linear. It follows that fh = fg = P. We also observe that g carries the
boundary of f~'Y?° X ... X f~'Y™ X Z into the boundary of f~'Z, in fact each
simplex of the boundary of f'Y° X ... X f~'Y™ is carried by ¢ into a face
of f~'Z, and it follows that the secant map h again carries the boundary of

7YX «ee X YY" X Z
into the boundary of f~'Z. Thus for topological reasons % is a PL. homeomorphism
of f~%y x Z onto f~'Z. Thus h has the properties required by the theorem.

2. Microbundles

2.1. The combinatorial cobordism theory of §4 and the transverse regu-
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larity approximation theorem on which it depends are based on Milnor’s theory
of microbundles, as developed in [10]. In § 2 we describe the theory as we shall
use it, omitting proofs which appear in [10] or [11], generally.

DEFINITION. A PL microbundle of dimension ¢ (briefly, a bundle) is a

diagram

1:B—~E-—>B
where E, B are lfs complexes and ¢, j are PL maps, such that the following
triviality condition is satisfied. For each b € B there should exist neighborhoods

U of b (in B) and V of 4(b) (in £) and a PL homeomorphism %: V ~ U x R*
such that the following diagram is commutative

v
i/ | N\dIv
/ | N

U U
N

U x R*

where X 0 means the map b — b X 0 and P, is the projection to U.

We shall use the following notation: B(x), E(x), i(y), j(t) for B, E, 1, j,
respectively, and we shall sometimes write ¢ as a subscript. We shall generally
identify B with ¢(B) since ¢ is a PL embedding with ¢(B) as a closed subspace.

Whether a diagram such as p satisfies the local triviality property is de-
termined by any neighborhood of ¢(B) in E, call such a neighborhood a reduction
of r. Because of this we use the following definition of Milnor. Let (X, A)and
(Y, B) be pairs of Ifs complexes.

DEFINITION. A map germ from (X, A) to (Y, B) is an equivalence class of
mappings f, each defined on some neighborhood U, of A in X, and mapping
(U,, A) — (Y, B). Two such maps f, f’ are equivalent if and only if f|V =
f"|V for some neighborhood V of A in X. We write F: (X, A) = (Y, B) for a.
map germ.

Composition of map germs can readily be defined, and a map germ is called
a homeomorphism germ if it has a two sided inverse.

Let 1 be a microbundle, then, j(x) defines a projection germ

J@): (E@), Bk)) = (Bk), Bk)) -
If v is another microbundle over the same base space B = B(y) = B(x), then a.

bundle equivalence is a PL homeomorphism germ F": (E(y), B) = (E(z), B) such

that J(x)F = J(y).
Now let v, r be ¢g-dimensional microbundles with bases not necessarily the
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same. A bundle map germ F:.y= 1 is a map germ (E(y), B(Yy)) = (E(x), B(x))
containing a representative map f: U — E(x), called a bundle map, that maps
each fiber in a 1-1 way. Thus j(x)f = f7(v).

Bundle map germs and induced bundles are related as is to be expected.

LEMMA 2.1.1. Let F:y =y be a bundle map germ such that F'| B(y) is a
PL homeomorphism. Then F is a homeomorphism germ.

For proof, see [10]. Given a bundle map germ F:y = g, let f: B(y) — B(x)
be F'| B(y), which is well defined. There is a natural map germ y = f*r defined
by e — (ju(e), F(e)), where we recall that f* x has total space contained in

B(y) X E(x), consisting of (e, ¢’) such that f(e) = ji(¢’). From the lemma one
can conclude

THEOREM 2.1.2. If f: B— B(g) there is a bundle map germ f*xr=1x, and
1f F is a bundle map germ y=1, then the natural map germ s an equivalence.
Furthermore, homotopic maps induce the same bundle.

THEOREM 2.2.1. Let f and g be homotopic maps B — B(x), then f*r and
9*x are tsomorphic. If x is oriented, the tsomorphism preserves orientation.

2.2. Universal microbundles. By a universal microbundle for fiber di-
mension 7, we mean an n-microbundle u with base space B,,,,, such that for
any Ifs complex X, the homotopy classes [X, By,,] correspond 1-1 with the
equivalence classes of microbundles by associating to f: X — By, the bundle
f*u. Equivalently, for any bundle x over a complex X and bundle map germ
F of g restricted to a subcomplex A, there is a bundle map germ that extends
F toyx. Then

THEOREM 2.2.1. For each m, there is a untversal microbundle for fiber
dimension n,

u(PL(n))i Byrisy — Epyiny — Brri -

Milnor proves this by constructing a complete semi-simplicial group PL(n)
whose k-simplexes are bundle map germs ef —=e! . The same argument applies
to the group SPL(%) of orientation preserving germs and shows the existence
of an oriented bundle u(SPL(n)) that is universal for oriented bundles and ori-
entation preserving bundle maps. Indeed, let G be any subgroup complex of
PL(n) that satisfies these two conditions:

(a) whenever F'is a k-simplex of G and \: A, — A, is a PL map between
standard simplexes, then M*F' is an r-simplex of &, and

(b) if F:ef =ef is an isomorphism germ, and if A, can be subdivided so
that for any map M: A, — A, that is simplicial relative to A, and the subdivision
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of A,, one knows that A*F' is an r-simplex of G; then one should have F' as a
k-simplex of G. For such a G, one can readily define the notions of G-bundle,
G-bundle map, ete., and if G has countable homotopy groups, Milnor’s con-
struction produces a universal G-bundle uw(G). Furthermore the theorem is both
meaningful and true for such G. However, we shall only be concerned with
oriented and non-oriented bundles, so we will not give such a generalization in
detail.

2.3. Let r be a bundle, X a complex, and suppose E/(x) is contained in X
so that B(x) is a closed subspace of X. Then we say X contains the bundle .
If E(x) is a neighborhood of B(x), we say y is a normal bundle for B(x) in X.

In |3, §3] and [4, §5], Milnor shows that, for M and N PL manifolds such
that M is PL embedded in N, for sufficiently large ¢, M X 0 has a normal bundle
in Nx R?, and any two normal bundles are stably equivalent. It is not known
however that any two normal bundles are equivalent. There are PL embeddings
not locally flat, so there exist examples in which M has no normal bundle at all.

Let Y be a PL subspace of X, and let X contain x. Then we say Y is
compatible with ¢ tn X if for some neighborhood U of B(x) in E(x), for any
xe U, jux)e Y, if and only if x € Y. If this occurs, the following diagram
defines a bundle, the inherited bundle:

YNBx)— YNEEx—YNB().

Clearly the bundle is a reduction of x| (Y N B(z)). Note that if ¢ is a normal
bundle, then the inherited bundle is a normal bundle.

LEMMA 2.3.1. Suppose C is a closed subspace of X, and Y contains the
bundle x. Suppose U is an open netghborhood of C in X. Then there is a
closed PL subspace Y C U of X that is a netghborhood of C and is compatible
with ¢ tn X.

PROOF. One can choose a closed PL subspace C’ — U that is a neighborhood
of C. There is then a closed PL subspace B, C B(x) that is a neighborhood of
B(x) N C’ in B(x) and lies in U. For V a sufficiently small neighborhood of B,
in 7B, 7 = j(x), one can then take Y =C" U V.

3. Transverse regularity

3.1. In this section, we introduce transverse regularity in the piecewise
linear sense. There is no satisfactory microbundle analogue of a quotient bundle,
so our definition eannot copy Thom’s too closely. Furthermore it may be that
normal bundles are not unique, so they appear explicily in the definition.

DEFINITION. Let S and T be locally finite simplicial complexes and let g be
a normal bundle for Bin T. Let f: S— T be a PL map. If f~*(B) has a normal
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bundle y in S such that f| E(p) is a bundle map y — g, then we shall say f is
transverse regular for (v, x) (in the PL sense), or briefly, fis t-regular.

As usual, we shall not always distinguish between y and a reduction of y;
in effect we require that the map germ of f (§2.1), (S, f~Y(B))= (T, B(x))
coincide with a bundle map germ h = .

3.2. It will be convenient for the proof of Theorem 3.3.1. to assign a to-
pology to the space M(X, Y) of PL maps X — Y, for complexes X and Y. For
X compact, the compact open topology will do; for S compact in Theorem 3.3.1
this paragraph may be ignored. We define a base for our topology as follows.
Let C;,, © = 1,2, --- be a locally finite family of closed subsets of X, and U; a
family of open subsets of Y. Let W be the set of all PL maps f such that
f(CHcU,,©=1,2,---. The base consists of all such W. One can easily
verify the following elementary facts which are all that we need.

For X compact this topology coincides with the compact open topology.

If X—L» y -2 Z, then the map g¢g*(h) = gh is a continuous map
M(X,Y)— M(X, Z); if fis proper then f*, defined by f*(k) = hf, is continuous.

If X=X, U X, with inclusion ¢,: X, C X, n=1,2, then the map
M(X, Z)— M(X,, Z) x M(X,, Z) by f— (¢tif, 15 f) is open.

The map M(X, Y, x Y,)—> M(X, Y,) X M(X, Y,) by f— (P.f, P.f), where
P;:Y, x Y,— Y, is the projection, is a homeorphism.

3.3. We make the convention that whenever H:Y X I— X is a PL
homotopy, H, is the composite Y — Y X t — X, and whenever we introduce
H,: Y — X first it is understood that the corresponding H is PL.

THEOREM 3.3.1. Let S and T be locally finite simplicial complexes and
let £ S— T be a PLmap. Let Q and X be PL subspaces of S and let X be a
netghborhood of Q such that f|X ts t-regular for (Vx, t) and Q inherits v,
fromvy. Then there is a PL homotopy H, of f that is constant on Q such that
H, is t-regular for (v,x) for ay such that Q inherits v, fromy. In adddition
we may suppose that all the H, lie in any given neighborhood of f and given
any neighborhood U of B(x) in T, we may suppose H, = f outside f~(U).

The relative nature of this theorem allows one to show the following.

COROLLARY 3.1.2. If g,and g, are t-regular maps S— T and g, = g, say
97 (B(x)) has normal bundle v, then we can choose the homotopy to be t-regular
so that each S X © inheritsy; from S X I, 1+ = 0, 1.

PrOOF OF 3.1.2. By 1.1.6 we can suppose the homotopy is PL, and it can
be supposed constant on [0, 1/4) and on (3/4, 1], then X = S x ([0, 1/4) U (3/4, 1])
can be taken as the neighborhood of S x (0 U 1) = Q required by the theorem
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with the bundle whose projection is
Bm) x [0, 1)U Bw) x (£,1]— Bow < [0, 1) u Boy x (2,1].

3.4. We shall prove the approximation theorem 3.3.1 by considering simple
cases, then more complicated ones.

By a PL isotopy of a complex X, we mean a PL map A: X x I— X such
that for each ¢ € I the composite A4,: X — X X t— X is a homeomorphism, and
A, is the identity.

LemmA 3.4.1. (Case 1) Theorem 3.3.1 holds +f g 14s the bundle
e: 0> R*— 0, S1scompact, and Q = @. In addition, in this case we can
conclude that H, = A, f where A is a PL isotopy of R?, and that each stmplex
of S is compatible with .

PRrOOF. Let s? be a simplex in R? that is a neighborhood of 0, chosen so
that s2C U, where f is permitted to vary on f~%(U) only. Let s? be the complex
§«0 as a subdivision of s?. For a given point y € Int s?, let A,: s? — s? be the
homeomorphism given by the canonical isomorphism of §«0 with $%ty. Then
A:s* X I—s? by (x, t) — A(x) is easily seen to be linear relative to the product
convex cell triangulation of s§ X I. We can extend A, to R? as the identity
outside s? Then 4, = identity and A,(y) = 0. Given any neighborhood of the
projection R? X I— R we can confine 4 to that neighborhood by confining y
to some neighborhood of 0, thus confining A, f to any given neighborhood of f
(3 3.2).

Now let ¢: K — R* be a PL homeomorphism. We can suppose S is sub-
divided so that ¢='f is simplicial. Let y € R? be such that t=%(y) is in the
interior of some g simplex; we can choose y to be so close to 0 that A4,f is in
the neighborhood of f specified in the theorem. Now A,7: K— R? is again a
PL homeomorphism, (A4,7)"%(A4,f) = t7'f is simplicial, and (A4,7)7%0) is an in-
terior point of a ¢ simplex.

Let H, = A,f. Now we can apply the linear regularity Theorem 1.3.1 to
conclude that there is a neighborhood £ of H:*(0) = B in S and a neighborhood
V of 0 in s? such that there is a PL. homeomorphism F: B X V — E satisfying
H,F = P where P: B X V—V is the projection. So for j: B X V— B the
projection, the bundle

p: B L g iF g
satisfies the conclusion of the theorem, for H,F' = P implies each fiber is mapped
isomorphically onto V. It is also a consequence of the linear regularity theorem
that each simplex of S inherits a bundle.
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3.5. We next consider the relative case, @ not necessarily empty; this in-
troduces an extension problem. We still consider ¢ = ef.

LEMMA 3.5.1. Theorem 3.3.1 holds if ¢ is the bundle ¢}: 0 — R — 0 and
S ts compact.

PROOF. We shall divide the proof into two parts, of which the second is
an extension problem. We first introduce some notation applying to both parts
and do some subdividing. We use the notation introduced in the statement of
Theorem 3.3.1, but we abbreviate B(yy) to By, E(Yx) to Ex, j(vx) to jx, and
similarly for @. Subdivide S so that X is a subcomplex of S and E|, is a sub-
complex of E. Subdivide By so B, is a subcomplex of it. Refine S so that j,
is linear on E.

PART 1 oF LEMMA 3.5.2. There is an H, satisfying the conclusion of
Theorem 3.3.1, with H, t-regular for (3,¢}) say, except Q may not inherit Y,
from 3. However, for each simplex s of By, jx'(s) is compatible with 3.

Proor. According to Theorem 2.1.2, there is a bundle map germ
Fy: 3% =DYx, and we may suppose fFy = P (as germs) where P: By X R?— R
is the projection. We may suppose E so chosen that F'y contains a representa-
tive fy : (Bx X Vx, By X 0) ~ (Ey, By), where V is a PL subspace of R’ that
is a neighborhood of 0. Since v, is compatible with @, we may suppose j(v) € @
if and only if z € Q for x € E,.

According to Lemma 3.4.1, there is a PL isotopy A of R? such that 4, f is
t-regular, for (b, ¢?) say. By Theorem 2.1.2, there is a bundle isomorphism
germ F,, F: ¢}, = p such that A, fF = P (as germs), where P is the projection
B(p) X R*— R-.

In general A, f is not constant on @, so we modify 4, f and p accordingly.
Let V, be the closure of {x € R?| A,(x) # « for some t}. According to Lemma 3.4.1,
we can suppose V,is arbitrarily small, in particular that V, C Int Ex. Observe
that, if we define D,: Ey — Ey by D,F(b, x) = Fx(b, A()), then D, is a PL
isotopy of Ey such that jzD, = jx, and
(1) A f(@) = fD=) if we By .

We assert that there is a PL isotopy G, of S such that

(a) in Ex NQ, G, = D/

(b) in Ex, <G, = jx; and

(e) in S-Int X, G, = identity.

PROOF. Thereisa PL map p: S— I'suchthat #=1o0n@Q, #£=0o0n S-Int X,
and on Ey, ¢jx = p. One can construct 2 on By, extend to Ex by pix = f,
then extend to S. Then define G, on E; by G, = D;.,., for xe€ Ey. By
Lemmas 1.1.1 and 1.2.1, G, is PL on E;. Since V,C Vy, G,(x) = x except for
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2 in the interior of E, in X, so one can extend G, to X as the identity outside
Ey; then G, isPLon X. Since ¢ = 0 except in Int X, G, can be extended over
S as the identity outside X and is a PL isotopy of S. Then (a) follows from
¢ =1 onQ, (b) follows from jyD, = jy, and pj, = ¢, and (c) follows from
¢ = 0 outside Int E.

Now define H, = A, fG,. From (1) and (a), it follows that H,|Q = f| Q,
as required by Theorem 3.3.1. Now we assert that H, is t-regular. We define
a bundle 3 as follows. Its base is B(3) = H;'(0) = G7Y(B(p)), recall that B(p) =
(A, f)~(0). Its bundle space is D,(E(p)), and we define j ; by j}‘D1 =D, jp. Then
41s a bundle and H, is t-regular for (3, e}). Also H, may be made arbitrarily close
to f by choosing V, sufficiently small, and of course H, = f except on f~(V,).

Now according to Lemma 3.4.1, each simplex of S is compatible with p,
therefore each subcomplex is. Since j; is linear on FE,, for any simplex s of
By, 737(s) is a subcomplex, thus compatible with p. By definition and choice of
E; this means j;jp(x) €s if and only if jy(x)es for x € E (allowing p to be
reduced if necessary). From (a) and jz,G1 = Gljp, this implies

jxjan(x) €s ‘_—’ijxjp(x) €s *_—"J.xjp(x) es——jz(@)es——JjG(x)€Ss.
This completes Part 1

PART 2. Let H, be as in the conclusion of Part 1. Then there is a bundle
Y such that H, is t-regular for (v, ¢}), and Q does inherit vy, from v.

PROOF OF PART 2. By Theorem 2.1.2, there is a bundle map germ
Fy: ey =3 and a germ Fy:ej =Yy, such that as germs, H,Fs = P and
H.F, = P, where P is the projection to R’. Let Vg be such a small neighbor-
hood of 0 in R’ that F'y has a representative fs: B(3) X Vg~ Wy, and F; has a
representative fy: By X Vi~ W . Let V be so small that for x € Wy, one has
J %(oc) € j5'(s) if and only if « € J7z(s) for each simplex s of By, by compatibility,
and so small that H,fy = P and H,fs = P. Let ¢ = f5'fx, s0 @: By X Vg~
By %X Vg, and restricts to a homeomorphism ¢: B, X Via~B, X V. Let

J: B(3) X Vs — B(3)

be the projection of the trivial bundle. We do not know that jp = j; if this
were true, we would have j, = j3 on W, so Q would inherit vy, from 3, and we
would be done.

Our object now is to extend ¢ on B, X Vg to @, &: Bﬁ X VSNB% X Vg; we
can then define Y as the bundle with base B, bundle space Wy, and projection
imposed by the isomorphism fs: B, X Vs~ Wy in S. On By X Vi, fsp = f fs'fx,
so @ would inherit y, from v, since f is a bundle map germ to Yy, of which y,
is a restriction.
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We have arranged for ¢ to have the following properties. Since H,fs =
P=H, fyon By XV,

(a) Pp = P.
Both fs and fy cover the identity map, so

(b) @(b, 0) = (b, 0).
By a previous argument, for each simplex s of By,

(¢) pmapss X Vg s X V.
The last condition permits us to reduce the extension problem to a single simplex.
The object of the subdivisions introduced at the beginning of the proof of
Lemma 3.5.1 was just to obtain this condition. It is not true in general that
an isomorphism ¢ satisfying (a) and (b) can be extended to an isomorphism @
(nor even to an isomorphism not satisfying (a) and (b)).

Note that by choosing for V a still smaller neighborhood of 0 in R?, we

can suppose Vy ~ Rq; so that the following lemma suffices to complete the proof
of Lemma 3.5.1.

LEMMA 3.5.2. For any complex By, PL embedded in the complex B as a
netghborhood of the subcomplex By, of By, and PL homeomorphism
@: By X R~ By X R?, conditions (a), (b), (¢), above, ensure that ¢|B, X R?
has an extension to an isomorphism P: B}5 X R~ B% X R also satisfying
(a) and (b).

Proor. Let B" be the n-skeleton of By together with all of B,. For n =0
let ° = @ on B, X R’ and for a vertex v of B not in BY, define ¢° = identity.
Then ¢% B° X R~ B° X R Suppose then ¢ has been extended to

¢": B" X R~ B" X R

which is the identity outside stB, in By, and for each simplex s sends
s X R~ s x R‘. Now let s be an n + 1 simplex of By. If s is not in the star
of B,, then ¢" = identity on § X R so we can extend ¢" as the identity on
sX R% Otherwise let a neighborhood W of $ in s be represented by a PL
homeomorphism h:$ x I— W, h(x,0) = 2. Let g: R X I — R* be a PL con-
traction to 0. Extend ¢" over W by defining its components relative to » as
follows: for ((a, t), )€ (§ X I) X RY,

jie" Y (h(a, t), ©) = (p"(a, g(x, ), t)
Pp*'((a, t), 2) = @,
where j: B5 X R*— B and P: Ba X R?— R are the projections. One extends
@"+*over s — W as the identity; note that ¢"**((a, 1), ) = ((a,1), x). By Lemmas
1.1.1 and 1.2.1, @"*' is PL. One notes that ¢"*' is again the identity outside
stB, X R? and sends s X R~ s X R%. The ¢" thus define a PL. homeomorphism
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@: By X R'~ By X R’ that is the identity outside stB, x R’ We ought to
note that we can not assume By is a subcomplex of Bs’ for if we subdivided
By condition (c) would be lost. Thus we can not assume the open star of B, in
By is open in B. However, since By is a neighborhood of B, in Ba’ by suitably
choosing & we can still be sure that & = identity only on the interior of By x R’
in Bs X R°. Thus » can be extended over the rest of Ba X R as the identity.
This completes the proof of Lemma 3.5.2, and thus of Lemma 3.5.1 also.

3.6. We next allow g to have a base that is not a single point.

LEMMA 8.6.1. Theorem 3.3.1 holds if ¢ is the bundle, ¢,: B— Bx R*— B,
where B is contractible and S is compact.

PRrROOF. We use the notation introduced in the statement of Theorem 3.3.1.
Let P: B X R"— R” be the projection; we will also think of it as the bundle
map e} —ef. We can assume that S is just f~'P~'(s?) for some ¢ simplex s’ that
is a neighborhood of 0 in R? and 7 = B x R’, for we will construct H so that
H, = f except on f~'(Int s?); we can then extend H, over the given S by H, = f
outside f~'(s?). Apply now Lemma 3.5.1 with Pf: S— R’ for f. We conclude
that there is a PL homotopy of Pf, G,: S — R’ such that G, is t-regular, for (Y, ¢?)
say. Abbreviate j(e}) to 7, that is, j is the projection B x R’— B. Now we
define a PL homotopy of f, h,: S— B x R’ by h(x) = (jf(x), G,(x)), so k, = f.
Since G, defines a bundle map to e}, there is a bundle isomorphism germ
F, F: e}y =y such that G.F: ety = e is P, so Ph,F = P. Thus, for some
neighborhood V' of 0 in R’ and neighborhood W of B(y) in S, F' contains a
representative which we will also denote by F' that is a PL homeomorphism
F: B(y) X V ~ W, such that G.F = P. Let h;: B(y) X V— B be jfF = jh,F.

We are going to deform £, to a bundle map by moving %,(b, x) to h,(b, 0);
the new map will then carry fibers into fibers. To do this we need a family of
paths from each point of B to each other point. Precisely, let NC B x B x I
be the PL subspace B X B x 0U B x B x IU D x I where D = {(b, b) | be B}
is the diagonal. Define A: N — B by

A, b, 0) =b,, A(b,b,1)=0b, A, b t)=DB.
Then A is PL on N and has a continuous extension to B X B x I, thus a PL
extension, which we again denote by A. Let k: R?— I be 0 outside a neighbor-
hood V of 0 in R’ and 1 on some neighborhood V' C V of 0. Theorem 3.3.1
requires that H, = f, except on f~(U), for a given neighborhood U of B X 0
in B X R’; let V be so small that f~%B x V) f~%U). Using the PL homeo-
morphism F: B(y) X V ~ W, we define a homotopy H of &, as follows.
JH(F(b, x), t) = A(hy(b, ), hy(b, 0), min (¢, k(x)))
PH(F(b, x), t)y=u.
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We extend H over the rest of S as the constant homotopy, H(s, t) = h,(s). As
always we write H,(s) = H(s,t). We see that H, = h, and jH, = Hljn on
B(y) x V', so H, sends fibers into fibers. The definition of the R’ component
of H, shows that H, in fact maps each fiber one-to-one. Thus H, defines a
bundle map germ y=e%. Wherever h,(b, x) = h,(b, 0)—that is, wherever &, is
already a bundle map—H, = h,. In particular, H,|Q = &,|Q = f| Q. In order
to show that the composition of the homotopies %, and H, satisfies the conclusion
of Theorem 3.3.1, we have only to show that we can choose %, and H, arbirarily
close to f. One can choose h, close to f because jh, = jf and Ph, = G, can, ac-
cording to Lemma 3.5.1, be chosen arbitrarily close to Pf. Thus it suffices to
show that we can choose H, arbitrarily close to 2, We shall see that we can
make H, close to h, by restricting the set on which & + 0 to a sufficiently small
neighborhood of 0. For H, to be close to h,, we must have A(hy(b,x), hz(b,0),-)
close to hx(b, x). Since B(y) X V can be supposed compact, for any neighborhood
of the diagonal D in B X B there is a neighborhood V"’ of 0 in R’ such that all
the pairs (hgx(b, x), hx(b, 0)) for £ € V' lie in the neighborhood of D. Since
A(b, b, t) = b, in order to make A(b,,b,,t) close to b,, it suffices to confine (b,, b,)
to a sufficiently small neighborhood of D in B X B. Thus by making V'’ small
enough we can make H, arbitrarily close to #, on F(B(y) X V)=W, and H, = h,
outside W, so H, can be confined to any given neighborhood of #,.

3.7. The general case of Theorem 3.3.1. We now prove the transverse
regularity approximation theorem as stated in § 3.3. The argument consists of
piecing together homotopies whose existence is asserted by Lemma 3.6.1.

For any x € f~%(B(x)), there is a compact neighborhood W; of x and an
open set Ky contained in E(z) that is bundle isomorphic to ¢} where B is an open
contractible set of B(r). We may therefore choose a locally finite family { W}
of compact PL subspaces (§1.1) of S whose interiors cover S. We choose them
so that if W, meets f~*(B(z)), then there is an open set E; C E(z) of T contain-
ing f(W,) for which there is a bundle isomorphism ¢;: B, X R? ~ E; where B,
is an open contractible subspace of B(z). We also require that, if W; meets @,
then W, C Int Y, where Y is a closed neighborhood of @ in IntX. We also
require that, if W, meets f~*(B(z)), then W, C f~(U), where U is the neigh-
borhood of B(x) specified in the assumptions of Theorem 3.3.1.

We shrink the { W} to a family of compact sets { W} as follows. We shall
want Wi;CInt W, and S = U Int W.. W, — U.x Int W, is a compact set in
Int W,, so it has a compact neighborhood W Int W,. Then

S=IntW;UInt W,y ---.
We apply the same argument to W, relative to W, W,, W,, --- to get W/ so
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that Int W, U Int W, U Int W, U --- = S. Let {W/} be the family thus defined
inductively. Then S = |J Int W}, for any z € S has a neighborhood meeting only
finitely many W,,say W, ---, W,,andee IntW;U --- UIntW,UInt W, ,,U - -~
so 2z € U Int W1,

LEMMA 3.7.1. There is a partition of unity on S by PL maps p,, ., **~
with supports sup (p;) C Int W, such that p; > 0 on W1.

PRoOOF. There is a family of PL maps h;: S— I such that #;, =1 on a
neighborhood of W/ and sup (k;) C Int W,. Define q,(x) = min (1 — 1/2), hy(x)),
and having defined ¢, - - -, ¢,_,, PL maps satisfying ¢, + -+ -+ ¢,_, < 1 — (1/2)",
define

0,0) = min (1= (1) = @) = -+ = 0,.@), ho(@)) -

Then sup (¢,)C IntW,,and ¢, + --- + ¢, =<1 — (1/2)**'. Thus A,(x) = 0 implies
¢.(x) = 0,809, >00onW,. Alsod ~q.(x)<1lforxeS. Let g(x) =1—2_7q.(x)
so g is PL, and partition g(x) as follows. Define r,(x) = h () X g(x), and having
defined 7, -+ -, r,_,, define 7, by 7,.(x) = h,(x) X (g(x) — r{(x) — + -+ — 7,_()).
Then sup (r,)cInt W, and Y > r,=1—3 ~¢,. Then the PL maps p,=7,+q,
satisfy the lemma.

To prove Theorem 3.3.1, we now make an inductive argument, with the
following tnductive assumption. We suppose that X, < S is a closed neighbor-
hoodof YUW ;U --- C W/ in S and that H? is a PL homotopy of H!~'(H} =
f) such that H?| X, is t-regular for (y,,2). We assume thatin (YU W;U---U
W' _,) — Int W, the two bundle projections j(y,) and j(y,_,) are defined on the
same sets and coincide. We also suppose that H7? lies in the neighborhood of f
specified by Theorem 3.3.1, and that H?7 is so close to f that H7(W,) meets B(g)
only if f(W,)meets B(x). We assumethat,if f(W,)meets B(x), then H}(W,)C E,.
Furthermere we suppose that there is a compact neighborhood V,, of W, such
that P, > 0 on V, and H?(x) does not change with ¢ except for 2 € Int V,, and
then only if W, meets f~(B(x)) and does not meet Q.

Before completing the induction we shall show that the theorem can be
derived from it. We define H, a sort of infinite composition of the homotopies
H" as follows. Let P, = p, + --- + p, Where p, is the partition function of
Lemma 3.7.1. Define D, S X Ias

D, ={(z,t)|lxesup(p,) and P, (x) =t = Pyw)}.

It can be seen that each D, is a PL subspace, and {D,} is a locally finite cover
of S X I. There exists a PL map A,:V, X I— I such that on the set
{(z,t)|xeV, and t =< P,_,(x)} A, is 0, while on the set {(x,t)|x€ V, and
t = P,(x)} A, is 1, because p, > 0 on V, by the inductive assumption. Now we
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define H(x, t) for (x, t) e D, by
H(x,t) = H(x, A.(, t))
if xeV,, and for x¢ V,, H(x,t) = H"(x, t'), which is independent of ¢ by
inductive assumption. Now H is well defined. Suppose (x,t)e D, N D,. Let
n < m. Then t = P,(x) = P,;,(x)=--+= P, _,(x); and, if xe V,NV,, then
A, (x,t) =1, while A,,_,(x,t) = 0 and
H*(z, A,(, t)) = H'(z,1) = H"*¥(x,0) = H*"(x,1) = -«

Hm(x, A,_(z, t)) = H"(x, 0) .
If x¢ V,NV,, then the equation holds because of the constancy of the homo-
topies. Now H is PL on each member of the locally finite cover {D,}, therefore
H is PL by Lemma 1.1.4. One can now see that H, satisfies every requirement
of the theorem except possible t-regularity. For the t-regularity define j(y) =
Jj(,) for large n; i.e., for each k there is an N such that » > N implies
W,NW,= @; then define j(v) = j(v,) = j(®,+,) = ---. Thus j(y) is PL on
each E(y,) N W7, and these form a locally finite family, so j(y) is PL, and of
course it is a bundle projection since it is one locally. Also in Q 7(v,) = 5(9,)
for we can begin the induction with @ for W; we may suppose X, is compatible
with 9y in X and take the inherited bundle for y,. Then @ inherits y, from v.
Since H7 is a bundle map on Yy, it follows that H, is a bundle map on 1.

To complete the proof, we have only to complete the inductive argument,
which we now do. If W, ., does not meet f~'(B(z)), then define H* to be the
constant homotopy, which satisfies the inductive assumption with X,., =
X, UW,.. If W, meets @, then W,,,C Y (by choice of the W) so we may
take X,,, = X, and again the constant homotopy satisfies the inductive as-
sumption. So suppose W, ., meets (H7)"(B(x)) (thus also f~(B(x))) but not Q.
Then H¥(W,.,)C E,.,, which we assumed to be a trivial neighborhood of
PL homeomorphic to B, ,, X R’. So we can apply Lemma 3.6.1, as follows.

(a) For S, we take a compact PL subspace V., of W,., that is a neighbor-
hood of W;.,. By Lemma 2.4.1, we may suppose V, ., is compatible with y,,
and we may suppose p, > 0on V,_,.

(b) For X, we take X, N V,.,; and for )., the inherited bundle.

(c) For Q, we find a closed PL subspace X, C Int X, that is a neighbor-
hood of YU WU --- U W/, and compatible with y,, and take X’ N V,., to be
Q. For n, we take the inherited bundle from v,.

(d) For f we take H;|V,.,. For the neighborhood of H;|V,., we take
one so small that any map S — T whose restriction to V, ., lies in the neighbor-
hood, and whose restriction to S — V,,, is the same as that of Hy, is itself in
the neighborhood of f given for the general case of Theorem 3.3.1, which is
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also a neighborhood of H" by the inductive assumption.

We conclude that there is a PL homotopy G***: V,,, X I—-V,., of H"|V,.,
such that G+ is ¢-regular, for (p, r) say, so that j(p) is an extension of j(y,) in
Vi1, With 7(y,) perhaps restricted to a reduced bundle. Now E(p) U E(y,) is a
neighborhood of B(p) U B(y,) in X, U V,.,, and we can define a projection j to
B(p) U B(v,) as j(v,) on E(y,) and j(p) on E(p). These are consistent, at least
on some neighborhood of B(p) U B(Y,), because X, NV, inherits the same
bundle from y, and p. Since j is locally the projection of a bundle, it is the
projection of a bundle, say v'.

There exists a PL subspace W/, of Int V, that is a compact neighborhood
of W,.,, and compatible with p. Then X! U W), is compatible with v’ so it
inherits a bundle, which we cally,,,. We define X,., = X, U W)\, s01,., 18 a
normal bundle in X,.,. Let m:S— I be a PL. map that is 1 on W, and 0
outside V,.,. Define

H"(z, t) = G**'(2, min(m(z), t))

for xe V,.,, and H**(x,t) = H"(x, t) for ¢ V,,,. This is consistent since
m =0 unless x€ V,.,. G"*'is the constant homotopy on X, N V., so H'" is
a bundle map on v,, and m =1 on W)',,, so H"*'is a bundle map on p, there-
fore H"*'is a bundle map on v, ..

We can confine H/"*' to an arbitrary neighborhood of H" by confining G;+*
to a sufficiently small neighborhood of H;* (see (d) above), and in particular one
can satisfy the requirements of the inductive assumption. It is not hard to see
that we can suppose j(y,) and j(y,.,) are defined on the same points outside V..

This completes the inductive argument and the proof of the t-regularity
approximation Theorem 3.3.1.

4, Cobordism and the Thom theorem

4.1. We shall prove a theorem relating the PL cobordism groups to the
homotopy groups of a certain spectrum. We will use this to get specific infor-
mation about the structure of the oriented PL cobordism group Qf*. This group
is defined exactly as in the C= case. One considers all compact, unbounded,
oriented, n-dimensional PL manifolds M (each x e M has a neighborhood PL
isomorphic to an open set in R"). One says two such manifolds M, N are
cobordant if there is a compact oriented PL manifold W such that éW =
MU (—N), the disjoint union of M and N with the orientation of N reversed.
The equivalence classes form a group under disjoint union; this is the cobordism
group QF" in which we shall be interested; see § 4.11. The unoriented case is
similar.
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We first must consider the PL analogue of Thom’s L-equivalence classes.
In this context the analogue of a C~ manifold is generally a locally finite sim-
plicial complex rather than the more special PL manifold. The definitions below
will apply equally in the oriented and unoriented cases, but we will state every-
thing in terms of the oriented case for concreteness. Now let X be an Ifs
complex and let L,(X, SPL), or L,(X), ke the set of all pairs (Y, n) where Y is
an Ifs complex that is PL embedded in X and 1 is an oriented normal bundle for
Y in X of fiber dimension % (so Y is closed in X). We introduce an equivalence
relation ~ in L, (X) by setting (Y, n) ~ (Y’, v') if and only if there is a pair
Z,mye L(X x I) such that Y=ZN(X x0), Y =ZN(X x 1) and the
oriented bundle m restricts to the oriented bundles i, 1’ over Y, Y’ in X X 0
and X X 1 respectively. We denote the set of equivalence classes by A,(X) and
call this the set of oriented L-equivalence classes. Note that the normal bundle
appears explictly in the definitions.

4.2. If X is an oriented PL n + k-dimensional manifold, then L, (X) can
be thought of as consisting of pairs (M, 1) where M is a PL submanifold of X,
oriented by the condition that n @ 7, be oriented like 7, | M and n is a normal
bundle, with orientation determined reciprocally by that on M. If (M, n,) and
(N, 1) are equivalent, by (W, m) say, then W is a PL manifold such that
OW = MU N, and if we orient W by the natural orientation of I X X, then
W induces the given orientation on M and the reverse orientation N. The only
difficulty is the following.

LEMMA. Suppose V is a PL n 4 g-dimenstonal mantfold and M is a PL
subspace of V, with normal q-dimensitonal bundle. Then M is a PL sub-
manifold of dimension n and its boundary is exactly M NoV.

This fact is well known. Each point x € M has a neighborhood W in V' PL
homeomorphic to a product U X R?, U a neighborhood of « in M. It is enough
to show U is a PL manifold. U x R’ can be triangulated as a product, and
since it is a manifold, the link of a ¢-simplex of R’ (which is the same as the
link of a point in U) must be a combinatorial (» — 1)-sphere or ball, by results
of Alexander.

4.3. We now want to consider a stable group obtained from L,(X) by
something like suspension. Let X now be a sequence of Ifs complexes
X, X,, X,, - -+ such that for each 4, R x X, is an open subset of X;,, so that
the inclusion is PL relative to the product PL structure on R X X;, and 0 X X;
is closed. We will call this an S-sequence. We have in mind mainly the sequence
of spheres S”, given C!-triangulations so that the usual inclusion S S*** is
PL. There is no particularly natural way to choose a normal bundle, but one
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certainly exists.

There is a function L,(X;) — L,(X;.,) which assigns to the pair (Y, ny
the pair (Y, e} @ n), where Y is embedded by X; — 0 X X, and ¢} @ n is the
normal bundle B X E(n), note e} is here oriented, so ¢} @ 1 is also. One can
make a similar definition for the triples that define the equivalence relation, so
so the function is well defined. We define A,{X, SPL}, or briefly A,{X}, by:

A{X} = limj_eo Ap(Xiss) -

We can now define a composition on A, {X} which makes it into an abelian
group. Given «, 8e€ A;{X}, one can suppose they are represented by (Y, 1),
(Y', ') e L(X,+;); their sum is represented by the pair in L,,(X,;,) whose
space is the disjoint union Y U Y’ embedded by y — (—1,%) e R X X;+; C X111
and ¥' — (1, ¥’), with normal bundles ¢ @ n and e} @ . One checks that this.
is commutative and associative, with the triple whose space is @ for an identity..
To see that inverses exist one can construct them as in the C* case; their ex-
istence also follows from Theorem 4.8.1.

4.4. The stable group we have defined includes in particular the cobordism
groups. Let S be the sequence of spheres S°, S*, S2, --- of §4.3, with orienta-
tions chosen so that the inclusion B x S™ — S™+! preserves orientation.

Theorem 4.4.1. A, {S} = Q"

Proor. We remark that the passage to the limit seems to be necessary; it
is not clear that A,(S™**) is isomorphic to Q" for any &k, however large. The
proof is carried out as in the C= case, but there are technical difficulties which
we shall have to dispose of. A function A;(S™*) — QF" is defined by assigning
to the pair (M, n) the space M ; in § 4.2 we showed that M is a PL manifold,
and has a natural orientation. If (M, n,) ~ (M, 1,) by (W, m) then 8W =
M, — M, and M,, M, are cobordant. So the homomorphism is defined on
A;(S™*%), and one can easily check that it induces a homomorphism A, {S} — QF".
The homomorphism is onto, for if M is a PL n-manifold one can certainly PL:
embed it in a sphere S"** of high enough dimension, and according to [10,
Th. 5.8] or [11, Th. 4] there is a j such that M X 0 has a normal bundle n in
Sr+iti g0 (M, n) € A (S"+9).

Our difficulties arise as we show that the kernel is 0. So suppose
(M, n)e Ay(S**)and M = 6B. We need to construct a pair (B, m) € A;(I x S™*%)
so BN0Ox S=M,BNlx S =@, and m| M = un, perhaps moving to large
1 by A(S*) — A, (S*i+), We can certainly find a suitable embedding
W — I x S*, but it is less clear that we can construct a suitable normal bundle..
Now let H™ be euclidean half space R™* X R, so 0H™ = R™'.
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LEMMA 4.4.2. For any embedding 1: M — R’ there is an m > q such that
the embedding 1 X 0: M — R™' = 0H™ can be extended to an embedding
4":B — H™ that possesses a normal microbundle m.

We write Int H™ = H™ — 8H™. For topological reasons it follows that
4: Int B— Int H™ and m | M is a normal bundle for M in B™*.

PrRoOOF. For m large enough one can surely extend 7 to an embedding
+': B— H™. Let B,, H" be copies of B and H™ and B’ the doubled manifold
B U ; B, formed by identifying along the boundary. Since R™is the double of
H™, the double of 7’ is an embedding B’ — R™. By increasing m if necessary,
we can suppose B’ has a normal bundle g in R*, according to Milnor [11]. Un-
fortunately x | B need not be a normal bundle for B in H™. We therefore make
the following construction.

In B’ there is a neighborhood of M that is PL. homeomorphic to M X R so
that ¢ — (x, 0). Now we lift E(x | B) into H™** = R™ X H"® as follows. There
exists a PL map p: E(x | B) — H' with the following properties: on M X IC B,
whereg | M X I~ (x| M) X I, p(x,t) = t, and for x € E(x| B’ — M X I), p(x) > 1.
We define a PL embedding g: E(x| B) — H™*' by g(x) = (x, ptx). Now g puts
E(| M)in R™ and E(x | Int B) into Int H™**; we have only to construct a normal
bundle v for E(x | B) in H™"* to be done, for the composite bundle of this with
r will be a normal bundle for B in H™*'. We construct the projection 7, of v
as follows. Let B = B — Int M x I and let P; R™*' — R™ be the projection on
the first m coordinates. Now B C R™, in fact B  Int H™, and on a neighbor-
hood of gB in P~'B we can define j = gP. Note that Pg = identity. Next
we define 7 on a neighborhood of M in R™. As we remarked earlier, M has
a neighborhood in R™ PL homeomorphic to FE(x|M) x B. We define

J:E(x|M) X R— E(x| M) to be the projection.

It is finally necessary to define j over a neighborhood of the remainder of
B;ie.,,of M x Ic B. Let SC R? be defined by S = {(z,%)| |zx|=1and y =
x — 1/2}, let E, be the segment from E, = {(x,0)| —1 < x < 1/2} and E, the
half line E, = {1, y) |y > 1/2}. Map

MxS—H""'=R"x H'

thus; (m, x, t) — (g(m, x), t) where we identify E(x | M x I) with E(g| M) x I
‘This is an embedding since g is, and its image covers a neighborhood of M x I
in P~ (M x I). So we have now *o define a PL projection in M x S this is com-
patible with 7 where j is already defined, that is on the image of M X (E'U E,).
The induced projectionon M X (E, U E,) is id X 5’ where 5’ sends E, onto (0, 0)
and E, onto (1,1). Now j’ can clearly be extended over S, so id X ' can be
extended over M X S, and j can be defined as required to give a normal bundle
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for g(E (x| B)) and this completes the lemma.

We return to the proof that A,{S}— Q, has kernel 0. We now have a
pair (B, m) e L,(S"**) so we know (M, m| M) represents 0 in A,{S}, but it is
not necessarily true that m|M = ¢ @ u. We can suppose, according to [11]
that there is an isomorphism m|M = e¢ @ n, but it does not follow that
(M, m) ~ (M, e¢* @ n). For this we need a PL “isotopy of tubular neighborhoods
theorem”. R. Lashoff and M. Rothenberg have proved such a theorem [8, Th.
5.3]; a weak form of it states:

THEOREM (of L. and R.). Let ¢, 9 be normal bundles for M in a PL mani-
fold N. Let o be the bundle I X (e* @D y) over I X M. Then for k large
enough there ts a PL homeomorphism H: E(iwv)— I X N X R* such that
H|E(w|0x M) is a bundle tsomorphism onto 0x E*@yx) and H|E(o|1x M)
18 a bundle isomorphism onto 1 X E(y @ e). :

According to this we can construct a triple (I X M, o) such that (stably)
|0 X Mis m|M, w|{1l x M is n, and this proves that (M, n) ~ (M, m|M)
which is equivalent to 0 in A,{S}. Thus A,{S} = QF~.

4.5. We now construct an analogue of the Thom complex [4, p. 28-29].
Let g be a microbundle. Let E be an open neighborhood of B(x) in E(x) such
that E(y) — E is a PL subspace of E(x). If E(x) — E is a strong deformation
retract of E(x) — B(x) we shall say E is admissible. Then we call the quotient
space formed by collapsing E(x) — E to a point * a Thom complex of g (although
it may not be locally finite at *), and denote it by T(x) or Tx(g). If E(x) is finite
dimensional, one can construct an Ifs complex homotopically equivalent to T(x)
by adjoining to E(x) a complex that is contractible and contains E(y) — E. We
point out that T(x) — B(x) is contractible. For T(u(G,)), we write M(G,).

LEMMA 4.5.1. Let U be any meighborhood of B(x) in E(x). There is an
admissble netghborhood E C U.

PROOF. One can subdivide E(x) so finely that closed star of B(z) lies in U,
and B(x) is a full subcomplex of E(x). If one then barycentrically subdivides
E(x) again, the open star of B(x) is admissible.

4.6. If a map f: T(v) — T(x) sends B(y) — B(t), then by restriction it
defines a map germ (E(Y), B(y)) = (E(x), B(x)). We shall say f and this germ
are associated. If f: T(y) — T'(x) is associated to the germ F and f': T(x) — T'(3)
to the germ F", then f’f is associated to F'F.

LEMMA 4.6.1. Let Y, x be microbundles with E admissible for vy and E’
for ¢, and let F:y=y be a bundle map germ. Then then there is a map
[ Te(v) — Tp(x) that is associated to F, and any two maps Tx(y) — Tr(t)
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that are assoctated to F' are homotopic by a homotopy that ts constant on a
netghborhood of B(y).

If F is an isomorphism germ with inverse F'—' associated to g: Tz (y) —
T:(y), then gf is associated to the identity germ F~'F so it is homotopic to
the identity map. Similarly fg is homotopic to the identity so f is a homotopy
equivalence. In particular the homotopy type of 7'(x) does not depend on the
particular choice of admissible neighborhood.

ProoF oF 4.6.1. If X is a subspace of E(y) we shall write bd,X for the
boundary of X in T'x(y).

We may suppose F' has a representative f:U — E(y) where U is a
neighborhood of B(y) in E(y), and we may suppose U is closed, UC E, and f
embeds fibers. It follows that f sends bd,U into E(y) — B(g). Thus the com-
posite of f bd,U and the quotient map E(y) — B(x) — Tz (x) — B(x), which is
contractible, can be extended toa map T,(y) — B(y) — Tx(x) — B(y). Now f
and this extension of it define a map T;(x) — T..(x) which is clearly associated
to the germ F'in the above sense. Similarly, two maps f and f’ that are as-
sociated to F' provide, with the constant homotopy on some sufficiently small
neighborhood V of B(Y), a map Tx(y) X {0,1} UV x I— Tp(;r) that can be
extended to a map Tz(y) X I— T (x). This completes the proof.

4.7. We shall abbreviate the universal oriented bundle, which is u(SPL,)
or u(PL,) according to whether we consider the oriented or unoriented case, to
u,, B(SPL,) or B(PL,) to B,, etc. According to § 4.6, a classifying map germ
u, b e;q =11, ., induces a map T(u, Pej,)— M(G,.,), and its homotopy class does
not depend on the choice of classifying map. Let SM, be the suspension of
the Thom complex of u,, which we can take to be [—2, 2] X M,, with 2 X M,
identified to a point and —2 X M, to another. If E is an admissible neighbor-
hood for u,, then [ -2, 2] X E'is admissible for u, (P e} , so thereis a (quotient)
map SM, — T(u, € €5 ) which can be composed with the map above to give a
map SM, — M,.,. With these maps the M, form a spectrum, which we shall
call the PL Thom spectrum (oriented or unoriented as the case may be). Let
X be an S-sequence as in §4.3, and f: X, — M, a PL map. Then, one can define
the suspension Sf: X,., — SM, which on a neighborhood of X, sends (¢, ) —
(¢, fx) and satisfies (Sf)™'B,+; = 0 X X,. This induces [X,, M,] — [ X1, M,11],
and we denote the direct limit by

{X, M(SPL)}, = lim;_... [ X,+;, M(SPL,)] .
If X is the sequence of spheres, we write

7,(MSPL) = {S, MSPL}, = lim ,.,(M(SPLy,)) .
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The sets {X, M(SPL)}, form a group, as is well known. The addition may
be described as follows: if «, 8 are represented by f, g: X,.; — M(SPL;) then
« + B is represented by F: X, .;,, — M(SPL;,,) such that

(@) F(¢, x) = (2t — 1), f(x)) on [0, 2] X X,

(b) F(t,x) = (2(t + 1)g9(x)) on [—2, 0] X X,.;, and

(¢) F~'(B;;,) isexactlyl x X, U —1 x X,.

4.8. Now we can construct the Thom map. Let X be any Ifs complex and
M, = M(SPL,)(= M(PL,) in the unoriented case). Let f: X— M, represent some
homotopy class in [X, M,]. By the simplicial approximation theorem applied
relative to M, — *, we may suppose f is PL to a neighborhood of B,in M,. By
Theorem 3.3.1, f is homotopic to a t-regular map, say g. By definition, g—'B,
then has an oriented normal bundle say n. Then the pair (g~'B,, n) defines an
element of L,(X). This element does not depend on which ¢-regular map
homotopic to f is used, for if £ is another t-regular map homotopic to f, then
there is a t-regular homotopy F' between them, and the pair defined by F in
LI X X) defines a relation between the pairs defined by % and g. Thus there
is a well defined function

T:[X, M,] > A(X) .

One easily checks that T is compatible with the homotopy identification
My (G,) — M.(G,) for E, E’' admissible neighborhoods. The next theorem
corresponds to Thom’s theorem [13, IV. 6].

THEOREM 4.8.1. For any locally finite simplex X, the function
T s a one-to-one correspondence [X, M(SPL,)]— A/X, SPL). Further-
more, i1f X, X,, --+ is an s-sequence, then T induces an tisomorphism
{X, SPL}, = A{X, SPL}.

COROLLARY. 7,(MSPL) = QF*.

The same theorem holds for unoriented L-equivalence, with SPL replaced
by PL. Indeed the theorem holds for any subgroup of PL, of the type described
in §2.2, except that for the stable group A,{X, G} to be defined, one must
suppose that the injection PL, — PL,., carries G, into G, ...

ProOF oF 4.8.1. T is onto. If (Y, n)e L(X, SPL), then there is an orien-
tation preserving germ 1 —=u(SPL,). Thus there is a PL map f: U — M(SPL,),
where U is a neighborhood of Y in X, and since f sends the boundary of U into
M(SPL,) — B(SPL,) it extends to a map X — M(SPL,): this map is t-regular
and clearly determines the pair (Y, n).

T is one-to-one. Suppose f, f’ are T-regular maps such that T'[ f] = T[ f'].
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Suppose f defines the pair (Y, n) and f’ the pair (Y’, n'). Since these pairs
are equivalent there is a pair (Z, m) as in §4.1. Then the bundle map germs
n = u(SPL,), ' = u(SPL,) determined by f, /' extend to a bundle map germ
m = 1u(SPL,), and a map ¢: U — M(SPL,), U a neighborhood of Z in I X X,
that embeds fibers extends to a t-regular map I X X — M(SPL,) that is a
homotopy between f and f’. This completes the first part of the theorem. One
can easily verify from the definitions of § 4.3 and § 4.7 that the Thom map T
is compatible with suspension and addition, so that it does define a group iso-
morphism in the limit. This completes Theorem 4.8.1.

Note that if X is finite dimensional, of dimension 7 + q say, then it is not
necessary that u(SPL,) be universal; it would suffice for it to be n + 1-universal.
Then B(SPL,), hence E(SPL,), can be supposed finite dimensional and M(SPL,)
can be taken to be a finite dimensional complex.

It is an immediate consequence of the theorem that z,.(M(SPL,)) =
7,(M(PL,)) = 0 for r < g since the r-sphere cannot contain a non-empty sub-
space with a normal g-dimensional bundle. If » = q, then the subspace could
only be a finite union of points, so 7,(M(PL,)) = Z, and 7,M(SPL,)) = Z.

5.1. Now we want to consider the relation between QF" and the corres-
ponding group Q, of C=-manifolds. According to J.H.C. Whitehead [12], [16],
every C'-manifold admits a compatible triangulation as a PL manifold, and
this PL manifold is unique to within a PL homeomorphism. This defines a
homomorphism Q, — QF*, which we call the Whitehead homomorphism. Both
Stiefel-Whitney and rational Pontrjagin classes can be defined for microbundles
[11, p. 6] so the corresponding numbers can be defined for PL manifolds, and
will be cobordism invariants, by the same argument that shows them to be
invariants in the C= case. ‘Since these numbers characterize a class in Q"
completely,

THEOREM 5.1. Q, — QF" has kernel 0.

Let MSO(k) be the Thom complex for SO(k). According to Lashoff and
Rothenberg [8], or in the stable case, which is all we need, Milnor [11], the
universal SO(k) vector bundle v, can be triangulated, that is, there is a PL
microbundle v and a fiber preserving homeomorphism E(v,) ~ E(iv), at least
for neighborhoods of the respective base spaces, and this even provides a com-
patible triangulation of E(v,). A classifying map v —u(SPL,) can be composed
with the homeomorphism to give a map h: MSO(k) — MSPL,.

LEMMA 5.2. The following diagram is commutative:
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T
Q, = w,(MS0)

| g

O = n,(MSPL) .

The rows are Thom isomorphisms, the top one is that of [14] and the lower
one has been established in this paper. w is the Whitehead homomorphism.

PRrRoOF. Let M™ represent an element of Q". One can embed M " in some
S™+*, Let v be the normal bundle; then relative to some Riemann metric the
exponential map is a homeomorphism e: E(v) — S™** onto an open neighborhood
of M". The element of 7, (M SO(k)) associated to M" by T is an extension
over S™** of ¢~ followed by a classifying map for v. According to [1, p. 143]
any open set of S"** can be triangulated so that the inclusion is linear, so there
is a complex K and a homeomorphism +: K — E(v) such that e+ is linear. One
can see that ¢ is a C'-triangulation of the manifold E(v). Let M" be given a
C'-triangulation. According to Lashof and Rothenberg, there is a C'-triangu-
lation @: E(n) — E(v) for some mircobundle 1, and according to Whitehead (see
Munkres [12, Th. 10.5]), there are C'-triangulations @,: E) — E(v), v, K —
E(v) such that ;'p, is PL. Then eyyry'p, = g: E(t) — S™** is a PL homeo-
morphism onto a neighborhood of g(M ") and therefore defines a normal micro-
bundle. According to our definition the class of the PL manifold M" in Q% is
associated by Ty, to the homotopy class of an extension over S*** of g
followed by a classifying map. Thus, in order to prove the theorem, it suffices
to prove that the following diagram is homotopy commutative. The maps on
the left are actually extensions of the maps indicated.

-1 class.

Sk L, T(v) MSO(k)
N
g—l\ LD class 1
T(r) >, MSPL, .

Commutativity of the right square holds because triangulation is functorial.
According to Munkres [12, Th. 10.5], one can choose ¢, and +r, arbitrarily close
to ¢ and + respectively. So we can suppose ¢, =~ @, 4r,— 4, furthermore that the
homotopies are proper maps, and similarly for the inverses. It follows that g—'~
@~ ‘e, and the homotopy can be chosen so that it can be extended over S™+*,

5.2. Let {M,} be one of the spectra {MPL,}, {MSPL} of §4.7. We can
define, as in §4.7
T, (M) = lim 7, ,(M,)

(1) 700 = i
M) =lim H,,(M,) .
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We need to know that theorems such as that of Hurewicz hold for these
groups. Ordinarily one considers a k so large that m,. (M,) = 7, p1.(My4,),
and H,.,(M,) = H,,,+(M,.,) for all n under consideration. Unfortunately,
for our spectra we do not know that such a k exists for any n > 0. We can
overcome this difficulty as follows, using some work of Kan [7].!

We might as well transfer the problem to the category of complete semi-
simplicial complexes by means of the singular complex, so we shall use M, to
mean the singular complex of the appropriate space. Kan calls the sequence
M: k — M,, together with the maps SM, — M, ., a prespectrum, and associates
to it an object SpM much like a c.s.s. complex called a spectrum. Kan defines
appropriate categories &9, and &,. We shall use this terminology for the re-
mainder of this section. Since the results we want are not stated explicitly in
[7] we shall describe briefly how they can be obtained.

We can define the homology groups of a spectrum X € §, as follows. Let
AX be the free abelian group spectrum generated by X, as in definition 5.2 of
[7] with “abelian” added. This becomes in a natural way a function 4:5, —
Sp,. We define

H(X)=r,(4X).
LEMMA. The homology groups satisfy (1), i.e.,
H,(M) = lim H,,.(M,) = H,(SpM) .

PRrRoOF. According to Proposition 4.6 and Definition 10.1 of [7], the left side
is 7, (Spo A(M)), since 7,(AX) = H,(X) holds for c.s.s. complexes. The right
side is 7,(A o Sp(M)), and one checks from the definition that AoSp = Spo A.

Kan also defines a function Ps: 5, — &,.

LemMA. If X is a spectrum, H,(X) = H,(PsX).

The proof is as above, using Psc A = AoPs.

As a result we have a functor PsoSp: P, — &, which carries M into a
prespecturm M that is weakly equivalent to M as regards both homotopy and
homology and has the following stability property: for any N >0, thereis a k
such that 7, ,(M,) = T, p+:(M,+,) is an isomorphism for n < N and k& > K (so
the same holds for homology). The stability property follows from the fact
that M, is the loop space on M,.,, as one can verify directly. Now we can
state a theorem that is well known [13, Th. 1] in a slightly different context.

THEOREM. Let C be a class of abelian groups, and suppose w,(M) e C for
1 < N. Suppose further that the stable group . ,(S*) is in C for k < K.
Then the Hurewize map w,(M)— H, (M) ts a C-isomorphism for k < N + k.

1 Added im proof. Wall and Haefliger have recently proved stability, so §5.2 is
unnecessary.
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PrROOF. By the preceding remarks, it suffices to prove this for a stable
spectrum, and therefore for a single c.s.s. complex in the stable range. The
corresponding theorem for finite CW complexes follows from [13, Th. 1] when
it is noted that the assumption on C made there can be weakened. The case
of a c.s.s. complex can be reduced to this by using the realization functor.

5.3. We can now obtain some specific information about Q. This depends
on the work of Kervaire and Milnor on the group I' of differential structures
on S" [6] and on a theorem of Cerf that I', = 0, the proof of which has not
yet appeared in full detail (see [3]). The following theorem of Hirsch [4] and
Mazur (unpublished) is essential: there is a short exact sequence:

0 — 7,(Bso) —2 7, (Bopr) — Ty —— 0,

where p: By, — By is the classifying map of [11]. Hirsch and Mazur state the
result for By, and B, but the proof is the same. In the introduction we have
listed some results from this, and the rest of this section will be given over to
establishing them.

It follows from our results, [4] and [14], that there is a commutative dia-
gram with exact rows, (A).

Fpg

10§
0 — m,(Bso) EELN T (Bsp) — T(Bspry, Bso) ——0

lHurewicz l l

£
0— H,(Bsw) —— H,Bgy) —> H,(Bsy, By ——0
1 Thom N N

0— H,(MSO) — H,(MSPL) — H,(MSPL, MSO) — 0

T T T

0— 7,(MSO) — =, (MSPL) — x,(MSPL, MSO) — 0
IR I n
0— 0, — QFrL — QY Q. —0 .

It follows immediately from the relative Hurewicz theorem modulo the
class of finite group that QFY/Q, is finite, and 0 for » < 7. One also concludes
that HyBspy, Bso) = Z; + Z,. Recallthat H(Bso)) = Z + Z + Zy + «++ + Z,,
where Z + Z is generated by classes dual to p? and p,, the universal Pontr-
jagin classes.

LEMMA (Milnor). H(Bg) = Z + Z + Z,+ Zy+ Zy + Z, + Z,, where p,
18 an isomorphism on Z, + Z, + Z, + Z, and the subgroup generated by the
dual of p3, and sends the dual of p, onto 7 times a generator.

PrRooF. That p, is an isomorphism on Z, + Z, + Z, + Z, which is gener-
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ated by classes that reduce to duals of Stiefel-Whitney classes is clear, since
these are defined on Bg. According to [10, § 8], there is for each k a 4k-
dimensional smooth manifold W whose boundary is PL homeomorphic to a
sphere. One forms the cone C(@6W) over this sphere to obtain a closed PL
manifold M = W U C@W). Milnor shows that p,, which is the only non-
vanishing Pontrjagin class, is given by
plM] = 2%_]5(33"(?2;_})!_ 1)’

where B, is the n™ Bernoulli number. For k = 2, p,JM] = 360/7. Thus p,
carries the dual of p, into an element divisible by 7. Once we know that the Z,
of Hy(By, Bo) splits off we will know that this element is 7 times a generator
and we will be done. Milnor demonstrates the splitting as follows. There is a
classifying space B, for fiber spaces whose fiber has the homotopy type of S™
and a stable classifying space B, = lim By,. One can associate a fiber space
over Bpr, to the universal microbundle as follows. The fiber over a point
x € By, consists of paths n: I— E(PL,) such that M(x) = 0, \(¢) ¢ By, for ¢>0.
Similarly for By, and the fiber space has the fiber homotopy type of the uni-
versal sphere bundle. There is then a commutative diagram induced by classi-
fying maps,

771:—1(80(”)) = T (Bsom) — Ti(Bspr,) — Ty
AN AN l
N N
Tpiei(S*™) = T(Brin-n) -

The classifying map for By, is essentially the J-homomorphism J, which
in the stable range for k = 8 is Z — Z,,,. Since 4 divides 240, one can conclude-
by applying X Z, to the above diagram that Z, splits off in the sequence

0 — wy(Bso) — 7y(Bspr) — Z; + Z,—— 0 .
The lemma follows from an application of the Hurewicz homomorphism.

THEOREM. Q*'=Z +Z + Z,.

ProoF. By (A) and the Hurewicz theorem Q{f*/Q, = Z, + Z,, and by the
existence of the M described earlier, or by the lemma above, the Z, does not
split. The Z, does split, as we now show. Consider the homomorphism Q, —
Hom (H®%Bgo), Z) that assigns to the cobordism class of M the homomorphism
sending a characteristic class into the corresponding number of the tangent
bundle of M. By considering P,(C) X P,(C), and P,(C), one sees this induces an
isomorphism Q, X Z, = Hom (H%By,), Z) K Z,. The composite of the homo-
morphism with the injection Hom (H*(Bgo), Z) — Hy(Bso) sends M into f,[M],
where [M] is the fundamental class and f: M — By, is a classifying map for the
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tangent bundle. Thus we have a commutative diagram

QS®Z4 ’—’Q§L®Z4
| |

l |

HS(BSO) ® Z4 I HS(BSPL) ® Z4
From this we see that Q; ® Z, — Q, ® Z, has kernel 0, and it follows that Z,
splits off.

Now we consider the 7 torsion of Qf*/Q,. For G a group and p a prime we
shall denote by pG the subgroup of elements whose order is a power of p.

An examination of the Pontrjagin numbers of the products P,(C) x M,
P(C) x M and M x M shows that these generate subgroups isomorphic to Z,
in Q1}/Q,, and Z, P Z,, in Q}F/Q,, and these groups do not split off. We shall
show that there is no other 7 torsion in Q!%/Q,; this will prove:

THEOREM. (Q5%/Q) = AQ/Qw) = Z; and (QX/Qy) = Z, P Z,. For
n = 18, (Qr"/Q,) = 0 otherwise. None of this T torsion splits, i.e., ;O = 0
for n < 18,

ProOF. Applying a theorem of §4.10, we observe that the Hurewicz
homomorphism of stable groups 7., (MSPL, MSO) — H,, (Mg, MSO) is an
isomorphism modulo groups of order prime to 7 for ¥ < 10 since the stable k-
stem of the sphere has no torsion for k& < 10. Thus for n < 18, (Q'/Q,) =
+H,(Bspr, Byo), using (A), so we determine this group.

We can regard p: By,— Bsy, s a fiber space projection whose fiber we may
denote by I', see [8]. It follows from (A) that =, (I') =TI",. Since Z, in I', is the
only 7 torsion in I', for n < 18, (") = x,(K(Z,, 7)) modulo the class of finite
groups whose orders are prime to 7, for n < 18. Thus H*(I"; Z,) = H(Z.,7; Z,)
for n < 18, and these groups are described in [2]. Now consider the spectral
sequence of the fibering with coefficients Z,, so E* = H?(Bgp,, H(I'; Z,)). Now
one can verify by a standard spectral sequence argument that H"(Bspy, Bso; Z;)
has rank (over Z;) 1,1,1,1, 2,2 for n = 8,9, 12, 13, 16, 17 and is 0 otherwise.
It follows immediately that ,H"(Bg., Bso) @ Z, has rank 1,1, 2 for n = 9, 13,
17 and is 0 otherwise, always considering n < 18.

Now consider the 7 torsion that appears in the spectral sequence of the
fibering with integral coefficients. Using the information obtained from the
mod 7 sequence, one concludes that , H'*(Bgyy, Bso) must be Z; and , H"(Bgpr, By)
must be Z; @ Z,;,. So ,H,(Bsr, Bso) is as required by the theorem.

We have now proved the assertions made in the list concerning 2 and 7
torsion. The torsion for the primes 31 and 127 is determined in the same way.

NZ
HzZ—0.
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In each case, Milnor has constructed manifolds whose Pontrjagin numbers must
be multiplied by the corresponding prime to be integral, and products give all
the torsion involving the prime, as one shows by a corresponding spectral
sequence argument. .

A slightly longer argument is required to obtain the results concerning the
3 torsion. Let € be the class of finite groups whose orders are not divisible by
3; all the isomorphisms in this section will hold mod €. According to [6], ',y =
Zy, Ty = Z, and T', = 0 for other » < 18, (mod €). Since Bgpy, is 3-connected,
we can immediately conclude from diagram (A) that QIF/Q, = Z,, Q/Q, = 0,
QF/Q, = 0, but we will not use this fact.

The results on I', show that I' has the cohomology of a two stage
Postnikov system up to dimension 18, so we must determine the k-invariant
ke H*(Z,, 10; Z,) associated to it. Since 7,,S0 = 7,,S0 = 0 and bP,, = bP,, =
0, we have a diagram

~ ~

Tl — Iy — Ty

o e

7Tl i’ Fy—my,

where «, refers to the homotopy operation got by composing with a generator
of 7,. The diagram commutes, although I do not think that is obvious. This
fact will follow from the results of a paper in preparation by the author. Given
this, it follows that «,: 7, I' = 7,I". Now I' has the homotopy type of a fiber
space over K(Z,, 10) with fiber K(Z,, 13), and the k invariant determining the
space must yield a non-trivial homotopy operation «,, so k = + Piw,, if we let
,; be the fundamental class in H'*(Z,, 10; Z,), where Py is the Steenrod cube
of degree 4n. The two possibilities yield spaces of the same homotopy type, so
we may suppose k = Pjw,. One can now examine the cohomology spectral
sequence for the fibering. Using the fact that transgression commutes with
the P/, and using the Adem relations P'P' = — P? and P} = BP} = BP;+ P;B,
where S is the Bockstein coboundary, one obtains the following results.

LEMMA. H*(T; Z,) has as a vector space basis through dimension 18 the
following elements: w,e€ HT, Bw, e H'T', P;Bw, € H*T, BP;Bw, € H"T.

It is clear the groups H*(I", Z) will be (mod ¢) H'\(I", Z) = Z,, H*(T', Z) =
Z,, HY", Z) = 0 for other n < 18.

Next we use the results on H*I" to examine the spectral sequence for the
fibering By, — Bgpr, With fiber I'. We first observe that the Wu classes for
p = 3 coincide with the reductions mod 3 of the Pontrjagin classes. Since these
are defined in Bgp;, as well as in By, it follows that H *(Bgpy, Z,) — H *(Byo, Z5)
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is surjective and injective on the space spanned by the Wu classes.

The reader can verify that an examination of the spectral sequence for
By, — Bgp1, using the standard properties of cohomology spectral sequences,
that H*(BgpL; Z,) is as follows.

LEMMA. H*(Bgp; Z,) has the following vector space basis up to dimension
18: Wwu classes, which are the reductions of corresponding Pontrjagin classes
defined im H*(Bgp, Z), and classes
tt € H"(Bsp, Z5)
Blu € Hm(BSPLr Z3)
0, U pt € H*(Bgpy, Z;)
p, U By e H'(Bgpy, Z3)
P8y e H*(Bsp, Z;)
BP;Bpe H"(Bspy, Z;) .
It follows that H *(BSPL, Z) has exactly the following 3 torsion through
dimension 18: ,H*(Bg) = Z,, ;H**(Bgp) = Z, H"(Bgpr) =
We turn to the determination of Q. Let ¢: H" (BSPL) = H "(MSPL) be
the Thom isomorphism; we shall usually have in mind Z, coefficients. We have
to determine the action of the Sqi on H*(MSPL). This we can do using the
fact that the Pontrjagin classes coincide with the Wu classes ¢~'Pjp(1) for the
prime 3 together with the formula o(x) = 7*2 U U, where 7: Egp, — Bgpy is the
projection of the universal bundle and U is the Thom class of the universal
microbundle. Using these facts and applying the Adem relations and Cartan
formula one verifies:

LemmA. H*(MSPL, Z,) has the following wvector space basts through
dimension 18:
ppre H*MSPL
Bpre H2MSPL  and ¢ (Pontrjagin classes)
@(p, U ) € H*MSPL
Bp(p, U 1), pPiBp e H*MSPL

From this, we conclude that the fibering MSO — MSL is the product
fibering with fiber K(Z,, 11), in the stable sense. We recall that this means
that MSO(n) — MSPL(n) x K(Z,, 11 + n) induces maps on the n + 7" homo-
topy and homology groups which in the limit as % increases, are isomorphisms
for » < 18. It follows that QF“/Q, has no 3 torsion for n < 18 except for
QI = Z,.

We next determine QF*, which we know must be a 2 group. We proceed
just as in the determination of the 3 torsion. It is first necessary to determine
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the effect of composition with ez, on 7, I'. There is a homomorphism
7,/Im J — 7y/Im J induced by 7 and we have a diagram

Tl — m/ImJ =0

It

I =, To/Im J

which is commutative. See the paragraph on 3-torsion above. It follows that
the composition with 7 is the 0 homomorphism 7,I' — 7 ,I'. It follows that the
first k invariant of I" is 0. One then concludes from an examination of the
spectral sequences involved the following results (they could be obtained
somewhat more directly in this case). There is a basis for H*(Bgp; Z,) con-
sisting of Stiefel-Whitney classes, and a PL class m;, and there is a basis for
H*(Bgp.; Z,) consisting of Stiefel-Whitney classes, a class related to m; by a
Bockstein operation of higher order, and a new class m3, 8m} # 0. One con-
cludes from this that Qf*/Q, = Z,, corresponding to the class mj.
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