
A USEFUL FUNCTOR AND THREE FAMOUS
EXAMPLES IN TOPOLOGY(i)

BY

R. F. WILLIAMS

The purpose of this note is to describe a functor which provides a framework

for certain constructions in topology. It is related to the sets (£, n, B, X, q) de-

scribed in [7] and is particularly adapted to discussing the limit of repeated mod-

ifications of triangulable spaces. Roughly speaking, one forms a space XAK

by replacing each top dimensional simplex of a complex K with a copy of a space

X. If in addition there are mappings on the spaces X, K, these induce a mapping

on the new space XAK.

It has been called to my attention that several authors have considered analogous

functors (though not as far as I know, in written form). This is not surprising

inasmuch as XAK is defined just as the Whitney sum of two bundles.

Though the principal applications of this functor are to be found elsewhere,

in a paper by Frank Raymond and the author [8; 7] and a forthcoming paper

by the author, three famous examples, Pontrjagin [6], Boltyanskii [2], and

Kolmogoroff [5] are given as applications in the last section. Two of these are

in dimension theory proper, but the third is essentially about transformation

groups. This was pointed out by Professor Deane Montgomery whom the author

would like to thank for his considerable aid and encouragement.

It is hoped that the reader will find our description of Boltyanskii's example

easier than the original, as a simpler, more homogeneous version is given. In

addition, in our version of Kolmogoroff's example, the group acts without fixed

points. This answers a question raised by Anderson [1].

1. Definitions. Throughout this section n is a fixed integer ^ 0 and s is the

standard n-simplex with vertices v0, vx, —, v„. s will be regarded as a complex

and as being closed when thought of as a space. Otherwise all simplexes, o, x, p

are taken as open and oeK means o is a simplex of K. The dimension of a com-

plex K is the maximum of the dimensions of the simplexes of K.

For an n-complex K there is a natural map <¡>K : K' -* s, where K' is the bary-

centric subdivision of K and <f>K sends b(o') (the barycenter of an i-simplex of

K) into the ith vertex, v¡es. This extends uniquely to the simplicial map <pK.
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Note that çbK \ö is a homeomorphism for each oeK. Also that if L is another

n-complex and t : K -* L is a map which is

(M2)   simplicial and collapses no simplex

then

K-►   L

<h / 4>i

is commutative.

Now suppose

(01)   X is a topological space and g :X-»s.

Define XAqK = {(x,fc)eX x K:qx = cbKk}. This will usually be written simply

XAK. Then for í : X -> L satisfying (M2) we define

lAi : XAX-» XAL

by (lAi) (x,fc) = (x,ifc). Note that (lAu) (lAi) = lAur, where defined.

The identity map 1 :s-*s gives sAK x K' and we will identify these spaces

via the map (x, fc) -* fc. Now consider the diagram

X <-XAK-> K

f

Y   <r YAL ->  L

If the triangle on the left is commutative then there will clearly be an induced

map /Ai : XAK -» YAL. But this is too great a restriction upon the map / and

we require only that

(Ml)   r/^-1(ff) czo, for each simplex a es.

Given this, define

/Al :XAK ->• YAK,
by

(/Al) (x, fc) = ifx, içb | ôy1 rfx),   where aeK', kecr.

There are four possible difficulties with this definition. In order that /Al be

(1) defined at all, we need to know that rfx e çb(p) = domain of içb \ a)~1 ;

(2) well defined, we need fc e a, x to imply içb \ o)~1 rfx = içb | x)~1 rfx ;

(3) continuous, we need only check (1) and (2);

(4) a map into YAK, we need only note that r(/x) = çbiçb | o)~ 1rfx.

Thus we check (1,2): first qx = çbk e cb(ö) so that xeq-1<p(<7) and hence rfx

erfq~1içbo)cz cb~ö. Secondly, suppose kecT,% and fcep, say. Then p is a face

of both a and x. Hence
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(tbfiy1 \tp(p) = (tp\p)-1=(tt>\T)-1\tpCp),

so that (<f> | a)~irfx = (tj) | t)~1 rfx.

Remark. XAK may be interpreted as follows. Let Xa — {(x, fc) e XAK : fc e a},

for oeK'. For an n-simplex a, the map X -+ Xa which sends x -> (x,(tj) \a)-1qx)

is a homeomorphism. Similarly for p an /-simplex in X', Xp » q~x(4>p) = g~ '(p')

and p' is an i-simplex of s. Hence for two n-simplexes a, xeK',p their common

face, then Xa and X, are copies of X identified along their respective copies

of Xf.
Among the immediate consequences of the definitions are

(1.1) (1Au)(1Aí) = lAur, where u,t satisfy (M2).

(1.2) (gAl)(/Al) = g/Al, where the following triangles satisfy (Ml),

X- f -»Y 9 ->Z

«\
/

/P

/

(1.3) the following diagram is commutative:

/Al
XAK-

lAi

YAL -

» YAK

lAi

^ YAL
/Al

We will verify (1.3); going over and down:

(x,k)^(fx,(tp\-a)-1rfx) - (fx,t(4>\ä)-1rfx);

down and over:

(x, fc) -* (x, ifc) - (fx,(91 to-y1 rfx),

where <¡> = 4>k and 9 = tj)L are the maps described above. Then these two maps

agree as all maps in the following commutative triangle are 1-1 :

t\d
a-!->ttr

<t>\\/ 0\(to)

Then in general define /Ai = (/Al)( 1 Ai) = (1Aí)(/A1).

(1.4) oAl :XAK->K' is defined by (qAl) : XAK -> sAK « K' by our identi-

fication above. Note gAl is the restriction of the projection X x K -y K to XAK.
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2. Simplicial theory and chain maps. An additional hypothesis is needed to

insure that XAK be a complex. One that suffices is

(SOI)   I is a complex, q_1(ö) is a subcomplex for all oes, and

(SMI) f:X-> Y is simplicial and satisfies (Ml).

Remark. One may always assume that q : X -* s is simplicial relative to some

subdivision of s. For given X, q satisfying (SOI), there is a simplicial approxima-

tion q' (relative to some subdivision of s) to q such that q'q~l(o) <= o for ail

oes. Such a q' exists by induction on the skeleta s0,Si, —,s„ of s.

Then q~*(o) = <¡r'-1(<x) for all o e s and hence there are the maps

1 Al : XAqK -> XAq,K,   1 Al : XAq,K -» XAqK

and their composition in either order is the identity. Also if f:X -> Y, r : Y-* s,

satisfy (SMI) then r'fq'-1^) = rfq~1(ö)<=o, for all ces so that the replacement

q-y q' is natural.

However the weaker requirement (SOI) seems more "natural" and will be

used. We remain in this simplicial category in all that follows.

(2.1) Lemma. //q : X -* s satisfies (SOI) then XAK has a natural simplicial

structure.

Proof. The proof is in four parts. In (1,2) we triangulate XAK and in (3,4)

show that the induced maps are simplicial.

(1) For oreX' define Xa = {(x,k)eXAK :keo}. Then ha(x) = (x,(<¿|o)~lqx)

defines a homeomorphism ha :q~*<t>ö-» Xa. h„ is clearly 1-1 and if (x,k)eXa,

then qx = (hkefió so that h„(x) = (x,((f> \o)~1qx) = (x,(4> |o-)_10fc) = (x,k). But

by hypothesis g-1</>ff is a complex so that ha triangulates Xa.

(2) If ris a face of oeK', then (n„ | q~1(px)x = (x,(<¡> \x)~1qx) = (x,(<t>\z)~iqx)

= ntx, for all xeq*1^). Thus the triangulations h„defined in part (1) agree

where they intersect and taken together triangulate XAK. If X and K are finite

complexes so is XAK.

(3) Now suppose in addition that r : 7-> s satisfies (SOI) and f:X-* F satisfies

(SMI). In order to show that/Al :XAK-* YAK is simplicial suppose peXAK.

Then p is a simplex of X„ for some oeK'. That is, there is a simplex pt e q ~ 1(¡)o <= X

such that ha(px) = P- Then p2 =fpx is a simplex in r'^o because rfq'1^) c ¿F.

Now by definition (/Al)(pj) = (fpx,(<¡> \ o)~irfpx) = (px,(<¡> | ff)-xrp2) and this last

is a simplex in the natural triangulation of YAK.

(A) Varying the second factor suppose t:K-*L satisfies (Ml). Then

(1 Ai) (p,(<t>K | ö)~1qp) = (p, t(4>K | o)~ 1qp) = (p, (<£L | tô)~ xqp) which is a simplex of

XAL.
(2.2) Notation. A point (x, k) e XAK <= X x K will be denoted at times by

by xAfc. A simplex xeXa<=XAK has the form x = ha(p) = (p,((p\ô)~1qp) where

oeK'. We introduce the notation (p,o) = t; note (p,o) ^ pAo as this last in-
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volves a number of copies of p depending upon the dimensions of p and a. The

notation (p, o) is far from unique, for if a is a face of a', then (p, a) = ip,cr').

If CeCJtiq~1çb{ô),A), i.e., C = Z<vp¡ where p¡ e q " içbiâ), we let (c,<r) denote

Za¡(P¡.ff). One easily verifies the fact that 3(c, a) = idc, o). Also one can check

the formula (qAl)^,^) = iq#c,o) = (</>|ff)-1q#c. The last = follows from our

identification sAK = K'.

Chain maps.   C^K, A) -+ C*iXAK, A).

Now suppose y : C^s ; A) -* C*(X ; A) is a chain map carried by q~1. Then

(2.3) y induces a chain map yAl : C^sAK; A)-> CtiXAK;A) carried by

iqAiy1. Ifq*y = 1 then (qAl)#(yAl) = 1.

Proof. Recall that sAK = K'. Then yAl is defined on elementary chains

a -a of C*iK',A) by (yAl) (a-a) = (y(a • </><t),<7). Then clearly yAl is carried by

(qAl)-1. To check that yAl is a chain map:

3((yAl)(a-ff))  = diyiaçbo),o) = idyia ■ çbo), o)

= (y(a • ôçbo),cr) = (y(a • çbdo), o)

= iyA\)idiao)).

If q#y = 1, then

(qAl)#(yAl)(a<7) = (qAl)#(y(cr<£cr),<7) = içb \ôy1q,yia-çbo)

=  (</>|ä)_1 l(a-^ff) = a-a.

(2.4) Corollary. If there is a chain map y:C%is;A) -* C%iX;A) such

that q#y = 1, then (qAl)^ :H%iXAK;A)-+H*iK;A) is onto.

Proof. For then the chain map (yAl) : C^K ; A) -» CJJÍAK ; A) induces a map

(yAl)* : H ¿K; A)-* H ¿XAK; A), such that (qAl^ijAl)* = 1. Hence (qAl)* is

onto.

3. Applications. Throughout this section s is the standard 2-simplex. We

need the following results for compact metric spaces X. They can be found in

Hurewicz-Wallman [4, p. 72] and [4, p. 152].

A. dim X z% n <= for each e > 0 there exists an e-map / of X into a complex

Ye of dimension ^ n.

B. dim X ^ n <= //„(X ; G) # 0 for some coefficient group G. (/ : X -»• Y is an

e-map if diameter/_1(y) < e for all y e Y.)

Now suppose X is the inverse limit of a sequence

X1^-X2^2-X3<-   ».

where X¡ is a complex (simplicial or cellular) and f¡ is simplicial or cellular.

LetffeX¡, set X„ = {xeX :x¡eo}, and define dt = maxaeKl (diameter Xa).

Assume that d¡ -> 0 as i -> co. Then A, B can be reformulated as follows.
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A', dim X^n <= for each i there is a simplicial (or cellular) approximation

g, :X,+1 -* X, to f, such that g^A^^c^n-skeleton of X,).

B'. dim X2: n <= for each i, /■* :Hn(X¡+ t;G)-> H„(X¡;G) is onto and non-

trivial for at least one i.

For then the Cech homology H„(X; G) is not zero.

I. (Pontrjagin [6]). There exist compact metric spaces <S>P, one for each

prime p, such that dim <t>p = 2 and

(3,   if p # p',
dim <I>   x <D - -

"       p        14,    if p = p'

Proof. We consider only the case p¥" p'- Let X0 = S1 x [0,1] and let Zp

be the identification space formed from X0 by identifying (9,1) ~ (9 + 2n/p, 1)

for all 9e S1. (Note: X2 = Möbius band.) Let Bp correspond to S' x 0 and Cp to

S1 x 1. Then (Xp,£pU Cp) is a relative, orientable manifold and choosing orien-

tations, dXp = Bp + p-Cp.

Define q ' : X0 -» s by

q'-.S1 x [0,1]-»S1 x [0,1/2}-+S1*b = s,

in which the first map retracts [1/2,1] to 1/2, the second collapses S1 x 1/2 to

b, and S1 * b, the cone over S1 is identified with s in the natural way. Now q'

factors through Xp so that we have the commutative diagram

*ox->  X,

A
s

(1.1) q'1 :Ct(s;Zp)-+Ci(Xp;Zp) is a chain map.

We must show that dq~1(aol) = q~1(daol), a'es, aeZp. This is clear for

i = 0,1, as g-11 ôs is 1-1. For the only 2-simplex a 2es we get

dq~\a• a2) = a(dXp) = a(Bp + p-Cp) = aBp, as pa = 0.

Finally, q-\daa2) = a-q'^do2) = a-Bp.

Next suppose p =¿ p'. Then there are the maps q : Xp -» s, q' : Xp. -y s and

hence the product map q x q' :XP x Xp,-* s x s. Let Ê = (q x q')~1(d(s x s))

= Bp x Xp, U Xp x Bp,. Then

(1.2) There is a map r:XpxXp.^ d(s x s) = S3 such that r \ Ê = q x q' \ Ê.

Proof.   We need only check the hypothesis of the Hopf extension theorem

[4]. As (Xp x Xp,, (Bp U Cp) x Xp, \JïXp x (Bp, u Cp.)) is a relative oriented

manifold each homology class veHA(Xp x Xp., Ê; S1) has a representative of

the form a-Xpx Xp., aeS1. Then dvis represented by

ad(Xp x Xp) = a(Ê + PCp x Xp. + p' ■ Xr x Cr.);
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hence we must have a(pCp x Xp. + p'Xp x Cp) = 0, and as p # p', a. = 0. Hence

H4(Xp x Xp-, Ê; S1) = 0 and the map r exists.

Let K be a triangulated two-sphere and define K¡ inductively by Ki+ y = XPAX¡.

Define n¡ :Ki+y-+K¡ by qAl :XpA/Cj-^ K¡. Let 4>p be the inverse limit of the

sequence Ky *-"   K2 *-*2 K3*- -.

(1.3) dimOp. = 2, all primes p.

Proof. The inequality dim$p ^ 2 is easy. To check the other it suffices (by

A') to show that n¡, : H2(.Ki+1;Zp)-»//2(K,;Zp) is onto for i = 1,2, •••, because

H2iKy;Zp) = Zp. But this follows from (1.1) and Corollary (2.4).

(1.4) dim<Dpx(Dp. = 3, for p¿p'.

Proof. The inequality ^ 3 follows from general principles [2, p. 34]. To

prove the other one, note that Op x cDp. is the inverse limit of the sequence

Kl x K't fh^< Kz x K-2 <-

where K¡, nt are as above, and K[, n\ are the corresponding spaces and maps for

<Dp.. Regarding K¡ x K[ as a CW-complex with cells er x o', oeKt, a' eK[, we

can map each product of the form (Xp, o) x (Xp, o') into dio xa') using the map

r of (1.2). These are consistent throughout Ki+1 x K'i+l because on the inter-

section of two such products, r agrees with n¡ which is consistent. This yields a

map i¡/: Ki+1 x K'i+y -► (3-skeleton of Kt x K'¡) which is a cellular approximation

to 7i; x ni so that by (A'), dim Op x i»p. g 3.

II. (Boltyanskii [2]). There is a compact metric space X of dimension 2

such that dimX x X = 3.

Proof. Fix a prime p and let n¡ = p2 , i = 1, 2, 3, ••• . Let X0 = S1 x [0,1]

and let X¡ be the space formed from X0 by identifying (0,0) ~ (0 + 27î/n;, 0) and

(0,l)~(0 + 27r/ni+1,l), for all 0eSx. Let BjcXj correspond to S1 x 0 and

C¡ to S1 x 1. Then iXi,Bi U C¡) is a relative, orientable manifold and dX¡ = n¡B¡

+ ni+yC¡. Define q' :X0-»s by

q'-.S1 x [0,1] -> S1 x [0,1] -► S1* £> = s

in which the first map sends S1 -+S1 by 0->n¡0 for all 06S1, and the second

is as in (I) above.

Then q' factors through X¡ defining q(:

X0  ->Xt

q\A ■
s

Below we consider Zni czZn¡+ ¡ <= S1, the reals mod 1, and choose generators a¡e

Z„(> such that n¡a¡ + 1 = a¡.

(II.l)    Tnere is a chain map y¡ such that the following diagram
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C*(s;Z) —-^C+(Z¡;ZB¡+,)

w# \ / q¡

^*(s',Zn¡)

is commutative, in which n# is induced by the natural map n:Z-*Z„r

Proof.    For a /"-simplex oJes, neZ, define

rnatf^iV). 7 = 0,1;
li(n-o3)=\ .     .

ln<xi+xqt    (oJ),     j = 2.

The relation qi^yi = n¡ follows from the fact that q¡ is nrto-l on X, - B, U C¡,

1-1 on B¡ and ni+rto-l on C¡. As in (I) we need only check dyin ■ o2) = y¡(ndo2)

for the unique 1-simplex <72es. But dyfjio2) = na;+13X¡ = na^^B; + niJrXC/)

= na;Bf and y^dn-o2) = na^J"1^2) = na;B;.

Now let Ê, = B; x X¡ u X¡ x B, = (q¡ x q,y\d(s x s)). Then

(II.2)    There is a map r¡: X, x X¡ -* d(s x s) « S3 such that r\Et = (q¡ x q^Ê,.

Proof. As before, every homology class veHA(Xi x X¡, B^S1) has a re-

presentative of the form z = tx-X¡x X¡, aeS1. Then dz = d(cc- X¡ x X¡)

= a(njB; + ni+xC¡) x Xt + a-X¡ x (n^ + ni + xC,). Hence aní+1C¡ x X¡

+ x-ni+xXt x C, = 0 and ni+1a = 0 (and thus HA(Xi x X,Ê,; S') = Z„. + 1).

Then qi#dz = ^¡#(an;B; x X¡ + an¡X¡ x B¡) = an¡(ds) x (n¡s) + an^s) x (ds)

= an¡+1 -d(s x s) = 0, and r, exists by the Hopf extension theorem.

As in (I) define X as the inverse limit of

711      r      ,   n2
Kx <—i  K2 <—± K3 <- .»

where Kx = S2 and K;+1 = X¡+XAK¡. n¡: K¡+x -> K¡ is given by qí+1Al: Xi+XAK¡

- K,.

(11.3) dim X x X = 3 follows just as in I from (II.2).

(11.4) dim AT = 2.

Proof. That dim X ^ 2 follows just as in (I), but the other inequality is a

bit different because of the change of coefficients in (ULI). The claim is that

H^X^1) # 0 and this will follow from

fnu:H2(K2;S1)^H2(KxS1) is nontrivial,
(4a) I

U. :í72(^¡+i;S1)^H2(iC¡;S1) is onto,   i = 2,3,-.

We need only consider the cycle groups Z2(Ki;Si) as we are in the top di-

mension. But as in the proof of (II.2), Z2(Kl;S1) = Z2(X;;Z„i+,). Now it follows

from (II.l) and Corollary (2.4) that ni# : C2(Ki+x; Zni + 1)^Z2(Ki;Z„t+l)\sonto.

But any 2-chain which maps onto a cycle under ni# must be a cycle, as n-, \

n~xl (1-skeleton of K¡) is a homeomorphism.
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III. (Kolmogoroff [5]). There is a compact 1-dimensional space Y and

a compact abelian group A acting freely on Y such that dim Y/A = 2.

Proof. This is based on example I and we let the notation of (I) stand. Let

y, : S1 -> S1 be the identity for 0 ^i g 1/2, and a rotation for 1/2 ^ í ^ 1, yt

being a rotation of period p. Let Y0 = S1 x [0,1] x Zp and define /0, g0 : Y0 -> Y0

by

/0(x, t, a) = (x, t, a + co), a» a generator of Zp,

r(y,x, t,a + co),     a # 0,
q0(x,í,oc)=   \

(.(yfp+1x,i,œ),     a = 0.

Let A = S1 x 1 x Zp Then on A, g0(x, t, a) = (yrx, r, a + a>) so that /01 ^ and

q01A commute.

Let Yp = Y0/gQ \ A. Then /0, a0 induce maps /p, gp : Yp -* Yp both of period p

and/p has no fixed point. Define q\ : Y0 -* s by

qi : Y0 -► Y0/g0 = X0 -> s

in which the first map is the orbit map and the second is q ', defined in (I). Then

q'y collapses all orbits of q0.

Furthermore q[ collapses all orbits of /0. For this there are two cases:

0 ^ 11% 1/2 for which q0(x, t,a) = /0(x, t,a), and the /„-orbits = q0-orbits; for

1/2 ;£ í :£ 1, qi(x, t, a) = b and qi/0(x, t,a) = q[ix, t, a + co) = b as well.

Hence there are the induced maps

Y0-> Yp-> Yp/fp

Il \?i

\ *      /
9i

(111.1) Yp/fp x Xp and identifying these qy = q :Xp^ s.

Proof.    First  Yp//p = (Y0/q01^)//p = (Y0//p)/qp|A' = Xo/(0, l)~i9 + 2n/p,l)

= Xp. The second statement follows because q[ was defined in terms of q'.

(111.2) There is a map rt : Yp -» 5s sucn í/iaí

ri<?-1(<j) c^ /<"■ aZi ae,.

Proof.   Define r/ : Y0 -► as by r/ : Y0 ->■ y0/a0 = S1 x [0,1] -> S1 = 5s. Then as

r\ collapses all orbits of q0, r\ factor through Yp :

\-> 7-
ri \   / ry.
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Note that ryq~ 1(ô) ci, for a = <r°,er1 es, as here rx = gt. For a = a2 this con-

dition is trivial.

Let Lt = S2 and define L¡ inductively by Li+1 = ypAL¡. Define 7ta :L¡+1 -» L¡

by gAl : YpAL,-> L„ and Y = inverse limit of (L,,n,y). Let Fi0 :L,-+L, be the

identity and define Fn, ■•■,F„ :L,-+L, inductively by

Fi+i.j =/pAFiJ_1,      j = 1,2, -,1*4-1.

Note that Fi+1J has no fixed point because/,, has none.

Then {F^}} = y generates a free action of Zp+ ■■■ +ZP (i summands) upon

L„ and

(111.3) 7ta :Li+1->Lf is equivariant. That is

nuFi+ij = Fij-inn>      .7 = 1,2,—,i.
For

*ii^i+ij = (Qi^)(fp^Fi,j-i) = «î/pAF.j-!

=   giAF.j-!    =   (lAFiy^XgiAl)   =   F,j-yK,y.

Let [/ g, •••] denote the group generated by/ g, ••■. Then define the abelian

group A as the inverse limit

lFy0} ̂ - ÍF2J})-_y ¿^ [F3i]2=1 <-3L. ....

Then A acts on  Y, coordinatewise and thus freely. This uses the equivariance,

(III.3).
(111.4) dim Y= 1.

Proof. We prove only dim 7= 1, and hence need only check the hypothesis

of (A'). There is the map

1A1 : YpAqiL, -* YpArtL,

because r1q~1(ö) = rq~1(ä) ca for all aes. Now define ij/ by

i// : YpA?1Lf -^-> TpAriL¡ -^h (ds)AL, = 1-skeleton of L,.

This is clearly a simplicial approximation to 7tu and (A') is verified.

(111.5) Y/A = Op so that dim Y/A = 2.

Proof.   By induction; we note that Ly/Fi0 = S2/l = Ky. Now

¿i+i/[iw»---»iw-+ij = VA^c-.y
= (yp//p)A(L,/[Fu, -,FM]) = (Yp /P)AX;

by the induction hypothesis. But by (III.l) this last is XpAK, = Ki+1. Hence

Y/A is the inverse limit of

K0   <-   Ky    <-

in which the connecting maps are g\Al = gAl : XpAK, -> K,. But this is precisely

the definition of <I>P.
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Remarks. (1) Kolmogoroff, writing in 1937, did not express his ideas in

terms of transformation groups. His concern was to construct an open map

which raised dimension and the map he gives is precisely the orbit map of an

action of a group A, Y' -*Y'/A = Op, for p = 2. A notable difference is that in

his example the (implicit) action of A is far from free.

Y' can be described (for any p) just as Y, except that in place of Yp one uses

Yp defined by Yp = Y0/g0\ A', where A' = S1 x {0,1} x Zp. On Y' one can equally

well define the action of the p-adic group ^4p (given as the inverse limit of the

sequence Zp <- Zp2 «- Zp3<—) so that Y'/Ap = Op. This version of Kolmogoroff's

is then closer to that given in [7; 8], in which Ap acts (not freely) on a 2-dimen-

sional space X and dim X/Ap = 4.

Finally, one can define a 1-dimensional space Y" and a free action of Ap on

Y" such that dim Y"/Ap = 2. This differs from the example above in two ways.

First, instead of Yp one uses Yp" = Y0"/g0" \ A", where Y0" = Dp x Zp. Dp is a

2-dimensional disk from which have been deleted p open disks with boundaries

A0,—,Ap-y;A"=\jAi.Themapg0':YZ->Yov takes Aa x b->Aa+a x ib + co),

whereas /„" : Aa x b -> Aa x ifi + co), for a, beZp. The crucial difference is that

the co-index [3] (or B-index, [9]) of (Yp", //) is 1 ; that of (Yp,fp) is 2.

Next, instead of defining L[ — YpAL[, one uses a more complicated inductive

procedure, just as in [8], making use of the fact that co-index (Yp", fp") = 1.

Generally speaking, the higher the co-index, the "deeper" the example. This

topic will be pursued in a future paper.
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