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1. Introduction

Linear dynamical systems with internal con-
straints give rise to transfer functions which reflect
these internal properties, €.g. positive real matrices
or symmetric matrices of rational functions. The
role of such matrices and their realizations in
different areas of applications (such as electrical
network synthesis) is described in [7].

In this note we study hermitian polynomial
matrices. Our approach is module theoretic as in
[9] and [3]. We continue our work [9] and investi-
gate the relation between hermitian polynomial
matrices and their associated inner product spaces
and selfadjoint operators. As an application we
will give a new proof of a factorization result [5]
on polynomial matrices with constant signature,
which is relevant to the theory of filtering.

2. Notation

Let C((z™")) denote the vector space of trun-
cated Laurent series of the form

ny
f(z)="Y fz', feC, (2.1)

j==co

and let z7'C[[z7"]] be the space of formal power
series in z~! with vanishing constant term. The
decomposition

c((z"))=c[z]ez'c[[z7"]]

induces projections 7, and 7 _ of C((z~')) on C[z]
and z 'C[[z™'"]] respectively. If f€C((z™")) is
given by (2.1) we put ‘

(f)i5=fi-

In a natural way the preceding definitions are
extended to C"((z™")) and C"*"((z™")).
For

ng
G(z)= X Gz, GecCm,

i=—00

we define G* by G*(z) = XG*z'. We call G hermi-
tian if G = G* holds.

If L € C"*"[z] is non-singular then a complex
number « is a characteristic root of L if det L(a)=0
holds. We say A = oo is a characteristic root of L if
L~ " has a polynomial part.

The following matrices will appear:

E,:=(8,,1-;)EC"™", ie.

0 .1
E"= 1 - ’
1 0 nxn
R,:=(8,,_,.,) EC™", ie.
0 .0
|
Rn = . . *
0 1
O ] 0 nXn
E,—zR
S, (z :=( g k ) . (2.2
«(2) =20 ... 0)ksnyxx )
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3. Hermitian polynomial matrices and inner
products

Our note is based on [9]. In order to make it
self-contained we review the results of [9]. Let
L € C""[z] be non-singular. The two maps

7, :C"[z] > C"[z]

and '

pt:C7[[271]] > €72]

which we associate with L are defined by
m fi=La_L~'f, feC"[z],

and

plo:=Lr, L™, vec”[[z7].

Let ¥, and U’ denote the respective ranges

Vo:=Ima,, Ut:=Impt.

Define

p-fi=mpf, peC[z].feV,, (3.1)
and

g vi=Lr, L 'qv, gecC[[z7']].ve UL (3.2)

Then ¥V, with scalar multiplication (3.1) is a C[z]-
module [2] and U* with (3.2) is a C[[z~']}-module
[8]. The dimension of the C-vector space V, is
equal to degdet L and dim U’ is equal to the
multiplicity of the characteristic root A = oo of L.
If L is hermitian then

[f.8):=(/*L7g)_\, (f.8)eV,xV,, (33)

is an indefinite inner product on ¥,. On U*% an
inner product can be defined by

(u,v):=(x*L""y), (3.4)

where x and y are in C"[[z7']] such that u = plx
and v = p’y holds. The right shift $*,

S*fi=z-f, feV,

is a linear operator which is selfadjoint with re-
spect to the inner product (3.3). Similarly the left
shift S7,

S"v:i=z"'.v, ve UL,

is selfadjoint on U*.
Any hermitian rational matrix We C"*%(z),
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W =0, can be written as
W(z)=M(z)(zP+ Q)™ ' M*(z) (3.5)

where zP + Q € C"*[z] is a non-singular hermi-
tian pencil and M e C"*"[z]. We call (3.5) a
hermitian realization of W. (3.5) is a minimal reali-
zation if the size r of the pencil zP + Q is minimal.

Lemma 3.1. Any hermitian We C"*"(z), W=0,
admits a hermitian realization. If (3.5) is a minimal
realization then the hermitian pencil zP+ Q is
determined by W up to congruence.

Theorem 3.2. Let L =L* € C"*"[z] be non-singu-
lar and let

m_L~Y(z)=D(z4,—A,)” ' D*,
m,L""(z)=R(Ny— N,z) " 'R*

be minimal hermitian realizations. Then A, and N,
are non-singular, N[ ‘N, is nilpotent. The columns

of
D(z):=L(z)D(A4,z— 4,)""
are a basis of V,, the columns of
R(z):=L(z)R(Ny—N,z)™"

are a basis of UL. With respect to these bases the
matrices of the inner products (3.3) and (3.4) are
given by A7 ' and Ny ', the matrices of S* and S~
are AgA7 " and N\ Ny ' respectively.

Furthermore

m_(D(z)*L™"(2)D(z)) = (4,2 = 4,)"". (3.6)

4. Hermitian pencils

In this section we recall the normal form of
hermitian non-singular pencils and prove some
auxiliary lemmas.

Theorem 4.1. (See e.g. [6] for references.) Let zP +
Q € C"*"[z] be a hermitian pencil which is non-sin-
gular, i.e.

det(zP+ Q)= 0C[z].

Then there exists a non-singular matrix T & C"*"
such that T(zP + Q)T* is the direct sum of blocks of
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the following types 1, 11, HI:
eD(z,a):=¢((z - a)E,~ R,) m

withac€R ande= +1.

0 D(z;b)
_ , (1)
D(z;b) 0
a 2s X 2s matrix with b & R.
eF(z)=¢(E,—zR,), e= +1. (1)

A block of type I corresponds to an elementary
divisor (z —a)’, a€R, of zP + Q. To each con-
jugate complex pair (z — b)*, (z — b)* of non-real
elementary divisors of zP + Q there is associated a
block of type II. Each infinite elementary divisor
y' (i.e. each elementary divisor of P+ yQ of the
form y') contributes a block of type IIL. Up to
ordering of the blocks the direct sum is uniquely
determined by zP + Q.

To each real or infinite characteristic root of
zP + Q belongs a set of signs ¢ which we call the
inertial signs. The terminology is not uniform. In
[3] elementary divisors and signs are called the
Cauchy characteristic, in [4] the term sign char-
acteristic is used in connection with real character-
1stic roots.

We now consider blocks of type III and I.

Lemma 4.2. A block F, can be factored as
F(z)=M(z)KM*(z)
with M e C'*'[z]) and K C"™*".

Proof. For ¢ even, t = 2k, write

- _[0 E
2k Fk 14

where V' = (v;;) has zero entries except v, = —z.

Then
( 1) 1
1 O Fk iV'

For ¢ odd, t =2k + 1, we partition F, as

U Si(2)
S¥(z2) 0

0 F

Fy =
2 %V

F2k+l(z)=(

where U is a (k+ 1)X(k+ 1) matrix with a 1
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entry at the bottom of the main diagonal and
where S, is given by (2.2). Then

_ U Si(2)
sz+l(l)_($§(0) 0 )
U 5/(0)
XE2/\+I Sf(O) 0 )'

The following observation can easily be veri-
fied.

Lemma 4.3. Put

1 (z-a) (z—a)™!
¥ (zia)i= | .
0
Then
Y,(z;a)D.(z; a)Y*(z; a)
zI 0 ... 0
0
. EL@) @
0

5. Inertial signs

Let A=a be a real characteristic root of the
non-singular hermitian matrix L€ C"*"[z]. We
consider the principal part H,(z) of L™' at the
pole a. We can assume without loss of generality
that in a minimal hermitian realization
H/(z)=C(A4,z2—4,)”'C* (5.1)
the r X r pencil zA, — A, is in normal form

«D, (z; a))<
(5.2)

zA, — A, = block diag(s,D,,l(z; a),...,e

We partition C corresponding to (5.2) into C=
(C,s..., C,) and denote the first column of C; by
v, As the realization (5.1) is assumed to be minimal
we have

rank(A'a_Ao) =r
C
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or equivalently
rank(vy,,..., ¥ ) =k. (5.3)

The following result is a special case of Theorem
9.9 in [3]. It is obtained here as an immediate
consequence of Lemma 3.1.

Theorem 5.1. Let a be a real characteristic root of
the hermitian non-singular matrix L € C"*"[z]. The
principal part H, of L™" at a can be written as

H,(z)=C(z)diag(e,(z—a)™",...,
g (z—a) ")C*(z) + M(z) (5.4)

with g,€ {1, —= 1), M€ C"*"[z] and C € C"*¥|;]
such that C(a) has full column rank. The numbers
n,g,i=1,...,k, are uniquely determined by L.
The polynomials (z — a)" are the elementary di-
visors and the integers €, are the inertial signs
corresponding to the characteristic root a of the
pencil Az — Ay in (5.1).

Proof. Recall (4.1) and let H, be given by (5.1) and
(5.2). Put

&:=C(1,(z~a),....(z=a)"")’,
i=1,...,k,

and C: =(¢,,...,¢&,). Then (5.4) holds and C(a)
=(Y1,---»7,)- Hence (5.3) implies rank C(a)= k.

We show that the numbers n, and ¢, in (5.4) are
uniquely determined. Let e = col(1, 0,..., 0) be an
r-vector. Then

e(z—a) "=e*eD,(z;a) e.

With this observation it is easy to reverse the
preceding steps and construct a minimal hermitian
realization for H, of the form (5.1) and (5.2).
According to Lemma 3.1 the pencil z4, — 4, in
(5.1) is determined up to congruence, which com-
pletes the proof.

If L is a non-singular pencil then the numbers e,
in (5.4) are the inertial signs corresponding to a.
This suggests to use (5.4) to define inertial signs
for general polynomial matrices.

Definition 5.2. Let a € R be a characteristic root
of the non-singular matrix L = L* € C"*"[z]. Let
the principal part H, of L™ at the pole a be given
by (5.4) such that rank C(a) = k holds. We call the
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numbers ¢;, i=1,..., k, the inertial signs of the
elementary divisors (z —a)" of L.

In [4] results on analytic perturbations have

.been used to describe the inertial signs of poly-

nomial matrices with invertible leading coefficient.

We now turn to infinite elementary divisors of
L. Recall [8] that a non-singular L € C"*"[z] has
the infinite elementary divisors y*,...,y%, if
yL(y~!) has Smith-McMillan form

diag(y~d\(y),...,yvd (),
y:qu+l(y)"" 7yxpdp+q(y))

such that

—<- - £-¢,<0<s <" <5

P

and
d,eC[z], dp(0)=f=0, p=1,...,p+gq,

holds. The following statement can be proved along
the lines of Theorem 5.1.

Theorem 5.3. Let L = L* € C"*"[z] be non-singu-
lar and let G, denote the principal part of
y~'L™'(y~") at 0. Then H, can be written as

Hy=V(y) diag(s,y'“,...,e,,y’ﬂ)V*(y)+R(z)
(5.5)

with Ze C"*P[z], Re C"™"[z], ¢, {1, — 1) such
that rank V(0)=p holds. The polynomials y*, i =
1,...,p, are the infinite elementary divisors of L, the
corresponding signs €, are uniquely determined by L.

Definition 5.4. We call the numbers ¢, € (1, — 1),
i=1,...,p, given by (5.5) the inertial signs of the
infinite elementary divisors y* of L.

6. Isometries

Let L, € C"*"[z] be hermitian and non-singu-
lar. We call a map a:V, — V, an F|[z]-isometry,
if it is an F[z]-module isomorphism which pre-
serves the inner product (3.3). Similarly F[[z~']}-
isometries between Ut and U’: are defined. In
the case of linear pencils isometry is related to
congruence.

Lemma 6.1. Let zP,— Q, € C"*"[s), i=1, 2, be
hermitian pencils such that P,, i = 1, 2, is non-singu-
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lar. There is an F[z]-isometry
o VZPl—Ql - Vf”’z'Qz

if and only if the pencils are congruent, i.e. n, = n,
and

2P, — Q,=T(zP, — Q,)T* (6.1)

for some non-singular constant T.

Proof. From dim V, = deg det L follows n; = n, =
n. We take the canonical basis of C” as a basis of
V.p o, Let T be the matrix of a. As the matrices
corresponding to the respective shift operators are
similar and the matrices of the inner products are
congruent, we have

TQ,P['T~'=Q,P;' and P['=T*pP;'
which is (6.1). The converse is obvious.
Theorem 6.2. Let L, € C"*"[z], i =1, 2, be hermi-
tian and non-singular. The following statements are
equivalent.

(i) There exists an F[z]-isometry between V, and
V,.

(ii; There exists polynomial matrices X and Y such
that

XL,=L,Y (6.2)

and

7_X*L;'X=a_L7', w_YL'Y*=g_L;'
(6.3)

hold.

(iit) L, and L, have the same finite elementary
divisors and their real characteristic roots have the
same inertial signs.

Proof. (iii) = (ii) Let
7_L7(z)=C(zP,—Q,)”'C*, i=1,2, (6.4)

be minimal hermitian realizations and let C, €
Cm*Mz], i =1, 2, be defined by

L(z)C=C(2)(2P~ Q). (6.5)
From (3.6) we know
W—éi*LFICi= (ZP,' - Qi)_l'

According to Theorem 5.1 we can work with the
same pencil zP — Q = zP, — Q, for both L, and L,.
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Put X:=C,CF and Y:=G,CF. It can easily be
verified that X and Y satisfy (6.2) and (6.3).

(ii) = (i) We use the matrices X and Y in (6.2)
and (6.3) to define

aui= sz)(v, vE V,_l,

and

Bw:=m Y*w, weV,.

The mappings
a:V, =V, and B:V, -V,

are F[z]-module homomorphisms [2]. Let u and v
bein V, , then

m_[(au)*Ly'av] = m_(u*Li').
Similarly we have

m_[(Bw)*L7 'By] =m_(w*L5'y)

for any w and y in V, . Hence a and B are injective
C-linear maps between the vector spaces V, , i =
1, 2, they are F[z]-isometries and B =a™'.

(i) = (iii) Let w_L', i =1, 2, be given by (6.4).
By the preceding argument we obtain from (6.5)
an F[z]-isometry between V, and V,, _,,i=1,2.

Therefore we can assume L,(z)=zP,— Q,, i=
1, 2, and Lemma 6.1 completes the proof.

The corresponding result on F[[z~']}-isometries
between U and U’ would require a description
of F[[z™']}-module homomorphisms between U%!
and U*2. Sincé those homomorphisms will be dis-
cussed elsewhere, we note only an equivalence of
two statements.

Theorem 6.3. The non-singular hermitian poly-
nomial matrices L, and L, have the same infinite
elementary divisors and corresponding inertial signs
if and only if there is an F([[z~']]-isometry between
Ut and U*.

7. Hermitian polynomial matrices with constant
signature

A non-singular hermitian matrix L € C"*"[z] is
said to have constant signature if for all A€R
which are not characteristic roots of L, the matrices
L(A) have the same signature. Such matrices are
characterized in [5). As an application of the pre-
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ceding results we give a new proof of the following
factorization theorem.

Theorem 7.1 [5]. L € C"*"[z] has constant signa-
ture if and only if L can be factored as

L(z)=M(z)KM*(z) (7.1)
such that M€ C"*"[z] and K C"*",

Proof. It is the ‘ = * part of the theorem which is
not obvious. Let

L™(z)=T(zH, + Hy)~'T* (7.2)

be a minimal hermitian realization of L~' We
reduce the problem to the pencil zH, + H,. Let a
be a real characteristic root of L and let the
principal part of L' at the pole a be given by
(5.4). For ¢> 0 the signatures of L~'(a+¢) and
L~ '(a — ¢) are equal. Recall that C(a) in (5.4) has
full column rank. Hence for each odd #, the diago-
nal entry ¢,(z — a)"* has to be matched by a corre-
sponding entry —e¢,(z —a)~"" with odd m,. This
implies that the normal form of the pencil zH, + H,
in (7.2) contains the pair of blocks

D,(z;a) 0
0 -D,(z;a)

or — B. From (4.1) we see that B can be written as

B =G block diag(z", —z", F, , —F, )G*

n,

where G is a suitable polynomial matrix. Accord-
ing to Lemma 4.2 a block F, can be factored in the
form (7.1). Put

[z 0 L(l+z l—z)
R(Z)'_(o z') A\l—z 1+:z
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with n, =2k + 1, m,=2/+ 1. Then

z™m 0 \_ *(1 O)
(O —z'"') R 0 -1 R

- and B is of the form (7.1). Using (4.1) again we

obtain a desired factorization of D.(z; a) in the
case of even r. Finally,

0 D\ (1 0«0 1\[I O
D, o) \0 Dj\r o/\0 D
takes the blocks of type II into account. As we

have considered all possible block types in the
normal form of zH, + H,, the proof is complete.
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