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Homomorphisms ofmodules associatedwith polynomial matrices
with in$nite elementary divisors
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Abstract

If the inverse of a nonsingular polynomial matrix L has a polynomial part then one can associate with L a module over the
ring of proper rational functions, which is related to the structure of L at in$nity. In this paper we characterize homomorphisms
of such modules. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

According to Rosenbrock [6] a transfer matrix
G ∈Km×p(s) of rational functions over a $eld K
admits a generalized state space realization

G(s)= (C1 C2)

(
sI − A1 0

0 sN2 − I

)(
B1

B2

)

such that

G1(s)=C1(sI − A1)−1B1 (1.1)

is the strictly proper part and

G2(s)=C2(sN2 − I)−1B2; (1.2)
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where N2 is nilpotent, is the polynomial part of G.
It is well known that the realizations (1.1) and (1.2)
can be constructed by module theoretic approaches.
In the case of (1.1) a construction is due to Fuhrmann
[2]. For a realization theory of anticausal input output
maps we refer to Conte and Perdon [1]. To describe
the polynomial models that serve as state spaces for
(1.1) and (1.2) we use the following notation. A ratio-
nal function f∈K(s) is called proper or causal (resp.
strictly proper or strictly causal) if f=0 or if f �=0
and f=p=q; p; q∈K[s]; q �=0, and degp6 deg q
(resp. degp¡ deg q). Let K∞(s) denote the ring of
proper rational functions over K . Then

K(s)=K[s]⊕ s−1K∞(s): (1.3)

To (1.3) correspond projection operators

�− :K(s) → s−1K∞(s)

and

�+ = (I − �−) :K(s) → K[s]:
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Put

(f)0 = (�+f)(0); f∈K(s): (1.4)

The decomposition (1.3), the projections �− and �+,
and de$nition (1.4) extend naturally from K(s) to
Kn(s) and Km×p(s).
Let G ∈Km×p(s) have a realization

G=W1 + P1D−1
1 Q1; (1.5)

whereW1; P1; Q1; D1 are polynomial matrices, withD1

of size n1×n1. In Fuhrmann’s theory [4] a state space
for a realization (1.1) of �−G is provided by

VD1 =Kn
1 [s]=D1Kn

1 [s]:

Obviously, VD1 is aK[s]-module and thus also a vector
space over K . The counterpart of (1.5) is a realization

G=W2 + P2D−1
2 Q2; (1.6)

where P2 and Q2 are proper rational matrices, W2 is
strictly proper rational and D2 is a polynomial matrix,
D2 ∈Kn2×n2 [s]. De$ne

UD2 =Kn2∞(s)=(Kn2∞(s) ∩ D2s−1Kn2∞(s)): (1.7)

Then UD2 is a K∞(s)-module and at the same time
a K-vector space. At the end of this section we shall
indicate why UD2 can be taken as a state space of a
realization (1.2) of �+G. Let us mention that the $nite
and in$nite pole modules (see [9]) of G(s) are given
by VD1 and UD2 , if (1.5) is an irreducible realization
and (1.6) satis$es coprimeness conditions of the form
(3.14).
We note that a nonsingular polynomial matrix

L∈Kn×n[s] gives rise to two types of modules,
namely the K[s]-module

VL =Kn[s]=LKn[s]

and the K∞(s)-module

UL =Kn
∞(s)=(Kn

∞(s) ∩ Ls−1Kn
∞(s)): (1.8)

Besides realizations there is a wide range of issues
such as similarity of state space models, system equiv-
alence or simulation of restricted input output maps
which involve two polynomial matrices L and L1 and
homomorphisms from VL to VL1 and from UL to UL1 .
The K[s]-module homomorphisms from VL to VL1 are
well understood. According to Fuhrmann [4] their de-
scription is based on intertwining relations between L
and L1. In this note we study K∞(s)-module homo-
morphisms fromUL toUL1 . Our characterizations will
be in correspondence with Fuhrmann’s results in Ref.
[2,4]. Comparing the de$nitions of VL and UL we ob-
serve that LKn[s] is a submodule of Kn[s] whereas in

general Ls−1Kn
∞(s) is not contained in Kn

∞(s). Hence
it is not surprising that UL is less easy to handle than
VL and that in our study technical obstacles have to
be removed which do not appear in the case of the
module VL.
To obtain a concrete representation of UL we de$ne

a map

�L :Kn
∞(s) → Kn[s]

by

�Lx=L�+L−1x; x∈Kn
∞(s):

Put Kx= �Lx. For q∈K∞(s) and Kx∈ Im �L we set
q · Kx= qx. This product is well de$ned since

Ker �L =(Kn
∞(s) ∩ s−1LKn

∞(s)):

Therefore Im �L is a K∞(s)-module, isomorphic to the
quotient moduleUL in (1.8). From now on we identify
both modules such that

UL = Im �L =L�+L−1Kn
∞(s):

Clearly, UL =0 if sL−1 is proper rational. A shift op-
erator S−(L) on UL is given by

S−(L) Kx= s−1 · Kx; Kx∈UL:

Clearly, S−(L) is a nilpotent endomorphism of UL.
Let us now give a concrete example for the use of a

K∞(s)-module UL. Based on the representation (1.6)
of G we derive a realization of �+G having UD2 as its
state space. We adapt a construction of [3]. Assume
�+G(s)=

∑t
�=0 G�s�. De$ne the map B2 :Kp → UD2

by

B2�= �D2 Q2�; �∈Kp:

Put N2 = S−(D2) and de$ne C2 :UD2 → Km by

C2 Kx=− (P2D−1
2 Kx)0; Kx∈UD2 :

Then a straightforward computation yields

G� =− C2N�
2B2; �=0; 1; : : : ; t

such that
t∑

�=0

G�s� =C2(sN2 − I)−1B2:

2. Basic facts of UL

For a nonzero proper rational function f=p=q;
p; q∈K[s], let a degree function be de$ned by
 (p=q)= deg q − degp. It is well known that
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(K∞(s);  ) is a euclidean domain. The units K∗
∞(s) are

the proper rational functions f with  f=0. The ideal
(s−1) is the unique maximal ideal of K∞(s). Let us
call a matrix P ∈Kn×n

∞ (s) bicausal if det P ∈K∗
∞(s),

i.e. if P is invertible in Kn×n
∞ (s). If W ∈Km×r(s) has

rank n then there exist bicausal matrices P and Q such
that

W =P

(
" 0

0 0

)
Q

with

"=diag (s−#1 ; : : : ; s−#t ; s$t+1 ; : : : ; s$n);

−#16 · · ·6− #t ¡ 06 $t+16 · · · $n: (2.1)

The integers −#1; : : : ; $n are uniquely determined by
W . In particular, if L∈Kn×n[s] is nonsingular then

s−1L=P"Q (2.2)

for some P;Q∈Kn×n
∞ (s)∗ and " as in (2.1). In the

case of a linear pencil L(s)=A0−A1s the polynomials
s#1 ; : : : ; s#t are the elementary divisors of A0s − A1

belonging to the characteristic root 0. According to [7]
the matrix " in (2.2) and (2.1) provides information
on the structure of UL. We have

UL ∼=
⊕

{K∞(s)=s−#jK∞(s); j=1; : : : ; t}
such that UL is a $nitely generated torsion module
over K∞(s) with elementary divisors

s−#1 ; : : : ; s−#t : (2.3)

We call (2.3) the in8nite elementary divisors of L.
Then s#1 ; : : : ; s#t are the elementary divisors of the shift
S−(L), and dimK UL = #1 + · · · + #t . To describe a
dual pairing [8] between the K-linear spaces ULT and
UL we note that

〈 Ky; Kx〉=(yTL−1x)0; Ky∈ULT ; Kx∈UL; (2.4)

is a well-de$ned nondegenerate bilinear form on
ULT × UL.

3. Homomorphisms

Our main result is Theorem 3.3 below. Its proof will
be based on the subsequent two lemmas. In the fol-
lowing L∈Kn×n

∞ (s) and L1 ∈Kn1×n1∞ (s) will be $xed
nonsingular polynomial matrices.

Lemma 3.1. A map

' :Kn
∞(s) → UL1 (3.1)

is aK∞(s)-module homomorphism if and only if there
exists a matrix (∈Kn1×n

∞ (s) such that

'x= �L1 ((x); x∈Kn
∞(s): (3.2)

Proof. Let e1; : : : ; en be the standard basis of Kn.
Assume that ' in (3.1) is a K∞(s)-module homo-
morphism. Then 'ei = �L1+i for some +i ∈Kn1∞(s)
and (3.2) holds with (=(+1; : : : +n). The converse is
obvious.

Condition (3.3) below together with a somewhat
technical equivalent condition will be crucial.

Lemma 3.2. We have

(Ker �L ⊆ Ker �L1 : (3.3)

with (∈Kn1×n
∞ (s) if and only if there exist a matrix

(1 ∈Kn1×n
∞ (s) and a matrix , satisfying

,∈ s−1Kn1×n
∞ (s) and L1,∈Kn1×n

∞ (s) (3.4)

such that

((+ L1,)L=L1(1: (3.5)

Proof. It is evident that (3.5) implies (3.3). To prove
the converse implication we note that (3.3) is equiva-
lent to (Ker �L ⊆ s−1L1Kn1∞(s): If s−1L is factorized
as in (2.2),

s−1L=P"Q; "=diag(A; B);

A=diag(s−#1 ; : : : ; s−#t ); B=diag(s$t+1 ; : : : ; s$n);
(3.6)

then Ker �L =P diag(A; I)Kn
∞(s): Hence if

G=L−1
1 (P diag(A; I);

then (3.3) is equivalent to G ∈ s−1Kn1×n
∞ (s). From

(3.6) and

"=diag(A; 0) + diag(0; B);

we obtain

L−1
1 (L=G diag(I; 0)Q + L−1

1 (P diag(0; I)P−1L:

Now choose

,=− G diag(I; 0)Q:

Then, satis$es (3.4) and if we put(1 =L−1
1 (L+,L

then we have (1 ∈Kn1×n
∞ (s), which proves (3.5).

We extend the map �L1 to Kn(s) and de$ne

�L1e =L1�+L−1
1 w; w∈Kn(s):
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Theorem 3.3. The map 0 :UL → UL1 is a K∞(s)-
module homomorphism if and only if there exist ma-
trices (;(1 ∈Kn1×n

∞ (s) such that

(L=L1(1 (3.7)

and

0 Kx= �L1e ( Kx; Kx∈UL: (3.8)

If (3:7) holds then we have

�L1e ( Kx= �L1(x (3.9)

for all x∈Kn
∞(s).

Proof. Let us show $rst that (3.7) implies (3.9). We
have

�L1e ( Kx= L1�+L−1
1 ( Kx=L1�+(1L−1 Kx

= L1�+(1L−1x=L1�+L−1
1 (x= �L1(x:

(3.10)

Now let 0 :UL → UL1 be a K∞(s)-module homomor-
phism. De$ne '=0�L such that

'x=0 Kx; x∈Kn
∞(s): (3.11)

Then ' :Kn
∞(s) → UL1 is also a K∞(s)-module ho-

momorphism. Because due to Lemma 3.1 there exists
a (̃∈Kn1×n

∞ (s) such that

'x= �L1(̃x: (3.12)

It follows from (3.11) that x; v∈Kn
∞(s) and Kx= Kv im-

ply �L1(̃x= �L1(̃v. Therefore we obtain

(̃Ker �L ⊆ Ker �L1 : (3.13)

We can replace (̃ in (3.12) and (3.13) by (= (̃ +
L1, if ,∈ s−1Kn1×n

∞ (s) and L1,∈Kn1×n
∞ (s). From

Lemma 3.2 we know that starting from (3.13) we can
$nd a , which yields (3.7) with (1 ∈Kn1×n

∞ (s). Thus
we have shown that

0 Kx= �L1(x= �L1e ( Kx

with ( satisfying a relation (3.7).
Conversely, if a map 0 :UL → UL1 is de$ned by

(3.7) and (3.8) then it is easy to verify that 0 is a
K∞(s)-module homomorphism.

We remark that Theorem 3.3 remains true if condi-
tion (3.7) is replaced by

�+L−1
1 (= �+(1L−1:

Given the duality (2.4) between UL and ULT it
is not diNcult to obtain the dual map of 0. We set
KKw= �L

T
1w; w∈Kn1∞(s).

Theorem 3.4. Let (;(1 ∈Kn1×n
∞ (s) be such that

(L=L1(1. Let 0 :UL → UL1 be de8ned by (3:8).
Then the dual map

0∗ :ULT1 → ULT

is given by

0∗ KKw= �L
T
(T

1w; KKw∈ULT1 :

We now turn to surjectivity and injectivity.
For a pair (∈Kn1×n

∞ (s) and L1 ∈Kn1×n1 we set
((; s−1L1)l = I if there exist proper rational matrices
C and D such that

(C + s−1L1D= I: (3.14)

Similarly, for (1 ∈Kn1×n
∞ (s) and L∈Kn×n we write

((1; s−1L)r = I if ((T
1 ; s

−1LT)l = I .

Theorem 3.5. Let 0 :UL → UL1 be de8ned by (3:9)
and (3:7). Then

(i) 0 is surjective if and only if ((; s−1L1)l = I ,
(ii) 0 is injective if and only if ((1; s−1L)r = I .

Proof. (i) Assume $rst that 0 is surjective. Let
w∈Kn1∞(s) be given. Then �L1w= �L1(v for some
v∈Kn

∞(s). We have w−(v∈Ker �L1 , which implies

w∈(Kn
∞(s) + s−1L1Kn

∞(s)

or equivalently ((; s−1L1)l = I . Conversely, suppose
that (3.14) holds. To show that w= �L1x is in 0UL we
note that (3.14) implies x=(v + s−1L1x2 for some
v∈Kn

∞(s); x2 ∈Kn1∞(s). Because of s−1L1x2 ∈Ker �L1

we obtain w= �L1(v=0 Kv.
(ii) By duality the statement follows at once from

(i).

If M is a $nitely generated p-module over a prin-
cipal ideal domain and S is a submodule and Q is a
quotient module of M then the relations between the
invariants of M and those of S and Q are well known
(see e.g. [5, p. 92, 93]). We complete our note with a
corresponding observation on the existence of surjec-
tive and injective homomorphisms. Let

s−#1 ; : : : ; s−#t ; #1¿ · · ·¿ #t

and

s−41 ; : : : ; s−4p ; 41¿ · · ·¿ 4p

be the in$nite elementary divisors of L and L1, respec-
tively. Then there exists a surjective K∞(s)-module
homomorphism 0 :UL → UL1 if and only if

t¿p and #1¿ 41; : : : ; #p¿ 4p
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and there exists an injective 0 if and only if

t6p and #16 41; : : : ; #t6 4t :
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