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With a non-singular polynomial matrix I!. E F”*“( z] over a field F we associate two vector spaces V,. and U’. with rcspcctivc shift 

operators S + and S-. A duality between V,. and V,.T and between U’- and lJ’.T is established. The spaces V,. and U’. and the maps 
S + and S - determine L in the following way. Let the columns of the polynomial matrices c and iT form a pair of dual bases of I’,. 
and V,*T and let A be the matrix of S + with respect to the basis C. S + c= CA. furthermore let the columns of I? and dT be dual bases 
of UL and LILT and let N be the matrix of S- with respect to k, S - fi= 2N. then I. is completely determined by thcsc matricca. I. 

can be factored as 

K:r,cords; Polynomial matrix structure. Duality. Polynomial models, Infinite elcmcntary divisors. , _ _ _. . . . . . _. _____. -__, ---.._ ,.--.,..- _ . ..-. . ..l..-.d. -......... C’.‘,.C.“Y,~, “1.ZJ\I.J. 

1. Introduction, notation, preliminaries 

In this note we continue our investigation [3] and will show that a non-singular polynomial matrix is 
completely determined by two pairs of dual vector spaces and by two shift operators. 

Let F be a field. F((z -I)) shall denote the set of all truncated Laurent series with coefficients in F, i.e. 
the set of all formal series of the form 

f(z)= x f;z’, fEFF,kEZ. (1.1) 
- oocr<k 

F[[z -‘I] is the set of all formal power series in z -’ and z - ‘F[[z -‘I] is the subset of those with vanishing 
constant term. If f is given by (1.1) then the projection 7~- of F(( z - ’ )) onto z - ‘F[[z - ‘I] is defined by 
n-f(z) = ~,.&z’ and the projection +rr,. : F(( z -I)) --, F[z] by +rr+f( z) = Z,>Of;z’. The set of rational 
functions F(z) can be imbedded into F(( z -I)) and we call an element of T- F(z) proper rational. (f), 
denotes the coefficient f; in (1.1). The preceding definitions will be extended in a natural way to F”(( z - ‘)) 
and F”x”‘(( z - I)). 

Throughout this note L E F”X”[~] will be a non-singular polynomial matrix, i.e. det L # 0 E F[z]. We 
associate the following two mappings with L. Define nL: F”[z] -, F”[z] by 

nLb:= Ln-L-lb, bEF”[z] 

and put 

V,:=Imn,. 

Then [I] VL is an F[z]-module with p * v = ~~pv, p E F[ z], v E V,. Moreover, V, is a vector space over F 
with dim V, = deg det L. A right shift operator S + 
pL: F”[[z-‘I] -, F”[z] is defined by [3] 

on V, is given by S + v: = z . v. The second mapping 

p’y:= LIT+L-‘y, yEF”[[z-‘]I. 
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Its range Uf-:= Im pL is an F[[z-‘]I- mo u e d 1 with a scalar multiplication 4. w:= pLqw, qE F[[z-‘I], 
w E Uf-. As a vector space UL has a dimension which is equal to the multiplicity of the characteristic root 
h = cc of L. The left shift S- on U’-, given by S-w = z -’ * w, is a nilpotent operator on UL. 

Let WE F”‘x” (z), W # 0, be a matrix of rational functions. A factorization 

W(z)=Q(Rz+S)-‘P (1.2) 

with R and S in FIX’, P E FIX” and Q E Fn’X’ is called a realization of W. The realization (1.2) is minimal, 
if the size of R and S is minimal. We recall that a minimal realization of L-’ yields bases for V,- and UL. 

Theorem 1.1 [3]. Let L-‘(z) = Q(Rz + S)-‘P be a minimal realization such that 

a?d N is nilpotent. If Q = (C H) and P = (B G)T are pa[titioned according to (2.3), then the columns of 
C(z): = L(z)C(zZ- A)-’ form a basis of l!L and S+C= CA, i.e. A is the matrix of the shift operator S+ 
with respect to this basis. The columns of H(z): = L(z)H( I - zN)-’ are a basis of UL and S-2 = fiN: 
Define i(z): = (zl-A)-‘BL(z) and 6(z): = (I -zN)-‘CL(z). Then the columns of BT and dT have 
analogous properties with respect to LT. Furthermore, L can be factored as 

L(z)=&z)(Rz+S)k(z) (1.4) 
L 1 . 

with Q = (e 8) and p = (B G)T. L and Rz + S have the same finite and infinite elementary divisors. 

2. Dual pairings 

In [2] Fuhrmann introduced the following dual pairing of V, and V,,. 

Lemma 2.1 [2]. For f E V, and g E Vr’ let [ f, g] be defined by 

[f&4 = w-!a’. (2.1) 

Then (2. I ) is a scalar product on VL X VL~. 

The preceding pairing of V, and V,, produces dual bases in Theorem 1.1. 

Theorem 2.1. Let rIT_ L- ‘(z) = C( zl- A)- ‘B be a minimal realization of the proper rationalpart of L- ‘. The 
bases of VL and VL~ formed by the columns of t’(z) := L(z)C(zZ - A)-’ and [a(z = 
[( zl -A)- ‘BL( z)lT are dual ones with respect to the scalar product (2.1). 

Proof. We have to show 

(l?L-‘C)-’ = I, (2.2) 

where r = dim VL and A E Frx’. Put M: = V- (hL-‘c). We will prove M(z) = (zl -A)-’ which implies 
(2.2). 

We have M(z)=~T-(&z)C(zf-A)-‘) and 

M(z)A’B=r-(&z)C(zl-A)-‘Br’) =r-(&z)L-‘(;)z’) = (zZ-A)-‘A’B. 

The realization C( z1 -A)- ‘B is minimal, therefore rank (B, AB,. . . , A’- ‘B) = r and M(z) = (zl -A)-‘. 

We now turn to UL. 
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Lemma2.2.Letu~ULandw~ULTbegivenand/etx=(pL)-’(u)andy=(pL’)-’(w)bepre-imagesofu 
and w. Then 

(u, w)= (yTL%), 

defines a scalar product on U L X U LT. 

(2.3) 

Proof. Obviously (2.3) is a bilinear form. It is well defined, since pLd = 0 implies ( v~L-‘~)~ = 0. The proof 
of the next theorem will show that (2.3) is non-degenerate. 

Theorem 2.2. Let v+ L- ‘(z) = H( I - zN) - ‘G be a minimal realization of the polynomial part of L- ‘. The 
co/~mnsof~(z)=L(z)H(I-zN)-‘andof[~(z)]T=[(I-zN)-‘GL(z)]TarebasesofULandULTwhich 
are dual with respect to (2.3). 

Proof. Puts:= dim UL. Let Xand YT be two matrices in F”X’[[z-‘]] such that p’.X= k and (pLT)YT = 6’ 
holds. Our target equation (YL- ‘X), = Z, follows from 7r+ (Y( z)L- ‘( z)X( z)) = (I - zN)- ‘. To show this 
put K: = 7, (YL- ‘X). Then 

K=r+[r+(YL-‘)X] =n+@L-‘X). 

The proper rational part of L- ’ can be ignored in the following calculations. For i 2 0 we have 

HN’K(z)=?I+(H(I-zN) -‘z-‘GX(z)) =n+(z-‘L-‘(z)X(z)) 

=?r+[z-‘a+(L-‘(z)X(z))] =HN’(I-IN)-‘. 

Because H( I - zN)- ‘G is a minimal realization of Q+ L- ’ the equations 

HN’K(z)=HN’(Z-zN)-‘, i=O, 1,2,... 

implyK(z)=(I-zN)-‘. 

The preceding observations lead to the following result. 

Theorem 2.3. Let the matrices h and d T be in FtIx r 
yLr and let E be the matrix of the shifi S + 

[z] such that their co/ymns make up dual bases for VL and 
with respect to the basis M. Furthermore, let the columns of 

T~F”X’[z]and~TEF”XS(z]bedualbasesofULandULTandletDbethematrixofS- withrespecttothe 
basis f. Then 

L(z)=(ti(z) f(z)) (2.4) 

Proof. We shall work with the minimal realization of L-’ and the bases which are given by Theorem 1.1. 
Since 6(z) = L(z)C(zl- A)-’ provides a basis of VL we have e(z) = fi( z)X for some non-singular 
XE Frx’. Therefore A?(z) = L(z)CX(zI- X4X-‘)-’ and the matrix E of S+ with respect to the basis k 
is equal to XAX-‘. It follows from Theorem 2.1 that the bases given by d and AT are dual ones. Hence 
i = X - ‘J?. Similarly fi = f Y, C? = X - ‘i and D = YN Y - ’ for a suitable non-singular Y. Now ( 1.4) implies 

L(z)= (a(z) f(z)) 
,_4,1 1’;’ Y”] [ii::) 

which is (2.4). 
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