Polynomial matrices and dualities

Harald K. WIMMER

Mathematisches Institut, Universität Würzburg, D 87 Würzburg, West Germany

Received 18 May 1981 Revised 15 August 1981

With a non-singular polynomial matrix $L \in F^{n \times n}[z]$ over a field F we associate two vector spaces V_L and U^L with respective shift operators S^+ and S^- . A duality between V_L and $V_{L^{T}}$ and between U^L and U^L^{T} is established. The spaces V_L and U^L and the maps S^+ and S^- determine L in the following way. Let the columns of the polynomial matrices \hat{C} and \hat{B}^T form a pair of dual bases of V_L and V_L^T and let A be the matrix of S^+ with respect to the basis \hat{C} , $S^+\hat{C}=\hat{C}A$, furthermore let the columns of \hat{H} and \hat{G}^T be dual bases of U^L and U^{L^T} and let N be the matrix of S^- with respect to \hat{H} , $S^-\hat{H}=\hat{H}N$, then L is completely determined by these matrices. Lcan be factored as

$$L(z) = \left(\hat{C}(z) \quad \hat{H}(z)\right) \begin{pmatrix} zI - A & 0 \\ 0 & I + zN \end{pmatrix} \begin{pmatrix} \hat{B}(z) \\ \hat{G}(z) \end{pmatrix}$$

Keywords: Polynomial matrix structure, Duality, Polynomial models, Infinite elementary divisors,

1. Introduction, notation, preliminaries

In this note we continue our investigation [3] and will show that a non-singular polynomial matrix is completely determined by two pairs of dual vector spaces and by two shift operators.

Let F be a field. $F((z^{-1}))$ shall denote the set of all truncated Laurent series with coefficients in F, i.e. the set of all formal series of the form

$$f(z) = \sum_{-\infty \le i \le k} f_i z^i, \quad f_i \in F, k \in \mathbb{Z}.$$
(1.1)

 $F[[z^{-1}]]$ is the set of all formal power series in z^{-1} and $z^{-1}F[[z^{-1}]]$ is the subset of those with vanishing constant term. If f is given by (1.1) then the projection π_{-} of $F((z^{-1}))$ onto $z^{-1}F[[z^{-1}]]$ is defined by $\pi_{-}f(z) = \sum_{i < 0} f_i z^i$ and the projection $\pi_{+} : F((z^{-1})) \to F[z]$ by $\pi_{+}f(z) = \sum_{i > 0} f_i z^i$. The set of rational functions F(z) can be imbedded into $F((z^{-1}))$ and we call an element of $\pi_{-}F(z)$ proper rational. $(f)_i$ denotes the coefficient f_i in (1.1). The preceding definitions will be extended in a natural way to $F^n((z^{-1}))$ and $F^{n \times m}((z^{-1}))$.

Throughout this note $L \in F^{n \times n}[z]$ will be a non-singular polynomial matrix, i.e. det $L \neq 0 \in F[z]$. We associate the following two mappings with L. Define $\pi_L : F^n[z] \to F^n[z]$ by

 $\pi_L b := L \pi_- L^{-1} b, \quad b \in F^n[z]$

and put

$$V_L := \operatorname{Im} \pi_L$$
.

Then [1] V_L is an F[z]-module with $p \cdot v = \pi_L pv$, $p \in F[z]$, $v \in V_L$. Moreover, V_L is a vector space over F with dim V_L = deg det L. A right shift operator S^+ on V_L is given by $S^+v := z \cdot v$. The second mapping $\rho^L : F^n[[z^{-1}]] \to F^n[z]$ is defined by [3]

$$\rho^L y := L \pi_+ L^{-1} y, \quad y \in F^n [[z^{-1}]].$$

Volume 1, Number 3

November 1981

Its range $U^L := \text{Im } \rho^L$ is an $F[[z^{-1}]]$ -module with a scalar multiplication $q \cdot w := \rho^L q w$, $q \in F[[z^{-1}]]$, $w \in U^L$. As a vector space U^L has a dimension which is equal to the multiplicity of the characteristic root $\lambda = \infty$ of L. The left shift S^- on U^L , given by $S^- w = z^{-1} \cdot w$, is a nilpotent operator on U^L . Let $W \in F^{m \times n}(z)$, $W \neq 0$, be a matrix of rational functions. A factorization

$$W(z) = Q(Rz + S)^{-1}P$$
(1.2)

with R and S in $F^{l \times l}$, $P \in F^{l \times n}$ and $Q \in F^{m \times l}$ is called a *realization* of W. The realization (1.2) is *minimal*, if the size of R and S is minimal. We recall that a minimal realization of L^{-1} yields bases for V_L and U^L .

Theorem 1.1 [3]. Let $L^{-1}(z) = Q(Rz + S)^{-1}P$ be a minimal realization such that

$$Rz + S = \begin{pmatrix} zI - A & 0\\ 0 & I - zN \end{pmatrix}$$
(1.3)

and N is nilpotent. If $Q = (C \ H)$ and $P = (B \ G)^T$ are partitioned according to (2.3), then the columns of $\hat{C}(z) := L(z)C(zI - A)^{-1}$ form a basis of V_L and $S^+ \hat{C} = \hat{C}A$, i.e. A is the matrix of the shift operator S^+ with respect to this basis. The columns of $\hat{H}(z) := L(z)H(I - zN)^{-1}$ are a basis of U^L and $S^- \hat{H} = \hat{H}N$. Define $\hat{B}(z) := (zI - A)^{-1}BL(z)$ and $\hat{G}(z) := (I - zN)^{-1}GL(z)$. Then the columns of \hat{B}^T and \hat{G}^T have analogous properties with respect to L^T . Furthermore, L can be factored as

$$L(z) = \hat{Q}(z)(Rz + S)\hat{P}(z)$$
(1.4)

with $\hat{Q} = (\hat{C} \ \hat{H})$ and $\hat{P} = (\hat{B} \ \hat{G})^{\mathsf{T}}$. L and Rz + S have the same finite and infinite elementary divisors.

2. Dual pairings

In [2] Fuhrmann introduced the following dual pairing of V_L and $V_{L^{T}}$.

Lemma 2.1 [2]. For $f \in V_L$ and $g \in V_{L^T}$ let [f, g] be defined by

$$[f,g] = (g^{\mathsf{T}}L^{-1}f)_{-1}.$$
(2.1)

Then (2.1) is a scalar product on $V_L \times V_{L^{T}}$.

The preceding pairing of V_L and V_{L^T} produces dual bases in Theorem 1.1.

Theorem 2.1. Let $\pi_{-}L^{-1}(z) = C(zI - A)^{-1}B$ be a minimal realization of the proper rational part of L^{-1} . The bases of V_{L} and $V_{L^{T}}$ formed by the columns of $\hat{C}(z) := L(z)C(zI - A)^{-1}$ and $[\hat{B}(z)]^{T} = [(zI - A)^{-1}BL(z)]^{T}$ are dual ones with respect to the scalar product (2.1).

Proof. We have to show

$$(\hat{B}L^{-1}\hat{C})_{-1} = I_r \tag{2.2}$$

where $r = \dim V_L$ and $A \in F^{r \times r}$. Put $M := \pi_-(\hat{B}L^{-1}\hat{C})$. We will prove $M(z) = (zI - A)^{-1}$ which implies (2.2).

We have $M(z) = \pi_{-}(\hat{B}(z)C(zI - A)^{-1})$ and

$$M(z)A^{i}B = \pi_{-}(\hat{B}(z)C(zI-A)^{-1}Bz^{i}) = \pi_{-}(\hat{B}(z)L^{-1}(z)z^{i}) = (zI-A)^{-1}A^{i}Bz^{i}$$

The realization $C(zI - A)^{-1}B$ is minimal, therefore rank $(B, AB, ..., A^{r-1}B) = r$ and $M(z) = (zI - A)^{-1}$.

We now turn to U^L .

Volume 1, Number 3

Lemma 2.2. Let $u \in U^L$ and $w \in U^{L^T}$ be given and let $x = (\rho^L)^{-1}(u)$ and $y = (\rho^{L^T})^{-1}(w)$ be pre-images of u and w. Then

$$\langle u, w \rangle = \left(y^{\mathsf{T}} L^{-1} x \right)_0 \tag{2.3}$$

defines a scalar product on $U^L \times U^{L^{\dagger}}$.

Proof. Obviously (2.3) is a bilinear form. It is well defined, since $\rho^L d = 0$ implies $(y^T L^{-1} d)_0 = 0$. The proof of the next theorem will show that (2.3) is non-degenerate.

Theorem 2.2. Let $\pi_+ L^{-1}(z) = H(I-zN)^{-1}G$ be a minimal realization of the polynomial part of L^{-1} . The columns of $\hat{H}(z) = L(z)H(I-zN)^{-1}$ and of $[\hat{G}(z)]^{\mathsf{T}} = [(I-zN)^{-1}GL(z)]^{\mathsf{T}}$ are bases of U^L and $U^{L^{\mathsf{T}}}$ which are dual with respect to (2.3).

Proof. Put $s:= \dim U^L$. Let X and Y^T be two matrices in $F^{n \times s}[[z^{-1}]]$ such that $\rho^L X = \hat{H}$ and $(\rho^{L^T})Y^T = \hat{G}^T$ holds. Our target equation $(YL^{-1}X)_0 = I_s$ follows from $\pi_+(Y(z)L^{-1}(z)X(z)) = (I-zN)^{-1}$. To show this put $K:=\pi_+(YL^{-1}X)$. Then

$$K = \pi_{+} \left[\pi_{+} (YL^{-1})X \right] = \pi_{+} (\hat{G}L^{-1}X).$$

The proper rational part of L^{-1} can be ignored in the following calculations. For $i \ge 0$ we have

$$HN^{i}K(z) = \pi_{+} \left(H(I-zN)^{-1} z^{-i} GX(z) \right) = \pi_{+} \left(z^{-i} L^{-1}(z) X(z) \right)$$
$$= \pi_{+} \left[z^{-i} \pi_{+} \left(L^{-1}(z) X(z) \right) \right] = HN^{i} (I-zN)^{-1}.$$

Because $H(I-zN)^{-1}G$ is a minimal realization of $\pi_{+}L^{-1}$ the equations

$$HN^{i}K(z) = HN^{i}(I-zN)^{-i}, \quad i = 0, 1, 2, ...$$

imply $K(z) = (I - zN)^{-1}$.

The preceding observations lead to the following result.

Theorem 2.3. Let the matrices \hat{M} and \hat{K}^{T} be in $F^{n \times r}[z]$ such that their columns make up dual bases for V_L and V_L^{T} and let E be the matrix of the shift S^+ with respect to the basis \hat{M} . Furthermore, let the columns of $\hat{T} \in F^{n \times s}[z]$ and $\hat{R}^{\mathsf{T}} \in F^{n \times s}[z]$ be dual bases of U^L and $U^{L^{\mathsf{T}}}$ and let D be the matrix of S^- with respect to the basis \hat{T} . Then

$$L(z) = \left(\hat{M}(z) \quad \hat{T}(z)\right) \begin{pmatrix} zI - E & 0 \\ 0 & I - zD \end{pmatrix} \begin{pmatrix} \hat{K}(z) \\ \hat{R}(z) \end{pmatrix}.$$
(2.4)

Proof. We shall work with the minimal realization of L^{-1} and the bases which are given by Theorem 1.1. Since $\hat{C}(z) = L(z)C(zI - A)^{-1}$ provides a basis of V_L we have $\hat{C}(z) = \hat{M}(z)X$ for some non-singular $X \in F'^{\times r}$. Therefore $\hat{M}(z) = L(z)CX(zI - XAX^{-1})^{-1}$ and the matrix E of S^+ with respect to the basis \hat{M} is equal to XAX^{-1} . It follows from Theorem 2.1 that the bases given by \hat{C} and \hat{B}^{T} are dual ones. Hence $\hat{B} = X^{-1}\hat{K}$. Similarly $\hat{H} = \hat{T}Y$, $\hat{G} = X^{-1}\hat{R}$ and $D = YNY^{-1}$ for a suitable non-singular Y. Now (1.4) implies

$$L(z) = \left(\hat{M}(z) \quad \hat{T}(z)\right) \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} \begin{pmatrix} zI - A & 0 \\ 0 & I - zN \end{pmatrix} \begin{pmatrix} X^{-1} & 0 \\ 0 & Y^{-1} \end{pmatrix} \begin{pmatrix} \hat{K}(z) \\ \hat{R}(z) \end{pmatrix}$$

which is (2.4).

References

- [1] P.A. Fuhrmann, Algebraic system theory; an analyst's point of view, J. Franklin Inst. 301 (1976) 521-540.
- [2] P.A. Fuhrmann, Duality in polynomial models with some applications to geometric control theory, *IEEE Trans. Automat. Control* 26 (1981) 284-295.
- [3] H.K. Wimmer, The structure of non-singular polynomial matrices, Math. Systems Theory, to appear.