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Polynomial matrices and dualities
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With a non-singular polynomial matrix L€ F"*"[:] over a field F we associate two vector spaces V) and U" with respective shilt
operators §* and § 7. A duality between V; and ¥, r and between U and UM is established. The spaces ¥ and U' and the maps
S§* and §~ determine L in the following way. Let the columns of the polynomial matrices C and BT form a pair of dual bases of ¥,
and ¥,7 and let A be the matrix of S * with respect to the basis C. § ¥ C=CA, furthermore let the columns of 4 and G 7 be dual bases
of U" and U™ and let N be the matrix of §~ with respect to H. S “H=HN. then L is completely determined by these matrices. I

can be factored as

) . -4 0 B(:
L(:)=(C(z) H(:))( 0 I+:N)(G(:)))'
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1. Introduction, notation, preliminaries

In this note we continue our investigation [3] and will show that a non-singular polynomial matrix is
completely determined by two pairs of dual vector spaces and by two shift operators.

Let F be a field. F((z ")) shall denote the set of all truncated Laurent series with coefficients in F, i.e.
the set of all formal series of the form

fle)= X f2, fEFkEL (1.1)
—o<i<k

F[[z '] is the set of all formal power series in z ~' and z ~'F[[z ~!]] is the subset of those with vanishing
constant term. If f is given by (1.1) then the projection #_ of F((z~')) onto z ~'F[{z ~']] is defined by
7_f(2)=3,.0f,z" and the projection 7, : F((z~'))—= F[z] by 7, f(z)=2,,0fz". The set of rational
functions F(z) can be imbedded into F((z~')) and we call an element of w_ F(z) proper rational. ( f),
denotes the coefficient f, in (1.1). The preceding definitions will be extended in a natural way to F"((z "))
and F"*"((z7")).

Throughout this note L € F"*"[z] will be a non-singular polynomial matrix, i.e. det L0 € F[z]. We
associate the following two mappings with L. Define 7 : F"[z] — F"[z] by

mb:=La_L™'b, bEF"[z]
and put
Vi:=Imm, .

Tl.len (1] ¥, is an F[z]-module with p - v =, pv, p € F[z], v € V,. Moreover, V, is a vector space over F
with dim ¥, = degdet L. A right shift operator S on V, is given by S *v:= z-v. The second mapping
pt: F"[[z7')) > F"[z] is defined by [3]

pty:=Lw, L7y, EF"[[Z"]].
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Its range U":=Im p" is an F[[z™']]-module with a scalar multiplication ¢-w:= plqw, g€ F[[z ']},
w e U". As a vector space U* has a dimension which is equal to the multiplicity of the characteristic root
A= oo of L. The left shift S~ on U%, given by S “w=2z""-w, is a nilpotent operator on U*.

Let We F™>"(z), W0, be a matrix of rational functions. A factorization

W(z)=0(Rz+S)'P (1.2)

with R and S in F”*/, P€ F™*" and Q € F™*!is called a realization of W. The realization (1.2) is minimal,
if the size of R and § is minimal. We recall that a minimal realization of L™"' yields bases for ¥, and U*.

Theorem 1.1 [3). Let L™ '(2)= Q(Rz+ S)~'P be a minimal realization such that
zI— A 0 )

0 I—:zN (1.3)
and N is nilpotent. If Q=(C H) and P=(B G )y are partitioned according to (2.3), then the columns of
C(z2):= L(2)C(2I — A)™" form a basis of Vv, and ST C=CA, i.e. A is the matrix of the shift operator §+
with respect to this basis. The columns of H(z):= L(z)H(I—2zN)™" are a basis of U* and S~ H=HN.
Define B(z):=(zI~A) 'BL(z) and G(z):=(I—zN)"'GL(z). Then the columns of BT and G have
analogous properties with respect to LY. Furthermore, L can be factored as

L(z)=Q(z)(Rz+S)B(z) (1.4)
with Q =(C H)and P= (é G Y. L and Rz + S have the same finite and infinite elementary divisors.

Rz+S=‘-(

2. Dual pairings
In [2] Fuhrmann introduced the following dual pairing of ¥, and V.

Lemma 2.1 [2]. For fEV, and g €V, let | f, g] be defined by
[f.8]=(g"L7Y)_,. (2.1)

Then (2.1} is a scalar product on V; X V1.
The preceding pairing of V, and V,r produces dual bases in Theorem 1.1.

Theorem 2.1. Let w_ L™ '(z) = C(zI — A)™'B be a minimal realization of the proper rational part of L~ ' The
bases of V, and V,x formed by the columns of C(z):= L(z)C(21 —A)™' and [B(z)]" =
[(z1 — A)"'BL(2)]" are dual ones with respect to the scalar product (2.1).

Proof. We have to show

(BL7'C)_ =1 (2.2)

where r=dim V, and 4 € F™*". Put M:= 7_(BL™'C). We will prove M(z) =(zI —A)~" which implies
Q%e have M(z)=n_(B(z)C(zI—A)~") and

M(z)AB=n_(B(z)C(zI—A)'Bz') =n_(B(z)L™'(z)z') = (21— A4) '4'B.
The realization C(z] — A)~'B is minimal, therefore rank (B, AB,..., A" 'By=r and M(z)=(zI—A)"".

We now turn to UL,
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Lemma 2.2. Let u € UL and w € UL be given and let x = (p")~\(u) and y = (p*")~(w) be pre-images of u
and w. Then

(u,wy={(y'L™'x), ‘ (2.3)
defines a scalar product on Ut X U™,

Proof. Obviously (2.3) is a bilinear form. It is well defined, since p“d = 0 implies (y"L~'d), = 0. The proof
of the next theorem will show that (2.3) is non-degenerate.

Theorem 2.2. Let m, L~ '(z)=H(I—zN)~'G be a minimal realization of the polynomial part of L™". The
columns of H(z) = L(z)H(I —2zN)"Vand of [G(2))T =[(I —2N)"'GL(2)]" are bases of U™ and vt whzch
are dual with respect 1o (2.3).

Proof. Put s: = dim U~. Let X and Y7 be two matrices in F"**[[z ~']] such that p"X = H and (" )Y T=GT
holds. Our target equation (YL~ 'X), = I, follows from 7, (Y(z)L~'(2)X(z))=(I—zN)~". To show this
put K:= o, (YL™'X). Then

K=m[n (YL™')X]=n (GL™'X).
The proper rational part of L™ can be ignored in the following calculations. For i =0 we have

HN'K(z) =7r+(H(I—zN)—lz'iGX(z)) =, (z7'L7'(2)X(z2))
='rr+[z_’7r+(L_'(z)X(z))] =HN'(I—zN)""

Because H(/ — zN)~'G is a minimal realization of #, L™ the equations
HN'K(z)=HN(I—-zN)"', i=0,1,2,...
imply K(z)=(I—zN)"\.

The preceding observations lead to the following result.

Theorem 2.3. Let the matrices M and K be in F "X’ 2] such that their columns make up dual bases for V; and

Vyr and let E be the matrix of the shift S* with respect 10 the basis M. Furthermore, let the columns of
Te F"x’[z] and RT € F"*(z] be dual bases of U" and UL" and let D be the matrix of S~ with respect to the
basis T. Then

21— E 0 R(z

La=(Mz) Fa)|° T

(2.4)

Proof. We shall work with the minimal realization of L™ and the bases which are given by Theorem 1.1.
Since C(z)= L(z)C(zI—A)~' provides a basis of ¥, we have C(z)= M(z)X for some non-singular
X € F7°", Therefore M(z)= L(z)CX(zI — XAX ') and the matrix E of S with respect to the basis M
is equal to XAX ™~ o ( follows from Theorem 2.1 that the bases given by € and BT are dual ones. Hence
B=Xx"'R. Similarly H=TY, G=X"'Rand D= YNY ~' for a suitable non-singular Y. Now (1.4) implies

X 0 K(z)
0 v R(z)

X—l
0 y~!

zZI—A 0

L(z)=(M(z) T(z)) 0 I— 2N

which is (2.4).
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