INERTIAL SIGNATURES OF HERMITIAN POLYNOMIAL MATRICES*

HARALD K. WIMMER[†]

Abstract. Signs associated with real characteristic roots of a hermitian polynomial matrix L(s) are determined from signatures of Hankel matrices of $L(s)^{-1}$.

Key words. hermitian matrix pencil, polynomial matrix, Weierstraß canonical form, inertial signs, signature, Hankel matrix

AMS subject classifications. 15A57, 15A21, 15A54, 15A22, 93B15

DOI. 10.1137/050639041

1. Introduction. We first review the notion of inertial signs of a hermitian pencil $P(s) = A_0 + A_1 s$. Suppose $A_0, A_1 \in \mathbb{C}^{n \times n}$ are hermitian, and A_1 is nonsingular. Then det $P \neq 0$ (zero polynomial) and P^{-1} is strictly proper rational. Let $\sigma(P) = \{\lambda \mid \det P(\lambda) = 0\}$ denote the set of *characteristic values* of P. The following result goes back to Weierstraß (see [7], [5], [4]).

LEMMA 1.1. Let $A_0 + A_1 s \in \mathbb{C}^{n \times n}[s]$ be a hermitian pencil and let A_1 be nonsingular. Then there exists a nonsingular matrix $T \in \mathbb{C}^{n \times n}$ such that $T(A_0 + A_1 s)T^*$ is the direct sum of blocks of types I and II as follows:

(I)
$$\epsilon D_r(s,\alpha) = \epsilon \begin{pmatrix} 0 & 0 & \dots & -1 & s - \alpha \\ 0 & 0 & \dots & s - \alpha & 0 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & s - \alpha & \dots & \dots & 0 & 0 \\ s - \alpha & 0 & \dots & \dots & 0 & 0 \end{pmatrix}_{r \times r}$$

with $\alpha \in \mathbb{R}$ and $\epsilon \in \{1, -1\}$, and

(II)
$$G_{2k}(s,\beta) = \begin{pmatrix} 0 & D_k(s,\beta) \\ D_k(s,\bar{\beta}) & 0 \end{pmatrix}_{2k \times 2k}$$

with $\beta \notin \mathbb{R}$. The direct sum $T(A_0 + A_1s)T^* =$

(1.1)
$$\operatorname{diag}(\ldots, \epsilon D_r(s, \alpha), \ldots, G_{2k}(s, \beta), \ldots)$$

is uniquely determined up to ordering of blocks.

The block diagonal matrix in (1.1) is the Weierstraß canonical form of the pencil $A_0 + A_1 s$. We observe that a number $\epsilon = \pm 1$ is attached to each block of type I. Thus a sign can be associated with each elementary divisor corresponding to a real characteristic root α .

DEFINITION 1.2. Let $A_0 + A_1 s$ have π_i elementary divisors of the form $(s - \alpha)^i$ and let $\epsilon_{i1}, \ldots, \epsilon_{i\pi_i}$ be the corresponding signs. Then

(1.2)
$$(\ldots,\epsilon_{i1},\ldots,\epsilon_{i\pi_i},\ldots)$$

^{*}Received by the editors August 27, 2005; accepted for publication (in revised form) by P. Benner February 23, 2006; published electronically August 16, 2006.

http://www.siam.org/journals/simax/28-2/63904.html

[†]Mathematisches Institut, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany (wimmer@mathematik.uni-wuerzburg.de).

will be called the inertial signs of α . Set

(1.3)
$$\eta_i = \epsilon_{i1} + \dots + \epsilon_{i\pi_i},$$

such that $\eta_i = 0$ if $\pi_i = 0$. We call the numbers η_i the inertial signatures of α .

If $A \in \mathbb{C}^{n \times n}$ is a hermitian matrix with ℓ positive and ν negative eigenvalues (counting multiplicities), then the difference $\ell - \nu$ is the *signature* of A. It will be denoted by sgn A. If $\pi_i \neq 0$, then

$$\eta_i = \operatorname{sgn}\operatorname{diag}(\epsilon_{i1},\ldots,\epsilon_{i\pi_i}).$$

Definition 1.2 is motivated by [6]. The terminology is not uniform. The Cauchy characteristic in [2] includes elementary divisors and signs, and the term sign characteristic can be found in [3].

Now consider a nonsingular hermitian polynomial matrix $L \in \mathbb{C}^{n \times n}[s]$ such that

$$L(s) = A_0 + A_1 s + \dots + A_t s^t$$

and $A_i = A_i^*$, i = 0, ..., t. Assume that L^{-1} is strictly proper rational. Set $m = \deg \det L$. A factorization

(1.4)
$$L^{-1}(s) = C(A_0 + A_1 s)^{-1} C^*$$

is a hermitian minimal realization of L^{-1} if $P(s) = A_0 + A_1 s \in \mathbb{C}^{m \times m}[s]$ is a hermitian pencil and $C \in \mathbb{C}^{n \times m}$. The following observation (see, e.g., [9]) is an immediate consequence of Kalman's state space isomorphism theorem.

LEMMA 1.3. Let $L \in \mathbb{C}^{n \times n}[s]$ be a nonsingular hermitian polynomial matrix with deg det L = m. Suppose L^{-1} is strictly proper rational. Then L^{-1} admits a hermitian minimal realization. If (1.4) and

$$L^{-1}(s) = \tilde{C}(\tilde{A}_0 + \tilde{A}_1 s)^{-1} \tilde{C}^*$$

are two hermitian minimal realizations, then A_1 and \tilde{A}_1 are nonsingular, and there exists a nonsingular matrix $T \in \mathbb{C}^{m \times m}$ such that

(1.5)
$$\tilde{A}_0 + \tilde{A}_1 s = T(A_0 + A_1 s)T^*$$
 and $C = \tilde{C}T^*$.

Set $\sigma(L) = \{\lambda \mid \det L(\lambda) = 0\}$. If (1.4) is a minimal hermitian realization, then $\sigma(L) = \sigma(A_0 + A_1 s)$, and (see, e.g., [1]) the elementary divisors of the pencil $A_0 + A_1 s$ are the same as those of the polynomial matrix L. Moreover the preceding lemma shows that the pencil $A_0 + A_1 s$ is determined by L up to congruence. This leads to the following definition of inertial signs and signatures of polynomial matrices.

DEFINITION 1.4. Let $L \in \mathbb{C}^{n \times n}[s]$ be nonsingular and hermitian. Suppose L^{-1} is strictly proper rational, and $L^{-1}(s) = C(A_0 + A_1s)^{-1}C^*$ is a hermitian minimal realization. Let $\alpha \in \sigma(L)$ and $\alpha \in \mathbb{R}$. The inertial signs and signatures of α are defined to be those of the characteristic value α of the pencil $A_0 + A_1s$.

It is the purpose of this paper to determine inertial signatures of real characteristic values of L using Laurent expansions of L^{-1} . Without loss of generality we may assume $0 \in \sigma(L)$. We focus on the inertial signatures at $\alpha = 0$. Let

(1.6)
$$W_{L^{-1}}(s) = s^{-1}[W_0 + s^{-1}W_1 + \dots + s^{-(k-1)}W_{k-1}]$$

be the principal part of the Laurent expansion of $L^{-1}(s)$ at $\alpha = 0$. Define the Hankel matrices

$$(1.7) \quad H(L^{-1}) = \begin{pmatrix} W_0 & W_1 & \dots & W_{k-2} & W_{k-1} \\ W_1 & W_2 & \dots & W_{k-1} \\ & \ddots & \ddots & \ddots & \\ W_{k-2} & W_{k-1} & & & \\ W_{k-1} & & & & \end{pmatrix},$$
$$H(sL^{-1}) = \begin{pmatrix} W_1 & \dots & W_{k-2} & W_{k-1} \\ W_2 & \ddots & \ddots & W_{k-1} \\ & \ddots & \ddots & & \\ W_{k-1} & & & & \end{pmatrix}, \dots, H(s^{k-1}L^{-1}) = W_{k-1}.$$

Our main result is the following.

THEOREM 1.5. Let $L \in \mathbb{C}^{n \times n}[s]$ be a nonsingular hermitian polynomial matrix with a strictly proper rational inverse. Let $\alpha = 0$ be a characteristic root of L. Assume that 0 is a pole of order k of L^{-1} . Let η_i be the inertial signatures of L at $\alpha = 0$. Then

The proof of the theorem will be given in section 3. It is based on a result of Turnbull [8].

2. Turnbull's signature test. In this section we deal with a hermitian pencil $P(s) = A_0 + A_1 s$. We describe a modified form of Turnbull's signature test [8]. The following notation will be used. We set $D_r(s) = D_r(s, 0)$, and define $r \times r$ matrices

$$E_r = (\delta_{i,r+1-i}) = \begin{pmatrix} & 1 \\ & \ddots & \\ 1 & & \end{pmatrix},$$
$$N_r = (\delta_{i+1,i}) = \begin{pmatrix} 0 & & & \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix}.$$

Then $D_r(s) = (sI - N_r^T)E_r$.

LEMMA 2.1. Let $P(s) = A_0 + A_1 s$ have an elementary divisor s^k and suppose $\pi_i = 0$ for i > k. Let the inertial signs and signatures of $\alpha = 0$ be given by (1.2) and (1.3). If

(2.1)
$$W_{P^{-1}}(s) = s^{-1}[M_0 + s^{-1}M_1 + \dots + s^{k-1}M_{k-1}]$$

598

is the principal part of the Laurent expansion of $P^{-1}(s)$ at $\alpha = 0$, then

Proof. We may assume

(2.3)
$$P(s) = \operatorname{diag}(\hat{P}(s), Q(s)), \ \sigma(\hat{P}) = \{0\}, \ 0 \notin \sigma(Q).$$

Let $\hat{P}(s)$ be in Weierstraß canonical form such that

(2.4)
$$\hat{P}(s) = \operatorname{diag}(\ldots, \epsilon_{i1}D_i(s), \ldots, \epsilon_{i\pi_i}D_i(s), \ldots).$$

Then

$$W_{P^{-1}}(s) = \hat{P}^{-1}(s) = \text{diag}(\dots, \epsilon_{i1}D_i^{-1}(s), \dots, \epsilon_{i\pi_i}D_i^{-1}(s), \dots).$$

We first deal with the case $\hat{P}(s) = \epsilon D_k(s)$ and proceed as in [8]. From

$$\epsilon D_k^{-1}(s) = \epsilon \sum_{i=0}^k N_k^i E_k s^{-i-1} = \epsilon \begin{pmatrix} 0 & 0 & 0 & . & . & 0 & s^{-1} \\ 0 & 0 & 0 & . & . & s^{-1} & s^{-2} \\ . & . & . & . & . & . \\ 0 & s^{-1} & s^{-2} & . & . & s^{-(k-2)} & s^{-(k-1)} \\ s^{-1} & s^{-2} & s^{-3} & . & . & s^{-(k-1)} & s^{-k} \end{pmatrix}$$

follows

$$M_i = \epsilon N_k^i E_k = \epsilon \operatorname{diag}(0_{i \times i}, E_{k-i}).$$

Therefore sgn $E_k = 0$ if k is even, and sgn $E_k = 1$ if k is odd. Hence

(2.5)
$$\operatorname{sgn} M_{k-1} = \epsilon, \quad \operatorname{sgn} M_{k-2} = 0, \quad \operatorname{sgn} M_{k-3} = \epsilon, \dots,$$

and (2.2) holds with $(\eta_k, \eta_{k-1}, \ldots, \eta_1) = (\epsilon, 0, \ldots, 0)$. In the general case, with $\hat{P}(s)$ given as in (2.4), we obtain (2.2) by inspecting $\hat{P}^{-1}(s)$ and using (2.5). \Box

3. Proof of the theorem. We shall need a generalization of Sylvester's law of inertia [2, p. 200].

LEMMA 3.1. Let $A \in \mathbb{C}^{n \times n}$ be hermitian. If $Y \in \mathbb{C}^{t \times n}$ has full column rank, then the matrices A and YAY^* have the same rank and the same signature.

The proof of Theorem 1.5 starts from a minimal hermitian realization

(3.1)
$$L^{-1}(s) = C(A_0 + A_1 s)^{-1} C^*,$$

where $P(s) = A_0 + A_1 s$ is given by (2.3). Then $\hat{P}(s) = \hat{A}_0 + \hat{A}_1 s$, and \hat{A}_1 is nonsingular, and $\hat{N} = -\hat{A}_1^{-1}\hat{A}_0$ is nilpotent with $\hat{N}^k = 0$. Let $C = (\hat{C}, D)$ be partitioned in accordance with (2.3). Then

$$L^{-1}(s) = \hat{C}\hat{P}^{-1}(s)\hat{C}^* + DQ(s)D^*$$

and

$$W_{L^{-1}}(s) = \hat{C}\hat{P}^{-1}(s)\hat{C}^* = \hat{C}[\hat{A}_1(-\hat{N}+sI)]^{-1}\hat{C}^*.$$

Hence we have (1.6) with

$$W_i = \hat{C}\hat{N}^i\hat{A}_1^{-1}\hat{C}^*, \quad i = 0, \dots, k-1.$$

Let $H(\hat{P}^{-1})$ be the Hankel matrix associated with $\hat{P}^{-1}(s)$. Then

$$H(\hat{P}^{-1}) = \begin{pmatrix} \hat{A}_1^{-1} & \hat{N}\hat{A}_1^{-1} & . & . & . & \hat{N}^{k-2}\hat{A}_1^{-1} & \hat{N}^{k-1}\hat{A}_1^{-1} \\ \hat{N}\hat{A}_1^{-1} & \hat{N}^2\hat{A}_1^{-1} & . & . & . & \hat{N}^{k-1}\hat{A}_1^{-1} \\ . & . & . & . & . \\ \hat{N}^{k-1}\hat{A}_1^{-1} & . & . & . & . \end{pmatrix}.$$

Because of $\hat{N}^k = 0$ and $\hat{N}\hat{A}_1^{-1} = \hat{A}_1^{-1}\hat{N}^T$ we obtain

(3.2)
$$H(\hat{P}^{-1}) = \begin{pmatrix} I \\ \hat{N} \\ \vdots \\ \hat{N}^{k-1} \end{pmatrix} \hat{A}_1^{-1} \begin{pmatrix} I & \hat{N}^T & \dots & (\hat{N}^{k-1})^T \end{pmatrix}.$$

Let

$$\mathcal{O} = \mathcal{O}(\hat{N}, \hat{C}) = \begin{pmatrix} \hat{C} \\ \hat{C}\hat{N} \\ \vdots \\ \hat{C}\hat{N}^{k-1} \end{pmatrix}$$

~

be the observability matrix of the pair (\hat{N}, \hat{C}) . Then $H(L^{-1}) = \mathcal{O}\hat{A}_1^{-1}\mathcal{O}^*$, and similarly

$$H(s^{i}L^{-1}) = \mathcal{O}\hat{N}^{i}\hat{A}_{1}^{-1}\mathcal{O}^{*}, \quad i = 1, \dots, k-1.$$

The realization (3.1) is minimal. Hence \mathcal{O} has full column rank [1], and Lemma 3.1 implies

(3.3)
$$\operatorname{sgn} H(s^{i}L^{-1}) = \operatorname{sgn} \hat{N}^{i}\hat{A}_{1}^{-1}, \quad i = 0, \dots, k-1.$$

Recall $W_{P^{-1}}(s) = \hat{P}^{-1}(s)$. Therefore the matrices M_i in (2.1) are given by $M_i = \hat{N}^i \hat{A}_1^{-1}$. Thus we have sgn $M_i = \operatorname{sgn} H(s^i L^{-1})$. Then (2.1) yields

$$(\operatorname{sgn} H(L^{-1}), \dots, \operatorname{sgn} H(s^{i}L^{-1})) = (\eta_{1}, \dots, \eta_{k})(I + N_{k}^{2} + N_{k}^{4} + \cdots),$$

and because of

$$(I + N_k^2 + N_k^4 + \cdots)^{-1} = I - N_k^2$$

the proof is complete.

600

REFERENCES

- P. A. FUHRMANN, Linear Operators and Systems in Hilbert Space, McGraw-Hill, New York, 1981.
- [2] P. A. FUHRMANN, On symmetric rational transfer functions, Linear Algebra Appl., 50 (1983), pp. 167–250.
- [3] I. GOHBERG, P. LANCASTER, AND L. RODMAN, Spectral analysis of selfadjoint matrix polynomials, Ann. of Math. (2), 112 (1980), pp. 33-71.
- [4] I. GOHBERG, P. LANCASTER, AND L. RODMAN, Matrices and Indefinite Scalar Products, Birkhäuser, Basel, 1983.
- [5] A. I. MALCEV, Foundations of Linear Algebra, Freeman, San Francisco, 1963.
- [6] J. MILNOR, On isometries of inner product spaces, Invent. Math., 8 (1969), pp. 83–97.
- [7] R. C. THOMPSON, Pencils of complex and real symmetric and skew matrices, Linear Algebra Appl., 147 (1991), pp. 323–371.
- [8] H. W. TURNBULL, On the equivalence of pencils of Hermitian forms, Proc. Lond. Math. Soc. II Ser., 39 (1935), pp. 232–248.
- [9] J. C. WILLEMS, Realizations of systems with internal passivity and symmetry constraints, J. Franklin Inst., 301 (1976), pp. 605–621.