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Abstract. Signs associated with real characteristic roots of a hermitian polynomial matrix L(s)
are determined from signatures of Hankel matrices of L(s)−1.
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1. Introduction. We first review the notion of inertial signs of a hermitian
pencil P (s) = A0+A1s. Suppose A0, A1 ∈ C

n×n are hermitian, and A1 is nonsingular.
Then det P �= 0 (zero polynomial) and P−1 is strictly proper rational. Let σ(P ) =
{λ |detP (λ) = 0} denote the set of characteristic values of P . The following result
goes back to Weierstraß (see [7], [5], [4]).

Lemma 1.1. Let A0 + A1s ∈ C
n×n[s] be a hermitian pencil and let A1 be non-

singular. Then there exists a nonsingular matrix T ∈ C
n×n such that T (A0 +A1s)T

∗

is the direct sum of blocks of types I and II as follows:

(I) εDr(s, α) = ε

⎛
⎜⎜⎜⎜⎝

0 0 . . . −1 s− α
0 0 . . . s− α 0
. . . . . . .
−1 s− α . . . 0 0

s− α 0 . . . 0 0

⎞
⎟⎟⎟⎟⎠

r×r

with α ∈ R and ε ∈ {1,−1}, and

(II) G2k(s, β) =

(
0 Dk(s, β)

Dk(s, β̄) 0

)
2k×2k

with β /∈ R. The direct sum T (A0 + A1s)T
∗ =

(1.1) diag
(
. . . , εDr(s, α), . . . , G2k(s, β), . . .

)
is uniquely determined up to ordering of blocks.

The block diagonal matrix in (1.1) is the Weierstraß canonical form of the pencil
A0 + A1s. We observe that a number ε = ±1 is attached to each block of type I.
Thus a sign can be associated with each elementary divisor corresponding to a real
characteristic root α.

Definition 1.2. Let A0 + A1s have πi elementary divisors of the form (s− α)i

and let εi1, . . . , εiπi
be the corresponding signs. Then

(1.2) (. . . , εi1, . . . , εiπi
, . . . )
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will be called the inertial signs of α. Set

(1.3) ηi = εi1 + · · · + εiπi ,

such that ηi = 0 if πi = 0. We call the numbers ηi the inertial signatures of α.
If A ∈ C

n×n is a hermitian matrix with 	 positive and ν negative eigenvalues
(counting multiplicities), then the difference 	 − ν is the signature of A. It will be
denoted by sgnA. If πi �= 0, then

ηi = sgn diag(εi1, . . . , εiπi).

Definition 1.2 is motivated by [6]. The terminology is not uniform. The Cauchy char-
acteristic in [2] includes elementary divisors and signs, and the term sign characteristic
can be found in [3].

Now consider a nonsingular hermitian polynomial matrix L ∈ C
n×n[s] such that

L(s) = A0 + A1 s + · · · + At s
t

and Ai = A∗
i , i = 0, . . . , t. Assume that L−1 is strictly proper rational. Set m =

deg det L. A factorization

(1.4) L−1(s) = C(A0 + A1s)
−1C∗

is a hermitian minimal realization of L−1 if P (s) = A0+A1s ∈ C
m×m[s] is a hermitian

pencil and C ∈ C
n×m. The following observation (see, e.g., [9]) is an immediate

consequence of Kalman’s state space isomorphism theorem.
Lemma 1.3. Let L ∈ C

n×n[s] be a nonsingular hermitian polynomial matrix with
deg detL = m. Suppose L−1 is strictly proper rational. Then L−1 admits a hermitian
minimal realization. If (1.4) and

L−1(s) = C̃(Ã0 + Ã1s)
−1C̃∗

are two hermitian minimal realizations, then A1 and Ã1 are nonsingular, and there
exists a nonsingular matrix T ∈ C

m×m such that

(1.5) Ã0 + Ã1s = T (A0 + A1s)T
∗ and C = C̃T ∗.

Set σ(L) = {λ | detL(λ) = 0}. If (1.4) is a minimal hermitian realization, then
σ(L) = σ(A0 +A1s), and (see, e.g., [1]) the elementary divisors of the pencil A0 +A1s
are the same as those of the polynomial matrix L. Moreover the preceding lemma
shows that the pencil A0 + A1s is determined by L up to congruence. This leads to
the following definition of inertial signs and signatures of polynomial matrices.

Definition 1.4. Let L ∈ C
n×n[s] be nonsingular and hermitian. Suppose L−1

is strictly proper rational, and L−1(s) = C(A0 + A1s)
−1C∗ is a hermitian minimal

realization. Let α ∈ σ(L) and α ∈ R. The inertial signs and signatures of α are
defined to be those of the characteristic value α of the pencil A0 + A1s.

It is the purpose of this paper to determine inertial signatures of real characteristic
values of L using Laurent expansions of L−1. Without loss of generality we may
assume 0 ∈ σ(L). We focus on the inertial signatures at α = 0. Let

(1.6) WL−1(s) = s−1[W0 + s−1W1 + · · · + s−(k−1)Wk−1]
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be the principal part of the Laurent expansion of L−1(s) at α = 0. Define the Hankel
matrices

H(L−1) =

⎛
⎜⎜⎜⎜⎝

W0 W1 . . . Wk−2 Wk−1

W1 W2 . . . Wk−1

. . . . .
Wk−2 Wk−1

Wk−1

⎞
⎟⎟⎟⎟⎠ ,(1.7)

H(sL−1) =

⎛
⎜⎜⎝

W1 . . . Wk−2 Wk−1

W2 . . . Wk−1

. . . .
Wk−1

⎞
⎟⎟⎠ , . . . , H(sk−1L−1) = Wk−1.

Our main result is the following.
Theorem 1.5. Let L ∈ C

n×n[s] be a nonsingular hermitian polynomial matrix
with a strictly proper rational inverse. Let α = 0 be a characteristic root of L. Assume
that 0 is a pole of order k of L−1. Let ηi be the inertial signatures of L at α = 0.
Then

(1.8)

⎛
⎜⎜⎜⎜⎜⎜⎝

η1

.

.

.
ηk−1

ηk

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 . . . . .
1 0 −1 0 . . .

1 0 −1 0 . . .
. . . . . .

. . . . .
0 −1 0
1 0 −1

1 0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

sgnH(sk−1L−1)
.
.
.

sgnH(sL−1)
sgnH(L−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The proof of the theorem will be given in section 3. It is based on a result of
Turnbull [8].

2. Turnbull’s signature test. In this section we deal with a hermitian pencil
P (s) = A0 + A1s. We describe a modified form of Turnbull’s signature test [8]. The
following notation will be used. We set Dr(s) = Dr(s, 0), and define r × r matrices

Er = (δi,r+1−i) =

⎛
⎜⎝

1

. .
.

1

⎞
⎟⎠ ,

Nr = (δi+1,i) =

⎛
⎜⎜⎜⎝

0
1 0

. . .
. . .

1 0

⎞
⎟⎟⎟⎠ .

Then Dr(s) = (sI −NT
r )Er.

Lemma 2.1. Let P (s) = A0 + A1s have an elementary divisor sk and suppose
πi = 0 for i > k. Let the inertial signs and signatures of α = 0 be given by (1.2) and
(1.3). If

(2.1) WP−1(s) = s−1[M0 + s−1M1 + · · · + sk−1Mk−1]
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is the principal part of the Laurent expansion of P−1(s) at α = 0, then

(2.2)

⎛
⎜⎜⎜⎜⎜⎜⎝

sgnM0

sgnM1

.

.

.
sgnMk−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 . . .
1 0 1 0 1 . . .

1 0 1 0 . . .
. . . . . .

. . . . .
. . . .

1 0 1
1 0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

η1

.

.

.
ηk−1

ηk

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Proof. We may assume

(2.3) P (s) = diag
(
P̂ (s), Q(s)

)
, σ(P̂ ) = {0}, 0 /∈ σ(Q).

Let P̂ (s) be in Weierstraß canonical form such that

(2.4) P̂ (s) = diag
(
. . . , εi1Di(s), . . . , εiπiDi(s), . . .

)
.

Then

WP−1(s) = P̂−1(s) = diag(. . . , εi1D
−1
i (s), . . . , εiπi

D−1
i (s), . . . ).

We first deal with the case P̂ (s) = εDk(s) and proceed as in [8]. From

εD−1
k (s) = ε

k∑
i=0

N i
kEks

−i−1 = ε

⎛
⎜⎜⎜⎜⎝

0 0 0 . . . 0 s−1

0 0 0 . . . s−1 s−2

. . . . . . . .
0 s−1 s−2 . . . s−(k−2) s−(k−1)

s−1 s−2 s−3 . . . s−(k−1) s−k

⎞
⎟⎟⎟⎟⎠

follows

Mi = εN i
kEk = ε diag

(
0i×i, Ek−i

)
.

Therefore sgnEk = 0 if k is even, and sgnEk = 1 if k is odd. Hence

(2.5) sgnMk−1 = ε, sgnMk−2 = 0, sgnMk−3 = ε, . . . ,

and (2.2) holds with (ηk, ηk−1, . . . , η1) = (ε, 0, . . . , 0). In the general case, with P̂ (s)
given as in (2.4), we obtain (2.2) by inspecting P̂−1(s) and using (2.5).

3. Proof of the theorem. We shall need a generalization of Sylvester’s law of
inertia [2, p. 200].

Lemma 3.1. Let A ∈ C
n×n be hermitian. If Y ∈ C

t×n has full column rank, then
the matrices A and Y AY ∗ have the same rank and the same signature.

The proof of Theorem 1.5 starts from a minimal hermitian realization

(3.1) L−1(s) = C(A0 + A1s)
−1C∗,

where P (s) = A0+A1s is given by (2.3). Then P̂ (s) = Â0+Â1s, and Â1 is nonsingular,
and N̂ = −Â−1

1 Â0 is nilpotent with N̂k = 0. Let C = (Ĉ,D) be partitioned in
accordance with (2.3). Then

L−1(s) = ĈP̂−1(s)Ĉ∗ + DQ(s)D∗
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and

WL−1(s) = ĈP̂−1(s)Ĉ∗ = Ĉ[Â1(−N̂ + sI)]−1Ĉ∗.

Hence we have (1.6) with

Wi = ĈN̂ iÂ−1
1 Ĉ∗, i = 0, . . . , k − 1.

Let H(P̂−1) be the Hankel matrix associated with P̂−1(s). Then

H(P̂−1) =

⎛
⎜⎜⎝

Â−1
1 N̂Â−1

1 . . . N̂k−2Â−1
1 N̂k−1Â−1

1

N̂Â−1
1 N̂2Â−1

1 . . . N̂k−1Â−1
1

. . . . .

N̂k−1Â−1
1

⎞
⎟⎟⎠ .

Because of N̂k = 0 and N̂Â−1
1 = Â−1

1 N̂T we obtain

(3.2) H(P̂−1) =

⎛
⎜⎜⎜⎝

I

N̂
...

N̂k−1

⎞
⎟⎟⎟⎠ Â−1

1

(
I N̂T . . . (N̂k−1)T

)
.

Let

O = O(N̂ , Ĉ) =

⎛
⎜⎜⎜⎝

Ĉ

ĈN̂
...

ĈN̂k−1

⎞
⎟⎟⎟⎠

be the observability matrix of the pair
(
N̂ , Ĉ

)
. Then H(L−1) = OÂ−1

1 O∗, and
similarly

H(siL−1) = ON̂ iÂ−1
1 O∗, i = 1, . . . , k − 1.

The realization (3.1) is minimal. Hence O has full column rank [1], and Lemma 3.1
implies

(3.3) sgnH(siL−1) = sgn N̂ iÂ−1
1 , i = 0, . . . , k − 1.

Recall WP−1(s) = P̂−1(s). Therefore the matrices Mi in (2.1) are given by Mi =
N̂ iÂ−1

1 . Thus we have sgnMi = sgnH(siL−1). Then (2.1) yields

(
sgnH(L−1), . . . , sgnH(siL−1)

)
= (η1, . . . , ηk)(I + N2

k + N4
k + · · · ),

and because of

(I + N2
k + N4

k + · · · )−1 = I −N2
k

the proof is complete.
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