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Abstract. Let K be a field and let L € K"*"[z] be nonsingular. The matrix L
can be decomposed as L(z)=Q(z)(Rz+S)P(z) so that the finite and
(suitably defined) infinite elementary divisors of L are the same as those of
Rz+S, and Q(z) and P(z)” are polynomial matrices which have a constant
right inverse. If

Rz+S=(ZI__A 0 )

0 I—zN

and K is algebraically closed, then the columns of Q and P7 consist of
eigenvectors and generalized eigenvectors of shift operators associated
with L.

1. Introduction

In this note we extend Kronecker’s theory of nonsingular matric pencils to
nonsingular polynomial matrices. Let K be a field, LEK"*"[z] and det L+#0&
K[z]. Using the matrix version of Kalman’s state space isomorphism theorem it
can be shown [12] that L™! can be written as L~ (z2)=Q(Rz+S) " 'P. If the size
of R and § is minimal, then the pencil Rz+S is determined up to strict
equivalence by L. We define in an appropriate way infinite elementary divisors of
polynomial matrices. Then L and Rz+S have the same finite and infinite
elementary divisors. Because of strict equivalence, Rz + .S can be assumed to be of

a0 ) where N is nilpotent and, if K is algebraically closed,
J is in Jordan normal form. If Q is partitioned accordingly, Q=(C H), then it
will be proved that the columns of H consist of Jordan chains corresponding to
infinite elementary divisors of L. The columns of C are Jordan chains correspond-
ing to the finite spectrum of L [16]. Let K"(z) and z 'K"(z) be the set of
rational and proper rational n-vectors respectively and let =, and #_ be the
projections of K"(z) on K"[z] and z "'K"(z). We shall consider the mappings
7_L7":K"[z]>z7'K"(z) and 7, zL"': z7'K"(z)- K"[z]. Then the columns

the form (
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of the polynomial matrix C(z)=L(z)C(zI—J)~" form a basis for ImLx_L71L
With respect to this basis the right shift operator z on Im L#_L™ !is given by the
matrix J. The columns of the matrix H(z) L(z)H(I zN)~! are a basis for
LIm# zL™", the left shift operator z 7! is represented in this basis by the matrix
N. This leads to a factorization of L, L(z)= O(zX(Rz+S)P(z) where 0=
(C H). The matrix PT has properties analogous to those of Q.

2. Notation

The rational functions over K will be denoted by K(z). An element fEK(z) is
called proper rational, if f=f, /f,, f, €K[z], f, #0, and f=0 or deg f, <deg f,. For
the set of proper goational functions we write z 7 'K _(z). Clearly z 'K _(z2)={f|f

€K(2), f(z)= Ef_ z7"71}. Let W=(w,) be a rational nXm matrix, ie.

wWekK "X"‘(z) and let p, €2~ 'K _(z) be the principal part of the Laurent
expansion of w,; at z=0. Then we set

[W]o = (pij)

and call it the principal part of W at z=0. Each f&K(z) can be uniquely
decomposed into f=g+h, g€z 'K_(z), h€K[z]. We define the projections
7. K(z)>K[z] by m.f=h and 7_: K(z)~z"'K_(z) by #_f=g. In a natural
way these definitions of = and «_ will be extended to K"(z) corresponding to
the direct sum K*(z)=z"'K"(z2)®K"[z]. Let D=(d;;) be an nXm matrix such
that d;, =y, for 1<<i<r and d,; =0 otherwise. Then we write

D={y,....7.}
The matrix R; will denote the jXj nilpotent Jordan block, R;=(§, ;). For

LEK™"[z] and L(z)= 2 L,z° L,#0, we define deg L:=s. Whenever the

context allows it, we omit the indeterminate z in rational matrices or vectors.

3. Realizations of Rational Matrices

Definition 1. A realization of a rational matrix W, WeK"*"(z), W0, is a
factorization of the form

W(z) = Q(Rz+S)"'P (3.1)

with R and S in K", PEK"*™ and Q&K "*". The dimension of the realization
(3.1) is the size r of R and S. The realization (3.1) is said to be minimal, if its
dimension r is minimal.

In the case where W is a proper rational matrix it is known that there exists a
realization with R=1 (see [2]). Minimal realizations of such matrices are char-
acterized by Kalman’s theorem (see e.g. [2]).



Structure of Nonsingular Polynomial Matrices 365

Theorem 1 (8]. If W(z)=C(zI—A4;)” 1B ,J=1,2, are two minimal realizations of
dimension r of W, W€z~ K "X'"(z) then there is a nonsingular matrix TEK™"
such that A,=T ~'A,T, C,=C,T, B,=T " 'B,.

The similarity class of 4; is given by the determinantal denominators of W.

Definition 2 [3). For a given WeK™*"(z) let (W) denote the monic least
common denominator of all minors of W of order at most k. Set ¢y(W)=1. The
polynomials @, (W) are called the determinantal denominators of W. The width of
W is defined to be the least non-negative integer g such that ¢ (W)=¢,, (W)
for all k=g.

Theorem 2 [3]. Let W(z)=C(zI—A)"'B be a minimal realization of W. Then the
elementary divisors of zI— A are the polynomials @, /@,_,,..., 9, /®o- The minimal
polynomial is the least common denominator of all elements of W.

Kalman’s theorem can be extended to realizations of general rational matrices
{12]. We note Rosenbrock’s result here in a different language and with a proof
which to some extent differs from his and which will be more convenient for our
purposes. From Theorem 1 and Theorem 2 we obtain immediately a realization
for polynomial matrices.

Lemma 1. Any polynomial matrix M EK"*™[z] of degree s, has a realization of
the form

M(z)=H(I-zN)"'G. (3.2)

If the realization (3.2) is minimal, then N is nilpotent and is determined up to
similarity by M. The degree of the minimal polynomial of N is s+ 1.

Proof. Since £ ~'M(£ ") is proper rational, we have £ “'M(¢ ") =H(¢I-N)"'G
or M(¢§ )=H(I—-¢'N)~'G. Now £ !'=z yields (3.2). The least common
denominator of all elements of § ~'M(¢ ") is £ *. Hence according to Theorem 2
the minimal polynomial of N is z**!. Theorem 1 implies that N is determined up
to similarity. O

Theorem 3. (a) Any matrix WEK""(z), W#O0, has a realization. (b) If
Q.(R;z+8,)7'P,, i=1,2, are two minimal realizations of W of dimension r, then the
linear pencils R;z+S,, i=1,2, are strictly equivalent, i.e. there exist nonsingular
matrices U and V in K™ such that R z+S,=V(R,z+S8,)U. Furthermore,
0,=Q,U and P,=VP,.

Proof. The matrix WEK"*™(z) can be written as a sum W=T+M with
TE€z'K"™(z) and MEK"™™[z]. Let T(z)=C(zI—A)~'B and M(z)=H(I~
zN)~'G be realizations of T and M. Then

w(z)=(C H)(ZIEA I—OZN)«l(g)

is a realization of W, which proves (a).
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Assume now Q(Rz+S)P to be a minimal realization of W. Then

Rz+S= U(ZIO“A I-—OzN)V (3.3)

where U and V are suitable nonsingular matrices (see [5]) and N is nilpotent. If
QU and VP are partitioned according to (3.3) into QU=(C H)and VP= ( g ,
then W(z)=C(zI—A)"'B+H(I—zN)"'G. Thus C(zI—A)"'B and H(I—
zN)~'G are minimal realizations of T and M respectively. Combining Theorem 1
and Lemma 1 and taking (3.3) into account yields the proof of (b). 0

4. Finite and Infinite Elementary Divisors

Let LEK"*"[z] be nonsingular and L~'(z)=Q(Rz+S) " 'P be a minimal reali-
zation of its inverse. In this section we determine the finite and infinite elemen-
tary divisors of Rz+S.

Using the Smith—-McMillan form we can define infinite elementary divisors
for polynomial matrices. Recall that for any matrix W& K™ "(z) of rank r there
are unimodular matrices UEK ™ ™[z] and VE€K™"[z] such that W=UDV
where

D= {e /Y1,-.er /%)

and ¢; and ¢, are relatively prime polynomials, and ¢,|¢, and |, if i<k. The
matrix D which is uniquely determined by these properties (see [3] or {11}) is
called the Smith-~McMillan form of W.

Definition 3. A matrix X&€K™""[z] is said to have the infinite elementary
divisors y*',..., y*», if yX(y ~!) has Smith~McMillan form

{(y7ady(y),-.. y9d(p), yid g ()sennr yrd i (1))

such that —¢;< - -+ —¢, <0<s, < --- <s, and d, €K[z],d (0)#0, p=1,...,r. If
X has infinite elementary divisors, we say A= o0 is a characteristic root of X and
define s, + - - - +s, to be its multiplicity.

If X has Smith form {1,...,1, g,..., &}, &|8:+1> & 71, then the polynomials
g; are products of elementary divisors of X. We call those divisors here the finite
elementary divisors and their roots finite characteristic roots of X. In the special
case of X(z)=Rz+S we have yX(y ~')=R+Sy and our definition yields the
familiar one for matrix pencils.

Lemma 2 [3, p. 103]. Let WEK""™(z) be of width g and let {e,/d,,...,e,/d}
be the Smith—-McMillan form of W. If W=T+M, MEK"*™[z], and T(z)=C(zl
—A)"'B is a minimal realization, then zI—A has Smith form {I g gy d}. In
the special case of W=L"" the finite elementary divisors of L and of zI—A are the
same.
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Theorem 4. Let L™ '(z)=Q(Rz+S) ™ 'P be a minimal realization. Then the finite
and infinite elementary divisors of Rz+ S and of L are the same.

Proof. Without loss of generality we can assume

_ [zI—A4 0 .
Rz+S= ( 0 TN ), N nilpotent, (4.1)
and
L™Yz)=C(z1-4)"'B+H(I-zN)"'G. (4.2)

Then T(z)=C(zI—A)"'B and M(z)=H(I—zN)~'G are minimal realizations of
the proper rational part T and the polynomial part M of L~!. The preceding
lemma implies that the finite elementary divisors of L and of Rz+S are equal.
We now consider the infinite elementary divisors of Rz-+S. Because of (4.1) they
are the (finite) elementary divisors of Iy—N. From (4.2) we obtain

y 'Ly )= C(I-yA) 'B+H(Ily—N)"'G.
Al

0
A, is non-singular. Then y "'L™'(y ') can be written as

0
Without loss of generality we assume A = 4 ) where A4, is nilpotent and
2

s _ I—A,y o \"Y/B
L7y ™) = C(I-y4,) " ¢, H 2 ( 2).
y (y ) CI(I Y ]) Bl+( 2 )( 0 Iy_N) G

(4.3)

The second term in the sum (4.3) is a minimal realization of the proper rational
part of y T'L™Y(p"). Let y T'L7(y ") have the Smith—-McMillan form

{1y by (3)se s 195, (3), 5/l (§)sees YR (3) ) (4.4)

5,= -5, >0, 0<e;<---<e,, h,(0)70. Then according to Lemma 2, the ele-
mentary divisors of Iy — N are y*, ..., y*». The Smith-McMillan form of yL(y ~')
is the inverse of (4.4) and because of Definition 3 the proof is complete. O

The infinite elementary divisors of a nonsingular polynomial matrix L can be
determined from its minors. We use the relation between determinantal
denominators and the Smith McMillan form.

Lemma 3 [3]. Let WEK"™"™(z) have the Smith—McMillan form
{e,/d,...,e,/d.}. Then

o (W)=d,...d, forl<ks<r.
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If V(y):=y L7 (y~!) has the Smith—-McMillan for (4.4), then the preced-
ing lemma yields

(Pk(V)=yikrk(y)’ k:‘l’---,n

and r(0)#0, i, =s,+ - - - +s,_, for 1<k<p, i, =i, for k>p. Hence the num-
bers i, contain the desired information.

The rth compound of a matrix 4 (i.e., the matrix containing all »Xr minors
of A in a suitable ordering) will be denoted by A!"l. If the nXn matrix 4 is
invertible, then (see e.g. [7])

(A7) =1/det 44l "
holds. Hence det L(y ~ "YW=y "L(y ~")["""1 and

i, = max {j—degdet L+degé|8isan (n—;)X(n—;) minor of L}.
J

5. Jordan Chains

We assume now that the field K is algebraically closed. Let L be given by

L(z)= ) L,z* and L~! by (4.2) and assume that the corresponding realization
u=0

is minimal. We will investigate the matrices C and H and show that their columns

consist of Jordan chains of L belonging to finite and infinite characteristic roots.

Definition 4 (see e.g. [1]). The vectors x,,..., x, are said to form a finite Jordan
chain of L corresponding to the finite characteristic root A, A= o, if x,7#0 and

k
1 ..
.2 ﬁL(/)()\)xk_j =0, k=0,.,p—1 (5.1)
j=0
hold.
p .
Lemma 3. Set X=(x,..., x,), X(2)= > x,(z—N), J=M+R, .. Then (5.1) is
i=0

equivalent to any of the following conditions:

k

L Le)x(z)| =0, k=0,..p—1, (5.2)
dZ Z=A

or

E L X" = 0. (5:3)
r=0
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Proof. (5.2) can be checked easily, (5.3) can be found in {9] or [15]. 0

To each finite elementary divisor of L corresponds a finite Jordan chain [10}.
If all those chains are put together we speak of a full system of chains [16] or if we
consider them together with the associated Jordan matrix we shall use the term
eigenpair [6].

Definition 5. The matrices CEK"*" and JEK™ " are said to be a finite
eigenpair (C,J) of L, if J is a Jordan matrix, r=degdet L,

S LCI* =0 (5.4)

©=0

and the columns of the matrix C(zI—J)™! are linearly independent over K.

For J=block diag(A,I+R,,...,A,I+R, ) and C=(C,,...,C,) the condi-
tion (5.4) implies that the columns of C are Jordan chains to the charactenstlc
root A,. The condition on C(zI—J)~ ! 1s eqmvalent to (J, C) being observable.
W;e note further [15] that U(¢)=Cexp(Jt) is a fundamental system of

(W) 1y=
2 Lx®(1)=0.
‘L:O - . . - .
Minimal realizations and coprime factorizations of rational matrices can be
related to eigenpairs.

Lemma 4 [16). If C(zI—J)~'B is a minimal realization of W&z ~'K"*"(z) and
W=D"'F is a factorization such that the polynomial matrices D and F are left
coprime, then (C, J) is a finite eigenpair of D.

One of the conditions for matrices to be left coprime is the following one.

Lemma 5 (sec e.g. [11]). Two matrices DEK"*"[z) and FEK"*"[z] are left
coprime, if and only if

rank(D(A), F(A))=n  forallA EK.
We now define Jordan chains and eigenpairs for A= co.

Definition 6. If w,,...,w,,...,w_, are m+1+s vectors in K" such that m=0
and w,, #0 and

m+s

2 jiWm—p =0, j=s+L,—m+],

hold, where L, =0 for i>s and i<0, then Wy, ..., W, are said to form a Jordan
chain of L at A=o0 (or by abuse of language an infinite Jordan chain).

The definition also includes the case s=0. In the case s=1 one can set
w_; =0. Because of the difference in our definition of infinite elementary divisors
and infinite eigenvalues in [13] our concept of infinite chains is slightly different
from the one used in [14]. The following equivalent conditions for infinite chains
can be derived from (5.1) and (5.2).
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Lemma 6. The vectors w,,,...,W,,...,w_, satisfy the conditions of the preceding
definition, if and only if they form a Jordan chain of

L(y):=y'L(y™") (5.5)

for the characteristic root y=0 or equivalently if w,, #0 and

m

L(Z)( 2 Wizi)Zp(z_‘) (5.6)

i=—g
with pEK"{z].

Definition 7. The matrices HE K"** and N € K**“ are said to form an infinite
eigenpair (H, N) of L, if the following conditions are satisfied:

(@) N is nilpotent and in Jordan form, N=block diag(R,,..., R,),

(b) a is equal to the multiplicity of the characteristic root A=o0c of L,

(c) if H is partitioned according to N, H=(H|,..., H,), then the columns of
H_ are an infinite Jordan chain of L, and

(d) the columns of H(I—zN)~! are linearly independent over K.

Theorem 5. Let
seri=te m(%? 0] ) =

be a minimal realization where J and the nilpotent matrix N are in Jordan form.
Then (C, J) is a finite and (H, N) an infinite eigenpair of L.

Proof.  As before let T(z)=C(zI—A) " 'B be the proper rational and M(z)=H(I
—zN)7!G be the polynomial part of L™'. From L™'=T+M we obtain a
factorization of T, T=L™'(I—LM), which is left coprime because of Lemma 5.
Thus Lemma 4 implies the result on (C, J).

In order to investigate the columns of H we rewrite (5.7) as

y LTy Y)Y =c(I-w) 'B+H(Iy-N)"'G.
Let L be defined by (5.5). Then

H(Iy—N)''G (5.8)
is the principal part of ysl:( y)~'aty=0. If U and V are two unimodular matrices
such that y 'L~y " H=U(y) " 'S(y)¥(y) and § is the Smith—-McMillan form
given by (4.4), then a left coprime factorization D ~'F of y "'L™'(y ™!} is given by

D(y)=diag(y*rhy(),--., Y (¥ hpii(¥),--s B (yDU(y) and F(y)=diag(l,
Lo Lya o, vV y). Thus

L(y)" =[yp(»] 'F(»)
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is a left coprime factorization of L~'. Each Jordan chain XpyeeusXg Of D
corresponding to y=0 can be extended to a Jordan chain x,,..., xq,..., X _ of
y*D(y) at y=D0. It is therefore an infinite Jordan chain of L. Since the elementary
divisors of the form y* are the same in D and Iy — N, condition (b) of Definition 7
is satisfied and (5.8) being a minimal realization yields (d). O

6. Two Module Homomorphisms Associated with L
Let L™! be given by L™!=T+ M, where M is a polynomial and T is a proper

rational matrix. As it is customary in linear system theory, one can associate to T
the mapping

a_L7':K"[z] - z7'K" (2). (6.1)
It is a K[z] module homomorphism, if the K [z] module structure on z ~'K”.(z) is

given by p-v=w_pv, pEK][z], v€Ez7'K"(z). It is maybe less common tQ
consider the mapping ‘

m.zL7V: 27K (2) - K™ z] (6.2)

which is determined by M and for wlgch T is irrelevant. Let K _(z) be the set of
rational functions f such that f(z)= Y, f_,z ~". Define f-w=m, fw for fEK_(z)

v=0
and wEK"[z]. Then 7, zL ™" is a K _(z) module homomorphism.
Following Fuhrmann [4] we define a projection 7, on K”[z] by

my:=Lw_L7 Yy, yeK"[z]

Let V; be the range of 7, ¥, :=Ima,. Since Kerm, =Kerm_L™'=LK"[z] we
have

V. =K"[z]/LK"(z]
and the factorization given below is canonical

g_L~!
K"z} -z K" (2)

R /‘
VL

V, is a vector space of dimension r, r=degdet L and a K[z] module with
p-x=m, px, pEK[z], xEV,. A shift operator S* is defined on ¥, by

S*f=mzf(z), fEV,.
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Theorem 6 [16). If C(zI—A)~'B is a minimal realization of T, then the columns
of the polynomial matrix

C(z) = L(z)C(zI—-4)""
form a basis for the vector space V, such that
s+ =CA.

In the special case of A=J we have a finite eigenpair (C,J) and the
columns of C consist of eigenvectors and generalized eigenvectors of S .

The way we dealt with the mapping (6.1) suggests a similar approach for
(6.2). Define 7L: 2 71K " (z)~ K"[z] by

alo:=La zL™% o€z K" (z2)

and UL by UL:=ImaL. The product f-w=Lw_fL™'w, fEK_(z), wE UF, yields
a K_(z) module structure on UL. Weé have a canonical factorization

- 7.zL!
z7'K"(2) K" z]

nk L~}
UL
On U’ multiplication by z ™' is possible. We define a left shift operator S~ on
UL by
S™w=Lr,.z 'L"'w, weU"L (6.3)

Lemma 7. The dimension of UL is equal to the multiplicity of the characteristic
root A= of L.

Proof. Let X and Y be two unimodular matrices which transform y ~'L™'(y ™)
into Smith McMillan form,

yTILTY(y ™) = X(»)E(y)Y(y),

where F is the matrix (4.4). Since ¥(z ~') is an isomorphism of z ~'K"(z) we can
- assume without loss of generality Y=1. Write F as a sum F=F+F, with

F=diag(1/y"h (), ... 1/y"h,(»),0,...,0)
and

F, = diag(0,...,0, y*1 /h, i\ (3 )seons ¥/ (9)).
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Since 7, X(z V)F(z Y)o(z)=0 for v€z 'K"(z), it remains to consider
X(z7YF(z™"). Let x, be the ith column of X,°g=1,...,p. Then X unimodular
and h,(0)%0 imply g:=1/h(z Wx(z" )= Y g',z77", g, #0. Thus we can

y=0
focus on a vector space

Upi= (wiw(z)=m,z"/(2)g(z), €z 'K ()

with g= 2 g-,Z ", 8 #0. The dimension of U, is equal to m, since the vectors

{80 g0z+g peeer 802" '+ - oo +g_ 4} form a basis for U,. a

We note wnthout proof that the vectors gy,..., 8,,; form an infinite Jordan
chain and that the given construction, if performed for each infinite elementary
divisor, yields an infinite eigenpair of L.

Theorem 7. Let H(I—zN)"'G be a minimal realization of the polynomial part M
of L™, Then the columns of

H(z)=L(z)H(I—zN)""
form a basis for UL and
S™H=HN.

Proof. Because of Theorem 1 we can assume N to be in Jordan form. Theorem 5
and Definition 7 imply that the columns of H are linearly independent over K
and that their number is equal to the multiplicity of A= oo which is— according
to Lemma 7—equal to dimU~.

In order to show that the columns of H are in U we can restrict ourselves to
the case N=R, . ,. Because of Theorem 5 the columns of H=(h,,..., h,) form an

infinite Jordan chain of L and because of (5.6) there exist vectors h_,,..., h_
such that
L(z2)(hy,..h )z (2% 27) = 27p(27"),  peK[z],
i=0,..,b.
Then

H(z*7,..,1,0,...,00" = zL™(z)v,(z) + (hy,...,h _,)
X(0,...,0,z71,..., 27+ )T

with v,(z)= z~0*Yp(z7")€27'K 2 (2), which means that each column of H(/—
ZN)~ Visin Imwn,zL~". From (6.3) we obtain § "H=Lx,z 'H(I—zN)~'=HN.
O

Our investigation has lead us to the main result of this paper.
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Theorem 8. Let LEK"*"[z] be nonsingular and
L Y(z)=Q(Rz+S)'P

be a minimal realization such that

_[zI—A4 0
RZ+S_( 0 1-—zN)’

B

Q0=(C H)and P= (G

). Then L can be factored into

L(z) = 0(z)(Rz+8)P(z) (6.4)

where 0=(C H) and P= (g are given by C(z)=L(z)C(zI—A4)"", B(z)=

(zI—A)"'BL(z), H(z)=L(z)H(I-zN)"' and G=(I—2zN)"'GL(z). The col-
umns of C form a basis for

Ve =ImLr_ L7 g, =K"[z]/LK"[ 2]
and
stC=2C4
where S is the right shift operator on V. The columns of H form a basis for

Ur=ImLw, zL™'|,~ign sy

and
S“H=HN

where S ™ is the left shift operator on UL. The columns of BT and GT have analogous
properties with respect to L.
The finite and infinite elementary divisors of L and Rz+ S are the same.

Proof. The factorization (6.4) follows from the definition of Q and P. The other
statements are contained in Theorems 4, 6 and 7. R O

Note that the polynomial matrix @ has a constant right inverse, Q(z)P=1,
and P has a constant left inverse, QP(z)=1.
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