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Abstract. Let K be a field and let L E K ~ × "[z] be nonsingular. The matrix L 
can be decomposed as L(z):Q(z)(Rz+S)P(z) so that the finite and 
(suitably de f i ed )  infinite elementary divisors of L are the same as those of 
Rz+S, and Q(z) and if(z) T are polynomial matrices which have a constant 
right inverse. If 

Rz+S=(Z loA  I--zNO ) 

and K is algebraically closed, then the columns of Q and / ; r  consist of 
eigenvectors and generalized eigenvectors of shift operators associated 
with L. 

1. Introduction 

In this note we extend Kronecker's theory of nonsingular matric pencils to 
nonsingular polynomial matrices. Let K be a field, L E K"  ×" [ z] and det L v ~ 0 E 
K[z]. Using the matrix version of Kalman's state space isomorphism theorem it 
can be shown [12] that L - l  can be written as L-I(z)=Q(Rz+S)-IP. If the size 
of R and S is minimal, then the pencil R z + S  is determined up to strict 
equivalence by L. We define in an appropriate way infinite elementary divisors of 
polynomial matrices. Then L and Rz+S have the same finite and infinite 
elementary divisors. Because of strict equivalence, Rz + S can be assumed to be of (zlj 0) 
the form I -  zN where N is nilpotent and, if K is algebraically closed, 

J is in Jordan normal form. If Q is partitioned accordingly, Q=(C H), then it 
will be proved that the columns of H consist of Jordan chains corresponding to 
infinite elementary divisors of L. The columns of C are Jordan chains correspond- 
ing to the finite spectrum of L [16]. Let K"(z) and z-lK~_(z) be the set of 
rational and proper rational n-vectors respectively and let ~r+ and ~-_ be the 
projections of K"(z) on K"[z] and z-IK"(z). We shall consider the mappings 
~r_L-I: K"[z]--,z-lK"(z) and ~r+zL-l: z-lK~_(z)~K"[z]. Then the columns 
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of the polynomial matrix C(z)=L(z)C(zI-J) -1 form a basis for Im L~r_L -I. 
With respect to this basis the right shift operator z on Im L~r_L- ~ is given by the 
matrix J. The columns of the matrix H(z)=L(z)H(1--zN) -I are a basis for 
L Im ~r+zL-1, the left shift operator z -  i is represented in this basis by the matrix 
N. This leads to a factorization of L, L(z)=O_(z)(Rz+S)P(z) where Q =  
(C H). The matrix f i r  has properties analogous to those of Q. 

2. Notation 

The rational functions over K will be denoted by K(z). An element fEK(z) is 
called proper rational, if f=fl If2, f / ~  K [ z], f2 # 0, and f - -  0 or deg fl < deg f2. For 
the set of proper rational functions we write z -IK_(z). Clearly z - I K _ ( z ) =  {f  If  

oo 

EK(z), f ( z ) =  ~ f_pz-~-l}. Let W=(wij ) be a rational nXm matrix, i.e. 
~ = 0  

WEK"×'(z), and let puEz-~K_(z) be the principal part of the Laurent 
expansion of w u at z = 0. Then we set 

[w]0  : (p,j)  

and call it the principal part of W at z=0.  Each fEK(z) can be uniquely 
decomposed into f=g+h, gEz-lK_(z), hEK[z]. We define the projections 
~r+ : K(z)~K[z] by ~r+f=h and ~r_ : K(z)~z-lK_(z)  by rr_f=g. In a natural 
way these definitions of ~r+ and ~r_ will be extended to K"(z) corresponding to 
the direct sum K"(z)=z-lK"_(z)~K"[z]. Let D=(dij ) be an n×m matrix such 
that d u =~,~ for 1 <~i<~r and d u = 0  otherwise. Then we write 

D : (~/1 . . . . .  ~ r } "  

The matrix Rj will denote the j×j nilpotent Jordan block, R j= ( r i ,  i+l). For 

LEKnX"[z] and L ( z ) =  ]~ L,z °, L~v~O, we define d e g L : = s .  Whenever the 
a = 0  

context allows it, we omit the indeterminate z in rational matrices or vectors. 

3. Realizations of Rational Matrices 

Definition 1. A realization of a rational matrix W, WEK"X'(z), W4:0, is a 
factorization of the form 

W(z) = Q(Rz+S)-tP (3.1) 

with R and S in K rxr, PEK rx'' and QGK "x~. The dimension of the realization 
(3.1) is the size r of R and S. The realization (3.1) is said to be minimal, if its 
dimension r is minimal. 

In the case where W is a proper rational matrix it is known that there exists a 
realization with R=I (see [2]). Minimal realizations of such matrices are char- 
acterized by Kalman's theorem (see e.g. [2]). 
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Theorem 1 [8]. I f  W ( z ) = C . ( z I - A  ) - l B . , j =  1,2, are two minimal realizations of 
• J . J J 

dimension r of IV, WGz-'K~Z'm(z), then there is a nonsingular matrix T ~ K  ~×~ 
such that A 2 = T-IAIT,  C2 =CIT, Bz = T-IBI .  

The similarity class of Aj is given by the determinantal denominators of W. 

Definition 2 [3]. For a given WEK'Xm(z)  let cpk(W ) denote the monic least 
common denominator of all minors of W of order at most k. Set q%(W)= 1. The 
polynomials qok(W ) are called the determinantal denominators of W. The width of 
W is defined to be the least non-negative integer g such that ~k(W)=~pk+l(W) 
for all k>-g. 

Theorem 2 [3]. Let W(z)= C ( z I - A ) - I B  be a minimal realization of W. Then the 
elementary divisors of z I -  A are the polynomials ¢pg / epg_ l .... , ep l / q9 o. The minimal 
polynomial is the least common denominator of all elements of W. 

Kalman's theorem can be extended to realizations of general rational matrices 
[12]. We note Rosenbrock's result here in a different language and with a proof 
which to some extent differs from his and which will be more convenient for our 
purposes. From Theorem 1 and Theorem 2 we obtain immediately a realization 
for polynomial matrices. 

Lemma 1. Any polynomial matrix M ~K'×m[z] of degree s, has a realization of 
the form 

M(z )  : H ( I - z N ) - I G .  (3.2) 

I f  the realization (3.2) is minimal, then N is nilpotent and is determined up to 
similarity by 34. The degree of the minimal polynomial of N is s+ 1. 

Proof Since ~ - IM(~- l )  is proper rational, we have ~ - I M ( ~ - I ) = H ( ~ I - N ) - I G  
or M ( ~ - ~ ) = H ( 1 - ~ - I N ) - I G .  Now ~ - l = z  yields (3.2). The least common 
denominator of all elements of ~ -1M(~ -~) is ~s +~. Hence according to Theorem 2 
the minimal polynomial of N is z s+l. Theorem 1 implies that N is determined up 
to similarity. [] 

Theorem 3. (a) Any matrix W ~ K ' X " ( z ) ,  W=#0, has a realization. (b) I f  
Qi( Riz + Si)-lPi, i= 1,2, are two minimal realizations of W of dimension r, then the 
linear pencils Riz+ Si, i = 1,2, are strictly equivalent, i.e. there exist nonsingular 
matrices U and V in K rxr such that RIz+ S l = V( Rzz+ S2)U. Furthermore, 
Q1 = Q2 U and PI = VP2. 

Proof The matrix W E K ' × " ( z )  can be written as a sum W = T + M  with 
T~z-IK"_×"(z) and M~K'Xm[z].  Let T ( z ) = C ( z I - A ) - I B  and M ( z ) = H ( I -  
zN) - lG  be realizations of T and M. Then 

,-zN° 
is a realization of W, which proves (a). 
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Assume now Q ( R z + S ) P  to be a minimal realization of W. Then 

.(z, 
where U and V are suitable nonsingular matrices (see [5]) and N is nilpotent. If 

/ 

B 
\ 

QU and VP are partitioned according to (3.3) into Q U = (  C H )  and VP= { } 
G , '  

then W ( z ) = C ( z I - A ) - : B + H ( I - z N ) - I G .  Thus C ( z I - A ) - I B  and H ( I -  
z N ) -  1G are minimal realizations of T and M respectively. Combining Theorem 1 
and Lemma 1 and taking (3.3) into account yields the proof of (b). [] 

4. Finite and Infinite Elementary Divisors 

Let LEK"×"[z]  be nonsingular and L - L ( z ) = Q ( R z + S ) - I P  be a minim',d reali- 
zation of its inverse. In this section we determine the finite and infinite elemen- 
tary divisors of Rz + S. 

Using the Smith-McMillan form we can define infinite elementary divisors 
for polynomial matrices. Recall that for any matrix W E K m × " ( z )  of rank r there 
are unimodular matrices U E K m x " [ z ]  and VEK"×"[z]  such that W= UDV 
where 

D = 

and e i and ~i are relatively prime polynomials, and ei[e~ and +kl~ki if i<.k. The 
matrix D which is uniquely determined by these properties (see [3] or [11]) is 
called the Smith-McMillan form of W. 

Definition 3. A matrix X~K"×m[z]  is said to have the infinite elementary 
divisors y ~' . . . .  , y *p, if yX( y - i ) has Smith- McMillan form 

{ y - C ' d , ( y  ) . . . . .  y - % d q ( y  ), yS~dq+l(y ) . . . .  , ySpdv+q(y ) } 

such that - c  I <~ . . . .  Cq ~<0<s I < • • • <sp and dp EK[z] ,  d0(0)ve0, O = 1 . . . . .  r. If 
X has infinite elementary divisors, we say ~ = oo is a characteristic root of X and 
define s I + • • • +sp to be its multiplicity. 

If X has Smith form (1, . . . ,  1, gl . . . . .  gt}, gilgi+ 1, gl ~ 1, then the polynomials 
gi are products of elementary divisors of X. We call those divisors here the finite 
elementary divisors and their roots finite characteristic roots of X. In the special 
case of X ( z ) = R z + S  we have y X ( y - l ) = R + S y  and our definition yields the 
familiar one for matrix pencils. 

Lemma 2 [3, p. 103]. Let W E K " X ' ( z )  be of width g and let { e i / d  I . . . .  , e s /ds}  
be the Smith-McMillan form of IV. I f  W = T  + M, M ~K"×m[ z], and T( z ) = C (  z I  
- A ) - I B  is a minimal realization, then z I - A  has Smith form { Ir_g, dg ....  , dl}. In 
the special case of W =  L -I  the finite elementary divisors of L and of z I - A  are the 
same. 
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Theorem 4. Let L-1(z)=Q( Rz + S)-1P be a minimal realization. Then the finite 
and infinite elementary divisors of Rz + S and of L are the same. 

Proof Without loss of generality we can assume 

z'-"0 ) 
and 

L - l ( z )  = C ( z l - A ) - ' B  + H ( I - z N ) - ' G .  (4.2) 

Then T ( z ) =  C(z I -A) - IB  and M(z)=H(I - zN) -1G are minimal realizations of 
the proper rational part T and the polynomial part M of L-1.  The preceding 
lemma implies that the finite elementary divisors of L and of Rz + S are equal. 
We now consider the infinite elementary divisors of Rz + S. Because of (4.1) they 
are the (finite) elementary divisors of I y -N .  From (4.2) we obtain 

y - l L - ' ( y - 1 )  : C( I - yA) -~B  + H ( I y - N ) - ' G .  

A 0 ) 
Without loss of generality we assume A = 0 A2 where A~ is nilpotent and 

A 2 is non-singular. Then y -  1 L - l ( y -  1) can be written as 

y - l L - I ( y - l )  = CI( I -yA 1 ) - 'B  1 + ( C2 ) 
0 I y - N  G " 

(4.3) 

The second term in the sum (4.3) is a minimal realization of the proper rational 
part of y - IL - l(y - 1). Let y - 1L - l(y - ~ ) have the Smith- McMillan form 

{1/y~phl( y ) . . . . .  1/y'hp( y ), y~'/hp+ l( y ) . . . . .  ye'h~( y ) }, (4.4) 

s p ~  > . .  -s I >0,  0~<e 1 ~< -..<~et, h~(0)v~0. Then according to Lemma 2, the ele- 
mentary divisors of I y - N  areyS~,..., ySp. The Smith-McMillan form ofyL(y -1) 
is the inverse of (4.4) and because of Definition 3 the proof is complete. [] 

The infinite elementary divisors of a nonsingular polynomial matrix L can be 
determined from its minors. We use the relation between determinantal 
denominators and the Smith McMillan form. 

Lemma 3 [3]. Let W E  Kn×m(z) have the Smith-McMillan form 
(el~d1 ..... er/dr}. Then 

cpg(W) --= d 1 ... dg for 1 ~< k ~< r. 
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If V(y): = y - I L - l ( y - 1 )  has the Smith-McMillan for (4.4), then the preced- 
ing lemma yields 

~ k ( V )  = y " r k ( y  ), k = 1 . . . . .  n 

and rk(O):/=O, i k =Sp + ' ' ' + S p _  k for l<.k<.p, i k =ip for k>p.  Hence the num- 
bers i k contain the desired information. 

The rth compound of a matrix A (i.e., the matrix containing all r×r  minors 
of A in a suitable ordering) will be denoted by A ['l. If the n×n matrix A is 
invertible, then (see e.g. [7]) 

(A-1 )[r] = 1/det A .A [n-r] 

holds. Hence det L(y  -~)V jr] =y - ' L ( y  - ~)['-'1 and 

i k = max { j -  deg det L + deg 818 is an ( n - j  ) × ( n - j  ) minor of L }. 
j,~ k 

5. Jordan Chains 

We assume now that the field K is algebraically closed. Let L be given by 
$ 

L(z )=  ~ L~z ~' and L-1 by (4.2) and assume that the corresponding realization 
/L=0 

is minimal. We will investigate the matrices C and H and show that their columns 
consist of Jordan chains of L belonging to finite and infinite characteristic roots. 

Definition 4 (see e.g. [1]). The vectors x o . . . . .  x e are said to form afinite Jordan 
chain of L corresponding to the finite charactenstic root X, ~,~ oo, if x o :/:0 and 

k 

E L(J)(X)xk_j = O, 
j = 0  

k = 0  . . . . .  p - 1  (5.1) 

hold. 

P 

Lemma 3. Set X = ( x  o ... . .  xp), x (z )=  ~ x i ( z - X )  i, J = X I + R p +  v Then (5.1) is 
i = 0  

equivalent to any of the following conditions: 

f f - ~ L ( z ) x ( z )  z=x = 0, k = O  . . . . .  p - l ,  (5.2) 

or  

~ L~XJ ~ = 0. (5:3) 
/x=0 
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Proof. (5.2) can be checked easily, (5.3) can be found in [9] or [15]. [] 
To each finite elementary divisor of L corresponds a finite Jordan chain [10]. 

If all those chains are put together we speak of a full system of chains [16] or if we 
consider them together with the associated Jordan matrix we shall use the term 
eigenpair [6]. 

Defini t ion  5. The matrices C E K  nxr and J ~ K  rxr are said to be a finite 
eigenpair (C, J )  of L, if J is a Jordan matrix, r = deg det L, 

~L~CJ ~ = 0 (5 .4)  

and the columns of the matrix C ( z I - J ) - 1  are linearly independent over K. 
For J = b l o c k  diag()~lI+R,, . . . . .  )~pl + Rtp ) and C=(  C t . . . .  , Cp) the condi- 

tion (5.4) implies that the columns of Co are Jordan chains to the characteristic 
root )~p. The condition on C ( z I - J )  - l  is equivalent to (J ,  C) being observable. 
We note further [15] that U( t ) =Ce x p ( J t )  is a fundamental system of $ 

L~xO')( t )=O. 
~=0 

Minimal realizations and coprime factorizations of rational matrices can be 
related to eigenpairs. 

Lemma 4 [16]. I f  C ( z l - J ) - l B  is a minimal realization of W E z  -IK~_×"(z) and 
W =  D -  IF is a factorization such that the polynomial matrices D and F are left 
coprime, then ( C, J )  is a finite eigenpair of D. 

One of the conditions for matrices to be left coprime is the following one. 

Lemma 5 (see e.g. [11]). Two matrices DEK"×"[z] and F~K"×r[z]  are left 
coprime, if and only if 

rank(D()~) ,  F( )~ ) ) = n for all )~ ~ K. 

We now define Jordan chains and eigenpairs for ~ = ~ .  

Defini t ion  6. If W,n . . . . .  W 0 . . . . .  W_s are m + l + s  vectors in K n such that m>~0 
and w m ~ 0 and 

m + s  

Y~ Lj+pwm_. = O, 
p=0 

j = s +  1 . . . .  , - m  + 1, 

hold, where L i = 0  for i>s  and i<0 ,  then wm,...,w 0 are said to form a Jordan 
chain of L at ~ = ~ (or by abuse of language an infinite Jordan chain). 

The definition also includes the case s=0 .  In the case s~>l one can set 
w_ s = 0. Because of the difference in our definition of infinite elementary divisors 
and infinite eigenvalues in [13] our concept of infinite chains is slightly different 
from the one used in [14]. The following equivalent conditions for infinite chains 
can be derived from (5.1) and (5.2). 



374 H.K. Wimmer 

Lemma 6. The vectors win,..., Wo,..., w_~ satisfy the conditions of the preceding 
definition, if and only if they form a Jordan chain of 

£ ( y ) : = y * + ' L ( y - ' )  (5.5) 

for the characteristic root y = 0 or equivalently if w m ~ 0 and 

s 

with p EK"[z]. 

Definition 7. The matrices H E K  "×a and N E K  a×a are said to form an infinite 
eigenpair (H, N) of L, if the following conditions are satisfied: 

(a) N is nilpotent and in Jordan form, N=block  diag(R a . . . . .  R a ), 
. . . .  1 t 

(b) a is equal to the multxplaclty of the characteristic root ?~ = ~ of L, 
(c) if H is partitioned according to N, H=(Ht , . . . ,  Ht), then the columns of 

H,  are an infinite Jordan chain of L, and 
(d) the columns of H ( I - z N ) -  1 are linearly independent over K. 

Theorem 5. Let 

(5.7) 

be a minimal realization where J and the nilpotent matrix N are in Jordan form. 
Then ( C, J) is a finite and ( H, N) an infinite eigenpair of L. 

Proof As before let T ( z ) = C ( z I - A ) - 1 B  be the proper rational and M ( z ) = H ( I  
- z N ) - ~ G  be the polynomial part of L -~. From L - ~ = T + M  we obtain a 
factorization of T, T = L - ~ ( I - L M ) ,  which is left coprime because of Lemma 5. 
Thus Lemma 4 implies the result on (C, J) .  

In order to investigate the columns of H we rewrite (5.7) as 

y - ' L - l ( y  - ' )  = C( I - y J  ) - '  B + H( I y - N  ) - '  G. 

Let £ be defined by (5.5). Then 

H ( I y - N ) - ' G  (5.8) 

is the principal part of yS/~(y)-~ at y = 0. If U and V are two unimodular matrices 
such that y - l L - l ( y - I ) =  U(y)-IS(y)V(y)  and S is the Smith-McMillan form 
given by (4.4), then a left coprime factorization D -  IF o f y -  I L - l ( y -  l) is given by 
D(y)=diag(ySph~(y) . . . . .  yS,hv(y), h?+~(y) . . . . .  hn(y))U(y ) and F(y)=diag(1 ,  
.... 1, ye,, .... ye')V(y). Thus 

£ ( y ) - I  = [ y S D ( y ) ] - ' F ( y )  
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is a left coprime factorization of £ -1 .  Each Jordan chain Xb,..., X o of D 
corresponding to y = 0  can be extended to a Jordan chain Xb,..., X o .... , X_ s of 
ySD(y) at y = 0. It is therefore an infinite Jordan chain of L. Since the elementary 
divisors of the formy k are the same in D and I y - N ,  condition (b) of Definition 7 
is satisfied and (5.8) being a minimal realization yields (d). [] 

6. Two Module Homomorphisms Associated with L 

Let L-1  be given by L - ~ =  T +  M, where M is a polynomial and T is a proper 
rational matrix. As it is customary in linear system theory, one can associate to T 
the mapping 

~r_L-':  K"[z]  --, z- 'K"_ ( z ) .  (6.1) 

It is a K[z] module homomorphism, if the K[z] module structure on z -'K~_(z) is 
given by p.v=Tr_pv, p~K[z] ,  vEz- 'K~_(z) .  It is maybe less common tQ 
consider the mapping 

~r+zL-l: z - l K  ~_ ( z )  ~ K"[z]  (6.2) 

which is determined by M and for which T is irrelevant. Let K _ ( z )  be the set of 
oo 

rational functions f such that f ( z  ) = ~ f_ ,  z - L Define f- w = ~r+ fw for f E  K_  (z)  
v = 0  

and wEK"[z].  Then rr+zL - l  is a K _ ( z )  module homomorphism. 
Following Fuhrmann [4] we define a projection rr/~ on Kn[z] by 

~rLy:-- Lrr_L- ly ,  y ~ K"[z] .  

Let VL be the range of 7rL, VL:=Im~rz. Since Ker~r L = K e r r r _ L  -1 =LK"[z] we 
have 

V L ~- K " [ z l / L K " [ z ]  

and the factorization given below is canonical 

qT._Z - 1  

K"[z] z -1K~_(z) 

V L is a vector space of dimension r, r = d e g d e t L  and a K[z] module with 
p. x =~rLpx, p E K [z], x E V L. A shift operator S + is defined on V L by 

s + / =   Lzf(z), vL. 
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Theorem 6 [16]. I f  C ( z I - A ) - I B  is a minimal realization of T, then the columns 
of the polynomial matrix 

C(z)=Z(z)C(zI-A)-' 

form a basis for the vector space V L such that 

In the special case of A = J  we have a finite eigenpair (C, J )  and the 
columns of (~ consist of eigenvectors and generalized eigenvectors of S +. 

The way we dealt with the mapping (6.1) suggests a similar approach for 
(6.2). Define ¢rt': z- lK~_(z)-- ,K"[z]  by 

7rLv: = L~r+zL-lv  v E z - I K  n ( z )  

and U L by Ut': = Im~r L. The product f .  w=L~r+fL- lw,  f ~ K _ ( z ) ,  w E U L, yields 
a K _ ( z )  module structure on U L. We have a canonical factorization 

~r+zL- 
z - l K " _ ( z )  . K"[z] 

On U z multiplication by z -  x is possible. We define a left shift operator S -  on 
U L by 

S - w  : L~r+z- lL-Xw,  w E U L. (6.3) 

Lemma 7. The dimension of U L is equal to the multiplicity of the characteristic 
root ~ = oo of L. 

Proof Let X and Y be two unimodular matrices which transform y - IL-  i(y - l) 
into Smith McMillan form, 

y - l L - l ( y - 1 )  = X ( y ) F ( y ) Y ( y ) ,  

where P i s  the matrix (4.4). Since Y ( z - l )  is an isomorphism of z-IK~_(z)  we can 
assume without loss of generality Y = L  Write F as a sum F = F + F  2 with 

F = d i a g ( 1 / y : h l ( y )  . . . . .  1/yS,hp(y) ,O . . . . .  O) 

and 

F 2 = diag(O . . . .  , 0 ,  ye l /hp+l (y  ) . . . . .  y e ' / h n ( Y ) ) .  
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Since r r + X ( z - I ) F 2 ( z - I ) v ( z ) = O  for v E z - I K " _ ( z ) ,  it remains to consider 
X ( z - l ) F ( z  -1).  Let x~ be the ith column of X, i =  1 . . . . .  p. Then X unimodular 

o0 

and hi(O)~O imply g i : = l / h i ( z - l ) x i ( z - 1 )  = ]~ i - ,  i g _ , z  , go v~O. Thus we can 
~ = 0  

focus on a vector space 

q : =  {~lw(.)=.+zmf(z)g(z), f ~ z - , K _ ( z ) }  

o o  

with g =  ~ g_~z -~, go SO.  The  dimension of Ug is equal to m, since the vectors 
v : 0  

{go, g o z + g - I  . . . . .  go z " - t  + "'" + g - , , + t }  form a basis for U s. [] 
We note without proof that the vectors go . . . . .  gin- ~ form an infinite Jordan 

chain and that the given construction, if performed for each infinite elementary 
divisor, yields an infinite eigenpair of L. 

Theorem 7. Let  H(  I - z N ) - I G  be a minimal realization of  the polynomial part  M 
of L -  i. Then the columns of  

]2I(z) = L ( z ) H ( I - z N )  - I  

form a basis for UI~ and 

S -  I?I = I?IN. 

Proof. Because of Theorem 1 we can assume N to be in Jordan form. Theorem 5 
and Definition 7 imply that the columns of H are linearly independent over K 
and that their number is equal to the multiplicity of h = oo which is--according 
to Lemma 7- -equa l  to d imU L. 

In order to show that the columns of H are in U t" we can restrict ourselves to 
the case N = R o +  I. Because of Theorem 5 the columns of H = ( h  b . . . . .  ho) form an 
infinite Jordan chain of L and because of (5.6) there exist vectors h _  ~ . . . . .  h - s  
such that 

L(z) (h~  ... . .  h _ s ) z - ' ( z  ~ ... . .  z - ' )  T= z - ' p ( z - l ) ,  

i = 0  . . . .  ,b .  

p~K[~], 

Then 

/ / (z  ~-i ..... 1,0 ..... 0 ) T = z L - ' ( z ) v , ( z ) + ( h a , . . . , h _ s )  

× ( 0  . . . .  , O , z  - l  . . . .  , z - S - i )  T 

with v i ( z ) = z - ( i +  Op( z - I ) E z -  IK"_(z), which means that each column of H ( / -  
z N )  - l is in Im ¢r+ z L -  I. From (6.3) we obtain S - 121= L 7r + z - i l l ( l - -  z N )  - 1 = HN.  

[] 

Our investigation has lead us to the main result of this paper. 
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Theorem 8. Let LEKn×n[z] be nonsingular and 

L - ' ( z  ) = Q( Rz+ S ) - ' P  

be a minimal realization such that 

Rz + S = ( Z I - A  0 ) 
0 I - z N  ' 

Q=(C tt)  and e =  ( B " Then L can be factored into 

L(  z ) = O( z )( Rz + S )P( z ) (6.4) 

whereQ=(C t?I) and f i=  ( ~ )  are given by C ( z ) = L ( z ) C ( z I - A )  -I, /~(z)= 

( z I - A ) - ) B L ( z ) ,  I2 l ( z )=L(z )H(I - zU)  -~ and G = ( I - z N ) - I G L ( z ) .  The col- 
umns of C form a basis for 

V L = ImL~r_L-l]K,I~l -~ K " [ z l / L K " [ z ]  

and 

S+O=~a 

where S + is the right shift operator on V L. The columns of 12I form a basis for 

U L = ImL~r+zL-~lz_,K._{z) 

and 

S -  I?t = I?IN 

where S - is the left shift operator on U L. The columns of B T and ~r  have analogous 
properties with respect to L r. 

The finite and infinite elementary divisors of L and Rz + S are the same. 

Proof The factorization (6.4) follows from the definition of Q and/~. The other 
statements are contained in Theorems 4, 6 and 7. [] 

Note that the polynomial matrix Q has a constant right inverse, Q_(z)P=l, 
and/~  has a constant left inverse, Qff(z)=l.  
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