Equivariant S-Duality

By

KLAUS WIRTHMÜLLER

0. We generalize the concept of S-duality introduced in [6] to the equivariant case. Our presentation follows closely that suggested in [5] Exercise 8 F.

Let $C^{0}(G)$ denote the category of finite G-equivariant pointed CW complexes (the base point a 0-cell) and G-maps (G is a compact Lie group). Let $C^{0}(G)$ h be the homotopy category. We need consider only cellular maps as any map in $C^{0}(G)$ is G-homotopic to a cellular one by [2] Prop. 2.4. Note that $C^{0}(G)$ contains all compact smooth G-manifolds. For details concerning CW complexes see [2].

Throughout this paper, we employ the notations of [7].

1. Let $\alpha \in RO(G)$, $X, X^* \in ob C^0(G)$. We define an α -duality to be an element $u \in \widetilde{\omega}_G^{\alpha}(X^* \wedge X)$ (stable equivariant cohomotopy [4]) with the property that for all (closed) subgroups H < G, the maps

(1.1)
$$\begin{array}{c} u/: \tilde{\omega}_{*}^{H} X \to \tilde{\omega}_{H}^{*} X^{*} \\ u^{*}/: \tilde{\omega}_{*}^{H} X^{*} \to \tilde{\omega}_{H}^{*} X \end{array}$$

are isomorphisms (u^* corresponds to u under the transposition $X^* \wedge X \approx X \wedge X^*$). X^* is called an α -dual of X.

(1.2) Proposition. Let $u \in \tilde{\omega}_G^{\alpha}(X^* \wedge X)$ be a duality, $Y, Z \in ob C^0(G)$. There are isomorphisms

$$u : \widetilde{\omega}_{H}^{*}(Y \mid X \wedge Z) \approx \widetilde{\omega}_{H}^{*}(X \wedge Y \mid Z), \ u^{*} : \widetilde{\omega}_{H}^{*}(Y \mid X^{*} \wedge Z) \approx \widetilde{\omega}_{H}^{*}(X \wedge Y \mid Z)$$

generalizing (1.1).

Proof. The groups under consideration are complete (co-)homology theories in Z (resp. Y), cf. [7] 1. The slant products define morphisms between these theories, bijective for $X = Y = S^0$ by (1.1). The proposition now follows from the comparison theorem.

Let $u \in \widetilde{\omega}_G^{\alpha}(X^* \wedge X)$ and $v \in \widetilde{\omega}_G^{\beta}(Y^* \wedge Y)$ be dualities. There are isomorphisms

$$D(u,v): \, \tilde{\omega}^*(X \,|\, Y) \approx \tilde{\omega}^*(Y^* \,|\, X^*) \,,$$

given by the diagram

$$\widetilde{\omega}^*(X \mid Y) \xrightarrow{D(u,v)} \widetilde{\omega}^*(Y^* \mid X^*)$$

 $\approx \downarrow v/ \approx \downarrow u^*/$
 $\widetilde{\omega}^*(Y^* \wedge X) \approx \widetilde{\omega}^*(X \wedge Y^*).$

K. Wirthmüller

Clearly, $D(u, v)^{-1} = D(v^*, u^*)$. If $w \in \widetilde{\omega}_G^{\vee}(Z^* \wedge Z)$ is another duality and $f \in \widetilde{\omega}^*(X \mid Y)$, $g \in \widetilde{\omega}^*(Y \mid Z)$ then D(u, w)(gf) = [D(u, v)f][D(v, w)g].

2. Duality is compatible with sums and smashed products in $C^{0}(G)$, more precisely (compare [6] (6.5), (6.8)):

(2.1) **Proposition.** Let $u \in \tilde{\omega}^{\alpha}(X^* \wedge X)$, $v \in \tilde{\omega}^{\beta}(Y^* \wedge Y)$ be dualities.

(a) If $\alpha = \beta$, let c be the map $(X^* \vee Y^*) \land (X \vee Y) \rightarrow (X^* \land X) \lor (Y^* \land Y)$ collapsing $(X^* \land Y) \lor (Y^* \land X)$. Then $c^*(u \oplus v) \in \tilde{\omega}^{\alpha}((X^* \vee Y^*) \land (X \vee Y))$ is a duality.

(b) The image u * v of $u \times v$ under the transposition

$$\widetilde{\omega}^{lpha+eta}(X^{st}\wedge X\wedge Y^{st}\wedge Y)pprox \widetilde{\omega}^{lpha+eta}((X^{st}\wedge Y^{st})\ \wedge\ (X\wedge Y))$$

is a duality.

Proof. (a) follows immediately from the additivity property of homology theories, (b) from (1.2) and the fact that u * v/ factors into

$$\widetilde{\omega}_*(X \wedge Y) \xrightarrow{u_i} \widetilde{\omega}^*(X^* \mid Y) \xrightarrow{v_i} \widetilde{\omega}^*(Y^* \wedge X^*) \approx \widetilde{\omega}^*(X^* \wedge Y^*) \,.$$

3. Let K < G be a subgroup and embed the homogeneous space G/K together with a tubular neighbourhood $T \approx G \times_K V^{\gamma}$ ($\gamma \in RO(K)$) into a suitable G-representation: $G/K \subset T \subset S^{\beta}$. Necessarily, $\gamma = \beta_K - L(K, G)$, see [7] 1. Let

 $\tau \in \omega_G^\beta(S^\beta \times S^\beta, S^\beta \times S^\beta - \varDelta S^\beta)$

be a Thom class. From the duality theorem [7] Th. 4.1 we obtain isomorphisms

$$\begin{array}{l} \gamma_{\tau} \colon \omega_{*}^{H}(S^{\beta}, S^{\beta} - G/K) \approx \omega_{H}^{*}(G/K) ,\\ \gamma_{\tau} \colon \omega_{*}^{H}T \qquad \qquad \approx \omega_{H}^{*}(S^{\beta}, S^{\beta} - T) . \end{array}$$

Thus $\tau | [(S^{\beta}, S^{\beta} - T) \times G/K]$, which may be considered an element

$$v \in ilde{\omega}_G^eta(T^c \wedge G^+/K),$$

is a β -duality, i.e. we have proved:

(3.1) Proposition. $G^+ \wedge_K S^{\beta-L(K,G)}$ is a β -dual of G^+/K .

Remark. Simultaneously, we obtain a duality $u \in \widetilde{\omega}_K^{\beta}(S^{\beta} \wedge \{1K\}^+)$. If

 $\lambda_{S^0}: \{1 K\}^+ \subset G^+/K$

is the inclusion then $D(u, v) \lambda \in \tilde{\omega}_K^0(G^+ \wedge_K S^{\gamma}, S^{\beta})$ is represented by the collapsing map

 $l_{S^{\gamma}} \colon G^+ \wedge_K S^{\gamma} \to S^L S^{\gamma} = S^{\beta} \quad (\text{see } [7]).$

Remark. This method of constructing duals applies to any compact smooth manifold and embedded submanifolds. We mention just one result (compare [1] Prop. 3.2):

(3.2) Proposition. Let M be a compact smooth G-Manifold, v the normal bundle of M in some G-module V^{β} . Then $M/\partial M$ and the Thom space of v are β -duals.

Vol. XXVI, 1975

Equivariant S-Duality

4. Let X, Y, X*, Y* \in ob $C^0(G)$, $u \in \tilde{\omega}_G^{\alpha}(X^* \wedge X)$, $v \in \tilde{\omega}_G^{\alpha}(Y^* \wedge Y)$ α -dualities, $f: X \to Y$ a map, and set $f^* = D(u, v) f$. We use f^* also to denote a representative map in the class f^* .

(4.1) Proposition. There exists an $(\alpha + 1)$ -duality $w \in \tilde{\omega}_{G}^{\alpha+1}(C_{f^{*}} \wedge C_{f})$, compatible with the Puppe sequences of f and f^{*} , i.e.

(4.2)

$$\widetilde{\omega}_{*} X \xrightarrow{f} \widetilde{\omega}_{*} Y \xrightarrow{f^{1}} \widetilde{\omega}_{*} C_{f} \xrightarrow{f^{2}} \widetilde{\omega}_{*} SX \xrightarrow{Sf} \widetilde{\omega}_{*} SY \\
\downarrow u/ \qquad \downarrow v/ \qquad \downarrow w/ \qquad \downarrow u/ \qquad \downarrow v/ \\
\widetilde{\omega}^{*} SX^{*} \xrightarrow{Sf^{*}} \widetilde{\omega}^{*} SY^{*} \xrightarrow{f^{*2}} \widetilde{\omega}^{*} C_{f^{*}} \xrightarrow{f^{*1}} \widetilde{\omega}^{*} X^{*} \xrightarrow{f^{*}} \widetilde{\omega}^{*} Y^{*}$$

and the dual diagram for u^*, v^*, w^* commute.

Proof. Since everything involved is compatible with suspensions we may assume there are representatives $u: X^* \wedge X \to S^{\alpha}$, $v: Y^* \wedge Y \to S^{\alpha}$, $f^*: Y^* \to X^*$ and a homotopy $H: u(f^* \wedge X) \simeq v(Y^* \wedge f)$. Remember the functorial property [3] 2.2 of the mapping cone and define r by

$$\begin{array}{cccc} Y^{\ast} \wedge X \xrightarrow{f^{\ast}} X^{\ast} \wedge X \xrightarrow{f^{\ast 1}} C_{f^{\ast}} \wedge X \\ & \downarrow^{f} & H & \downarrow^{u} & \downarrow^{r} \\ Y^{\ast} \wedge Y \xrightarrow{v} & S^{\alpha} & \xrightarrow{v^{1}} & C_{v} \end{array},$$

similarly w by

$$\begin{array}{ccc} C_{f^{\star}} \wedge X \xrightarrow{f} C_{f^{\star}} \wedge Y \xrightarrow{f^{1}} C_{f^{\star}} \wedge C_{j} \\ \downarrow^{r} & H' & \downarrow^{f^{\star 2}} & \downarrow^{v} \\ C_{v} & \xrightarrow{\gamma^{2}} SY^{\star} \wedge Y \xrightarrow{Sv} S^{\alpha+1} \end{array}$$

(both definitions depend on the choice of homotopies H resp.

$$H': (f^{*2} \wedge Y)(C_{f^*} \wedge f) \simeq v^2 r).$$

w makes (4.2) commute, so its duality property follows from exactness and the five lemma.

5. Recall that the (reduced) mapping cylinder Z(i, j) of a diagram $X \stackrel{i}{\leftarrow} A \stackrel{j}{\rightarrow} Y$ in $C^0(G)$ is the quotient of $X \vee I^+ \wedge A \vee Y$ by the identifications [0, a] = [i a], [1, a] = [j a]. Up to suspension, Z(i, j) is the mapping cone of a single map: let $p: X \rightarrow Z(i, j)$ and $q: Y \rightarrow Z(i, j)$ be the inclusions and consider the Puppe sequence

(5.1)
$$X \vee Y \xrightarrow{p \vee q} Z(i,j) \xrightarrow{(p \vee q)^1} C_{p \vee q} \xrightarrow{(p \vee q)^2} SX \vee SY \xrightarrow{Sp \vee Sq} SZ(i,j) \to \cdots$$

of $p \lor q$. As $p \lor q$ is a cofibration $C_{p \lor q}$ is homotopy equivalent with

$$Z(i,j)/(X \lor Y) = SA$$
 ,

so SZ(i, j) is the mapping cone of a map $SA \rightarrow SX \lor SY$.

Remark. (5.1) is, of course, just the Mayer-Vietoris sequence of the proper triad $(Z(i, j); X \cup [0, \frac{1}{2}], Y \cup [\frac{1}{2}, 1]).$

We are now ready to prove:

(5.2) **Proposition.** Every space $X \in ob C^0(G)$ has a γ -dual for some $\gamma \in RO(G)$.

Proof. Attaching an equivariant *n*-cell $e^n \times G/K$ to a subcomplex $Y \subset X$ means forming the mapping cylinder of the diagram

$$G^+/K \leftarrow (\partial e^n)^+ \wedge G^+/K \rightarrow Y$$

where the left hand map is the projection and the right hand one is the attaching map. From the discussion above we know that stably, $Y \cup e^n \times G/K$ is the mapping cone of a morphism $(\partial e^n)^+ \wedge G^+/K \to G^+/K \vee Y$. By (3.1), (3.2) (applied to the standard embedding of ∂e^n into \mathbb{R}^n) and (2.1b), G^+/K and $(\partial e^n)^+ \wedge G^+/K$ have duals $G^+ \wedge_K S^{\beta-L(K,G)}$ and $S(\partial e^n)^+ \wedge G^+ \wedge_K S^{\beta-L(K,G)}$ resp. The proof is completed by (2.1a) and induction on the number of cells in X.

6. Let $SC^{0}(G)h$ be the stable homotopy category, i.e. mor $(X, Y) = \tilde{\omega}_{G}^{0}(X | Y)$. From $SC^{0}(G)h$ we obtain another category $\hat{S}C^{0}(G)h$ by adjoining formal desuspensions $S^{\alpha}X$ ($\alpha \in RO(G)$, $\alpha < 0$, $X \in ob C^{0}(G)$) and the obvious morphisms. Its advantage over $SC^{0}(G)h$ is that all suspensions S^{γ} , $\gamma \in RO(G)$, are defined and invertible.

We define the duality cofunctor

$$D_G: SC^0(G) h \to SC^0(G) h$$

as follows: for every object $S^{\alpha}X$ fix a duality $u_X \in \widetilde{\omega}^{\gamma}_G(X^* \wedge X)$ and set

 $D_G(S^{\alpha}X) = S^{-\alpha-\gamma}X^*.$

On morphisms let D_G be

 $D(u_X, u_Y): \tilde{\omega}^*_G(X \mid Y) \approx \tilde{\omega}^*_G(Y^* \mid X^*).$

Different choices of duals lead to equivalent cofunctors D_G . We also have $D_G^2 \simeq \text{Id}$, the equivalences in both cases being given by the Yoneda lemma. Note that

 $S^{\beta} D_G S^{\beta} \simeq D_G$ for all $\beta \in RO(G)$.

The cofunctor D allows us to construct the homology theory "corresponding to" any given cohomology and vice versa. Just note that (co-)homology theories $\tilde{l}_*(\tilde{l}^*)$ on $C^0(G)$ are naturally defined on $\hat{S}C^0(G)h$ too, and form $\tilde{t}_G^* \circ D_G$. This is readily seen to be a homology theory; the exactness axiom follows from the fact that Drespects Puppe sequences. If \tilde{t}^* is complete (see [7] 1), so is $\tilde{t}^* \circ D$: according to the remark after (3.1), $(l_X)_* \varrho_*^{KH} = (\lambda_X^*)^* \varrho_{KH}^*$ is isomorphic for $X = S^0$ and all K < H < G, and this suffices by the comparison theorem and "Lie group induction" (compare $\tilde{t}_K^* \circ D_K$ and $\tilde{t}_H^* \circ D_H(H^+ \wedge_K \cdot)$).

Conversely, assume a multiplicative pair (t_*, t^*) of complete *G*-theories is given and let $\theta: \tilde{\omega}_G^* \to \tilde{t}_G^*$ be the Hurewicz homomorphism. If $u \in \tilde{\omega}_G^{\alpha}(X^* \wedge X)$ is a duality then the homomorphisms

(6.1)
$$\begin{array}{c} \theta u /: \ t_*^H X \to t_H^* X^* \\ \theta u^* /: \ t_*^H X^* \to t_H^* X \end{array}$$

Vol. XXVI, 1975

Equivariant S-Duality

are bijective for all H < G. This follows since $\theta u/$ is a morphism $\tilde{t}_* \to \tilde{t}^* \circ D$, isomorphic on the coefficients.

7. As an application of the last result, consider the following pair of theories: fix a normal subgroup $H \triangleleft G$ and define t_* by

$$l^{K}_{lpha} X = \left\{ egin{array}{c} \widetilde{\omega}^{K/H}_{lpha^{H}}(X^{H}) & ext{if} \quad H < K, \ 0 & ext{otherwise} \end{array}
ight.$$

 $(\alpha^{H} \text{ and } X^{H} \text{ denote } H \text{-fixed point sets};$ these carry a K/H-action since $H \triangleleft K$). Define t^{*} correspondingly. A straightforward verification shows that t_{*} and t^{*} form a multiplicative pair of complete *G*-equivariant theories (when checking for completeness, note that for H < K' < K, L(K/H, K'/H) = L(K, K') has trivial *H*action, and that $(K \times_{K'} X)^{H} = \emptyset$ unless H < K'). By (6.1), t_{*} and t^{*} are duals, so we obtain:

(7.1) Proposition. Let H be a subgroup of G. If $u \in \widetilde{\omega}_G^{\alpha}(X^* \wedge X)$ is a duality then $u^H \in \widetilde{\omega}_{NH/H}^{\alpha^H}(X^{*H} \wedge X^H)$ is a duality where NH is the normalizer of H in G.

References

- [1] M. F. ATIYAH, Thom complexes. Proc. London Math. Soc. (3) 11, 291-310 (1961).
- [2] S. ILLMAN, Equivariant singular homology and cohomology for actions of compact Lie groups. In: Lect. Notes Math. 298, pp. 403-415. Berlin-Heidelberg-New York 1972.
- [3] D. PUPPE, Homotopiemengen und ihre induzierten Abbildungen. I. Math. Z. 69, 299-344 (1958).
- [4] G. B. SEGAL, Equivariant stable homotopy theory. In: Actes Congrès intern. Math. 1970, Tome 2, pp. 59-63. Paris 1971.
- [5] E. H. SPANIER, Algebraic Topology. New York 1966.
- [6] E. H. SPANIER, Function spaces and duality. Ann. of Math. (2) 70, 338-378 (1959).
- [7] K. WIRTHMÜLLER, Equivariant homology and duality. Manuscripta math. 11, 373-390 (1974).

Eingegangen am 14. 8. 1974

Anschrift des Autors:

Klaus Wirthmüller Mathematisches Institut der Universität D-66 Saarbrücken 11

zur Zeit:

Department of Pure Mathematics University of Liverpool P. O. Box 147 Liverpool L69 3BX