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EQUIVARIANT HOMOLOGY AND DUALITY 

Klaus WirthmGller 

This note is concerned with stable G-equivariant homology 
and cohomology theories (G a compact Lie group). In im- 
portant cases, when H-equivariant theories are defined 
naturally for all closed subgroups H of G, we show that 
the G-(co)homology groups of G • X are isomorphic with 

H-(oo)homology groups of X. We introduce the concept of 
orientability of G-vector bundles and manifolds with re- 
spect to an equivariant cohomology theory and prove a du- 
ality theorem which implies an equivariant analogue of 
Poincar@ - Lefschetz duality. 

The ideas developed here partly originate from sugges- 
tions made by T. tom Dieck, who introduced me to the sub- 
ject. 

1 Equivariant homology 

G is a compact Lie group, GTop ~ the category of pointed 

G-spaces. 

Let RO(G) be the real representation ring of G and iden- 

tify every element of RO(G) + (the semi-group of isomor- 

phism classes of real representations) with one of its 

representatives in a suitable manner (cf. e.g. [5] 1.1). 

Fix a subgroup A of RO(G) consisting of even-dimensional 

virtual G-modules. For V ~ RO(G) + let IV] denote the co- 

set of V in RO(G)/A, let S V be the one-point compactifi- 

cation of V (or, ambiguously, suspension by it) and IVI 

the real dimension of V. 
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2 WIRTHM~LLER 

A G-homology theory indexed by RO(G)/A consists of 

(I) a collection (~a)aeRO(G)/A of functors 

~a: GT~176 >Ab 

(2) a collection (aVa)V~RO(G)+ ' a~RO(G)/A of natural 

transformations aVe: ~a----+ ~a+[v].S V 

such that 

(a) ~a is homotopy invariant and half-exact, i.e. for 

f: X ~Y the sequence ~aX ~aY )~aCf is ex- 

act (Cf denotes the mapping cone of f) 

(b) T.OVO W = (-I)JvIJWIawa V where T: sVs W ~sWs V in- 

terchanges the factors 

(c) all aVa are equivalences of functors. 

The corresponding unreduced theory is defined by 

ta(X,Y) = ~aC(X,Y) = ~aCy+cx+. Cohomology is defined and 

denoted in the obvious way. 

GTop ~ may be replaced by a suitable subcategory, e.g. a 

category of G-equivariant CW complexes ([6]). 

Consider theories t, u, v indexed by RO(G)/A, RO(G)/B, 

RO(G)/C respectively, with A + B c C. We shall use the 

four external products ([9] w 

(1) homology cross 

(2) cohomology cross 

(3) homology slant 

(4) cohomology slant 

• {.X | ~.Y >, ~.(XAY) 

• {*X | ~*Y ) ~*(XAY) 

\: ~*Y | ~.(XAY) ) ~.X 

/: ~*(XAY) | ~.Y ~ v*X 

as well as the cup and cap products induced by (2) resp. 

(3). Our sign conventions are consistent with [8]. Of 

particular interest are the cases t = u = v (multiplica- 

tire theory; ~mS ~ = ~ S ~ etc is always understood) and 

u = v (t multiplicative and acting on u). In these cases 

we assume a unit in t having the usual properties. 
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WIRTHM~LLER 3 

Now consider (closed) subgroups K c H c G. Let F be the 

semi-direct product of K • K, acting on H by both-sided 

translation, with 22, the non-trivial element being in- 

version on H. Thus H is a F-space, and K (being stable 

under F) has a linear r-tube in H ([2] 11.4, we identify 

a tube with its image in H). Denote the bundle projection 

T ~ H by w and let L = L(K,H) be the fibre at I with K 

acting orthogonally upon it by conjugation. We identify L 

and its class in RO(K). 

There is a left and right K-equivariant map 

l: H + ~ T c ~ sLK + where the arrow collapses H - T into 

the base point, and the homeomorphism sends h to 

[h.wh-l,wh]. Note that for any K-space X, 1 defines a K- 

map 1X: H + A K X ~sLx. Similarly, from the inclusion 
I 

X: K c H we obtain maps XX: X ~H + A K X. 

Let us assume that for every subgroup H a G a subgroup A H 

of RO(H) is given such that the forgetful functors 

RO(H) ~RO(K), K c H c G, map A H into A K. Denote the 

homomorphism R0(H)/AH-----~RO(K)/A K by a, ~K" 

A complete G-homology theory ~. consists of one H-homolo- 

gy theory ~ for every subgroup H c G together with natu- 

ral transformations (restrictions) 

~H ~K ~.KH: t. > *(H) 

of homology theories such that p.MKp.KH : p.MH (M c K c H a 
~K 

G). Here t.(H) means the graded group (~)c~RO(H)~ /A H" 

The following axiom is to be satisfied: the composition 

~H ~K . (H + A K " ) 7 ~ ( H )  (H + A K ' ) ~  t .(H ) (S LX) 

respec t ive ly  

(H+ ^K (H+ AK 

In terms of pairs, i is (essentially) the inclusion 
H c (H,H-K) dual to k (compare Theorem 4.1 below). 
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4 WIRTHM~LLER 

is isomorphic. 

There is a comparison theorem for complete theories de- 

fined on the category of finite CW complexes: a morphism 

of complete theories is isomorphic if it induces isomor- 

~Hs~ all H c G. phisms on the coefficients . , 

Products in complete theories are assumed to commute with 

the restriction homomorphisms p. 

2 Spectra 

We construct equivariant homology theories by means of 

spectra. In order to avoid signs we give the construction 

of the functors t a for only those a with a = [2V] for 

some representation V. The definition is readily complet- 

ed then by use of suspensions. 

Recall that RO(G) is a directed set and that every repre- 

sentation V E 2R0(G) has a canonical complex G-module 

structure. For these V all complex automorphisms of S V 

are G-homotopic (see [5] I.I). 

A G-spectrum ~ over RO(G)/A consists of 

(I) a final subset r c 2R0(G) +, closed under addition 

and subtraction (as far as possible in R0(G) +) 

(2) a family (Ea)a~[r ] of pointed G-spaces 

(3) G-maps eva: sVEa-----~E[v]+a, a ~ [r V ~ r 

such that ev,[w]+a'ewa is pointed G-homotopy equivalent 

to eV+W, ~. 

For any G-spectrum ~ we define associated contra-co-vari- 

ant bifunctors ~a(x I Y I ~) to be the colimits over 

pointed G-homotopy sets 

EsVx ' ^ v 
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WIRTHM[]LLER 5 

as usual (cf. [4]). It is well-known ([5] 1.1) that these 

functors are actually homology and cohomology theories, 

for fixed X respectively Y. In particular we have theo- 

ries ~a(Y I ~) := ~-a( S~ I Y I ~) and 

~(x I~) :=~(x I s ~ I~). 

Let (AH)Ha G be a family as above. A complete G-spectrum 

is a family of H-spectra E_ H such that the forgetful func- 

tor maps cH into c K (K c H) and, secondly, E~] and E~aK] 

are K-homotopy equivalent by equivalences commuting with 

the maps of the spectra. 

A complete spectrum defines a family of functors 

(~(X I Y))H~G" There are obvious restriction morphisms 

~.: ~ >~(H). 

THEOREM 2.1. ~. and ~* are complete G-theories. 

Proof. Let K c H c G. Note at first that the forgetful 

functor maps RO(H) + onto a final subset of RO(K) + (see 

[2] 0.4.2). Then the cohomology assertion follows immedi- 

ately from 

[ svH+ ^K x , s ^ Y]~ ~ [H + ^K svx ' ~ ^ Y]~ 

[sVx , s ~ Y]~.  

Choose an H-module V E r such that K is the stabilizer 

of some point x ~ V (cf. [2] 0.5.2) and let W c V be a 

linear slice at x. We have an H-map ~: S V ~H + A K S W 

and a K-map ~: S V- ~sWs L so that ~-I: H x K W ~HW c V 

and -I: W x L ~ T x K W ~ TWc V are the canonical maps. 

is an H-homotopy equivalence (it is homotopic to its 

differential at x). Let w be a homotopy inverse of 

(id A -id)'~. We assert that the following composition 

inverts 1.p.KH: 

~(H)( swx I sWsLy) ~(H)( X I sLy) sW ~. ) 

377 



6 WIRTH~LLER 

~(H)( SwX I sVy) ~ ~( H+ A K SWX I H+ A K sVy) ~ 
H+A K 

~(H + A Ks wax I svH + A~Y) ~ .  , 

~ V sVH + > t ~ ( X  I H+ A K Y) t ~ ( S  X I A K Y) ( s V ) _  1 

Let f: sUx >E a sLy represent an element in 

~(H)( X I sLy), and let ~: sVsUx----~sVE ^ SLy be the 

corresponding representative of 1.p.a(f). The following 

K-homotopy commutative diagram shows that f and ~ repre- 

sent the same class: 

sVsUx 

T T(3) 

sWsLsUx ~ sLsWL+ ^ SUX 

I 
sWsLs~x--~sLsWL + A sUx 

,sV~, ~ sLy ~ sWs~ ^ sly 

(6) 

sVsUx 
sVf 

, sVE ^ sLY-~ sWs~ A sly 

Explanation: (I) is ~ A sUx, (2) is the diagonal on L. It 

is readily verified that there is a unique map (3) that 

is the identity on S L and makes the upper left hand part 

of the diagram commute. (4) maps x ~ S L to [x,o] ~ sLL + 

and is homotopic with (2). (5) is ~ A E A sLy, and final- 

ly (6), mapping [x,y] ~ sLs L to [y,-x] ~ sLs L, is homo- 

topic to the identity. The lower part of the diagram com- 

mutes up to a homotopy ~w ~ id A -id: sWs L ~sWs L. 

Now assume that F: sUx ~E A H + A K Y is an H-map and 

let ~: sVsUx ~sVE A H + A K Y be its transformed repre- 

senting • We abbreviate 

S = sVsUx, R = sVE A H + A K Y, 

P : W • FI[sUx - F-I(.)]-Ip-I(T/K) ~ S and 
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WIRTHM?JLLER 7 

Q = v • Fl[sUx - F-1(.)]-Ip-1(IK) = S (p is the projec- 

tion to H/K), 

P *  = P u { * t  ~ s / ( s  - H P ) ,  Q*  = Q U I *1  = S / ( S  - H Q ) .  

The canonical maps H + ^K P* ~S/(S - HP) and 

H+ ^K Q* ~S/(S - HQ) are homeomorphisms. 

Look at the following diagrams, which we explain below: 

S )'R 

/H+^ P*--U~ R 
s (I) 

H +^KP* ~ R 

. . ~  H+~:Q* ( ~  R 

H+AKQ* ~ R 

S ~R 
sVF 

P*-~ sWsh~ +^KY~ R 

- I + Y ~  P* ~ sWs �89 ^K (6) R 

I+ A S R 

I+AH+AKQ* < (13) I+^Q* 

(I) and (2) are quotient maps, (3) is the unique map mak- 

ing the top part of the left diagram commutative. (3) 

corresponds to a K-map P* JR, which factors into 

(5)(4) as indicated on the right, (5) being w ^ id. (6) 

sends [x,g,h] ~ sWsLH + to [g.w(x,g),gh] ~ sVH + and is K- 

homotopic with (5). (7) is the H-extension of (6)(4). 

There are unique maps (8) and (9) such that (8)(2)=(7)(1) 

and (9)(2)=sVF. It remains to prove that (8) and (9) are 

H-homotopic: if ~ is a K-homotopy from ~.(id A -id).~ to 

the identity of S V, then (Io) = ~ A F factors into 

(11)(12) where (12) is the quotient map. The inclusion 

(13) followed by (11) is a K-homotopy (14) of maps 

Q* ~ R. The H-extension of (14) joins (8) and (9). 

This completes the proof. 
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8 WIRTHM~LLER 

If E i, i = 1,2,3, are complete G-spectra over 

(RO(H)/A~)Hc G with A~ + A~ c A~, a pairing r of 21 ^ 22 

into 23 consists of one pairing cH: 21,H A ~2,H ~E3,H 

of H-spectra for each H, commuting with the restriction 

maps up to pointed equivariant homotopy. A pairing induc- 

es products in homology (cf. [9] w 

Examples of multiplicative complete G-spectra are the 

sphere spectrum ([7]) leading to equivariant stable homo- 

topy, and the Thom spectra ([5]) leading to bordism theo- 

ries. 

3 Orientation 

Let w: E ~ B be a G-vector bundle and let M(w) denote 

its Thom space. Assume that 4" is a multiplicative com- 

plete cohomology theory. ~*M(w) is a t*B module by means 

of the cup product. 

PROPOSITION 3.1. If B i_~s ~ homogeneous G-space then 

~*M(w) is free cyclic over t*B. 

Proof. 

thus M(w) = G + A H S V. The composition 

(G + S v) 

is a module isomorphism over X*p~G: t~ (G/H) 

hence the assertion. 

We may assume B = G/H, E = G x H V with V ~ RO(H), 

( a )  , 

Return to the general case. A Thom class for w in t* is a 

homogeneous element ~ ~ ~M(w) such that for every orbit 

b c B, ~IM(wlb) is a free module generator of ~M(wlb) 

over t~b. A (t~ -) orientable G-bundle is one admitting a 

Thom class. 

PROPOSITION 3.2. If ~i is a Thom class for wi: Ei-----*B i 

(i = 1,2), then ~1 x ~2 is a Thom class for Wl x w 2. 
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WIRTHM~LLER 9 

Proof. By naturality we may assume B i = G/Hi, 

M(wi) = G + ^Hi S i and need consider only the orbit of 

z = (IH1,IH2). The inclusion Gz c B I x B 2 corresponds to 

the diagonal d: G/(H I n H2) ~G/H I x G/H 2. The asser- 

tion follows now from commutativity of 

~(a+̂ H1sl) ~ ~(a+h~zS2)~ ~(a+h~Isl ̂ a+~2s 2) 
1~ 

I~ I ~ ~ (a+ nH 2 sls2) AHi~ 

~I fl | t~( )$2 x ~.(G) $IS2 2 ~ ~Hfl nil2 

I 
t ~ l a )  | H 2 • ~ 

(the restrictions p~10H2,Hi involved in the lower part of 

the diagram are not indicated). 

A similar argument shows 

PROPOSITION 3.3. ~ t~ -orientable bundle is t~ -orienta- 

ble for every H c G. 

By a G-manifold we mean a (paracompact) topological mani- 

fold with boundary together with a locally smooth G-ac- 

tion upon it ([2] IV). Recall that any G-manifold is an 

equivariant ANR (if its topology has a countable base) 

and has an equivariant collaring ([2] V.I.5). The tangent 

bundle ~X of a G-manifold X with empty boundary is the 

(X,X - .) bundle 

Pr1: (X• , XxX - AX) ~X 

(AX denotes the diagonal in XxX). The notion of Thom 

class and orientability clearly applies to ~X though this 

need not be a vector bundle. If bX is not empty we define 
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Io WIRTH~LLER 

a Thom class to be a homogeneous element in 

t*(XxX , XxX - AX) which restricts to a Thom class of 

X - bX. 

PROPOSITION 3.4. Let X be an H-manifold. G x H X is t~ - 

orientable iff X has a Thom class in t~ (G)-[L(H'G)]. 

Proof. This follows because 

((G• x (GXHX),(G• x (GXHX) - A(GXHX)) 

G x H (X x GXHX , X x GXHX - AX) 
G x H (Xxl X) 

G x H (sL,s L - o) x (XxX , XxX - fiX) 

G x H * • XxX 

induces an isomorphism in cohomology ((x,x) ~ AX is iden- 

tified with [x,l,x] ~ X x G x H X). 

Clearly a G-manifold with stably trivial tangent bundle 

has Thom classes in any complete theory. It is also obvi- 

ous that there are larger classes of manifolds with ori- 

entations in the various cobordism theories. 

4 Duality 

Let X be a G-manifold without boundary, and let 

T ~ t~(XxX , XxX - AX) be a Thom class. Let (u.,u*) be a 

pair of complete G-theories such that t acts on u. Sup- 

pose that u. has compact supports ([8] 4.8.11). For every 

compact pair (A,B) in X we define a duality map 

~: ua(X-B,X-A) > u~-a(A,B) 

which sends z to [~I(A,B) x (X-B,X-A)]/z. 1 Set 

~*(A,B) = colim u*(U,V), with (U,V) varying over pairs of 

The slant product need not be defined for arbitrary 

~ airs. This difficulty can be avoided as follows: let 
U,V) be a closed neighbourhood pair of (A,B). By means 
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WIRTHM[~LLER 11 

compact neighbourhoods of (A,B) in X, and let 

~ : u.(X-B,X-A) [*(A,B) 

be the colimit homomorphism. 

THEOREM 4.1. ~7 is an isomorphism. 

Proof. Consider the special case A = Gx, B = ~ first. 

The situation is displayed in the commutative diagrams 

t~(AxX , AxX - AA) 

~1(1) * 
t~(GXH(G•215215 

[0- 
t~ ( GX H ( GXHV , GXHV-HXHO ) ) 

(4)* 

t~(GXHV , GXHV - HXHO ) 
J 

~ ( s L s  v) 

~icL+V 

t~ 

> t~(Ax(X,X-A)) 

(2)* 

(3)* >t~(G/HXGXH(V'V-~ 

(3)* 't~(G/HXGXH(V'V-~ 

I (5)* 
t~(GXH(V,V-o)) 

~(sLs v) 

I oL+V 

t~ 

and 

of a function that separates A and X - U we construct a 
map 

C(A,B) A (X-V)/(X-U) ~ C((A,B) • (X-B,X-A)) 

and obta in  a product 

t*((A,B) x (X-B,X-A)) | ~.((X-V)/(X-U)) >t*(A,B). 

Now take the colimit over (U,V) and apply the axiom of 
compact supports. 
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12 WIRTHM~LLER 

t~(Ax(X,X-A)) | uG.(x,X-A) 

I(2) * (6)*T~ 
t~(G/HXGXH(V,V-o)) | u.G(GXH(V,V-o ) 

t~(G/HXGXH(V,V-o)) | u~(GXH(V,V-o)) 

l (~)* 

t~(GXH(V,V-o)) | u~(GXH(V,V-o)) 

~(sLs v) | u.~ ~ 

T L+V ~L+VI~ 

| 

> u~A 

(7)*1~ 
> u~(GIH) 

- - - - - ~ ( G / H )  ~ 

~ (8)~. 
' N 

' N 

N 

Explanation: H is the stabilizer of x, V a linear slice 

at x. (I): [g,h,v]J >(gx,ghv), (2): [g,h,v], )(gx,hv), 

(3): [g,h,v], )(g,g-lh,v), (4),(5): [h,v]t >[1,h,v], 

(6): [h,v]J ) hv, (7): [h], >h_x, (8):., >IN. The 

unlabelled horizontal arrows of the first diagram are in- 

duced by inclusions, those of the second one are slant 

products. 

The Thom class ~I A ~ t~(AxX , AyC~ - AA) corresponds to a 

unit in t~ by the vertical isomorphism. From this fact 

the assertion follows (clearly u*A = ~*A). 

In the general case we may assume B = ~ (by the five lem- 

ma), further that X is compact (by excising the comple- 

ment of a compact neighbourhood of A). Sometimes we shall 

not distinguish between a G-subset of X and its image in 

X/G. 

We set up a spectral sequence along the lines of [i] 3. 

Let Q = (Qj)j~j be an open G-covering of X with the prop- 

erties 
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WIRTHM~LLER 13 

(a) J is finite 

(b) dim nerve Q < dim X 
i 

(such coverings are final in the set of all open cover- 

ings). Choose 1 ~ IJI and realise N := nerve Q as a line- 

ar subcomplex INI of R 1 such that the vertices of N are 

affine independent in R 1. We abbreviate: 

the closed simplex a, ~ the boundary, ~ = ~ - ~, 

Q~ = jecA Qj if J~cA Qj meets A, Qc = @ otherwise, Co = Q~' 

Z = R 1 x X, W = U ~ • C c Z, C = Pr2W. 
all c 

W is filtered by ~ = W -1 c W ~ c ... c W dim X = W with 

W p = pr711NP I (N p the p-skeleton of N). It follows ([I] 

3.2, [3] XV w that there is a strongly convergent spec- 

tral sequence E* with E~ = H*(QIP* ) and termination u'C; 

the coefficient presheaf P* on X/G (see [8] 6.7) sends an 

open subset U c X/G to u*(U-) if U meets A, to {o} other- 

wise. The spectral sequence is functorial with respect to 

refinements of coverings ([I] 3.2). Taking the colimit 

over open coverings, we obtain a spectral sequence E*, 

with E~ = H*(X/GIP*) (Cech cohomology, see [8] 6.7), con- 

verging strongly to ~*A. 

We imitate this procedure in homology. Consider the (co- 

homology) spectral sequence E. with 
E I pa = Ul-p-a(z-wP-I'z-wP) set up by the Cartan - Eilen- 

berg method ([3] XV w The sets ~ (dim ~ = p) are 

closed in R I - I NP-II, hence we can choose pairwise dis- 

joint neighbourhoods N a. There are isomorphisms 

u.(Z -wp-1 , z-w p) ~ D u.(NxX N xX - ~xC ) 
dimo=p ' ~ 

1 �9 u.((~ -~ , Rl-~) x (X,X-C)) 

(excise Z - (W p-I U U~ N • on the left and (RI-No) • X 

on the right). Choose a sequence ~o c a I c ... c Cp = ~, 
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14 WIRTH~LER 

with qj a j-simplex. We have isomorphisms 

u.((Rl-~j , RI-~j) x (x,x-c~)) 

u*((Rl-&j-1 ' Rl-~j-I ) • (X,X-Cq)) 

dual to those used in the computation of E~ (to prove bi- 

jectivity, approximate the simplexes by suitable neigh- 

bourhoods and apply the axiom of compact supports). Fi- 

nally we have 

u . ( ( R 1 , R I - ~ o )  X (X,X-Co))  ~ u . (X,X-C ) 

by suspension. 

Proceeding further like in the cohomology case we obtain 

an isomorphism E~ ~ H*(QIP.) , with P.U = u.(X,X-U-) if U 

meets A, P.U = Io~ otherwise (U c X/G open). 

E. has termination u,(X,X-C): clearly E. converges to 

u.(Z,Z-W). Choose an open neighbourhood V of C in X and a 

G-function 4: X >I such that X - V = $-IIo } and 

C c ~-I~I I. Let (~j)j~j be a partition of unity subordi- 

nate to Q. The formula 

( s , x ) ,  ~ ( s -  Cx. D ~jx.  f31 , x) 
j ~ J  

d e f i n e s  a homeomorphism h of  Z onto  i t s e l f ,  homotop ic  t o  
the identity and carrying iC onto o x C where i: C > W 

is the homotopy inverse of pr 2 sending x to 

( D.ej ~.x'I~In ' x). With r = sup Ilsl I s ~ INII and 

R =U~(s,x) e Z I I sl < 2r.$xl the inclusions 

Z - R c Z - oxV and Z - R c h(Z - W) 0 (Z - oxV) are ho- 

motopy equivalences. Taking colimits over neighbourhoods 

V we obtain 

u.(z,z-w) ~ u.((Rl,Rl-o) • (x,x-c)) ~ u.(x,x-c) 

as asserted above. 

The spectral sequence E. does not depend on the chosen 
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WIRTHMOLLER 15 

realisation of N as a subspace of some Rl: suppose 

INI c R 1 and IN I' = R I' are different choices, 1 ~ l'. 

Then there is an affine orientation-preserving isomor- 

phism h: R l'-I x R 1 , R l' sending each vertex of 

o x INI to the corresponding vertex in INI'. (l'-l)-fold 

trivial suspension followed by (h x idx) . is an isomor- 

phism 

u.(z-wP,z_wq) u.(z,-w,P,z,-w,q) 

for every p,q (p ~ q). Furthermore on H*(QIP.) and 

u.(X,X-C) the identities are induced. 

We make E. functorial with respect to refinements of cov- 

erings: let Q _< Q', X: J' ~J a refinement function. 

Define a third covering Q" by J" = J + J', Q" = Qj j 
Q'$, = QXj,, and factor X into 

j. ~ j,, e ..... ~ j 
, ~,, 

w h e r e  X " j  = j ,  k " j '  = ; ~ j ' ,  X ' j '  = j ' ,  ~aj = j ( j  e J ,  

j' e J'). Note that the nerve of Q" is that of Q with ev- 

ery vertex j blown up into a k-simplex if x-lj has k ele- 

ments. By means of the injective functions k' and # we 

may identify N' resp. N with subcomplexes of N". By em- 

bedding IN"I into R 1 we obtain inclusions Z - W" c Z - W' 

and 2 - W" c Z - W, which induce morphisms k~: E.-----~" E~ 

and #.: E~-----~E.. As both k" and ~ are refinement func- 

tions of coverings they are contiguity inverse to each 

other. This implies that ~*: H*(Q"IP.) ~H*(QIP.) is 

isomorphic, so ~.: E~ )E. is an isomorphism of E 2 

spectral sequences. We define k. = ~.#.I: E.-----~E~. 

This does not depend on the choice of X, and it is func- 

torial. 

Now form the colimit spectral sequence ~. with 

E.~2 = H*(X/GIP.) and E. ~ u.(X,X-A). 

Let ~ be the canonical Thom class of ~i. The duality maps 
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16 WIRTHM[]LLER 

y~• induce a morphism E. > ~*o The map induced on the 

2-level is H*(X/GI~) where y~ is considered as a homo- 

morphism of presheaves on X/G. By the first part of the 

proof, ~ is a local isomorphism, hence ~*(X/GIy~) is 

isomorphic (cf. [8] 6.8.17). Thus we have an isomorphism 

of E 2 spectral sequences. Since the map induced in the 

termination is a filtration of ~ : u.(X,X-A) >~*A, ~T 

is isomorphic. This proves Theorem 4.1. 

By the same technique we can prove a Thom isomorphism 

theorem for ~* (see [8] 5.7.1o) (which, of course, is 

true in more general circumstances). In order to con- 

struct the spectral sequence for u*(CxX , C• - AC) start 

from the (X,X - .) bundle that the projection W ~X in- 

duces from ~X. 

We outline briefly that orientability of G-manifolds can 

be described alternatively by fundamental classes. 

Let X and t be as above. The cap product turns t.(X,X-b) 

into a free cyclic module over t*b (b c X an orbit). Set 

t~X = lim A t.A, taken over all compact A c X. ~ ~ t~X is 

a fundamental class for X if, for every orbit b c X, its 

image under t~X > t.(X,X-b) is a free generator of 

t.(X,X-b) over t*b. 

THEOREM 4.2. There is a one-to-one correspondence be- 

tween compatible families of Thom classes for TXIA (A c X 

compact) and fundamental classes for X. 

Proof. Let (~A) be such a family of Thom classes. For 

each compact A c X we have ~ : t~(X,X-A) ~ ~~ If A is 

an orbit a look at the diagrams in the proof of Theorem 

4.1 shows that ~ is an isomorphism of t*A modules. Hence 

the family (~ -I(IA) ) ~ t~X, where 1A is the unit in ~~ 

is a fundamental class. 

Conversely, suppose ~ ~ t~X is a fundamental class. We 

apply the following version of the Thom isomorphism: 
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~: :*(AxX , AxX - AA) ~ :*A 

is isomorphic, with ~ sending u to [ulAx(X,X-A)]/~ and 

the bar indicating approximation of A by its neighbour- 

hoods in X. The proof is similar to that of Theorem 4.1 

(the local part has actually been proved there). It fol- 

(~-I(IA)) is a compatible family of Thom clas- lows that 

ses. 

COROLLARY 4.3. Cap product with a fundamental class is 

an isomorphism ~*(A,B) ,u.(X-B,X-A). 

Proof. By naturality and exactness of Mayer - Vietoris 

sequences it suffices to prove this for linear tubes X. 

To these the proof of [8] 6.3.11-12 applies after minor 

modifications. 

The results of this paragraph can be reformulated for 

relative G-manifolds. In particular there is a Poincar@ - 

Lefschetz duality for compact G-manifolds (with bounda- 

ry). The procedure is quite formal, and we refer to [8] 

6.2.18-2o. 
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