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EQUIVARIANT HOMOLOGY AND DUALITY

Klaus Wirthmtiller

This note is concerned with stable G-equivariant homology
and cohomology theories (G a compact Lie group). In im-
portant cases, when H-equivariant theories are defined
naturally for all closed subgroups H of G, we show that
the G-(co)homology groups of G Xy X are isomorphic with

H-(co)homology groups of X. We introduce the concept of
orientability of G-vector bundles and manifolds with re-
spect to an equivariant cohomology theory and prove a du-
ality theorem which implies an equivariant analogue. of
Poincaré - Lefschetz duality.

The ideas developed here partly originate from sugges-

tions made by T. tom Dieck, who introduced me to the sub-
Jject.

1 Eguivariant homology

G is a compact Lie group, GTopO the category of pointed
G-spaces.

Let RO(G) be the real representation ring of G and iden-
tify every element of RO(G)' (the semi-group of isomor-
phism classes of real representations) with one of its

representatives in a suitable manner (cf. e.g. [5] I.1).
Fix a subgroup A of RO(G) congisting of even-dimensional
virtual G-modules. For V e RO(G)T let [V] denote the co-
set of V in RO(G)/A, let SV
cation of V (or, ambiguously, suspension by it) and |V|

be the one-point compactifi-

the real dimension of V.
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2 WIRTHMULLER

A G-homology theory indexed by RO(G)/A consists of

(1) 3 collecgion (ta)aeRO(G)/A of functors
ta: GTop~ — AD

(2) a collection (OVa)VeRO(G)+, a=RO(G) /A of natural

transformations OVa: ta———a ta+[V]'S
such that

(a) %u is homotopy invariant and half-exact, i.e. for
f: X——=Y the sequence %GX————a%qy-———a%qu is ex~-

act (Cf denotes the mapping cone of f)

(b) Tyoyoy = (-7l lecwov where T: s'S"— 5 s¥sV in-

terchanges the factors
(c) all Oyq 2Te equivalences of functors.

The corresponding unreduced theory is defined by
ta(X,Y) = %GC(X,Y) = %aCY+cX+‘ Cochomology is defined and
denoted in the obvious way.

GTop0 may be replaced by a suitable subcategory, e.g. a
category of G-equivariant CW complexes ([6]).

Consider theories t, u, v indexed by RO(G)/A, RO(G)/B,
RO(G)/C respectively, with A + B « C. We shall use the
four external products ([9] §6)

(1) homology cross x: X ® U ——s Vo (XAY)
(2) cohomology cross x: T*¥X  ®  UXY —— V*(XAY)
(3) homology slant \: IT¥Y @ U (XAY)—— ¥.X
(4) cohomology slant /: T*(XAY) ® U,Y —  ¥*X

as well as the cup and cap products induced by (2) resp.
(3). Our sign conventions are consistent with [8]. Of

particular interest are the cases t = u = v (multiplica-
tive theory; %0 = %_aSO etc. is always understood) and
u = v (t multiplicative and acting on u). In these cases

we assume a unit in t having the usual properties.
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WIRTHMULLER 3

Now consider (closed) subgroups K c H ¢ G. Let T be the
semi-direct product of K x K, acting on H by both-sided
translation, with ZZ’ the non-~trivial element being in-
version on H. Thus H is a T-space, and K (being stable
under T) has a linear T-tube in H ([2] II.4, we identify
a tube with its image in H). Denote the bundle projection
T——H by mand let L = L{K,H) be the fibre at 1 with K
acting orthogonally upon it by conjugation. We identify L
and its class in RO(K).

There is a left and right K-equivariant map

1: HF—> 1°¢ ~ SLK+ where the arrow collapses H - T into
the base point, and the homeomorphism sends h to
[h-ﬂh_1,nh]. Note that for any K-space X, 1 defines a K-
map 1X: yt A X-———aSLX. Similarly, from t?e inclusion

A: K ¢ H we obtain maps XX: X—— Ht e X.

Let us assume that for every subgroup H < G a subgroup AH
of RO(H) is given such that the forgetful functors
RO(H)—— RO(K), K c H ¢ G, map Ay into Ap. Denote the
homomorphism RO(H)/AH————aRO(K)/AK by & +— oy,

A complete G-homology theory %* consists of one H-homolo-

gy theory %E for every subgroup H < G together with natu-
ral transformations (restrictions)

KH,6 ~H ~K
Py ¢t Tk ? t*(H)
of homology theories such that pngEH = p%H (McKcHCc

K
G.K)QERO(H)/AH'

The following axiom is to be satisfied: the composition

G). Here %K means the graded group (%
*(H)

~H ot ~K + . ~*K
B (DA ) =g By (B g )17 B (s"%)
*
respectively

~o(H
e )

~ + . v (H) (ot .
ﬁ (H /\K )'——pﬁ) tf{ (H /\K ) )\X

1 In terms of pairs, 1 is (essentially) the inclusion

H < (H,H-K) dual to X (compare Theorem 4,1 below).
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A WIRTHMULLER

is isomorphic.

There is a comparison theorem for complete theories de-

fined on the category of finite CW complexes: a morphism
of complete theories is isomorphic if it induces isomor-
phisms on the coefficients %ESO, all H < G,

Products in complete theories are assumed to commute with
the restriction homomorphisms p.

2 _Spectra

We construct equivariant homology theories by means of
spectra, In order to avoid signs we give the construction
of the functors t, for only those & with a = [2V] for
some representation V. The definition is readily complet-
ed then by use of suspensions.

Recall that RO{(G) is a directed set and that every repre-
sentation V € 2RO(G) has a canonical complex G-module
structure. For these V all complex automorphisms of SV

are G-homotopic (see [5] I.1).
A G-spectrum E over RO(G)/A consists of

(1) a final subset ¢ < 2RO(G)™, closed under addition
and subtraction (as far as possible in RO(G)™)

(2) a family (Ea)ae[e] of pointed G-spaces

(3) G-maps ey,: SVEQ————iE[V]+a, aele], Vee

such that e
to e

v [W]+a'qu is pointed G-homotopy equivalent

’

V+W,a®

For any G-spectrum E we define associated contra-co-vari-
ant bifunctors T™(X | Y | E) to be the colimits over
pointed G-homotopy sets

Vv 0
[s'x , E[V]+a A Y]G, Ve e
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WIRTHMULLER 5

as usual (cf. [4]). It is well-known ([5] I.1) that these
functors are actually homology and cohomology theories,
for fixed X respectively Y. In particular we have theo=-
ries %Q(Y | E) :=T%sS®° | Y| E) and

Tx | B) :=3%x | s° | B).

Let (AH)HCG be a family as above. A complete G-spectrum

is a family of H-spectra EH such that the forgetful func-
tor maps ! into €& (K = H) and, secondly, E?a] and E%GK]

are K-homotopy equivalent by equivalences commuting with
the maps of the spectra.

A complete spectrum defines a family of functors

(%ﬁ(X | Y))HcG‘ There are obvious restriction morphisms

.- ~, (H)
px: T —— T,

THEOREM 2.1. T, and T* are complete G-theories.

Proof. Let K ¢ H ¢ G. Note at first that the forgetful
functor maps RO(H)™ onto a final subset of RO(K)' (see
[2] 0.4.2). Then the cohomology assertion follows immedi-
ately from

\' \'
[s'ut Ag X5 E A Y]g ~ [HT Ag S'X 5 B A YR

~[s'% , E A Y12,

Choose an H-module V e such that K is the stabilizer
of some point x e V (cf. [2] 0.5.2) and let W = V be a
linear slice at x. We have an H-map {: SV————+H+ A SW

s'——5"s" so that v i H g W e v

and @'1: WxLe&TxyWs~TW cV are the canonical maps.

and a K-map :

¢ is an H-homotopy equivalence (it is homotopic to its
differential at x). Let ® be a homotopy inverse of

(id A -id)*¢. We assert that the following composition x
inverts l*pEH:

%ﬁ(H)(X | sLY)———gW——a%ﬁ(H)(swx | SWSLY)———E;—e
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6 WIRTHMULLER

%’fE(H)(SWX | sVr)———— Tyt o s'x | Bt sVY) =
HTA
K

gt W Vo i+
K(HT A 8 AX | s'H /\KY)T

Tx(sVx | sV A

x Y)———————)tﬁ(X | mt re YD

K (SV -1

Let f: SUX—~——+E A sly represent an element in
%f(H)(x | sv), and 1et F: sVsUs——s'E A slY be the
corresponding representative of lyp,n(f). The following
K-homotopy commutative diagram shows that f and T repre-
sent the same class:

VU V. W

sVsYx - SE/\SY—(—S—»sleAsLY
({}\\N 1(3)

sIl“s X~y S LW+ A sY%

~|(6)

Uy

s¥s SUXTAT’ sbe¥i+ A s

sVs%

oV ~ Wl
- SE/\SLY—G—)——)SSLE/\SLY

St

Explanation: (1) is ¢ A SUX, (2) is the diagonal on L. It
is readily verified that there is a unique map (3) that
is the identity on SL and makes the upper left hand part
of the diagram commute. (4) maps x st to [x,0] shpt
and is homotopic with (2). (5) is ¢ A E A SY, and final-
ly (6), mapping [x,y] e sbsl to [y,-x] skgk

topic to the identity. The lower part of the diagram com-
) Wol
ST,

, 1s homo-

mutes up to a homotopy vw ~ id A -id: S SL————+S

Now assume that F: SUX-———eE A HF e Y is an H-map and

let F: S SUX————+S E A HY N Y be its transformed repre-

senting xl,py.(F). We abbreviate

VU

s =25s%, R=8E AHE" A, v,

1

K

P =W xFI[8%% - P~1() 1" o1 (T/K) < S and

1
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WIRTHMULLER 7

Q=vxF|[s% - F1(x)171p7 (1K) < S (p is the projec-
tion to H/K),

P* = P U {*} =< S/(S - HP), Q* = Q U {*} < S/(S - HQ).

The canonical maps H' N P*—— S/(S ~ HP) and

ut N Q@* —— S/(S - HQ) are homeomorphisms.

Look at the following diagrams, which we explain below:

S = W
////aH NP* 5 * gy 8"S B A Y 5y
o O T
H AyP* —77y i P*-szes S“ENET AT 75y Ok
H+AKQ* 57" R It A S o R
s///z;3 ” jg12) 11) T(14)
\\\\‘ H+AKQ* 3) W I+AH+AKQ*<—(737——I AQ¥*
S T » R

(1) and (2) are quotient maps, (3) is the unique map mak-
ing the top part of the left diagram commutative. (3)
corresponds to a K-map P¥—— R, which factors into
(5)(4) as indicated on the right, (5) being w A id. (6)
sends [x,g,h] s'slut to [gew(x,g),gh] = s'H" and is K-
homotopic with (5). (7) is the H-extension of (6)(4).
There are unique maps (8) and (9) such that (8)(2)=(7)(1)
and (9)(2)=SVF. It remains to prove that (8) and (9) are
H-homotopic: if & is a K-homotopy from w.(id A -id).¢ to
the identity of SV, then (10) = & A F factors into
(11)(12) where (12) is the quotient map. The inclusion
(13) followed by (11) is a K-homotopy (14) of maps

Q* —— R, The H-extension of (14) Joins (8) and (9).

This completes the proof.

379



8 WIRTHMULLER

If E , 1 =1,2,3, are complete G-spectra over

3 1 2
(RO(H)/AH)H g with AH + AH < Aj, a pairing e of E' AE
into E3 consists of one pairing eH' E1 H A EZ oH EB’H

of H-spectra for each H, commuting with the restriction
maps up to pointed equivariant homotopy. A pairing induc-
es products in homology (cf. [9] §6).

Examples of multiplicative complete G-spectra are the
sphere spectrum ([7]) leading to equivariant stable homo-
topy, and the Thom spectra ([5]) leading to bordism theo-
ries.

3 Orientation

Let m: E—— B be a G-vector bundle and let M(m) denote

its Thom. space. Assume that t* is a multiplicative com-

plete cohomology theory. t*M(m) is a t*B module by means
of the cup product.

PROPOSITION 3.1. If B is a homogeneous G-space then
T*M( ) is free cyclic over t*B.

Proof. We may assume B = G/H, E = G Xy Vwith V e RO(H),
thus M(m) = ¢F Ny sV. The composition

(") axpns: Ty (G Ay 8T) ——— 11(%)

is a module isomorphism over x*pﬁG; té (G/H)———~>t§(G),
hence the assertion.

Return to the general case. A Thom class for m in t* is a
homogeneous element 1 = t*M(n) such that for every orbit
b < B, T|M(7|b) is a free module generator of t*M(nlb)
over tgb. A (t* -) orientable G-bundle is one admlttlng a
Thom class.

Thom class for ni: Ei~———>Bi

Thom class for Ty X Toe

PROPOSITION 3.2. If 7, is
(i = 1,2), then T X T i

n
[

«
1o
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WIRTHMULLER 9

Proof. By naturality we may assume Bi = G/Hi,
M(m;) = at Ay, 8; and need consider only the orbit of

i

z = (1H1,1H2). The inclusion Gz < By x B, corresponds to
the diagonal d: G/(H, N H,)——G/H; x G/H,. The asser-
tion follows now from commutativity of

Yoot Yol ot ot +
tg.;,(G ’\H1S1) ® té(G "HZSZ)‘X_’ té(G AH,]S’I A G /\HZSZ)

a*
~e + Y
~ ~ tg(c P, 0H, S45,)
=~
¥, (G) ¥4 (G) ¥4 (G)
#, 8¢ & TS, —— i, nf, 5152
1 2 1 NH,
~ ~ ~
RO TR ()
tH1 f, —— H, i,

(the restrictions pﬁ NH. .H involved in the lower part of
12

the diagram are not indicated).
A similar argument shows

PROPOSITION 3.3.
ble for every H <

t§ -orientable bundle is t} -orienta-

A
G.

By a G-manifold we mean a (paracompact) topological mani=-
fold with boundary together with a locally smooth G-ac-
tion upon it ([2] IV). Recall that any G-manifold is an
equivariant ANR (if its topology has a countable base)
and has an equivariant collaring ([2] V.1.5). The tangent
bundle X of a G-manifold X with empty boundary is the
(X,X - %) bundle

pr,: (XX , XXX = ) —— X

(MX denotes the diagonal in XxX). The notion of Thom
class and orientability clearly applies to 1X though this
need not be a vector bundle, If »X is not empty we define
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10 WIRTHMULLER

a Thom class to be a homogeneous element in
t*(XxX , XxX - MX) which restricts to a Thom class of
X - X.

PROPOSITION 3.4. Let X be an H-manifold. G Xy X is té

orientable iff X has a Thom class in tﬁ(G)'[L(H’G)].

Proof. This follows because
((GXHX) X (GxHX),(GxHX) X (GxHX) - A(GxHX)) ~

G Xy (X x GxpX , X x GxX - AX)

H

G xy (XxlX)
G xy (sk,sb o) x (X, X - AX)

G XH * X XxX

induces an isomorphism in cohomology ((x,x) = AX is iden-
tified with [x,1,x] e X x & X X).

Clearly a G-manifold with stably trivial tangent bundle
has Thom classes in any complete theory. It is also obvi-
ous that there are larger classes of manifolds with ori-
entations in the various cobordism theories.

4 Duality

Let X be a G-manifold without boundary, and let

T e tg(XxX » XxX - AX) be a Thom class. Let (uy,u*) be a
pair of complete G-theories such that t acts on u. Sup-
pose that u, has compact supports ([8] 4.8.11). For every
compact pair (A,B) in X we define a duality map

7os ua(X-B,X—A)———————e ug_a(A,B)

which sends z to [7|(4A,B) x (X—B,X—A)]/z.1 Set
0*%(A,B) = colim u*(U,V), with (U,V) varying over pairs of

1 The slant product need not be defined for arbitrary

pairs, This difficulty can be avoided as follows: let
(U,V) be a closed neighbourhood pair of (A,B). By means
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WIRTHMULLER 11

compact neighbourhoods of (4,B) in X, and let
'~7T: u, (X-B,X~A) ——— u*(4,B)

be the colimit homomorphism.

THEOREM 4.1. ¥_ is an isomorphism.

Proof. Consider the special case A = Gx, B = ¢ first.
The situation is displayed in the commutative diagrams

EE(AXX , AXK - M) ———  t5(Ax(X,X-A))
~ (1)* (2)*

£ (Ggg (OgV, OV-B0))  — gy T4(G/HxGxy (V,V-0) )
p¥ p*

~ tﬁ(GxH(GxHV,GxHV—HxHo))——Y§7¥~>tﬁ(G/HxGxH(V,V—o))

(4)* (5)*
tﬁ(GxHV y GxgV - HxHo) _ tﬁ(GxH(V,V—o))
~ 1% 1%
%ﬁ(sLsV) — %’ﬁe(sLsV)
~ cL+V 0L+V
tf i

and
of a function that separates A and X - U we construct a
map
C(A,B) A (X-V)/(X-U) ——— C((A,B) x (X-B,X-A))
and obtain a product
t*((4,B) x (X-B,X-4)) & T,((X-V)/(X-U)) —> t*(4,B).

Now take the colimit over (U,V) and apply the axiom of
compact supports.
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12 WIRTHMULLER

ta(Ax(X,X-4)) ® W (X,X-4) —s ugA
(2) (6)*}» (7)*k
té(G/HxG;H(V,V—o)) ®  u§(Gx(V,V-0)) —  ux(G/H)
p¥ Px p*l

t4(G/HxGxy (V,V-0)) ® W (G (V,V-0)) | ——ux(G/H) |~

(5)* ~ (8;&\\N

t4(0xg(V,V=0))  ® Uy (Gxy(V,V=0)) | —— ug
1% §§\ l
Tr(sts?) ® EstsVy —— u
L+V
o °L+VT~
t ® uﬂ — u

Explanation: H is the stabilizer of x, V a linear slice
at x. (1): [g,h,v]—— (gx,ghv), (2): [g,h,v]—> (gx,hv),
(3): [g’hsv]}_“:'(gsg—/‘hyv), (4),(5): [h:V]'_'_>[1’hyV]’
(6): [h,v]—— hv, (7): [h]——hx, (8): x+——1H. The
unlabelled horizontal arrows of the first diagram are in-
duced by inclusions, those of the second one are slant
products.

The Thom class t|A e té(AxX , AxX - M) corresponds to a
unit in tﬁ by the vertical isomorphism. From this fact
the assertion follows (clearly u*A = U*A).

In the general case we may assume B = @ (by the five lem-
ma), further that X is compact (by excising the comple-
ment of a compact neighbourhood of A). Sometimes we shall
not distinguish between a G-subset of X and its image in
X/G.

We set up a spectral sequence along the lines of [1] 3.
Let Q = (Qj)
erties

jed be an open G-covering of X with the prop-
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WIRTHMULLER 13

(2) J is finite
(b) dim nerve Q < dim X

(such coverings are final in the set of all open cover-
ings). Choose 1 > |J| and realise N := nerve Q as a line-
ar subcomplex |N| of Rl such that the vertices of N are

affine independent in Rl. We abbreviate:

o the closed simplex o, & the boundary, § = ¢ - &,

Q.= N Q;if N Q. meets A, Q_ = @ otherwise, C_ = Q_,
0" jeg 9 Jeo o o o
Z=RxX, W= U 7x C, € Z, C = pryi.
all o

1 dim X

W is filtered by =W c W c ... cW = W with

wP = pr;1|Np| (N® the p-skeleton of N). It follows ([1]
3.2, [3] XV §7) that there is a strongly convergent spec-
tral sequence E¥* with E¥ = H*(Q|P*) and termination u*C;
the coefficient presheaf P* on X/G (see [8] 6.7) sends an
open subset U < X/G to u*(U ) if U meets A, to {o} other-
wise. The spectral sequence is functorial with respect to
refinements of coverings ([1] 3.2). Taking the colimit
over open coverings, we obtain a spectral sequence E¥,
with E§ = H*(x/G|p*) (Cech cohomology, see [8] 6.7), con-
verging strongly to u¥*A,

We imitate this procedure in homology. Consider the (co-
homology) spectral sequence Ey, with
E;a - ul_p_a(z-wp‘1,z-wp) set up by the Cartan - Eilen-
berg method ([3] XV §7). The sets § (dim o = p) are
closed in RY - IN®~"|, hence we can choose pairwise dis-
Joint neighbourhoods Nc' There are isomorphisms

u (z-wP1, zaP) & 3 u (N X , N X = 8xC_) =~

dimo=p

ue((R'-5 , R*-5) x (X,X-C_))

(excise Z - (WP~1 U U. N_xX) on the left and (R'-N ) x X
a ) [¢)

on the right). Choose a sequence O, €04 € «ve © 0, = 0,

b
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14 WIRTHMULLER

with °j a j-simplex. We have isomorphisms

ug((RH=3 , R™=5,) x (X,X~C,)) =

1

ug((RT=8,_y » R=G,_1) x (X,X=C.))

dual to those used in the computation of E§ (to prove bi-
Jjectivity, approximate the simplexes by suitable neigh-
bourhoods and apply the axiom of compact supports). Fi-
nally we have

ue((RY,RI-G,) x (X,X-C_)) = u,(X,X-C,)
by suspension.

Proceeding further like in the cohomology case we obtain
an isomorphism E2 ~ H¥(Q|P,), with PU = uy(X,X-U") if U
meets A, P,U = {o} otherwise (U < X/G open).

E4 has termination u*(X,X-C): clearly E, converges to
u,(Z,Z-W). Choose an open neighbourhood V of C in X and a
G-function §: X—— I such that X - V = ¢-1{o} and

Cc w'1{1}. Let (npj)jEJ be a partition of unity subordi-
nate to Q. The formula

(8,x) —— (5 - ¥x D o.x {31, %)
jeg d

defines a homeomorphism h of Z onto itself, homotopic to
the identity and carrying iC onto o x C where i: C—— W
is the homotopy inverse of pr, sending x to
( Dicy ©x+ {31 4 x). With r = sup {[s| | s = |N|} and
R = {(8,x) € 2 | |s] < 2r-yx} the inclusions
Z~-RcZ-oxVandZ-Rch(Z-W)n (Z -~ oxV) are ho-
motopy equivalences. Taking colimits over neighbourhoods
V we obtain

W (Z,Z-W) ~ u, ((RY,RT=0) x (X,X-C)) = uy(X,%X~C)
ag asserted above.

The spectral sequence E, does not depend on the chosen
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WIRTHMULLER 15

realisation of N as a subspace of some Rlz suppose
IN| < Rl and IN|* < R’
Then there is an affine orientation-preserving isomor-
phisnm h: RE'"1 x R — RT'

o X |N| to the corresponding vertex in |N|'. (1'-1)-fold

are different choices, 1 < 1°'.
sending each vertex of

trivial suspension followed by (h x idx)* is an isomor-
phism

u (2-WP,z-W) ~ u (z'-WrP,zrawr )

for every p,q (p < q). Furthermore on H*(Q|P,) and
u,(X,X-C) the identities are induced.

We make E, functorial with respect to refinements of cov-
erings: let Q@ < Q', A: J'——J a refinement function.
Define a third covering Q" by J%" = J + J°Y, Qg = Qj,

Qg, = ij,, and factor X} into
J———— g - ~--"¢J
)\l )\II

where MJ = 3, MJ' = 23, M3 =3 wi=3 (3=,

J' € J'). Note that the nerve of Q" is that of Q with ev-
ery vertex J blown up into a k-simplex if x_1j has k ele-
ments. By means of the inJective functions A' and u we
may identify N' resp. N with subcomplexes of N". By em-
bedding |N"| into Rl we obtain inclusions Z - W' <« Z - W!
and Z - W" < Z - W, which induce morphisms A}: E}——>E}
and pyy: EY~——E,. As both A" and y are refinement func-
tions of coverings they are contiguity inverse to each
other. This implies that u*: H¥(Q"|P,)—— H*(Q|P,) is
isomorphic, so py: Ef——E, is an isomorphism of E
spectral sequences. We define A, = x;‘u;qz Ey,—EL.
This does not depend on the choice of A, and it is func-
torial,

Now form the colimit spectral sequence E, with

B2 = f1*(X/G|P,) and E, = u,(X,X-A).

Let m be the canonical Thom class of Rl. The duality maps
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16 WIRTHMULLER

T ot induce a morphism E*—~——9E*o The map induced on the
2-level is ﬁ*(X/GlyT) where y_ is considered as a homo-
morphism of presheaves on X/G. By the first part of the
proof, ¥, is a local isomorphism, hence ﬁ*(X/GIyT) is
isomorphic (cf. [8] 6.8.17). Thus we have an isomorphism
of E” spectral sequences. Since the map induced in the
termination is a filtration of 71: U, (X,X=A) —> U*A, 71
is isomorphic., This proves Theorem 4.1.

By the same technique we can prove a Thom isomorphism
theorem for u* (see [8] 5.7.10) (which, of course, is
true in more general circumstances). In order to con-
struct the spectral sequence for u*(CxX , CxX - AC) start
from the (X,X - %) bundle that the projection W——X in-
duces from tX.

We outline briefly that orientability of G-marnifolds can
be described alternatively by fundamental classes.

Let X and t be as above. The cap product turns t, (X,X-b)
into a free cyclic module over t*b (b < X an orbit). Set
tix = limA tyA, taken over all compact A c X. [ = t%X is
a fundamental class for X if, for every orbit b < X, its
image under tiX————at*(X,X—b) is a free generator of
t(X,X=b) over t¥b.

THEOREM 4,2. There is a one-to-one correspondence be~
tween compatible families of Thom classes for TXIA (A cX

compact) and fundamental classes for X.

Proof. Let (TA) be such a family of Thom classes, For
each compact A < X we have ?T: tg(X,X—A) ~ TOA, If A is
an orbit a look at the diagrams in the proof of Theorem
4.1 shows that Yo is an isomorphism of t*A modules., Hence

the family (’-;1__’1(1A)) & t3X, where 1, is the unit in T,

is a fundamental class.

Conversely, suppose = tEX is a fundamental class. We
apply the following version of the Thom isomorphism:
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IC: TX(AXX , AXX - M) —— TxA

is isomorphic, with ny sending u to [u|Ax(X,X-A)]/¢ and
the bar indicating approximation of A by its neighbour-
hoods in X. The proof is similar to that of Theorem 4.1
(the local part has actually been proved there). It fol-
lows that (7{‘:‘1(1 ,)) is a compatible family of Thom clas-
ses.

COROLLARY 4.3, Cap product with a fundamental class is
an isomorphism u*(A,B) — u,(X-B,X-A).

Proof. By naturality and exactness of Mayer - Vietoris
sequences it suffices to prove this for linear tubes X.
To these the proof of [8] 6.3.11-12 applies after minor
modifications.

The results of this paragraph can be reformulated for
relative G-manifolds. In particular there is a Poincaré -
Lefschetz duality for compact G-manifolds (with bounda-
ry). The procedure is quite formal, and we refer to [8]
6.2.18=20.
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