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0. Introduction

Let # be a spherical fibration over a Poincaré space. We prove a formula for
the Spivak normal fibration of its total space. As a consequence we get: Let
the base space be a closed connected manifold. Then the total space has the
homotopy type of a manifold if u is stably equivalent to a sphere bundle. The
converse is true if # additionally has a cross section.

1. Formulae for Spivak Normal Fibrations of Total Spaces

Let =(E,p, X) be a spherical fibration over a Poincaré space X. Here a Poin-
caré space is a space of the homotopy type of a finite complex such that
(\u: HA(X;Z)=H,_(X;Z"), where ueH (X;Z") is the fundamental class with
respect to some orientation homomorphism t: n,(X)—Z, (so nonorientable
manifolds are included).

We now prove formulae for the Spivak normal fibration of the Poincaré space E
and the Poincaré pair (M. E) where M, denotes the mapping cylinder of p.

Theorem 1. Let n=(E, p, X) be a spherical fibration over a Poincaré space X. Then
the following holds for the Spivak normal fibrations v, of E and vy of X

-1
Ve~ p¥*(vx+n77),
where ‘~’ denotes stable equivalence.

Proof. We use the notion of Poincaré embedding as defined in [1] which carries
over to the nonorientable case ([10]).

Proposition 1.1. Let n=(E, p, X) be a spherical fibration over a Poincaré space X,
and let N be a large integer. Then there exists a Poincaré embedding i: E— X x S¥
with normal fibration p*(n~=") such that E—% X x SV — X is homotopic to p.
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From this we get Theorem 1 as follows:
VE~ ¥ Vv HPF T L~ pR (P vy v b T ) ~pF (v Y,

The first and last equivalence is 1.3 in [1], applied to the Poincaré embedding i:
E— X xS¥ and j: X — X xSV, respectively (the normal fibration of j is trivial).
The middle equivalence follows from i~pj which is true by 1.1, since N is large
(N>dimE, the CW-dimension). [

Proposition 1.1 is a special case of the following fact (take é=n""):

Proposition 1.2. Let & and n be spherical fibrations over a Poincaré space X, and
let i be the canonical embedding in the commutative diagram

E(m)—— E(n+¢&)
X

Then i is a Poincaré embedding with normal fibration p* &,

Proof. The Whitney sum %+ ¢ is the fibre join of E(#)— X and E(£)— X with the
coordinate topology ([8]). Poincaré embeddings are defined with the aid of cer-
tain mapping cylinders which carry the quotient topology. The only difficulty in
the proof of 1.2 is to compare these topologies. We proceed as follows: If 1.2 is
true for & and #, then it is true for all fibrations of the same fibre homotopy type.
Therefore, using [2] or [3], we may assume that £ and u are locally trivial (the
fibres, of course, are not spheres, but they have the homotopy type of spheres).

The fibre join of locally trivial fibrations E(#)— X and E()— X with the
quotient topology is denoted by E(n=¢)— X; it is again a locally trivial fib-
ration. The identity E(n*&)— E(n+¢) is a continuous fibre map which is a ho-
motopy equivalence on the fibres (as they have the homotopy type of compact
spaces, and the quotient topology coincides with the coordinate topology on the
join of compact spaces). Therefore, #+& is fibre homotopically equivalent to z
+ £, and we may replace the latter by the first in 1.2.

Now E(y+&)=T is just the double mapping cylinder of the canonical dia-
gram

E(n) < E(p* &) — E(&),

and the inclusion i: E(n)— E(n=£) corresponds to the canonical embedding of
E(y) in T Then, by definition, i is a Poincaré embedding with normal fibration
p*¢. O

From Theorem 1, we get the formula for the Spivak normal fibration of
(M, E):

Corollary 2. Let n=(E, p, X) be a spherical fibration over a Poincaré space X and
let r: M ,— X be the retraction of the mapping cylinder to the base space. It holds:

VMP,EN’"*(VX‘*“’TI)'
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Proof. Having once proven the formula in Theorem 1, Corollary 2 follows by
standard considerations on doubles as

E(n+e')~M,| JpM,, (~means homotop).

Knowing vg, . by Theorem 1, one gets the formula for (M,,E) by
restriction. [

Remark. If n is not a fibration but a bundie over a manifold, similar formulae
follow from geometrical considerations of tangent spaces and can be found in
literature.

Corollary 2 is proved by Spivak in his proof of uniqueness of Spivak normal
fibrations (see [8], 5.4) but - compared with our situation - under two rigorous
restrictions:

firstly he requires the fibration to be in the stable range (d >n+1), which e.g.
does not apply to the Hilton-Roitberg examples, which will be investigated in
Sect. 3, secondly his class of base spaces is the class of spaces whose universal
covering spaces satisfy Poincaré-duality; that excludes spaces like S” v 4, where
A is an acyclic finite CW-complex with finite fundamental group which is in-
cluded in our class of base spaces.

2. Smoothing the Total Space of a Spherical Fibration

According to a result of Hilton and Roitberg (see [4]), there exist spherical
fibrations with a sphere as base space which are not fibre equivalent to bundles
but whose total spaces have the homotopy type of manifolds. (All manifolds are
closed here.)

Work of Smith (see [7]) and Stdcker (see [9]) shows that such phenomena
can not occur in the stable range: the total space has the homotopy type of a
manifold iff the fibration is fibre equivalent to a bundle. We now can prove:

Theorem 3. Let n=(E, p, M) be a spherical fibration over a CAT manifold. If n is
stably equivalent to a CAT sphere bundle, then E has the homotopy type of a CAT
manifold, where CAT is one of the categories DIFF, PL or TOP.

Theorem 4. Let n=(E, p, M) be as in Theorem 3 but with a cross section. Then the
converse holds: If E is a homotopy CAT manifold, then 7 is stably equivalent to a
CAT sphere bundle.

In [7] and [9] all fibrations have a cross section as they are in the stable
range. So 3 and 4 generalize the results obtained there to any manifold as base
space and to nonorientable fibrations.

Proof of Theorem 4. If E is a homotopy manifold, its Spivak normal fibration is
stably a sphere bundle. So with Theorem 1: vy~ p*(v,,+#%~')~sphere bundle.
Applying the section s and making use of the group structure gives: #~s*(v; 1)
+ vy ~sphere bundle. []
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For the proof of Theorem 3 we need Corollary 2 and a surgery result, na-
mely the 7 — = theorem of C.T.C. Wall.

Proof of Theorem 3. By the statement of the n—n theorem, (M, E) (which is
even a Poincaré space in the sense of Wall, as the base space is a manifold) has
the homotopy type of a manifold with boundary iff vy, p is stably a sphere
bundle, provided (M )=n,(E) and the dimension of (M p;E) is not less than 6.

All cases where these two conditions are not fulfilled follow by elementary
considerations, as we proceed under the assumption that these conditions are
fulfilled.

If  is stably equivalent to a sphere bundle, it follows from Corollary 2 that
Vu,, g 18 it too. So (M, E) has the homotopy type of a manifold with boundary,
which means that E is a homotopy manifold.

So Theorem 3 is proved. [J

Remarks. (1) Up to now we didn’t succeed in showing that the existence of the
cross section is more than a technical assumption. Suppose Theorem 4 becomes
wrong without cross section, then there exists a spherical fibration #=(E, p, M)
where E and M are homotopy manifolds but E(y+e¢?), &' trivial fibration with
fibre S°, is a Poincaré space but no homotopy manifold.

(2) Simultaneously we proved under the same conditions:

Lemma. E is a homotopy manifold iff vy is stably equivalent to a sphere bundle.

(3) An analogous result might be valid for fibrations with any fibre having
the homotopy type of a manifold. Possibly the lemma above could hold in gen-
eral. '

(4) An immediate consequence from the formulae and the n—n theorem is
the following:

Let E be the total space of the Spivak normal fibration vy of a Poincaré space
X. Then E has the homotopy type of a smooth manifold.

3. Spherical Fibrations over Spheres

Reformulating Theorem 3 and 4 for spherical fibrations over spheres provides a
method for constructing new examples of manifolds from spherical fibrations.
Given a spherical fibration with cross section with base space S? and fibre S$?
where p, g=2, the total space E is known to have the homotopy type of the
following cell complex: E :Sl’quU[ip’iq] sigpn €% where [i,i,] denotes the
Whitehead product of the inclusions i,: §*—>S*v S’ and [f]en,,,_, (S?) (see
{61, Sect. 3). As f determines the corresponding fibration uniquely up to fibre
homotopy type, we write 7, and E, for this fibration and its total space.

From the theorems above, we get the following corollaries (compare [7],
[97; we now restrict to the differentiable case although the results remain valid
in the topological and PL-case):
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Corollary 3.1. E, has the homotopy type of a differentiable manifold iff
{fielm(J:7,_,(0)—mn, ), where {f} denotes the stable homotopy class of f, J
the stable Hopf-Whitehead homomorphism and O the stable orthogonal group. [

We are mainly interested in cases where 7, itself is not fibre equivalent, but
is stably equivalent to a sphere bundle, so that E is a new manifold (in the sense
that it is not the total space of a sphere bundle). In the notation of [9] let

CLA1:={/1+[p,ids ] pem,(§9} and Wy:=C[f] C[—((—idg)ef)]. Then

Corollary 3.2. Given [ fler, , (SF) such that {f}elmJ and W,nJ, = ¢, where
Jym,_ 1 (0@)—r,,, (89 Then n, is not fibre equivalent to a sphere bundle but
E is a homotopy manifold. []

As in the metastable range fibre equivalence is the same as stable equiva-
lence (see [5], Theorem 3.2), new manifolds only occur in the range p>2g—3.
Now we are able to clarify the Hilton-Roitberg examples which are

Examples with fibre S* over SP: As n,_1(0(2))=0 for p>2, every nonzero
[flen,. ,(S?) determines a fibration which is not fibre equivalent to a bundle.
So any nonzero [ f7] which under suspension is mapped into ImJ, provides an
example for a fibration as in 3.2. Lemma 2.5 in [4], which states that for p>2 E,
is homotopy equivalent to E, iff [ /]= +[g], completes the determination of
new manifolds.

So e.g. when p=4, the generator [ f]ens(S?)=Z, is mapped nontrivially into
the image Zz<=Z,, of J. That gives: S*v S*( ), ;.1 1,.n¢° is @ homotopy ma-
nifold.

When p=35, similar observations show: there are 6 new seven-dimensional
manifolds, one for each pair ([f],[—/]), where 0%[f]en(S)=~Z,,. Much
more examples may be constructed this way.

Thanks to R. Stocker.
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Added in Proof

Concerning Remark (1) we lately found an example that the cross section is really a necessary
condition (see: Sutherland, W.A.: Homotopy-smooth sphere fibrings. Bol. Soc. Mat. Mexicana 11,
73-79 (1966); our resuits contain parts of Sutherland’s).

His Example 3.3 is a special case of the following: Let 2<p=2mod4 and let the stable stem
ng_ , contain an elc?ment B of odd order (this implies f¢ImJ), take f'em,,_,(SP~*) such that
S*p =p. Set a=[i,, i,]+Sp.

o uniquely determines a spherical fibration # with fiber S?=* over S¥ (4 has no cross section as
the Hopf invariant of « 40, and is not stably equivalent to a sphere bundle as f¢ImJ).

So we get ~ for every p as above - an example we searched for in Remark (1).



