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0. Introduction 

Let t/ be a spherical fibration over a Poincar6 space. We prove a formula for 
the Spivak normal fibration of its total space. As a consequence we get: Let 
the base space be a closed connected manifold. Then the total space has the 
homotopy  type of a manifold if t/ is stably equivalent to a sphere bundle. The 
converse is true if t /addit ionally has a cross section. 

1. Formulae for Spivak Normal Fibrations of Total Spaces 

Let t /= (E, p, X) be a spherical fibration over a Poincar6 space X. Here a Poin- 
car6 space is a space of the homotopy  type of a finite complex such that 
("]#: Hl~(X; 7/)---H,_k(X; 7F), where #~Hn(X; ~ )  is the fundamental class with 
respect to some orientation homomorphism z: rc l (X)-~Z 2 (so nonorientable 
manifolds are included). 

We now prove formulae for the Spivak normal fibration of the Poincar6 space E 
and the Poincar6 pair (Mp, E) where Mf  denotes the mapping cylinder of p. 

Theorem 1. Let t 1 = (E, p, X)  be a spherical fibration over a Poincar~ space X.  Then 
the following holds for the Spivak normal fibrations v~ of  E and v x of X:  

v e ~ p * ( v x + ~ - l ) ,  

where ' ~ '  denotes stable equivalence. 

Proof. We use the notion of Poincar6 embedding as defined in [13 which carries 
over to the nonorientable case ([-10]). 

Proposition 1.1. Let t 1 = (E, p, X)  be a spherical fibration over a Poincard space X,  
and let N be a large integer. Then there exists a PoincarO embedding i: E---~ X x S u 
with normal fibration p*(tl- 1) such that E ~  X x S u - - , X  is homotopic to p. 
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From this we get Theorem 1 as follows: 

vE~ i* Vx• p* ~-  1 ~ p , ( j ,  Vx • + ~-  ')~P*(Vx + q-  1). 

The first and last equivalence is 1.3 in [1], applied to the Poincar6 embedding i: 
E ~ X  x S N and j: X - ~ X  x S N, respectively (the normal fibration o f j  is trivial). 
The middle equivalence follows from i~_pj which is true by 1.1, since N is large 
(N > dim E, the CW-dimension). [] 

Proposition 1.1 is a special case of the following fact (take ~=t/-1):  

Proposition 1.2. Let ~ and t 1 be spherical fibrations over a Poincard space X,  and 
let i be the canonical embedding in the commutative diagram 

E(~) ' , E(~ + ~) 

\+/ 
X 

Then i is a PoincarO embedding with normal fibration p* ~. 

Proof. The Whitney sum t/+ ~ is the fibre join of E(t/)~ X and E(~)---, X with the 
coordinate topology ([8]). Poincar6 embeddings are defined with the aid of cer- 
tain mapping cylinders which carry the quotient topology. The only difficulty in 
the proof of 1.2 is to compare these topologies. We proceed as follows: If 1.2 is 
true for ~ and r/, then it is true for all fibrations of the same fibre homotopy type. 
Therefore, using [2] or [3], we may assume that ~ and t/ are locally trivial (the 
fibres, of course, are not spheres, but they have the homotopy type of spheres). 

The fibre join of locally trivial fibrations E(tl)---,X and E ( ~ ) ~ X  with the 
quotient topology is denoted by E ( t / , ~ ) ~ X ;  it is again a locally trivial fib- 
ration. The identity E(~*~.)--, E(t/+ 4) is a continuous fibre map which is a ho- 
motopy equivalence on the fibres (as they have the homotopy type of compact 
spaces, and the quotient topology coincides with the coordinate topology on the 
join of compact spaces). Therefore, t/,  ~ is fibre homotopically equivalent to r/ 
+ ~, and we may replace the latter by the first in 1.2. 

Now E( t / ,~ )=T is just the double mapping cylinder of the canonical dia- 
gram 

E(q) ~ E(p* ~)-+ E(~), 

and the inclusion i: E(t/)--+E(t/,4) corresponds to the canonical embedding of 
E(t/) in T. Then, by definition, i is a Poincar6 embedding with normal fibration 
p*~. [] 

From Theorem 1, we get the formula for the Spivak normal fibration of 
(rap, E): 

Corollary 2. Let ~ = (E, p, X) be a spherical fibration over a Poincar~ space X and 
let r: M v-~ X be the retraction of the mapping cylinder to the base space. It  holds: 

VMp. ~ ~ r,(v x + ~- 1). 
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Proof. Having once proven the formula in Theorem 1, Corollary 2 follows by 
standard considerations on doubles as 

E(r/+~t)-~Mp ~EMp,  (_~means homotop). 

Knowing ve(n+~l ) by Theorem 1, one gets the formula for (Mp,E) by 
restriction. [] 

Remark. If ~ is not a fibration but a bundle over a manifold, similar formulae 
follow from geometrical considerations of tangent spaces and can be found in 
literature. 

Corollary 2 is proved by Spivak in his proof of uniqueness of Spivak normal 
fibrations (see [8], 5.4) but - compared with our situation - under two rigorous 
restrictions: 

firstly he requires the fibration to be in the stable range (d > n + 1), which e.g. 
does not apply to the Hilton-Roitberg examples, which will be investigated in 
Sect. 3, secondly his class of base spaces is the class of spaces whose universal 
covering spaces satisfy Poincar6-duality; that excludes spaces like S p v A, where 
A is an acyclic finite CW-complex with finite fundamental group which is in- 
cluded in our class of base spaces. 

2. Smoothing the Total Space of a Spherical Fibration 

According to a result of Hilton and Roitberg (see [4]), there exist spherical 
fibrations with a sphere as base space which are not fibre equivalent to bundles 
but whose total spaces have the homotopy type of manifolds. (All manifolds are 
closed here.) 

Work of Smith (see [-7]) and St6cker (see [-9]) shows that such phenomena 
can not occur in the stable range: the total space has the homotopy type of a 
manifold iff the fibration is fibre equivalent to a bundle. We now can prove: 

Theorem 3. Let rl=(E,p,M) be a spherical fibration over a C A T  manifold. If1? is 
stably equivalent to a CATsphere bundle, then E has the homotopy type of  a C A T  
manifold, where C A T  is one of the categories DIFF, PL or TOP. 

Theorem 4. Let t 1 = (E, p, M) be as in Theorem 3 but with a cross section. Then the 
converse holds: I f  E is a homotopy C A T  manifold, then ~l is stably equivalent to a 
C A T  sphere bundle. 

In [-7] and [-9] all fibrations have a cross section as they are in the stable 
range. So 3 and 4 generalize the results obtained there to any manifold as base 
space and to nonorientable fibrations. 

Proof of Theorem 4. If E is a homotopy manifold, its Spivak normal fibration is 
stably a sphere bundle. So with Theorem 1: vE~p*(vM+r/-1)~sphere  bundle. 
Applying the section s and making use of the group structure gives: rl~s*(v ~ i) 
+vM~sphere  bundle. [] 
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For the proof of Theorem 3 we need Corollary 2 and a surgery result, na- 
mely the ~ -  7c theorem of C.T.C. Wall. 

Proof of Theorem 3. By the statement of the ~-~z theorem, (Mp, E) (which is 
even a Poincar6 space in the sense of Wall, as the base space is a manifold) has 
the homotopy type of a manifold with boundary iff v~t~, ~ is stably a sphere 
bundle, provided ~I(Mp)~-~I(E) and the dimension of (M v, E) is not less than 6. 

All cases where these two conditions are not fulfilled follow by elementary 
considerations, as we proceed under the assumption that these conditions are 
fulfilled. 

If t/is stably equivalent to a sphere bundle, it follows from Corollary 2 that 
VMp,E is it tOO. So (Mp, E) has the homotopy type of a manifold with boundary, 

which means that E is a homotopy manifold. 
So Theorem 3 is proved. [] 

Remarks. (1) Up to now we didn't succeed in showing that the existence of the 
cross section is more than a technical assumption. Suppose Theorem 4 becomes 
wrong without cross section, then there exists a spherical fibration t? =(E,p, M) 
where E and M are homotopy manifolds but E(~7+el), 51 trivial fibration with 
fibre S ~ is a Poincar6 space but no homotopy manifold. 

(2) Simultaneously we proved under the same conditions: 

Lemma. E is a homotopy manifold iff v E is stably equivalent to a sphere bundle. 

(3) An analogous result might be valid for fibrations with any fibre having 
the homotopy type of a manifold. Possibly the lemma above could hold in gen- 
eral. 

(4) An immediate consequence from the formulae and the ~ - r c  theorem is 
the following: 

Let E be the total space of the Spivak normal fibration v x of a Poincar~ space 
X. Then E has the homotopy type of a smooth manifold. 

3. Spherical Fibrations over Spheres 

Reformulating Theorem 3 and 4 for spherical fibrations over spheres provides a 
method for constructing new examples of manifolds from spherical fibrations. 
Given a spherical fibration with cross section with base space S" and fibre S q 
where p, q>2 ,  the total space E is known to have the homotopy type of the 
following cell complex: E~_S p v sq~)tip iq~+~q,tsl eP+q, where [i v,iq] denotes the 
Whitehead product of the inclusions i~: s k ~ s k v s  j and [ f ]e~p+~_ 1 (S p) (see 
[6], Sect. 3). As f determines the corresponding fibration uniquely up to fibre 
homotopy type, we write t/f and Ef  for this fibration and its total space. 

From the theorems above, we get the following corollaries (compare [7], 
[9]; we now restrict to the differentiable case although the results remain valid 
in the topological and PL-case): 
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Corollary 3.1. Ey has the homotopy type of a differentiable manifold iff 
{ f } ~ I m ( J :  ~zp_ l (O)-~np_ 1), where {f}  denotes the stable homotopy class off ,  J 
the stable Hopf-Whitehead homomorphism and 0 the stable orthogonat group. [] 

We are mainly interested in cases where q :  itself is not  fibre equivalent, but  
is stably equivalent to a sphere bundle, so that  E :  is a new manifold (in the sense 
that  it is not  the total space of  a sphere bundle). In the nota t ion  of  [9] let 
C [ f ]  : =  { I f ]  + [P, idsq] PEnp(Sq)} and W:.-= C[f]  • C [ -  ( ( -  idsq)of) 1. Then 

Corollary 3.2. Given [flsTZp+q_l(SP ) such that { f } ~ I m J  and Wf~Jq=O, where 
Jq: rcp_ l ( O( q) )~  rip+q_ l ( Sq). Then tl : is nor fibre equivalent to a sphere bundle but 
E: is a homotopy manifold. [] 

As in the metastable range fibre equivalence is the same as stable equiva- 
lence (see [51, Theorem 3.2), new manifolds only occur in the range p > 2 q - 3 .  
N o w  we are able to clarify the Hi l ton-Roi tberg  examples which are 

Examples with fibre S 2 over S": As np_l (O(2) )=0  for p > 2 ,  every nonzero  
[ f ] e n p +  1(S 2) determines a fibration which is not  fibre equivalent to a bundle. 
So any nonzero  [ f ]  which under  suspension is mapped  into Ira J,  provides an 
example for a fibration as in 3.2. L e m m a  2.5 in [41, which states that for p > 2 E :  
is h o m o t o p y  equivalent to Eg iff Lf] - - - -+  [g],  completes the determinat ion of  
new manifolds. 

So e.g. when p = 4, the generator  I f 1  ~ns( $2)-7Z2 is mapped  nontrivially into 
the image 2g 8 c292~ of  J. That  gives: SZv S 4 ~)ri2,i41+~,m e6 is a h o m o t o p y  ma- 
nifold. 

When  p = 5 ,  similar observations show: there are 6 new seven-dimensional 
manifolds, one for each pair  ( I f  ] , I - f 1 ) ,  where 0 + [ f ] e ~ 6 ( S 2 ) ~ 2 9 1 2 .  M u c h  
more  examples may  be constructed this way. 

Thanks to R. St6cker. 
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Added in Proof 

Concerning Remark (1) we lately found an example that  the cross section is really a necessary 
condition (see: Sutherland, W.A.: Homotopy-smooth  sphere fibrings. Bol. Soc. Mat.  Mexicana 11, 
73-79 (1966); our results contain parts of Sutherland's). 

His Example 3.3 is a special case of the following: Let 2 <p -~2  mod 4 and let the stable stem 
1 contain an element fl of odd order (this implies flr take fl 'eTz2p_2(SP-1 ) such that 

Sg~ ' =  ft. Set c~ = [ip, i,] + Sfl'. 
uniquely determines a spherical fibration t /wi th  fiber S p-1 over S v (t 1 has no cross section as 

the Hopf  invariant of e4:0, and is not  stably equivalent to a sphere bundle as f l r  
So we get - for every p as above - an example we searched for in Remark  (1). 


