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§1. INTRODUCTION

RECENTLY, attention has been given to framings on Lie groups with a view to producing non-trivial
elements in the homotopy groups of spheres and finding some kind of pattern in their
construction. We refer to Atiyah, Smith[3], [13) and Gershenson|[7] for work in this direction and
to Steer[14] for a more comprehensive treatment of the subject of framed Lie groups and their
Hopf invariants to which this paper is a contribution.

Our principal aim is to show that Toda’s element « in the 14-stem of the homotopy groups of
spheres can be represented by a framing on G.. During the course of the work we are led to
consider framings on SU(3). It turns out that all elements in the stable 8-stem can be represented
by such framings.

The general plan is to start with a representation of a compact Lie group G of order k and
embed G in codimension k with a framing which represents the zero element of ..« (S k), where
n is the dimension of G. This trivial framing is twisted by the representation to provide a new
element of m....(S*), which is hopefully non-trivial. To test this we apply the generalized Hopf
invariant of the classical EHP sequence. Background information on the homotopy theory
involved here can be found in Toda’s book[15]. The success of the method depends of course on
constructing elements in ,.,S* which are not desuspensions, otherwise the Hopf invariant
vanishes. It turns out that there is a correlation between the least orders of faithful
representations of certain Lie groups of low rank and the dimensions of spheres S* on which
interesting elements of ,..S* first arise. Furthermore there is a pattern of Hopf invariants
corresponding to classical fibrations of these groups. We shall illustrate these assertions in the
case of G.. As a focal point of this paper let us state the following result.

1.1. TuroreM. There is a natural framed embedding of G in R* arising from a maximal orbit
of three copies of the fundamental representation p: G, C SO(7). This framing represents 0in
78", If we twist this trivial framing by the representation p we obtain a non-zero element of
w287 which stabilizes to Toda’s element « in the 14-stem.

We may also twist the trivial framing of G, by the inverse map p~": G- SO(7). This also
gives a non-trivial element of 7., S” but it stabilizes to zero in the 14-stem. Hopf invariant
calculations and Toda’s tables are sufficient to check the non-triviality of the twisted framings
unstably. The Hopf invariants of framings on G, are identified with framings on SU(3) whose
Hopf invariants in turn are identified with framings on SU(2). The pattern of Hopf invariants
referred to above corresponds in these cases to the fibrations

SUQ)-»SU@3)-»S°, SUB)->G.~S°

The problem of the stable identification of framings on G, and SU(3) is rather subtle. To solve
the problem completely we need the e-invariants of framings on SU(3) in conjunction with their
Hopf invariants and Toda’s tables[15]. In §8 the e-invariant calculations are carried out, but fora
‘comprehensive treatment of this matter we refer to Ray[12] where a formula is developed in
general homology theory for the change of e-invariant of a twisted framing. In §3 we give a way
of viewing the Hopf invariant in terms of a certain “intermediate bordism group”. The
intermediate bordism groups are defined in §2. They lie between the homotopy groups of the
orthogonal group and the homotopy groups of spheres and give rise to a certain filtration of the
atter which may be of some independent interest. More information relevant to these
ntermediate bordism groups and Hopf invariants is given in §6 and in §7 where we have also
ollected a few problems together which arise quite naturally in the course of our work. For
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convenience we have provided in §4 a brief description of the exceptional Lie group G, and its
main properties, which are used in §5 to set up the required embeddings of G, in R* and to
reduce the calculation of Hopf invariants to elementary matrix theory.

At this point I would like to thank my colleagues P. J. Eccles, D. Hacon, N. Ray and G.
Walker for many valuable suggestions which have been incorporated into the text.

§2. FRAMED MANIFOLDS

Background information on framed manifolds and the Thom-Pontrjagin construction can be
found in Milnor’s book[11]. We just recall some of the basic ideas which we shall be using
subsequently. A framing ona manifold M" smoothly embedded in euclidean space R"** consists
of an ordered set of vectors vy(x),.. ., ti(x) varying smoothly with x € M" and providing a
basis for the normal space at x of M" in R™**. There is an equivalence relation of bordism
between such manifolds. The set of equivalence classes of closed framed n-manifolds in R™™
forms a group under disjoint union. The Thom-Pontrjagin construction sets up an isomorphism
between this bordism group and the homotopy group a5

Let M™ be framed in R*** by vectors vs,..., % which we consider as columns of an
(n + k)X k matrix V. Let g: M" - GL(k) be a smooth map assigning to a point x in M the
non-singular matrix A. We can form the matrix product W = VA whose columns give a new
basis of the normal space at x € M. The new framed manifold (M, W) obtained from (M, V) by
twisting the framing V with the map g is not in general bordant to (M, V). If however g is
nullhomotopic then a smooth nullhomotopy gives rise to a cylindrical bordism between (M, V)
and (M, W). This situation arises, for example, when we apply the Gram-Schmidt process for
transforming a basis into an orthogonal one. We shall assume in practice therefore that our
framing vectors are orthogonal.

The suspension homomorphism of homotopy theory

E: 7Tn+k(sk)—)7rn+k+l(sk+l) 2.0

has the following geometric interpretation. Let a in ... (S*) be represented by a manifold M” in
R™** framed by vectors v,..., v Let

t=0,...,0,1) (2.2)

be the unit vector along the last axis of R” +k+t Then E(a) is represented by the manifold M”
framed in R****! by the vectors vy,..., Vs L.

The problem of desuspending an element in 7T, +x+18%*! can be thought of in two stages, firstly
lowering the embedding dimension of the manifold and secondly deforming the framing so that
the last framing vector always points in the direction t. With a view to distinguishing these
problems we now introduce some intermediate bordism groups. Consider closed n-manifolds
embedded in R*** but framed in R"** where 1 <r <k. For example, if r = 1, we are dealing with
framed hypersurfaces whereas, if r = k, there is no extra constraint on the embedding. A bordism
group of such manifolds is constructed in the usual way. We just remark that a bording manifold
is constrained to lie in R"*" X I but its framing is allowed to take place in R"™* x I Let 3%«
denote this bordism group of manifolds framed in codimension k but embedded in codimension .
We can admit the case r = 0 and define 72« as m.SO(k), on the grounds that the only manifold
which embeds in S* with codimension 0 is S* itself and the only bording manifold allowed is the
cylinder. Of course, for r >0, we can work with n-manifolds embedded in R"*" or S n*7- the two
are equivalent by stereographic projection. The following sequence arises naturally by regarding
a manifold embedded in codimension r as embedded in codimension r + 1.

k.0 k1 kk—1 kK
"n+k_')7rn+k_')' > Tk 7 Wtk (23)

We note that %%, is the usual bordism group isomorphic to 7,..S* and the composite map of the
sequence is the J -homomorphism

T SO(K) = o aS* (24)

in geometric guise. The images of 7%« in 7 S* provide a filtration starting with the image of J.
We shall say a little more about these intermediate bordism groups in §7 but we wish now to
concentrate attention on the penultimate group aiith.
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§3. THE HOPF INVARIANT
The suspension map (2.1) factors through the group 7 %%}, because we add on a new framing
vector but leave the manifold embedded in the same dimension. It is a sensible question therefore
to ask for an obstruction to desuspending elements in m%}L*, with reference to the sequence

k+1, K+t
E: ‘n’u+kS _"’n'n:k+l-)7rn+k+ls . . (3-1)

So consider M" embedded in R*** and framed in R****' by orthogonal vectors Uiy oo vy Vi,
Using the notation (2.2) we define a map

f:M">S* 3.2
by the vector of inner products

(8, 0:1(0), - . . o {8, Deas(x))) (EX))

normalized to have unit length. We should note of course that the vector (3.3) is never zero
because ¢ lies in the space spanned by v,, ..., v.... The map f is nullhomotopic if the framing on
M can be deformed so that v, ., always points along ¢ and then v, . .., v, lic in R***. To obtain an
obstruction to desuspending the bordism class of M we go one step further. Let N*™* = f"'(p)
_ denote the inverse image of a regular value of p € S* By a suitable adjustment of the framed
manifold M, if necessary, we may assume that

p=(,...,0,1) (3.4
so that N is described as the set of points x € M at which v,., points in the ¢-direction. The
manifold N is framed in M by vectors w;, ..., w, which project under the differential of f onto

the standard framing vectors at p € S* The bordism class of (N, W) in M corresponds to the

_homotopy class of f under the Thom-Pontrjagin construction[11]. Now we adjoin the framing

ectors vy, . . ., tx41 Of M to obtain a framing of N in R****'. But, by definition, v, ., always point
_in the direction ¢ on N so, effectively, N is framed in R"** by the vectors

Wisooo g Wiy, Upyevny Up (3.5)
This construction is well defined on bordism classes and gives rise to a homomorphism

. mk+lk k,2k
h- ”":;‘+l__)ﬂ:+2‘" (3'6)

- which we call a Hopf invariant. This terminology is justified by the commutativity of the square

[
+1.k 2k
n+k+1 > TTn+kS

1]

k+1 2k+1
Tnsk419 " "}T’Wn+k+ls * s (37)

here F is the natural map described in (2.3), E is suspension and H is a version of the classical
;Hopf invariant. A proof of commutativity will be supplied in §6 where we give a homotopy

a
terpretation of 7Xth%,.

A geometric description of G. Whitehead’s generalization of Hopf’s original invariant was
st given by Kervaire[10] and a comprehensive treatment of Hopf invariants appears in
oardman-Steer [4]. Our constructions are modifications of Kervaire’s ideas as he applied them

0 spheres and our results can be deduced from [4]. We give an independent proof because the
ntermediate bordism groups may be of some independent interest. Our framed manifold N is the
self-linking” class of [4].
To summarize this section we state a working definition of the Hopf invariant by paraphrasing
he above discussion. Suppose @ € ,..+1S**" can be represented by a manifold M"™ framed in
***" but embedded in R™**. Then its Hopf invariant is represented by the submanifold N C M
n which the last framing vector points along the last coordinate axis of R****', The framing on N
ises from the obstruction f: M - S* to desuspending the given framing on M together with this
aming restricted to N. Our Hopf invariant applies to the subclass of elements in the penultimate
tration of ,....S**". This includes elements in the metastable range as one can see by a
orward reference to Proposition 6.3.
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In §5 we compute the Hopf invariants of certain framings on G.. Frequently a framed
embedding of an n-dimensional Lie group G in R™** arises in a natural way from a
representation p of G on R™**_ This framed embedding we denote by (G, p). If a: G- GL(k) is
a map, frequently another representation, then (G, p)* denotes the framed manifold (G, p)
twisted by a in the manner described at the beginning of §2. In [14] Steer shows how to associate
with a representation ¢ of G a well defined element [G, ¢] in the stable stem m,". This element is
represented stably by the twisted framing (G, 0 @ $)°"' where 0 is a representation admitting an
orbit with trivial isotropy group. The construction is independent of the choice of 6.

§4. THE EXCEPTIONAL LIE GROUP G,

In this section we gather together some standard facts about G, which are needed to define
the framings in R?'. Information about G, can be found, for example, in Borel [5]. We define G as
the automorphism group of the Cayley number system. A Cayley number is a pair (a, b) of
quaternions, and numbers u = (a, b), v =(c, d) are multiplied according to the formula

uv = (ac — db, da + b¢). @0

This defines a real algebra structure on the set K of Cayley numbers which we identify with
R®. Numbers of the form (a, 0) form a subalgebra of K isomorphic to the quaternions H and we
have inclusions R C C C H C K. The number 1 € R acts as the identity of K. The real multiples
of 1, which we identify with R, constitute the centre of K. Cayley multiplication satisfies
luv|P = |lu|Flv|* where |u] is the usual norm of u € R®. We have a conjugation operator

i =(a,—b) 4.2

which extends the usual quaternionic conjugation. The inner product of vectors u, v € R%is
given in terms of conjugation by the formula

Au, v) = uv + vi. “4.3)

[ alll- O o & ilo 2t o ]

The self-conjugative Cayley numbers are precisely the reals R. The skew-conjugate numbers
satisfying & = —u form the 7-dimensional orthogonal complement of R, which we identify with
R’ and call its elements pure Cayley numbers. The pure Cayley numbers are characterized by the

condition

pi=-r’, 4.4
where r is real. Two pure Cayley numbers u, v are orthogonal if and only if

uy =—ol 4.5)

and in this case uv is again a pure Cayley number.
Let{e,, ..., e;} denote the standard basis of R”. The multiplication table of basis elements can
be drawn up from (4.1). We note in particular the following defining relations

e3=e6, €5=€8s, €= €€y, €= (4.6)

An automorphism of K is a non-singular linear transformation T: R®*->R? satisfying
T(uv) = T(u)T(v) for all u, v € K. Itis easy to verify, using (4.3), (4.4) that T leaves the centre
R pointwise fixed, commutes with conjugation, stabilizes the pure Cayley numbers and is
automatically an orthogonal transformation. The automorphism group G, may therefore be
considered as a subgroup of O(7) acting on the pure Cayley numbers R’. It is easy to see that G:
is a closed subgroup of O(7) and is therefore a compact Lie group.

Let {fi,...,f:} be any orthonormal basis of R’ satisfying condition (4.6). Then the
multiplication table of {£;} is the same as that of {e;} so that the association T(e;) = f; defines an
automorphism of K and every automorphism of K arises this way. In other words an element of
G, C O(7) is determined by its effect on the basic elements e, e,, e, which may be transformed
into any orthonormal system f,, fo, f4 subject only to the condition that f, is orthogonal to fife
From this it readily follows that G- acts transitively on the unit sphere S¢ C R’ and on the Stiefel
manifold V,, of orthonormal 2-frames in 7-space. The stabilizers of e, and (ei,e;) are
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& respectively SU(3) and SU(2), hence we obtain fibrations

. SUQB)-»G,-» S, SUQ)-»>G,» V.
Clearly G is connected so that G, C SO(7). We also see that the dimension of G, is 14.

§5. FRAMING G, IN R*
Consider three vectors u, v, w € R satisfying the following system of equations

P = ol =|wif =1,
(o, w)={(w,u)=(u,v)=0, ¢.0
{uv, w)=0.

The first six equations define the Stiefel manifold of 3-frames in 7-space. In the seventh
equation uv is the product of pure Cayley numbers and is again pure Cayley by 4.5. If we write

u= geh v= geZ’ W= ge49 (5.2)

where ¢ € SO(7) and ¢, are the basic vectors used in the previous section, we see that the
equations (5.1) are precisely the conditions for g to lie in G, where it is uniquely determined. The
_ equations (5.1) define therefore an embedding of G, in R as a real algebraic variety. This
~ embedding can also be described as a maximal orbit arising from three copies of the fundamental

_ representation p: G, C SO(7). The gradient vectors associated with the equations are listed
below in partitioned columns (ignoring the factor 2 in the first three).

u 00 0 w v ow

0 v 0w 0 u wu .3
0 0w v u 0 w

These seven vectors in R* are linearly independent at each point of G, where they form a basis
of the normal space. This framing represents the zero element in 7,,S”. To see why this is true

_we replace the equation |u|” = 1 by the inequality |u[? < 1 to provide a manifold with boundary,

ramed by the gradients of the other six equations and giving a bordism to zero of the gradient

framing of G..

The value of the gradient framing at the identity of G, is

e; 0 0 0 e e, e ,
0 (23 0 €4 0 €, —€s (5'4)
0 0 e e ¢ 0 e

_and we observe that 5.3 is the left translate of 5.4 by the matrix

g 00
(0 g 0)
00 ¢
. where g € G,

Following the notation of Steer[14] for stable elements let

[G2,3p)" =[G, (3 +n)p] (.5

enote the trivial framing [G,, 3p] twisted by the nth power of the fundamental representation
: G;—> SO(7). We shall consider the two cases n = +1. Explicitly, the vectors of the twisted
ramings are the columns of the 21 X 7 matrix

200\ /6,000 eje, e
02010 €0 €0 e,—es}8", (5.6)
00g/\00 e,e,¢,0 ¢

here g is thought of as a 7 X 7 matrix.

To calculate the Hopf invariants of (G, 3p)* ™" and (G,, 3p)® we first observe that equations
3.1) effectively embed G, in the sphere S given by the equation

el + {0+ w|f =3.
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Under stereographic projection the radial direction on the sphere corresponds to the direction ¢
in the earlier notation (2.2). We may therefore regard (G-, 3p)*" as an element in the intermediate
bordism group ¢ and calculate its Hopf invariant according to the rule laid down in §3. The
obstruction map (3.3) is formed in this case by taking the inner products of the framing vectors
(5.6) and the radial direction on $*°, which works out to be

(1,1,1,0,0,0)g".

For n = —1 this obstruction map is homotopic to the projection map of the fibration

SUB3)- G, ¢, G.7)

where f, assigns to a 7 X 7 matrix its first column. For n = 1 the obstruction map is homotopic to
the projection map of the fibration '

SUB3)- G, 2> §°, (.8)

where f, assigns to a 7x7 matrix its first row. Although the fibrations (5.7) and (5.8) are
equivalent under matrix transposition in SO(7), the maps f; and f, are not homotopic and this
makes a difference in the computation of Hopf invariants. In both cases the obstruction manifold
N of §2 is SU(3) because we may take any point, in particular e, € S¢, as the regular value of the
projection map and SU(3) is the stabilizer of e,.

To continue the computation of the Hopf invariant, according to §3, we must now find vectors
Wi, ..., ws which frame SU(3) in G, and project under the differential of f; onto the standard
framing vectors e, ..., e, at the point ¢, in S°. For this purpose it is helpful if we first consider
the fibration ;

S0(n)—->SO(n+1)—> S", (5.9

where f is either projection onto the first row or projection onto the first column and SO(n) is
embedded in SO(n + 1) as the set of matrices with 1 in the top left corner, i.e. SO(n) is the
stabilizer of the standard basic vector e, in R"*'. We may identify the tangent space at the
identity of SO(n + 1) as the set of (n + 1) X (n + 1) skew-symmetric matrices. If K, ..., K, are
skew-symmetric matrices forming a basis of the normal space of SO(n) in SO(n + 1) then the
matrices AK,, ..., AK, form such a basis at the point A € SO(n). Clearly, the first rows of
these matrices are independent of A € SO(n) and can be chosen as e, . .., €,+.. This explains
how to frame SO(n) in SO(n + 1) if f is projection onto the first row. If we project the normal
vectors onto their first columns we get the negatives of Ae,, ..., Ae,... Apart from the sign
problem this indicates that we must twist the framing AK,,..., AK, by A ~!in the normal space
in order to get the correct framing of SO(n) in SO(n +1) when f is projection onto the first
column.

What we have said about the fibration (5.9) applies equally well to a subfibration, in particular
to (5.7) and (5.8) in the case n = 6. The correct framing of SU(3) in G, for case (5.8) is simply the
left translate of a normal basis at the identity by g € SU(3), whereas in (5.7) this framing must be
twisted by g . Our model for SU(3) in R* is given by the equations (5.1) together with the seven
equations defined by u = e,. This characterizes SU(3) C G, as the stabilizer of e,. By evaluating
gradients we find that the normal space at the identity of SU(3) in R*' is spanned by the thirteen
vectors

¢ 0 0 0 0 0 O
0 [-23 0 ‘" 0 e —€s

5.10
0 0 ey €, € 0 €3 ’ ( )

where 1<i<7. The following six vectors lie in this normal space and are tangential to G:

(23 [ €4 €s €s (2]
-, 0 0 0 e O
5.11
0 0 —e 0 —des O .10

To verify this we note that each vector of (5.11) is orthogonal to the vectors of (5.4), which forma
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basis of the normal space of G, at the identity. From the above discussion we are now ready to

write down explicitly the framing vectors w, ..., ws of SU(3) in G.. In case (5.8) they are given
_ by the columns of the matrix

( g 0 0) ( & e e e e 87)
0 g O/]|-e 0 0 O 3es O
0 0 ¢ 0 0 —e 0 —Bes O (5.12)

_and in case (5.7) they are given by the columns of the matrix
V g 00 € €3 €4 €5 €6 ey

0 g O)[-& 00 0 Zes 0]Jg, (5.13)
0 0 g 0 0 —e, 0 —3e; 0

where g € SU(3) is regarded as a matrix in SO(6) for the purpose of twisting on the right.
To complete our computation of the Hopf invariant we must juxtapose the framings

. Wy...,weand v,,...,v;according to the rule in §3. Applying this to (5.12) and (5.6) when n =1

i ~ we obtain the following framing of SU(3) in R*":

i

14 090 €2 €3 [P €5 (13 e; € 0 0 O €s € (13 (1 0)
0 g Of-¢. 0 O O Zes 0 O e 0 e 0 e —es|\0 g
0 0 g/\0 0 —e 0 —3es 0 0 0 e e e 0 e

With the aid of a few column operations this framing can be deformed into

(gOOe.e2e3e4e5e5e700000 0)(10)
| 5

0 g 00 0 0 0 0 0 0 e 0 e 0 e —e)\0 g
0 0 g 0 0 0 0 0 0 0 0 e e € 0 e

_ 'We should recall from §2 that a deformation of a twisting does not alter the bordism class of the
framed manifold. Now the middle matrix has the 7 X 7 identity matrix in its top left position. We
may therefore replace the first matrix of 5.15 by

(5.15)

and the third by (g :) which can be deformed into <(1) :,) Consequently 5.15 is the 7-fold

suspension of the following framing of SU(Q3) in R™

g 0) (ez 0 e« 0 e —-es) 2
(0 g/\0 e e e 0 e g (5.16)
Actually the equations (5.1) with u = ¢, define an embedding of SU(3) in R*?* which is just a

_maximal orbit of two copies of the fundamental representation A of SU(3) on C>. This again is
_given by equations whose gradient vectors at the identity may be taken as

(43 0 €y —€
0 €4 €3 e3.

The gradient framing is trivial for the same reason as we gave for G,. The framing (5.16) is the

double suspension of the gradient framing of SU(3) twisted by A*. Again following the notation
of Steer[14], let

[SUB), 201" =[SU@3),(2+n)A] S.17)

stand for the trivial framing of SU(3) in R™ twisted by the nth power of the fundamental
representation A: SU(3)- SO(6). We have shown that the Hopf invariant of (G, 3p)” is the
fold suspension of (SU(3,2A)"". Carrying out an analogous procedure in case (5.7) on the
ectors (5.13) juxtaposed with the original framing vectors (5.6) when n = — 1, we arrive at the
7-fold suspension of the following framing on SU(3) in R**

g 0)(82 0 €4 0 (4} _es> -1 518
(0g0e4e2e.0e3g (5-18)
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and this is the framing [SU(3), A]. To summarize the work so far, we have the following result.

5.19. ProrostrioN. Hopf invariants of twisted framings, on G, are given in terms of twisted
framings on SU(3) by.

H(Gy,3py =E'(SU(3),20)",  H(G»,3py '=E(SU(3),2))",

where E denotes suspension, (G, 3p)°" is an element of .S’ and (SU(3),21)"" is an element of
m 14S 6.

We could proceed now to calculate the Hopf invariants of twisted framings on SU(3) by a
process similar to the one employed above for G,, but based this time on the fibration
SU@2)- SU@3)- S°. In this way one obtains, for example,

H(SUQR),20)" " = E"(SUQ), p) ",

where (SU(2), u)* "' is the element in 7,5* obtained by twisting the trivial framing on SU(2) = §*
by the inverse of the fundamental representation u: SU(2) C SO(4). This element is well known
to be », in Toda’s notation, represented by the Hopf map S7— S*.

For further information about Hopf invariants of twisted framings on G and SU(3) we refer
to [14].

Consulting Toda’s tables in [15] we learn that any element in ,,S® whose Hopf invariant is
stably equal to » is itself stably non-trivial. This implies therefore that (G,, 3p)*”" is a nontrivial
element of ,S”. Hopf invariant calculations alone in 7,,S° are not sufficient to identify the
elements {SU(3), nA]. For example, # and 7 + € both have Hopf invariant ». In §8 we shall show
that [SUQB),4A]1=7p, [SUQB),Al=7+e. It then follows from Toda’s tables that stably
[G2,4p] =k, [G2,2p]=0.

§6. THE INTERMEDIATE BORDISM GROUPS
k+1k

In this section we first give a homotopy interpretation of the group w51k}, introduced in §2,
Let 7 denote the tangent vector bundle of the sphere S* and M(r) its Thom complex.

6.1. ProposiTioN. There is an isomorphism r: wiik - maaM(7).

Proof. To describe the map r, consider a manifold M" embedded in R"**. Let ¢ be the unit
vector along the last axis of R"***', As we move round the manifold M, the vector ¢, relative to
the moving frame of reference, appears as a point of $* and the hyperplane R"**, in which M is
embedded, appears to move normal to t. In this way we can assign to each point in a suitable
tubular neighbourhood of M in R"** a tangent vector to $* and by compactification we obtain a
map f: S"** > M(r) whose homotopy class depends only on the bordism class of M. This
describes r. An inverse homomorphism

S: maM(r) > milik

is constructed in the usual way by starting with a map f: $"** - M(+), making it transversal to
the zero-section of $* C M(7), and then taking M" = f~'(5*) embedded in S$"** or equivalently
R"**. We frame M in R"***' by pulling back the cononical trivialisation of the Whitney sum
T @ e of the tangent bundle r and the trivial line bundle ¢ of $* in R**'. This canonical
trivialisation assigns to a point x € S* the standard basic vectors e, . . ., €., of R“"". The proof
that 7, s are mutual inverses goes through as for the Thom-Pontrjagin construction. For future
reference we note that the subset of points x € M = f'(S*) at which the last framing vector
vx+1 points in the direction t is N = f'(ec.1), where &, is here regarded as a point of S*.

6.2. ProposiTioN. Under the identification of w* 2%, with m,..M(r) and 723* with m, .S the
k+1.k 2k2k =+ *

Hopf invariant h: w%*L%, > 723 is induced by the map p: M(r)-> 8™ which projects the 2-cell
complex M(7) onto its top cell.

Proof. We recall that M(r) is the 1-point compactification of = and can be given the structure
of a 2-cell complex $* U e, where the k-skeleton is the compactification of the fibre of 7 over
the vertex of the base sphere, and the 2k-cell comes from the product of the fibre and the k-cell
of the base. The projection map p collapses the k-skeleton to the point at infinity in S**.

Let f: S*** - M(7) be a map which we assume transversal to the zero section of M(7). Let
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M =f7'($*) be the inverse image of the zero-section of 7, framed in R"**** by vectors

V1,..., %+t Which are the pull-backs of the canonical vectors e, ..., €., as explained in
\ Proposition (6.1). We may assume that the point e+ € S* is away from the fibre collapsed by p
to the point at infinity in $*. Let z = p(e,..) € S Then z is a regular value of the composite
map pf. According to the Thom-Pontrjagin construction the proof of Proposition (6.2) is
omplete if we can show that the manifold

N =(f) (z) = f(ew),

framed in S"** by the pull-back of the standard framing of z € S*, agrees with the description
of the Hopf invariant of §3. Certainly the description of N is correct as noted at the end of the
proof of Proposition (6.1). We can frame the point e,,, by the vectors fi, ..., f which are
tangential to the zero-section S* C 7 together with the canonical vectors ey, ..., & along the
*fibre at e,.,. The images of these vectors under p may be taken as the standard framing of z in
S Then N is framed by vectors wi, ..., wi, vy,..., 0 where w,,..., w, are tangential to M
and project onto the framing vectors f,, ..., fi of €., in S* under the map f: M- S* and
v,..., v are the restriction to N of the original framing of M in R****' which, by definition,
project onto e, .. ., &. This description of the framed manifold N is now in accordance with §3
and the proof of Proposition (6.2) is complete.

6.3. PropositioN. Under the identification of wkiy%, with m,,.M(7) and #**1*' with

n+k+1
Tnsk1 S, the natural map F: wkil%, > % 4% is induced by a map q: M(t)->QS**" which is
an equivalence of 2k-skeleta.

Proof. We recall that the loop space (.5**" has the homotopy type of a cell complex of the
form S* U e U--- U e™ U - -- and the attaching map of the 2k-skeleton S* U e?* is the
Whitehead product [, ¢]. This is also the attaching map of the Thom complex M(r). We describe
g in terms of its adjoint ¢': S’ A M(7)- S**'. Now S’ A M(r) can be identified with the Thom
-complex M(r @ ¢) and we define q’ to be the compactification of the projection = ® e >R
arising from the canonical trivialisation of 7 @ . We note that ¢’ collapses the zero-section of
7@ e to a point and maps a fibre in a degree one fashion. It follows that ¢ has degree one on
_bottom cells. If k is even, a cohomology ring argument shows that g is an equivalence of
2k-skeleta. This argument does not work for k odd, but we can use the Pontrjagin ring in all
cases.
To verify that q induces the natural map F we start with a map f: 8"** - M(7) corresponding
to the manifold M =f"'(S*) framed in S$"***' by the method described in the proof of
. Proposition (6.1). The adjoint of the composite map gf is g’ Sf: $"***' > S’ A M(r)-> S**!, where
Sf denotes the suspension of £. Now g’ collapses the zero-section of 7 ®etoapointz € 1,
t follows that M = (q'Sf)~"2. The framing on M obtained by pulling back the standard framing
of z in $°* agrees with the original framing on M. This completes the proof of Proposition (6.3).
We are now in a position to show that our Hopf invariant h agrees with the classical Hopf
invariant as defined, for example, by James[9]. With the aid of Propositions (6.1), (6.2), (6.3) the
proof that diagram (3.7) commutes is reduced to the homotopy commutativity of the following

M(r)—2> S

Y

st+l__?QS2k+l’ (64)

here H is the classical Hopf invariant of James, p and q are the maps defined in Propositions
(6.2), (6.3) and j is the inclusion of the bottom cell. Of course, j induces the suspension map E in
_diagram 3.7.

. The commutativity of (6.4) follows quickly from James’ definition of H in terms of the
duced product construction[9].

§7. REMARKS

By analogy with Proposition (6.1) and its proof one can find an interpretation of all the
termediate bordism groups m+7%, in terms of Thom complexes of certain vector bundles over
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Stiefel manifolds. The vector bundles in question are those associated with the standard
fibrations 0(r)=>0(k)~> Vix_~ Again, by analogy with the arguments of §3, one can define
intermediate Hopf invariants k% > masr— S, where S is the dimension of the Stiefel
manifold V... We start with a manifold M" embedded in R"**~" and framed by vectors v,,..., v, -
inR***. Let t,,..., t, be the unit vectors along the last r coordinate axes of R"**. The matrix of
inner products ((t, v;)) can be regarded as an obstruction map M" - V;,, to r-fold desuspension
of the framed manifold M. Lifting back a regular value as in §3 we obtain a framed manifold N"-*
in R***~" which represents the intermediate Hopf invariant. For example, we located the twisted
framing (G», 3p)*" in #1¢ in order to calculate its Hopf invariant. Actually (G2, 3p)"™" pulls back
to 2 because the equations (5.1) embed G, in S°Xx §¢x §*, which itself embeds in R". We may
therefore calculate its intermediate Hopf invariant 7} — 7,8 ' which turns out in this case to
be associated with the fibration S*>— G, V-, and is in fact v € a,°. This identifies a certain
element in 77 whose order is at least 24.

Unfortunately these intermediate Hopf invariants do not in general extend to the whole of the
homotopy groups of spheres. Of course, the first of these intermediate invariants does always
extend and is the classical Hopf invariant, as we have demonstrated. There is an explanation for
this behaviour but we shall not pursue the matter here. It is, however, an interesting problem to
find the filtrations of well known elements in the homotopy groups of spheres and work out their
intermediate Hopf invariants. By using the classical higher Hopf invariants (not to be confused
with our intermediate invariants), P. J. Eccles has been able to locate framed manifolds which,
unstably, have top filtration. But it remains a problem to decide whether the filtration introduced
in §2 has any significance for the stable homotopy groups of spheres. For example, which
elements in the stable homotopy groups of spheres have filtration one? In other words, which
elements can be represented by framed hypersurfaces? If we think of elements in the image of J
as having filtration 0 then our filtration measures to what extent an element fails to be in the image
of J. What is the filtration of 7, for example? We shall show in §8 that # can be represented by a
framing on SU(3) and SU(3) can be embedded in R"', but it is conceivable that the filtration of 7
is less than 3. We know that # is not in the image of J so its filtration is certainly positive.

§8. THE ¢-INVARIANT OF FRAMINGS ON SU(3)
Let A: SU(3)~ SU(3) denote the identity map regarded as the fundamental representation of

SU(@3) on C*. We embed SU(3) in C® as the set of complex 3 X 2 matrices

a, bl
as bz
as b;

satisfying the equations
Sada=1, Xbb=1 X ab=0. ®.1)

This locus is just a maximal orbit of the representation 2A. The gradients of (8.1), regarded as four
real polynomials, provide a normal framing of the 8-dimensional manifold SU(3) in R, As an
element in 7,S* this gradient framing (SU(3),21) is zero. In R™ we can twist the double
suspension of the trivial framing by powers A" of the fundamental representation A, regarded
now as a map SU(3)-SO(6). In terms of Toda’s generators 7, ¢, for the stable 8-stem
ws® = Z, ® Z, we can identify the twisted framings [SU(3),2A*" = [SU(3), (2 + n)A] as follows.

8.2. THeoREM. [SUQ3), kr1=0, 7, €, 5 + € according as k =2, 0, 3, 1 mod 4.

The proof of this theorem, which occupies the rest of this section, is based on a computation
of the stable cohomotopy ring of SU(3) and a computation of e-invariants. Our result provides 2
useful cross-check on some of the delicate calculations in [14] where Theorem (8.2) was first put
forward. We refer also to [13].

Let #°(X) denote the reduced stable cohomotopy group in dimension 0 of the finite cell
complex X. Since cohomotopy theory is a generalized cohomology theory with products, #%(X)
is a commutative ring. Of course #°(S") = 7.°, the stable n-stem.

8.3. PrROPOSITION. As a group
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’ﬁ'o(SU(3)) =7, @ Z, @ Lo,

_ where the cyclic summands are generated respectively by a, b, c, defined as follows: under the map

#ASUR))#(S®),
{nduced by projection of SU(3) onto the top cell, the elements a, b are the images of v, €. Under the
map

#°(S' A CP?)<#°(SU3))
induced by the inclusion of the suspension of CP? in SU(3), the element c maps onto a generator
of
‘ #(S'ACPY) =L,
The ring structure of #°(SU(3)) is given by ¢2= a. All other products vanish.
Proof. The additive structure of #°(SU(3)) follows immediately from the cofibrations
S'ACP*->SUB)-> S, S§*->S'ACP?’->S°

and the fact that the top cell of SU(3) splits off stably because SU(3) is parallelisable. We are

_ using the well known fact that SU(3) has a cell structure of the form S* U e* U ¢°, where the

. n
attaching map of the 5-cell is the suspension of the Hopf map. This can be checked by examining

the sphere bundle S*— SU (3)— §°. We have also used the following values of stable stems
w2 Lo, 7 =0, s =0, me =L, DL,

It should be noted that ¢ is not uniquely defined, but can be altered by any combination of a and
b. However, ¢ is unique because a, b come from a suspension so that a®= b*= 0 and they have
order 2. The ring structure on #°(X) is induced from the smash product of stable maps X - S°
and the diagonal map A: X - X a X. It follows quickly, for dimensional and connectivity reasons,
that ca = cb = 0. The only non-trivial computation to be made is the value of ¢2. I am indebted to
Grant Walker for showing me how to do this in terms of Toda brackets. We wish to investigate
the stable composite map

SUB)S SUB) A SUB)——>S°1 §°.

_Since SU(3) is 8-dimensional and S’ A CP? is 5-dimensional we have the following factorization
through the 10-skeleton of SUB3)A SU 3)

SUB3)5 S5 S'aCP?AS'ACP>—2"5 §°A 8", (8.4)

where p denotes projection onto the top cell, sp = A, and h is the restriction of ¢ to S' A CP?.

- Our problem is reduced to identifying (h A h)s. Now the restriction of ¢ to $> C S'ACP? is the
_ generator » of the 3-stem. It follows that the restriction A of ¢ to S' A CP* may be regarded as an

xtension of v corresponding to a null homotopy of »n where n generates the 1-stem. Now we
onsider the factorization

S*— > ' A CP* A S' A CP—2 5 §1 A CP? A §°—"5> 5% a S".

We shall show that the composite (1 A h)s may be regarded as a co-extension of », corresponding

. to a null homotopy of nv. To verify this, consider the diagram

§%5 S'ACP*AS'ACP?—=5 S'ACP*AS°
S’AS‘ACP’T S S°,

where q is projection of S'ACP? onto the top cell. Now the map s has degree one on the
8:skeleton because it arose from the diagonal map A of SU(3) into SUB3) A SU(3), and in the
cohomology ring of SU(3) the product of the 3-dimensional and S-dimensional generators is the
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8-dimensional generator. It follows that the cémposite (g A1)s also has degree one on the
8-skeleton and we deduce
(@rl)(1ah)s=(Urh)gals =v.

This demonstrates that (1ah)s is a co-extension of v, and putting the extension with the
co-extension we obtain, by definition of Toda brackets,

(hah)s=(hal)(1ah)s =(n,v, 7).

Now (n, », n) is Toda’s definition of 7. Referring to (8.4) it follows that ¢? in #°(SU(3)) is the
projection of 7 in #°%(S®) and this concludes the proof that ¢*= a.

To proceed further with the proof of Theorem (8.2) we collect together some standard facts
which relate various constructions like the Hopf' construction, the J-map and framed
embeddings. We refer to [12] for a full account of the ideas involved here. Consider a map
@ : X - SO(N), where N is sufficiently large compared to the dimension of the finite cell complex
X. The Hopf construction assigns to a the composite

X 5 SO(N)> QNSNS Q,NS™, 8.5
where u is the inclusion of the orthogonal transformations of R" into the space of all base point
preserving maps of S™ with degree 1. The map v translates Q,¥S™ onto (™S, the maps of S™
with degree 0, by subtracting a fixed map of degree one with respect to the H -space structure of

QNS™ given by loop addition. Regarding a as an element of K (X ) and taking the adjoint of
vua in (8.5), we obtain a natural map

J: K'(X) - #%(X). (8.6)
The J-map is not a homomorphism in general but satisfies a quadratic formula
J(a +B)=J(@)+J(B)+J(a)](B), @®.7

which is easily checked from the definition of J and the fact that loop composition in VSV
induces the cohomotopy ring structure. If X is a suspension, then products vanish and J is a
homomorphism. In particular, if X is a sphere, we have the classical J homomorphism.

Now consider a framed embedding f of a manifold M" in R*** together with a twisting ¢ of
the framing

M XR* 5> M xR* SR (88)
The twisting ¢ is given by a formula
tx,v)=(x,a(x)v), x€EM, v €ER" (8.9

where a: X - SO(k). The composite ft is again a framed embedding. Associated with f we have
the collapsing map of one-point compactifications

F: (R"™)* > (M X R*)*, (8.10)
Let P denote the compactification of the projection p: M X R* -»R*. The composite map
PF: (R )* > (R*)* 8.11)

is precisely the Thom-Pontrjagin construction on the framed manifold (M, f). Now let T denote
the compactification of the twisting map ¢. Then PT'F is the Thom—Pontrjagin construction on
the framed manifold (M, ft). Consider the difference element

u=PT'F-PF:S"*"* > 8" 8.12)

We explain in terms of the following diagram how the difference element u can be factored
through the Hopf construction.

R ) 5 (M xR**—> S5A M

PT-1-p l H (8.13)
(R*)*.
The map G collapses an axis (R*)* of (M X R*)* to a point and we identify the quotient space
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(M X R*)*/(R*)* with the k-fold suspension of M. The maps PT~' and P agree up to homotopy
on the axis (R*)*, both being maps of degree one. Hence their difference PT'— P factors
through S* A M. The factor map H is just another way of describing the Hopf construction (8.5)
applied to the inverse of the map a: M - SO(k) associated with the twisting ¢ as in (8.9). The
composite map GF =® is an element of #8M"), and may be regarded as the reduced
fundamental class of the framed manifold (M, f) with respect to stable homotopy theory. Let us
summarise the result as follows.

- 8.14. ProposiTion. Let (M", f) bea framed n-manifold representing the eleryent {M", f]in the
n-stem. Let t be a twisting of the framing associated with an element a € Kz '(M). Then the
difference element is given by the formula

M, ft1-[M, f1=H®,

where H is the Hopf construction applied to the inverse of a, so H =J(—a), and ® is the reduced
fundamental class of (M, f) in stable homotopy theory.

In particular, if (M, f) is a boundary framing then [M, ft] = H® provides a factorization of the
twisted framing through the cohomotopy group #°(M). We should also note at this point that the
composite map

LR L ¥ JLINY (8.15)

~ has degree one, where Q is induced by projection of M onto the top cell. It follows that in stable
. .~ cohomotopy Q* embeds =.° as a direct summand in #%M) with ®* as a left inverse.

Let us now apply the above work to the case M = SU(3) and the trivial framing (SU(3), 2A).
The problem of identifying the twisted framings [SU(3), kA] can be analysed in terms of the
following sequence

73 R(SUB) > K '(SUB) 3 #(SUB) — 7. (8.16)

. The map g assigns to the integer n the nth power A™" of the inverse of A thought of now as a
 map of SU(3) into the infinite unitary group. This is just —nA as an element of K'(SUQ3)). The
map r is realification from complex K -theory, and the maps J, ® are explained above. In this case
® is the reduced fundamental class associated with the framed embedding (SU(3),2A). Let

Y=Jrq 8.17)

denote the composite map, so that ¥ evaluated on an integer n tells us which element of the
~ 8-stem we get by twisting the trivial framing [SU(3),2A] by A7"

In Proposition (8.3) let us now choose the generator ¢ to satisfy ®(c) =0. This is possible
_ because & is an inverse for projection onto the top cell as noted in (8.15). Only the sign of ¢ now
remains ambiguous. In terms of the generators a, b, ¢ of #%(SU(3)) now chosen, we can state the
~ crucial result needed in the proof of Theorem (8.2).

8.18. Prorosition. ¥(1)=a +b +c.

The proof of Theorem 8.2 follows quickly from this proposition and (8.7). As a consequence
of this proposition we have for example

W(2) = V(1) +¥(1) + ¥(1)* by 8.7
" =2a+b+c)+(@a+b+c)’ by (8.18)
=2c+a by83

Hence ®¥(2) =®(a) = ¥ and so

[SU@B),01=7. 8.19

As another example consider W(~1). Although the J-map is not a homomorphism we have
J(0)=0. Hence

0=V(=1+1) =P +¥1)+¥-1D¥(1).

Hence W(-1)=b-c, hence ®¥(-1)=¢, and so [SUB),3A]=€¢ In general ¥(n)=
n¥(1) - (1/2)n(n — 1)¥(1)>, which gives the result stated in (8.2).
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The proof of Proposition 8.18 is in two stages. Let
Y(1)=Aa + ub + wc, (8.20)

where A, € Z,and @ € Z,,. In the first stage we determine the coefficient w by considering the
following diagram.

KY(SUB) —> K (SUB) —> #%(SUQ3)

l l 1

RS A CPY)— Ke7'(S" A CP)—> #%(S" A CP?)
K~C—I(SS) ___'_> KR-I(SS) __"_, ,ﬁ.O(S:;). (8.21)

The vertical maps are induced by inclusions. The diagram commutes by naturality of r, J. Now
R(SUQ) =Z @ Z, generated by the fundamental representation A and its conjugate A [8].
Moreover, A restricts to a generator of K "'(S?) and its realification generates K< '(S?). Along
the bottom row of diagram (8.21) the J-map is the classical J-homomorphism, which is known to
. send the generator of Kx'(S) onto » in 7°%(S?). From the definition of ¢ in Proposition (8.3) it
follows that the coefficient w is +1 and we can now fix the sign of ¢ so that & = 1.

It is interesting to note at this point that we can already prove (8.19). The computation does not
depend on the coefficients A, p in (8.20). In [14] Steer shows that [SU(3),0] is the canonical
tangential framing which features in the work of Smith and Atiyah{3). We have confirmed that
the tangential framing on SU(3) gives 5. A similar calculation shows that [SU(3), 4A] = 7, and this
is the result needed in §5 to show that [G,, 4p] = k. We refer to [14] for a proof that [G,, 0], the
tangential framing on G,, is also «.

The second stage in the proof of Proposition (8.18) is the difficult one. We want to show that
A = p = 11in (8.20), which is equivalent to showing that [SU(3), A} = # + €. From Hopf invariant
calculations we know that [SU(3), A1 is either 7 or # + e. The problem is settled by the following
result.

8.22. ProposiTioN. The e-invariant of [SU3),A] is 1.

We refer to [12] for a comprehensive treatment of e-invariants in general homology theory. In
the present paper we shall just indicate the main ideas as they apply to our particular problem.

Let n and k be divisible by 8. From the work of Adams[1], the e-invariant of a map
u:S"** - S* can be calculated from the short exact sequence

0 Kr (8*) K (C)e Kn(S™**1)¢-0, (8.23)

where C is the mapping cone of u. Let o € IZ_R(C) map onto a generator of Kg(S*)=2 and let
T € Kg(C) be the image of the generator of Kx(S"***')=Z,. Evaluating the Adams’ operation
¢ on o we get

Us(o) = ao + er. 8.24)

The coefficient e is the required e-invariant of «.

To find the e-invariant of a framed manifold we transport the calculations of ; onto the
manifold, as Adams does in the case of a sphere when calculating the e-invariant on the image of
the J-homomorphism.

Let us start therefore with the data of (8.8), namely a framed embedding of M” in R*** and a
twisting of the framing. Consider the following diagram:

SEAM—» 8k, p i, gk A M

R

k+1

S"+k'—‘)sk""~"’c’_’_’s
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The map ® is the reduced fundamental class as explained in (8.13), H is the Hopf construction
associated with the twisting and u is the difference map (8.12). The space D is the mapping cone
of H and ® induces a map of cofibrations if we insert the identity map I of S*. The first square
then commutes by (8.14). The rest of the maps in (8.25) are defined in the usual way.

At this point we need the following result.

8.26 LemMA. Let B denote the k-plane bundle over the suspension S* A M associated with a
map a: M - SO(k). Let H: S* A M - S* be the Hopf construction of a. The mapping cone D of H
has the same homotopy type as the Thom complex of B, and in the cofibration

S* A M-8 5 D58"" A M ®8.27)
the map i may be taken as the inclusion of a fibre in the Thom complex.

Adams proves this fact when M is a sphere in [1] and the general case is similar.
If the map a lifts to Spin(k) then the bundle B is orientable for real K -theory, and in that case
we have a Thom isomorphism

0: Ke(S' A M)~ Ke(D). (8.28)
Apply real K-theory to diagram (8.25), on the assumption that we are now working with an
orientable twisting, we obtain a diagram of short exact sequences

0 < Rr(8*) < Ka(D) < Ra(S**' A M) «—0

I |

0 — Kr(S%) e;—IZR(C)«i;—IZR(s"“”)«——o.

n order to evaluate ¢, in (8.24) we may choose
o =0%0(1), (8.30)

here ©(1) is the Thom class in Kx (D). Again from the work of Adams[1] we have the following
rmula in the real K-theory of D

¥:0(1) = Bpy(B), 8.31)

ere ps is the cannibalistic class of Adams and Bott. The virtual bundle ps(B) over S'aA M is
duced from B by a virtual representation of Spin(k) whose character is given explicitly in [1].
i the case when M = SU(3) and B is the bundle over S' A SU(3) induced by the fundamental
gpresentation A: SU(3)—»> SU(3), the virtual bundle ps(B) is induced by the representation
(3)—> SO whose character is

(Z] +1+ Zl_l)(22 +1+ Zz—l)(lg +1+ Zg_l). (8.32)

One easily checks that the representation is in fact

AZHAZHAN (8.33)

W )t’+)t-f is the underlying real representation of a complex representation, namely A
wever AA is not in the image of realification. In fact a simple computation with characters

A =1+Ad,

here Ad: SU(3)-> SO(8) is the adjoint representation. At this point we need to know something
ut the K-theory of SU(3)

~ 8.35. Lemma. As groups
. RSUG)=2®Z, K '(SUG)=ZDZL,,

ere generators of the cyclic summands are respectively A, A, r(A), p. Here r(A) denotes the
ification of A and p is the image of the generator of Kg '(S®)=Z, under the projection of
(3) onto its top cell.
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The proof of this lemma follows quickly from the cofibration used in the proof of (8._3), and 3
comparison of the complex and real K -theories via realification. We note that r(A) = r(A) so that
4 is not in the image of realification.

8.36. LEMMA. The adjoint representation of SU(3), regarded as an element of Kz~ '(SU ), is
given by Ad=3r(A)+ u in terms of the generators of Lemma (8.35).

The presence of 3r(A) in the formula for Ad is easy to verify by looking at the
complexification ¢: Kz '(SU(3))- Kc'(SU(3)) and using the fact that the tensor product AX of
representations is homotopic to 3(A + X) as maps into the infinite unitary group. But A + A*cr()),
and from (8.34) we deduce that either Ad = 3r(A) or 3r(A) + p. The difficulty is to show that the
latter holds. We delay the proof of this to the end of the section and proceed now to complete our
calculation of the e-invariant of [SU(3),A].

8.37. CoroLLARY. In K '(SU(3)) we have ps(B)=ml+nr(A\)+pu where m and n are
integers.

This follows from (8.36) and the fact that p;(B) is induced by the map (8.33) of SU(3) into the
infinite unitary group.

Now the Thom class in complex K-theory may be taken as the complexification of the real
Thom class, because complexification c: Kx(S*)> Kc(S*) is an isomorphism when k is a
multiple of eight. The results below now follow quickly by a comparison of complex K-theory
and real K-theory under the realification map.

8.38. CoroLLARY. With reference to 8.28 and diagram 8.29 we have
Ops(B)=p () +qi*r(A\) +j*u,
where p and q are integers.

This follows from (8.37) and the above remarks.
With reference to (8.24), (8.30) and diagram (8.29) we have

a0 = 4 B10(1)
= 01y,0(1)
= 018(p«(B))
= po18(1) + gOtjtr(A) + Bjtp.

Now ®%j*rA = rd%j*A = rjt®%A =0, because K.(S**") = 0. Moreover ®, has degree one on the
top cell because it is the suspension of ¥ in diagram (8.25). Hence

OYjtu =j1Ptn =1,

which leads finally to the conclusion that ¢;o = po +r and the proof that the e-invariant of
[SU@B3),A]is 1.

We return now to the proof of Lemma (8.36). Let T denote the maximal torus of SU(3). The
adjoint representation of SU(3) restricted to T is a real representation of T whose character is

k =2+Z|Z—2+Zzz-1+zlz—3+ Zgzl+szg+Z32-'-z. (839)
Clearly k has the form
k =Cr(1+Z|Z-2+sz3+Zgz_1), (8.40)

where as usual r denotes realification and ¢ denotes complexification. In other words, the
restriction of the adjoint representation of SU(3) to the maximal torus T is the realification of the
complex representation

D= 1+le-2+22f3+23z_|. (8.41)
This allows us to construct the following ladder of fibrations

U850 2% SO/U-2> BU

of Wl al sl

T— SUB) — SU(3)/TT-> BT
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. where U, SO are the infinite unitary and special orthogonal groups; BU, BT are classifying
_ spaces, Ad is the adjoint representation regarded now as a map of SU(3) into SO, and D is the
map of T into U arising from Ad in the manner described above. The top sequence of (8.42) is the
well known Bott sequence relating real and complex K-theory which can be formulated in the
ollowing way

K5 R — K> — K, 8.43)

where r, in (8.42) corresponds to realification in (8.43), the quotient map ¢, in (8.42) corresponds
_to the module action of the generator ¢ of Kx'(pt) and c, in (3.42) corresponds . to
complexification in (8.43). We are using here the periodicity theorems of Bott to identify SO/U
~ with °BO and BU with (?BU. The rest of the maps in (8.42) are defined in the usual way.

. We know from (8.35) that u € Kx'(SU(3)) is not in the image of realification. In fact, one
easily verifies that K< A(SU@B3))=1Z, with &u as the generator. Consequently, in order to verify
the presence of p in the formula for Ad in (8.36), it is necessary and sufficient to show that the
composite map ¢,Ad in diagram (8.42) is non-trivial. This is equivalent to showing that D,q; is
_ non-trivial. Let 8 in Kz 2(SU(3)/T) denote the element represented by the map (8.44) D,. Then
our problem is to show that ¢%(8) is the non-zero element of K< 3(SU(3)). This we do in several
stages. First of all we need to know something about the space SU (3)/IT. We refer to [6] for
~ general information about homogeneous spaces and just recall here that for any compact Lie
group G with maximal torus T, the space G/T has a cell structure with cells only in even
dimensions and the number of cells (counting the 0-cell) is the order of the Weyl group of G. In
_ particular

SUQR)IT=S8*vS*Ue*Ue*U e’ (8.45)

from which we deduce immediately that Kz '(SU(3)/T) =0 and from the Bott sequence (8.43)
we see that the complexification map

c: K A(SUB)T)-» K(SUQ)IT) (8.46)
is injective. i
Again from (8.45) we deduce that K *(SU(3)/T) is a free group of rank 3. Let o be the

generator of K< 2(SU(3)/T) which comes from the top cell in (8.45) under the projection map
SU3)/T - S°. With reference to (8.44) we can state the following.

8.47. LEMMA. 8 =3w.

By (8.46) and the fact that Kx %S9 > Ko %(S°) is an isomorphism, we can verify (8.47) by
working in complex K -theory. With reference to diagram (8.42) and the definition of & in (8.44),
we see that c(8) is represented by the map C.D,. But C.D,=D,C; and, since D, is the
_classifying map of D, we are now in a position to formulate our problem in terms of the natural
map a: R(T)- K(SUQ)/T) from the representation ring of T to the K-theory of SU G)/T,
~which appears in the work of Atiyah and Hirzebruch[2]. In fact D,C, is essentially a(D). The
character of D was given in (8.41) and we can now quote the value of the Chern character of
(8), namely

ese+e2eB+ ee’, (8.48)

In this context z), z», z, are interpreted as elements of the second cohomology group of
U(3)/T, which generate H*(SU(3)/T) subject to the single relation
A+z)1+z)(1+25) =1, (8.49)

¢ contribution of (8.48) to the reduced cohomology of SU(3)/T works out to be 3z,2,° and 2,2}
enerates HS(SU(3)/T). Since the Chern character maps K<(S®) isomorphically onto H%(S®) and
. monomorphic from K&SUQG)/T) to H*(SU(3)/T; Q) we deduce the result stated in (8.47).

Referring back to (8.44), we continue the proof that q%(8) is the non-trivial element of
K 3(SU(3)) by looking at the following map of cofibrations

S'A CP?—> SU(3) — S*

Y A

S2vS?UetUet— SU(3)/T—;—-> Se. (8.50)
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The maps p, and p, project onto top cells, g, is the quotient map which induces the map q of
4-skeleta and the map g, of top cells.

8.51. LEMMA. The map q, is the non-trivial element in the 2-stem.

If_ we assume this result for the moment, then we know that the induced map
q%: K %(S%) - K:*(S®) is non-trivial. it now follows easily from (8.47), (8.50) and the definition
of @ that ¢%8 is non-trivial.

The proof of Lemma (8.51) can be done in two ways. We can factor the quotient map g into a
composite of quotient maps

SUB)— SUR)IS'— SUG)IT

and verify that r, and r, both carry the Hopf map on the top cells. The non-trivial element in the
2-stem is of course the square of the Hopf map in stable homotopy. There is a standard argument
using Steenrod squares in the mapping cones of r, and r, to detect the Hopf maps. The details are
straightforward but long and tedious. We shall not write them out here.

In the alternative argument for proving (8.51) we first observe that there are only two
homotopy classes of maps from SU(3) to S°, represented by the trivial map and the composite

SUG)-25 §* 5 8¢,

where p, is projection onto the top cell and 7 is the square of the Hopf map. This is easily
checked from the cell structure of SU(3). The inverse image of a regular value of the composite

SUB)—=> SUB)T =2 S°

is a torus in SU(3) with non-trivial framing and this detects the non-trivial element SU(3) > S°.
This completes our proof that the e-invariant of {SU(3), A] is 1. We refer to [12] for more
details of many of the arguments given above and applications to other examples like framings on

Sp(2).

REFERENCES

. J. F. Apaus: On the groups J(X)—II, Topology 3 (1965), 137-173; J. F. ApaMS: On the groups J(X)»—1V, Topology 5
(1966), 21-74.

. M. F. Ativan and F. HiRzEBRUCH: Vector bundles and homogeneous spaces, Proc. Symp. Pure Math. Vol. 3, Am. Math.
Soc. (1961), 7-38.

. M. F. ATivaH and L. SmiTi: Compact Lie groups and the stable homotopy of spheres, Topology 13 (1974), 135-142.

. J. M. BoARDMAN and B. STEER: On Hopf invariants, Comment. Math. Helv. 42 (1967), 180-221.

. A. BoreL: Sur la cohomologie des espaces fibrés principaux et des espaces homogenes de groupes de Lie compact, Ann.
Math. 57 (1953), 115-207. ‘

. A. BoreL and F. Hirzesruck: Characteristic classes and homogeneous spaces—I, II, Am. J. Math. 80 (1958), 458-538; 81
(1959), 315-382.

. H. H. GERSHENSON: A problem in compact Lie groups and cobordism, Pacific J. Math. 51 (1974), 189-202.

. L. HopGKIN: On the K-theory of Lie groups, Topology 6 (1967), 1-36.

. I. M. JamEs: On the suspension triad, Ann. Math. 63 (1956), 191-247.

. M. KERVAIRE: An interpretation of G. Whitehead’s generalization of the Hopf invariant, Ann. Math. 69 (1959), 345-365.

. J. MiLNor: Topology from the differential viewpoint. The University Press of Virginia (1965).

. N. Ray: Invariants of reframed manifoids (in preparation).

. L. Smrts: Framings of sphere bundles over spheres, the plumbing pairing, and the framed bordism class of rank 2 simple
Lie groups, Topology 13 (1974), 401-415.

. B. STEER: Orbits and the homotopy class of a compactification of a classical map (to appear).

. H. Topa: Composition methods in the homotopy of spheres, Ann. Math. Stud. 49, Princeton (1962).

Manchester University.




