
PROBLEMS IN THE STEENROD ALGEBRA

R. M. W. WOOD

This article contains a collection of results and problems about the Steenrod
algebra and related algebras acting on polynomials which non-specialists in topology
may find of some interest. Although there are topological allusions throughout the
article, the emphasis is on the algebraic development of the Steenrod algebra and
its connections to the various topics indicated below.
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In Section 1 the scene is set with a few remarks on the early history of the
Steenrod algebra A at the prime 2 from a topologist’s point of view, which puts
into context some of the problems posed later. In Section 2 the subject is recast in
an algebraic framework, by citing recent work on integral versions of the Steenrod
algebra defined in terms of differential operators. In Section 3 there is an explanation
of how the divided differential operator algebra D relates to the classical theory of
symmetric functions. In Section 4 some comments are made on a few of the recently
discovered bases for the Steenrod algebra. The stripping technique in Section 5
refers to a standard action of a Hopf algebra on its dual, which is particularly
useful in the case of the Steenrod algebra for deriving relations from relations when
implemented on suitable bases. In Section 6 a parallel is drawn between certain
elementary aspects of the iteration theory of quadratic polynomials and problems
about the nilpotence height of families of elements in the Steenrod algebra. The hit
problem in Section 7 refers to the general question in algebra of finding necessary
and sufficient conditions for an element in a graded module over a graded ring to be
decomposable into elements of lower grading. Equivariant versions of this problem
with respect to general linear groups over finite fields have attracted attention in
the case of the Steenrod algebra acting on polynomials. Similar problems arise with
respect to the symmetric groups and the algebra D. This subject relates to topics in
classical invariant theory and modular representation theory. In Section 8 a number
of statements about the dual Steenrod algebra are transcribed into the language
of graph theory. In Section 9 a standard method is employed for passing from a
nilpotent algebra over a finite field of characteristic p to a p-group, and questions
are raised about the locally finite 2-groups that arise in this way from the Steenrod
algebra. Finally, in Section 10 there are a few comments on the use of a computer
in evaluating expressions and testing relations in the Steenrod algebra.

The main thrust of research on the Steenrod algebra has naturally been con-
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cerned with modules over A, since this lies at the heart of algebraic topology. The
bibliographies of [125, 145, 162, 189] and [170] give some indication of past work
and current progress on the Steenrod algebra, and its applications to homotopy the-
ory. The present article, on the other hand, has the very limited goal of addressing a
few problems in a restricted area concerned with the internal structure of the Steen-
rod algebra and its action on polynomials. References are therefore rather selective.
No attempt is made to broach the general theory of modules over the Steenrod
algebra, higher-order operations, the homology of the Steenrod algebra, the Adams
spectral sequence, or the theory of characteristic classes, except for occasional re-
marks. Some well-known material on Steenrod squares and Landweber–Novikov
operations is rephrased in terms of differential operators, which form a recurrent
theme throughout the article.

The standard reference for the Steenrod algebra is Steenrod and Epstein [189].
The books by Mosher and Tangora [145], Margolis [125] and, more recently,
Schwartz [170] are specifically concerned with the Steenrod algebra and its applica-
tions to topology. The books by Switzer [195] and Gray [78] discuss the Steenrod
algebra in the general context of homology and homotopy theory. The integral
approach to Steenrod squares is closely related to operations in complex bordism
theory, as Landweber noted in his original paper [111]. The Chicago Lecture Notes
of Adams [5] describe Novikov’s work on this subject, and a general survey of bor-
dism theory can be found in Stong [190]. More recent references are Ravenel [162]
and Kochman [101]. Ever since its inception, the Steenrod algebra has been allied to
group cohomology theory and invariant theory [188]. The book on invariant theory
by Larry Smith [183] contains informative chapters on the Steenrod algebra, and
likewise the books of Adem and Milgram [12] and Benson [23] on the cohomology
of groups. A standard reference for symmetric functions is Macdonald’s book [121],
and the representation theory of symmetric groups and general linear groups over
finite fields is treated in the book of James and Kerber [90]. The differential operator
approach to the Steenrod algebra and the Landweber–Novikov algebra touches on
certain combinatorial material which can be found in standard texts such as Aigner
[13], Cameron [37], Comtet [47], Goulden and Jackson [77] and Henrici [80], as
well as the classic text of MacMahon [122]. Recent work on the Steenrod algebra
and the Landweber–Novikov algebra in relation to combinatorics can be found in
[163, 164, 165, 169].

Steenrod’s original methods of defining the Steenrod algebra [187] at various
primes, and the contributions of the early pioneers to the development of the
Steenrod algebra, are expounded in Dieudonné’s history of algebraic and differential
topology [59]. The Steenrod algebra is a graded Hopf algebra, for which the papers of
Milnor [131] and Milnor and Moore [133] are standard references. The differential
operator approach to the Steenrod algebra impinges on areas of mathematics
concerning D-modules, Lie algebras, deformation of Hopf algebras, quantum groups
and the Weyl algebra. Relevant information can be found in a number of sources:
[1, 27, 48, 76, 97, 124, 125, 127, 129, 144, 194].

The present article expands on material found in [221], but stems originally
from a talk entitled ‘Facts and fancies in the Steenrod algebra’ delivered during
the topology conference at Göttingen in 1991. I am grateful to Larry Smith for his
hospitality and useful comments on the subject of Steenrod squares. My thanks are
also due to colleagues in Manchester: Mike Prest, Bob Sandling and Grant Walker
for much help on representation theory, and Nige Ray for guidance on combinatorial
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matters, especially on the relationship between the differential operator algebra and
the Landweber–Novikov algebra. Part of the present work has been supported by
EPSRC grant GR/K 05856.

1. Historical background

In 1947 Steenrod [186] introduced certain linear operators of ordinary coho-
mology theory H∗ over F2 defined in terms of cocycles in a simplicial cochain
complex by modifying the Alexander–Čech–Whitney formula for the cup-product
construction. Subsequently called Steenrod squares,

Sqk: Hn(X)→ Hn+k(X),

these operators are natural transformations defined for k, n > 0 on the cohomology
of a topological space X, and they commute with suspension. Such operations are
called stable.

1.1 Early results on the Steenrod algebra. Cartan discovered a formula for eval-
uating a Steenrod square on the cup product of cohomology classes f, g.

Theorem 1.1 (Cartan [43]). Sqn(fg) =
∑

06r6n Sq
r(f) Sqn−r(g).

Using earlier work of P. A. Smith and M. Richardson [167] on the homology
of cyclic products of topological spaces, Thom [198] and Wu [224, 222] gave
a characterisation of the Steenrod squares in terms of the Cartan formula, the
cohomology boundary operator, and the normalisation conditions, usually called
‘unstability’ conditions, which state that Sqk is the squaring function on Hk , and
zero on Hn for k > n. Wu introduced Smith–Richardson homology operations
Smk: Hn(X)→ Hn−k(X) which were later [225, 226] seen to be related, via Kronecker
duality, to χ(Sqk), where χ is a certain conjugation operation in the Steenrod algebra
introduced by Thom in his study of manifolds [200].

Serre [171] showed that the Steenrod squares generate all stable operations in
the cohomology theory. From a topological point of view, A is the algebra of
stable operations of H∗ over F2 generated by the Sqn under composition, subject to
relations which vanish on the cohomology of all spaces X.

Wu [224, 222] conjectured certain relations among the squaring operations which
were proved by Adem.

Theorem 1.2 (Adem [10, 11]). All relations in the Steenrod algebra are gener-
ated by the set of Adem relations

Sqi Sqj =
∑

06k6[i/2]

(
j − k − 1

i− 2k

)
Sqi+j−k Sqk

for 0 < i < 2j, where [i/2] denotes the greatest integer 6 i/2, and the binomial
coefficients are taken modulo 2.

The Steenrod algebra A can be formally defined as the graded associative
algebra generated over F2 by symbols Sqk , for k > 0, subject to the Adem relations
and Sq0 = 1. The grading of the monomial Sqi1Sqi2 · · · Sqik is i1 + · · ·+ ik . The formal
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length of the monomial is k if all ij are positive. The Adem relations preserve the
grading and never increase length of monomials when the re-write rules are applied
to SqiSqj for 0 < i < 2j.

In his work on the cohomology of Eilenberg–MacLane spaces for the group of
order 2, Serre [171, 44] gave a method of deriving the Adem relations in terms of
a faithful representation of A on the cohomology of the infinite product of infinite
real projective spaces. Let W = Z[x1, . . . , xn, . . .] denote the polynomial algebra over
the integers in a countable number of commuting variables xn graded by degree.
Let W(n) be the subalgebra of W generated by the first n variables, and let Wd be
the abelian subgroup of homogeneous polynomials of degree d, with corresponding
notation for the polynomial algebra W ⊗ R = R[x1, . . . , xn, . . .] over a commutative
ring R. The cohomology ring of the infinite product of infinite real projective
spaces is isomorphic to W ⊗ F2. This furnishes the link with the purely algebraic
development of the Steenrod algebra as expressed by the following characterisation
of the Steenrod squares by their action on polynomials.

Lemma 1.3. The squaring operations are uniquely determined by the following
conditions.

(1) Sqk: Wd ⊗ F2 →Wd+k ⊗ F2 are linear transformations.
(2) Sq0 is the identity.
(3) Sq1xi = x2

i and Sqkxi = 0 for k > 1, i > 0.
(4) Sqn(fg) =

∑
06r6n Sq

r(f) Sqn−r(g) for polynomials f and g.

The Steenrod squares preserve W(n) ⊗ F2 for each n. In principle, the Cartan
formulae enable the evaluation of a squaring operation on any polynomial, by
induction on degree. For example, if f is a homogeneous polynomial of degree k,
then Sqk(f) = f2, which explains the terminology squaring operation. Furthermore,
Sqk(f) = 0 if k > deg(f).

The Steenrod algebra may therefore be viewed as the algebra of linear operators
on polynomials generated under composition by the Steenrod squares, subject to
the relations which vanish on all polynomials.

Serre introduced the notions of admissible and excess. The monomial

Sqi1 · · · Sqik

is called admissible if ij−1 > 2ij for 2 6 j 6 k and ik > 1. The Adem relations lead
to an additive basis for A.

Theorem 1.4 (Serre [171]). The set of admissible monomials and Sq0 is an addi-
tive basis of the Steenrod algebra.

In grading 0, the Steenrod algebra is the ground field F2, and A is finite
dimensional in each grading. (In topologists’ language, the Steenrod algebra is
connected and of finite type.) For example, a vector space basis up to grading 3 is
given by

Sq0, Sq1, Sq2, Sq3, Sq2Sq1.

Serre found a test for a linear combination of monomials of squaring operations to
be the zero element in the Steenrod algebra [145, 189].



454 r. m. w. wood

Theorem 1.5 ([189, Chapter 1]). A combination of squaring operations of grad-
ing 6 n is identically zero if and only if it vanishes on the product of variables
x1x2 · · ·xn.

The excess of an element E inA is defined as the smallest positive integer s such
that E(x1x2 · · ·xs) 6= 0. The excess of the admissible element Sqi1 · · · Sqik is 2i1 − d,
where d = i1 + · · ·+ ik is the grading of the element.

The Adem relations also lead to a minimal algebraic generating set for A. An
element in grading g is described as indecomposable if it cannot be written as a
linear combination of products of elements of grading lower than g.

Theorem 1.6 ([189, Chapter 1]). The squaring operations Sq2k are indecompos-
able, and A is generated as an algebra by Sq0 and the Sq2k for k > 0.

In the decade 1950–60, the Steenrod algebra became one of the most powerful
tools in algebraic topology. For example, Adams solved the Hopf invariant one
problem [3], thereby proving that non-singular bilinear maps Rn×Rn → Rn exist only
for dimensions n = 1, 2, 4, 8, where they are realised by real, complex, quaternionic
and Cayley multiplication. The fact that such maps can exist only in dimensions
of the form 2k is already a consequence of Theorem 1.6. Adams went deeper into
the structure of the Steenrod algebra, by decomposing Sq2k for k > 3 in terms of
certain ‘secondary’ operations to finally settle the problem. He also developed his
spectral sequence [2, 145], which relates the homology of the Steenrod algebra to
the 2-primary part of the stable homotopy groups of spheres. In another direction,
Thom [200, 197] linked bordism theory of manifolds and characteristic classes of
vector bundles to the Steenrod algebra [134].

The internal structure of A was investigated by Adams in Section 5 of [2]. He
proved, in particular, that any finite collection of elements in A generates a finite
subalgebra. In fact, A is a local algebra with elements of positive grading as its
maximal ideal, and this is a nil-ring. For each non-zero element E in A of positive
grading, there is a positive integer h, the height of E, such that Eh = 0 and Eh−1 6= 0.

Milnor [131] established that A has a natural coproduct which makes it into a
Hopf algebra and incorporates Thom’s involution as the conjugation. The coproduct
ψ and conjugation χ in A are determined on Steenrod squares by

ψ(Sqk) =
∑

06i6k

Sqi ⊗ Sqk−i, χ(Sqk) =
∑

16i6k

Sqiχ(Sqk−i)

and χ(Sq0) = 1. Conjugation is an anti-automorphism of the Steenrod algebra, and
its square is the identity.

Milnor defined the element ξn in the dual, A∗, of A as the dual of

Sq2n−1

Sq2n−2 · · · Sq2 Sq1

with respect to the admissible basis. The grading of ξn is 2n − 1. He established
that the dual of the coalgebra A is the polynomial algebra F2[ξ1, ξ2, . . .], and
this gives rise to Milnor’s basis of A by dualising the monomial basis of A∗. A
vector R = (r1, r2, . . . , rk) of non-negative integers is identified with the sequence
(r1, r2, . . . , rk, . . .) with trailing zeros after rk . Only sequences with a finite number of
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non-zero terms are considered. The notation

Sq(R) = Sq(r1, r2, . . . , rk)

is used to denote the dual of the monomial ξr11 ξ
r2
2 · · · ξ

rk
k . If rk 6= 0, then k is the

length of Sq(R). The grading of this element is

r1 + 3r2 + 7r3 + · · ·+ (2k − 1)rk.

In particular, Sq(r) = Sqr . For example, the Milnor basis up to grading 3 consists
of the elements

Sq(0), Sq(1), Sq(2), Sq(3), Sq(0, 1) = Sq3 + Sq2Sq1.

The dimensions of the homogeneous parts of the dual Steenrod algebra, and there-
fore of the Steenrod algebra itself, are given by the coefficients of the Poincaré series∏∞

n=1(1− t2n−1)−1.
Milnor constructed finite Hopf subalgebras A(n) of A by dualising certain

quotients of the polynomial algebra A∗. It turns out that A(n) is generated by
the squares Sq2j for 0 6 j 6 n and Sq0. The Steenrod algebra is the union of the
finite Hopf algebras A(n). The Milnor basis is compatible with the subalgebras
A(n), in the sense that A(n) is generated additively by the Milnor basis elements
that lie in it. Since every element of the Steenrod algebra belongs to A(n) for some
n, and the A(n) are finite dimensional vector spaces, the nilpotence result for the
Steenrod algebra follows immediately. Other elementary facts that come from the
Adem relations, or by dualising, are thatA has a trivial centre and its abelianisation
is a divided polynomial algebra on one generator [189].

The notation P s
t has become standard for the element Sq(. . . , 2s, . . .), where 2s

occupies position t, and the other positions are 0. Occasionally, Sqt(R) is used to
denote the Milnor basis element corresponding to the sequence with ri in position it
and zeros elsewhere. For example,

P s
t = Sqt(2

s), P 0
t = Sqt(1) = Sq(0, . . . , 0, 1, 0, . . .).

It is convenient to write ξ0 = 1. The coproduct and conjugation formulae in the
dual algebra A∗ are determined on generators by

ψ(ξk) =
∑

06i6k

ξ2i

k−i ⊗ ξi, χ(ξk) =
∑

06i6k−1

ξ2i

k−i χ(ξi)

and χ(ξ0) = 1. The primitives in A∗ are the elements ξ2k

1 , and the ξi are inde-

composable. The primitives in the Steenrod algebra are the P 0
k , and the Sq2k are

indecomposable.
Milnor also produced an explicit product formula for basis elements

Sq(r1, . . . , rm), Sq(s1, . . . , sn).

Consider matrices

X =


∗ x01 x02 · · ·
x10 x11 x12 · · ·
x20 x21 x22 · · ·
...

...
...

. . .

 ,

where the xij are non-negative integers, with x00 omitted. The xij are subject to the
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constraints
ri =

∑
v>0

2vxiv, sj =
∑
u>0

xuj ,

where i, j > 1. Let tl =
∑

06i6l xi, l−i denote the diagonal sums of the matrix X, and
let

Sq[X] = Sq(t1, . . . , tl , . . .).

Multinomial coefficients are defined by

bl(X) =
tl!

x0l! x1, l−1! · · ·xl0!
,

and the notation is extended to b(X) = b1(X) b2(X) · · ·. Then Milnor’s formula reads
as follows.

Theorem 1.7 (Milnor [131]).

Sq(r1, . . . , rm) Sq(s1, . . . , sn) =
∑
X

b(X) Sq[X],

where the summation is taken over all matrices X subject to the given constraints, and
the multinomial coefficients are reduced modulo 2.

Although the above descriptions of relations, products, coproducts and conju-
gation in the Steenrod algebra and its dual are very explicit, in practice several
problems about the structure of A and its action on polynomials have continued to
occupy the interest of topologists. Let A+ denote the elements of positive grading
in A.

Problems 1.8.

(1) Find the heights of specified elements in A.
(2) Find defining relations for A in terms of the Sq2n .
(3) Find efficient methods of evaluating excess and conjugation.
(4) Investigate transition matrices between various bases of A.
(5) Identify the image of the action of A+ on W⊗ F2.
(6) Investigate integral lifts of the Steenrod squares and algebras related to the

Steenrod algebra.

In 1960, Wall found a minimal defining set of relations for A involving just
the Sq2n .

Theorem 1.9 (Wall [213]).

Sq2i Sq2i ≡ Sq2i−1

Sq2i Sq2i−1

+ Sq2i−1

Sq2i−1

Sq2i , Sq2i Sq2j ≡ Sq2j Sq2i ,

for 0 6 j 6 i− 2, where the equivalences are modulo A(i− 1).

Wall showed how these relations lead to a basis of A involving monomials in
the Sq2n , but no closed formulae were proposed for the relations themselves. Since
then, several new bases of A have emerged [17, 143, 220], and closed forms have
been discovered for Wall’s relations. To describe Wall’s basis, let

Qnk = Sq2k Sq2k+1 · · · Sq2n

for n > k.
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Theorem 1.10 (Wall [213]). The set of monomials Qn0

k0
Qn1

k1
· · ·Qnaka , where the vec-

tors (ni, ki) are in left lexicographic order

(na, ka) < (na−1, ka−1) < . . . < (n0, k0),

is a basis of the Steenrod algebra.

Wall applied his results to the evaluation of the first few cohomology groups of
the Steenrod algebra [213], and to settle some questions raised by Toda [201] about
right multiplication in A by Sq2n .

Cohen [46] showed how to obtain the Adem relations from the Milnor product
formula. Of special interest are the following particular cases.

Example 1.11. Sq2m−1Sqm = 0 for m > 0.

Kristensen [106, 104, 105] introduced a process which he called differentiation,
but which we shall call stripping, for deriving relations from relations in the Steenrod
algebra. The stripping process is an action of the dual of the Steenrod algebra on
A defined by

A∗ ⊗A
1⊗ψ
−→A∗ ⊗A⊗A κ⊗1−→A,

where ψ is the coproduct in A, and κ is Kronecker evaluation of a vector space
on its dual [78]. The element ξ1 in the dual Steenrod algebra acts as a derivation.
For example, the effect of stripping the relation Sq2m−1Sqm = 0 by ξ1 is to produce
the relation Sq2m−2Sqm + Sq2m−1Sqm−1 = 0. We shall explain later how this process
works more generally. At this point, we state Kristensen’s result.

Theorem 1.12 (Kristensen [106]). The Adem relations in the Steenrod algebra
are obtained from the basic relations Sq2m−1Sqm = 0 by iterated stripping with ξ1.

In fact, in any of the finite algebrasA(n), the relations are generated by stripping
just one relation Sq2m+1−1Sq2m = 0 if m is large enough, but then stripping by ξ2

is also needed. The Adem relations are obtained by induction on degree and the
stripping process.

The years 1960–70 saw the development of generalised cohomology theories, K-
theory, bordism theory, BP -theory, stable homotopy theory and the general theory
of spectra. New cohomology theories have continued to emerge. A major problem
has been to find the algebraic structure of the stable operations in these theories
analogous to the Steenrod algebra in ordinary cohomology, and to apply the results
to generalised characteristic classes of manifolds. Attention is restricted in the next
section to just one of these cohomology theories, which is of relevance to later
sections of this paper.

1.2 Algebras related to the Steenrod algebra. Milnor [132] introduced the com-
plex analogue MU∗ of Thom’s bordism theory. The stable operations MU∗(MU)
were worked out by Landweber [111] and Novikov [149]. Briefly, MU∗(MU) can
be identified additively with MU∗(pt) ⊗ S∗, where MU∗(pt) is the value of MU∗

on a point, and S∗ is the Landweber–Novikov algebra. The multiplicative structure
of MU∗(MU) is complicated, but the Landweber–Novikov algebra itself is a Hopf
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algebra which admits an algebraic description in a way analogous to the description
of the Steenrod algebra in terms of the Milnor basis. The dual, S∗, of S∗ is a
polynomial algebra Z[b1, b2, . . . , bn, . . .] with generators bn in grading n. (Normally,
in the topology literature, bn appears in grading 2n.) Since S∗ is a Hopf algebra,
the coproduct is determined by its value on the generators bn. Consider the formal
power series

b(t) = b0 + b1t+ b2t
2 + · · ·+ bnt

n + · · · ,

where t is an indeterminate and b0 = 1. Let v(r, s) denote the coefficient of tr in the
expansion of b(t)s.

Definition 1.13. The coproduct in S∗ is given by

ψ(bn) =
∑

06j6n

v(n− j, j + 1)⊗ bj .

This coproduct is related to functional substitution of power series. Indeed, the
conjugate of bk is the coefficient of tk+1 in the functional inverse of tb(t), which can
be found from Lagrange’s reversion formula [47, 77, 80, 163, 164].

Additively, S∗ is generated over the integers by the duals of the monomials
in the polynomial algebra Z[b1, b2, . . . , bn, . . .]. The sequence notation s(r1, r2, . . .) is
used in the topology literature to denote the dual of the monomial br11 b

r2
2 · · ·. In

his original paper on the subject, Landweber [111] proves a number of relations
between composites of the additive generators s(r1, r2, . . .), establishes certain minimal
algebraic generating sets of the reductions of S∗ modulo primes, and identifies the
algebra of modulo p Steenrod operations inside such a reduction. In Sections 4
and 5 of [149], Novikov expresses the Steenrod operations and MU operations
by their action on polynomials, and ties in the theory with symmetric functions,
Stiefel–Whitney classes, Chern classes and Thom isomorphisms. In [102], Kozma
extends Landweber’s relations, and solves the problem of finding the irreducibles
in the Landweber–Novikov algebra over the integers. The same results appear
in Aikawa’s paper [14], where an explicit product formula is developed for the
additive generators. Recently, a natural product formula has been given in terms of
composition of differential operators [221].

1.3 Remarks. A steady stream of work on the internal structure of the Steenrod
algebra and its action on polynomials has continued to the present time. For
example, Adams and Margolis [8] classify Hopf subalgebras of A. Frank Peterson’s
work [156, 158, 159] on the action of the Steenrod algebra on the cohomology of
projective spaces has sparked off a general interest in hit problems. Questions about
excess and conjugation in A have been investigated notably by Don Davis [55]
and others [20, 21, 70, 103, 116, 191]. Recent advances in these areas can be traced
through the work of Crabb, Crossley and Hubbuck [49, 50, 51, 52, 53], Ken Monks
[139, 138, 142, 143, 140], and Bill Singer and Judith Silverman [174, 175, 178, 182].

In [36], Bullett and Macdonald devise a method for generating the Adem
relations by equating coefficients in certain products of formal power series. This
global approach to the study of squaring operations via generating functions emerges
in the paper of Atiyah and Hirzebruch [19], and is treated more extensively in Li’s
work [116]. The global approach is now usually adopted in setting up the Steenrod
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algebra in an algebraic context. For example, in Larry Smith’s book [183] and
Kuhn’s work [107, 108, 109], the rules in Lemma 1.3 are extended to cover finite
fields through generating functions for total operations. Let Fq denote the Galois
field, where q is a power of the prime p. The Steenrod reduced power operations are
linear transformations

Pn: Wd ⊗ Fq →Wd+n(q−1) ⊗ Fq,

uniquely characterised by the following rules satisfied by the formal power series

P (t) = P 0 + P 1t+ · · ·+ Pntn + · · ·

in the indeterminate t.

Lemma 1.14.

P (t): W⊗ Fq →W⊗ Fq[[t]]

is a ring homomorphism satisfying the normalising conditions

P (t)(1) = 1, P (t)(x) = x+ xqt,

for x of degree 1.

It should be noted here that the algebraic rather than the topological conventions
have been adopted for grading in the odd prime case. Putting q = 2 then reproduces
the rules in Lemma 1.3 for Pn = Sqn.

The Cartan formulae from Theorem 1.1,

Pn(fg) =
∑

06r6n

P r(f)Pn−r(g),

are obtained by picking off the coefficient of tn in the expansion of P (t)(fg).
It is then possible to verify the normalisation conditions Pn(f) = fq if deg f = n,

and Pn(f) = 0 if deg f < n, and, for x of degree 1, the formula

Pn(xk) =

(
k

n

)
xk+n(q−1).

Smith explains in Chapters 10 and 11 of his book [183] how to obtain the Bullett–
Macdonald formula.

Theorem 1.15 (Bullett and Macdonald [36]).

P (s)P (1) = P (u)P (tq),

where u = 1 + t+ · · ·+ t(q−1) and s = tu.

The Adem relations in the q-case can then be derived as in [36]:

P iP j =
∑

06k6[i/q]

(−1)(i+1)

(
(q − 1)(j − k)− 1

i− qk

)
P i+j−kP k

for 0 < i < qj, where the binomial coefficients are taken modulo p.
There are a number of other methods for setting up Steenrod operations in

various contexts that we shall mention briefly. Early work on the geometric approach
to Steenrod squares relates to Smith theory [29, 200, 225], double point sets in
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bordism with singularities, and Spanier–Whitehead duality [130]. Dold sets up the
Steenrod algebra for cohomology of a topological space in [60]. Quillen [161]
uses Steenrod operations in bordism, further developed by Tom Dieck [202], in
connection with formal groups and the Lazard ring. In [25], Bisson and Joyal treat
similar topics in terms of a divided differential theory of coverings. In [95, 96],
Karoubi combines the de Rham theory of differential forms for the homology of
manifolds with symmetric products of topological spaces, to obtain certain chain
complexes in terms of which cohomology of a space and Steenrod operations can be
defined. In a more algebraic setting, Benson [23] shows how to set up the Steenrod
algebra in the context of group cohomology theory. In the area of algebraic groups,
Kaneda, Shimada, Tezuka and Yagita [93] represent the Steenrod algebra in terms
of distributions on the unipotent subgroups of general linear groups. In the realm
of invariant theory of general linear groups over finite fields, Mui [146] identifies the
Milnor basis elements in terms of Dickson invariants under a certain coaction of
the cohomology of elementary 2-groups. Recent work in this direction can be found
in [118]. Lomonaco [119] has further related the Dickson invariants to the Dyer–
Lashof algebra in terms of May’s universal Steenrod algebra [128] and the lambda
algebra, which is a powerful device for calculating the cohomology of the Steenrod
algebra [180] (not to be confused with the algebra Λ of symmetric functions, to be
discussed in a later section). We refer to Pengelley and Williams [155] for some new
developments.

2. Differential operators and integral Steenrod squares

The appropriate setting for integral Steenrod squares is complex bordism theory,
where the Landweber–Novikov algebra plays the role of the Steenrod algebra.

2.1 The divided differential operator algebra. The construction of the divided
differential operator algebra is explained in [221]. The main features are summarised
in the following paragraphs.

Let

Dk =
∑
i>1

xk+1
i

∂

∂xi
,

for k > 1, be the partial differential operator acting in the usual way on the integral
polynomial ring W = Z[x1, . . . , xn, . . .]. Although Dk is formally an infinite sum, its
action on a polynomial involves only a finite number of variables in any instance.
The restriction of Dk to W(n) is an element of the Weyl algebra in n variables [221].
Following standard methods for relating filtered algebras to graded algebras, the
wedge product ∨ of two differential operators, with variable coefficients, is defined
by allowing the derivatives of the first operator to pass the variable coefficients of
the second operator without acting. The wedge product is commutative and gives
the term of highest differential order in the composition of the operators. Normally,
juxtaposition of operators denotes composition, but occasionally for emphasis we
shall use the symbol ◦. For example, the composite D1 ◦ D1 is given by(∑

i>1

x2
i

∂

∂xi

)(∑
i>1

x2
i

∂

∂xi

)
= 2

(∑
i>1

x3
i

∂

∂xi

)
+
∑
(i1 , i2)

x2
i1
x2
i2

∂2

∂xi1∂xi2
,
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where the last summation is taken over all 2-vectors of non-negative integers (i1, i2).
Hence D1 ◦ D1 = 2D2 + D1 ∨ D1. It should be noted that D1 ∨ D1 is divisible by 2
as an integral operator. More generally, an iterated wedge product is given by the
formula

Dk1
∨ Dk2

∨ · · · ∨ Dkr =
∑

(i1 ,...,ir)

xk1+1
i1
· · ·xkr+1

ir

∂r

∂xi1 · · · ∂xir
,

where the summation is taken over all r-vectors of non-negative integers. It can be
seen from this that the iterated wedge product D∨rk is divisible by r! as an integral
operator. By definition, the divided differential operator algebra D is generated over
the integers by the divided operators D∨rk /r! under wedge product.

Let K = kr11 k
r2
2 · · · kraa denote a multiset of positive integers ki with positive

superscripts ri. Let (t1, t2, . . .) be a sequence of commuting indeterminates ti. The
usual abbreviated notation tK = tr1k1

tr2k2
· · · traka is adopted for a monomial in the ti, and

D(K) =
D∨r1k1

r1!
∨
D∨r2k2

r2!
∨ · · · ∨

D∨raka

ra!

denotes the iterated wedge product of divided differential operators. For example,

D(k) = Dk, D(kr) =
D∨rk
r!
.

It should be noted that D(kr11 k
r2
2 ) = D(kr11 ) ∨ D(kr22 ). In particular, when k1 = k2 = k,

we have

D(kr1kr2 ) = D(kr1 ) ∨ D(kr2 ) =
(r1 + r2)!

r1! r2!
D(kr1+r2 ),

indicating that kr1kr2 and kr1+r2 are different multisets.

Note. The use of superscripts in multiset notation can lead to confusion unless
care is taken with the exponential law. To explain this in a general context, let C
denote a set of mathematical entities, and consider vectors (c1, . . . , cn) of elements
ci in C . Two such vectors are equivalent if they have the same coordinates up to
permutation. An equivalence class is what is meant by a (finite) multiset of elements
of C . Such a multiset [13] is determined by a function π:C → {0} ∪ N which
takes the value zero on all but a finite number of members of C . The function π

measures the number of repetitions of an element. A multiset may be written as an
associative, commutative formal string of elements of C , allowing repetitions, but
not allowing the unqualified exponential notation for repeated elements. The reason
is that, in some contexts where double indexing is needed, the notation cr is reserved
for an element in the cartesian product C ×N, and multisets are taken over this set
rather than C itself. In this case, for example, c1c1 and c2 are different multisets of
elements from C ×N and, strictly speaking, must further be distinguished from cc,
which is a multiset of elements in C . Of course, it is standard practice to identify
C with C × {1} in C × N and view c as the same as c1. Concatenation of formal
strings of elements of C gives rise to the polynomial algebra P(C) generated over
the integers by the set C , but it might be safer in the present context to use the
wedge symbol ∨ for the product in this algebra. The superscript notation c∨r then
means the r-fold concatenation of the element c. We shall nevertheless continue to
use the term ‘multiset’ to refer to K = kr11 k

r2
2 · · · kraa with distinct ki, unless otherwise
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specified. Conventionally, a zero exponent r = 0 indicates the absence of the factor
kr in the multiset. For example, D(k0) is identified with the identity element.

The collection D(K), as K ranges over multisets, forms an additive basis for D.
A significant fact is that D is closed under composition of operators. Furthermore,
the natural coproduct ψ(Dn) = 1⊗ Dn + Dn ⊗ 1 makes D into a Hopf algebra with
respect to both the composition and the wedge products. Under composition, D
is isomorphic to the Landweber–Novikov algebra [221]. The operators Dn are the
primitives of the Hopf algebra.

There is a Leibniz formula for the wedge-iterated differentiation of a product
of polynomials f, g, which can best be expressed in terms of multisets by means of
a generating function for the basis elements D(K). This is provided by the wedge
exponential function of a differential operator E,

exp∨(E) = 1 + E +
E∨2

2!
+ · · ·+ E∨n

n!
+ · · · .

Let t = (t1, t2, . . .) be a formal sequence of commuting indeterminates, and let
D = (D1, D2, . . .) denote the sequence of differential operators. Now introduce the
formal inner product

〈t,D〉 = t1D1 + t2D2 + · · · .

Using multiset notation and the commutativity of the wedge product, we obtain

exp∨(〈t,D〉) = exp∨(t1D1 + t2D2 + · · ·)
= exp∨(t1D1) ∨ exp∨(t2D2) ∨ · · · ∨ exp∨(tnDn) ∨ · · ·
=
∑
k>0

tk1 D(1k) ∨
∑
k>0

tk2 D(2k) ∨ · · · ∨
∑
k>0

tkn D(nk) ∨ · · ·

=
∑
K

tKD(K),

where the final sum is taken over all multisets K . Then the Leibniz formula for
differentiating a product of polynomials f, g is as follows.

Lemma 2.1.

exp∨(〈t,D〉)(fg) = (exp∨(〈t,D〉)(f))(exp∨(〈t,D〉)(g)).

Furthermore, since all derivatives of order greater than 1 vanish on the variable x in
degree 1, we also have the normalising formula

exp∨(〈t,D〉)(x) = x(1 + t1x+ t2x
2 + · · ·).

Lemma 2.1 furnishes an integral version of the rules of Lemmas 1.14 and 1.3,
and converts the Leibniz formulae into the Cartan formulae.

We recall from [221] the definition of the integral Steenrod squares SQr = D(1r).
It is shown in [221] that the modulo 2 reduction of SQk is Sqk . More generally, the
Milnor basis elements are given as follows.

Lemma 2.2. After modulo 2 reduction,

Sq(r1, r2, . . . , ra) = D(1r13r2 · · · (2a − 1)ra ).
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The coproduct of integral squares is given by

ψ(SQk) =
∑

06i6k

SQi ⊗ SQk−i.

It follows that the subalgebra N of D generated under composition by the integral
Steenrod squares is a Hopf subalgebra and reduces modulo 2 to the Steenrod algebra.
Similar results apply to the odd prime situation, by considering the differential
operators Dp−1 and Dpr−1 in place of D1 and D2r−1. These are Landweber’s original
results [111] interpreted in terms of differential operators.

The Lie bracket of Dk and Dl is defined in the usual way by [Dk, Dl] = DkDl −
DlDk , and the following lemma is immediate from the definition of the differential
operators.

Lemma 2.3. [Dk, Dl] = (l − k)Dk+l .

The additive group generated by the Dk is therefore a Lie algebra, and its
universal enveloping algebra U is the associative algebra generated by the Dk under
composition. Hence U is a subalgebra of D.

The following reduction formulae relating the integral squaring operators to the
Dk were established in Lemma 5.6 of [221].

Lemma 2.4. rSQr = D1SQ
r−1 − 2D2SQ

r−2 + 22D3SQ
r−3 − · · · ± 2r−1Dr .

The proof goes through for any integer q greater than 1, and gives

rD((q − 1)r) = D(q − 1)D((q − 1)r−1) + · · ·
+ (−1)k−1qk−1D(k(q − 1))D((q − 1)r−k) + · · · ± qr−1D(r(q − 1)).

Theorem 2.5 (Wood [221]). Over the rationals, the divided differential operator
algebra D, the universal enveloping algebra U, and the integral Steenrod algebra N
are equal, and each is generated by SQ1 and SQ2 under composition.

Equivalently, the differential operator algebra is generated over the rationals by
D1 and D2. The proof is a straightforward application of Lemmas 2.3 and 2.4.

Product formulae for basis elements in the Landweber–Novikov algebra were
established in Landweber’s original paper [111] and extended in the papers of
Aikawa [14] and Kozma [102]. The following application is quoted here in the
language of differential operators and multisets.

Theorem 2.6 (Kozma [102]). The elements D(1p
n

), D(2p
n

), as p ranges over primes
and n > 0, form a minimal algebraic generating set for D.

More details on relations between these generators can be found in [102].
Richard Kane [92] has produced analogues of the Milnor product formulae

in BP -theory. Li [115, 116] has constructed global product formulae for certain
types of Hopf algebras in terms of the dual coproduct and convolution of formal
sequences. Total Steenrod squaring operations are studied in [100, 120]. Aikawa’s
product formula [14] for the Landweber–Novikov algebra is phrased in the tradi-
tional sequence notation s(r1, r2, . . .). In [221], the product formula in the differential
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operator algebra is phrased in terms of multisets. Both are complicated in their
most general form. Theorem 4.4 of [221] presents a more workable version of the
product formula, which we quote here. It applies in the first instance to simple sets
K = {k1, . . . , ka}, L = {l1, . . . , lb} of positive numbers. Let L be augmented by an
extra element l0 = 0, to make the set L+ = {l0, l1, . . . , lb} = L ∪ {l0}. Consider a set
function Φ:K → L+. Combinatorial functions are associated with Φ in the following
way:

τ(li) = #{Φ−1li}, σ(li) =
∑

kj∈Φ−1li

kj , ρ(li) = (li + 1)(li) · · · (li + 2− τ(li)),

measuring, respectively, the number of elements in a fibre of the function, the sum
of the elements in a fibre, and the falling factorial associated with an element of L.
We adopt the conventions ρ(li) = 1 if τ(li) = 0, and write ρ(Φ) = ρ(l1)ρ(l2) · · ·ρ(lb).
These are combinatorial ingredients which one would expect to enter a formula for
composing two differential operators with variable coefficients.

Theorem 2.7 (Wood [221]).

D(K) ◦ D(L) =
∑

Φ

ρ(Φ)D(Φ−1(l0)) ∨ Dl1+σ(l1) ∨ Dl2+σ(l2) ∨ · · · ∨ Dlb+σ(lb),

where the summation is taken over all functions

Φ: {k1, k2, . . . , ka} → {l0, l1, l2, . . . , lb}.

The following special cases are typical of the formulae used by Landweber,
Kozma and Aikawa in arriving at the irreducibles in the Landweber–Novikov
algebra.

Example 2.8. Taking K = {k} to have one element, we have

Dk ◦ (Dl1 ∨ · · · ∨ Dlb )
= Dk ∨ Dl1 ∨ · · · ∨ Dlb + (l1 + 1)Dk+l1 ∨ · · · ∨ Dlb + · · ·+ (lb + 1)Dl1 ∨ · · · ∨ Dk+lb .

In this formula, k is added to each subscript in turn on the right-hand side of the
equality.

In the case where L has just one element, a function from K into L+ = {l0, l}
may be viewed as an ordered partition of the set K = {k1, . . . , ka} into two disjoint
subsets U = {u1, . . . , ur} and V = {v1, . . . , vs}, where r + s = a, and conventionally
r = 0 or s = 0 indicates that the corresponding set is empty. For such a partition,
let ρ(r) = (l + 1)(l) · · · (l + 2 − r), where conventionally ρ(0) = 1. Then the product
formula yields the following.

Example 2.9.

(Dk1
∨ · · · ∨ Dka) ◦ Dl =

∑
(U,V )

ρ(s)Du1
∨ · · · ∨ Dur ∨ Dl+v1+···+vs ,

where the sum is taken over the ordered partitions U, V of K into two subsets
U = {u1, . . . , ur}, V = {v1, . . . , vs}.

As an application of the general product formula, Theorem 4.2 in [221], consider
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the case where K = kr and L = ls. Let Θ stand for a solution of the simultaneous
equations

s = t0 +
∑

16i6l+1

ti, r = θ0 +
∑

16i6l+1

iti,

in non-negative integers θ0, ti, and set ρ(Θ) =
∏l+1

i=1

(
l+1
i

)ti
.

Example 2.10.

D(kr) ◦ D(ls) =
∑

Θ

ρ(Θ)D(kθ0 ) ∨
j=l+1∨
j=0

D((l + jk)tj ),

where the sum is taken over all solutions Θ of the given equations.

Since no two of the numbers l+ jk can be equal for different values of j, we can
write this formula, in case k 6= l, more succinctly as

D(kr) ◦ D(ls) =
∑

Θ

ρ(Θ)D(kθ0 lt0 (l + k)t1 · · · (l + (l + 1)k)tl+1 ).

If k = l, then the expression has to be modified to

D(kr) ◦ D(ks) =
∑

Θ

ρ(Θ)
(θ0 + t0)!

θ0! t0!
D(kθ0+t0 (2k)t1 · · · (k2 + 2k)tk+1 ).

Specialising to the cases where the entries in L and K are equal to 1 or 2 gives rise
to the following identities.

Example 2.11.

SQ1 ◦ SQ1 = 2D2 + 2SQ2,

SQ1 ◦ SQ2 = 2D1 ∨ D2 + 3SQ3,

SQ2 ◦ SQ1 = D3 + 2D1 ∨ D2 + 3SQ3,

SQ1 ◦ SQ1 ◦ SQ1 = 6(D1 ∨ D2 + D3 + SQ3),

D3 = [SQ2, SQ1].

From these formulae we can obtain the first relation in the integral Steenrod
algebra N which occurs in grading 3.

Example 2.12. SQ1SQ1SQ1 = 6[SQ2, SQ1] + 3(SQ1SQ2 − SQ3).

A basis for N up to grading 3 is given by

SQ1, SQ2, SQ1SQ1, SQ3, SQ2SQ1, SQ1SQ2.

We can ask for a basis of N in all gradings. A rational basis for N, which is
the same as D and U over Q by Theorem 2.5, is given by the classical Poincaré–
Birkhoff–Witt theorem in the universal enveloping algebra of a Lie algebra [89].
The set of composites D◦r1k1

◦ D◦r2k2
◦ · · · ◦ D◦raka , where k1 > k2 > . . . > ka, forms an

additive basis of U. It is not immediately clear that a similar statement is true if SQk

is substituted for Dk . In any case, we see from the relations exhibited above that

SQ3, SQ2SQ1, SQ1SQ1SQ1
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is definitely not a basis of N in grading 3, and therefore we cannot expect to
parametrise a basis for N in terms of composites of integral Steenrod squares by
partitions of the grading in descending order of parts.

2.2 Global product formulae. We shall now look at a global formulation of the
product formulae in the differential operator algebra, following the work of Li [116].
Consider the polynomial algebra Z[b1, b2, . . .] equipped with the Landweber–Novikov
coproduct as explained in Definition 1.13, namely

ψ(bn) =
∑

06j6n

v(n− j, j + 1)⊗ bj ,

where v(r, s) denotes the coefficient of tr in the expansion of (1 + b1t+ b2t
2 + · · ·)s.

Example 2.13.

ψ(b1) = b1 ⊗ b0 + b0 ⊗ b1, ψ(b2) = b2 ⊗ b0 + 2b1 ⊗ b1 + b0 ⊗ b2.

Let t = (t1, t2, . . .), s = (s1, s2, . . .) denote two sequences of indeterminates associ-
ated with the power series

t(x) = x+ t1x
2 + · · ·+ tnx

n+1 + · · · , s(x) = x+ s1x
2 + · · ·+ snx

n+1 + · · · ,

and define the convolution product t ∗ s to be the sequence associated with the power
series

u(x) = x+ u1x
2 + · · ·+ unx

n+1 + · · · ,

where un = (t ∗ s)n, obtained by substituting t in s; in other words, u(x) is the
composite power series s(t(x)).

Example 2.14. The first few terms of the convolution product (t ∗ s) are

(t1 + s1, t2 + 2t1s1 + s2, t3 + s1(t21 + 2t2) + 3t1s2 + s3, . . .).

In general, the coefficient un is related to the partial Bell polynomial [121] by replacing
ti, si with ti/(i + 1)!, si/(i + 1)!, respectively, and multiplying by (n + 1)! to restore
integer coefficients.

The convolution product of formal sequences is associative but not commutative,
and the convolution inverse t̂, satisfying t̂ ∗ t = 0, is obtained from the composition
inverse of the power series t(x). This is given by the Lagrange reversion formula, as
follows.

Lemma 2.15.

t̂(t) = x+
v1

2
x2 + · · ·+ vn

n+ 1
xn+1 + · · · ,

where vn is the coefficient of xn in the expansion of

(1 + t1x+ t2x
2 + · · ·)−n−1.

Example 2.16. The first few terms of the convolution inverse of t are

(−t1,−t2 + 2t21,−t3 + 5t1t2 − 3t31, . . .).
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Now recall the inner product 〈t,D〉 = t1D1 +t2D2 +· · · and the wedge exponential
function exp∨(〈t,D〉) =

∑
K t

KD(K). The following theorem encapsulates the global
structure of the differential operator algebra.

Theorem 2.17 (Wood [221]). The product, coproduct and conjugation in the dif-
ferential operator algebra D are given globally by

exp∨(〈t,D〉) ◦ exp∨(〈s,D〉) = exp∨(〈t ∗ s,D〉),
ψ(exp∨(〈t,D〉)) = exp∨(〈t,D〉)⊗ exp∨(〈t,D〉),
χ(exp∨(〈t,D〉)) = exp∨(〈t̂,D〉).

The first formula states that the composite D(K) ◦D(L) is the coefficient of tKsL

in the exponential expansion of the convolution product. The second formula is
the Leibniz formula of Lemma 2.1, expressed in terms of the coproduct. The third
formula states that the conjugate χ(D(K)) is the coefficient of tK in the exponential
expansion of the convolution inverse. Putting s = t̂ in the product formula gives the
result ∑

K

tKD(K) ◦
∑
L

tLχ(D(L)) = exp(〈t̂ ∗ t,D〉) = 1,

which can be re-stated as follows.

Lemma 2.18. For any non-empty multiset M = mt11 · · ·mtnn , we have∑
K∪L=M

D(K) ◦ χ(D(L) = 0,

where the summation is over all ordered pairs of multisets

K = mr11 · · ·m
rn
n , L = ms11 · · ·m

sn
n

such that ri + si = ti for 1 6 i 6 n.

Similarly, the coproduct formula can be written in the form of a generalised
Leibniz formula.

Lemma 2.19. For any non-empty multiset M = mt11 · · ·mtnn , and polynomials u, v,
we have

D(M)(uv) =
∑

K∪L=M

D(K)(u)D(L)(v),

where the summation is over all pairs of multisets

K = mr11 · · ·m
rn
n , L = ms11 · · ·m

sn
n

such that ri + si = ti for 1 6 i 6 n.

Taking M = 1k , k > 1, in Lemma 2.18, we obtain∑
06i6k

SQi χ(SQk−i) = 0,

whose modulo 2 reduction is a familiar formula in the Steenrod algebra.
The above formulae will prove useful in the later section on hit problems.
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Note. Theorem 2.17 is essentially a transcription of Li’s Theorem 3.2 in [116].
We refer to Li’s star operator on sequences as convolution because the first global
structure equation in Theorem 2.17 is reminiscent of the Laplace formula in classical
analysis for the convolution product L(f ∗ g) =L(f)L(g), where

L(f)(s) =

∫ ∞
0

e−stf(t) dt, f ∗ g(t) =

∫ t

0

f(s)g(t− s) ds.

The appropriate coproduct in the case of the differential operator algebra is the
coproduct of the Landweber–Novikov algebra, whose associated convolution is
functional composition of power series.

Although the global formulation of the structure equations for the differential
operator algebra is very elegant and provides a framework in which to discuss
iterated composites of Steenrod operations [116], in practice it has been found very
difficult to get a sufficiently good grip on the divisibility of the coefficients of the
exponential expansion in order to apply the results to some of the harder questions
about nilpotence in the Steenrod algebra. This matter will be taken up again in a
later section.

2.3 The contragredient action of the differential operator algebra. Differential
operator algebras arise in the theory of D-modules, with applications in algebraic
geometry, quantum groups and Lie algebras [48]. A classic example is the Weyl
algebra defined over the integers by generators x1, . . . , xn, ∂1, . . . , ∂n subject to relations

[xi, xj] = 0, [∂i, ∂j] = 0, [∂i, xj] = δij ,

where δij is the Kronecker δ function. The Weyl algebra is represented by the usual
action of ∂i as the partial derivative ∂/∂xi on polynomials in the xi. The differential
operator Dk , restricted to the first n variables, belongs to the Weyl algebra and is a
symmetric element under the action of the symmetric group which simultaneously
permutes variables and partial derivatives. On the other hand, the divided differential
operator D∨rk /r! does not, in general, belong to the Weyl algebra over the integers.
However, it is clearly necessary to consider such operators in order to have a viable
modular theory, such as the Steenrod algebra. A simple illustration of this point is
given by the Laplacian

∇2 =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

,

whose action on integral polynomials is divisible by 2. Hence ∇2/2 is an integral
operator, with an interesting modulo 2 reduction. The Weyl algebra contains both
‘going down’ operators, like the Laplacian, and ‘going up’ operators, like Dk . An
element E in the Weyl algebra, of one type, is changed into the other type by
switching xi and ∂i for each i in the expression for E. For example, the going up
operator

Dk =
∑
i>1

xk+1
i

∂

∂xi

transforms into the going down operator

D∗k =
∑
i>1

xi
∂k+1

∂xk+1
i

.
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This process is sometimes referred to in the literature as the Fourier transform,
because in classical analysis, the Fourier transform of the derivative df/dx of a

function f is given by ixf̂, where f̂ is the Fourier transform of f and i =
√
−1. We

can extend the Fourier transform to elements of D, and form the contragredient
representation of D on the dual of the polynomial algebra W = Z[x1, . . . , xn, . . .],
equipped with its usual coproduct ψ(xi) = 1⊗ xi + xi ⊗ 1. Then the dual W∗ is the
divided polynomial algebra with additive basis

x(K) =
xr1k1

r1!

xr2k2

r2!
· · ·

xraka
ra!

dual to the monomial base xK = xr1k1
xr2k2
· · ·xraka of W as K runs over multisets.

Example 2.20. The ‘going down’ integral Steenrod square SQ2 is represented
by

SQ2 =
D∗1 ∨ D∗1

2
=

1

2

∑
(i,j)

xixj
∂4

∂x2
i ∂x

2
j

.

Its evaluation on divided polynomials in two variables is given by

SQ2

(
xu1
u!

xv2
v!

)
=

1

2

∑
i=1,2

x2
i

∂4

∂x4
i

(
xu1
u!

xv2
v!

)
+ x1x2

∂2

∂x2
1∂x

2
2

(
xu1
u!

xv2
v!

)

=
(u− 2)(u− 3)

2

xu−2
1

(u− 2)!

xv2
v!

+
(v − 2)(v − 3)

2

xu1
u!

xv−2
2

(v − 2)!

+ (u− 1)(v − 1)
xu−1

1

(u− 1)!

xv−1
2

(v − 1)!
.

Checking the equality of the inner products〈
SQ2(xp1x

q
2),
xu1
u!

xv2
v!

〉
=

〈
x
p
1x

q
2 , SQ2

(
xu1
u!

xv2
v!

)〉
for all p, q, u, v shows that the differential formula for SQ2 is indeed the Kronecker
dual of SQ2.

From a topologist’s point of view, the divided polynomial algebra W∗(n)⊗F2 is
the homology of the product of n copies of real infinite dimensional projective space,
on which the Steenrod algebra acts by Kronecker duality. This action is exploited,
for example, in studying the splitting of classifying spaces of general linear groups
over finite fields [216], and work on the hit problem [15, 16, 50].

An observation which is sometimes useful in dealing with the action of the
Steenrod algebra on W⊗ F2 is the commutativity with partial differentiation.

Lemma 2.21.

Sqn
∂

∂xi
=

∂

∂xi
Sqn.

This result is not true for integral Steenrod squares. The proof in the modulo 2
case is a straightforward application of the Cartan formula. A simple application is
a quick demonstration that if an element E in A has excess k, then E(x1 · · ·xm) 6= 0
for all m > k.
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2.4 Other sources of integral Steenrod squares. In the theory of deformations of
Hopf algebras, Duflot [63] introduces an integral version of the Steenrod algebra,
starting with the free associative algebra

V = Z[X1, X2, . . . Xn, . . .]

on a countable number of generators Xi with X0 = 1. Then V is a Hopf algebra
with coproduct determined on generators by

ψ(Xn) =
∑

06i6n

Xi ⊗Xn−i.

Let V [[h1, h2]] denote the ring of formal power series over V in the commuting
indeterminates h1, h2, and let

f(t) =
∑
i>0

tiXi

be the formal power series in the indeterminate t. Now introduce

α = h2
1 + h1h2, β = h2

2, δ = h2
2 + h1h2, γ = h2

1,

and define the ideal J in V in terms of generators obtained by equating coefficients
of all monomials hihj in the identity

f(α) f(β) = f(δ) f(γ).

These relations are designed to fit the Bullett–Macdonald formulae in Theorem 1.15.
It is shown in [63] that J is a Hopf ideal, and the quotient A2(Z) = V/J qualifies
as an integral version of the Steenrod algebra because its modulo 2 reduction is A.
A number of relations are worked out in [63] for the algebra A2(Z). In particular,

Xi
1 = i!Xi, and XiXj =

(
i+ j

j

)
Xi+j mod C,

where C is the commutator ideal. Furthermore, C consists of the torsion elements
in A2(Z). There is at least a superficial resemblance to differential operators if Xi

is matched with SQi. It should be noted, however, that there is no torsion in the
integral Steenrod algebra N introduced earlier.

Yet another version of the Steenrod algebra comes from the work of Barratt and
Miller [20] on conjugation in A, and from similar work of Crossley and Hubbuck
[53], relating to K-theory operations. Again, using notation slightly modified from
that of the authors, Crossley and Hubbuck define an algebra A(2) as a quotient of
the free associative algebra V ⊗ F2 = F2[X0, X1, . . .]. Let ν2(k) denote the highest
exponent of a power of 2 in k. Elements qn are defined recursively by

q0 = X0,
∑

06i6n

Xi qn−i = 0,

and then elements pn,N are defined for n > 0 and N > n+ 1 + ν2(n!) by

pn,N =
∑

06i6N−n

(
n+ i

i

)
Xn+i qN−n−i.

The algebra A(2) is the quotient of V ⊗ F2 by the ideal generated by the pn,N . It
is shown in [53] that A(2) is a Hopf algebra with the usual coproduct as described
already on generators Xn in the Duflot algebra. The map which associates Xi to Sqi
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induces a surjective Hopf algebra map of A(2) onto A which fails to be injective
for the first time in grading 5.

2.5 Remarks. It would be interesting to relate the algebras mentioned above and
various ways of setting up the Steenrod algebra in Section 1 to differential operators.
This programme may involve extending the scope of the differential operators Dk to
negative k acting on Laurent polynomials in the variables xi [6, 215].

For interpretations of Landweber–Novikov operations as differential operators
in the context of conformal field theory, quantum groups and diffeomorphisms of
the line, we refer to [33, 34, 35, 98, 150].

It would also be interesting to know if the complex bordism of a compact
Hausdorff topological space X could be defined in an algebraic manner, perhaps
in terms of the algebra of complex-valued functions on X in the style of algebraic
K-theory, in such a way as to admit the differential operator algebra as natural
operations in a calculus setting.

2.6 Problems.

Problem 2.22. Describe an additive basis of the integral Steenrod algebra N
in terms of composites of integral Steenrod squares SQk .

Problem 2.23. Describe relations in the SQk covering the Adem relations inA.

Problem 2.24. What is the relationship between the integral Steenrod algebra
N arising out of differential operators, Duflot’s algebra A2(Z) arising out of Hopf
algebra deformation theory, and the Crossley–Hubbuck algebra A(2)?

Problem 2.25. How are the local formulae for compositions of wedge products
of differential operators D(K) obtained from the global exponential form and the
convolution product?

Problem 2.26. Can the ‘calculus’ approach to Landweber–Novikov operations
and the Steenrod algebra, in terms of differential operators, be extended to other
cohomology theories?

Problem 2.27. Is there any natural interpretation of May’s universal Steenrod
algebra, the lambda algebra and the Dyer–Lashof algebra in terms of differential
operators Dk , perhaps extended to negative k acting on Laurent series?

Problem 2.28. How can the complex bordism of a topological space be defined
in a way that allows a natural action of the differential operator algebra?

3. Symmetric functions and differential operators

The basic properties of the ring Λ of symmetric functions in a countable number
of variables xi are set out in Chapter 1 of Macdonald’s book [121]. A symmetric
function is a formally infinite sum of monomials in W which restricts to a symmetric
polynomial when, for each n > 1, all variables are put to zero except the first n.
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We shall denote by Λ(n) the ring of symmetric polynomials in x1, . . . , xn over the
integers.

3.1 The algebraic Thom map. The elementary symmetric functions ei and the
power sums pi are defined in the usual ways. Multiplication in Λ is defined as for
polynomials, and we shall sometimes emphasise it by the dot product. For example,

e2
1 = e1 • e1 = (x1 + x2 + · · ·)2 = 2e2 + p2.

For each multiset K = kr11 k
r2
2 · · · kraa , there is an associated monomial symmetric

function m(K) defined to be the smallest symmetric function containing

(x1 · · ·xr1 )k1 (xr1+1 · · ·xr1+r2 )
k2 · · · (xr1+···+ra−1+1 · · ·xr1+···+ra )

ka .

For example, m(1r) = er and m(k) = pk . The sum of all the m(K) in a given degree n,
which is the sum of all monomials in that degree, is called the complete symmetric
function hn. The usual notation in the literature for the monomial symmetric function
is mλ, where λ is a partition.

Note. We shall continue to work with multisets rather than partitions, which
are more traditional in symmetric function theory [121], even though at first sight
the notation m(K) for the monomial symmetric function is not in keeping with the
usage of the previous section on differential operators. There are several reasons for
this choice. Given a partition λ = (λ1, . . . , λn) of the number |λ| = λ1 + · · ·+ λn, and
a collection of ‘type’ f symmetric functions, the notation fλ is frequently used to
denote the product fλ1

fλ2
· · · fλn of members of the f-collection. For example, the

family eλ, as λ ranges over all partitions, is an additive basis of Λ because Λ is
the polynomial algebra generated by the elementary symmetric functions. A similar
statement is true for the family hλ. The family m(K), as K ranges over multisets,
is also an additive basis of Λ. The traditional notation mλ does not refer to a
product in this case. The main reason, however, for the multiset notation is to do
with the algebraic Thom map [221]. Let π = x1x2 · · · denote the formal product of
the variables xi. Then the algebraic Thom map φ:D → Λ is given on differential
operators by

φ(D(K)) =
D(K)(π)

π
,

where D(K) is first evaluated on π and the result divided by π. It is shown in [221]
that the map φ sets up an additive isomorphism of D with Λ. There are some
familiar correspondences of families of functions under the algebraic Thom map.

Example 3.1.

φ(D(K)) = m(K), φ(Dk) = pk, φ(SQr) = er, φ

(
D◦r1

r!

)
= hr.

We recall that the Dk are the primitives in the Hopf algebra D. In Λ there is
a coproduct [71, 121, 208] which makes Λ into a Hopf algebra with respect to the
dot product. The primitives are the pk . We noted that φ(Dk) = pk , and it can be
checked that the algebraic Thom map is a coalgebra map. Hence the dot product
lifts back to make yet a third Hopf algebra structure on D with the same coproduct.
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For example,

D1 • D1 = D1 ∨ D1 + D2.

3.2 Products and conjugation in the symmetric algebra. The identities exhibited
in Example 3.1 are fairly natural, and it is a matter of taste whether to work in the
differential operator algebra or the symmetric function algebra. For example, if we
work in the symmetric function algebra, then the Steenrod algebra is generated by
the elementary symmetric functions under the composition product. This particular
product does not, however, feature prominently in standard treatments of symmetric
functions. On the other hand, if we work in the differential operator algebra, then
the dot product is somewhat alien. The wedge product is not commonly considered
in either model, but note the factorisation

m(K) = m(k1)∨r1 ∨ m(k2)∨r2 ∨ · · · ∨ m(ka)
∨ra ,

which is analogous to the factorisation of eλ into elementary symmetric functions
with respect to the dot product.

There is a problem, therefore, of understanding the relationship between the three
products ∨, •, ◦. This problem has been treated in a topological context in terms of
Chern classes, Stiefel–Whitney classes, cohomology of classifying spaces and Thom
complexes [19, 190]. However, it would be interesting to codify the material in terms
of differential operators. The three conjugations χ = χ∨, χ•, χ◦ all have the same
value χ(Dk) = −Dk on the primitives. If we work in the symmetric algebra, then
the conjugation χ• is, up to sign, Macdonald’s involution ω [121]. For example, the
elementary symmetric functions and the complete symmetric functions are related
by conjugation: χ•(ej) = (−1)jhj = (−1)jω(ej).

Furthermore, there is a product formula for composition of dot products anal-
ogous to the product formula in Theorem 2.7 for composites of wedge products.
With a similar notation, consider set functions

Φ: {k1, k2, . . . , ka} → {l0, l1, l2, . . . , lb},

and define, as in Theorem 2.7, the numerical functions τ(lj) = #{Φ−1lj} for the
number of elements in the inverse image of lj , and σ(lj) =

∑
ki∈Φ−1lj

ki for the sum of
the elements in the inverse image of lj . But instead of the falling factorial function

ρ(Φ), define the function π(Φ) = l
τ(l1)
1 l

τ(l2)
2 · · · lτ(lb)b . The following product formula is

due to Grant Walker.

Theorem 3.2 (Walker [208]).

(Dk1
• Dk2

• · · · • Dka) ◦ (Dl1 • Dl2 • · · · • Dlb )
=
∑

Φ π(Φ)D•(Φ−1(l0)) • Dl1+σ(l1) • Dl2+σ(l2) • · · · • Dlb+σ(lb),

where, for a multiset K = kr11 k
r2
2 · · · kraa ,

D•(K) = D•r1k1
• D•r2k2

• · · · • D•raka .

It should be possible to give global structure equations for the dot product and
dot conjugation by analogy with Theorem 2.17.

A recurrent problem in topology has been the efficient evaluation of the conju-
gates of compositions of Steenrod squares. Working in the symmetric algebra, the
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following example shows the values of the composition conjugates of the first few
elementary symmetric functions (alias the integral Steenrod squares).

Example 3.3.

−χ◦(e1) = m(1),

χ◦(e2) = m(12) + 2m(2),

−χ◦(e3) = m(13) + 2m(2111) + 5m(3),

χ◦(e4) = m(14) + 4m(22) + 5m(3111) + 2m(2112) + 14m(4),

−χ◦(e5) = m(15) + 2m(2113) + 4m(2211) + 5m(3112) + 10m(3121)

+ 14m(4111) + 42m(51).

The coefficients of the last terms m(k) are the ubiquitous Catalan numbers, up to sign.
In fact, all the coefficients can be expressed as products of Catalan numbers. The
argument is an application of the global formula in Theorem 2.17 for conjugation,
restricted to the special case of the formal sequence t = (t, 0, 0, . . .).

Example 3.4. The formal sequence t = (t, 0, 0, . . .) is associated with the poly-
nomial x+ tx2 whose functional inverse is

−1 + (1 + 4tx)1/2

2t
= x− tx2 + 2t2x2 − 5t3x4 + 14t4x5 − · · · .

Apart from sign, this is a generating function for Catalan numbers. The associated
formal sequence is

t̂ = (−t, 2t2,−5t3, 14t4, . . . , (−1)ncnt
n, . . .),

where cn =
(

2n
n

)
/(n+ 1). Now exp∨(tD1) = 1 + t SQ1 + t2SQ2 + · · ·, and by Theorem

2.17,

χ◦(exp∨(tD1)) = 1 + t χ◦(SQ1) + t2χ◦(SQ2) + · · ·
= exp∨(〈t̂,D〉)
= exp∨(−tc1D1 + t2c2D2 + · · ·+ (−1)ncnt

n + · · ·)
= exp∨(−tc1D1) ∨ exp∨(t2c2D2) ∨ · · ·
=
∑
i>0

(ci1(−t)iD(1i)) ∨ · · · ∨
∑
i>0

(cik(−t)kiD(ki)) ∨ · · · .

Comparing coefficients of tn on both sides of this equation, we obtain

(−1)n χ◦(SQn) =
∑

i1+2i2+···+kik+···=n
ci11 c

i2
2 · · ·D(1i12i2 · · ·).

Now cr is an even number unless r = 2λ − 1. Hence, reducing modulo 2, we obtain
Milnor’s formula in the Steenrod algebra, which states that the conjugate of a
squaring operation is the sum of the Milnor basis elements in the same degree:

χ◦(Sqn) =
∑

j1+3j2+···+(2λ−1)jλ+···=n

D(1j13j2 · · · (2λ − 1)jλ · · ·).

Conjugation formulae for elements in D can be found in [208].
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Example 3.5.

−χ◦(Dk ∨ Dl ∨ Dm) = Dk ∨ Dl ∨ Dm + (k + l + 2)Dk+l ∨ Dm
+ (k + m+ 2)Dk+m ∨ Dl + (l + m+ 2)Dl+m ∨ Dk
+ (k + l + m+ 3)(k + l + m+ 2)Dk+l+m.

It would be interesting to compare such formulae with Li’s version of Milnor’s
formulae [116] for conjugation in the Steenrod algebra.

3.3 Remarks. Other bases of the symmetric function algebra, not yet mentioned,
are provided by the forgotten functions and the Schur functions. The latter play an
important part in the representation theory of the symmetric group [121, 206] and
the cohomology of Grassmannians. The Schur basis is related to standard bases by
transition matrices of Kostka numbers. It would be interesting to investigate how
much of the material in [121] on symmetric functions translates naturally into the
language of differential operators, and to see if any light can be cast on the standard
combinatorics of Young tableaux by the use of differential operators and Steenrod
squares.

Since the differential operators D(K) are symmetric in the variables and deriva-
tives, the action of D on W preserves the algebra Λ(n) of symmetric polynomials in
n variables, and this raises the question of finding closed formulae in Λ(n) for the
action of D(K) on prescribed symmetric polynomials.

From a topologist’s point of view, Λ(n) (with suitable conventions about grading)
is identified with the cohomology over the integers of the classifying space BU(n) of
the unitary group U(n), and the elementary symmetric functions are called ‘universal
Chern classes’ in this context. The classifying space BU(n) is so called because a
complex n-plane bundle E over a connected compact Hausdorff base space X is
induced from a certain universal bundle over BU(n) by a map of X into BU(n). The
Thom isomorphism [134, 199]

φ: H∗(X)→ H̃∗+n(E∗)

is an isomorphism from the cohomology of X to the reduced cohomology of
the one-point compactification E∗ of E, known as the Thom complex of E. For
the universal bundle BU(n), this Thom complex is denoted by MU(n), and its
integral cohomology is identified with the elements of Λ(n) divisible by πn =
x1 · · ·xn. The Thom isomorphism in this case is identified with multiplication by πn.
Similar remarks apply to real vector bundles, the classifying space BO(n) of the real
orthogonal group O(n), and the Thom isomorphism for cohomology modulo 2. The
universal Stiefel–Whitney classes wm are the modulo 2 reductions of the elementary
symmetric function em, and generate the modulo 2 cohomology of the classifying
space BO(n). For a real vector bundle E over X, the Stiefel–Whitney classes wm
of the bundle are elements in the cohomology of X. They are related to Steenrod
squares acting on the cohomology of the Thom complex E∗ by the formula

wm = φ−1Sqmφ(1),

where 1 ∈ H0(X) is the identity element. In the universal case, the formula is the
composite of the action of the Steenrod square on πn and division by πn. This
offers some explanation for the use of the term ‘algebraic Thom map’ linking the
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differential operator algebra to the symmetric function algebra introduced at the
beginning of the section.

As well as the interpretation of the Steenrod squares in terms of elementary
symmetric functions via the algebraic Thom map, the Steenrod algebra also acts on
Λ(n)⊗F2, as we explained in a purely algebraic way by the symmetry of differential
operators, or topologically by the identification of Λ(n)⊗F2 with H∗(BO(n); F2). The
Steenrod algebra also acts on the cohomology of the Thom complex H∗(MO(n); F2)
viewed as the symmetric polynomials divisible by x1 · · ·xn. Closed formulae for these
actions have been of interest to algebraic and differential topologists, for example
in the immersion theory of manifolds [64, 65, 66, 68].

Classically, the Wu formulae [134, 223] answer the question of how the Steenrod
squares act on the elementary symmetric polynomials in Λ(n)⊗ F2:

Sqk(wm) = wkwm +

(
k − m

1

)
wk−1wm+1 + · · ·+

(
k − m
k

)
wm+k,

where the negative binomial coefficients are reduced modulo 2.
Work on Wu-type formulae appears in [4, 28, 30, 31, 82, 110, 157, 172, 192].

Recently, Lenart [114] has produced integral Wu formulae using differential oper-
ators in conjunction with Schur functions, Schubert varieties and the Hammond
operators of classical combinatorics.

3.4 Problems.

Problem 3.6. How are Schur functions and the forgotten functions related to
integral Steenrod squares and differential operators?

Problem 3.7. Can the differential operator approach to the symmetric function
algebra throw any light on Kostka numbers and other numbers arising out of
transition matrices between various bases of Λ?

Problem 3.8. Explore the interrelations between the dot product, wedge prod-
uct and composition product in the divided differential operator algebra.

Problem 3.9. Find combinatorial interpretations for the coefficients which oc-
cur in the expansions of the various conjugations in the differential operator algebra.

Problem 3.10. What is the significance of the order of a differential operator
when translated into the symmetric function algebra under the algebraic Thom
map?

4. Bases, excess and conjugates

For a variety of reasons, the Milnor basis is the most popular choice when it
comes to studying problems in the Steenrod algebra, especially those to do with
products, conjugation and excess. Perhaps the interpretation of Milnor basis elements
in terms of differential operators offers some explanation for their significance. For
example, the notion of excess has a natural meaning in terms of differential operators.
Kraines shows in [103] that the excess of Milnor’s basis element Sq(r1, r2, . . . , ra) is

r1 + r2 + · · ·+ ra,
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and by Lemma 2.2, we can now interpret excess in the following simple way.

Lemma 4.1. The excess of the element

E =
D∨r11

r1!
∨ D

∨r2
3

r2!
∨ · · · ∨ D

∨ra
2a−1

ra!

is the order of E, in the usual sense for differential operators.

This conforms to the original definition of excess, because the differential operator
D(K), associated with the multiset K = kr11 k

r2
2 · · · kraa , has order e = r1 + r2 + · · ·+ ra,

annihilates all polynomials of degree less than e, and is non-zero on the product of
e variables.

The term of highest order in the composition of two differential operators D(K)
and D(L) is the wedge product D(K)∨D(L). In the Steenrod algebra this corresponds
to the following statement, which can be found in Chapter 15 of [125], namely

Sq(r1, r2, . . . , ra) Sq(s1, s2, . . . , sb) = ε Sq(r1 + s1, r2 + s2, . . .) + E,

where ε is 0 or 1, and the error term E has excess strictly lower than that of
Sq(r1 + s1, r2 + s2, . . .). Since ε may be zero in the modular case, the task of finding
the highest-order terms in a product of elements in the Steenrod algebra is not so
straightforward. The same applies to the problem of finding lowest-order terms and
excess of iterated composites.

One major reason for the importance of the Milnor basis is the algorithmic
product formula in Theorem 1.7, which no other basis seems to possess in such
a workable form. As we saw in Section 2, even at the integral level, there are
combinatorial formulae for evaluating compositions and conjugates. Another reason
for the importance of the Milnor basis is the fact that a Hopf subalgebra of A is
generated as a vector space by the Milnor basis elements which lie in it [125]. For
example, the algebra A(n) is a Poincaré algebra with top element

Sq(2n+1 − 1, 2n − 1, . . . , 3, 1),

and a basis for A(n) consists of the elements Sq(r1, . . . , rn+1) with ri < 2n+2−i. The
admissible basis is not so convenient. For example, the element

Sq5 + Sq4Sq1,

which is the sum of two admissible monomials each lying in A(2), actually lies in
A(1), as we see from the Adem relation

Sq2Sq3 = Sq5 + Sq4Sq1.

A summary of the various bases now available in the Steenrod algebra can
be found in Monks’ paper [143], together with information about the transition
matrices between them. We shall just make a few comments on certain particular
features of some of these bases.

4.1 The admissible basis. Ken Monks [143] has investigated the question of
when certain bases of the Steenrod algebra are triangularly related to the Milnor
basis with respect to suitable orderings. The admissible basis has this property with
respect to the right lexicographic ordering.
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Consider the Milnor element Sq(r1, r2, . . . , ra), and define ta = ra and ti = ri+2ti+1

for 1 6 i < a. The excess of Sqt1Sqt2 · · · Sqta is

2t1 − (t1 + t2 + · · ·+ ta) = r1 + r2 + · · ·+ ra = e.

In Lemma 8 of Milnor’s paper [131] and in [143, 210], we find the following result.

Lemma 4.2.

Sq(r1, r2, . . . , ra) = Sqt1Sqt2 · · · Sqta + E,

where the error term E has excess strictly greater than e.

Monks’ condition for the error term E to be zero is proved in [210], and can
be explained in terms of the function 2ω(r) which designates the smallest power of 2
not less than r.

Theorem 4.3 (Monks [143, 210]). The Milnor basis element Sq(r1, r2, . . . , rm) is
also an admissible basis element, and is therefore equal to Sqt1Sqt2 · · · Sqta , if and only
if ri ≡ −1 mod 2ω(ri+1) for all 1 6 i < m.

For example, the top element of A(2) is Sq17Sq5Sq1.
Another numerical function which frequently occurs in the study of the Steenrod

algebra is defined as follows.

Definition 4.4. Let µ(f) denote the smallest number of positive integers of the
form 2λ − 1 adding up to f, and let ζ(f) = (f + µ(f))/2.

Given a number f, following Singer [182], we construct an admissible sequence
as follows:

ζ1 = ζ(f), ζ2 = ζ(f − ζ1), . . . , ζr = ζ(f − ζ1 − · · · − ζr−1).

The sequence stops when ζr+1 = 0. For example, the sequence for f = 7 is 4, 2, 1,
and the sequence for f = 8 is 5, 2, 1.

Theorem 4.5 (Singer [182]). The largest term, in right lexicographic order, in the
expansion of χ(Sqf) in the admissible basis is Sqζ1Sqζ2 · · · Sqζr .

As it happens, Sqζ1Sqζ2 · · · Sqζr is the largest term in right lexicographic order
among all admissibles in grading f, and is also the term of least excess. Recently,
the following result has been established by Judith Silverman.

Theorem 4.6 (Silverman [178]). The excess of χ(Sq2k−1fSq2k−2f · · · Sq2fSqf) is
(2k − 1)µ(f).

One might conjecture that the largest term in right lexicographic order in the
admissible expansion of χ(Sq2k−1fSq2k−2f · · · Sq2fSqf) is

Sq(2k−1)ζ1Sq(2k−1)ζ2 · · · Sq(2k−1)ζr .

This element is not, in general, the largest element over all elements of the same
grading.
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4.2 The P s
t bases. We call a number of the form 2s(2t − 1) atomic. Most of

the bases of recent origin are assembled from strings of atomic squares Sq2s(2t−1)

in various orders, or from Milnor elements P s
t in atomic degrees 2s(2t − 1). It is

convenient to arrange the P s
t family as in Margolis’ table in Chapter 15 of [125].

Example 4.7.

4 P 4
1

3 P 3
1 P 3

2

2 P 2
1 P 2

2 P 2
3

1 P 1
1 P 1

2 P 1
3 P 1

4

0 P 0
1 P 0

2 P 0
3 P 0

4 P 0
5

1 2 3 4 5

The element P s
t is placed in position (t, s) in cartesian coordinates. The rela-

tionship between the following theorem of Monks and differential operators can be
found in [221].

Theorem 4.8 (Monks [143]). Strings of distinct P s
t , taken in a fixed but arbi-

trary order under composition, form a basis of the Steenrod algebra, and this basis is
triangularly related to the Milnor basis.

The P s
t family is particularly useful in handling questions about Hopf subalgebras

of A. Information relating Hopf subalgebras of the Steenrod algebra to shapes in
the (s, t)-plane defined by profile functions can be found in Margolis [125].

Example 4.9. The top element ofA(n) is the product of the elements P s
t , in any

order, satisfying s + t 6 n + 1. A basis for A(n) is obtained by taking subproducts
in the given order. The situation may be described geometrically by the triangle
s + t 6 n + 1 in the (s, t)-plane. The elements P s

1 = Sq2s along the vertical side of
the triangle, s 6 n, form a minimal algebraic generating set of A(n). The elements
along the base of the triangle, P 0

t = Sq(0, . . . , 0, 1, 0, . . .), form an exterior subalgebra
of A(n). Furthermore, (P s

t )2 = 0 if and only if s < t, and in this case the elements
are fixed by conjugation, χ(P s

t ) = P s
t .

To explain some of these formulae in the language of differential operators,
recall that the primitive elements D2t−1, corresponding to P 0

t , satisfy the Lie bracket
formulae

[D2t1−1, D2t2−1] = (2t2 − 2t1 )D2t2 +2t1−2,

and therefore commute when reduced modulo 2. Furthermore, the composition
product formula in Theorem 2.7 shows in general that Dk ◦Dl = Dk∨Dl +(l+1)Dk+l ,
and in particular that

(D2t−1)◦2 = (D2t−1)∨2 + 2tD2t+1−2.

Now (D2t−1)∨2 is divisible by 2. This explains the formula (P 0
t )2 = 0 in the Steenrod

algebra. The more general formula (P s
t )2 = 0, for s < t, follows from the modulo 2

reduction of Example 2.10.
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4.3 Arnon’s C-basis. The question arises of whether it is possible to write down
a basis of A which is monomial in the Sqi and at the same time restricts to a basis
A(n) for all n in the way that the Milnor basis does. As we have noted in Problems
1.8, this question was first broached by Wall [213], who constructed a basis in terms
of strings of Sq2k . Wall’s basis is not triangularly related to Milnor’s basis. Dan
Arnon rediscovered Wall’s basis and found several others, in particular the C-basis
which is triangularly related to Milnor’s basis. To describe the C-basis, we call a
string of squares

Sqt1Sqt2 · · · Sqtm

C-admissible if ti 6 2ti+1 for 1 6 i < m and tm−i is divisible by 2i. Then one of
Arnon’s results states the following.

Theorem 4.10 (Arnon [17]). The set of C-admissible monomials is a basis of the
Steenrod algebra.

For example, the elements

Sq2k−1fSq2k−2f · · · Sq2fSqf, (Sq2k )k+1

belong to the C-basis for all f, k > 1, but (Sq8)5 does not. The following result
exhibits a nice property of the C-basis elements.

Lemma 4.11. The excess of a C-admissible element is the superfix of its last
factor.

The proof is a straightforward induction on the number of factors, observing
that

Sq2sSqt(x1 · · ·xt) = (Sqs(x1 · · ·xt))2,

and this is non-zero if s 6 t, as observed after Lemma 2.21.

4.4 The Y-basis and Z-basis. Yet further families of monomial bases in atomic
squares have recently emerged [220], which respect theA(n), but are not triangularly
related to Milnor’s basis. We first consider two orderings of atomic numbers, called
the Y-order and the Z-order.

The Y-order is given by

1, 3, 7, 15, . . . , 2, 6, 14, 30, . . . , 4, 12, 28, 60, . . . , 8, . . . ,

and the Z-order is given by

1, 3, 2, 7, 6, 4, 15, 14, 12, 8, . . . .

In the Y-order, all numbers of the form 2r − 1 are listed first in their natural
order, then their doubles, quadruples, etc. The Z-order of the atomic numbers is
induced by the ordering of all natural numbers

1, 3, 2, 7, 6, 5, 4, 15, 14, 13, 12, 11, 10, 9, 8, . . . ,

in which intervals of the form [2n, . . . , 2n+1 − 1], in their natural order, have been
reversed.
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Theorem 4.12 (Wood [220]). The top element ofA(n) is the product of the atomic
squares Sq2s(2t−1) in reverse Y-order with superfix not greater than 2n+1 − 1, and the
set of substrings of this element is a basis of A(n). A similar statement applies to the
Z-order.

For example, the top element ofA(3) is given by each of the following expressions
in the reverse Y-order and Z-order, respectively.

Example 4.13.

Sq8Sq12Sq4Sq14Sq6Sq2Sq15Sq7Sq3Sq1,

Sq8Sq12Sq14Sq15Sq4Sq6Sq7Sq2Sq3Sq1.

A basis forA(3) consists of the 210 strings of atomic squares that can be selected
from the top string in the given order. Since these bases are not triangularly related
to Milnor’s basis, it is a problem to calculate the excess and find closed formulae
for products in the given basis. However, one nice feature of the Z-basis is that the
bases of the subalgebras A(n) build up from right to left. The Steenrod algebra is
free as a right module over A(n). This is a useful property for handling problems
about right multiplication in the Steenrod algebra. For example, to find the kernel
K of right multiplication by Sq2n in A, it is enough to find the kernel K(n) of this
action in the subalgebra A(n). A basis for K has the form EF , where E is a Z-basis
element whose last factor is higher than Sq2n+1−1 in the Z-order, and F is a basis
element for K(n).

Example 4.14. The kernel of right multiplication by Sq1 in A is the left ideal
generated by Sq1 and has a basis of the form ESq1, where E is a Z-basis element
whose last factor is higher than Sq1.

We refer to the pioneering work of Toda [147, 148, 201] and Wall [213] for
information on kernel problems of this kind.

4.5 Wall’s relations. We return now to the topic of Wall’s relations [153, 213].
It will be found convenient to write

Ê = χ(E)

for the conjugate of an element E in the Steenrod algebra.
It has been clear since the work of Barratt and Miller [20], Davis [55, 56], Wall

[213] and other contributors [21, 49, 70, 116, 191] that among the most fruitful
relations in the Steenrod algebra are those which express rules for the evaluation
of the product EF̂ of an element with a conjugate element, and provide efficient
formulae for the evaluation of conjugation itself. For example, the following formulae
have been found useful in handling nilpotence questions.

Example 4.15. For positive integers a, b,

Ŝq2a Sq2a(2b−1) = Sq2a−1(2b+1−1) ̂Sq2a−1
.
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One way to establish these results is through the work of Davis [55], as extended
by Silverman [174], which exploits Milnor’s product formula. Li [116] has reproduced
the results in terms of his global product formulae. Following [174], we say that
if a =

∑
i>0 ai2

i and b =
∑

i>0 bi2
i are integers > 0, where ai, bi ∈ {0, 1}, then a

dominates b if ai > bi for all i, and write a � b. This is equivalent to the condition
that the binomial coefficient

(
a
b

)
is odd. For a sequence R = (r1, . . . , rk), we recall

that the degree of Sq(R) is |R| =
∑

i>1(2i − 1)ri, and the excess of Sq(R) is
∑

i>1 ri.
The Davis–Silverman [55, 116, 174] relations are

Squ Ŝqv =
∑

R Sq(R) : |R| = u+ v, |R|+
∑

i>1 ri � 2u,

Ŝqu Sqv =
∑

R Sq(R) : |R| = u+ v,
∑

i>1 ri � v.

Formulae of this kind are also implicit in the work of Barratt and Miller
[20], which modifies the formulation of the Adem relations given by Bullett and
Macdonald [36]. Among these relations (also established by Walker [207] and by
Crabb, Crossley and Hubbuck [49] using K-theory methods) are the expressions for
the conjugates of the squaring operations.

Example 4.16.

Ŝqk =
∑

u−1�k′−1

SquŜqv,

where k′ = (k + µ(k))/2 and µ(k) is as in Definition 4.4. This confirms the earlier

statement, in Theorem 4.5, that the excess of Ŝqk is µ(k). Here are some particular
cases:

Ŝq19 = Sq11Ŝq8 + Sq12Ŝq7 + Sq15Ŝq4 + Sq16Ŝq3,

Ŝq55 = Sq30Ŝq25 + Sq32Ŝq23,

Ŝq58 = Sq32Ŝq26.

Further formulae can be found in Ken Monks’ article [139]. A special case of
interest is Straffin’s formula.

Theorem 4.17 (Straffin [191]). Ŝq2n = Sq2n + Sq2n−1 ̂Sq2n−1
.

This provides an efficient way of finding the conjugates of an algebraic generating
set of the Steenrod algebra, and leads to the idea that conjugation should perhaps be
somehow incorporated into the Steenrod algebra as a defining part of its structure.
Wall went some way to doing this in [213], where he defined a set of relations for the
Steenrod algebra involving the Sq2k modulo A(k− 1), as explained in Theorem 1.9.
These relations can, in fact, be expressed in closed form if the conjugation operator
is brought into play.

Theorem 4.18 (Walker [207]). Closed forms of the Wall relations are

(i) Sq2i Sq2i = Sq2i−1

Ŝq2i Sq2i−1

+ Sq2i−1

Sq2i−1

Ŝq2i ,

(ii) Sq2i Ŝq2j + Ŝq2j Sq2i = ̂Sq2j+1
Sq2i−2j for i− j > 2.

A third relation may be added :

(iii) Sq2i−1

Ŝq2i + Ŝq2i Sq2i−1

= ̂Sq2i−1
Sq2i + ̂Sq2i+2i−1

.
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Wall’s original relations can be recovered by removing ‘hats’, and in principle
the ‘error’ terms of Theorem 1.9 can be written down explicitly in A(i − 1). For
example, in relation (i) we have, by Straffin’s formula,

Sq2i Sq2i = Sq2i−1

(Sq2i + Sq2i−1 ̂Sq2i−1
)Sq2i−1

+ Sq2i−1

Sq2i−1

(Sq2i + Sq2i−1 ̂Sq2i−1
)

= Sq2i−1

Sq2i Sq2i−1

+ Sq2i−1

Sq2i−1

Sq2i

+ Sq2i−1

Sq2i−1 ̂Sq2i−1
Sq2i−1

+ Sq2i−1

Sq2i−1

Sq2i−1 ̂Sq2i−1
,

which is Wall’s formula with the explicit error term in A(i− 1).

4.6 Problems.

Problem 4.19. Which orderings of atomic Steenrod squares give rise to bases
of the A(n)?

Problem 4.20. How is excess computed for the Y-basis and Z-basis?

Problem 4.21. Find efficient formulae for the excess of conjugates of composites
of Steenrod squares.

Problem 4.22. Are there any bases of the Steenrod algebra, other than the
Milnor basis, which admit a workable product formula?

Problem 4.23. Are there analogues of atomic bases for the integral Steenrod
algebra and the odd prime cases?

Problem 4.24. Can the Steenrod algebra be developed from the closed versions
of Wall’s formulae in a way that incorporates conjugation as a defining part of the
structure? Are there integral and modulo p analogues?

Problem 4.25. Develop explicit formulae in the differential operator algebra
for products of the form D(K) ◦ χ(D(L)).

Problem 4.26. Describe the fixed point set of conjugation χ◦ in A, D and
related Hopf algebras [54].

5. The stripping technique

In theory, any relation E = 0 in the Steenrod algebra can be detected by
evaluating E on the product of variables x1 · · ·xn if the grading of E does not exceed
n. In practice, however, this is not a feasible method of proceeding, except in certain
cases. The combinatorial problem of keeping track of binomial coefficients modulo 2
gets out of hand for long strings of Steenrod squares, as will be discovered by anyone
who cares to prove that (Sq32)12 = 0 by this method. It does succeed, however, for
short strings. For example, the relation Sq2k−1Sqk = 0 can be demonstrated in this
way for all values of k > 0. Similar remarks apply to the difficulties arising from the
iterated use of Adem relations, as well as the dual approach using the coproduct
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and the global composition formulae of Li [116]. We mentioned in Theorem 1.12
that all relations inA(n) are generated from Sq2k−1Sqk = 0, for any k large enough,
by the stripping process. It is sometimes possible to short-cut otherwise prohibitively
complicated methods for producing relations in the Steenrod algebra by starting
with a known relation and then stripping it down to the required form. The technique
works in any Hopf algebra, in the sense that the algebra acts on its dual. However,
the success of the method depends on how easily the action can be implemented in
specified bases of the algebra. By combining the stripping technique and a reverse
process, which we call ‘strapping’, it is shown how all relations in the Steenrod
algebra come from the basic relation Sq1Sq1 = 0.

5.1 Stripping in the Steenrod algebra. We shall now explain in more detail how
the stripping process works in the Steenrod algebra. Call a vector allowable if
its entries consist of adjacent descending powers of two. For example, (1), (4, 2),
(8, 4, 2, 1) are allowable, but (4, 1) is not. Given a monomial X = Sqr1Sqr2 · · · Sqrn
in Steenrod squares with superfix vector w = (r1, r2, . . . , rn), and given an allowable
vector v, first build up v in all possible ways into vectors v1, v2, . . . of the same
dimension, n, as w by inserting zeros, if necessary. Then write down the polynomial
whose monomial superfixes are the vectors w − v1, w − v2, . . . . We refer to this
polynomial as the monomial X stripped by the allowable vector v. If the dimension
of v already exceeds that of w, or an entry of vi exceeds the corresponding entry of
w, then we count the result of stripping as zero (not to be confused with stripping
(2, 1) from Sq2Sq1, which gives Sq0). Clearly, the process extends to a polynomial
in the Steenrod algebra, and it can be shown that the process is compatible with
the Adem relations. Hence a relation stripped by an allowable vector gives a new
relation. The following routine illustrates the process.

Example 5.1. Take the relation Sq17Sq9 = 0, and strip by the vector (16) to
obtain Sq1Sq9 = 0. Also strip by the vector (8), to obtain Sq9Sq9+Sq17Sq1 = 0. Next
multiply on the right by Sq9, giving Sq9Sq9Sq9 = 0. Now take the two-dimensional
vector (2, 1), and consider all the ways of making this vector into a three-dimensional
vector by inserting zeros, namely (0, 2, 1), (2, 0, 1), (2, 1, 0). Strip from (9, 9, 9) to finish
with the relation

Sq9Sq7Sq8 + Sq7Sq9Sq8 + Sq7Sq8Sq9 = 0.

The quickest way to demonstrate why stripping works is to consider a variable
x and a general polynomial f independent of x. Applying a given element E in the
Steenrod algebra to xf, and using the Cartan formula, produces an expansion of
the form

xE(f) + x2ω1(E)(f) + x4ω(2,1)(E)(f) + · · · ,

where ωv denotes the operation of stripping by the vector v. If E = 0 is a relation
in the Steenrod algebra, then by picking off the coefficients of x2, x4, . . . , we obtain
the relation stripped by the vectors (1), (2, 1), . . . , because f is a general polynomial.
The same argument, replacing x by x2k , shows why stripping works for a general
allowable vector. Iterated stripping by (2, 1) of the relation Sq2k−1Sq2k−1

= 0 produces
relations Sq2m−1Sqm = 0 in lower grading, and further stripping by the vector (1)
produces the Adem relations.
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It is clear from the definition that stripping operators commute. Hence the set of
stripping operators ωv , as v ranges over allowable vectors, constitutes a commutative
algebra Ω. In fact, Ω is canonically isomorphic to the dual Steenrod algebra A∗
as a polynomial algebra. To set up the isomorphism, we associate ξ2k

n in A∗ with
the stripping operator ωv , where v = (2k+n−1, . . . , 2k), and extend to an arbitrary
power ξrn by first expressing r in binary form and then taking the composite of
the corresponding stripping operators. The construction is then extended to an
arbitrary monomial in the ξn, and finally to A∗ by linearity. For example, ξ5

1ξ
3
2

corresponds to the stripping operator ω(1)ω(4)ω(2,1)ω(4,2). Under this isomorphism,
it is now straightforward to check that the stripping process is expressed by the
composite map mentioned in Section 1.

Lemma 5.2. The stripping process is given by the composite map

A∗ ⊗A
1⊗ψ
−→A∗ ⊗A⊗A κ⊗1−→A,

where ψ is the coproduct and κ is the Kronecker product.

For example, following the map through on the element ξn ⊗ E, for ξn ∈ A∗
and a monomial E in Steenrod squares, we first write down the coproduct ψ(E) =∑
E ′ ⊗ E ′′, where E ′ and E ′′ are monomials in Steenrod squares. Then we observe

that the Kronecker product 〈ξn, E ′〉 is non-zero only when E ′ = Sq2n−1 · · · Sq1, by
definition of ξn. The complementary monomials E ′′ then constitute E stripped by
ω(2n−1 ,...,1).

Stripping is analogous to the construction of the cap product of a cohomology
class ξ and a homology class X. For an element X in A and ξ in A∗, let

ψ(X) =
∑
X ′ ⊗X ′′, ψ(ξ) =

∑
ξ′ ⊗ ξ′′

be the usual coproducts. We shall write the action of ξ on X as a cap product

ξ ∩X =
∑
〈ξ,X ′〉X ′′.

As in Subsection 4.5, we write X̂ for χ(X). The following stripping rules can be
found, for example, in [210].

Lemma 5.3.

ξη ∩X = ξ ∩ (η ∩X),

ξ ∩ (X1X2) =
∑

(ξ′ ∩X1)(ξ′′ ∩X2),

χ(ξ ∩X) = χ(ξ) ∩ χ(X),

〈ξη,X〉 = 〈ξ, η ∩X〉.

The third rule explains how to strip ‘under the hat’.

Example 5.4. To strip ̂Sq7Sq2 by ξ2, we first write ξ̂2 = ξ2 + ξ3
1 , which corre-

sponds to the stripping operation ω(2,1) + ω(1)ω(2). Now

ξ2 ∩ (Sq7Sq2) = ω(2,1)(Sq
7Sq2) = Sq5Sq1,

ξ3
1 ∩ (Sq7Sq2) = ω(1)ω(2)(Sq

7Sq2) = Sq4Sq2 + Sq5Sq1 + Sq6.
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Hence

ξ2 ∩ ( ̂Sq7Sq2) = ̂Sq4Sq2 + Ŝq6 = Sq6 + Sq4Sq2.

The calculation can be counter-checked in this case, because ̂Sq7Sq2 = Sq6Sq2Sq1,
and stripping directly by ξ2 = ω(2,1) gives Sq6 + Sq4Sq2.

There is an alternative algorithm for stripping by a conjugate, which can be
illustrated with reference to the above example. As we saw, stripping by ξ̂2 is
the sum of stripping by (2, 1) and (2)(1). Now stripping by (2)(1) is equivalent to
stripping by the sum (2, 1) + (1, 2) + (3), as can be seen by stripping first by (2),
and then observing that (1) can appear in front of, behind, or on top of (2). Care
must be taken, however, to use only (1, 2) and (3) as formal stripping operators
in conjunction, because individually they are not allowable vectors and do not
commute with the Adem relations.

Example 5.5. Stripping by ξ̂2 is equivalent to stripping by the sum (1, 2) + (3).
Hence

ξ̂2 ∩ (Sq7Sq2) = Ŝq6 + ̂Sq4Sq2.

More generally, stripping by ξ̂n is the same as stripping by the sum of the
composites of the subvectors formed by inserting markers in all possible ways in the
allowable vector (2n−1, . . . , 1). For example, stripping by ξ̂3 is effected by

(4)(2)(1) + (4, 2)(1) + (4)(2, 1) + (4, 2, 1).

This, in turn, is equivalent to stripping by the sum of all the vectors of the form
(a1, a2, . . . , ak) satisfying the following properties:

• each ai is an ‘atomic’ number of the form 2λ(2µ − 1),
• a1 < a2 < . . . < ak ,
•
∑

16i6k ai = 2k − 1.
Such vectors (a1, a2, . . . , ak) are obtained from (1, 2, . . . , 2n−1) by inserting markers and
adding up the entries between markers. For example, stripping by ξ̂3 is equivalent
to stripping by the sum of vectors

(7) + (3, 4) + (1, 6) + (1, 2, 4).

Again it should be emphasised that, individually, each vector in this sum is stripped
formally, and has no meaning on its own as an operation in the Steenrod algebra.
Applications of conjugate stripping and related topics can be found in [177, 178, 176].

Stripping in the Milnor basis is very straightforward. The following result was
used for the first time by Monks in [142].

Lemma 5.6. On a Milnor element Sq(r1, r2, . . .), stripping by ξt11 ξ
t2
2 · · · gives

Sq(r1 − t1, r2 − t2, . . .). If any entry is negative, then the element is regarded as zero.

In particular, the Milnor basis is stable under stripping, and one can see im-
mediately that, as a vector space transformation, stripping by a monomial element
in A∗ is a surjective map of A, and its kernel is generated by the Milnor basis
elements which are transformed to zero. For example, the kernel of stripping by ξ1

is generated as a vector space by Milnor basis elements Sq(0, r2, r3, . . .).
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As a simple illustration of the stripping technique, we re-work an old result of
Mizuno and Saito [137], extended by Peterson [156] and further extended by Lin
[117] and Li [116], which states the following relations in the Steenrod algebra.

Example 5.7. ∑
06i6k

Sqi Sqk−i = 0, k 6= 0 mod 3,

∑
06i6k

Sqi Sqk−i = Sq(0, k/3), k = 0 mod 3.

Consider the vector subspace V[n] of A generated by monomials in Steenrod
squares of length not greater than n. Let Vk[n] be the summand of V[n] in grading
k. Then V[n] is stable under stripping and the Adem relations. The admissible
elements of length not greater than n form a vector space basis of V[n], and the
Milnor product formula shows that the same is true for the Milnor basis elements.
For example, Vk[2] is generated by terms SqaSqb, where a > 2b and a + b = k.
It is also generated by Sq(r1, r2) for r1 + 3r2 = k. The kernel of stripping by ξ1

is generated by Sq(0, r2), and is therefore concentrated in gradings k = 0 mod 3.
In these gradings, it is generated by the single element Sq(0, k/3). By examining
adjacent terms in the lexicographic ordering of the admissible basis of Vk[2], one
sees that

Sqk + Sqk−1Sq1 + · · ·+ Sq1Sqk−1 + Sqk

is in the kernel of ξ1. The first relation in Example 5.7 follows immediately, and the
second can be proved by a further stripping argument to show that the left-hand
side is non-zero. The same method can be used to demonstrate the other relations
in [116, 117, 156].

Example 5.8. ∑
06i6k

Sqs(i) Sqs(k − i) = 0, k 6= 0 mod 2s + 1,

∑
06i6k

Sqs(i) Sqs(k − i) = Sq2s(k/(2
s + 1)), k = 0 mod 2s + 1.

Another straightforward application of the stripping technique is in relation to
Example 4.14.

Example 5.9. The kernel K of right multiplication by Sq2n in the Steenrod
algebra is in the left ideal generated by Sq2n , and K is zero in degrees less than
2n+1 − 1.

To see why this is true, we start with a relation ESq2n = 0, for some element E in
A(n), and strip by the vector (2n) to obtain E = FSq2n for an element F ∈ A(n). It
follows that FSq2nSq2n = 0. If the grading of E is less than 2n+1−1, then the grading
of F is less than 2n − 1, and stripping by the vector (2n, 2n−1) yields FSq2n−1

= 0. An
induction argument on n completes the proof.

It would be interesting to find how far stripping methods can be exploited in the
analysis of ideals in A.
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5.2 The strapping process. In [189] it is shown that there is a well-defined
algebra map γ:A→A which formally divides the exponents of a string of Steenrod
squares by 2, namely

γ(Sqk1Sqk2 · · · Sqkr ) = Sqk1/2Sqk2/2 · · · Sqkr/2,

with the understanding that the map is zero if any ki is odd. The inverse process
γ−1 of formally duplicating the exponents of a string of Steenrod squares is not
well defined as a map of the Steenrod algebra. However, γ−1 is well defined modulo
the two-sided ideal generated by Sq1, as we see from the Adem relations and the
equality of binomial coefficients(

j − k − 1

i− 2k

)
=

(
2j − 2k − 1

2i− 4k

)
mod 2.

The situation can be partially restored in the Steenrod algebra itself by exploiting
the stripping technique and the properties of the element

Sq(1, 1, . . . , 1) = Sq2k−1Sq2k−1−1 · · · Sq3Sq1.

For notational convenience, we shall call this element Tk . With reference to Example
4.9, we see that Tk is the product of the primitives P 0

i , for 1 6 i 6 k, which generate
an exterior algebra with Tk as the top element. It can be seen immediately, from
either the admissible form or the Milnor form, that Tk is annihilated by the stripping
operation ξ2 for any element ξ of positive degree in the dual Steenrod algebra.

The next result expresses the fact that for any string E of r even squares, the effect
of pre-multiplying by Tk is to increase the exponents of E by adding on successively
the numbers 2k − 1, 2k−1 − 1, . . . , 3, 1 to the first k exponents of E (assuming r > k

by adding a string of Sq0 if necessary).

Theorem 5.10. For all r > k > 1,

T kSq2a1Sq2a2 · · · Sq2ar = Sq2a1+2k−1Sq2a2+2k−1−1 · · · Sq2ak+1 · · · Sq2ar .

For example,

Sq3Sq1Sq8Sq8Sq6 = Sq11Sq9Sq6, Sq7Sq3Sq1Sq4Sq8Sq6 = Sq11Sq11Sq7.

The proof of the result follows by induction on length, starting with the case

Sq2k−1Sq2k−1−1 · · · Sq3Sq1Sq2a = Sq2k−1+2aSq2k−1−1 · · · Sq3Sq1,

which can be demonstrated by Adem relations, Milnor’s product formula, or check-
ing the result when a is a power of 2 and then stripping down by the vector (2).
A companion result, with similar proof, applies to the case of odd exponent with a
constraint on length.

Theorem 5.11. If any exponent ai is odd in the range 1 6 i 6 k, then

TkSqa1Sqa2 · · · Sqak = 0.

Recalling the definition of the vector subspaces V[k] of A in the previous
section, we now see how the process of formal duplication of exponents can be
made to work in the Steenrod algebra.
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Theorem 5.12. The composition

δk = Tkγ−1

of formal duplication and pre-multiplication by Tk is a well-defined linear map

δk:V[k]→V[k].

Furthermore, δk is injective.

The proof that δk is well defined follows from the previous two theorems by
observing that Tk kills the error terms in the process of formal duplication of
exponents. Injectivity is a consequence of the fact that δk preserves the admissible
basis. We refer to the maps δk as the ‘strapping process’. Starting with the relation
Sq1Sq1 = 0 and strapping iteratively by δ2 produces certain relations of the form
Sq2m−1Sqm = 0 for arbitrarily large m. We have already observed that these relations
are enough to generate all relations by stripping.

One consequence of Theorem 5.12 is that any relation in the Steenrod algebra
can be converted into an equivalent relation involving only odd exponents by the
application of δk for k large enough. It is a moot point, however, whether these
considerations can help in solving some of the hard questions about nilpotence
heights. The papers of Monks [139] and Li [116] go further into this matter
and produce more refined duplication formulae. The general idea is to combine
duplication and stripping in suitable ways. For example, we note from the Adem
relations that the set of strings of Steenrod squares, with all exponents odd, forms a
subalgebra of the Steenrod algebra, which in Monks [139] is called O. Furthermore,
the formal length of a non-zero string of odd squares remains constant under the
re-write rules of the Adem relations. This allows us to define a map

λ:O → O

by the prescription ‘double the exponent and subtract 1’:

λ(Sqa1Sqa2 · · · Sqak ) = Sq2a1−1Sq2a2−1 · · · Sq2ak−1.

This map can alternatively be described as the composite of three maps, namely
formal duplication γ−1, followed by pre-multiplication with Tk , followed by stripping
with ξ2

k . On a Milnor basis element Sq(r1, r2, . . . , rk), the effect of λ is to produce
Sq(2r1 + 1, 2r2 + 1, . . . , 2rk−1 + 1, 2rk − 1) as explained in Monks [139] (note that the
−1 in the end position comes from stripping by ξ2

k ). The algebra O is generated by
Milnor elements with odd entries. Clearly, λ is formally multiplicative and therefore
actually multiplicative as map on O. It is also a monomorphism, because it sends
distinct admissibles to distinct admissibles. Monks [139] concludes that Sqk and
Sq2k−1 have the same nilpotence height when k is odd. More generally, we have the
following result.

Theorem 5.13. For a sequence a1, a2, . . . , ak of odd numbers, the monomials

Sqa1Sqa2 · · · Sqak , Sq2a1−1Sq2a2−1 · · · Sq2ak−1

have the same nilpotence height. A similar statement applies to Sq(r1, r2, . . . , rk) and
Sq(2r1 + 1, 2r2 + 1, . . . , 2rk−1 + 1, 2rk − 1).
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5.3 Problems.

Problem 5.14. Can the Steenrod algebra be developed from the basic relations

Sq2k−1Sq2k−1

= 0

by incorporating the stripping process as part of the structure?

Problem 5.15. Can the Steenrod algebra be developed from the basic relation

Sq1Sq1 = 0

by incorporating the stripping and strapping processes as part of the structure?

Problem 5.16. How can analogues of the stripping and strapping processes be
developed in the differential operator algebra D and modulo p reductions?

Problem 5.17. Working in the symmetric function algebra, can the stripping
technique be used to elucidate any aspects of the combinatorics of Young diagrams
and the representations of symmetric groups, for example the theory of p-hooks and
the Littlewood–Richardson rule?

Problem 5.18. How can the stripping technique and the Z-basis be exploited
to relate the kernel of right multiplication in the Steenrod algebra by Sq2n and the
left ideal generated by Sq2n+1−1?

6. Iteration theory and nilpotence

The purpose of this section is to draw a parallel between some of the elementary
aspects of the study of iteration theory of analytic functions in the plane and the
global method of producing relations in the Steenrod algebra by the use of formal
power series. The comparison is purely analogical. At present we cannot claim any
serious interconnections between the two areas. We shall then contrast the global
procedures with local procedures for tackling nilpotence results using the stripping
technique.

6.1 Iteration of power series. It is clear from Theorem 2.17 and Example 3.4
that composites and functional inverses of quadratic polynomials of the form z+ tz2

have a role to play in finding composites and conjugates of Steenrod squares. From
the point of view of complex dynamics [22], the three quadratic polynomials

z + tz2, z + z2, z2 + 1/4,

for t 6= 0, are equivalent because they are conjugate via Möbius transformations, and
this implies, for example, that the intrinsic geometry of their Julia sets is the same.
In particular, the parameter t can be taken equal to 1. In discussing Julia sets and
the Mandelbrot set associated with the iteration theory of quadratic polynomials,
it is customary to take the quadratic polynomial in standard form z2 + c, for a
complex parameter c, which can always be achieved by Möbius conjugation. For
our purposes, however, it is more convenient to take the form z+ tz2 for a quadratic
polynomial, and more generally

t0z + t1z
2 + · · ·+ tnz

n+1 + · · ·
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for a power series, where the origin is then a fixed point and t0 is a dynamic
invariant, the derivative at the fixed point, whose modulus measures whether the
fixed point is attracting (|t0| < 1), repelling (|t0| > 1) or indifferent (|t0| = 1). We
shall restrict attention to the case t0 = 1. The set of all formal power series

f(z) = z + t1z
2 + · · ·+ tnz

n+1 + · · ·

forms a group under composition (formal substitution). The product and inverse
are expressed in Theorem 2.17 by the convolution product t ∗ s and conjugate t̂ of
formal sequences t, s.

Given any sequence f = (f0, f1, f2, . . .) of set functions fi: C → C, the bound
set B(f ) is defined to be the set of complex numbers z such that the sequence
(f0(z), f1(z), f2(z), . . .) is bounded; in other words,

B(f ) = {z ∈ C : sup
n
|fn(z)| < ∞}.

For example, if f(z) is a polynomial and the sequence is defined recursively by
iteration,

f0(z) = z, f1(z) = f(z),

fn(z) = f(fn−1(z)),

then the bound set is called the filled-in Julia set, B(f ) = K(f), of the polynomial f(z).
The boundary, in the sense of point set topology, is the actual Julia set J(f) = ∂K(f)
(this is not a valid definition for arbitrary analytic functions). If the sequence fn is
defined recursively by

f0(z) = z, f1(z) = z + z2,

fn(z) = z + (fn−1(z))2

(which is not an iteration sequence), then the corresponding bound set is called the
Mandelbrot set, B(f ) = M. The parameter c lies in M if and only if the Julia set of
z2 + c is connected; otherwise, the Julia set is a Cantor set. The picture of M is very
familiar [154]. It is a compact connected subset of the plane whose intersection with
the real axis is the interval [−2, 1/4]. For example, the point c = 1/4 corresponds to
the quadratic polynomial z + z2, whose Julia set is therefore connected. Although
the quadratic polynomials z + z2 and z + tz2 are equivalent, for t 6= 0, as far as
dynamics is concerned, there is a good reason for retaining the parameter t in the
study of formal iteration theory. Indeed, we can consider the quadratic polynomials
qn(z) = z + tnz

2, for n = 1, 2, . . . , and form the sequence

p0(z) = z, p1(z) = q1(z) = z + t1z
2,

pn(z) = qn(pn−1(z)).

The actual iteration sequence of z + z2 is obtained by putting all ti equal to 1. For
a selection of values of ti near to 1, the bound set B(p) of this sequence provides
a deformation of the filled-in Julia set of z + z2. It is interesting to study the
geometry of B(p) in the spirit of complex dynamics [32]. Of course, the construction
of iterated composition may be made in the formal sense on any sequence of
formal sequences t1, t2, . . . , tn, . . . . The result is expressed by the sequence of iterated
convolution products t1 ∗ t2 ∗ · · · ∗ tn. In particular, the case tn = (tn, 0, . . .), where all
terms of the formal sequence are zero except the first, corresponds to the quadratic
case. For this particular choice we have the following formulae.
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Example 6.1.

t1 ∗ t2 = (t1 + t2, 2t1t2, t1t
2
2),

t1 ∗ t2 ∗ t3 = (t1 + t2 + t3, 2(t1t2 + t1t3 + t2t3), t21t2 + t21t3 + t22t3 + 6t1t2t3,

6t21t2t3 + 4t1t
2
2t3, 6t

2
1t

2
2t3 + 2t31t2t3, 4t

3
1t

3
2t3, t

4
1t

2
2t3).

The modulo 2 reductions of these examples are

(t1 + t2, 0, t1t
2), (t1 + t2 + t3, 0, t

2
1t2 + t21t3 + t22t3, 0, 0, 0, t

4
1t

2
2t3),

and it follows by induction on n that all terms in the modulo 2 reduction of
u = t1 ∗ t2 ∗ · · · ∗ tn vanish except in positions 2k − 1, where the term u2k−1 is
the weighted elementary symmetric function [116], obtained from the elementary
symmetric function ∑

i1<i2<...<ik

ti1ti2 · · · tik ,

in n > k variables ti, written in increasing order of subscript, by replacing ti with t2
k−i

i .

Lemma 6.2. The modulo 2 reduction of u2k−1 is∑
i1<i2<...<ik

t2
k−1

i1
t2

k−2

i2
· · · tik .

From Theorem 2.17, we then have the global product formula in the Steenrod
algebra [116]:(∑

i>0

ti1Sq
i

)
· · ·
(∑

i>0

tinSq
i

)
= exp∨(t1D1) ◦ exp∨(t2D1) ◦ · · · ◦ exp∨(tnD1)

= exp∨(u1D1 + u3D3 + · · ·+ u2n−1D2n−1)

= exp∨(u1D1) ∨ · · · ∨ exp∨(u2n−1D2n−1)

=

(∑
i>0

ui1D(1i)

)
∨ · · · ∨

(∑
i>0

ui2n−1D(2n − 1)i

)
.

In principle, it should be possible to pick off the coefficient of tr11 · · · trnn in the
expansion of the right-hand side of this formula, and thereby obtain an expression
for the iterated product

Sqr1Sqr2 · · · Sqrn

in terms of the Milnor basis elements D(1i13i2 · · · (2n − 1)in ). In practice, it seems a
difficult task to find the parity of the relevant coefficients in general. For example,
knowledge of the parity of the coefficient of (t1t2 · · · tn)k for all n and k would settle
the nilpotence question for the Steenrod squaring operations Sqk . In [116], Li goes
some way to solving this problem in special cases, and recaptures results in Monks’
work [143] on nilpotence problems for odd exponents.

In some sense, therefore, nilpotence in the Steenrod algebra has to do with the
iterated composition of deformations z + tz2 of the quadratic polynomial z + z2

corresponding to the point 1/4 in the Mandelbrot set. In passing from power series
to differential operators, we make the umbral substitution of Dk for zk+1. It would
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be interesting to know if there could be any significant interplay between complex
dynamics and the Steenrod algebra.

6.2 Nilpotence in the Steenrod algebra. For certain families of elements in the
Steenrod algebra, the nilpotence height is known [116, 139, 209]. For example, the
Wilson conjecture has been proved.

Theorem 6.3 (Walker and Wood [209]). The nilpotence height of Sq2k is 2k+ 2.

Previously, it was shown by Don Davis [55, 57] that (Sq2k )2k+1 6= 0. This can
be seen directly by evaluation on a monomial in two variables in the polynomial
algebra F2[x, y].

Theorem 6.4 (Walker and Wood [212]).

(Sq2n )2n+1(xyk2
n+1−1) =

[
(Sq2n−1

)2n−1(xy(k+1)2n−1)
]2

for k > 1.

The odd prime analogue of Theorem 6.3 is also proved in the same paper.

Theorem 6.5 (Walker and Wood [212]). The nilpotence height of Ppn is p(n+1).

Monks has generalised Theorem 6.4 to the P s
t family for the prime 2 in [139],

and Karaca has extended this to the odd prime case.

Theorem 6.6 (Karaca [94]). In the modulo p Steenrod algebra, the nilpotence
height of P s

t is

p[s/t] + p.

The work of Monks contains further information on nilpotence heights of squares
with odd exponent and Milnor basis elements. A sample result is quoted here.

Theorem 6.7 (Monks [139]). The height of Sq2n−1 is n+ 1.

One way to prove this result is to notice that (Sq2n−1)n+1 lies in the Hopf
subalgebra A(n − 1) and can therefore be reduced to Y-basis form as in Theorem
4.12. In such a reduction, the number of odd squares in any monomial does not
decrease [220]. But any Y-basis element for A(n− 1) has at most n odd squares in
it, hence the result. The argument extends to show that any monomial of Steenrod
squares in A(n − 1) containing more than n odd factors is zero. In particular,
the nilpotence height of Sq2k+1 does not exceed the smallest number r for which
2k+ 1 < 2r − 1. In general, an upper bound for the nilpotence height of an element
can be given in terms of the smallest finite subalgebra containing the element, but
this is not easy to determine for an arbitrary string of Steenrod squares.

It would be nice to exploit stripping techniques to find the heights of all the
atomic squares Sq2m(2k−1). The cases m = 0 and k = 0 are two special cases in the
spectrum of atomic numbers of the form 2m(2k−1) for which results are known, but
the methods of proof are very different. It is not clear, for example, how one should
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tackle the case of exponent 2(2k − 1). The following table indicates the heights of
the first few atomic squares arranged in the same pattern as the P s

t in the table of

Example 4.7. The entry at position (k, m) is the height of Sq2m(2k−1).

4 10

3 8 8

2 6 7 8

1 4 4 5 6

0 2 3 4 5 6

1 2 3 4 5

There is another direction in which nilpotence questions can be generalised. Let
Ln denote the left ideal in the Steenrod algebra generated by A(n)+. For example,
L0 is the set of elements in the Steenrod algebra which can be written in the form
ESq1 for some element E inA. Define Lr to be 0 for r 6 −1. Experimental evidence
suggests the following ideal conjecture.

Conjecture 6.8. (Sq2n )2k ∈ Ln−k .

The proof of the conjecture is straightforward for small values of k and all
n, but gets progressively more difficult as k increases. At one time, the intention
was to prove the height conjecture Theorem 6.3 by induction through the ideal
conjecture, but now we are in the curious position of knowing the two ends of the
ideal conjecture but nothing in between!

A criterion for belonging to Ln is easily established by the stripping technique.

Lemma 6.9. An element E in the Steenrod algebra belongs to the ideal Ln if and
only if it is right annihilated by the top element of A(n).

The ideal conjecture states, in particular, the following result.

Conjecture 6.10. (Sq2n )2nSq1 = 0.

The truth of this statement leads to the nilpotence result Theorem 6.3 by stripping
by the vector (1) and pre-multiplying by (Sq2n )2. It would be interesting to prove the
converse.

6.3 Annihilator ideals. The non-vanishing of (Sq2k )2k+1 cannot be detected on
polynomials in one variable because, for any positively graded element E in the
Steenrod algebra, E2 annihilates all polynomials in a single variable. An argument
in [73], prior to the general proof, had shown directly that (Sq2k )2k+2 vanishes on
polynomials in two variables. This raises the general question of how few variables
are needed to detect a non-zero element in the Steenrod algebra. To be more precise,
consider the two-sided ideal K(n) of all elements of the Steenrod algebra which
annihilate F2[x1, . . . , xn]. How do we describe the quotient A/K(n)? This problem
is addressed in [74].

The problem can also be formulated in the divided differential operator algebra.
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We recall that D preserves the polynomial algebra W(n). Although D has no
nilpotent elements, there are elements of D which annihilate all polynomials in a
fixed number of variables. For example, D1∨D3−D2∨D2 annihilates all polynomials
in one variable. We can ask for a description of the two-sided ideal in D which
annihilates W(n). Even the case n = 1 is interesting. Here, the operator Dk boils
down to

xk+1 d

dx
.

The wedge product is given by

Dk ∨ Dl = xk+l+2 d
2

dx2
.

In the modulo 2 case, we note from Theorem 6.4 that (Sq2n )2n+1 is non-zero on
W(2) ⊗ F2, and this may be viewed as a measure of the depth of the nilpotence
result. We refer to [73, 74] for recent results in this area.

6.4 Problems.

Problem 6.11. Find the heights of all the atomic squares Sq2m(2k−1).

Problem 6.12. Prove the ideal conjecture (Sq2n )2k ∈ Ln−k , in particular the case
k = n.

Problem 6.13. Given a non-zero element E in the Steenrod algebra, what is the
smallest number, n, of variables such that E is detected by its action on F2[x1, . . . , xn]?
For this value of n, is there a detecting monomial of degree equal to the excess of E?

Problem 6.14. Investigate the quotients of subalgebras of D by the annihilators
of all polynomials in a fixed number of variables, in the integral and modular cases.

Problem 6.15. Find some significant connection between complex dynamics of
quadratic functions and the Steenrod algebra.

7. The hit problem and invariant theory

The expression ‘hit problem’ is used here to refer to certain special cases of
a general problem in algebra which has many applications to topology. Let M =⊕

i>0 M
i be a graded left module over a graded ring R =

⊕
i>0 R

i. We wish to find
a criterion for an element f ∈Mn, n > 0, to be expressible in the form

f =
∑

16i6k

rifi,

where ri ∈ R, and the fi ∈ M have strictly lower grading than that of f. Such
elements form a submodule H = R+M, and have become known as ‘hit’ elements.
If M = R+ is viewed as a left module over R, then the problem is to find the
decomposables in R. For example, all Steenrod squares are decomposable except for
the Sq2n . This fact itself has had interesting applications in the early applications
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of the Steenrod algebra in topology, as we observed in the introductory section. A
closely related problem is to find an additive basis of the quotient

C = M/H

of M by the hit elements H . Representatives of such a basis then furnish a minimal
generating set for M as an R-module. Finding minimal generating sets for modules
is a recurrent problem in the calculation of the cohomology of algebras by minimal
resolution techniques, as, for example, in the Adams spectral sequence [145]. We
shall use the letter C to refer generically to the quotient M/H for the hit problem
associated with an action of a ring on a module M. In the first instance, C is a
graded abelian group. It is a vector space if R is an algebra over a field.

7.1 The equivariant version for differential operators. To add more structure to
the hit problem, we consider an equivariant version in which a group G acts on the
right of each Mi compatibly with the left action of R. In other words, each Mi is a
representation of G, and an element r ∈ Rn induces a G-map Mi → Mi+n. The hit
problem is then equivariant. An element f ∈ M is hit if and only if fγ is hit for
γ ∈ G. Furthermore, C is a representation of G, which is of some interest in group
theory. The following well-known example is taken from classical invariant theory
[183].

Example 7.1. Let M = W(n) ⊗ Q = Q[x1, . . . , xn] be the polynomial algebra
over the rationals in n variables, graded by degree as usual. Let G = Σn be the
symmetric group acting on the right of a polynomial f(x1, . . . , xn) by

(fγ)(x1, . . . , xn) = (xγ(1), . . . , xγ(n)),

where γ ∈ Σn. Take for R the ring of symmetric polynomials in M acting on M by
the usual multiplication of polynomials. The R-action commutes with the G-action.
The quotient C in this case is known [183] to be isomorphic as a G-space to the
regular representation of Σn. For example, in the case n = 3, the equivalence classes
of the monomials

1, x1, x2, x2
1, x2

2, x2
1x2

generate C . From elementary representation theory, it is then known that the
three irreducible representations of Σ3 must appear in C with multiplicity equal to
their dimension. Indeed, the trivial representation appears once, generated by 1 in
grading 0. The sign representation appears once, generated by x2

1x2 in grading 3,
and the irreducible 2-dimensional representation of Σ3 appears twice, generated by
x1, x2 in grading 1 and by x2

1, x
2
2 in grading 2.

In this example, every homogeneous polynomial f of degree at least 4 is hit; in
other words, it can be written in the form

f = r1 + r2x1 + r3x2 + r4x
2
1 + r5x

2
2 + r6x

2
1x2,

where the ri are symmetric polynomials of positive degree. To verify this statement,
it is enough to check that every monomial f of degree 4 is hit, because the product
of a hit element by any polynomial is also hit. If f is divisible by x1x2x3, then it is
hit. Furthermore, x3

i is hit because xi satisfies the equation

(X − x1)(X − x2)(X − x3) = 0.
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By equivariance, it remains to verify that the monomial x2
1x

2
2 is hit. The formula

x2
1x

2
2 = x1x2(x1x2 + x1x3 + x2x3)− x1x2x3(x1 + x2)

shows that x2
1x

2
2 is hit, and an actual representation in terms of the basis is given by

x2
1x

2
2 = −e2

2 − e2x
2
1 − e2x

2
2 + (e1e2 − e3)x1 + (e1e2 − e3)x2,

where the ei are the elementary symmetric functions.
The general case of n variables is worked out by Artin in [18]. The equivalence

classes of the n! monomials xi11 x
i2
2 · · ·x

in−1

n−1, where 0 6 ir 6 r, form the Artin basis of
the regular representation C of the symmetric group. All homogeneous polynomials
of degree greater than n(n − 1)/2 are hit. Of course, this is just one example of
the fundamental result in classical invariant theory which states that the set of
co-invariants C is a finite dimensional vector space over the rationals [183].

The success in answering the hit problem in the above example is partly due to
commutativity of the ring of operators and the fact that the product of a hit element
by a polynomial is also hit. This will not be true in general. In the next example,
M and G remain the same, but the ring of operators is changed to R = D⊗Q, the
differential operator algebra over the rationals.

Example 7.2. Recall that D⊗Q is generated under composition by the opera-
tors

Dk =
∑
i>1

xk+1
i

∂

∂xi
,

and D1, D2 form a minimal algebraic generating set. By the symmetry of the Dk , it
is evident that the action of D⊗Q on M = W(n)⊗Q commutes with the action of
the symmetric group. The hit problem in this case reduces to the question of finding
criteria on a polynomial g such that the differential equation

D1f1 + D2f2 = g

can be solved for polynomials f1, f2.

In the case n = 1, the equation Dk(x) = xk shows immediately that all powers of x
are hit except x itself. In the two-variable case, it can be shown that 1, x1, x2, x1x2, x

2
1x2

form a basis of the quotient C . In particular, the quotient is finite dimensional, as in
Example 7.1. Furthermore, the differential equation D1f1 + D2f2 = g can be solved
for any homogeneous polynomial g of degree at least 4. Another similarity with
Example 7.1 is that the monomials x1x2, x2

1x2 generate the regular representation of
Σ2 in C . The monomial x1x2 generates the trivial representation, and the equation
D1(x1x2) = x2

1x2 +x1x
2
2 shows that x2

1x2 generates the sign representation of Σ2 in C .
In the case of three variables, n = 3, it is shown in [211] that the equivalence

classes of the monomials

1, x1, x2, x3, x1x2, x1x3, x2x3, x2
1x2, x2

1x3, x2
2x3,

x1x2x3, x1x
2
2x3, x1x2x

2
3, x1x

2
2x

2
3, x1x2x

3
3, x1x

2
2x

3
3

generate C . The regular representation is generated by those monomials in the list
which are divisible by x1x2x3. This time, the differential equation D1f1 + D2f2 = g

can be solved if the homogeneous polynomial g has degree at least 7. In the general
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case of n variables, it is known that C is finite dimensional. However, the following
conjecture, suggested by the above particular cases, seems harder to prove.

Conjecture 7.3. In the usual action of the differential operator algebra D⊗Q on
the polynomial algebra W(n)⊗Q = Q[x1, . . . , xn], the quotient C of W(n)⊗Q by the hit
elements contains the regular representation of the symmetric group Σn generated by
the equivalence classes of monomials divisible by the product of the variables x1 · · ·xn.
In particular, the highest grading of C is d = n(n + 1)/2 and, in this grading, Cd
is the 1-dimensional sign representation of Σn, generated by the equivalence class of
x1x

2
2 · · ·xnn. Furthermore, the equivalence classes of monomials of the form

xi11 x
i2
2 · · ·x

in
n ,

where 1 6 ir 6 r, form a basis of the part of C divisible by x1 · · ·xn.

This conjecture implies, in particular, that every homogeneous polynomial f of
degree greater than n(n+ 1)/2 is hit; in other words, the differential equation

D1f1 + D2f2 = g

can be solved for any g in these degrees. There is clearly a close connection
between the representation theory of the symmetric group and the hit problem for
the differential operator algebra. The decomposition of W ⊗ Q by a complete set
of orthogonal idempotents associated with the irreducible representations of Σn is
preserved by the action of D⊗Q. The piece of W⊗Q corresponding to the trivial
representation is the subspace of symmetric polynomials.

Theorem 7.4. Any symmetric polynomial divisible by x1 · · ·xn and of degree
greater than n is a hit element by a differential operator in D.

This follows by restricting the algebraic Thom map to n variables. The behaviour
of the differential operator algebra on the polynomials corresponding to the other
representations of the symmetric group would seem to be more intricate.

To account for polynomials not divisible by the product of the variables, it is
useful to note that the action of the differential operator algebra D on polynomials
commutes with the action of the larger semigroup Γn of functions

γ: {0, 1, . . . , n} → {0, 1, . . . , n}

satisfying the condition γ(0) = 0. The product in this semigroup is composition of
functions, and the symmetric group Σn is a subgroup of Γn in a natural way. The
right action of Γn on polynomials is defined as for the symmetric group, with the
understanding that x0 = 0. This allows variables to be equated to each other or to
be put to zero. We refer to [211] for work on the rational hit problem for differential
operators with this extended semigroup of symmetries.

Conjecture 7.3 can be re-cast in its dual form, in terms of the contragredient
down operators introduced in Subsection 2.3.

Conjecture 7.5. The intersection of the kernels of the down operators D∗1 and
D∗2 on the divided polynomial algebra W∗(n) is zero in degrees above n(n+ 1)/2.

A useful lemma, referred to as the ‘χ-trick’ [152, 218, 219], that facilitates the
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proof of many results on hit problems is formulated here in terms of the differential
operator algebra D, acting in the usual way on polynomials.

Theorem 7.6. Let E be an element in D, with composition conjugate Ê = χ(E).
Let u, v ∈W be two polynomials. Then vÊ(u)− uE(v) is hit.

By linearity, it is sufficient to prove the result for E = D(P ), where P is a multiset.
The proof relies on Lemmas 2.18 and 2.19. We start with the formula∑

K∪L=M

D(K)(u)D(L)(v) = D(M)(uv),

and replace v by χ(D(N))(v), where N is a multiset, to obtain∑
K∪L=M

D(K)(u)D(L)(χ(D(N))(v)) = D(M)(uχ(D(N))(v)).

We now sum over multisets M,N such that M ∪N = P , to obtain∑
K∪L∪N=P

D(K)(u)D(L)(χ(D(N))(v)) =
∑

M∪N=P

D(M)(uχ(D(N))(v)).

On the right-hand side, all terms are hit elements, except possibly uχ(D(P ))(v), arising
from the empty multiset M. In the light of the formula∑

K∪L=M

D(K) ◦ χ(D(L)) = 0,

all terms on the left-hand side also vanish, except D(P )(u)(v), arising from the case
where L,N are both empty. This completes the proof of Theorem 7.6.

A typical application of the χ-trick gives a criterion for a hit element in terms of
excess.

Theorem 7.7. Let E be an element in D in positive grading such that the excess of
χ(E) exceeds the degree of the homogeneous polynomial u. Then, for any homogeneous
polynomial v of positive degree, the element uE(v) is hit.

The proof follows immediately from Theorem 7.6 and the definition of excess in
Lemma 4.1.

7.2 Modular hit problems. The hit problem for the differential operator algebra
D acting on W can, in principle, be posed over the integers, but it would then
seem to be a very difficult question to answer in more than a few variables. On the
other hand, modular reductions of the integral question lead back to the original
problem, in the context of the Steenrod algebra, posed by Frank Peterson [158].
Several reasons for studying the hit problem are listed in [219]. These include Frank
Peterson’s work on Stiefel–Whitney classes and bordism of manifolds [158, 159],
Bill Singer’s work [181] on covariants of the general linear group GL(n,F2) with
applications to the Adams spectral sequence, and the relationship between the
modular representation theory of the general linear groups over finite fields with
the stable splitting of the classifying spaces B(Z/p)n and B(Tn) [79, 136, 216]. In
the case of the Steenrod algebra, the problem is to find criteria for a homogeneous



500 r. m. w. wood

polynomial f in Wd(n)⊗ F2 to be of the form

f =
∑
i>0

Sqifi,

for some polynomials fi of degree d− i. Recall that the Steenrod squares are given in
terms of differential operators by SQr = D(1r). The Steenrod algebra is a subalgebra
of D ⊗ F2, and a prior question, therefore, is to ask for the solution of the hit
problem for the ring of operators D ⊗ F2 itself. For two variables, the answer has
been worked out by Walker and Xiao. We continue to use the notation C generically
for the quotient of the module by the hit elements, with the usual embellishments
C(n), Cd(n) when referring to the polynomial algebra in n variables and the degree d.

Example 7.8. For the action of D⊗ F2 on W(2)⊗ F2, a basis for C(2) is given
by the equivalence classes of the monomials 1, x1, x2, x

2
1x2, x

2n−1
1 x2 for n > 1.

Unlike the rational case, the quotient C in the modular case is no longer finite
dimensional. It is interesting to contrast the situation for the differential operator
algebra with the Steenrod algebra. Already, in the one-variable case, under the
action of the Steenrod algebra, the elements x2n−1 are not hit, and form a vector
space basis for C(1). In the two-variable case, the original work of Peterson [158]
gives the following result.

Example 7.9. For the action of A on W(2) ⊗ F2, a basis for C(2) is given by
the equivalence classes of the monomials

x2k−1
1 x2r−1

2

for k, r > 0, and

x2a−1
1 x

2a−1−1+2a(2b−1)
2

for a, b > 1.

In the general n-variable problem, there will be fewer elements in a basis of
C(n) for the action of D⊗F2 than for action of the Steenrod algebra. In particular,
‘spikes’, namely monomials of the form x2λ1−1

1 x2λ2−1
2 · · ·x2λn−1

n , are never hit under
the action of the Steenrod algebra, and must be included in a basis of C(n), but
spikes can be hit under the action of the differential operator algebra. It is not clear
what is the exact relationship between the hit problems for the two algebras A and
D⊗ F2 in the general n-variable case.

7.3 The hit problem for the Steenrod algebra. We shall confine our attention
in this subsection to some specific results in the case of the hit problem for the
Steenrod algebra. It can be seen directly that matrix substitution, in a given number
of variables over the field of two elements, commutes with the action of the modulo 2
reduction of the differential operator

D2k−1 =
∑
i>1

x2k

i

∂

∂xi
,

and also with wedge products of operators of this type. In other words, the action
of the Steenrod algebra (on the left) of W(n) ⊗ F2 admits the full semigroup
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M(n,F2) of all n× n matrices over F2 as symmetries acting on the right. This is the
modular analogue of the semigroup Γn of symmetries for the action of the differential
operator algebra in the integral case. For the Steenrod algebra, the quotients Cd(n) are
representations of M(n,F2) over the natural field F2 [217]. The equivariant version
of the hit problem asks for a description of C(n) as an M(n,F2)-module. Information
in the three-variable case can be found in [42, 50, 91], and progress on the general
problem can be traced through the papers [15, 26, 50, 178, 179, 182, 218, 219].
Problems still exist in four or more variables. The following results illustrate some
of the progress.

Recall the numerical function µ(d) as in Definition 4.4, the least number k for
which it is possible to write d =

∑
16j6k(2

λj − 1), where λj > 1. Peterson [158] made
the following conjecture, subsequently proved by the χ-trick.

Theorem 7.10 (Wood [218]). If µ(d) > n, then every element of Wd(n) ⊗ F2 is
hit.

Phrased another way, the theorem states that the dimension of Cd(n) is zero
unless µ(d) 6 n. An odd prime analogue appears in [173].

A recent advance has been Judith Silverman’s proof of the Singer conjecture.

Theorem 7.11 (Silverman [178]). Let u and v be polynomials of degrees e and f,
respectively, and suppose e < (2k+1 − 1)µ(f) for some k > 0. Then uv2k+1

is hit.

The proof uses the χ-trick and Theorem 4.6.
In [42], an upper bound is proposed for the dimension of Cd(n) for the prime 2

case in terms of a certain function of n. This has been generalised to the odd prime
case by Crossley [51]. It remains a problem, however, to find the least upper bound.
Kameko [91] conjectures in the prime 2 case that

dimCd(n) 6
n∏
i=1

(2i − 1),

and Crossley conjectures in the odd prime case that the upper bound is

n∏
i=1

(2pi−1 − 1).

In the prime 2 case, Kameko’s conjecture is true for n 6 3.
Among the most useful devices for handling the hit problem for the action of

the Steenrod algebra on polynomials are the right and left lexicographic orderings
of the weight vectors of monomials xe1

1 · · ·xenn . Let e =
∑

i>0 αi(e)2
i denote the binary

expansion of e, where αi(e) is 0 or 1. Then the weight vector of a monomial is
defined by

w(xe1

1 · · ·x
en
n ) = (w0, w1, . . . , wk, . . .),

where wk =
∑

16i6n αk(ei). The weight vectors can then be ordered left or right
lexicographically. This gives rise to two partial orderings of monomials. Both are
especially well adapted to the right action of the full matrix semigroup and the
left action of the Steenrod algebra. They fit in well with Young diagrams and
representation theory of the symmetric groups and general linear groups. The
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following result is a sample application of these orderings that was made in [42].
Let α(e) =

∑
i>0 αi(e) denote the number of digits 1 in the binary expansion of e.

Theorem 7.12 (Carlisle and Wood [42]). For a fixed n, the A-module W(n)⊗F2

is generated by monomials xe1

1 · · ·xenn where, up to permutation of the variables,
α(ei + 1) 6 i.

The set of generators exhibited by this result is not minimal, in general. Further
information on the hit problem, using the homological approach, can be found in
[15, 26, 50, 166].

7.4 Modular representations and splitting theory. From a topological point of
view, W(n) ⊗ F2 is the cohomology of the product X of n copies of infinite real
projective space, otherwise known as the classifying space B(Z/2)n of the group
(Z/2)n. The suspension of X decomposes, up to homotopy type, into the one-point
union of certain spaces Yρ, which are parametrised by the irreducible modular
representations ρ of the semigroup M(n,F2) [39, 79, 135, 136, 216, 217]. The space
Yρ occurs d(ρ) times in the one-point union, where d(ρ) is the dimension of ρ. There
are 2n distinct irreducible representations of M(n,F2) parametrised by the sequences
of non-negative integers

λ1 > λ2 > . . . > λn > 0,

subject to the constraints λi − λi+1 6 1 for 1 6 i < n and λn 6 1. Such a sequence is
called column 2-regular, and may be represented by a matrix in which position (i, j)
is occupied by a mark if 1 6 j 6 λi, and other positions are empty. This follows the
standard convention for the Young diagram of a partition

λ = (λ1, λ2, . . . , λn)

of the number |λ| = λ1 + λ2 + · · · + λn, as used in the representation theory of
symmetric groups [121].

The transposed matrix corresponds to the conjugate partition λ′ of |λ|, where λ′i
is the number of rows k such that λk > i. If λ is column 2-regular, then λ′ is strictly
decreasing. In [40], a partition with strictly decreasing parts is referred to simply as
2-regular.

The first value of the degree d for which a simple module ρ occurs as a
composition factor in Wd(n)⊗ F2 gives the connectivity of the corresponding piece
Yρ in the splitting of the suspension of X. For the prime 2, the ‘first occurrence
problem’ has been solved for all the simple modules.

Theorem 7.13 (Carlisle and Kuhn [40]). The simple M(n,F2)-module correspond-
ing to the column 2-regular partition λ occurs for the first time as a composition factor
in Wd(n)⊗ F2 when

d =
∑
j>1

λ′j2
j−1,

where λ′ is the conjugate partition of λ.

There are analogues for splitting the stable type of p-localisations of the product
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of n copies of infinite complex projective space, otherwise known as the classifying
space BTn of the n-torus [39, 67, 79, 135, 136, 216, 217].

Little is known about the odd prime analogue of the first occurrence problem,
although a few cases are resolved [40, 41, 62, 216].

The first occurrence of a simple module as a submodule is also an interesting
question, especially in conjunction with the problem of linking it to the first occur-
rence as composition factor via Steenrod operations. Again, for the prime 2, the first
occurrence problem of an irreducible as a submodule has been solved by Schwartz
[170] and Tri [204, 203]. Information on the general problem in the context of Weyl
modules can be found in [61].

Theorem 7.14 (Schwartz [170]). The first occurrence of the simpleM(n,F2)-module
corresponding to the column 2-regular partition λ as a submodule in Wd(n) ⊗ F2 is
for

d =
∑
j>1

λj2
j−1.

The first occurrence question is just one aspect of the general problem of
describing the structure of the cohomology of the pieces Yρ as modules over the
Steenrod algebra. For each piece, there is a restricted hit problem. This modular
restricted hit problem is difficult to solve even in the case of the trivial representation.
Here, the submodule occurrences of the trivial representation in the polynomial
algebra can be identified with the ring of invariants of the general linear group
GL(n,F2). This is known classically as the Dickson algebra [58, 123, 205, 214], and
is a polynomial subring of W(n)⊗ F2 generated by the Dickson invariants.

The action of the Steenrod squares on the Dickson invariants and, more generally,
invariants of parabolic subgroups of general linear groups, is worked out in a number
of places [9, 81, 83, 99, 146, 193, 214], and global product formulae are produced
in [116]. The restricted hit problem for the Dickson algebra is solved for a small
number of variables in [72, 84, 87, 88], but the general problem appears difficult.
Hung conjectures that all elements in the positively graded Dickson algebra are hit
in W(n) if the number of variables is at least three [84, 83, 86, 85].

The relationship between the Steenrod algebraA and the full matrix semigroups
M(n,F2) is similar to the relationship between the differential operator algebra D
and the symmetric semigroups Γn. It would be interesting, therefore, to carry out a
parallel development of splitting theory, at least at the algebraic level, with respect to
the symmetric group and the differential operator algebra, posing hit problems and
restricted hit problems in the rational and modular cases. Over the rationals, Specht’s
original paper [185] deals with the occurrences of Σn modules in the polynomial
algebra. James and Kerber [90] treat the theory of modular Specht modules and
Weyl modules for the general linear groups. Information can be found in [69] for
the relationship between first occurrence problems and Lannes’ theory of unstable
modules over the Steenrod algebra [107, 108, 109, 112, 113].

We can ask for an analogue, for the differential operator algebra, of the Adams–
Gunawardena–Miller result [7] which states that all grade-preserving linear trans-
formations of the polynomial algebra W ⊗ F2, which commute with the action of
the Steenrod squares, are given by matrix substitution [217]. Finally, it is worth
noting that the ring of invariants, over the integers, of a finite permutation group is
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a module over D. It would be interesting to investigate this module structure in the
case of modular rings of invariants of cyclic groups [75]. We refer to Larry Smith’s
book [183] for general background on invariant theory, and his recent survey article
[184] for up to date information.

7.5 Problems.

Problem 7.15. Solve the hit problem for the differential operator algebra over
the rationals. In other words, find a criterion on the polynomial g for a solution of
the differential equation

SQ1f1 + SQ2f2 = g.

Prove that the Artin basis is a basis of the cokernel C .

Problem 7.16. Give a description of how the differential operator algebra acts
on the pieces of W(n) ⊗ Q split by a full set of idempotents of the symmetric
semigroup Γn.

Problem 7.17. Solve the hit problem for the modulo p reduction of the differ-
ential operator algebra, and investigate its relationship to modular representations
of the symmetric group.

Problem 7.18. Investigate the relationship between the hit problems for the
modulo 2 reduction of the differential operator algebra and the Steenrod algebra.

Problem 7.19. Prove Kameko’s conjecture and the odd prime analogue.

Problem 7.20. Solve the first occurrence problems for the irreducible modules
of general linear groups in the polynomial algebra at odd primes.

Problem 7.21. Solve the restricted hit problem for the Steenrod algebra acting
on Dickson invariants.

Problem 7.22. Find an analogue of the Adams–Gunawardena–Miller result for
the differential operator algebra in relation to the symmetric group.

Problem 7.23. Investigate the structure of modular rings of invariants of per-
mutation groups as modules over D.

8. The dual of A(n) and graph theory

In this section we show how various constructions in the dual of the finite
Hopf algebra A(n) can be interpreted graphically. Milnor [131] defines A∗(n) as
the quotient of the dual Steenrod algebra, generated additively by the equivalence
classes of the monomials ξi11 ξ

i2
2 · · · ξ

in+1

n+1, where 0 6 ij < 2n+2−j for 1 6 j 6 n+ 1. The
multiplication is as usual for polynomials, except that a product is zero when any
exponent exceeds the limited range; in other words,A∗(n) is a truncated polynomial
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algebra. It is a Hopf algebra under the coproduct and conjugation introduced in
Section 1:

ψ(ξk) =
∑

06i6k

ξ2i

k−i ⊗ ξi, χ(ξk) =
∑

06i6k−1

ξ2i

k−iχ(ξi).

Milnor solves the recursion formulae for conjugation to give

χ(ξk) =
∑
π

l(π)∏
i=1

ξ2σ(i)

π(i) ,

where π runs through ordered partitions of k, π(i) denotes the ith part of π, l(π) is
the length of π, and σ(i) denotes the sum of the first i− 1 parts of π [131].

Example 8.1. The ordered partitions of 3 are (3), (2, 1), (1, 2), (1, 1, 1). Hence

χ(ξ3) = ξ3 + ξ2ξ
4
1 + ξ1ξ

2
2 + ξ1ξ

2
1ξ

4
1 .

We see, therefore, that A(n)∗ is a connected finite graded Hopf algebra with
unique non-zero element ∆n = ξ2n+1−1

1 ξ2n−1
2 · · · ξn+1 in top grading tn = (n− 1)2n+2 +

n+ 5. The total dimension of A∗(n) is 2(n+1)(n+2)/2. A connected finite Hopf algebra
is a Poincaré algebra [125], which means, in particular, that for any element ξ of
A∗(n) in grading r, there is an element η in grading tn − r such that ξη = ∆n.

8.1 Graphical interpretation. We now explain a way of coding the truncated
polynomial algebra A∗(n) in terms of graphs. To describe the coding, we fix an n

and consider the complete graph ∆ on n + 1 vertices which we label 1, 2, . . . , 2n. A
subgraph in the present context will always include the full set of vertices, so that
effectively a subgraph is a subset of the edges of ∆. The edge joining 2i to 2j for i < j

is labelled with the element ξ2i

j−i of A∗(n). The following figure illustrates A∗(2).

1

2

4

8
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1
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By writing the exponents of the ξj in binary form, we see that the monomials

ξi11 ξ
i2
2 · · · ξ

in+1

n+1 of A∗(n) are in bijective correspondence with the subgraphs of ∆. For
example, in the above illustration, the set of edges labelled ξ1, ξ

2
1 , ξ

4
1 corresponds to

the monomial ξ7
1 (compare with the discussion of the stripping process in Subsection

5.1).
The following items illustrate a few elementary ways of interpreting graphical

statements algebraically.
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• The monomial ξs11 ξ
s2
2 · · · ξsnn is a subgraph of ξr11 ξ

r2
2 · · · ξrnn if and only if ri

dominates si for each i; in other words, the binomial coefficient
(
ri
si

)
is odd

(compare with Subsection 4.5). Hence the condition for a subgraph is that
the product

i=n∏
i=1

(
ri

si

)
is odd.
• The product of two subgraphs in A∗(n) is the symmetric difference of the

edge sets multiplied by the square of the intersection. In particular, the
product of two disjoint graphs is their union.
• The conjugate of ξn inA∗(n) is the sum of all circuit-free paths in ∆ starting

at vertex 1 and ending at vertex 2n.
• The coproduct of ξn in A∗(n) is the sum of tensors of all pairs of edges

which make length 2 paths from vertex 1 to vertex 2n (counting 1⊗ ξn and
ξn ⊗ 1 as degenerate length 2 paths).
• The identity of the algebra A∗(n) is the subgraph with no edges. The top

element ∆n of A∗(n) is identified with the complete graph ∆ itself. The
Poincaré dual of a subgraph is the graph of complementary edges.
• The exponents of a monomial corresponding to a subgraph are obtained

from the adjacency matrix of the graph by reading subdiagonals from
bottom to top as binary expansions.

Example 8.2. The adjacency matrix of the graph ξ5
1ξ

2
2 in A∗(2) is

0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0

 .

The subdiagonals read 1012 = 5, 102 = 2 and 0 = 0, giving the exponents of the
monomial as required.

A similar graph-theoretic interpretation can be made of the Hopf algebra A(n)
itself by associating the element P s

t with the edge joining 2s to 2s+t. Under the wedge
product,A(n) is an exterior algebra. The product of two subgraphs this time is their
union if the graphs are distinct, and zero if they intersect. The coproduct is the same
as before, and the remarks on Poincaré duality still apply.

The composition product of two graphs labelled by the elements P s
t is more

difficult to interpret. The same applies if we use the elements Sq2s(2t−1) in place of
P s
t as the labels.

The action of the Steenrod algebra on polynomials also has a graph-theoretic
interpretation. This time we label the vertices of ∆ by integers 0, 1, . . . , n, and the
edge joining i to j, for i < j, by x2i

j−i. From the Cartan formula in Theorem 1.1, it
follows that the total Steenrod squaring operation

Sq = Sq0 + Sq1 + · · ·+ Sqn + · · ·

is given on a monomial by

Sq(xi11 x
i2
2 · · ·xinn )

xi11 x
i1
2 · · ·x

in
n

= (1 + x1)i1 (1 + x2)i2 · · · (1 + xn)
in .
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This expansion gives a list of all subgraphs of xi11 x
i2
2 · · ·xinn .

8.2 Problems.

Problem 8.3. Compile a dictionary translating the language of graph theory
into the language of the truncated polynomial algebra A∗(n).

Problem 8.4. How are trees identified in A∗(n)?

Problem 8.5. What does it mean algebraically for a monomial ξi11 ξ
i2
2 · · · ξ

in+1

n+1 in
A∗(n) to be connected when viewed as a graph?

Problem 8.6. Is there an algebraic interpretation inA∗(n) of classical questions
concerning Hamiltonian circuits in graphs?

Problem 8.7. How can the composition product in A(n) be interpreted graph-
ically?

Problem 8.8. Can the dual of the differential operator algebra D be given a
graphical interpretation, perhaps in terms of weighted graphs?

9. The Steenrod group

In this section we consider the group of units U(A) in the Steenrod algebra,
and refer to it as the Steenrod group. Since the maximal ideal of elements of positive
grading in A is a nil-ring, an element of U(A) has the form 1 + x, where x has
positive grading. In fact, U(A) is a 2-group. The order of 1 + x is the first power
of 2 not less than the nilpotence height of x. Furthermore, U(A) is locally finite
because it is filtered by the finite groups U(n) = U(A(n)), associated with the finite
Hopf subalgebras A(n) of the Steenrod algebra. The conjugation, composed with
inversion, is an automorphism of U(A) compatible with the subgroups U(n), and is
known to be outer [168].

9.1 The group U(1). Clearly, U(0) is the cyclic group of order 2 generated by
1 + Sq1. The next group, U(1), is more interesting. Recall the Z-basis of A(1) which
was explained in Definition 4.4. By selecting substrings of the top element Sq2Sq3Sq1

of A(1), we produce the following list of seven elements in U(1):

a1 = 1 + Sq1, a2 = 1 + Sq2, a3 = 1 + Sq3, a4 = 1 + Sq2Sq1,

a5 = 1 + Sq3Sq1, a6 = 1 + Sq2Sq3, a7 = 1 + Sq2Sq3Sq1.

As a vector space, A(1) has dimension 23 = 8. Hence the group U(1) has order 27.
The collection of the ai forms a basis for U(1) in the following sense.

Lemma 9.1. The elements of U(1) can be written uniquely in the form

aε11 a
ε2
2 · · · a

ε7
7 ,

where each εi is 0 or 1.
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A set of defining relations for U(1) is then worked out from the Adem relations.
In the usual group theory notation for commutators,

[a1, a2] = a3a4a5a6a7, [a1, a3] = [a1, a4] = a5, [a2, a3] = [a2, a4] = a6,

and all other commutators [ai, aj] not listed are 1. In addition,

a2
2 = a5, a2

3 = a2
4 = a7,

and other squares a2
i not listed are 1. In principle, these relations allow the product

of two elements in U(1) to be expressed in the form of Lemma 9.1. Information
about the group U(1) has been obtained by Bob Sandling in Manchester and Don
Coleman in Kentucky using the MAGMA package [38]. It is a 3-generated group
of nilpotence class 2 and exponent 4 with {a1, a2, a3} as a minimal set of generators.
Its centre coincides with its Frattini subgroup, which is elementary abelian (of order
16), while its derived group is of order 8. It appears as group number 128.172 in
Eamonn O’Brien’s list [151]. The properties of U(1) are not too difficult to verify by
hand. However, the size of U(n) grows rapidly with n. The vector space dimension
of A(n) is k = 2(n+1)(n+2)/2, and the order of U(n) is therefore 2k−1.

9.2 Remarks. There are many subalgebras and Hopf subalgebras of the Steen-
rod algebra, each with its associated group of units. In principle, any module over
the Steenrod algebra may be viewed as a module over the Steenrod group and its
subgroups. This includes the cohomology of topological spaces and the rings of
modular invariants of general linear groups. It would be interesting to see how far
group-theoretic methods can be applied to elucidate some of the problems about the
Steenrod algebra. For example, can results about nilpotence be deduced from results
about the orders of elements in the Steenrod group? Topologists are interested in
splitting classifying spaces of finite groups, as we discussed in Subsection 7.4. For
general information on this subject, we refer to [24, 126, 160]. Some recent work on
splitting 2-groups can be found in [45]. The following problems include a somewhat
self-referential item.

9.3 Problems.

Problem 9.2. How does the cohomology of the Steenrod group U(1) split as a
module over the Steenrod algebra?

Problem 9.3. Are there any special group-theoretic features which distinguish
those groups arising from subalgebras and Hopf subalgebras of the Steenrod alge-
bra? In particular, can the groups U(n) be described group-theoretically?

Problem 9.4. Describe the Steenrod groups arising in the odd prime case.

Problem 9.5. Investigate the groups of units in modular reductions of the
divided differential operator algebra D.

10. Computing in the Steenrod algebra

Attempts at proving nilpotence conjectures for Steenrod squares by expansion in
terms of the admissible basis or the Milnor basis are frustrated by the complexity
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of keeping track of binomial coefficients modulo 2 (see Subsection 6.1). Computer
programs dedicated to this problem tend to consume a lot of time and memory in
creating large lists which suddenly collapse at the last stage of the process. Never-
theless, the computer is invaluable as an interactive device for checking relations in
the Steenrod algebra, and has long been a standard tool in the hands of experts
[196] for the calculation of the homology of the Steenrod algebra. It is useful to
have fast and efficient algorithms for expressing elements in the Steenrod algebra
in a prescribed basis and for finding conjugates. Ken Monks [141] has a suite of
programs in Maple for performing these tasks. However, the overheads in using an
all-purpose package tend to reduce the scope of the applications, and it is sometimes
necessary to resort to dedicated software in the C language for specific problems,
especially over the field of two elements, for which the C language is particularly
well adapted.

10.1 Computing conjugates. A nice exercise is the problem of reducing χ(Sqk)
to admissible form. One method is to start with the smallest number 2r − 1 not less
than k for which we know the answer is

χ(Sq2r−1) = Sq2r−1

Sq2r−2 · · · Sq2Sq1,

and then to strip iteratively by ξ1 until we get down to χ(Sqk). This procedure
never needs to do any rewriting, using the Adem relations, because admissibility is
preserved at each stage. The program scans an admissible monomial, and for each
adjacent pair of factors SqiSqj , it replaces i by i − 1 unless i = 2j, in which case
the term is eliminated because Sq2j−1Sqj = 0. The only problem is the elimination
of duplicates, and this is a common feature of all programming in the Steenrod
algebra. Here is a dry run starting at χ(Sq15) and going down to χ(Sq8), stripping
by ξ1 at each stage.

Example 10.1.

χ(Sq15) = Sq8Sq4Sq2Sq1,

χ(Sq14) = Sq8Sq4Sq2,

χ(Sq13) = Sq8Sq4Sq1,

χ(Sq12) = Sq8Sq3Sq1 + Sq8Sq4,

χ(Sq11) = Sq7Sq3Sq1 + Sq8Sq2Sq1 + Sq8Sq3 + Sq8Sq3

= Sq7Sq3Sq1 + Sq8Sq2Sq1,

χ(Sq10) = Sq6Sq3Sq1 + Sq7Sq2Sq1 + Sq7Sq3 + Sq7Sq2Sq1 + Sq8Sq2

= Sq6Sq3Sq1 + Sq7Sq3 + Sq8Sq2,

χ(Sq9) = Sq6Sq2Sq1 + Sq6Sq3 + Sq6Sq3 + Sq7Sq2 + Sq7Sq2 + Sq8Sq1

= Sq6Sq2Sq1 + Sq8Sq1,

χ(Sq8) = Sq5Sq2Sq1 + Sq6Sq2 + Sq7Sq1 + Sq8.

Any stage of the process can, of course, be stored and used as the starting point
for another run. This illustrates once again the fundamental role played by the
basic relations Sq2j−1Sqj = 0 and the stripping technique. The above program is
efficient for numbers not far down from 2k − 1, and is tolerable up to about Sq64,
but becomes very slow for higher powers of 2 and numbers immediately above. For
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such numbers, Straffin’s formula in Theorem 4.17 and related formulae discussed in
Subsection 4.5 are preferable but require further processing to bring to admissible
form.

10.2 Nilpotence questions. The general problem of reducing an element E of
the Steenrod algebra to admissible form is a standard exercise in list processing. It
can be viewed in terms of a large matrix M of non-negative integers. The rows of M
are the items of the list, and entries of a row of M are the exponents of a monomial
in Steenrod squares. The list may therefore be identified with an element in the
Steenrod algebra. The number of columns in M is taken as the longest length of a
monomial in the initial list, and may be pre-assigned because reduction to admissible
form via the Adem relations does not increase the length of monomials. The number
of rows in M will depend on the size of the job. At each stage of the process, an
Adem program scans the rows of M in adjacent column pairs, and applies an Adem
relation if the pair is not admissible, thereby expanding each item of the list into a
new list. The old item is discarded, the new list is concatenated, and duplicates are
eliminated. The process stops when all rows of the matrix are admissible. Questions
of efficiency then arise as to the best method of scanning the matrix, as well as more
technical problems to do with the C language. For example, it is debatable whether
one should commandeer a large static array for the whole process and arrange one’s
own garbage collection using standard linked list techniques, or whether one should
use the built-in pointer system, structures of the C language and dynamic allocation.

Checking the relation (Sq32)12 = 0 is tedious, and the relation (Sq128)16 = 0
would seem to be beyond the capacity of the PC, although Ken Monks achieved this
on a large machine after days of central processing time. As far as these particular
nilpotence results are concerned, we know from the ideal Conjecture 6.10 that the
situation can be eased slightly by checking (Sq2n )2nSq1 = 0, which requires less
processing. However, it is not difficult to pose a fairly modest looking problem
about nilpotence which will create more items in the list during processing than
there are particles in the universe. Of course, we now know the right way to handle
(Sq2n )2n+2 = 0. Here is the shortest dry run to show that (Sq8)8 = 0.

Example 10.2. Stripping by the vector (8) and post-multiplying by Sq8 shows

that it is sufficient to demonstrate Ŝq8(Sq8)7 = 0. Now Ŝq8Sq8 = Sq12Ŝq4 (see Exam-

ple 4.15). Hence it is sufficient to prove Ŝq4(Sq8)6 = 0. Repeat the routine to replace

the problem by the equivalent statement Ŝq4Ŝq8(Sq8)5 = Ŝq4Sq12Ŝq4(Sq8)4 = 0, and

use the relation Ŝq4Sq12 = Sq14Ŝq2 to reduce the problem to Ŝq2Ŝq4(Sq8)4 = 0.
Repeat the routine to replace the problem by the equivalent statement

Ŝq2Ŝq4Ŝq8(Sq8)3 = Ŝq2Ŝq4Sq12Ŝq4(Sq8)2 = Ŝq2Sq14Ŝq2Ŝq4(Sq8)2 = 0,

and use the relation Ŝq2Sq14 = Sq15Ŝq1 to reduce the problem to Ŝq1Ŝq2Ŝq4(Sq8)2

= 0. Repeat one final time to prove the result.

Each stage of the argument is kept as tight as possible, and there is no increase in
the size of lists. However, lacking the special devices exhibited in the above example,
the problem of exponential growth in list size remains. For example, how far can
the statement (Sq2n−2)n+1 = 0, for n > 2, be verified on the computer? Some of the
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problems listed below have come out of computer sessions, but faith in the results
depends more on the uniformity of the pattern than on the computer evidence,
which is rather scanty.

10.3 Problems.

Problem 10.3. Prove or disprove:

(Sq2n )2nSq1 = 0,

(Sq2n )2n+1 = (Sq2n+1+2n−1

Sq2n+1+2n−2 · · · Sq2n+1+2Sq2n+1+1)Sq1,

(Sq2n )2n+1 = Sq3·2n−1

Sq7·2n−2 · · · Sq(2n−1)·2Sq(2n+1−1)·1Sq(2n+1−1),

(Sq2n )2n+1 = (Sq2n )2n−1Sq2n+1−1Sq1,

(Sq2n )2n+1 = χ(Sq2n−1

)(Sq2n+1

)nSq1.

Problem 10.4. Is it true that every monomial in the admissible expansion of
(Sq2n )2n has length precisely n+ 1?

Problem 10.5. Prove or disprove: for n > 2,

(Sq2n−2)n+1 = 0,

(Sq2n−2)nSq2n−1−1 = 0,

(Sq2n−2)nSq2n−1−2Sq2n−1

= 0.

Problem 10.6. Is there a sensible formula for the height of an atomic square,
or indeed an arbitrary square?

Problem 10.7. Find an efficient method of computing conjugates of monomials
in Steenrod squares and products of elements with conjugates of elements.

Problem 10.8. Develop programs for handling relations among integral squares.
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60. A. Dold, ‘Über die Steenrodschen Kohomologieoperationen’, Ann. of Math. 73 (1961) 258–294.
61. S. Doty and G. Walker, ‘The composition factors of Fp[x1, x2, x3] as a GL(3, p)-module’,

J. Algebra 147 (1992) 411–441.
62. S. Doty and G. Walker, ‘Truncated symmetric powers and modular representations of GLn’,

Math. Proc. Cambridge Philos. Soc. 119 (1996) 231–242.
63. J. Duflot, ‘Lots of Hopf algebras’, Preprint (1996).
64. P. J. Eccles, ‘Multiple points of codimension one immersions of oriented manifolds’, Math. Proc.

Cambridge Philos. Soc. 87 (1980) 213–220.
65. P. J. Eccles, ‘Codimension one immersions and the Kervaire invariant one problem’, Math. Proc.

Cambridge Philos. Soc. 90 (1981) 483–493.
66. P. J. Eccles, ‘Characteristic numbers of immersions and self-intersection manifolds’, Topology
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