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Foreword

The present “Selected Papers” may be considered as a brief survey of my
scientific career in mathematical sciences.

My researches in mathematical sciences are consisting of two stages.
The researches in the first stage, started in 1947, are in pure mathematics,
mainly in algebraic topology, occasionally also in algebraic geometry. This
ended actually in 1965, the beginning of cultural revolution. See Nos. 1-5
of “Selected Papers”. During the cultural revolution there were however
some sporadic research works in pure mathematics, with papers published
a little later. See Nos. 6, 7, 14, 15, 18 of “Selected Papers”. Such researches
stopped completely at the end of cultural revolution, viz. the year 1976.

The second stage of my mathematical researches took place during the
cultural revolution. It took place owing to my learning of the history of our
proper mathematics in ancient times. See No. 17 of “Selected Papers”.

During the cultural revolution I was sent to some computer-manufacture
company to learn and work with laborers. Being striken by the powerful-
ness of computers I began to consider of applying computers to the study
of mathematics. It results in a method of proving geometry theorems by
means of computers. Extending further the method it gave rise to the sub-
ject what I called the Mathematics Mechanization which had an immense
varieties of applications in science and technology, besides the mathematics
itself. See Nos. 16, 19-30 of the “Selected Papers”.

For some general description of my scientific career one may refer to the
book “The Road of WU Wen-tsun”, written in Chinese by Professors HU
and SHI, published by Shanghai Science-Technology Press, year 2002.

Wen-tsun Wu
Dec. 27, 2007
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ON THE PRODUCT OF SPHERE BUNDLES AND THE DUALITY
THEOREM MODULO TWO

By Wy Wex-msux

(Received August 15, 1947)

Introduction*

Given two sphere bundles &, and S, over the base complexes A, and K,
respectively, it is possible to define in a natural way a “product bundle”” over the
product complex Ay X K;. When K, = K: = K (say), the part of the product
bundle over the diagonal of the product complex K X K is the product
bundle in the sense of Whitney.! We shall prove in the present paper that a
certain duality theorem holds for the product bundle over K, X K, and that
Whitney’s duality theorem for sphere bundles follows from this more general
duality theorem as a consequence. (Throughout the paper coeflicients mod 2 will
be used.) The idea of this proof seems to be quite different from Whitney’s
original one, of which only a brief sketch is known.”

The paper is divided into three sections. In §1 some preliminary considera-
tions and theorems on vector fields are given. A duality theorem for the product
bundle over K; X A is then proved in §2. §3 is devoted to a proof of Whitney’s
duality theorem.

§1

1. We recall in this paragraph the definition of a bundle of linear spaces or
more simply, a vector bundle.

A complex K with cells ;, 02, --- and a »-dimensional vector space V are
given. To each point p of K a »-dimensional vector space V(p) is associated so
that V(p) and V(q) are disjoint if p and ¢ are distinct points of K. Suppose
there are non-degenerate linear mappings &, of V on V(p) for every o; of K
and every point p of ¢; with the following condition satisfied: For p common
to 0. and o;, £, p¢:,, gives a continuous map of o [ o; into the group of non-
degenerate linear mappings of V on itself. Then we can make the union of all
the spaces V(p) into a single topological space ¥ in a natural way so that for every
cell o; ¢ K the topological product ¥ X o; is homeomorphic to the union of all
V(p) for which p € o.. This homeomorphism is in fact given by &, (p, x) =
$e.p(2), wherex e 1.

We shall introduce the following terminnlogies:

B3, the vector bundle;

K, the base complex;

* The problems in this paper were suggested 1o me by Professor 8. 8. Chern, with whom
1 have many helpful discussions.  To him are expressed here my thanks,
LWareney, Lectures in Topology.  Harvard Univ., 1941, p. 13]1.
2Waresky, Proe., Nat, Aead, Seil, 26 (10400, pp. 2148,

G41
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1., the director space;

V(p), the vector space over p;

v, the bundle-dimension of ¥;

£, , the coordinate system in o.

2. Let ¥ be the vector bundle defined in paragraph 1. By a continuous
mapping of K or a subcomplex of K into B we shall always mean one that maps
the points p of K or a subcomplex of K into the respective V(p) over p. A set
of continuous mappings ¢, , - - - ¢, of a subcomplex 7, of & into B iy said to form
an m-field ® = {¢1, -+ ¢u| over .. We say that ¢ is continuous (or discon-
tinuous) at a point p ¢ L if ¢1(p), - - - ¢m(p) are linearly independent (or linearly
dependent) in V(p) and that ® is a continuous m-field over L if it is continuous
at every point p e L.

Let K™ be the r-dimensional skeleton of K. As is well known,’ for m £ »
continuous m-field {¢;, - - - ¢m} always exists over X'~". Now orient V and the
cells of the complex arbitrarily and consider any (v — m -+ 1)-dimensional
oriented cell o;. For points p in 30;, £, 01(D), - - - &, pom(p) together give a
map ¢,; of do; into the Stiefel manifold* V, . of all ordered sets of m linearly
independent vectors in V. The characteristic* d(.) of this mapping is either an
integer or is defined only mod 2. In any way, the chain

w = ; d(o)o;

when reduced mod 2 if necessary, is a (v — m -+ 1)-dimensional cocycle mod 2
of K the class of which is independent of the particular choice of the continuous
m-field and the orientations of the cells of K. The classes thus obtained will be
called the characteristic classes and their cocycles characteristic cocycles. We
denote them by W', r = 1,2, --- ».

For convenience we shall define W° to be the class containing the cocycle I,
which is the sum of all vertices of K. We also put all W' = 0, forr > ».

3. Weshallput[a — b} =a —bfora=band[a — b) = 0forb > a. We
shall prove that in a vector bundle 8B it is possible to construct on K an m-field
& = g1, - @m}, (M not necessarily <v) which satisfies the following condi-
tions (C,), r =0, 1,2, --- :

(C,). Let p be any point in K'. The conditions are:

Case 1. Ifm 4+ r £ v, thengr, - - - ¢m ave linearly independent at p;

Cask 2. If m + r > », then there is an integer 0 = ¢ < m — [ — 7] such
that ¢1(p), -+ @p—n+i(p) are linearly independent. while

eh—r+ix(P) = - = om(p) = 0.
Such a field will be called a canonical field.  We shall construct it successively
over K, K, - -+ as follows:
1°. Construction over K°, -+ K"™™.

3 8ce for example STiEreL, Comm. Math. Ilelv. 8 (1936), 331.
1 STierEL, loc. eit., 310-323. The characteristic will be denoted sometimes by Char
il e, Char e ;00 cle.
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Ifm < v, we take ¢i(p), -+ - ¢u(p) al a vertex p to be any m linearly inde-
pendent vectors in V{p) and then extend successively to A°™™. Ifm = » and
p a vertex, we take o\(pj, : - - ¢.(p) to be v linearly independent vectors in V{p),
while wesetp,11(p) = -+ - = u(p) = 0. In thisway (Co), - - - ((fy—m) evidently
hold.

2°. Construction over K', # > [v — m], assuming that ¢, , - - - om have been
constructed over K" with (C,_,) satisfied.

Consider any r-dimensional cell ¢”.  'We can denote its points by Ip, 0 £ ¢ £ 1,
where p is a point on 3" and 0-p = 0 is a fixed interior point of ¢.

{er, - op—n] being defined und continuous on 47 we can extend it continuously
into the interior of ¢”. Then @1 (tp) = & 2o(tp), - - - 2(r—((p) = Exper—n(tp) are
[v — r] continuous mappings of ¢” into V so that for euch ¢p these are [» — 7]
linearly independent vectors. We can find » — [» — r| further mappings
¢?.,_,1+1(1p), e c;o’:(lp) of ¢ into V so that for every {p in ¢, (al*(lp), e ¢v:‘(lp)
are linearly independent and form a positive system in V, assuming that V
has been oriented. Put E.,,,qbf(lp) = g:(tp), 7 =1, 2,--- », we get a p-field
{@1, -~ @&} continuous over ¢’. We have moreover

o:tp) = eiltp),  fori=1,---[p —1].

]

Let

I

eilp) = ;_: @oip), = —r+1em

where aﬁ-‘) (p) are real numbers. We define
etn) = L e’ Poiltp),  i=l—rl+ L eem
o)

The field {¢;, - - - ¢m} is then extended over ¢". Doing this for all ¢", we get
an m-field over K.

The only places in o where discontinuity occurs are either 1) 0, or 2) ¢p, ¢ = 0
for which [¢,, - - - ¢a} is discontinuous at p.

Incasel), {o, - - - ¢n—n} is continuous, while ¢,_n1(0) = -+ = @m(0) = 0.
Condition (C,) is thus satisfied with¢ = 0.

In case 2), there exists by induction an integer 7 so that {¢1, * -+ @p—rp1) 44}
1s continuous at p, while

<,0[.-r+n+i+1(P) =+ = ou(p) =0.
This is true when p is replaced by tp, £ # 0. As
(b —rl+1. for r<v+1
v —r+ 1] =

l[v—r], for r=v+1

we see that condition (C,) is satisfied.
We remark in passing that in case r £ », not all of

(v—r41) (r—r+1) r
([::r:—l (P), v av‘ N l(p)y pedo
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are zero. For we have
‘r’:i(p) = ¢:(P), Z = 1) 2,' VT
(@) = 2 a7 ()-0,(p).
iz

As @,—r1(p) 1s linearly independent of ¢i(p),7 = 1,2, --- v — r, for p € 3¢, the
matrix of their components with respect to the field {¢: , - - - @} over ¢, namely,

1 0 --- 0 0 --- 0
01 --- 0 0 --- 0
a{»—-r+1)a2(r-r+l) .. a::—'r+l) S-,—_r:jl) - afy—r-H)

must be of rank » — r + 1.

4. Given two vector bundles B;, B, of which the base complexes and the
other symbols are distinguished by the subscripts 1 and 2, we shall define a third
bundle 8B according to the following table:

Base complex: K = K; X K;;

Director space: V=V, @ V,;

Vector space over p, X pz: V(py X p2) = Vi(p) @ Va(pe);®

Bundle dimension: v = »; 4 »; ;

Coordinate system in ¢; X o2 :

E")X’:.PlXI’g(Il + I2) = E«.m.,(l»‘l) + E'zﬂz.:(x?)) where I1 € V1 y L2 € V2 .

This bundle ¥, as a topological space, is a topological product of B, and %, .
In fact, by means of the coordinate system £,xo,.pxp.(Ii + 22) in o1 X o2,
we map the point &,50,.5,xp, (11 + 12) into the point (&,,,.1(21), &, 2(22)) Of
B, X B:. This mapping is clearly topological. We can therefore write 8, X
R, for B without confusion and shall call B the product bundle of B; and B..

Let the characteristic classes of B, B, and B, be respectively denoted by
W, Wy, W, with the convention made at the end of paragraph 2. Then our
main theorem ix the following

TuroriM 1. The characteristic classes of the product bundle B = B; X Ry are
expressihle in lerms of those of By and By . More precisely, we have the formauda

(4.1 W =2 WixX W, r=12 -
1220

The multiplication of ¢cohomology classes occurred in this formula may be ex-
plained as follows:
Let

I3 v
(h = Z(lnau, (y = Z”/aﬂjc
i i

51, @ V: means the join of the two vector spaces. We assume that V(py X p2) and
V(g X ¢2) are disjoint for p; X p2 # g0 X gzevenif py(p2) may coincide with qi(g2).
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be any two chains of A respectively Ka, where aq , a2 are elements of a coeffi-
cient ring, (in the case considered above is the ring of vesidue classes mod 2).
We define a product chain (' = ('; X (3 of Ky X K hy

"= Z avua,".'(tm X 0’,'3).
[

Ninee
8ou X o) = doq X ojp+ (—1)oq X 8o, p = dim. a4

we have
6 = 8Cy X Cy 4+ (—=1)"1; X 8C'y,

if (' is a p-dimensional chain.

It follows readily that we can define the produet class of two cohomology
classes In 2 unique way. [t is this product that we denote by U7 X Wy in (4.1).

5. If two vector bundles B, , B, of which the symbols are again distinguished by
subseripts 1 and 2 are defined on the same base complex K, a third bundle §§
over the same K can be defined according to the following table:

Base complex: K;

Director space: Vv = V, @ ¥, '

Vector space over p: (p) = Vi(p) ® Vip);°

Bundle-dimension: v = vy, + »; ;

Coordinate system in o:

En(li + 1) = Eopn(21) + Eepa(r2), Where e Vi - e V.

9% will be called the span bundle of B, and B, and we shall write § = ¥,  Bs .
This notation is suggested by the following “duality theorem” of Whitney:
TueoreM I1. For the span bundle B = By,  Bs we have

3.1 W= W oW, r=12--

=0
where W, Wy, Wy are the respective characteristic classes of B, By, B, with the
convention of paragraph 3.

§2
6. Throughout §2 the notations of paragraph + will be used. let & =
{out, ~ - ¢nal and & = leie, - - - @me}l be canonical m-tields on K, K, as de-
fined in paragraph 3, m < ». We now construct an m-ficld & = o, - - on}

on K = K; X K, by setting

el X p2) = eii(p) + @meipi2(pe), r=1,2 - m

& 15 conttnuous on the skelelon K'™™ of K.

8 As in 5) the spaces |"(p) are assumed to be disjoint from cach other.



046 WU WEN-TSUN
Proor. First consider the points pr X py in the eell 67" X ¢5°7 ™
012 £un,0 = m Zveand m; = iy = m.

Suppose that & is discontinuous at gy X p.. Then there would exist real

, Where

numbers a, , - - - @, not all zero such that

(6.1) (P X po) + -+ A @Gmen(p X p2) = 0
that i, (6.2) aera(p) + - F Gmema(p) =0
and @Gema(p2) + o0 + anera(ps) = 0.

Since the fields €, and &, are canonical, there are integers 7, and %, such that
D ¢1a(p1), - - @mytia{pr) are linearly independent and ¢1,2(p2), - -+ @my 442, (P2)
are linearly independent.

2) Cm+ig410(D1) = 2 = ema(m) = 0

]
=

Pmatin+1,2(D2) = - = @ma(pe)
By 2), (6.2) becomes
o1 a(p) + o+ Gt @m0 = 0
Amp1,2(P2) + + Tt Cnemy—ig 11Pmytig o (P2) = 0.
By 1), Gy = - = @y = 0

A = *+- = am—m,—t”+l = Q.

Asm — my = my , it follows that all the a’s are zero, which is a contradiction.
Consider next the points p; X p. in a cell a'*™ X ¢7* ™™, where 0 < m, ,
0Xms £ voand my — m; = m.

We then have m = m, and &, is continuous on o2~ 7, Hence from the second
equation of (6.2) we would have again ¢, = .-+ = «. = 0, which is also a

contradiction.
The other case is similar, and thus our assertion is proved.
7. Before evaluating the characteristics from the field constructed in the above
paragraph, we shall prove in this section a lemma on the degree of mapping.
Let S) , 8; be spheres of dimensions n; which bound the cells Vi, Ve,i=1,2
Denote by 87, S the joins of the pairs of spheres S;, Si and S, . S, respectively,
ie.,
’ o 7! ’ '
S'=8 XVa+ 8Se XV,
(7.1) ) . , i
S = »Sx X If'_»+ Sz X 1'1.
The points of 8'(8) ean be conveniently denoted by

(1.’!'; X [‘_)1‘-_: (111‘1 X /2.1'-_1)7

* We can equally well denote these points hy ha) =+ taxs (. + (orai.
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where z; ¢ S; (z: € S),
h=land0 S, S lorkb=1land0 £ £ 1.

Or, 0:(0,) being the centers of V'.-(V.-), S’(8) is composed of the sets z1 X 0222 and
0iz1 X 12 (r1 X 0222 and 02, X x2).

Let S: (8;) be oriented. Orient Vi (V.) in coherence with S (8,), then (7.1)
defines an orientation of S’ (S).

Suppose we are given continuous mappings f: of S; into S; with degree d; .
Define a mapping f of S’ into S by
7.2) Stz X bry) = tfi(x1) X bfa(rh).
Then we have the following _

LeMMa.  The degree of the mapping f 1s given by
(7.3) d = dd,.

Proor. Subdivide 8}, S; ¢ = 1, 2) into sufficiently fine simplexes and de-
form f, , f: into simplicial approximations fi . Next we subdivide S, S into cells
so that the ground-cells of S, say, are of the form

0w1) X 02, a1 X (0s02)

where ¢; are ground-simplexes of the subdivisions of S;(Z = 1, 2).
Deform f to f* so that during the deformation relations analogous to (7.2)
always hold, with the final result

bl X txs) = uff @) X tfs (z3).

We shall determine the degree of mapping of f*.
For this purpose consider any oriented ground-cell of S, say

0101) X 0.
For ground-simplexes r1; of S; and 7z, of St , we have
(7.4) FO1m) X 72l = £ Ow) X
if and only if
(7.5) ) =%a, fitn)==2a0.

Let the number of simplexes 71, , 72; for which (7.5) hold with positive (negative)
sign be Py, P., (N;, N.) so that

7)1 '“Ar1=d1, 1):—A’2=dg.

Then the number of cells (0171;) X 72; for which (7.4) holds with positive (nega-
tive) signis P = Pyl + N\N: (N = PNy + I’)N,)). Hence

d = l) - N = (I)x b A’l) (I)g - .'Vg)
= d]_dz .
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The lemma is thus proved.

8. We now come to the determination of characteristics for the field defined
in paragraph 6. For this purpose let us consider a (v — m + 1)-cell 6 = o1' X

o2’ of K, where r, + » = » — m + 1. We suppose first that 0 < » S »,
0<rZuw.

As shown in paragraph 3, there are continuous mappings @;1,¢ = 1,2, - - - », of
o' in ¥, and continuous mappings @;2,J = 1,2, - - - » of o3’ in Vs satisfying the
following conditions:

1°. @11, - -+ @,,1 are linearly independent at every point ip; eo, and &5,

- @.,2 are linearly independent at every point ip; € 0z , where we denote as
usual b_\ P & point in doy, p: a point in dezand 0 = ¢ =< 1.

2°, eiallpy) = @ia(tpy) for s = 1, 2, -+ — n
eia(tps) = @jaltps) for j = 1, 2, -+ vs — 1
3. If
pia(p) = aw(Pl)le i(p) + - n I(Pl)%l 1(p),
t=n—n+1,--
0i2a(P) = ai? (p)2r12P) + -+ +a e (p)es (1),
J=n—nrn+1,.
eialtp) = a1 (p)eralipy) + - +iai 2 (p)es, altpr),
t=wn—n+1--n
eia(tp) = @i} @)era(tp) + -+ + @12 (D)enaltp)),
j=wn—rn+1,--

1. If Vyand V., are dehmtely oriented, &1.1(¢p1), - - @y 1(tpy) form a positive
system In 1} and ¢T,2(tp'_,), <p,, 2(ipg) form a posxtlve system in V,, where

Pillpe) = Elmadiclp), i = 1,2« w3 k=1, 2.
Whence the vectors

1)2$""’1;j= 1,2,"°V2,

@ia(tipr), @ia(leps), ¢

form a basis in V(iipy X Lpe).
Write for simplicity

ik (pe) = ai=1,-wmij=n—rn+ 1w k=12

Then we have for every point 4py X &ps in 8o, where

ItA

=land0 £t L£lortab=1and0 £
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eitipy X bpy) = pealipy) + Laih ' eraltape) + -+ + Lal"T V0, 2t py).

léiévl—r

2

ei{tipy X bps) = l'la;.il"pl,l(tlpl) + -4 4 (l;E:.)l‘,bt', alup) + Bunv1—r a{lapa),

n—n+2=1Em

@)

Erimr (i1 X lae) = hath "t )<P1 ) 4+ -+ + lxa»::.[fr‘*”@y..1(117)1)
+ ba “‘»”‘ " +1)¢1 2({"}72) + e b -S”’frj“"l)s"ﬁy..,z(fﬁ])-z).
Now take ar bltlary poalt,ne basis in V, and V,, say 5., .- 5,1 and
Lia,  Ima. AS@L, go, 2 are defined both on the boundary and in the IIltClIOI of
0} dnd o2 respectxvely we can deform continuously the set of mappings {@11,
‘p” Ly Pra, - @hal of 3o in V into a set of constant mappings which orders
to any pomt in 3o the system of constant vectors Iiy, -« L., Lias - " Lo,
This deformation then induces a continuous deformation of the m-ﬁeld
® = {o1, - @u} Over 8¢ into a continuous m-field @ = {8, - §,.] over do
given by the following set of equations:
0P X P2) = Eotipy x tapeli (b1 X beps), 1= 1,2,+--m

(m4-1—7)

9?(’11’1 X tbap) = tig + & a("'ﬂ“')p,z e IR, ol 1 M S VP

©) 0:((81171 X laps) = tﬂf.?!x.l + -0+ t1a£:.)l Lot + Imir—iz,
n—n+2=<7=m

:l + + ll a(” Tty !vl.l
+ tbat? " pa +  + balE g,
It follows from the remark at the end of paragraph 3, that for points tipy X

Lp: € da, at least one of

(pi—ri+1) (n—r +1) (va—ra41) {ra—r3+])
b a”wrl-lf-l.l y ° t a, ! 3 t? arg—fz+1.? y * {"ahg‘.

(ry~ry+1)

.l—r1+x(11P1 X lps) = taly

is not 0. Hence we can deform continuously the m-field © into a continucus
m-field ¥ = {¢1, - -+ Y} given by

(iltapy X taP2) = Eou ey 5y x t2wa¥i (D1 X L), i=1,2--+m

Vilhp X topy) = tia,  i=1,2,n —n
(W) {iip X 2p2) = Lnpiig, G=w—r+2 ---m

Yol X bp) = L@l bt F oo+ LaliT T g

+ b (lf’.’:riﬂ’l R L d...i.':"-:w"'“’ )

Moreover, there is no loss of generality in assuming that

( ri4+1) ( ryd-1
la Sl 4 e e T =

—ra4+1)52 s—ryin2
a2y e ey =
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for otherwise we can bring about this by a further deformatlon (See the remark
at the end of paragraph 3.)
For p;s € da1, p; € B0z, let us put

5/’:1(171) = Y1, 1=1,2---mn—n

1//:k,—r1+1,1(p1) = 61(:'_7::111 Ly—rpta F oo a(”_rﬁ-l) Loyt
Vidps) = Lz, J= 1,2, m—n

Vhmrstra(Ds) = a5 triie + - + a5 50
EamV¥ia(®) = Yaa@), =12 --n-n+1
fupVia(P) = Via(p) G =1,2 - m—n+ L

Then we can prove in a similar manner that ¥; = {y,,, --- |//,‘_,,+,,1}?and

Y, = {¥12, ' ¥rero41.2} form continuous (v — r + 1)- and (vo — 72 + 1)-

fields on de and do; and are respectively continuously deformable from the fields
= {¢1,1 y Tt <p.,—r,+1.1} and & = {(01,2 y "t ¢v2—rg+l.2}-

Put? Char.,,¥, = d(ox), k=1,2
and Char.,¥ = d(s),
then, from what has proved above, we have
Char.,, ¥ = d(ox), k=1,2
Char.,.# = d(s).

The vectors \lx:_,l“_l(p,), lp:,_rg.q.],z(pz) and '//:—n+1 now define respectively a
map f; of do; in an (r, — 1)-dimensional sphere S;, a map #; of 3¢z in an (r, — 1)-
dimensional sphere S , and a map f of 8¢ in the join of S; and S, , of which the
degrees are respectively say d,, d, and d. As thesc maps are connected by the
relation

fup X &pe) = tfi(p) X bfo(p2)
it. follows from paragraph 7,

d = dide.

Since wf , 1}:1 R ;I/:f,-; are constant vectors for¢ # v, — 7 + 1, j # vo — 12 + 1,
d, dy and d. are respectively equal, or congruent mod 2, to the characteristics
d(a), d(s1) and d{e;). Hence

8.1) d(o) = d(a1)+d(o2) mod 2.

Next consider & (v — m 4+ D-cell 6 = o1 X o3® of K where ry > w2, 1y > 0.
We must then have v, — r, + 1 > m. The field {¢1, - - - ¢na} 1s thus contin-

8 See note 4).
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DUALITY IN SPHERE BUNDLES 651
uous at every point of s1'. Using the same reasoning as before, we see that the
given field {e1, ‘- ¢m} is deformable to a second one {¢,, - - - ¥=} 80 that

Eoimxep¥ilaPr X ope) = La, 1=1,2---m.
Hence in this case
(8.2) d(e) = 0.

The case r; > », is similar.
For the last case where r, = 0,7, < »oorr, = 0,11 £ » we can prove in the
same way that

(8.3) d(¢) = d(o2) mod 2
respectively d(s) = d(o1) mod 2
where d(o¢.) is the characteristic of the field {¢1.s, ** - @vi—r;41,:} O 3oy, and

d(s) is that of the field {¢., -+ - ¢m] on do.

9. The proof of Theorem I is now immediate. The canonical fields on K; ,
K, constructed in the preceding sections give chains

wi' = 2 d(oih) oy, n=01-n
&k
9.1) ,
wyt = 3 d(afh)-okh, Te=0,1,n
k

in which d(o}%) is the characteristic of the field {¢1,:, - ¢si—ri11.:} OD B0’ ,
ars € Ki . Also the m-field {¢), - - - ¢} defines a chain

9.2) w = Ed(a’,’,)-m’, , r=v—m-+ 1.

k
When reduced mod 2 if necessary, these chains give the characteristic cocyles
of the respective bundles.

According to (8.1), (8.2) and (8.3), the coefficients of these chains are con-
nected by the following relations:

d(cFy X oi2) = d(o¥1)-d(or%) mod 2, forrny < viandr, £ »

d(O';',lx X a';_’z) = 0, forry > n,n>0 or >w,n>0

(9.3)
d(o31 X oih) = d(oi%) mod 2, forry < »
d(o%y X ope) = d(c7s) mod 2, forn < »n.
Let us put
wi = }k:d(a;f.-)-a;f.- =0 for m>w,i=12
and

wi = 2 dlops) ol = 2 ong, =12
k k

11
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This is in agreement with the convention made in the end of paragraph 2. Then
the equations (9.3) can be mingled into a single one:

({(0';',11 X 0';.')2) = d(o’?ﬂ-d(ai"g) mod 2.
It follows therefore from (9.1) and (9.2) that

,
W= w X wy’ mod 2

10

ie., W =2 Wi x Wi

1=0

§3.

10. This section will be devoted to a proof of Whitney’s duality theorem
mod 2. In preparing for the proof we shall make a few remarks.

Our first remark is concerned with the definition of the cup product in a com-
plex K by means of our product defined in paragraph 4. This method of intro-
ducing the cup product is due to Lefschetz,’ but we shall summarize for our pur-
pose the main result in a simplified form.

Let 8, v be two cohomology classes of K. Then 8 X v is a cohomology class
of K X K. The diagonal mapping

d: K> K XK,

defined by
d-z—z Xz zxe€lK|

induces a chain transformation of K into K X K and hence a homomorphism
d* of the cohomology groups of X X K into those of K. The theorem of Lef-
schetz asserts that d*(8 X v) = 8 U v, where the latter is the cup product.

11. Our second remark is related to the notion of an induced sphere or vector
bundle. Let a complex L be mapped simplicially into K by f. To a point g e L
we associate the vector space ¢ X V(f(g)). The union of all these vector spaces
can be made in a natural way to a vector bundle over L, the coordinate systems
Mg, 1O g € 7; € L, being defined by 9.6 = £, - We shall call this vector
bundle the bundle over 1, enduced by the mapping f. It follows immediately
from the definition of the induced vector bundle that IV, r = 0, 1, --- | are
the characteristic cohomology classes of L, where 1¥" are the same of K and f*
the homomorphism of the cohomology groups of K into those of L induced by f.

12. With all the above preparations the proof of Theorem II follows 1mmed-
iately:

Let B, , ¥, be bundles over K, and let By X B, be the product bundle over
K X K. letd: K — K X K be the diagonal map, and B the bundle over K

¢ Lerscuerz, Algebraic Topology. Amer. Math. Soc. Colloquium publ., 1942, pp. 173-
181.
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DUALITY IN SPHERE BUNDLES 653

induced by d. It is clear that B is the span bundle of B, and B, . From para-
graphs 10 and 11 it follows respectively that

OV X Wi = iU wr
and that

AW =07,

Applying the homomorphism d* to the formula (4.1) we are therefore led to (5.1).
This proves Theorem II.

INSTITUTE OF MATHEMATICS
ACADEMIA SINICA
SuanGeual, CHINA
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Reprinted with permission from C. R. Acad. Sci. Paris, 230 (1950) 508-511.

TOPOLOGIE ALGEBRIQUE. — Classes caraciéristiques et i-carrés d'une variété.
Note (*) de M. Wu Wen-rsux, présentée par M. Elie Cartan.

1. Soit M un espace topologique vérifiant les conditions suivanles :

a. Le groupe H*(M) (") est de rang 1 dont la base est X”;

b. On a H* (M) ~ Hom|H"?(M), Z,] dont I'isomorphisme est établi par le
cup produit X*(Y* »)X}=Xry Y7, XreH/(M), Y7 H2(M).

Pa exemple, une variété compacte de dimension 7 est un tel espace. Dans
un tel espace on peut définir un systéme de classes Ur€H?(M), 0 < 2p < n,
par les équations suivantes :

(1) UryYr—r—=S8grYr—r () [ pour Y= quelconque de H*—7(M)].

Nous les appellerons les classes canoniques ou les U-classes de M. Les
classes W¢, 0o 1.~ n, définies par

() wi=Y syrur

seront alors appelées les classes caractéristiques ou les W-classes de M. On a,
par exemple, We=0U’=1, W'=U*, W2=U24+ U'yU!, etc.

Le nom des classes caractéristiques est justifié par le théoréme suivant :

TreorEME. — Pour une variété compacte M les W-classes ainsi définies s'iden-
tifient aux classes caractéristiques de Stiefel-Whitney de cette variété.

2. La démonstration de ce théoréme s’appuie sur un théoréme de Thom (*),
et le lemme suivant, démontré par H. Cartan (*) :

Lemue, — Dans un espace-produit M < M’ on a

SFXR®Y) :}:qu/X ®Sg-Y, XeH(M), YeH (M).

(*) Séance du 3o janvier 1g5o.

(*) H*(M) [H?(M)] = le groupe de cohomologie (de dimension p) de I'espace M. Le
groupe des coefficients sera exclusivement le groupe Z, des entiers mod 2 sauf, mention du
contraire. La classe unité de H°(M) est désignée par 1.

(*) Nous adoptons ici la nouvelle notation de Steenrod pour les i-carrés :
SqPX7—=Sq,_pX7. Cf. Steesron, Annals of Math., 48, 1947, p. 290-319.

(3) Voir la Note précédente de Thom sur les variétés plongées et i-carrés (méme
numéro des Comptes rendus) et la Note précédente de H. Carlan sur une théorie axioma-
tique des i-carrés (Comptes rendus, 230, 1950, p. 425).

15



(2)
On en déduit que, dans un méme espace M, on-a

Sg(XuY)= Sg/X uSgY, X, YeH (M.
J

Prenons maintenant une basc { X%} de H*(M) dans la variété M, supposée
de dimension n, telle que X;yUXji”=27,X}. La classe A" H"(M > M)
correspondant & la diagonale de I'espace-produit M >< M s’exprime alors par

A”:ZM(X{; ® X27). D’apres le lemme précédent, on a donc

S q;An—_—Za L, S1TXE@SgIX

D’autre part, soit ¥ a, X} la classe caractéristique de Stiefel-Whitney de
part, . q y

dimension ¢ de la variété M qui est aussi la classe de Siiefel-Whitney
de la structure normale de M par rapport & M><M. On a, d’aprés la

formule (6) de Thom (®), Sin”::‘,_: Vai Xy, ou ¢ applique HY(M)
dans H=(M >< M). On en déduit

N wl .
Sq dr= Za,u,q“l‘"xm (X5 U XE™).

En considérant les termes de la forme X{® X} dans les deux expressions
de Sq‘A", on trouve que
a, X, = Sqi-2 U,
SRR

c'est-d-dire la classe de Stiefel-Whitney de dimension ¢ coincide avec la
classe W¢, définie par (1) et (2). C. Q. F. D.

3. Le théoréme précédent montre que les classes caractéristiques de
Stiefel-Whitney d’une variété compacle de dimension n sont complétement
déterminées par les classes canoniques U?, 0 =ZZap < n, et par conséquent
par la structure des cup produits et les i~carrés de cetle variété. On peut en
déduire d’autres propriétés concernant les classes de Sliefel-Whitney, ainsi
qu'il suit (*):

a. Les classes W' pour 2.0 ”> n sont complétement déterminées par les classes W'
pour 0 £ 21 n, et par les opérations de carrés.

b. Wr=o0 pour r impair; W'=S8q"U*=U*YU* pour n=2k pair;
Wi= W'y W! pour n=3; W'y W'y W?=0 pour n= 4 (on peut méme
démontrer W'U W? = o pour n<5).

e. Pour M orientable et n =2k pair, U* est une classe de premiére espéce,
c’est-a-dire, U* est déduite d’une classe aux coefficients entiers par réduction

(*) Cf. H. Wuirney, Michigan Lectures, 1941, p. 101-141.
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(3)

mod 2. Pour n=4 la classe W2="TU?-+ U'YU'=U? est alors de premiére
espéce el par conséquent la troisieme classe de Stiefel-Whitney (aux coeffi-
cients entiers) est nulle; ce n’est pas le cas en général pour n > 4, comme le
montre la variété orientable de dimension 5 construite de la facon suivante :
M? est .le produit topologique d'un plan projectif complexe P et d’'un
segment I=Jo,1] avec lidentification (@, y, 3)=<(0)=(&, ¥, 3)>< (1),
ol @, ¥, 5 sont des nombres complexes, coordonnées homogénes de P,
et 7, ¥, 7 leurs complexes conjugués.

d. Définissons un autre systéme de classe U (ici 0 << p = n) par récurrence

par les équations Ur=U’=1et Ziﬁ" U U¢i=o, pour p > 0. Les classes W
définies par V_V":ZPSQ"*P U? (0 =i~ n) satisfont alors aux équations Wo=1
etZi\_Niu Wr=i= o pour p >o. Cela veut dire que les classes W’ ne sont
autres que les classes caractéristiques duales de M introduites par Whitney.
Ona W”:Zp Sqr Ul':ZPU”—P U Ur=o, d’aprés (1).

e. D’aprés H. Cartan, U?=o0 pour p impair et M orientable. On en déduit
que Wr—'=10 pour M orientable et n= 4k + 2, ce qui est aussi une consé-
quence de c.

(Extrait des Comptes rendus des séances de 1" Académie des Sciences,
t. 230, p. 508-511, séance du 6 février 1950.)

QAUTHIER-VILLARS, IMPRIMEUR-LIBRAIRE DES OOMPTES RENDUS DES S£ANCES DE L'ACADEMIE DES SCIENCES
135356-50 Paris ~— Quai des Grands-Augusting, 55.
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Reprinted with permission from C. R. Acad. Sci. Paris, 230 (1950) 918-920.

TOPOLOGIE ALGEBRIQUE. — Les i-carrés dans une variété grassmannienne.

Note de M. Wu Wen-Tsbn, présentée par M. Elie Cartan.

1. L’anneau de coefficients del’anneau de cohomologie H*(M) d’un espace M
sera dans ce qui suil exclusivement 1’anneau des entiers mod 2.

Soient W, i> 0 quelconque, les W-classes (classes caractéristiques de
Stiefel-Whitney) d’une s. f. s. (stracture fibrée sphérique) avec la conven-
tion W°=1 (classe unité de la base), et Wi=o si i>m, m—1 élant la
dimension de la fibre sphére. Nous allons démontrer la formule suivante :

(1) SgTWe= ¥ Clpp WrtWett (s> 13> 0),
L

o C7 = coefficient binomial pour' p>¢>>o0, =o pour p< g >o0, el =1
pour p=—1 et g == o (tous sont réduits mod 2).

Signalons d’abord quelques conséquences de cette formule : définissons, dans
la base, un systéme de classes UP(p > o quelconque) par les équations suivantes :

(2) W":ZPSq"P Ur, i o quelconque;

nous les appellerons les classes canoniques de la structure considérée. Si la
s. f. s. est en particulier la structure tangente associée & une variété différen-
tiable M de dimension m, on voit, en comparant avec les équations (1) et (2)
d’une Note précédente (), que lenom de classes canoniques est justifi¢; de
plus, parmi toutes les s. f. s. (aux fibres 3™') sur la variété M comme base,
la structure tangente de M posséde la propriété remarquable suivante :

(3) Ur=o pour 2p>m,
De (1) et (3) on déduit :

a. Pour une structure orientable on a U**+*= o, k quelconque, ce qui géné-
ralise un théoréme de H. Cartan ('),

b. Pour la structure tangente d’une variété différentiable de dimension m,
ona W Wmn2=g sim=4k; W W™ ?—=0; W W =0 si m=4k+1;
Wm—W?t Wmn1 Sim:4/£—+—2; Wt W"F’:O,W"’_'Z' Wt W”"*sim:4ls—{— 3.

(*) Comptes rendus, 230, 1950, p. 508-511.
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(2)

2. Soit G, , la variélé grassmannienne des m-éléments linéaires dans un
espace euclidien R™™ de dimension n—-m passant par Yorigine de R**". On
sait (*) que Panneau H*(G, ) est engendré par les classes Widela s.f.s. G,
(fibres S™~') de base G, canoniquement associée & Gy . De plus, comme
m’a fait remarquer H. Cartan :

Lemme 1. — Soit ¢,( W) un polyndme non identiquement nul.en W', ... W™
telque pourchaque terme Wt ... Whde ce polyndmeonaitiy+ ... 4 u=pn.
Alors 9,(W*) est un élément non nul de H*( G, ).

Supposons alors que R"*™ soit le produit de deux espaces euclidiens R}/
de dimension n;+m;(j=1, 2). Soient G, , (j=1, 2) les variétés gras-
smanniennes définies respectivement dans R+, Pour X; € G, ,, soit XeG,n
le joint de X, et X, on a alors une application canonique

f: Gn,,m, = Gn,,m, - Gn,m

définie par f(X, >< X,)=X. En désignant par W’ (j =1, 2) respectivement

les W-classes des structures G, ,,, on a :
Lemme 2. — Le type d’homologre mod 2 de f est déterminé par (*) :
f*W"::sz/;® Wi (i> o quelconque)
Comme conséquence des I[¥mmes 1 et 2, en conservant les notations, on a:

Lemve 3. — Pour pZin, et n,, 9,( W) est un élément non nul de H* (G, »)
st et seulement st f* ¢,( W) est un élément non nul de H*(G, . >< G, ,.)-

3. Démonstration de (1). — Nous poserons
Pra(W) = SgrWeer B Chpypy Wt W,
L

La formule (1), ou, ce qui revient au méme, la formule ¢, ,(W;)=o, étant
évidente pour m==1, nous supposerons par induction qu’elle est exacte pour
les structures dont les fibres sphéres ont une dimension < m—1, oim >1.
Soient maintenant W', W/ respectivement les W-classes des structures G, ,
et G, (J=1,2) o0 n=n,+n,, p>r4s, m=m—1, my=1. De la
formule f*S¢'=1S5¢'f*, d’un théoréme de H. Cartan (*), et dulemme 2 du

(%) S. Cuern, Annals of Math., 49, 1948, p. 362-372.

(*) Nous remarquons que le théoréme de Whitney sur le produit de deux structures
fibrées sphériques est une conséquence de ce lemme dont la démonstration est donnée dans
ma Thése, Strasbourg, 1949.

(*) Comptes rendus, 230, 1950, p. 425-427.
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(3)
paragraphe 2, on déduit

S ors(WH =0, s(WHR 1+ 0r it (WD) Q Wi+ @rs, et (W) ® (W)

D’aprés ’hypothése d’induction on adonc f* ¢, ,(W?) == o et par conséquent
@,,,(Wi)z o d’aprés le lemme 3. La structure Gn,m étant universelle pour n
assez grand, on a ¢, ,(W*) = o pour une s. f.s. quelconque. La formule (1) est
ainsi démontrée par induction.

Soient en particulier W'les W-classes de la structure G, ,, sur la base G, ,,.
L’anneaa H*(G, n) étant engendré par les classes WY, on voit que laformule (1)
détermine complétement les i-carrés dans G, ,, en les exprimant comme des
polynémes en Wi

(Extrait des Comptes rendus des séances de ' Académie des Sciences,
t. 230, p. g18-920, séance du 6 mars 1950.)

GAUTHIER-VILLARS, IMPRIMEWR-LIBRAIRE DES QOMPYES RENDUS DES SEANCES DE L’ACADEMIE DES SCIENCES.
135687-50 Paris. — Qual des Grands-Angustins, 33,
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MATHEMATICS

ON THE REALIZATION OF COMPLEXES IN
EUCLIDEAN SPACES I*

Wu Wen-tstn (HB30i82)

(Institute of Mathematics, Academia Sinica)

ABSTRACT

It was early known that any n-dimensional abstract complex may
be realized in a (2s+1)-dimensional euclidean space R?**!. From
this theorem, whose proof is quite simple, it follows that the (2r+1)
—~dimensional euclidean space contains in reality all imaginable
n-dimensional complexes. However, the complete recognization of all
n-dimensional complexes in an euclidean space of a given dimension m
where m<2n-+1, is a problem much more difficult which cannot, it
seems, be solved completely in the near future. Among the miscel-
laneous results so far obtained along this line the most remarkable
one is no doubt that of Van Kampen' and Flores® who first
proved the existence of n-dimensional complexes which, even under
further subdivisions, cannot be realized in an R*".

The invariant by means of which Van Kampen was able to con-
clude the non-realizability of a (finite simplicial) #-dimensional
complex in an R* may be described as follows. Denote the %k-dimen-
sional simplexes of the given n-dimensional complex K by S%. Any
two simplexes of K with no vertices in common will be said to be
disjoint. Let A4 be the set of all unordered index pairs (7, ), cor-
responding to pairs of disjoint n-dimensional simplexes §7 and S7.
Construct a vector space £ on the ring of integers with dimension
equal to the number of elements in 4. Any vector of £ may then
be represented by a system of integers (e;) where (4,7) € 4. To
each pair of disjoint simplexes S%7! and S7 in K a certain vector
Vie=(a;) of € may be determined in the following manner. If both
7, 15/ or one of them, say j=/, but §*"! is not a face of §%, then we
put e;=0. Otherwise we put a;=+1 (with sign conveniently
chosen). Two vectors P, P’ of € will then be said to be equivalent,
if P—P" is a certain linear combination with integral coefficients of

*First published in Chinesc in Acra Mathematica Stnica, Vol. V, No. 4, pp, 505—~552, 1955.
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vectors of form V, above defined. The vectors of € are thus
distributed in such equivalence classes.

Take now an arbitrary simplicial subdivision K; of K and try to
realize K; in R* as far as possible. We shall obtain then some “almost
true”’ realization such that parts 'S% and 'S/, corresponding to disjoint
S% and S of K will be disjoint in R* when k+/<2n, while they in-
tersect only in isolated points when k=[/=n. With respect to an
orientation arbitrarily chosen of R*, ‘S7 and ’S? determine then a de-
finite intersection number Za; (with sign conveniently chosen).
These numbers determine in turn a vector P={a;) of £. Van Kam-
pen’s work shows that, whatever be the subdivision K; of K and the
“almost true’’ realization of K, in R*, the corresponding vectors P
always belong to one and the same equivalence class in £. It follows
that this equivalence class is an invariant of the complex K. It is
evident that the belonging of the zero vector to this invariant equi-
valence class is a necessary condition for the existence of “true”’
realization of K in K*. It is this invariant which has enabled Van
Kampen to assure the existence of n-dimensional complexes non-real-
izable in R*. On the other hand, Van Kampen failed to ascertain
whether the above necessary condition is also sufficient and the
problem of characterizing #n-dimensional complexes in R* remains
unsettled up to the present. Moreover the method of Van
Kampen-Flores cannot be seen to be readily generalizable to the real-
izability in R™, m being arbitrary. We remark also that whether
Van Kampen’s invariant is a “topological’’ invariant of the space of
K, or even whether it is a combinatorial invariant of K, cannot be
decided from his works.

At the time of Van Kampen and Flores the cohomology theory
has not yet been created. To get a deeper insight of their results
we will reformulate them in the modern terminology of cohomology.
Their statements will then become clear and natural as follows.
From the given simplicial complex (of any dimension) let us con-
struct a sub-complex K* of KxK, consisting of all cells oxt suglx
that o, 7 are disjoint in K. Identify each pair ox7 and 7x6 of K*
to the same cell ox7=T+0, we get a cell complex K*. Suppose that
the cells o€ K are oriented and let us orient the cells o»t of K* as
ox7 in the product complex KxK, such that

o.,z.=(__1)dimadimr2-*o-. (1)

Then for dim K=p, any vector P in £ may be regarded as an in-
tegral 2zn-dimensional cocycle of K*, and the equivalence of vectors
in £ is the same as the cohomologousness of their corresponding
cocycles. It follows that Van Kampen’s invariant is essentially an in-
tegral cohomology class in K*.
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From this reformulation we may naturally extend Van Kampen’s
method to the realization problem of complexes of arbitrary dimen-
sion in euclidean space of arbitrary dimension =z. For this let us
take an arbitrary simplicial subdivision K; of K and try to realize
K; as much as possible in R”, such that any two simplexes of K, are
in general position whenever possible. Let the chain in R™ thus ob-
tained, corresponding to any o€ K, be denoted by ¢. Then, with
respect to a fixed orientation of R™, to any two disjoint simplexes
7,7 in K with sum of dimensions just equal to m, there corresponds
a definite intersection number @(o’, 7). Let I, be either the addi-
tive group of integers / or the group of integers mod 2 7, depend-
ing on m, and p, the corresponding identity or reduction mod 2.
Then an m-dimensional cochain ¢ € C"(K*, I,,,) may be defined by

P(e*7) =6 Py B(6",7’), dim 6=7r, dim T=m —r, (2)

where &=+1 or —1, depending on r. To make ¢ a cocycle on co-
efficient group I, and to make the definition of ¢ consistent with
(1) we should take &, such that

Pim) &+ Pim) Er41 =10,
P(m) & = P(m) Em—r -

If we make the further restriction that e=+1, then to make the
above equations consistent, we may take

I, when m = even,
](m) =
I,, when m = odd

and to choose ¢ to be, say (—1). We thus obtain an integral cocycle
@ in the case. that m be even, while only a mod 2 cocycle @ in the
contrary case Just as in the special case considered by Van Kampen,
it turns out that these cocycles, whatever the subdivision K; and the
“almost true’’ realization may be, always belong to one and the same
cohomology class @” € H*(K*, I,). Moreover, it may be shown that
so far as m>1, any cocycle in @™ may be realized as one arisen from
some subdivision K; of K and some almost true realization of K; in
R™. However, this is not true for m=1, as seen from very simple
examples.

The series of classes " € H"(K*, I,,) will be called in the pre-
sent work the imbedding classes of K. The vanishing of ¢” is
evidently a necessary ¢ondition for the realizability of K in R”. We
have 20”=0, when m is even; but in general @™ are nontrivial and
thus they serve as effective tools in the study of realization problems.

We remark that we may define, just as in (2), with respect to any
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simplicial subdivision K; of K and any “almost true’’ realization of
K, in R”, a certain integral m-dimensional cochain ¢ in K* by

G x 1) =(— 1" 9(s", 1), ¢ X TER* dimo + dim7=1m.

It is true that @ is always an inmtegral cocycle and its class @ is uni-
quely determined. However, it turns out that @ is always 0 (what
is not casily seen from the definition itself) and therefore the com-

plex K* is not so useful as K¥, so far as the realization problem
is concerned.

Let RRC R’C - CR™ be a sequence of linear subspaces of increas-
ing dimensionality in R™. By trying to realize the complex K in a
certain canonical manner such that K°CR', K* © R’ etc., representa-
tive cocycles in @™ may be explicitly constructed. This not only gives
the means to compute effectively these classes in every concrete case, but
also makes it possible to derive a series of properties of " which

1 - m i f i+ :
are not ecasy to foresee, e.g., 76@2’" =0 ¢'UP'=0'"" mod 2. This

also enables us to determine, for some particular complexes genera-
lized from those of Van Kampen, exactly the lowest dimension of R™
in which they may be realized. [t seems that this cannot be done
with any other known methods.

At last we should point out that the realization problem is in real-
ity “topological”’, but not “homotopic’” in character. For example,
a segment and a triangle have the same homotopy type, but the
former may be realized in R' while the latter cannot. It follows
that the problem cannot be completely solved without the aid of to-
pological invariants which are in general not invariants of homotopy
types. In a previous paper'® the author has described a general
method of constructing such invariants. The above-mentioned groups
H”(K*, G) (and H"(K™, G)) are particular cases of these invariants
and we may thus legitimitely write H™* (K, G) or H™* (P, G) instead
of H” (K*, G) where P=K is the space of K. Similarly we write
H™(K*, G) = H™*(K, G) = H™*(P, G). Based on [6] we may prove
that @ ¢ H™* (K, I,,,) = H™*(P, I,,) are not only combinatorial in-
variants of K but also topological invariants of P, an important point
completely disregarded by Van Kampen in the special case studied by
him. On the other hand, ¢™ are not invariants of homotopy type of
P. It seems that this 1s the very reason for the successfulness of
methods, originated from Van Kampen and developed here.

We restrict ourselves in the present paper to give a basis of the
whole theory and leave to later considerations the study of relations
of the imbedding classes with Steenrod squares and also with Stiefel-
Whitney classes in the case of a manifold. We leave also to a later

26



255

occasion the proof of the sufficiency of our condition for the realiza-
bility in certain extreme cases.

§1. Linear RearizatioN oF CoMPLEXEs IN EUCLIDEAN SpAcks

In what follows, K will be a finite euclidean simplicial complex,”
and R” a euclidean space of dimension .

Suppose given in R™ a euclidean simplicial complex K’, which is
isomorphic to K under the correspondence T : K — K’, then we
shall say that K = TK 1is a linear realization of K in R™. Denote
the topological map induced by T of the spaces K, K’ of K, K’ by

T : K=K, then T or T will be called a linear imbedding of K in R™.

[t is known that any abstract simplicial complex of dimension 7
may be realized as the associated abstract complex of a euclidean
simplicial complex in R**! of dimension 2r + 1, but not necessarily
so in euclidean spaces of lower dimension . From this we may
draw two conclusions. First, the problem of existence of euclidean
complex in an R™ associated with a given abstract simplicial complex,
is equivalent to the problem of linear realizability of euclidean
simplicial complexes in R™ For that reason, whenever we speak of
complexes, we mean euclidean complexes in a euclidean space of
sufficiently high dimension, and a subdivision will always mean a
euclidean subdivision. Secondly, a euclidean complex K in general
has no linear realization in R™ if m <2dim K + 1. To study this
problem, we shall recapitulate and introduce some concepts as follows.

Let o', 7 be two ecuclidean simplexes in R™, of dimensions r

. o . ; ,
and s respectively. If for any r-dimensional face ¢ of 6" and any
s'-dimensional face 7’ of 7, the linear subspace determined by ¢’ and
7’ has a dimension min (¥ + s + 1, m), or in other words, if any
7'+ 1 vertices of 5" and 5"+ 1 vertices of 7° are linearly independent
so far as ¥ 45 + 1< m, then o', ¢’ are said to be in general position.

Suppose given in R™ a set of points 21, -+, 7, and a set of gcomctrlc
simplexes” o7, -+, o, spanned by these pomts of which thc totahty K’
satisfies the followmg conditions: 1°. If o} is spanned by v}, -, iy and
k = m, then z/,o, ey vék are linearly independent so that &% may be
considered as a euclidean simplcx. 2°. If o] € K, then any face of
o; is in K’ too. 3°. If o), o/ € K’ are both euclidean 51mplexes and
have no vertices in common, then o7, o] are in general position. In
such case we shall say that K’ is an almost euclidean simplicial complex

in R™, and K Z o; is defined as the space of K’

1) We consider only finite complexes in this work, so that the modifier “finite” will be omitted
throughout,

2) For the definition of geometric simplex cf. [2], pp. 607. The geometric simplex spanned
by aq, --*, ar of Rm will be denoted by (aq, -+, ar).
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Suppose that to a euclidean simplicial K we have in R™ an almost
euclidean simplicial complcx K’ isomorphic to K, ie., K, K’ have same
numbcr of wvertices v, #;, i=1, -, n and the I- l—correspondcncc
v; < v; between these vertices is such that (v, - - ;) € K is equivalent
to (v -, v;) € K. Let the induced correspondence be T : K — K,
then we will define K= TK as an almost lincar realization of K in
R™. The continuous map T :K — K’ induced by T and also T itself
will then be called an elmost linear imbedding of K in R™.

Evidently a linear realization (or linear imbedding) of K in R™
is also an almost linear realization (or almost linear imbedding) of
K in R™, but the converse is not true. It is easy to see that K has
almost linear realizations in R™ of arbitrary dimension m, though it
has linear realizations only in R™ of dimension m sufficiently high.
We shall introduce in what follows some invariants of K through
its almost linear realizations in R™ with the aim to study the linear
realizability of K in R”™,

Since a complex is equivalent to its subdivisions from the point
of view of combinatorial topology, we shall introduce the following
concepts.”

Suppose given a simplicial subdivision K, of K and a linear (or
almost linear) realization K{= TK, of K, in R", then we shall say
that K is a semi-lincar (or almost semi-linear) realization of K in
R™ through its subdivision K, and T or the induced topological map
T : K=K/ (or continuous map T : R — K;) will be defined as a semi-
linear (or almost semi-lincar) imbedding of K in R™ through its sub-
division K.

Let K be an almost euclidean simplicial complex in R™ and o be
a point of R™. The (r + 1)-dimensional geometric simplex o spanned
by o and any r-dimensional geometric simplex ¢ of K will be called
the central projection of o from 0. The totality of all such simplexes
oo and the simplexss of K form a simplicial complex, called the
central projection of K from o and denoted by oK. In general, oK
is not an almost euclidean complex even if K be so. However, we
have the following

(A) Lemma. If K is an almost euclidean simplicial complex in
R™ and L a subcomplex of K, then there exist points o in R™ such
that oL + K is an almost euclidean complex. Moreover, such points
o may be chosen in any neighbourhood of any point o’ of R™.

Proof. Consider any pair of simplexes ¢, 7 in K having no
vertices in common, for which the sum of dimensions r+s is <m—2.

1) From somc examples given by Cairns and Van Kampenl?-8)) it may be seen that the problem
of realization would be topologically meaningless by coasidering only the original complex without
introducing further subdivisions,
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Since K is almost euclidean, the linear subspace P(o, 7) determined
by 4, 7 has a dimension r+s+1<m—1. Again the linear subspace
P(s) determined by any simplex & of dimension »r<m —1 in K has
a dimension r<<m —1. Hence in any neighbourhood of o’ there exist
points not belonging to any of such linear subspaces P(os, 7) or P(s).
Evidently any such point may be chosen to be a point o as required
in the Lemma.

(B) Lemma. Let K be a euclidean simplicial complex, L a sub-
complex of K, and L, the subcomplex formed of all simplexes of L
which has no vertex in common with any simplex of K — L. Let
f: K—R™ be a continuous map such that f/L is an almost linear
imbedding of L in R™, ie., f(L) is the space of an almost euclidean
complex L’ in R™ : L' = f(L) and L’ is isomorphic to L under the
map f. Then for any & >0, there is an e-approximation T:E—R"

of f such that T is an almost semi-linear imbedding of K in R”
through a subdivision K;, T/L=/, and K, has a subdivision L, of L
as a subcomplex which coincides with Ly on L.

Proof. Since K is finite, we have 6 > 0 such that for any two
points x, y € K, p(x,y) <& would imply p(f(x), f(y)) <s&/5. Take
now a simplicial subdivision K, of K such that L, is a subcomplex
of K, and any simplex of K, on K, — L has a diameter <. The
part of K; on L is a subdivision of L which will be denoted by L,.
Let K; be the subdivision of K, obtained by constructing central
subdivisions” of simplexes of K, — Ly, the centre of o€ K, being o..

The part of K, on L will be denoted by L,. Under f, L, and L, will
correspond respectively to a simplicial subdivision L; of L and its
central subdivision L;. By convenient choice of K, and centres o,
we may make L and L; the almost euclidean complexes which will
be supposed to be so. Arrange now the simplexes in K, but not in
L, in an order o, < -+ < 5, such that those of lower dimension will
precede those of higher dimension, but otherwise arbitrary. By (A),
we may take successively points o, -+, o, to satisfy the following
conditions:

1°. o; is in the ¢/5 neighbourhood of f(0.,).
2°. If we define T(o,,) =0}, i=1, -, n, and T(o) = f(s) for

g € L, then T determines an almost semi-linear imbedding of K, in
R™ through K..

Evidently T/L=/f. Let r€7= (v, v,) ¢ K, — L,, v; being ver-
tices of K, then

1) By a central subdivision we mean a subdivision analogous to the construction in barycentric
subdivision. The only difference is that here any interior point of corresponding simplex, not necessarily
the barycenter, may be used as the centre of projection in the construction,
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o(T(2)), T(w)) < p(T(03), f(0:)) + p(f(2)), Hox)) + p(f(wr), T(wa))
[ £ £ &
<ststs=335.
o(T(x), T(v)) < Diam T 7 = max P(T(v), T(wx)) <3§ ,

o(T (%), 1(x)) < p(T(x), T(2)) + p(T(v0), f(20)) + p(f(v0), F(x))

€ €
<:>‘5—+-5—

)

€
+ T =e-
Hence T is an e-approximation of f and (B) is proved.

§2. TuE IMmBepDING COCHAIN OF AN ALMOST SEMI-LINEAR REALIZATION

Let R™ be a euclidean space of dimension m with fixed orientation,
K, L be two euclidean simplicial complexes in R™ and x = X 4; 5,
y = 2 £; 7, be two chains on integer coefficients in K, L of dimension
r, s respectively with » + s = m. The subcomplexes of K, L deter-
mined by those a;, 7; for which a4, 4; are #0 will be denoted by |x|
and |y| respectively. Suppose that |x|, [y| are in general position,
i.e., any simplex ¢ of |x| and any simplex 7 of |y| are in general
position, then with respect to the oriented R™, the chains x, y have
an intersection number ([2] Chap. 11)

B(x,y) = Z a; b; 0(03, ),
which is bilinear and possesses the following three properties (dim x=r,
dim y=s and all intersection numbers are supposed to be defined):
Q(x,y) = (—1)" 2(y,%) . r+s=m, L
B(x,0y) = (=1 Q9(0%,9), r+s=m+1, (2)

and finally, change the orientation of R™ and denote the intersection
number with respect to this otherwise oriented R” by ¢, then

ﬁ(x,y)z—@'(x:y)’ r+".=m' (3)

We may also extend the definiticn of intersection number @(x, y)
of chains x, y with sum of dimensions r+s=m for which only the
conditions 8x N § = % N Oy = @ are satisfied by considering them as
singular chains. The properties (1), (2) and (3) hold still for such
intersection numbers.

In what follows @, will be used to denote the intersection number
or the intersection number reduced mod 2, according as m is even or

odd.

For an arbitrary euclidean simplicial complex K, define now two
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abstract complexes K* and K* as follows. First, we define K* as
the subcomplex of the product complex K x K consisting of all cells
oxt for which &, 7 € K have no vertices in common. Orient each

cell & x v of K* in the usual manner we would have
I oxt)=08s x1t+(—1)Y0o %X o7, r=dim o 4)

(o, T are oriented cells of K). In K*, 6 x T—7 % & defines a cell. map
¢t of period 2 and having no fixed cells, which induces a chain map
given by

ty(oxt) =(—1)*(rX0o), r=dimo, s=dim*T. (5)

With respect to 7, K* has a modular complex K*/¢= K*, which is
obtained by identifying each pair of cells 6 x 7,7 x & in K* with a
single cell o * ¢ (or what is the same, 7 * ). Orient & * T now as
6 x 7, then by (4), (5) we have (r = dim o, s = dim 7):

O(c*1)=08s5+7+ (—1) ¢*0r, (6)
crT=(—1)"T*0. V2]

We may regard K* and K* as euclidean complexes. Then by [6],
the homotopy type of Ig* and K*, in particular the homology and
cohomology groups of K* and K*, are all topological invariants of
K =P, a fortiori combinatorial invariants of K. For this reason we
shall adopt the following notations: H'(K*, G)=H"*(K, G)=H*(P, G),
H'(K*, G)=H"*(K, G)=H"(P, G).

Consider now any almost semi-linear realization K;= TK, of a
simplicial complex K in R™ through a simplicial subdivision K; of
K. Let the chain map induced by the subdivision K~ K; be 84, and
the chain map from K, to K; induced by T be T,. Write for simplicity
Ty Sd by T. Similar notations will be used throughout this work.
For any oriented cell & x 7 of dimension m in K*, T o and T 7 are in
general position since 6, T have no common vertex in K and T is
almost semi-linear. It follows that we may define an integer by

Prlox1) = (—1)"° §(To,TT). (8)

Then ®; is a cochain in K* on integer coefficients.

Let
I, m even
Iimy =
IZ; m Odd

Let p(m : 1= 1., be the identity or the reduction mod 2. Further let
Bimy = Pemy @ so that (—1)" @, = (—1)'@, for r +s=m. Then we
have always
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(—1Y Bu(T7,T5) = (—1)* (=1)* Bn(Ta, T1) = (—1)"(—1) Bu(To, IT)

for any o * 7€ K* with dim 6=y, dim 7=s5 and r+s=m. Comparing
with (7) we see that (6* 7€ K*, dim o + dim 7 = m)

o+ 1) = (—1)"° 0,.(Ts.T7) (9)

defines unambiguously in K* a cochain @ € C™ (K¥, I(.,)).

Let £x7 be any cell of dimension m+1 in K*. Then

8Pr(& %) = PrB(Ex7) = (86 %) + (—1)"¢ Fr(& xdy) =
= (—1)"¢-1 (T 8¢, T7) + B(T§, T 07) =
= (—1)¥me=1. (—1)"¢ g(TE,8T7) + B(TE,T7) = 0.

Similarly we have 8 ¢;(¢ *7) =0 mod I(,. Hence ®,, @r are all
m-dimensional cocycles of K* and K* on coefficient groups I/ and
Iy respectively. If T is a semi-linear imbedding, then ®; and @r
are evidently 0. Hence from the definition of @, and @; we see
that they may serve as a measure of T to the deviation from a true
semi-linear imbedding. We shall accordingly define ®; and @, as the
tmbedding cochains of the almost semi-linear imbedding (or realization)
T. The above results may then be written as follows:

Theorem 1. With respect to R™ with a fixed orientation, the
imbedding cochains @€ C"(K*) and @r€ C"(K*, Iim) of an almost
semi-linear realization T of a euclidean simplicial complex K in R™
are all cocycles (and may be thus called the imbedding cocycles of T).

The definition of imbedding cocycles depends on the orientation
of R™. By (3) we have

Theorem 2. With respect to R™ with the two opposite orien-
tations, the two imbedding cocycles ¢; and @; (or @, and @7) of an
almost semi-linear imbedding T of K in R™ differ at most by a sign:

Pr = — &7, Pr= —@;. (10)
§3. DerintrioN ofF ImBeppING CLASSES

Let K, R™ be the same as in the preceding section, K;, K, be two
simplicial subdivisions of K, and T.K, = K;, T,K, = K, be two almost
semi-linear realizations of K in R™ through K, and K, respectively.
The aim of the present section is to prove that the imbedding cocycles
of T, and T, are cohomologous to each other. We shall suppose in
what follows that T,K, and T,K, are disjoint. As this may be achieved
by at most a parallel translation of T,K, and as the imbedding cocy-
cles ¢;,=%,, @;,=¢, remain unchanged after the parallel translation,
there will be no loss of generality in making this supposition.
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Arrange now the simplexes of X in an order o, <o, < -, such
that simplexes of lower dimension will precede those of higher dimen-
sion, but otherwise arbitrary. Let [1, 2] be the closed interval 1<t<<2,
and Kx[1,2] the complex with usual cell decomposition which will
be considered as a euclidean complex. Let J, be the set of all indices
1 for which dim ¢;=0, J,=],_,+(r), Li=Kx (1)+Kx (2)+ > oix[1, 2]

€],

and L=L, ;+0,x[1,2}], r=1,2, . We shall construct now for each
r=20,1,2, - a simplicial subdivision L,, of L, and an almost semi-
linear realization H,L,q=L/, of L, in R™ through the subdivision L,,
such that the following conditions are satisfied:

1% Lyg=K,x (1)+K,x (2)+ = o;x[1, 2].
ic),
20- I_IO(."/'>< (/))::TI(TI)’ T,'EK;, 7=1: 2 and for ie]m ﬁ(aix [1’2])

is a simple broken line /.
3°. L,.,0 is a subcomplex of L, and H,/L, ;s =H,_,.

4°. If i, 7€/, dim 6,+dim 6;=m—2, and ¢;,4, have no vertex of
K in common, then H,(o;x[1,2] N H,(9;%[1,2])=@.

For the construction let us first draw in R™ for each i€ ], a
simple broken line /; joining T3(o; % (7)), 7 =1, 2, such that these /;
together with T,K,+T,K, form an almost euclidean complex. In the
case mz>2, we shall choose /; to be disjoint from each other. Define
now Ly, and H, according to 1°, 2° then 1°—4° are all satisfied for
them. Suppose now L;, and H; have been constructed for i <r—1
which satisfy 1°—4° and let us define L, and H, as follows. If r€ ],
then L,,= L.y, H,=H, having been defined. Furthermore, as the
case dim o, > m — 2 is trivial, we shall suppose in what follows
dimos,=e<m—2 and > 0.

Put d=m—2—e<m—3. Any two simplexes &, 7 in L], not
belonging to H,_ (K;*x(1)+K,%(2)) and having a dimension <d+1
have an intersection which determines a linear subspace P(&’, ") with
a dimension < max (—1, 2(d+1)—m). Let ¢’ be any simplex in L 0
lying on H,_;(0, x (1) + 5, x (2) +0, x [1, 2]), then ¢ and P(¢&, 7)
will determine a linear subspace P (&', 7', ¢') with a dimension
< max (—1, 2(d+1)—m)+e+1 = max (d+1, ¢) < m—2. Take now a
point o, in the interior of &,x[1, 2] and form the central projection
of the boundary of o,%x[1,2] with centre o,, thus obtaining a simp-
licial subdivision L,; of L,_,,+ &, x [1,2] which contains L,_;, as a
subcomplex. By §1 (A) we may choose a point o, in R™ not lying
on any linear subspaces P (&', 7, ¢’) such that H,/L,,,=H,-,
H.(o,) =0, will induce an almost semi-linear realization H,L,,=L,,
of L, in R™ through L,,. Then L,, and H satisfy 1°, 2°, 3° and for
1,7 € J,_, also satisfy 4°. Suppose now 1y 7, - € J,_, be the totality
of indices for which dim ¢;, =d and o;, s, have no common vertex
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in K. Then for each g, H. (5, x [1, 2])ﬂﬁ:(3,<“ x [1,2]) consists of

at most finite number of points pi., -, p, . Owing to the choice

of o0;, H*(ps.) consists of only one point in X 5; x [1,2], say pa.,
A

where £ =1, -, s.. Consider now any fixed index i =7. In L,
let us take any d-dimensional sunplcx 7 lymg on 0;%x(2). Take also
point x interior to y with H, (x) =x'. If d=0, we shall denote by p,
that point among pu=p, (A=1, -, si=s on 6;x[1,2]) which is nearest
to x=a;% (2) from ;% (1) to x, and denote by B the part of o;%[1, 2]
from p, to x. Then H/(B)=B'Cl; is a simple broken line. If 4>0,
then as 2(d+1)—m<(d+1)—2, we may still join p, to x by a simple
broken line B lying wholly on &; x [1, 2] such that for any point
y € 9; x[1,2], we shall have A;(y) § B'=H,(BY so far as y § B. It follows
that, whatever the case may be, B has always a neighborhood NV in
5;%[1, 2] such that H/(N)=N'is disjoint from H;(X 5; x[1,2]—N);

H,/N is one to one, and B does not pass through the points P
P~ Let the vertices of the broken line B be successively x, xy, =, x,=p,
and suppose that the segment xx, is in the (d+1)-dimensional simplex
£, the segment x;_, x; is in the (d+1)-dimensional simplex &; of
L, .o lying on o;x[1,2] (j=2, -, /(), and x; is an interior point of
the d-dimcnsmna] simplex 7, whlch is the face common to g and
&4:(j=1,2, -, k—1). Put H; ) =x;, H(g;) =€}, H (1) =7, H/(9)= =7.
Prolong xix’ to xo such that x'xg meets H, (Z g, X[l 2]) only in x'.

Denote by zj, -+, 2, the totality of points in ‘a THp) no,x (1, 2] and
denote by ¢; the (c+l) -dimensional simplex of L,, lying on ¢,%[1, 2]
which contains z; in 1ts interior. The integer ¢ will be called the
multiplicity index of pi. Consider any ¢, =¢, and denote by P the
(e+1) d1mcnslona1 linear subspace determined by ¢'=H.(¢). Through
each x] (0<j<k) draw now an (m— 1)-d1men51onal linear subspace
P; such that for 0 <j < I(, ,, contains 77, with &/, &/,, on opposite
sides of P;, and Py meets x, xl only in x5 Take an (e+1)-d1mcn510nal
simplex T containing z = 2, in its interior and contal_ncd in &, with
diameter less than a sufficiently small s>0 Put ?—H . For any
yé T we shall draw a broken line B, = 91 yo xo such that y/ € P},

= H/(y) and y]y/-, is parallel to x, - (7 1, -, k). Evidently
for ¢ sufficiently small we may make B, N Z H (d” x [1,2]1) =@ for

y €7. After the choice of such an & we may define a continuous map
H':L,—R" by H'/L,,—T=H, while for any y€7, H’' maps
linearly yz, to the segment B,. By §1 (B), we may construct an
arbitrarily small approximation H,” of H (H,”/L,,—T=H,’) such
that H,"” L,, is the space of an almost euclidean complex, and L,, has
a simplicial subdivision L,, having L,_,, as a subcomplex, while H’
is the continuous map associated with the simplicial map H,” (L,.z) L,
By taking the approximation sufficiently small, we may make H,” (3, x
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x [1,21)NH"(3; % [1,2]) consist of only k—1 points g, -+, p,, or
though of the same number of points py, -, gy as before, the mul-
tiplicity index of p; is decreased by 1, while the number of inter-
secting points and the multiplicity indices of H,” (3, x [1,2]) and
H'(5;,%[1,2]) (besides at p;) arc all unchanged.

Proceeding successively with the same process, we shall make the
number of intersections of the images in R™ of o,x [1,2] and 4;x [1, 2]
reduce to 0. Using the same procedure to each o; we get finally
a complex L, and a realization H,L,'0=L:‘0 which satisfies the con-
ditions 1°—4°,

By induction on », we get finally a simplicial subdivision L of
Kx[1,2] and an almost semi-linear realization HL=L" of Kx[I, 2]
in R™ through L. By 4°, this H will satisfy the following condition:
If dim o; + dim 6, = m — 2 and o;, 6; have no common vertex in K,
then

H(s; x [1,2]) N H(s; x [1,2) =9. (1)

Now let the chain map induced by the subdivision of K x[1, 2]
into L be denoted by S4, and that induced by H be denoted by H,.
Orient [1, 2] by the direction from 1 to 2 and put for simplicity

bo;= (—1)me He 8d(o; x [1,2]),
then
dhoi=Tyoi—T10;—hdoi, Gi€K. @

By (1), we get further: If dim o;+ dim ¢; =m — 2 and o;, o; have
no common vertex in K, then

P(koi, ko) == 0. (3)
Define now a cochain € C™! (I’E*) as follows:

&(o: Xg;) = P(dk 71, koj), dimoi + dimo; =m — 1, 6; X 6; € E*. (4

Since
D0(0ksi, haj) = (—1)tme+t iy (ko dko;) =
— (_1)dim o+l (_1)(dim oi+1) dim a; zm(aﬁo',-, ho‘,') —
= (= 1) 5 (Bha, o)

we know, by comparing with (7) of §2, that we may define unam-
biguously a cochain ¢ € C”™' (K*, 1)) by

(o * 5;) = P.(Bkoi, ho}), dim oi + dimo; =m — 1, gi x5, € K*.  (5)

For any o, % ;€ K* with dim o, + dim 6, = m we have now
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dh(orxar) = O (or X)) = P(Box X 1) + (—1)4™ % Ji (0% xBoy) =
= P(8k Box, ko1) + (—1)4™k J(Sha, £O51) ,

or
83(oxxar) = (—1)4™ & [@(4Bo%, Bko1) + B (Dhar, h3a1)] - (6)

On the other hand, since T,K, and T,K, are disjoint,
O(T104 Ty01) =@ (Tr04, T101) =0. (7)

By (2), (3), (4), (7) and the definitions of ¢,,=%; (i=1, 2) we
get

(1) [@(orx01) + Plorxo) ] = B(T1on Ti01) + B (Tr04 Tr01) =
= Q@(Ty04 — T104 — k0o, T,01— Ty 01— hdo1) — B(hdsy, hOo1) +
+ @(T 04 — Ty 04 hO01) + B(4Bss, Ty o0 —Ti01) =
= Q(Bkor, Okot) — B (ks hO)) + B(Bhar + Do, hs)) +
+ @(400+, Okoy + hdo)) = @(Bkow, £851) + B (4o, Bhay)

Comparing with (6) we get
Frloxx o)) + &y(orxa1) = 6f(oxxan) -
Since o, X o, is an arbitrary m-cell of K* we have
P+ Pr~0. (8)

In particular, if T, is obtained from T, by parallel translations in R”
so that @, = @, (8) becomes

2§;~0. (9)

From (8), (9) we get therefore

P~ ;- (10)

Similarly, we have also
2¢;~0, mod I(m) » (11)
P1~@;, mod Lim - (12)

The above imbedding cocycles &@;, @; are defined with respect to
R™ with a fixed orientation. If we reverse the orientation of R™ and
denote the corresponding 1mbcdd1ng cocycles of T by #;, @7, then we
have by Theorem 2 of §2, ¢7=—@;, or=—@;. Hence by (9), (11)
we have

¢~ r, (13)

P, ~®r, mod I(m) - (14)
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From (9)-(14) we get therefore the following two theorems:
Theorem 3. The imbedding cocycles ¥ and ¢r of an almost
semi-linear realization T of a euclidean simplicial complex K in an

oriented R™ ecach belong to a fixed cohomology class @™ ¢ H™*(K)
and " ¢ H™*(K, I,,,,). Moreover, these classes are independent of the
chosen orientation of R™ and the chosen realization T.

Definition. The cohomology class ®” in the above theorem will
be called the m-dimensional imbedding class of K, m > Q.

Theorem 4. All imbedding classes on integer coefficients have
order 2:

297 =0 (m even > 0). (15)

Remark. We have also~2(5"'=0, m >0. However, we shall prove
later that we have always @”=0 (cf. Theorem 9 of §5 and Theorem
16 of §8). Hence in reality ™ are of no significance at all.

From the definition of imbedding cocycles and imbedding classes
we have

Theorem 5. A necessary condition that a euclidean simplicial
complex K may have a linear (or semi-linear) realization in R™, is
that

" =0. (16)

We shall see later that in certain cases, this condition is also
sufficient.

Evidcntly.}{z*‘= is a two-sheeted covering complex of K*. Denote
the projection by =

o xt)=c+1 (6 xTEK*® .

Then by the definition of @7, ¢ we have evidently =* @, = p,, Br.
Hence we have

Theorem 6. Let 7 be the covering projection of K* on K*, then

o™ = ™ (m even > 0) (17)

0™ = 0,07, (m odd) (18)

in which p, denotes reduction mod 2. Suppose for the moment ™ =0
(cf. the remark above), then (17) and (18) may be reduced simply
to

P =0, m>0. (19)
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§4. TuEe RearizapiLity ofF ANy CocycLE IN THE IMBEDDING CLASSES

We have proved that the m-dimensional imbedding cochains @5
(or ¢r) of K are all cocycles and belong to one and the same co-
homology class "€ H™ (K) (or @" € H™? (K, I(s). Conversely, by
the definition of ¢; in §2, any ‘‘imbedding cocycle” ®; in & must

satisfy the conditions (o; % g; € K*, dim o, + dim o, = m)
¢T(Jix0']) — (_1)m+dim aidim a; ¢T(dix0-i) .

Hence if we change_ ®; into an arbitrary coboundary 83, JeC™I(R*),
the cocycle @+ 6§ of & thus obtained is in general no more an
imbedding cocycle, and is not necessarily realized as one of an almost
semi-linear realization of K in R™. On the contrary, for the class
97 we have the following

Theorem 7. If m > 1, then any cocycle in @™ may be realized
as an imbedding cocycle. In other words, there must exist an almost
semi-linear realization of K in the oriented R™, with any given cocycle
in @™ as its imbedding cocycle.

Remark. This theorem is not true for m=1. For example, let
K be a one-dimensional complex consisting of three vertices a, 4, ¢
and two segments ab, ac. Since K may be realized in R', we have
¢'=0. Hence defining a mod 2 cochain ¢ € C°(K*, I,) by ¢(bxc) =1,
$(a*b) =¢(a*xc) =0, we would have @ =8¢ € @', Suppose that
there exists an almost semi-linear realization T of K in R with
unbcddmg cocycle @r=@. Let T(a) =d, T(s) =5 and T(c) =<
Then since @7 (6 * (ac)) =8¢ (b= (ac)) =¢(b*c) #+0, we have
0, 0(8, T(ac)) #+0 so that 5" must lie between 4" and c'. Similarly,
since @r(c * (ab)) # 0, ¢ must lie between 4 and 4. But this is
impossible. Consequently @ € @' cannot be realized as an imbedding
cocycle. ‘

Proof of Theorem 7. Consider any almost semi-linear realization
ToKo, = K of K in oriented R™ through a subdivision K, of K with
corresponding imbedding cocycle @, = @, € ”. Denote the simplexes
of K by oy, 5, -~ with dim ¢; = 4,. Consider an arbitrary but fixed
(m—1)cell o;%0; in K*¥:d; +d;=m—1, and define a cochain
Xi; € C"(K*, I,y) by

0, Or* 01 F G; % 6j or O *0i,
X i(ox* o)) = (1)

1, Or* 01 =0i*3dj.
Our object is to modify T, to an almost semi-linear realization of K

in the oriented R™ through a subdivision K; of K such that the
imbedding cocycle of T, is
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? =@Q; = (p0+ Caxl.]’ (2)

where ¢ = % 1 is arbitrarily but previously assigned. Since o;* g; is
an arbitrary (m-—1)-cell of K¥* we may start from ¢, and arrive at
any cocycle in @™, and our theorem would be proved in this manner,

For this purpose let us remark first that, as m>1 by hypothesis,
we may suppose d; > 0. Consider any s1mplcxcs of Ko of dimension
d;, d; with T;Co,, T,C0; respectively. Let 7; —TOT,, 7;=Ty;. In each
of 7;, 7; take an interior point xy, x such that Xo= To(xo) QTO(K{,"“—T,-)
x = To(x) § T,(Kg~"'—7;). Construct a simple broken line B, with
successive vertices x, x7, -+, ., such that the following conditions are
satisfied:

1°. ¥ €, ,x, x,_,x, is orthogonal to the linear subspace R
determined by 7; and B N T, = (x').

2°. B is disjoint to the space of |T Ky~ ToSteT; — ToS2,7;1™ 7% in
which Sy denotes the star in K, Finally,

3°. xx is orthogonal to the linear subspacc Q, determined by
7/ and meets T, Kf~! only in the point xj.

Let Q be the d;-dimensional linear subspace in R™ passing through
%" and completely orthogonal to R and x,_, x,. Lct T be an orthogonal
transformation of R™, transforming Q, to Q, %, to x, and the xp x
direction to x” x, direction. For any point yOEStoT and any 20
and <1, let yo(S) be the point on xyy, with x,9o(e) : xoy, =¢6. Let
B,,0 be the broken line with successive verticcs yé = To(30), %o» 20> -
Xo_1s Voets v T(yo) y,, and x,, where y,,_ly v "y, are parallel and

equal to x,.; &', x” x, respectively. From 1°— 3° and the above con-
struction we see that

4°. If e is sufficiently small, then for any yoég‘r—;, By 1s
disjoint from the space of [To Ky — Ty S8t07; — Ty Sto ;™72

5°. If €>0 is sufficiently small, then for any y,€T;, B,y is

disjoint from 7.

Now for any 7, € Cl St57;, let 74, be the contraction of 7, with
centre xo_ and ratio of contraction &:1(0<es<1). In particular,
Ten = T Tgo= (x). Let L. be the complex formed of all 7., for
which 7, € Cl Sz, 7;. Construct a simplicial subdivision Ky, with both
Ky — St,7; and L, as its subcomplexes. In Ky x [0, 1] identify each
segment (z)X[O 1] with a single point, where z € Ko — Stoo 7ie (Stog
being star in Ky), obtaining thus a space My and a natural map
fo: Ko % [0,1] = M,. Under f,, Ky % [0,1] will induce on M, a
cell decomposition such that f, is a cell-map. Denote this cell de-
composition of M, by M., Then the parts of M, on f.(Kx % (0))
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and f.(Kpx (1)) are isomorphic to Kgx (0) and Kex (1) respectively
under the map f.

Define now a map H®: M, — R™ as follows. First, for any y,€ Sz7;,
let a, be a linear map of [0,1] to B, such that a,(i/2 (n + 2)),
§=0,1, -, n+ 2 are successively yo, o, =, Zn_y, Yn=y, y» While a, (1) = x]
(for the symbols cf. above). If z € f.(Ko — Sty T;c), then define
H(z) = To(z) Finally, let 74 € St 7;, y be any point €7,,, but not
interior to T,,, then for any z€ [0, 1], H° linearly map f.(yo%, ¢) to

the broken line
¢ ¢ t
B:ln_r = ayo [U » 7] + ayo (‘2_) arﬂ (7) »

H f(yo (1), 0) = @ (1—7), 1~

such that

= :
H fo(yo(m), ) = a_m,(zv/(Z—t))(?) , 0<yp<1——.

The map H° thus defined is evidently continuous. Let g;: K—Kx < [0,1]
be the map g,(2)=(z, 1), z€K, and H: K—R™ be the map B = Hf, g,.
Then HY=T,, and A? maps yox, to B,, where yo€ T, — Int T;,, 7, € 8§24 7,
By 4°, 5° we have then

48. If s is sufficiently small, then for any 7,€ St 7; 7,€ | K, —
— 82, T; —St, 7,1 ™%, we have

H?(?k,‘)nfofl=g, tE[O’l]'

S5 If e>0 is sufficiently small, then Hi(T;,) is disjoint from
1,7,
Choose now &> 0 sufficiently small such that 4; and 5, are both
satisfied. By §1 (B), therc exist a simplicial subdivision M, of My
and an arbitrarily small approximation H:M.,—R" of B° such that
H=H/f.(Kyp *x (0)), and H be an almost semi-linear imbedding of
Mg in R™ through M.. This approximation H of H’ may be chosen
so small that the following conditions corresponding to 4; and 5; will
be supposed to be satisfied.
_ 6°._AFor any T, €857, and 7,€ [Ky— Stp 7 — St 7;1"7? we have
(Ht =H fc g:)
HGrnd NTot=0, ¢€[0,1].

7°. H((T.) nT,7,=0.

Define now a map T,:K—R" by T,= H,f.g;, then T, determines
an almost semi-linear realization T, of K in R™ through a certain
subdivision K,. Let 84 and 84’ be the chain maps induced by the
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subdivisions K or Ky—Kg and M,— M, respectively. For any chain
¢ of K or Ko, HSd'f(Sdc % [0,1]) is a chain in R™, which will be
denoted for simplicity by (—1)""¢ A(¢). Then we have

Ok(c) = Ty(c) — Tole) — £0(c), c € C*(Kp) or C*(K) . (3)
k(r) =0, T €K, but &5z, 7;. 4)

By 5°, 7° and the construction we see easily @,(47;, Too;) =+ 1. By
conveniently choosing the orthogonal transformation T of R™ to be

orientation-preserving or orientation-reversing, we may always make”
(c= 41 as in (1))

Q(ht:i, Too;) = (—1)%tte. (5)

Let 7,€ 8t7;, 7,€ Ky — Stp7;—82,7;, where dim7, + dim7,=m — 1.

Then since dim 7, > dim 7; > 0 we have dim7,<m —2 and 7,€ | K, —
StoT; — St57;|™"%.  Hence, by 6°,

B(Aty, ToT) = 0. (6)

Let the imbedding cocycle of T; be ¢;, = ¢,. We shall prove
that for any cell o, * 6, € K* with 4, + 4, = m, we have

Pilor* o1) — Polor*t o)) =c8X; i{or*ar) - (7

Case L. Oy d[QSZ ;.

In that case T,/5,=T,, T,/6,=T,. Hence ¢,(o,%03,) =
=q@o(0, * ;). As X (o, ) =0, we have (7).

Case Il. 6, € St 0;, 0, = 05;.
We have dy=d;+ 1, and T, /0, =T,/5,=T,/ 5. Let
dox =asi+(, a=4i1, (8)
(¢ contains no term involving o;), then
S Xi jlor*or) =X (Osr*0o1) =alXij(oi*o)) =a- (9)
Let 7, € 82, 7; be the dy—dimensional simplex of K, with 7, € 6,, and

let 7;, 7, be oriented concordantly with o;, o, respectively, then by
(8) we get

Ot =ati+ (', a= 41, (10)

(¢’ contains no term involving 7;). By (3)—(6) and (10), we get

1) This is not necessarily possible when m—=1 (cf. the remark bLefore the proof).
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(—1)% [@1(or = 61) — Polor* 61} ] = PulT1 64 T161) — BTy 0n, To01) =
= Qm(T10x — Toor, To6}) = Pu(T17x — ToTh ToT)) =
=08ty Too;) + Bm(kOth, Too;) = £ Omlbta, 0T 0;) +
+ a@n(kti, Too) + Ou(k (', Too)) = (—1)%*1ac= (—1)%ac.
Comparing with (9), we get (7).
Case 1ll. o,€ Sto,, 6, =0,
According to Case I, we have
@i(ox * a1) — Polor * o1) = (—1)%2 % [@1(01 % 68) — Poo* o) ] =
= (—1D%%céXi(o1*or) =cdXi,(or*0),
ie., the equation (7).
Case IV. O‘k = 0y, 0, IS St ;.
We have then 4, =4; + 1. Let (¢ contains no term involving ;)
Oo1=ac;+(, a=41.
Then
83X, i{ox* o)) = 8 Xi,i(oi* 0) = (—1)4% X, (0i*Do1)=
= (—1)%aX;(oi*0;) = (—1)ia.
Since T, /6, = TO / 6, we have as before
(=% [Pilor* 01) — Polor * 61)] = Bu(Ty0i — To 0iy Too1) =
= @n(84ai, Too:1) + 040 6i, Too1) =(—1)%*' @.(hai, To001) =
= ('—l)di+l[a EM(}’ Tiy TO 0',') + gm(}’ Ty TO C)] =ac-
By comparing, we get again (7).
Case V. o,=0;, o,€S8t0;.
By Case 1V we have
Pilor*01) — @olor * o) = (—1)4 4 [@1(61* o) — Poai* op)] =
= (—=1)%%cX; (a1*0) =cXij(6x*o1) ,
ie., the -equation (7).
Case V1. The other cases.

We have then necessarily o, € Sto;, oy # 0;, 6:F 0, or o, =o0;,
6, & St0;, or the cases with the role of %k, / interchanged. For the
two preceding cases we have always o, & Szo;. Hence, let 7, €82 7;
be the Z,—dimensional simplex of K, with 7, C 7, and let 7;, 74, be
oriented as o;, 6, we would have

B (0% T Ty ar) = B4 O1i T d'[) =0.
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As Ty0, =Ty, we have ¢,(o4 * 7;) — @o(0; * ;) = 0. On the other
hand, that 6%;;(ay * o;) = 0 is evident. Hence (7) is true. The same
holds on interchanging the role of % and .

From the all possible cases considered above, we see that (7) is
always true for any o, *o;€ K* with 4, +d,=m. Hence (2) is
established and our theorem is completely proved.

§5. RELATIONs BETWEEN @*”~! anp @™ : %8@2’"“ = "

In this section the vertices of a euclidean simplicial complex K
will be arranged in a definite order a4, < 4, < -+ < ay, and any simplex
o€ K will be written in the normal form o= (4, - 4;) with 74 <
< -+ <1, and oriented accordingly. The dimension of & will be denoted
by d(s), the barycentre of & by o,, and the barycentric subdivision
of K by K,. The simplexes of K will also be arranged in an order
<such that o= (g, a;) <7 = (a, - a,) if and only if either
d(s) =r<d(t) =5, 0or r =35 and ¢ exists with 7= fo, ") freq = feuy
but 7, < f.

Theorem 8. Between the imbedding classes ¢*"~'¢ H*"~"*(K, I,)
and 9> € H*™*(K) of K we have the following relation:

S a0 = gn )

Proof. Let R™ be a euclidean space of dimension 2m, with a
rectangular system of coordinates (x;, -, %,m). Let R° be the linear
subspace of dimension s defined by x,4, =" = x,,, = 0 which is separated
by R"! into two parts R, : x,> 0 and R’ : x, <0, and will be oriented
according as the ordered sequence of coordinates x;, -, x,. Let [,
(1<s<m—1) be the line x;,=-=x,,=1, 25,0,= " = 2,m =0 50
that /,cR** and /,NKR¥'= @. Define an almost semi-linear reali-
zation TK, = K; of K in R*™ through K, as follows. Let us take on
R' a set of mutually different points A, 4, =, Ay and on /, a set
of mutually different points 4;..,, (1<i<'<i<N), I<s<m— 1L
Then

T(a;) = 4;,
T(00) = Ai i, = Ao(c = (@i, "** a;,) € K)

defines uniquely a semi-linear realization T of K”! in R™ !'cR™
through its barycentric subdivision. For any ¢ = (4, a;) € K with

d(¢) = s> m we may choose by §1 (A) a point 4, = A,,.;, in RY so
that on defining

T(0s) = Aa, cEK, o) =m,
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we may extend the above defined semi-linear realization to an almost
semi-linear realization TK, = K; of K in R*" through K,. Similarly,
for any s€ K with d(¢) > m, we may also choose a point 4. in
R*¥~! such that

T'(a;) = T(a;) = Ai,
{T'(Oq):T<Ou)=Au, dlo)<m—1, o€K,
T'(0s) = 4, o) =m, gEK,

will define an almost semi-linear realization T'K, =K, of K in R*™!
through K,.

With respect to R*™ and R*”™' already oriented, T' defines an
imbedding cocycle @, = ¢*” € ®*" and T’ defines an imbedding cocycle
@ =@ e @', Let ¢ and Lk’ denote the intersection number
and the linking number in the oriented R’ respectively. If o*7 € K*,
d(og) +d(t) =2m—1 and d(¢) <m —1, d(tv) > m, then by con-
struction T6 = ToC R™ 3, T'(IntT) NR*™ 3= @, so that T'5NTT =9
and we have

2 T'e, T'7) =0, dey<m-—1, dlo)+d(r)=2m—1. (2)

Define now @" e C*™ '(K*) by (o*re K*, d(o) +d(t) =2m — 1,
d(s) <d(t)):

e Howr) = ()" P YT's,T'r) . (3

Then it is easy to see that (3) remains true for 4(s) > 4(7). By
(2) we have then (s*7 € K*, 4(g) +d(t) =2m — 1):

P o) =@ NMrxe) =0, do)<m—1, dz)>m, ((3)
and

P2 P = @im-t, (4)
where p, denotes reduction mod 2. Our object is to prove that
5Py =27, (#)

For this purpose let x5 € K*, d(&) + d(y) = 2m, and consider the
various possible cases as follows:

Case I. d(&) <d(y) so that d(&) < m, d(7) > m.
We have the

QN Ex =@ (e =

=@ (B E ) + (—1)¢® @I (g2 BY) =
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= (—1)" @ NT'8,T'7) + (—1)" - (—1)*® @*~NT'¢, T'dy) =
= (—=1)" @~ I8, T + (—1)" B*"~1(OT'E, T')) =
— 2(___1)171 me-—l(TlaE’ T”]) A

As d(&) < m, any face in 9¢ has a dimension <m — 1, so that by
(2) we have

5T E ) = 0. (5)

On the other hand, as d(¢) < m, wg»_havc by construction TEC
R™ T(Inmg) NR*™ "= @, so that TENT5 = ¢ and we have

P(E ) = (—L1)® F(T&,Ty) =0. (6)
Comparing (5) and (6), we get

2m

ST Exy) =2@(Exn)=0. )

Case 1I. d(¢) > d(y) so that 4(&) > m, d(3) < m.
We have then

2m—

FP; N (E ) = (—1Y@ 4D g2 (7 g),
P& ) = (—1)@ D (74 £).
Hence by (5) and (6), we again get (7).
Case III. d(&) =d(y) = m.

By (3) we have then

SP N Er ) =PI" N BE* ) + (—1)" @I (£+57) =
= (—1)" @1 (T'8¢, T'7) + B*"~Y(T'&, T'd7).
or

PN E =) =28~ (T'E, TAY) . (8)

On the other hand, let B, be the reflection of A, with respect to R*™!,
then A,T8p — B, T8y is a cycle on integer coefficients, B,T# is disjoint
from TE‘, and T8¢ = T'0&. Hence
(g = ) = (=)™ (T, T7) = (—1)" p*(T§, 4, ToY) =

= (—1)"R*(T€, 4, Td) — B, Td1) =

= (—1)" Lk*"(9TE, A, TO7 — B, TdY) =

= (—1)" Lk**(0T"§, 4,787 — B, TO)) =

= (—1)" P*(1'&, 4, Td — B, Tdy) =

= (—1)" ¥ (1§, 4, TO7) .
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It may be seen that the last expression is the same as ¢*"~1(T'¢, T9y),
so that we have
P&+ ) = P N(T'E,T9Y) - (9

Comparing (8) and (9) we get
Q"I (E ) =207(Ex 7). (10)

From (7) and (10), we see that for any é*p& K* with 4(¢) +
+ d(7) = 2m, we have always (10). Hence we get (4). From (4)
and (4)" we get (1) and the theorem is proved.

Theorem 9. & =0.

Proof. Let m:K*—K* be the covering projection. Then by
Theorem 6,

71'* ¢2m—l =p, @Zm—l’ "* ¢2m — ¢Zm .

As w* . %8 =~;—, 8 - 7%, we get by Theorem 8
L dH2m—-1 &2
5 8(p, @ ) =0,
As ®™! is a cohomology class on integer coefficients, we have ¢ =0,

§6. Expricrr ExpressioNs oF CERTAIN REPRESENTATIVE
CocycLEs 1IN ¢!

We will make the same assumptions and use the same notations
about K as in the preceding section. For any o+7€ K¥, let {o*7}
denote the cochain on integral coefficients of K* which takes the
value 1 on the cell o+ 7 and the value 0 on all other cells of K*. The
purpose of this section is to prove the following

Theorem 10. The (2m — 1)-dimensional imbedding class @*"*
of K has a representative cocycle

gt = 0, 3 (i a1, ) * (oo 1)), W

in which > is extended over all possible sets of indices (4,7) for
which fy <1y <j; < <ipey < jm Similarly, ®”7! has also a repre-
sentative cocycle @*™~! given by

et =3 [{(aiyaim_) % (@jyaip)) — {(ajgr--a;,,) % (@iyeai, )}, (1Y

in which 3 has the same meaning as in (1).

The proof of this theorem will be divided into several steps as
follows.
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1°. Lemma. Let R*cCR*™ and s, 7 be euclidean simplexes of
dimension 7, s respectively, with » + s=24—2. Suppose ¢ and T
to be disjoint, and T a semi-linear imbedding of o"+7" in R¥™%. Let
[ be a line in R*™' not meeting and also not parallel to R¥7% and
Ao, Ay, A, be three mutually different points on /. Orient R¥7? as
an oriented simplex £ in R*"? and orient R¥™' as the oriented
simplex A,4,6. Then

P*~( A4, 4, TS0, Ao TOT) =

_ { (—1) LE*~3(T8s,T01),  if Ao lies between 41, 4, 2
0, if otherwise;
or what is the same,
™~ (A4, TOr, Ay A, TOs) =
_ { L%2#-3 (T8, Tds) , if Ay lies between A;, 4., 2y’
0, if otherwise,

in which @* and LX* denote respectively the intersection number
and the linking number in the oriented R* (k=24 — 1, 24 — 3).
Proof. Suppose first A, does not lie between A; and A, If
A,;4,T6" and A4,T7 have an intersecting point, then there must exist
points x, y in To", TT respectively and a point z on / between A,
A,, such that the segments zx and A,y will meet in the above point.
As Ao# z and x # y by hypothesis, the two lines Aoz =/ and xyC
R*7* would have intersecting points, contrary to supposition. Hence

A, AT and A,T7T are disjoint and we get the lower half of (2) or
(2)".

Next suppose Ao lies between A, A,, We may then take in
R¥"% a point 4 &T (e + 7). Prolong 4,4 to Ay and join 4,45, AsA,
Let C = AgAd, + A4, + A,4;. Take also in R*7? a point O’ such that
O'(To" + T7) is an almost euclidean complex. Define a semi-linear
imbedding T’ of ¢ in R*7 through its barycentric subdivision by
T'/o"=T and T'(0,) = 0. Then

LR*=3(T'90, TOT) = Lk*~3(T'90, TOT) =
= Lk*~3(9T’c,TO1) = P*3(T'5,T01) -

Since the 2-dimensional simplex A,4,4; and R*"* meet in the
single point 4, we see according to the chosen orientations of R*73
R*~! that

¥ (T'6,T37) = B*~(CT"q,T01) = P*~Y(CT'6, 8( 4o TOT)) ==

= (—1)Y p*~Y(9(CT’5), 4y TOr) = (—1)Y B*~Y(COT's, 4, TOT) =
= (—1) p*-(CTds, 4, TOT) -
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Hence

Lk%=3(T8s, TO7) = (—1) B8¥*~NCTds, A, TOT) =
= (—1) [P%~N 4, 4, TO05, Ay T7) + P*~1( A4} 4, T35, Ay TOT) +
+ B¥~Y A4, A, TOo, Ao TOT)] - (3)

Denote by R*"? the linear subspace determined by A,4; and R*73,
Consider any point z of A¢A, + Agd, any point x of To°, and any
point y of TT. In case z# A, zx will meet R*"% only in x € R®™3
while 4y CR¥™, Ay NR¥ = (y) # (x). In case z= Ay Awx and
Aoy will lie wholly in R¥"? but on opposite sides of R¥"% Hence
whatever z € AyAd; + Ajd;, x€To and y € TT may be, zx and Agy are
always non-intersecting. Consequently Ao4,T6" + A;A,T5° and AT
are disjoint and we have

P¥-Y A4 Ay TOs, Ay TOT) = P YA, A4 TOo, Ay TOT) = 0 .

It follows that (3) becomes the upper half of (2) and our Lemma
is proved.

2°. Let R™7" be a euclidean space of dimension 2m — 1, having
a rectangular system of coordinates (xy, -, Xpm_;). Let R (1<s<{2m—1)
be the s-dimensional linear subspace of R*™™! defined by x4, = =
= X1 =0, I, I1<s<m—1) theline x, = =ux,=1, 254, = - =
= X3s—y = 0, such that /,CR**' and /, meet R* in the single point
0,=(,-,1,0,--,0). Corresponding to each s>1 and <m — 1

2 Zm—22—1

and each ¢ = (4, a,) € K, we shall take a point 4, .; = 4, with

%3,41(A,) > 0 such that ¢ <7 (7 is another s—dimensional simplex of K)
would imply x;,4;(4,) < 2341(4:), or in simpler form, 4, < 4,. Take

also points 4; = (4,0, -, 0) on R'. Define now an almost semi-linear
2m-—2
imbedding T of K in R*™' through its barycentric subdivision K, by
T(a;) = 4;,
T(Oa)=Aa, GG‘K, O<dimo‘<m—-1,

and for s € K, let dim ¢ > m, T(0,) = A, be a point conveniently chosen
in R '(%ym-y > 0). We have then

T(aj, -~ ai,) = Aipiy, T aiy -+ ai,) €))
and

T&ai, -+ ai,) = 8 2 (—1Y iy iy Mig-iyoi T iy -+ 8+ &, -+ @3,), (5)

in which 2<m and 4;(s)) means that 4,(7,) does not appear in the
corresponding sequence.
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Proof. (4) is quite evident. The right hand side of (5) is

= — Z ("‘1)'“‘4:'0---9,-‘-:',,1‘(“:'0 e By e By @) F

r
7,5

+ 2 (=1 A3y, T aiy - B oo Gy @) +

rs

+ D (=1 My iy i ifOT iy o i, o Gy - ai) -

Denote the three terms successively by X,, 2, and 2, then

> = (=LY My Aig iy, — Aiqei iy i Fpiy F

6 f

+ Aig iy iy iy YT @iy o+ 8 - &3, oo @y aiy) -

As Aiyipi(A=r,5,¢) are all on the line /,_,, we have (r<s<1¢)

Ay Aigedpniy = Aigpiy i iy + AigipiyAig iy =0 .
Hence
23 =0. (6)
Next we have

S+, = Z (=LY * Aigi i) =Tty Bi,. i ,i)) + Taiy-Biy o8 0ai,)] =
= (1) iy 5 T iy Gy, e ay,) =
=T 3 (=1)Cai, & - ai,)
N ;
>+, =T8(ai ai,) - (6)
From (6) and (6)" we get (5).

3°. Let us orient R, s=1, -, 2m—1, as its coordinate sequence
%, - x, and orient [, by the increasing values of x,. For any
0<A<m—1 and any two simplexes o= (g, -~ a;_,), T=(a;, a;)
of K having no vertices in common, let
QZ""‘Z"“‘(T(a,-h i Z (—1)’+‘A,',,...?,.A.,-MA,,,...?,.‘.,'mT(a,-h--'&f,"'ﬁi,‘"aim)) = I
rs
(74
Then

(—1)$m=mm=b=02 <y <y < Lt s
1, :{ (8)s

0, otherwise.

Proof. For h=m — 1, we have
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m—l = ﬁl(T((hﬂ_l) AimAim_l) = gl(A'.ﬂl-l’ Ai”'—lA’.m) ‘
Since A;
A

Im =1

iy Aim_ A, are all on the line R' and A, , lies between
and 4;_ if and only if j._; <im-y <jm, we have

{+1 s Ime1 < < »
I,,,_l =

o, "m—l < ’.m"l or im—l > jm .

Hence (8)n_, is true. Suppose now (8)s+s -, (8)m-; have been
proved and let use prove (8), as follows.

Case I. 7, <jfs or £, > fr4;.

By construction A,-,;...,-m_‘, Ajyig, and 4.5, are all on the line
I(t=m—h—1) and for iy <js; we have always 4; i, < Aj.5 i
r=~A, -~ m, while for i, > j,y,, we have always 4; .., > d;.i.i,

r=*th, -, m. Hence whatever be %k and r#s(A<k<m—1, h<
r<s<m), we have

Ar',‘...i,,,_lT(ai/' aik i ai,,,_l) N Aib...']:'...lmAlh...I:-..l T(“i,, b ai, ""ai, e alm) =0
Hence by (4) we get
In= 0" YAy, iy T 2, (=L (ag, o iy @iy s
%
2 (—1)'""Ai,‘...?,...imAih...?,...imT(ai,, @t G 2, ))=0.
This is the lower half of (8),.
Case II. 7’,, < ih < ih+1'

Again by (4) we get
I, = @Y~ 4i,.i,,_,0T(ai, > ai,,_,),

(=) i iy, TCai, e & o 37, a4y )]
res
Since A, _, < 4.5, for r>1h, we have for 7, s >4,

—2h— . Y, By eee s nea g ==
me 2 I(Ai/....i,,,_laT(at,‘ at,,,__;) A’b‘"’r"" Ai,,...;,...;mT(ai,‘ e, aj, a,m)] = (),
As

Ajy gsoipgispd pirg = Ay i igiggoing T Aigigygmdgigeed pripg s

the expression for I, may be further simplified as
Iy = gam-2-1 [A;,,...i,,,_laT(ai,, i, ),

(=10 20 (1Y Ay i A g T By = B, aim)] =
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= (—1)gim--t [Ai,‘...i,,,_laT(dib i),

1

Z (=1 dj, i, Aigigpamin L @iy g 0 81y o ai,,,)] =
= — @2 4y BT aiyai,, )y Ay s AigingrinOT iy i )] -
Applying the Lemma of 1°, and (4), (5) we get
Iy = Lk*~%-3[0T(a;, -+ ai,,_,), OT(aj,,, """ & )] =
= Lkgm-24-3 [2 (_Uk—hT(mh...a,.k...aim_lﬁ) ,
X
d Z ( —1)'+‘Ai,,+1...?,...i,,,A;,,+1...?',...;mT(ai,,+1'"31',"‘31','"ai,,,)] =

— (—1)ymeigem=th-3 [‘f_‘ (104, i T iy i) »

> (“‘1_)’+’A/,,+,...?,...im/1;,,“...?,...;MT(aiH,'"ﬁi,“'ﬁi,'"d;,,,)] .
For k>4, we have iy <ju; and A; . e, < Aj, iy, =k +1
m, hence (k> %)
O3 Ay i TO @iy Gi - @iy,

Ajy g Ay prei i T By o @, 8, @i, )] =0,

and I, may be simplified as

1= (=023 gy T )
> (1) Ay i g Aigreipmin L (Bip g 7 Bip " B, '1/,,,)] =
r.f

= (_1)m+b+lgzm—2/z—3 [T(di,,_,_, aim_l) s

DG D o IV T I 4 O ANERY RRY a,-,,)] =
s -
= (—1)m+A1], ., .

By induction hypothesis (8),:,, we get (8),.

4°. We now prove Theorem 1° as follows.

Take the point Ay, , : ¥gm-1(Afpi,,_,) <0 symmetric to Aj.;,_,

with respect to 0,-; = I,,.; N R*"% and define a semi-linear realization
P 1

T, of 6= (a;,-a,_,) €K in R*"' through the barycentric subdivision
of & by
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Tia;) = Ai; §=1ip ' imey; T =T; TH0.)=4A

Then To — Tis is a cycle. For any 7€ K having no vertex in
y g

common with ¢ where d(7) + d(¢) <2m — 1, we have T'anTt =9,
hence @~ (T,)a, Tt) = 0.

Let 6 = (a4, a;, ), 7= (”io"'“i,..)’ FxTE k’*’ then

(=)™ (o x 1) = "~ NTo, T1) = @ NTo — Tis, T7) =

=g [Ta ~Tlo, Tt — 3 (—1)'+'A,-o...;,...;MA,-,,...;,..,",T(a,-,,---a,,---.a,-,---a,-m)] +

rs

+ pm—t [Ta' - T:a s Z (—1)"*"Afo---?y--J.,,A-"u--~;;'--i,,,T(‘1;‘0 LI R a,.m)] .

By (5), To — T,6 and T7 — Z(-l)"“ oo igy Aigedi, T (5, - e

a; - a;_) are both cycles, so that the first term of the right hand
side in the above expression vanishes. As T.o is disjoint from
Ajgeii iy i i, T(a;, - a; @, f‘i,,,>’ the above expression may be
simplified as

(=112 o x 1) = 02"""[Ta ,
S (= 1)y i Ay, T @i = 83, o @, a,.m)] .

By (7), (8) of 3°, we get

G (—1)r=bm=a2 iy <y <ot Kby <im s (9)
(6 x 1) =

0, otherwise.

From this we get further

~2m I(T % 0') — ___¢2m—1(o_ X T) .

{_(—1)<m-”<'"-2>/2, fo <o <jr <t ey <ijms  (9)

0, otherwise-
Next let o x 7€ K*, d(o) + d(z) = 2m — 1, while d(c) <m —1,
d(z) >m. Then To c R and T(Int7T) N To=¢. Hence
P Mo xt)=0, dlo)<m—1, 1) >m. (10)
Similarly,

N1 xa)=0, dlo)<m—1, &) >m. (10)’
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From (9), (9), (10) and (10)" we get

~2m-‘ Z (— l)<""'”(""2)/2[((aio"‘ﬂi,,,_,) X (4“/'0"'“1‘,,.)} —

— {(ajy -+ 4i)) x (@i, ai,_)}],
in which X is extended over all possible sets of indices (7, ) for
which 7, <7, < ]1 << 1,,,_‘ <Jm. Now by Theorem 4 and the

remark below @; and — @, are both cocycles in #""'. Hence &"!
has a representative cocycle as given by (1)".

Similarly we have a representative cocycle in ¢*~! as given in (1).
Our theorem is thus completely proved.

§7. Expricrt ExpressioNs For CERTAIN REprEseNTATIVE CocycLEs IN @*™

The notations will be the same as in the preceding section.

Theorem 11. In ¢’ there is a representative cocycle

= Z {(“iu"“’i,,,)*(“io"'“i,,,)}’ (1)

in which 3 is extended over all possible sets of indices (7,7) such
that ip < 7o < =+ < i < fm-

Proof. By Theorem 10 of §6, ¢*"~' has a representative cocycle
@t =p, > ((aiy -+ aiy_)* (4, a5, )},

in which 3 is extended over all possible sets of indices (7,7) such
that j, </ <j; <+ <ipy <fn. Define now @s” '€ C* (K*) by

2""‘ Z {(a'o h dim__l)*(a,'o T aim)} ’ (2)
in which 3} is as before, then
PPy = @t (3)

By Theorem 7 of §5, @ = %&PZ"”‘, hence #*" has a representa-
tive cocycle @™ such that

spm ! = 202" . 4)
We prove now @&" is the same as ¢*” in (1) as follows.

Let o7 = (a, - ﬂi,) * (g, ‘liq) € K*, iy <jo, p+ q="2m, then
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882 (047) = B Dy o) (e i) +

+ (=1)20g" " (@i, +++ ai,)*3(as, -+ a4,)) )
or

80" (av7) = 2, + (=1 3,5
where

20 =2 (=1 Q (i ai, o @) ¥ (g, o @1,))
i (6)
22 = 2 (__1)rq)(2)m—-1((aio e 5/.r a’.q),,.(a’.o dip)) .

Consider now various possible cases as follows (i, always < jp):
Case I. p=qg=m, i1 <fo< <in<jn.
By (2) we have

1 ] = 3
PE 1 ((agy o i, o ai Vx4 ) ={ r
0, r>0;
@I ((aj, -+ 87, a; )*(aiy -+ @i )):_{ 1, r=m,
" ~ » 0, r<m.
Hence 35, =1, 3,= (—1)™, and (5) becomes
@21 (g37) =2.
Comparing with (1) we get
3Pt (1) = 297 (a97) . (7)

Case II. p=g=m, and 744<fo < <1, <. does not hold.

In that case there exists either an index s with no j, satisfying
1, <y < 1,4y so that

s — 1 (

P57 (agy e &y, o 3y )4 iy ai))) =0, ®

or an index s with no 7, satisfying 7, < <js;- In the second
alternative we have still (8) for r %5, s -+ 1, while for r =135, s+ 1,
P ((ay, "'51,"'61;,,_) * (a;, “",,,)) and ‘P«zx”'l((flio"'3:',“'”4:',,,) * (a,
a; )) have the same value 0 or 1 so that 3, = (—1)"+ (=1)"'=0.
Hence we have always 2, = 0.

As i, <7j,, we have @"'((a; @ a,-m) * (@, ai”)) =0 for
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r>0. Itis also=0 for r =0 since jo<# <f; < <in<fm 15 DOt
true. Hence we have always 2, = 0.

It follows that 6@ '(c*7) =0. As ¢"(c+7) =0 by (1), we
get (7).

Case IIl. p<m—1lor g<m-—1L

In that case each term of 3, >, is 0 and we get still (7) by
comparing with (1).

Case IV. p=m—1, g=m+ 1.

As iy < fo <j;, we have 3, =0. Comparing with (1), we get
(7).

Case V. p=m+1, g=m— 1

In that case >}, =0, while

2= Z( 1Y@ ((agy i ) * (i &, = Biyy,)) -

Now we have necessarily an index s with no j, satisfying 7, <7, <
Ly (0<s<m). Then 7" 7'((4, - ay, ) * (@, &, ~a,,)) are all
0 for r s, s + 1 while for r=y3, s-+1 they are both of same value
0 or 1. We have thus always 3, = 0. Comparing with (1) we get
again (7).

Thus whatever the case may be, we get always (7) for any
o x 7€ K*(d(s) + d(r) = 2m). Hence ¢¢™ in (4) coincides with ¢*”
of (1) and the theorem is proved.

§8. RerArTioNs BETWEEN ¢ ANp THEIR TOPOLOGICAL INVARIANCE

As before let the vertices of K be arrangcd in a fixed ordcr
a,<a, <, and all simplexes of K be written in normal form (g, -
;)5 with 7y <, < -+ <4, Since K* is a two-sheeted covering complcx
of K*, we may defme as in [9] §1 chain transformations

©: C(K* G)—C(KR* G),

m C(K* G)—G(K* G),
and -
C(K*, G)—~C(R*, 6),

Al

such that for (a;, - a,-p), (@, "+ @;,) € K with no vertices in common,
we have

(((aig -+ 1) % (g 9)) = (=1 ((aip -+ @) % (o ai)), (1)

w((ai, -+ ai,) X (aj -+ 2ig)) = (aig > ai,)*(a) -+ @) , (2)
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7 (aiy -+ ai ) (@i, - ai))) = (aiy o ai,) % (aj, @) +

+ (= 1)P(az, - @) % (@i, o @) (3)

Put s=14+2 d=1—1¢ and let o, @, ¢/, &', d be the dual cochain

transformations of m, --. For any classes X € H(K* I,) and Y e H"

(K*), let us take %, ¥ € C*(K* I,) and ¥, ¥, 7,€ C¥(K*) such
that

7’ ;06 X , 8;0 = d’;l N (4)

7 Y€Y, 6¥o=4d'V1, 8y1=5"y,. (4)

Then #'%, and 7§, are cocycles mod 2 and integral respectively
whose classes are independent of the choice of x, y and may be
denoted by p* X € H™*'(K* I,) and v*Y € H**(K*). By [9] §1 (or
[10] §1), we have (1 denotes the unit class mod 2 or integral in K*)

prX=p*1UX. (5)
Similarly we have (cf. [10] §1):
VY =v*1UY, (6)

and
pw* = (£*)%p;. 7)
We shall now first establish the following
Theorem 12. Let @° be the integral unit class of K*, then

Q¥+l = p*p, 0%,  i>0, (8)
(pr'+2 — v*(sz s : > 0 s (9)
PPHHE = pH@H+L . i 20. (10)

Proof. Define @iECi(IZ’*), 1220, as follows:

- 1, jo<ip<+*<jm,
G2 ((aiy o aipy ) X (djrap)) = . (11)
0, otherwise ;
51 (a5 e ai) % (@, 9 )) =0, p+q=2m—1, (p,q)%(m—1,m), (11)’
1, (<< <{m,
& ((aj, =+ ai,) % (aj, 4 )) ={ . (12)
0, otherwise ;

G ((arp > ai,) % (a2 ai)) =0, p+qg=2m, (p,q) > (mm).(12)’

Then we shall show that

8t = s, ®
and

56



285
3™ = (1) ()

Let us first prove (I). Consider any (g, a,}) x (a;, --~a,~q)€k’*
p + g =2m, then we have

8G*1((aiy -+ ai)) X (aip - ai,)) = 20, + (—1)* D2, (13)
where

21 — Z (_1),-(52»:—1((“'.0 a'.r “ip) % (afo “/},)) R (13)1
22 = Z (__1)r<‘0'2m—-1((a’.0 aip) X (@j, - @, “iq)) . (13),

For the calculation of (13) let us consider various possible cases
as follows.

Case L. (p,q) # (m, m).

In that case (p—1, g) # (m—1, m), hence X, =0 by (11)". If
(p,q) + (m—1, m+ 1), then by (11)" 3, =0 too. Suppose now
p=m—1, g=m+1, then there exists an index s with no 7

satisfying 7, < iy <fy. For 75, s+ 1 we have then 7'((a, -
4, 0) % (a8, a,,,)) =0, while for r=1s, s+ 1, & (a;, - a,_,) *
(a, &, a,)) and & ((a;,  a;,,_,) * (@, :&,,, a,)) are either
both 0 or both 1. Hence 35, =0 always and we have

8> ((azy ++ ai,) X (ar -+ 4;,)) =0, (p,q) % (m,m), p+q=2m.

Case . (p,q) = (m, m).

By (11), X3, is evidently 0.

If there is an s with no 7, satisfying 7, <1, <j.,, then 3, =0
by (11).

If there is an s with no j, satisfying i, < j, < i, then by (11),
Pt ((ayy - &, @) % (@, a5,)) =0 for r<s, s+1, while for
r=y5, s+ 1, they are either both 0 or both 1. Hence 3,=0 always.

If there is no such s, then either 7 <jo < < i, <fw or f5<
iy < <fm<in,. By (10), we have then

r=1

1;
G ((aiy di, ai) X (g e 33,)) ={ Go < jo < v+ < im < o)
0, r>0

1, r=m
={ (fo <idp < o <oy <) -
0, r<<m
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Hence
1, fo <o < o L dpy < g
Si=4q(=D", fo <o < ot K iy Ly
0, otherwise.

Combining the above cases together, we have

1, p=q=m, << <in<jn,
8¢ ((aip -+ ai,) X (@j, -+ aj)) =S (—1)™, p=g=m, jo<ip<-**<fm<ip,(14)

0, otherwise.
Next, by (1) and (12), (12)’, we have

s'@lzm((ﬂio"'“im) % (“io"'“l,,;)) =
= ¥ ((aiy - ai ) % (@i, a;,)) + (=1)"F*"((aj, -+ a;,) % (@i, a;)) =

1, ”0<i0‘<"'<im<’.ma
= (—1)"" j0<iU<"'<im<im,
0 otherwise .

'@ (ai, -+ aiy) X (8,70 45,)) =0, (pq) # (m, m) .
Comparing with (14), we get (I).
Next lct~us prove’ (IT) as follows. Consider any cell (g;, *- a;ﬂ) X
(4, a;) € K* p+q=2m+1,-we have
8@'2"!((“’.0 .“a"‘g) X (aio '“ﬂ,‘q)) = Z] + (.__l)P Zz b4 (15)
where
2= 20 (0™ ((aiy - @, o ai,) % (aj,00 a)) (16),
2= 2 (1) ((aiy - ai,) % (ag e 85, a)) - (16),
Case I. (p,q) #(my m+1) or (m+1, m).
We have evidently >, = >, =0 by (12)".

Case II. (p,q) = (m, m + 1).

By (12)" we have X, =0, while by (12) we have by the same
method as above

{1, fo < fg < oot <y < i1

0 otherwise.

Case IIl. (p,q) = (m +1, m).

In that case we have X, =0, while
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(__1)m+1’ io < io <o <L im < im+l ’

0, otherwise.

|

Combining together all the preceding cases, we get

6@521::((“’.0 cee “ip) x (afo aiq)) =
(_1)".’ (P’ fI) = (m’ m + 1) 3 j0<i0<"'<iyn<im+l ’
= (_]‘)m+l’ (P) q) = (m +1, m) y <o L Lty , (1-7)

0, otherwise-

Next by (1), (11) and (11)’, we have
d;¢2m+l((aio... al'p) X (“lo“'“’q)) =
= @+ ((ajyeai,) X (a50a3,)) — (1) ((aj,+a5,) % (aipr-ai,)) =

{1’ (Psq)z(m:m'*'l)y i0<i0<'“<im<im+1,

—1’ (?’ q) = (m+11 m)’ ’.0<I.0<'"<im<"m+la

o, otherwise.
Combining with (17), we get (II).
Define now ¢ €C'(K*) by
=7, i>o0. (18)
Then by (3), (11), (11)’, (12) and (12), we have

P71 ((ag, - i) #(aj, - @) =

L, p=m—1, g=m, j<ir<ji<<im-1<fm
_ (fo>10); (19)
0, otherwise,
P ((aiy ai‘,)*(aio ﬂi,,)) =
1, p=q=m, io<f0<"'<i1vx<jmi
= (o <jo) - (20)
0, otherwise,

By Theorem 10 of §6 and Theorem 11 of §7,

P le it m >0, (21)
and
@™ @im m>0. (22)

Moreover @° is the integral unit cocycle on K*. Hence from (I),
(I11), (18), (21), (22) and the definitions of x* and v*, we get (8),
(10) and also v* ¢*" = (—1)®¢*"*% By Theorem 4 of §3, 20*"**=0.
Hence the last equation is the same as (9) and our theorem is
proved.
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From the above theorem and (5), (6), (7) we get also the
following theoréms:

Theorem 13.
PF U QY = Q¥+ (23)
22 (DZI' U (DZH-I i (DZI'—(-ZI"{-I , (24)
¢2i+l U ¢2i+l = p, ¢2i+2f+2 . (25)
Theorem 14. Denote by ( )’ the /—fold powers by cup products,
then
¥ = (0%, i>0, (26)
grr = (@)F+, iz, 27)
P2 0% = (PH)¥, i>0. (28)

Theorem 15. If 9™ = (0, then for any i > 0, we have ¢™* = (.
Theorem 16. ™' =0, for m > 0.

Proof. Define #™~' by (11) and (11)', we have by Theorem 10
of §6 (X being extended over all possible sets of indices (7, j) with
7’0 < io < j1 < L im-—l < im):

Fm =3 (i tin_,) X (@0 ) )= 2 (@i +a; ) % (@i ++a1 ;) } € 2771,

But by (II) we have d'¢""'~0. Hence @' = 0.

Combining this theorem with Theorem 9 of §5, we see that @™
are always =0 (m >0). Hence @™ are practically useless. On the
other hand, as we shall see in the two following sections, @™ are
generally 0 and play an important role in the study of realization
of complexes.

Theorem 17. All the imbedding classes ®™ € H™*(K, [.,)) =
= H™*(P, Im), m >0, of a complex K are topological invariants of
the polyhedron K = P.

Proof. Let L be another simplicial subdivision of P. As the
construction of K* and K* from K, let L*, L* be the corresponding
complexes constructed from L and letw: L* — L* be the covering
projection. By [6], we know that the spaces L*, B* of the complexes
L* K* have same homotopy type, and the same is true for the spaces
L*, K* of L*, K* Moreover, the identity of these homotopy types
may be realized by continuous maps f:i*-—-vfz* and f:L*—K* such
that nf==fo. It follows that p*, v* are commutative with f* (cf.
[9] §1 or [10] §1) and by Theorem 12 we have (@° denotes the
integral unit class):
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£ OH(ER) = £ (0*) 0°(K) = (*) 1* 0°(K) = (*) 0°(L) = 0¥ (L) ,
£ 9541(K) = 1 (u*)¥%1 0, 0°(K) = (5)¥* f* p, 0°(K) =
= (W) 0, 0°(L) = V(L) .

Since f* : H"*(K, I(my) = H™*(L, I,,,) may be considered as the identity
homomorphism of H™*(P, I,), the last two equations show that
9"(K) and 9"(L), m > 0, are identical elements in H™*(P, I(my). In
other words, ®"(K) € H™*(P, I,.,), m > 0, are independent of the
subdivision K of P and are therefore topological invariants of P.

The above theorem may also be slightly extended as follows.

Let PC O be a regular pair of finite polyhedrons so that P, Q
have simplicial subdivisions L, K respectively for which L is a regular
subcomplex of K (cf. [6]). Construct complexes L* and K* as before,
then L* is a subcomplex of K* and the inclusion map ;i will induce
homomorphisms

* . H™ (K*, G)— H™ (L*, G) ,

or
i* . H"2 (K, G) — H™* (L, G) . (29)

As in [6], these homomorphisms are really independent of the choice
of the subdivisions K, L and may thus be written as

*:H™? (Q,G)— H™* (P,C). (30)

As in the preceding theorem we may then prove the following

Theorem 18. Let PCQ (or LCK) be a regular pair of finite
polyhedrons (or a regular pair of finite simplicial complexes). Define
* as the homomorphistms in (29), (30) induced by the inclusion map
i:PCQ (or 1: LCK), then

i* 0m(Q) = ¢™(P) ,
or
* 9" (K) = @~(L).

§9. CompLexes REALIZABLE IN R”*! BuT NoT IN R™

Given integers n>0 and N > n Let us take N + 1 linearly
independent points ay, -, @4y in R which span an N-dimensional
simplex Ay, The n-dimensional skeleton of Ay is an n#~dimenional
complex Ky, Using the notations KCR™ and K ¢ R™ to denote
that K can or cannot be semi-linearly realized in R™, we have the
following
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Theorem 19.
Kns CR®, N>2n+2. (1) Ky.tR", N>2a+2. (1),
Kpizn CR™, 20n2m>z2n. (2) KpizanER”, 202m>2n. (2)im,
Kat1n © R (3) Kpr1n € R (3)’
K,.CR". (4) K., R (4)’

In the proof below, ¢; will be arranged in the order a5 < --- < ay
and @” will denote the representative cocycle in @™ as asserted in
Theorem 10 of § 6 and Theorem 11 of §7. All simplexes of Ky,
will also be supposed to be written in normal forms (a;, - a,-k) 0< g
< < 1‘/{ < N.

Proof of (1).

This is a classical result, of which the proof is quite simple (cf.
[1] Chap. 1 and [2] Chap. 3 §2).

Proof of (2).

In R™*! let us take m + 2 linearly independent points ag, -+, @py,
which span a simplex A, and a point a4, in the interior of AL,,.
Let K.+, be the complex formed of all 4-dimensional simplexes
(0 < k < n) with vertices taken from a; (1=0,1, -, m +2). Then
T(a;) =a;i=0,1, -, m+2, define a linear realization Krryn=TK., 124
of Kpizn in R™HL

(3) and (4) are evident.

Before proceeding to the proof of (1)’—(4)’, let us first remark
that (1)’ is the well-known result of Van Kampen and Flores®™* (3)’
states that an n—sphere is not imbeddable in R” and (4)’ states that
an n-simplex is not imbeddable in R*™. Both (3)" and (4)" are
classical results, of which the proof of the former depends on
Alexander’s duality theorem, and that of the latter is a consequence
of a theorem of Brouwer connected with theory of dimension. In
what follows we shall give (1)’—(4)’ a unified proof which makes
it plausible that in all these cases the non-imbeddability is owing to
the same fact, namely, the corresponding imbedding class @™ is #0
(cf. Theorem 5 of § 3).

Proof of (1)
Evidently it is sufficient to prove that Kiuy,. & R”.
For this let us consider in Kj4,. the following integral chain

z= 2 (aiy == ai,) * (), a5,) (5)

ig<iq

or what is the same,

1
o = 5 Z €igio (dtiy "+ “in) * (ay e a,-”) , )’
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in which the preceding X is extended over all possible cells with
io < jo, the second X is extended over all possible cells, and ¢;,;, =+1
or (—1)" according as 7, < j, OF 75> jo.

Let us now calculate 8z. Consider any cell (@, ax,_ ) *(a,a,) €
Kaizn Let 7, s be the two remaining numbers after removing
kO’ ) ku—h loy s 1, from 0, 1, -+, 2 + 2. Suppose 7 < s and ko <
L ey <r <k, < - < hpy <s < kyg <+ <ksy. Then the term

ay, * ax,_)*(ay, - ar,) in Oz is produced from the following terms
in (5)":
0 (ako Tt Bhg_y Br Gkg ttC ak,,._l) * (aln o al,‘) s
o (ako “'akﬂ._1 a, “kp vee akn—l) * (alo “es d[”) s
(al., “en alu) & a ("ko s aka-—‘l a, ;PSRN aku—l) s
(ar, =~ a1,) * O (ary *** arg_, @ Grg *** ax,_,) -
Hence the coefficient A of the term (ay, - ay,_)*(a;, -+ a@,) in Oz is
given by the following:
for ky <7,
1 -
A= 7 [(_l)a €koly + (—1)5 Ekoly + (_1)"'(’_1)a'("'1)"(" n Eloky +

+ (—1)"' (—1)ﬁ' (—1)"(”—1) eloko] = [(._1)‘z + (—1)‘!] skolo,
for r<ky<s,

A= ";— [Srl“ -+ (_1)561(0’0 + (—1)"' (—1)"("~1) Elyr +

+ (—=1)" (—1)8 (—1)"" "D g, ] = &ty + (—1)P 8yt »
and for r <s < ky,
A= Loy + sy + (=) (—1)7 D gy o+
+ (=1 (—1)"*" Vg, ] = 84, + 64, -
Consequently we have always A=0 mod 2, and p,z is a mod 2 cycle.
For any >0 and <2z + 2, define now
( $, 0 é s < r—1 ’
ols) = s+ 1, r<s<2n 4 1.
By Theorem 11 of §7, the 2z~dimensional imbedding class @ of

Knszs has a representative cocycle

n+2

@2 = D {(Ga,(0) @a2) ** Gaiam) * (a1) Gay(s) *** o ame1) } -
r=0

Hence ¢**(2) =27 + 3 and p,9**(p,2z) #0. It follows that p,0” #0
and we have Kju,. ¢ R ie., (1)', by Theorem 5 of §3.
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Proof Of (2);!—1,'1; i' €. K2n+l,n ¢R2n—l.

This may be derived from (1)’. Suppose we have a realiza-
tion T : Kpup1»CR*7). Consider R*™' as a linear subspace of R* and
K31, as a subcomplex of Kipez,om Take a point @5,4, € R*" and § R**"%.
Then by setting T(ays2) = @in4s we may extend T to a realization
T : Kyps2s CR™, contrary to (1)". Hence Kyuyy. ¢ R*7L

we may also give a direct proof as follows:

By Theorem 10 of §6, ¢*°~' has a representative cocycle

07 = 0y B (o, i) * (o 1,)) =
2n+1

= 02 2 {(@a 1) a(3) *** Ba(20-1)) * (@a (0) Fay(z) *** Gaizm) ) »
r=0

in which the first 3 is extended over all possible sets of indices
(4,7) with 0< <7 <j, < <11 <ja<2n-+ 1, and @, is defined
by

5, 0<s<r3+1,
a.(s) =
s=+1, r<s<2n.

Consider now in K* a (2# — 1)-dimensional integral chain

z= Z (a'o ) a‘n—-l (aio ot (li") ’

70>0

in which X is extended over all possible sets of indices (s, f) with
70> 0. It is easy to see that p,z is a mod 2 cycle and ¢**"!(pz) =1
mod 2. It follows that @'+ 0 or @ '#0 and K. ¢ R*, as
we require to prove.

Proof of (1)m»

When n =1, we have m =1,2 and (2)" becomes K;, ¢ R' and
K., ¢ R* which is (2)._,, and (1), in the case » =1 and hence is
already proved.

Suppose now (2)4..; for 2(n — 1) 2 m > n — 1 has already been
proved. Prove now (2),. as follows.

When m = 2n, (2),,. is the same as (1)) and has been proved.
The case m = 2n — 1 has also been proved. We may suppose there-
fore m<2n—2. In that case K,4,» has a subcomplex K,;.;. By
induction hypothesis K,.1,4-; & R™, hence we have a fortiori Knv,. ¢ R”,
what we require to prove.

We may also reason as follows. Consider the following assertion:

0" (Kmiza) 0, 222m>n (2)m,n
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When m =2n or m =2n — 1 and in particular for n» =1, we know
already that (2), . is true. Suppose now (2)) .-, is true and m <
2(n—1). Then by induction hypothesis #™(Kpiz0-1) 0. As Kpiooy
is a subcomplex of K.,.+,., we have by Theorem 18 of §8, 9" (K,4,4) F0
and (2),, is also true.

From (2), . we get (2)s.. From this reasoning it is seen that
the truth of (2).. is again due to @™ £ 0.

Proof of (3)".
Suppose first n = 2»'. Then

Q"= Q¥ = {(apaz " arr) * (@383 a20741) } € D",
and
R = pZ 2 (aio o ain,) * (“io o ai’]») + 22 Z Z (ako e aku._,) * (alo ot a’,.:...,) E)
r=1

i3 <ig

may be easily seen to be a mod 2 cycle, in which the first 3 is
extended aver all possible sets of indices (7,7) with 7, <7, and the
second 3 in the second term is extended over all possible sets of
indices (&, [). As p,9**(z) =1 mod 2, we have ¢” 0 or " % 0 and
hence Knyya & R

Suppose next # = 2»" — 1, then

@" =¥ 1= p,{(a1a3-* az_1) * (ap s a1a?’) } € D"
Moreover

n'~1

= PZ 2 2 (aio ‘" ain'—r-l) * (alo e ain'+r)

r=0

is a mod 2 cycle, in which X is extended over all possible sets of
indices (7, 7). Since @”(z) =1 mod 2 we have "« 0 or #” %0 and
again Kpyyn ¢ R

Proof of (4).

First, (4) may be derived from (3). Consider R™! as a linear
subspace of R” and K,, as a subcomplex of Ky, If there exists a
realization T : K,, C R""!, then on taking a point al,, € R" but § R*™
and setting T(a.+,) = @441, We get an extension of T to a realization
T : Ku3y,C R, contrary to (3). Hence K,, ¢ R\

Given now a direct proof by the unified method as follows.

Suppose first » be even: n =2x". By Theorem 10 of §6 we have

"l = @¥ = p, ((aya3 -+ @z’ _1) * (@ga; - ara’) } EP*TL.
Put

i
2 = Z 2 (aiy o ai,, ) * (aj, "i»'+y+1) s
il
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in which X is extended over all possible sets of indices (7, j). Then
P2 is a2 mod 2 cycle and ¢ '(pz) =1 mod 2. Hence 9*'# 0 and
we have K,, ¢ R*™!

Next suppose # be odd: n=2n"+ 1. By Theorem 11 of §7 we
have
Pl =@ = ((agay*** a2') * (a1a3** @' +1) } € O

Put

e= D E () (o) B ()« (e

fo<iy

in which the second X is extended over all possible sets of indices
(i, 7) and the last X is extended over all possible sets of indices
(i, 7) with 7, <j,. Then p,z is a mod 2 cycle and p,@" '(p,2) =1
mod 2. Hence ¢"'# 0 and we have again K,, ¢ R*™.

Our theorem is now completely proved. From the proof we have
furthermore the following theorems:

Theorem 20. The necessary and sufficient condition for Ky ,< R™
1s ¢m(KN‘") =0

Theorem 21. To any #> 0 and m < 21 and > » — 1, there exist
complexes K(m, n) CR™!, But ¢ R™ In other words, for n — 1<

< m < 2n, R™*' contains always more n—dimensional conplexes than
does R™.

The complexes K(m,n) in this theorem may be taken to be
Keizn for 2n 22 m>2n and K,, for m=n— 1.

10. Anoraer ExampLe oF Van Kampen' anp Its GENERALIZATION

In this section we shall apply the theory developed in the pre-
ceding sections to give an alternative proof of the non-imbeddability
of another n—dimensional complex in R* also due to Van Kampen.
We give also its generalizations.

The n-dimensional complex K, in this second example of Van
Kampen is constructed in the following manner. Consider n + 1 sets
of triple of points 2, a{*, a® (i=0,1, --, »). Take one point from
each of these n+ 1 sets to form an n-simplex, say (a{@a{’ .- g»)
(i=0,10r 2). Then K, is formed by all these simplexes as well

as all their faces. We have then

Theorem 22. (Van Kampen)® The Van Kampen complex K,
defined above is non-imbeddable in R*.

Proof. Arrange the vertices of K, in an order such that a{¥ <"
if and only if either i <jor i=j and k<! (4,7=0,1,-,n; k, [ =
=90,1 or 2). By Theorem 11 of §7, the 2a-dimensional imbedding
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class ¢ € H*™*(K,) of K, has with respect to this ordering of vertices
a representative cocycle

(pZn — Z ((a(()io) a;i;) e a’('i,,)) » (a((jlo) a;,h) e d'(.i"))},

in which 3 is extended over all possible sets of indices (7, j) with
10 <fo <73 5 1n <1, Next construct a 2n-dimensional chain

2= (af,"") ag.‘,) e g0y o (a‘()io) a:h) cee Uy |

in which 2} is extended over all possible sets of indices (7, j) with
ip < fo. It is easy to see that p,z is a mod 2 cycle and ¢**(z)=3"*=1
mod 2. Hence 9”0 and K, ¢ R*, what we require to prove.

Let us now extend Van Kampen’s example in the following
manner. Suppose we are given p + 1 sets (p > —1) of triple of points
a?,a’,a?, i =0,1, -, p; and g sets (g >0) of pairs of points 2,
e, j=p+1,,p+gq. Take one point from each of these p+ g+ 1
sets and form a (p + g)—dimensional simplex. The complex formed
by all these simplexes as well as their faces will be denoted by A4, .
In particular, A,, is the above-defined Van Kampen’s complex K,,

and A4_,, is a subdivision of the (g — 1)~dimensional sphere.

Theorem 23. For p>0, we have 4,,C R**** but ¢*(4,,) #0,
so that A,, ¢ R#*.

Theorem 24. If »<m <2n, then the n-dimensional complex

CR™! but ¢ R™ as stated in Theorem 21 may also be taken as
Am—n.zn—m-

Theorem 25. The necessary and sufficient condition for 4,,C R™
is 9™ =0,

The last two theorems are both simple consequences of Theorem
23. In order to prove Theorem 23, we shall prove first a general
result as follows. Given a simplicial complex L and two points 2,
by, the sct of all simplexes by, 4,0 and 7 (o, 7€ L) forms a simplicial
complex K, written as K = L + 5,L. In fact, K is the join complex
of L and the O-sphere {4,4,}. We have then

Theorem 26. Let K be the join complex of the simplicial
complex L and the O-sphere §°= {5y, 5,}. If p9*(L) #0, then
e U (K)Y £ 0. If 0 Y(L) # 0, then p0™(K) # 0.

Proof. Let us arrange the vertices of L in an order a, < a, < -
and the vertices of K in the order by < b;<a < a, <. With
respect to such ordering of vertices, the imbedding classes ¢™(L),
9" (K) of L, K would have respectively representative cocycles @™(L)
and ¢"(K) as follows.
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(L) = X, (@ -+ @,,) * (@i +3,)) (1)
PN L) = pp 20, {(aig - ai, ) * (a0 01) ), (2)

P = 01 3 3 (e )+ (i) +

+ 02 2, ((braiyai, ) * (boaj, a5 )} +

+ 0, 20 ((aiy o ai ) * (a5, ,.)) (3)

PE) = 3 3, (G, ) * () ) +

+ 2 (o aig i )+ (braj gy, _)) +

+ > ((ai, = ai ) * (@ a;,) ). 4)

In .these equations 23, ---, >, arc to be extended over all possible
sets of indices (7, 1) satisfying respectively:

10 <jo <if < oot <oy K fms (Zx)
Jo <ty <1< o Llppg < fmo (22)
jo<i0<j1<"'<im<jm+l’ (23)

fp<jo<Liy <o Ly L ot - (Z!)
To any chain z=3 ¢;(6:+7,) € C,(L*), define now a chain Byz€C,+,(K*)

by
Bz = > ¢c;(0i*byTi+ byoi * T;) .

Then B,:C,(L*) — C.+;(K*) is a homomorphism satisfying
BBoz=BOGz mod 2. (5)
For any o * 7€ L*, dims + dim7 =r, c€ C,(L*), we have also

(0% 857) (Bye) = {bya 1) (Byc) = {57} () mod 2, (6)
and
{o* 617} (Boc) = (61027} (Bye) =0. (7)

Suppose now @, 9*"(L) # 0. Then in L* there must exist a mod
2 cycle gz, z € Cm(L*), such that p,0™"(L)(p) #0. By (1), (3),
(6) and (7) we get

@ +1(K) (p; Byz) = p, @*"(L) (py2) # 0.

68



297

By (5), @Byz is a mod 2 cycle in K*. Hence the last equation
shows that @™ *1(K) #0 or &*'(K) 0. In the same manner we
may prove that ¢*"!(L) # 0 implies p,(K) # 0.

Proof of Theorem 23.

When ¢ =0, 4, is the same as the Van Kampen complex K, in
Theorem 22. By that theorem we have already p,9%(4,,) #0. As

() ($9)
Apq =y Apgq1ta, Apg-1s

by induction on applying successively Theorem 26 we obtain that
o**(4,.) #+0. Consequently A4,, ¢ R?*,

On the other hand, let us take a rectangular system of coordinates
(%1, "y Xopager) in R¥THL Tet R¥* be the linear subspace of R¥#*+!
defined by x, = =2x,=0, and R} (1=1,2, -, q) the line defined
by x;=0 js 1. Let us take on each line R} two points 5 = (0, -, 0,

, 7T
1,0, ,0) and 5 = (0,0, —1,0,-,0). As A,, is a complex of
=1
dimension p, there must exist a realization T : 4,,C R¥*!. On setting
T(a®) =560, T(a)) =54, i=1,2,, q, we get then an extension
of T:A4,,CR?***! The theorem is thus completely proved.

Remark. The theorem 19 of §9 concerning the realization problem
of complex Ky, in R” is in reality settled by known method (prin-
cipally the method of Van Kampen-Flores). However, the realization
problem of the complex 4,, in R™, so far as the author knows,
seems impossible to be settled by any known methods (Alexander, Van
Kampen, Flores, Thom, etc.).
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ON THE REALIZATION OF COMPLEXES IN EUCLIDEAN SPACES. Il
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Let K be a finite simplicial complex. We can always view K as a Euclidean complex in a
Euclidean space of sufficien(ly'high dimension N. Let its underlying space be denoted by K In
studying whether K can be imbedded in the Euclidean space R™ of some fixed dimension m, we have
introduced the following definitions (in [1] the notation is slightly different).

Let T: K — R™ be a topological mapping such that for every 0 € K, T/¢ is a linear mapping,
then T is called a linear imbedding of K. If T: K —» R™ is a linear imbedding of some
simplicial subdivision K' of K, then T is called a semilinear imbedding of K in R™ through the
subdivision K'. Again, if T: XK—R™isa continuous mapping such that for any ¢ € K, T/g isa
linear mapping (perhaps degenerate), T/o is nondegenerate if dimg <m, and for any simplices o and
7 with no common vertices, and with dimo + dim r <m, T(¢) and T(;) are in general position, then T
is called a linear pseudoimbedding. If T: K — R™ is a linear pseudoimbedding of some subdivision
K', then call T a semilinear pseudoimbedding of K through K'.

in [1], for a semilinear pseudoimbedding of K in R™, we have inwoduced a system of invariants
™K) € H™(K", I(m)), m > 0, called the imbedding index of K, where K* is the reduced two-fold

symmetric product of K, / is the additive group of integers if m is even, integers mod 2 if m is

odd. We have also proved That PMK)=0 is a necessary condition for K to be semilinearly imbed-
dable in R™. The purpose of this paper is to prove that these conditions are also sufficient in cettain
extreme cases,

More explicitly, let K1 be a 1-dimensional complex, then UKD = 0 is the necessary and suffi-
cient condition for K! to be semilinearly imbeddable in R!. This is obvious. Similarly, PUKN =0
is a necessary and sufficient condition for K 1o be semilinearly imbeddable in R2. As was pointed
out in [2], this is another way of stating Kuratowski’s Theorem. Otherwise, if the dimension n of K
is greater than 2, then ®2*K)=0 isa necessary and sufficient condition for K to be semilinearly
imbeddable in R2". This is the main theorem of this paper (sce $2, Theorem 1). This theorem was
first studied in the work of Van Kampen (see [3]). The invariant introduced by Van Kampen in [3]is
another way of expressing pszz"(K), where Py is reduction mod 2. There are errors in both his
statement and proof of the theorem (see [4]). But the method of our proof of the theorem still follows
mainly the original proof of Van Kampen; where the mistake occurs, we use a construction of Whitney's
to correct it.

In the following, a complex will always mean a finite Euclidean simplicial complex in Euclidean

space.
§l. Several constructions

In order to prove the main theorem of this paper, namely Theorem 1 of §2, we need the

Received February 4, 1957.
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following simple constructions:

A. Tube construction. Let C be an infinitely differentiable simple arc in R™ (i.e. the image
in R™ of a line segment under an infinitely differentiable topological mapping), with endpoints «
and a;. Let L{ and L] be two n-dimensional linear subspaces orthogonal to € at a/ 1,
respectively, let 58"1 and S';—l be (- 1)-spheres in Lg and L], with centers a, and @, and each
with sufficiently small radius ¢ > 0. Assume further that each S?-l is oriented. We will prove that
it m>n + 2, there always exists an n-dimensional differentiable tube T in the eneighborhood of C,
ie. T is the image under a differentiable topological mapping of the topological product of an

- 1)-spheres with a line segment, such that the two ends of T are §771 and §77! respectivel , and
P 0 1 p y
after suitably orienting T, 97T = 5'{-1 - 38—1.

0
and a

To prove this, write the points of C as a, 0<t <1. Let L;"_l be the (m - 1)-dimensional

linear subspace orthogonal to C at @,. Let the Grassmann manifold of all oriented n-planes of L:""I

through @, be denoted by R(nf)-n-l n Then there exists a fiber space L on C in which the fibers are the

inage of the Grassmann manifold k(‘) » Whose projection 7: L — C is defined by n_l(at) =(1\é(l)

m-n-1, m-n-1,n"
Since C is a simple arc, this fiber bundle has a product structure, Also from the assumption that
'~
m-n-1>1, Rgr:)-n—l " is an arcwise connected space, so any cross section on ay, 6, may be
,

extended to a cross section on C. In particular, take the cross section [(ao) = LS, ]'(al) = L'i on
85, @, where the orientation of LS, L’l' corresponds to that of 58'1, S'l'"l, it may be extended to a
cross section [ on C, f(a,) = L7, such that L? is an oriented n-plane of L:”—l through a,. From a
theorem of Steenrod, we can make [ into an infinitely differentiable cross section. Let S?-l be an
{n- D-sphere of radius ¢, center a, in L’tl’ and T be the space formed by the 57_1’5 for 0<t <.
Then for sufficiently small ¢, T is a differentiable tube with ends S§! and 5'1'_1 in the ¢ neighbor-
bood of C. Furthermore, with a suitable orientation, we have 97T = S'{'l = Sa_l as required.

B. Whitney construction. Let o, and o be two n-simplices in the com;_;lex K with no common
vetex and n > 2, and let T be a coptinuous mapping of K into R2" satisfying the following conditions:

1% The restriction of T to the {n — 1)-skeleton of K is a linear imbedding.

2°

The restriction of T to the interior of any n-simplex of K is a differentiable topological
Uapping.

3% T has only double points, but no triple points.

4°. T(ol) and T(oz) intersect in an even number of points ¢, -+, g, qll T qr' . Ateach
point 9 or qil’ the tangent planes of T(ol) and T(az) intersect only in the point ¢; or qil. Further-
vore, with respect to a fixed orientation of RZ", the intersection numbers of T(Ul) and T(az) (ol

and 0, are already oriented) are + 1 at each 95 and - 1 at each ql-'.

Vhitney’s construction (see [5], §§10-12) permits us to alter T into another continuous mapping
1 Preserving properties 1°~3° and changing 4°to

T
I T'(al) and T'(a2) do not meet. Furthermore, the alteration only occurs on ¢, and Ty and
does not change the other double points. In other words, we have

% T and T agree on K - Int gy - Int oy Furthermore, apart from eliminating the double points
9; and qi', T and T' have the same remaining double points.
Ve briefly state the construction of T'.

Ve may construct a simple differentiable arc Bi (i = 1, 2), conpecting 9,=9 and 9; =q' in
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T(Ui) such that B does not go through any other double points in T(o,), and B, and B, have no
common points other than the two endpoints ¢ and q'. Let £2" be a 2n-dimensional Euclidean
space with Cartesian coordinates (xl' see, x2n), E? will be the (xl, xz) plane. Let Al be the line
segment 0 <x) <1, %, =%, =+ 0 =%, =0, whose endpoints are r = (0, --+, 0) and r' = (1, g, c ),
A, be a smooth curve: x, = Mx)), 0 <x, <1, connecting r and r' in Ez(x2 >0). Let A=4 +4,
and 1 be a 2-cell formed by a sufficiently small neighborhood of A and the interior of A. It follows
from [5], $10, that for n > 2, we may construct a differentiable mapping 1 of r, such that y(r) = q9,
Yir'Y=¢q’', yl4 1) = Bl’ WA 2) = Bz; _the differentiable 2-cell (7 = ¢ intersects T(ai) only at B‘.
for i = 1, 2, it does not intersect T(K - Int o, = Int 02); and at any point of Bi’ the tangent planes
of T(cr‘.) and of ¢ only intersect at the tangent line of "B at that point.

Since the intersection numbers of the two oriented cells T(al) and T(oz) at ¢ and q'are +1 and

1 respectively, and n > 2, it follows from [5], §11, that we may define a system of vector fields
Wl(q‘), e, Wzn(q‘) on Y(7) = o, where all the Wi(q*) are linearly independent at each q* € g,
depending continuously and smoothly on ¢°, and satisfying the following conditions:

(a) Let ei(r*), i=1,++,2n be the unit vectors parallel to x; at r* €r. Then Wl(q‘) and
Wz(q*) are the images of el(r‘) and ez(r‘) respectively, under the vector mapping induced by y,
where q’t =y € a

(b) When ¢* € Bl’ Ws(q‘), ey Wnﬂ(q*) are the tangent vectors of T(al) at ¢*,

(¢) When q' € BZ’ Wn+2(q*), e, Wzn(q‘) are the tangent vectors of T(oz) at q*.

Now for r* € 7, define
mn n
¢ (r‘ + aaes('r‘>) = $(r*) + Daawi(d(r)).
i=3 i=2

Then in a sufficiently small neighborhood U of 7C E2n y is one-to-one. Now in each a; take a
sufficiently small neighborhood Mi of Ci = T_l(Bi); such that T(Mi) cV=yll),i=1,2. Let 7be
the projection: (xl’ EPUREER x2n) — (x p 0 Fgp v, x2n), We may assume M, to be sufficiently
small so that "(Nl) and ”(Nz) only intersect on the x -axis, where N; = ¢ 'l(T(Mi)), i=1,2 This
is always possible in view of conditions (a), (b) and (c).

Now take ¢ > 0 sufficiently small, and coastruct a continuously differentiable real function it}
such that

|v(z)] <1, v(0) = 1, and when x| > ¢, v{x) =0
Construct another continuously differentiable function x, = “(xl) such that

e u(z) — M%) >0, 01 <1
w>) =0, 5, —ecorz,>1+s.

For any point (x,, «-+, #,,) = r* in Ny, let
G(r*) =r* —v(al 4+ - + 2 )u(x))e, -

Then G(NZ) does not meet Nl' Now alter T: K — R2" (o Tl: K = R2%, so that T' agrees with
T on K _MZ’ and on MZ’

T\/M, = 66-'T-
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Then, if ¢ is sufficiently small, Tl is obviously continuous, and is a differentiable topological map-

ping on and oy does not have ¢ = 9 and ¢’ = q; as double points, but otherwise has the same
double points as T.
Now use the same technique on (g, ¢ ") = (4, 95) -

2 g, q,') to finally obtain a mapping T,
satisfying 1°-3° 4° and 5° as required.

C. Van Kampen construction. Let o and o, be two n- stmphces of a 2n-dimensional complex

K, n > 2, having common vertices. Let T bea contmuous mapping of K o R2° satisfying the followin;

conditions:

1° T is a semilinear pseudoimbedding of K through some subdivision K'.

2°. T is a semilinear imbedding of the subcomplex K, (or K2) defined by o, (or 62) and its
faces through the subdivision K; (or KZ’) of the above K'restricted to o, (or ”2)'

3% T has only double points, but no triple points.

In this situation, Van Kampen’s construction (see proof of Lemma 2 of [4]) permits us to change
T 10 another continuous mapping . T 'satisfying the following conditions:

1% T'is a semilinear pseudoimbedding of K through some subdivision.

2° T'is a semilinear imbedding of the subcomplex L formed by o, 0, and their faces through
the subcomplex induced by the above subdivision of K restricted to L.

3°, T' coincides with T on K - Intg, —Intg,. Morcover, T' has no triple points and has the

same double points as T’ except that the original double points common to T{g,) and T(o,) have
been removed.

Following the original construction of Van Kampen, we reconstruct the above T’ as follows:

Let x; = T(x“.) = T(xz‘.), i=1,+,r, where x; € Into, and x,; € Into

2 be the double points
of T formed by the intersection of T(g,) and T(o,).

We will change T step by step to diminish the
mmber of common double points in 7(0 and T(oz) and make the last mapping so obtained satisfy
10 50

For this let O be a common vertex of o, and Oy and let I be an n simplex of 0y belonging
In T(ol) construct a broken line ll from x
X; of T(rl) such that the broken line does not go through x
T(al). Also construct a sufficiently small linear tube C
sufficiently small neighborhood V of EN in T(o

small p-dimens ional convex nelghborhood v

+ . . . .
© K, and having O as a vertex. ; o an interior point

v ***1 X%, or any other double points in
1 of !, with one end the boundary of a

2) and the other end the boundary of a sufficiently
| which intersects T(ry ) only at xl, and such that C,
does not contain any double points of T. Nowalter T 10 T, so that T, maps o, N T I ) o
€+ V and on the remaining K- a, [} Int T" (V % Ty is the same as T Then this new mappmg
T sull has properties 1°-3° Only its double pomts xl REFE R have been changed to xl,

'p+*»%,. The same technique can be applied to Xy tooy X, Hence we may assume from the start
tat the double points *

v+ %, alllie in T(7)) and on any line segment 0'x; has no double
points except for ;e Here O' = T(0). Similarly, by slightly moving T(oz) if necessary, we may
“sume that T has the following additional properties:

4% For any 7' € I( which does not have O as a vertex the linear subspace spanned by T(:")
does not pass through 0
5° For any 1€ K' and any ;' € K' such that 7' does not have O as a vertex, and 7, 7' have

1 common vertex, then 0" and the subspace spanned by T(7) and that spanned by T(;') are in
feneral posmon
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Now let £; be the n-dimensional simplex in KZ' with x,, as an interior point. Obviously, 3]
does not have O as a vertex. Hence there exists a chain of n-simplices, EI' e, fs in K2' , such
that every two consecutive simplices &, &, i=1, <<+, s — 1) have an (2 ~ 1)-simplex 7, in
common, £ has O as a vertex, but none of the other fi's (i <s) has O as a vertex. It follows from
5° that for any simplex 1€ K', r# 'fl’ when 7 and £ have no vertex in common or only one, the
linear subspace L(O, r) spanned by O' and T(;) intersect the linear subspace L(¢,) spanned by
T(£)) in a line segment s(r) at most. When the common face of 7 and & has dim> 1, L(0, 1) and
L(fl) intersect in this common face only. Hence, because of the assumption that n > 2, we can con-
struct a line segment in 7{(£)) chrough x,, which intersects the interior of T(7,), but intersects all
the line segments s(7) only at Xy, and does not pass through any other double points in T(fl).
Denote by y, the intersection of this line segment with T(nl), and by y, the intersection with another
(n —1)-face T(no) of T(‘fl)' Again from 4°and 5° for any simplex r € K', 7 £ &, the linear sub-
space spanned by O' and T{s) intersect L(£,) at most in a line segment or a face of T(()). Since
n > 2, in the interior of T(fz) we may construct a line through y, which does not go through any
double points, which does not intersect any other such line segments, and which intersects T(nz) at
¥, Continuing this construction, we obtain a broken line l= Yo¥1 " Ys-q1» Where y, is an interior
point of T(z). Now in T(y,), construct a sufficiently small (n — 1)-simplex ng with y, as an inte-
rior point. Through each point y(; on the boundary of 1]6 » construct a straight line parallel to y.y |,
which intersect T(ql) at y{; through y; construct a straight line parallel to y y,, which intersect
T(Uz) at yzl; follow the same method, construct y;, ey y;_l . Then for each i =1, 2, +++,8-1,
all the y‘-' form the boundary of an (n — 1,-simplex "i’ in T(r;i), all the line segments yi'_lyi' form a
tube ‘fil in T(fi) with y,  y; as axis. Let £ = fl’ Foeen 4 ,and C = &' + 710'. Then, because

s-1
of the construction, 4° 5°and the assumption that O'x_ contains no double point other than X, we

know that if we choose 7; sufhcnendy small, C does nlot contain any double poln!s If we projccx ¢
with O' as center, the resul(ant cone C is an n-cell, which only intersects TK) on C+0' r]s =
and only intersects T(Kl) at 0.

Let 1(£') be the portion of T(.fl)+ -+ T(E 1) enclosed by ¢' + g + 775' . Nowaler T
to T} so that T coincides with the original T on K - o, IneT7 HKeEY+0' 7, _1) and T, maps
o, N T )+ (o s _1) to C. Then the new mapping so obtained still satisfies 1°-3° but x| is

no longer a double point of T,. T, has no new double points.

. . " . . g To 70
% ; we obtain a mapping T, which satisfies 1°-3" as

Now use this method on each of LSYRIANE

required.
§2. Main theorem—the necessary and sufficient condition for K® ¢ R2" when n > 2

In [1], we have introduced a system of invariants, ®™(K) € //'"(K (m)) m > 0, of a finite
simplicial complex K, called the m-dimensional imbedding index of K. Here K" is the reduced tvo-

fold symmetric product of K, / is the additive group of integers or the mod 2 integer group, accord:

ing as m is even or odd. We lgaze also proved that ®™(K) = 0 is a necessary condition that K be
semilinearly imbeddable in R™. In [2], we indicated that a famous theorem of Kuratowski about spict
curves, in the case of a complex, can be restated in the following manner: @2(K) = 0 is a necessary
and sufficient condition for a 1-dimensional complex to be imbeddable in the plane. The purpos¢ of
this section is to prove the following theorem:

Theotem 1. For a finite simplicial complex K of dimension n > 2 to be semilinearly imbeddutle
in RE", it is necessary and sufficient that ®2"(K) = 0.
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The necessity of the condition ®2*(K) = 0 has already been stated. We will prove the sufficienc

as follows. We will assume that K is a Euclidean complex in a Euclidean space RN of sufficiently
high dimension N.

Let R2*7! be an (n - 1)-dimensional linear subspace of R2" dividing R2” into two halfspaces,
R%" and R2". Let T _tie a linear imbedding of the (n - 1)-skeleton K"l of K into R27"™1, For any
n-simplex o of K, let O_ be the barycenter of g, let 00 be the barycenter of the n-simplex in R2771
determined by T(3), let P be the n-dimensional linear subspace spanned by T(5), and let SU be the
wit (2 — 1)-sphere in P_ with center O_. Foreach x €S, construct the halfline 0 _x from O to x,

intersecting T(o) at z'. Let the distance between O and x' be p_(x). Then p_ is a continuous

function on the differentiable manifold § . Choose arbitrary ¢> 0, then, by an approximation theorem

of Whitney, we may easily construct a continuously differentiable function f on Sc, such that for any
x€S5,,¢>p, ) = flx) >0. Forany a>0, let f_ (x) be the point on the halfline 0 x whose dis-
wnce from O is af(x). Then for a> 1, [o,ais a differentiable topological mapping of S_ 1o P

Now, through O, construct a halfline L in R2", orthogonal to R2%71 ) and choose an arbitrary
point O on it. Through O construct the n-dimensional linear space P/, parallel to P_. Assume
the previously choosen ¢ is sufficiently small. For any x €S _, let the straight line through fa,((x)
and orthogonal to R2"™1

. ) . . .
intersect P at [G,E(x), let the line segment connecting [011_€(x) and

{; ‘(x) be lx, and let m, be the orthogonal projection onto x ! OU of the broken line with consecutive

vertices %, fq 1__((x), [(’7 f(x) and 0(; Define T(-k"_l) as before, Extend T to the interior of

tach n-simplex ¢ € K as follows: for.any ¥' € &, if ' = T(x' '), x is the intersection of the half-
“I.W 001' wirh_Sg, and T;, is the linear mapping of the line segment ;'50 to the line segment
x 00, then T/x"' Sg_ = ,,;IT;_ Next, on the plane determined by O_x, [, and 0; /(’7 vf(x), construct

acitcular arc €, tangent to the straight line O _x at /o,l-(/z (x) and tangent to l, at p,. Also

enstruct a circular arc C; tangent to O; f(; t'(ac) at 0’ and tangent to [ at p,. Let l; be the seg-

nentof | between p, and p; »and let 7 be the orthogonal projection of the union of the line seg-
: . -

WCEIA: [0'1_(/2(1), the arc C_, the segment l; and the arc C; onto x'0_ . Define T'(K" 1) as

TK™™), and extend T’ 1o the interior of each n-simplex o € K, so that for any x' €¢,if 2,

vand T—, are as previously defined, then T'/x'0 = ' "} T—. It is obvious that by choosing «
x P! y x * y &

sufficiently small and suitably choosing Oc'r, we may make T into a semilinear pscudoimbedding

trough some subdivision of K, with no triple points, and any double points must be in the interior of
the segment s l;. Similarly, T' has no triple points, its double points agree with those of T, its

"'suiction to the interior of every n-simplex o € K is a differentiable topological mapping, T’ is
sficiently close to T, and in a sufficiently small neighborhood of K71, 7' coincides with T.

In the following, x € K will be called a singularity of T or T' if its image, 1{(x) =T'(x) isa
buble point of both T and T,

Choose an arbitrary orientation of R?" and let ¢ be the integer intersection number with respect
0 this ort : , L
o this orientation. Let o i=1,++,7 be all the n-simplices of K, and r, and let a=1, .-+, s
b L . .

il he (n - D-simplices of K, each arbitrarily oriented, so that for any 0% 0

»
.or g;* 7 €K, we
i i a
Yave

givo; = ( — l)dlma;dimd,‘d! v = ( — l)"d,"a\',

0(°f,=(—l)dlm"idim'ﬂfq‘d,'=fatd.-- }

1)
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According to the definition in [1], for any arbitrary 2n-cell T %0 €K',
pr(oina;) = (—1)"¢(To;, To;) (2)

determines the 1mbeddmg cochain ¢, € € $2™K) € H27(K") of a semilinear pscudoimbedding T. But
by assumption, (IJ MK) = 0, so there exists a y € cin- 1, such that

= ¢r, (3)

where y is defined as

x(d.“f,) =C.’,,,d."f,€ K.. (4)
Let J denote the set of all pairs of indices (i, a), such that g, %7, € K*. Let a; = Ea\CiaL
ba: Zi|Cia|, each summed over all a or all i, such that (i, a) € /. In each 0, choose a; distinct
interior points, all distinct from any singularities: ;‘.u P e iCy (i,a) € I. In each 7, also

— _ > ia
choose b, distinct interior points: Yia,1 " Yia ACal’ (i,a)€]. Let T(x k) =%k and

T(;‘a k) =Yia, k' For each Yia,k CORStruct an (n + 1)-dimensional linear space P ak orthogonal
to T(r ) and passing through Yio,k Construct an n-sphere S‘a 5 in Pm 5 of sufhcxently small

radius ¢;, ;>0 and center at Yia,k» Which intersects R2"1 g the (n ~ 1)- -sphere S(g)k' dividing

Sia,k into two hemispheres: § i+u,k CR?+ and S ok © R2™. Let 20k be the intersection of S;a,k
with the halfline through y, -\, orthogonal to RZ""1 and in Rz". Let z*.' ok be a sufficiently small
spherical neighborhood of Zi, ) in S :a p - Let z k be what remains of S‘a & after taking away

the interior of Z:a,k . Let the common boundary of zia,k be Z(i%.),k' We orient Piak so that

¢(P(¢,h, TT.,) = ( - 1)“ sgn Cn‘u: 6

where sgnC; = +1, ~ 1 or 0 according as C;.>0,<0 or =0. Orient S, 4. With respect to the
orientation of P'a x+ Then, by taking sufficiently small €ia k > 0, we may construct, in Ta),

{n - 1)-spheres S7, i With center x, , with radius ¢, ; such that the (S . )'s are mulual]y

ia,k

disjoint on T(a) and they do not contain any double points in any of their interiors. Let TH b

iak

the interior of S ak with the orientation induced from that of 0, Let T¢ be the intersection

iak
of S' a,x and oy also with the orientation of . In R2 , construct an (infinitely) differentiable

snmple arc f ak? connecting ok and z; ok SO that the arcs mu[ual]y do not meet, and mect 1(/\)

T’ (I\’) and a” the Sm,k only at Tiak and Zm,-k' Following construction A of §l we may con-

struct a differentiable tube Ciu k in a sufficiently small neighborhood of Cia connecting 51(‘.‘

Wk
and :z Eg),k , such that after suitably orienting ('“1 & » the orientation on Si‘a g induced by C;o 4

and Tfa 1 are the same, while the orientation on z(o)k induced by Cla k and z o,k 3% opposilc 1 other

words, T::’a +C; akt z ak is a relative cycle mod&. Now alter T' /g to T", mapping T l(Ti«a,/.») Cop 0
Ciop+ey, ko (1 a) F] T coincides with T' on the remainder of ;. The mapping may be smoothed out

( )

& by at mosc infinitesimal changes, so we may assume that 7" is a differentiable topo
me that

near 5 ak and z
logical mapping in the interior of g; . By choosing ali the ok 's sufficiently small, we may a also asswr
all the C ok A€ mutually disjoint, and only meet 7' (K) at 5 ! k' Then, 7' K 2 R27 is continuous ¢ Wﬂd
possesses thc following properties: T is a differentiable lopologxcal mapping in the interior of each g3 !

has no triple po[S and each of its double points is in the interior of both T g; and T o} the tan-
gent planes of T g; and T" g, at this double point intersect only at this point. Also, since for cach

u 4
o, €K, T" coincides with T or T in a sufficiently small neighborhood of o;, 7" is a lincar imbe

ding on a %ufficiemly small neighborhood of Kool
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Let o, % 0; € K‘, and
00i = 3 NiaTay 005 = D miaTe (Miay mip = £ 1or 0),
a 8

Let Tiﬁ.k denote the union of the interior of Siﬁ,k in Piﬁ,k and Siﬁ,k' so that T;'/j,k is compatible
with Si,B,k’ and we have (k=1,2, -, ‘Ciﬁl)

&(Sip.x, T'0;) = ¢$(Tipx, T'05) = ( — 1)""¢(Tip,x, 8T'a))
= ( — V)™ g d(Pigx, T'tp) = ( — 1) njp $(Pig,x, TTp)
= — 3jp SE‘Cipv

Similarly, we have (=12, -, lCial),

S(T"as, Sjat) = $(T"0;, 0T 54,1) = ( — 1)" $(8T"ay, Tio,1)
= (= 1)" nig ¥(T"Ta, Piat) = ( = 1)" 0ia $(T7a, Pia1)
= (=D g { = DI G(Pye, i, TTa)
=( - 1)”+l Niq SEN Cia.

Hence ¢(T“di. Tlldj) - ¢(T’d;, T'o;)
= ¢(T"d.' - T's;, T'ﬂi) + ‘#(Tnair T"o; — T'a;)
= > ¢(Cig,x — Tig, s + Sip s = 2002 T's;)
Bk t
+ D ¢(T"04, Cranr — Tia s+ Stat — 2fai )y
al
Tj‘a,l and z;a,l also do not meet

Since Ci[i,k' Tl;/:i,k and z:B:k do not meet Tlai' and Cjn,l’

T”"i’ we may simplify the above formula to

= ¢ (Sipx, T'o3) + D (T"o4, Sia,)
Bk al

= Z — {Cig| nsp 88D Cip + Z( —1)"|Cyo| nia 380 Cpa
B8 a

= — 3 Cignip + (-1 3 Cra Mia.
B a

On the other hand, we have
(= 1)" $(T'a;, T'ay) = ( = V)" $(Tai, Tay) = pr(ai+95)
= 3x(a; 0 05) = x(90i + 0;) + ( — 1) x(gi + 00;)

= 3 e x(a 0 0) ok (= "D min Koo T)
e
= D nie (oo T) + (—1)" ;’Hﬂx(”‘ * 7p)
= 201. Mia + ( — 1)";0«”#.
b conparing (6) and (7), we get

¢(T"0;, T"0;) =0, o+ a; €K*,
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Since the intersection number of T"ai and T"o]. at each double point is +1, we know that T"ai and
Tﬂ"j must intersect at an even number of points. Let this number be 2"1 Then the intersection

number at each of g double points is +1, and the intersection number at each of the remaining ny
double points is —1. Since T” is a differentiable topological mapping in the interiors of o; and 9
and at every double point, the tangent planes of T" o; and T"0; intersect only at this point, by con-

struction B of $1, we may alter the restriction of T on g; and o, to obtain a mapping which is

still a differentiable topological mapping on o; and % but whose émages of o; and ¢g; will be dis-
joint; and there are no new double points resulting from the intersection of the images of o, and 9
with the image of any other g;. Now apply this construction to every o; * ;i € K" to obtain a map-
ping Ty K — R2", with the following properties:

1°. TO is a differentiable topological mapping in the interior of every ¢;.

2° TO is a linear imbedding on a sufficiently small neighborhood of Knl,

3°% T, bas no uiple points. For every double point, T (x) = T {y) =p, x and y must be in the
interior of two separate simplices ¢; and o and o; have a common vertex.

Because of 1°, 2° and a theorem of Cairns (e.g., see {6], Theorem 2), we may construct a suffi-
ciently close approximation T of T such that for any o5 T(; coincides with TO in some suffi-
ciently small neighborhood of ol By choosing this approximation sufficiently close, we may obviously
still preserve property 3° So following the Van Kampen construction ($1, construction C), we may
alter Té to remove all the double points. The resulting mapping h: K — R is a semilinear imbed-
ding of K through some division of it.

Thus, we have obtained a semilinear imbedding of K to R%" and proved the sufficiency of the
theorem.

For an arbitrary Hausdorff space X, we have inwoduced a system of topological invariants
o™(X) € H™(X*, l(m) Y, m >0 of X, called the m-dimensional imbedding index of X. Here, X" is the
wwofold symmetric product of X. We have also proved that when X is a finite polyhedron and K isa
simplicial subdivision of it, under a fixed isomorphism H™X, ](m)) = H™K", l(m)), @™ (X) and
$™(K) are cohomologous. Hence the above theorem has the following corollary:

Theotem 1. For a finite polyhedron X of dimension n > 2 to be semilinearly imbeddable in R
it is necessary and sufficient that ®™(X) = 0

§3. Some suficient conditions for K* C R2n

The purpose of this section is to derive, from the main Theorem 1 of last section, some sufficient
conditions for an n-dimensional finite complex K to be semilinearly imbeddable in R2%. These con
ditions are either determined by the homology of K, or easily derived from the complex structure of

K, see Theorems 2—6 below.

Theorem 2. A finite simplicial complex of dimension n £ 0 is semilinearly imbeddable in R®

if (K mod 2) =0
Pmof The theorem is obvious if n = 1. So assume n > 2. Let K be the subcomplex of Kxhk

spanned by all cells o x 7, where ¢ and 7€ K have no common vertex. By assumption,

Hum(K x K, mod 2) ~ H.(K, mod 2)@HA(K, mod 2) =
Hp (K x K, R*; mod2) = 0
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and from the exact sequence of (K x K, K*),

o=y Hpny (K x K, B*; mod 2) - Hu(R*, mod 2) o
> Hpm(K x K, mod 2) - ...

it follows that HZn(K*, mod 2) = 0. Since the highest dimension of K* is 2n, this implies that

Zzn(k*, mod 2) = 0, where ZZn denotes the group of 2n-cycles. In other words, there exist no mod 2
n-cycles in k‘.

Obviously, k* is a twofold covering complex of K‘, whete the covers for o % 1€ K* are the cell:
oxrand rxo If p22?=lai * 7, is a mod 2 2n-cycle of K*, where the o; * 1, are muwally disjoint,
and o, denotes ieduction modr, then Py Eai X1+ py 3 7, X 0; will be a nonzero mod 2 2n-cycle of
K*, contradicting the above, So we must have 22" (K*, mod2) = 0, and hence ZZn (K*, mod 2m) = 0
for any integer m > 0. So, assuming ¢ to be a cocycle of ®2", ¢ mod 2 is orthogonal to all mod 2m
m-cycles of K' ie.®.2=0 mod2m for all z € ZZn(K" mod 2m) = 0. Next, from Theorem 8 of [1],
0" =% 502" 7L s0 & <1 5% ", where p2¢' € $27 1 ¢ 271 (K*, mod2). Thus, for any arbitrary
mod (2m + 1) 2n-cycle z of K, if we let z’ be an integral chain such that pzmﬂz’ = z, we have
.2 =y5d' 2z’ =Y4¢' =0, mod2m + 1. Hence, whether m is even or odd, ¢ is orthogonal to
any modm 2n-cycle of K*. From a theorem of Whitney [Whitney, On matrices of integers and combi-

national topology, Duke Math. J. 3(1937) 35—45), ¢ is a coboundary, or @2" = 0. Since n>2, the theorem
follows from Theorem 1.

Theorem 2 has the following corollary.

Theorem 2. A finite polyhedron X of dimension n # 2 con be topologically imbedded in R
if it (X, mod 2) = 0.

Theorem 3. A finite simplicial complex K of dimension n £ 2 can be semilinearly imbedded in
R if 1K) = o.

This theorem obviously follows from Theorem 2 and the lemma:

Lemna. If, for an n-dimensional finite complex K, H*(K) = 0, then Hn(K’ mod 2) = 0.

Proof. From the universal coefficient theorem, we have

H.(K, mod 2) ~ Hy(K)QI, + Tor (Haur( K}, 12)

H*(K) =~ Hom (Ha(K), I) + Ext(Ha«(K), D)
shere | is the additive group of integers and I, is the mod 2 integer group. By formula (2) and the
#ssumption that H™(K) = 0, it follows that Hom (4 (K), 1) = 0 and Ex(,(Hn_l(K), 1) = 0. From the
"0""“' it follows that Hn(K) must be a finite group. Since K is of dimension n, there is no torsion
the nth dimension, so Hn(K) = 0. From the latter, it follows that Hn-l(K) has no element of finite

oder, hence Tor (/ln_1 (K), 12) = 0. From formula (1), we have H (K, mod 2) = 0.

‘ Theorem 3", 4 finite polyhedron X of dimension n # 2 can be topologically imbedded in R2n
i < g,

In Topologie I of Alexandroff and Hopf (AH for brevity), Chapter 7, &1, there was defined the so-
tlled closed complex and irreducible closed complex (irreduzible geschlossene Komplexe). We will
Pove

Theorem 4. If a finite simplicial complex K of dimension n # 2 is an irreducible closed complex,
Ben K can pe semilinearly imbedded in R2n,

Proof, 1f p = 1, then from p. 284 of AH, Theorem 12, K is a simple closed polygon, so the
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theorem is obvious. So we may assume n >2. It follows from AH, Chapter 7, §1 No. 4 Theorem 5
and Chapter 7, 81 No. 5 that K has a patural modulus m, m=0 or m>2 When m> 2, there exist a modm
n-cycle P2 in K, where z = Zaigl., the aES are nonzero integers, a; and m are relatively prime and
3 is summed over ali n-simplices o; of K; so that for any coefficient group G, Hn(K’ G) = Z"(K, G)
consists of all the cycles gz, where g € G and mg = 0. So when m is odd, Hn(K, mod 2) = 0, and it
follows from Theorem 3 that K can be semilinearly imbedded in R2". If m > 2 is even, then

Z (K, mod 2) has only one nonzero mod 2 cycle, z,=p,2a;0;= pzza From the Kdnneth Theorenm,
we know that 7 (K X K mod 2) = ” (K x K, mod 2) also has only one nonzero mod 2 cycle, z2®z

pzio /T Now let z _pz‘): a. ;0 % 0 be a mod2 2n-cycle of K , where a; —0 or 1 and 3’ is

summed over all pairs of indices (i, h such that ¢; and ¢ have no common veruces. Then, viewing

2" as a mod 2 cycle of K x K, we should have 7= a(z2®22), where ¢ =0 or 1. But 22®zz has

s
terms | of the form g; X 0;, while 2 cannot have such terms, so @ must be 0, and HZH(K*, mod 2) =
(K , mod 2) = 0. From reasoning similar to that in the proof of Theorem 2, we have $27(K) = o,
Hence, from Theorem 1, K may be semilinearly imbedded in R2n,

Next, assume m = 0. Then from Theorem 4 of AH, Chapter 7, §1 No. 4, K has an n-cycle with
integral coefficient, z = Eai, where the X is summed over all n-simplices g; of K, éach with suitable
orientation, such that for any coefficient group G, H (K, G} = Z (K, G) consists of all cycles gz,
where g € G is arbitrary. In paxucular, A (K mod 2) has only one nonzero mod 2 cycle, Py = pzza
By the same reasoning, we have H (K , mod 2) = 0, hence ®2*K) = 0, and so K can be semilinearly
imbedded in R2", The theorem is now completely proved.

From AH, Chapter 10, §3 No. 5 and Theorem 4 of AH, Chapter 13, §4 No. 4, whether a finite
complex K is a closed complex or not is a topological invariant of K. Similarly, from AH, Chapter 8,
§4 No. 7, whether a finite complex K is an irreducible closed complex or not, is also a topological
invariant K. Let us call the space underlying a closed complex or an irreducible closed complex, a
closed polyhedron or an irreducible closed polyhedron. The Theorem 4 has the following corollary:

Theorem 4'. If X is an irreducible closed polyhedron of dimension n # 2, then X can be topo-
logically imbedded in R2".

Theorem 5 (Van Kampen). If any (n - 1)-simplex of the n-dimensional complex K is at most the

face of two n-simplices, then K can be semilinearly imbedded in R2™.
Proof. The theorem is obvious if n < 2.

Now assume n = 2. Also assume first that K is a 2-dimensional homogeneous complex. Then K
must be constructed as follows: let Ki' i=1, -+, r be some complexes, obtained by suitably sub-
dividing some connected surfaces, with or without boundary; then K is obtained by identifying some
vertices of the (K )’ From the well-known result of the classification of surfaces, we know that
there exist semllmear imbeddings T K — R4, we may assume that the Iv (K ys are mutually dis:
joint, Then the f s together determme a semilinear imbedding T: ZK ——aR“, where T//\ = T
Now let a,, j= 1, 2, , N, be all the vertices of the (K Ys that will become the vertices of K U“"
after identification. Assume also that all the al are dlvlded into several families (q; ] y v "/’)
j1 < jz </ , where the vertices in the same family will be identified, while those of different familics
will not be identified. Let f(a.) - For each family (a.l, cee, Z].), we may construct a fan:l) of

($19

simple broken lines 1-2 . lj , connecting a; o /l ajz respectively, such that ¢

KEX
broken’lines and T{K, ;) are mutually disjoint, excepl for the common endpoints. Let j=/,, "

i a! be a vertex of K; and V be a sufficiently small linear nei ghborhood of a in T( ) Then, ind
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sufficiently small neighborhood of each broken line l}- , we may construct a *‘linear conical surface”’
r

Ci with "‘vertex’’ ajl, ‘'base’’ the boundary of Vf , "taxis” the brokea line li , and we can

r I r

assume that these conical surfaces are mutually disjoint except for the vertices, and only meet
EK) at the vertices and the bases. Alter T to T":

Ezi —+ R4 so that T' coincides with T on
ZK —-EIn(V ,and T' maps V to C Then 7'

can be viewed as a semilinear imbedding of K
into R4 as requued Next, snll assume n =2, but let K be arbitrary. Let K' be the subcomplex of

K, consisting of all 2-simplices of K and their faces. From the preceding, we may construct a semi-

linear imbedding T: K' — R4, Obviously, this imbedding can be extended to a semilinear imbedding
of K. Hence the theorem is proved for n = 2.

Now we prove the theorem, assuming n > 2.

First, assume K is a regular connected (regularer zusammenhdngender, see AH, Chapter 4) n-dimen-
sional homogeneous complex. Then, for any two n- simplices o and o' € K with no common vertices,
tere exists a chain of n-simplices in K, o) =0, 0 2 0= o' such that 0; and ¢;

ivl (i=1,-+-,r=1) have
wly an (n— 1)-simplex 7; as their common face. Among 0, ---

1, let g be the last simplex havmg no com-
mn vertex with o, 1 <s <r~1. Then after suitably onentmg the a’s and r's, in K we have
{01 L 01) el {01 . d,} = G{rl hd "r‘ ’
{o,00,) — {a300,} = {1500},
{3 3,} =~ Lo, 00}

{o. a.}

J(T,_, . 0,’ »
8{r,s0a,},

where {£% pb (& n € K, £x 5 € K) represents the integral cochain wtth value 1 on £+ 5, but value
0o any other cell of K*. Adding these formulas, we see that the cochain ial xgl=loxo'}isa
cboundary. Hence H2™(K*)'= 0, and in particular, ®27(K) = 0. By the assumption that n >2 and
Theorem 1, K can be semilinearly imbedded in R2n,

Next, consider the general case for n > 2. Let K' be the homogeneous complex consisting of
allthe n-simplices of K and their faces. Let L be the subcomplex consisting of all the r-simplices,
'¢n -1, which are not faces of any n-simplices. According to AH, Chapter 4, §5 No.8, K' can be

decomposed into regular connected regular components (reguldrer Komponenten) K v, Ks, such
that

K=K1+"'+K1+Lt

there the common portion of any two subcomplexes on the right-hand side is a subcomplex of dimen-
"o at most n — 2. Thus

- K+ X+
i<d
vhere ]\" L‘ d L‘ .
i ; an are formed by cells of the form ¢ * 7, 0 and r have no common vertices

K ’CK »or 0 €K, and 7€ L, or 0, 7€ L. Itis easy to see that L® is a subcomplex of

&
nension at mos( 2n - 2, each Ll is a subcomplex of dimension at most 2n -~ 1 and the common

Mrtion of any two subcomplexes among the (Kii)’s and (Li )’s is a subcomplex of dimension at most

2 Hence, any mod 2m (m >0), 2n-cycle z of K* can be written as

z =22u.

i<y
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where each z;; is a mod2m chain of K:-, indeed it is a mod 2m cycle.

Now order the vertices of K in a sequence ay <@y <.+ <a,, such that the vertices of

K, Gi=1,+-,5- 1) are all in front of those of K but not in front of those of K, .+, or Ki-l'

i+)?
At the end of the sequence are the vertices that are in L, but not in any of the Ki’s_ Otherwise, the
ordering is arbitrary. It follows from Theorem 11 of [1], that, with respect to this ordering, there exists
a cocycle in (DZ"(K),

o7 = Z{(a;, - a;) o (g, @),

where 3 is summed over all possible groups of indices (i, j) such that lg <Jg <iy<eee <<

Let o; = (a,-o, ven, a,-n) €K, 0= (al'o, s al-n) €-Kl" B < <ip, fo<een<joand ;4 aI-€K;I..
If i <j, then, since Ki and Kf has at most an (n —2)-simplex in common, by choice of the osder of the
vertices, we cannot have either io <Jg Cip<eee <ip <j,oor jo<i <Jy <o < <i. So
¢2"(gi * oj) = 0. Therefore, by formula (3), we have p2m¢2"(z) = Epz’ntf)z"(z“.). Now let A; be the
inclusion mapping of K:i into K. Then obviously, )\':i’qSZ" € CIJZ"(K') € HZ"(K:,-). But from the last
part of this proof, @ 2"(Ki) = 0. Hence )\ff $2" ~ 0, and P2m d;z"(z“) = ,\?pz’" ¢2"(zii) =0 mod 2m.
Thus p,, $2M(z) = 0, i.e. ¢$2"mod 2m is orthogonal to any mod 2m 2n-cycles of K*. Analogous to
the last part of the proof of Theorem 2, we have, for any integer m = or > 2, that qﬁz" modm is
orthogonal to any modm 2n-cycles of K'. Thus, ¢2" ~ 0, or ®2*K) < 0. By the assumption that
n > 2 and Theorem 1, K can be semilinearly imbedded in R2". Thus Theorem 5 is completely proved.
Remark. Theorem 5 above is Theorem 4 of Van Kampen’s original paper [3]. His corrected proof
(see Lemma 6 of [4], uses a deformation theorem of [3] ([3], Theorem 2), so is different from the

proof given here.
Theorem 5 has the following corollary:

Theorem 6. Every combinatorial manifold (with or without boundary) of dimension n can be semi-
linearly imbedded in R2",
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1. Introduction

The concept of integral invariant of invariant form has already had a fruitful effect on
the theory and application of mechanical system. In 1947, Mr. H.C. Lee [6] in our country
introduced also the concept of universal integral invariant or universal invariant form for the
Hamilton system,and proved that besides those already discussed by Poincare and E.Cartan,
there are no other such invariant forms. Those universal invariant forms under Lee’s meaning,
can be generalized to following more general understanding: let M be a space of n variables,
G be an infinite transformation group on' M under E.Cartan’s meaning, a vector field X on
M will be called belonging to G, if the transformation in the local single parametric group
produced by X only needs to be sufficiently closed to the identity transformation then it
belongs to G. We denote the collection of these vector fields as £ G. Accordingly an exterior
differential from 6 on M will be defined as an universal invariant form of G (in the following
we abbreviate it as the universal invariant form). If for any vector field x € .ZG, the 2
derivative of 8 along X: .%#y0 = 0. When M is a symplectic manifold and G is an infinite
transformation group formed by all symplectic transformations on M, the universal invariant
form of G is similar to that defined by H.C. Lee.

E.Cartan has pointed out that there are six classes of primitive infinite transformation
groups, where four classes are single( see 1°,2°,4°,6° in the following). Cartan’s results up
to now still have not been proved, we list them as follows:

1°  The group GZ formed by all transformations on n variables.

2°  The group G formed by all transformations preserving the volume element

@=d$1/\"'/\d.’132

invariant on n variables z1,...,%n.
3°  The group GLI! formed by all transformations which varies only a non-zero constant
factor of the above mentioned volume element © on n variables 1, ..., Ty

4°  The group GLV formed by all regular transformations preserving the form
Q =dp; Adg(=dpy Adg1 + - - + dpn A dan)

invariant on 2n variables p1, ..., Pn,q1,- - -5 gn(n > 2).
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5°  The group GY formed by all transformations on 2n variables p;, g; (i=1,...,msn>2
which vary only a non-zero constant factor of the above mentioned form §2.
6° The group GY/ formed by all transformations preserving the form

w = dt + pidg; — qidp;
(=dt+pdg; + - - + pndgn — qudps — -+ - — gudpn)

invariant on 2n+1 variables ¢,p;, (i = 1,--- ,n).

This paper will determine the universal invariant form of these above mentioned infinite
groups. The group GIV in 4° is what H.C. Lee exploring. The case of 1° is insignificant,
the group in 3° and 5° are subgroups of the groups in 2° and 4° respectively, therefore its
exploration may be concluded trivially to the latter. Hence we need to explore only G in
2° and GY7 in 6° (see Section 2 and Section 4).

Many conservative laws in mechanics reflect a certain symmetry of the mechanical system.
They can be expressed by using the concept of universal invariant forms of certain subgroups
in GV, these subgroups are formed by all transformations preserving a group of function that
is the so-called “moved constants”. The complete determination of the universal invariant
forms of these subgroups is equivalent to the determination of the corresponding conservative
law of the system, (see Section 5).

The function, vector field and form etc. mentioned in this paper belong to C*°. More
accurately, they should be treated as sprout rundle section of function, vector field, the
form. Similarly, the so-called transformation also implies the local homeomorphism C*
transformation, the transformation group is the so-called pseudo-group. But since we con-
sider only the problems of local property on the whole, hence sprout bundle, pseudo-group
such vocabularies are not very necessary and have not been used in this paper.

In many formulas, in accordance with the custom of differential geometry overlapping
exponent indicate to take sum, we only write the sigma sign  and its range of taking sum
clearty when the range of indices my cause confusions, otherwise neglected.

2. Infinite Group of Volume-preserving Transformations

Let G be the single infinite group of type II formed by all transformations preserving
the volume element
O=dr, A ANdzxp

Invariant on n variables z1,...,z,. For any vector field X = X ia% we have
1
_oxt

Therefore the necessary and sufficient condition for X € £GI! is

i
divX = oxX =0.
8zi
Hence .#GL! contains the following 1n(n + 1) special vector fields:
0
i =——t=1,...,n.
Al azz ki t k) b n
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a
A = zja—zi,z,] =1,...,n;4 #J.
Now let
6= ail"'irdxil JAREEWA dzi,
be an unjversal invariant form of GI/, where a;,...;, are functions of zy, . . ., z,, anti-symmetric

for the lower index 41, ...,%,. Accordingly for any X € G’,I,,I , particularly for X = A; or Ay
we have £ x6 = 0. We have computed

Lal= @gg;—‘indzh Ao Adai,

.?Aijé) =z; @éﬁﬁdml AREEFA de‘ir + rai’ii"'ir_ldzij Adzy A ANdxy,_ .
By #4,0 = 0 we obtain 2%
nlay.pdzy A - Adzy, is a conlstant multiple of ©. Let r < n, then for any r indices
(%,%1,...,%p—1) such that ¢ < 4; < --- < ¢,_1 we can take any index j not equal to % and
i1, .. -, 4p—1, for this pair (7, j) the condition £ 4,,6 = 0 gives as;,...;,_, = 0. By this we obtain
6 = 0 and have the following

= 0, hence a;,..;, are constants. If r = n then § =

Theorem  The unigque universal invariant form of the infinite group G¥ of type IT is
a constant multiple of the volume variable ©.

3. Regular Transformation Infinite Group— H.C. Lee’s Theorem

Let GIV be the single infinite group of type IV formed by all regular transformations
preserving the symplectic form
Q =dp; Ndg; (1)

invariant on 2n variables p;, ¢;(¢ = 1,...,n). H.C. Lee has proved the following described

Theorem ([6] 1947) The unique universal invariant form of the infinite group GLV is
a constant multiple of Q and its outer power > =QAQ W =Q2AQ,..., Q" =0"1AQ,

Since this theorem and the computation in its proof is needed to use in future, therefore
we repeat it according to the form a bit different from the original paper as follows.

Showing the indices of range 1,...,n with the Latin letters 4, j, &, ... and showing the
indices of range 1,2,...,2n with the Greek letters a, 5, A, it,.... We introduce the new
variable as follows

zi = @i, zn—}-i = Diy (2)
also we show the anti-symmetric matrix which are the inverses of each others with €*, e.:
0 I
* _ (~affy _ *
c=e=( 20 ) (3)
0 -I
€x = (Eaﬁ) = ( I 0 ) y (34)
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where 0 and I are the zero matrix and identity matrices of order n respectively, accordingly
Q becomes

1
0= Eeagdza AdzP. (4)
With respect to any vector field
X = X’\-—a—x,
Oz

where X* is a function of 2%, there is
LxQ = Leap(dX® A daf + da® A dXP) = —d(eapXPda®).
Therefore the necessary and sufficient condition of X € £GLY is

d(eapXPdz®) = 0.

Since we only consider within a local range, therefore from Poincare’s lemma the condition
becomes that there is function H determined to a constant such that

capXPdz® = dH,

or eqpXP = g—gy, X* = EM‘%{;. By this we obtain the following

Lemma The necessary and sufficient condition for X € £GLV is that there is a func-
tion H such that
awOH 8

X is determined in this lemma by H uniquely, in the future we will denote it as Xg.
Conversely, H determines a constant by z € #GLV uniquely, in future we will denote a
difference of constants as Hx.

Now let any form of degree r (1 <r < 2n):

0= Aq, 0, d2% Ao Adz®T, (6)
Where Ag,..q, are functions of z* and anti-symmetric for the lower indices ay, ..., &
For any 5
OH
_ Pt Y 1A%
X 52F 50 € 2G,
there is

2
H
o Slda® A A de®,

i04ay.a, OH
o 10 B o’

#x0=[e 5 WM;;*#J;’A

where J! means to change the ith index a; in Ag,..q, t0 the operator of A:

1 —
7 VO W W )
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The necessary and sufficient condition for the form 6 is to an universal invariant form is that

for any H hence for any OH g 3—{2”81” we should have .#x6 = 0. By this we obtain the

following H.C. Lee’s system of equations:

o5, 30 ®)
(511 ,\u+5u Av)Jz - ar—o

By the front part of the system of equations, all Ag, ..., are constants. By the rear part
( where u,v,01,...,0, are arbitrary), H.C. Lee uses pure algebraic method to obtain that
when 7 is an even number 2s,

O=c-QA---A§,

—_—
8

where c is a constant, and when r = odd number
0 =0.

By this Lee has proved his theorem.

4. Tangential Transformation Infinite group

Let GY! be the single infinite group of type VI formed by all tangential transformation
preserving the form
w = dt + pidg; — gidp;

invariant on 2n + 1 variables t,p;, g;(i = 1,...,n). Applying the similar symbols in Section
3 we may write w as

w=dt+ Eagz“dwﬂ, (1)

hence
dw = gqpdz® A dzP = 2Q,

here 2 is same as (4) of Section 3.

Consider any vector field s 5
X=T—+X*"—
ot * oz’

where T, X* are functions of z* and t, setting

K= -;-(T%— €apr®X "), 2)
oK K
Ky="—, Ky=Kjp=—:, 3
A e M M o ok ®)
Th h
en we have oK .
Lxw = 2—— t+2( A+€a>\X Ydz?.

ot
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By Zxw = 0 we obtain %‘Itg =0 or K is independent of ¢ and X* = ¢** K hence

17
X = (2K — 2°Ko) = + e K\ 7.
( %Ky) 5 +¢€ A58 4
Its inverse is obviously true therefore we obtain the following
Lemma The necessary and sufficient condition for X € LGLV is that X possesses the
representation of (4),where K is any function of ©* but independent of t.
Now we write any form of degree r as

@ = Agya, dz® A< A dz®r (5"
Y= Bﬁl...ﬁr_lda:ﬁ’ A A d:l:ﬁr_‘, (5")

where all A and B are functions of z* and ¢, and anti-symmetric for the lower index, for the
X determined by (4),we directly compute and obtain:

0 = Agyg, dT® A+ Ada® + B, .p_,dzP A AdzPr1 A dL, (6)
9Aay ..o
Apyoar =2K ‘(;‘t <
0A OAa,.. . '
— (MG 4 TR (-1)7T6), Boy..y0-0,) K (&)

+ (6;i5)‘“']§\‘4a1---ar - (“l)r—j‘szjqua1-~-&j~~-ar)KWa

B =2K 1 =1 __ A 1 r—1 )\u 1 r—1
81 ﬁr—l at A (1) at + € axu )K)\ (6”)
+84.6M T B, .p,_, Ko
Because of K, Kxand K., can be selected arbitrarily, therefore the necessary and sufficient

condition for 8 to be the universal invariant form of group G,‘l’ T is that the following equalities
hold:

OBg, ... O0Bg, ...
ﬁ;}tﬁr-l =0, o /;zfr—l =0, M
(8,6 + 85, ) Bpy.p., =0 (™)
Agy -
sy ®
CYI _
E/\u% - (_1)7‘ ]aéjBal"‘aj"‘Qr =0, (8/)
(B, + 6 M) T Aayar — (—1) (8%, 2 + 6% 2¥) Bayayovay = 0. 8"

By (7) we know all B are constants and by (7’) such as the proof of Lee’s theorem in Section
3 we know (b =constant):

/(/): { g; (dw)‘97 r = odd 28'{’*17 (9)

T = even.
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Now set )
A = Aayar = (=1 Fera,6"Bay. g (10)

By direct computation we know that (8),(8"),(8") can be changed to the following equalities
respectively:

DA
DA
Mg =0 ar)
(8% ™M + 08 eM)VTEAL L, = 0. (111

Still similar to the proof of Lee’s theorem in §3 we know that there is a constant a such that:

a-(dw)®, r=even2s,
0, r = odd. (12)

ay-Qr

o' = A, da:‘“/\-~/\dx°"={

First let » = 2s be an even number, then by (9) we obtain ¢ = 0 and (10) becomes
Al = Agy,...a,- Hence by (12} we obtain:

arar
6=y =a (dw)®, r=2s (13)
Next let 7 = 2s + 1 be an odd number. Then ¢’ = 0 and (10) gives
Agyay = (-1 640,27 Bayijar

By (5),(5”) and (1) we obtain

¢ = Agy 0, dT™ A Ada®r
= (1Y ey0;27 Bayotjoa, A A+ o Ada®
= €ya; 87T A Bay .0 GZ Ao A Az Ao A daor
=(w—dt) Ay.

By (5) and (9) we obtain:

f=(w—d)AY+yYAdt=wAy
=b-wA(dw)®, r=2s+1.

To sum up, we have the following

Theorem The unique universal invariant form of the infinite group GY! is a constant
multiple of w A (dw)® and (dw)® (s =0,1,2,...,n).

91



270 Wu Wen-tsun

5. Regular Transformation Infinite Group Possessing Definite Symmetry

Still using the notations in Section 3 we consider the infinite group GIV formed by all
regular transformations preserving the form

1
Q=dp;ANdg = Eeagda:a A dz? 1)

invariant on 2n variables p;,¢; (¢ = 1,...,n). Let & be a given Lie’s group acting on
the phase space M on the right, that is there is a mapping ® : M x ¢ — M such that
for any z € M,g € ¥, setting ®(z,9) = ®2(9) = ®4(x) € M, we have &, € GLV and
Q9 = ByPy(g,9 € ¥). We also let @, be non-degenerate when g is not an identity element
e in 4. Denote the Lie algebra of ¢ as g, then for any a € g, regarding a as a left invariant
vector field on ¢, Y,(z) = ®;.a(e) defines a vector field Y, on M. By @, € GLV(g € 4) we
know Y, € ZGLV or %, 0 = 0. Similarly it is easy to prove that corresponding a — Y, is a
Lie’s homomorphism from g to .#GLY. We call the collection denoting Y, (a € g) as the Lie
algebra #/. It is easily known that for any function H, if H is invariant under ¢, that is for
any g € ¢, there is ®;H = H, then for any Y € %, we have %y H = 0O,or H is constant of
the motion produced by Y, or H takes similar values on each integral curve produced by Y'(
refer to, for example, [1]).
For any two functions H, K define the poisson bracket to be

OH,K) _1_ O(H,K)
apna) 2 Yo, P

(H,K) = = eqpHoKpg, (2)
Here H, = %—Ia, similar for the others. According to the lemma in Section 3 from H, K we
can determine two vector fields in GFY

d d
Xy = 5’\“Huw,XK = capKpg-

Accordingly

0

o
(Xu, Xk] = [EA“HuﬁyfaﬂKﬂ

Eral

9 9
= eaﬁe*“(HuKmW - KgHa#w).

interchanging (e, 8) and (A, ) in the first team on the right hand side, and « and 3 in the
second team,we then obtain
0
(X, Xk = e(e*PHgK o — eﬂo‘Kang)g—)\
x
0
oA
=€ u(EﬂaHﬂKa)ugkjy
or
(Xn, Xk = X(a,x)-

Hence the function under the Poisson bracket and the vector field under the Lee bracket
possess certain dualities.

92



On Universal Invariant Forms 271

Now we denote the collection of invariant functions under ¢4 as 5#. Since the Poisson
bracket is invariant under regular transformations. Therefore for arbitrary g € ¢,®, € GLY,
we have (07 H, @7 K) = ®}(H, K), hence when H, K € J#,we also have (H,K) € 5. Also
by the known properties of the Poisson bracket, we know that % becomes a Lie algebra
under this bracket, if according to the lemma in Section 3 we denote the collection of all
vector fields Xz corresponding to H € 5 as & C .£GLV. Then the Lie algebra formed
by & under the Lie’s bracket and the Lie algebra formed by 5 under the Poisson bracket
possess the previous described dual property. We will denote the infinite group generated
by the regular transformations produced by the vector field X in & with GIV, and denote
Z as LGV,

Our purpose is to determine those forms which are invariant forms under the usual
meaning for all H in S, or that is the universal invariant form of GIY. Every such universal
invariant form corresponds to a conservative law possessing relative symmetry with ¢ in
physics.

Because of this for any vector field Y,,a € g in %, according to the lemma in Section 3
take a relative function f, (determine to a constant) such that Y, = Xy,. For a,b € g by
[Ye, Ys] = Y(a,b] and [Xy,, Xy, ] = X(z, 4,) we obtain (fa, f5) = fras) (differs by a constant).
Let the whole group of f,(a € g) be ¥, also let the collection after adding all arbitrary
functions F(fay,- -, fae ), (@; € g) in ¥ be @. Then it is easy to see that ¥ is the smallest
function set possessing the following two properties and D %

1°  There is a function basis fi, ..., fm, the rank of its Jacobi expression = m.
2°  For any f', f" € we also have (f', f/) € €.
Proof. take abasis a;,i = 1,...,m (m = dim¥) for g, and set f,, = f;, then f; satisfies 1°

and (f;, f;) = cfj fi (differ by a constant). Here cf]- is the structure constant of g, accordingly

. ' " _
for any f', f" € €, f', f" are functions of f; and has (f', ") = %% . %6-— “(fi, f5) € €. That
i J
is what we want to prove.
The function set possessing the two properties of 1°,2° is called a function group (see
[2] chapter 9 or [5] §69). By the theory of function group we know that we can take a

standard function basis p1,...,Pr4s,G1,-.-, ¢ in € and it can be spanned into a function
basis p1,.--,Pn:ql,---,dn on M such that it possesses the following relations (as above,
particularly see [5] theorem 69.6):

(qiy q]) = 07

(pzyﬁ]):07 (7’,.7=1v»n)7 (3)

(Pi, @) = 045

According (7, ;) can be treated as a group of new coordinate on the (p;; ¢;) phase space and
the transformations form (p;, ¢;) to (5, &) € GLY; and (in the expression 4 is from 1 to n):

Q = dp; A dg;. 4
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For any H € # and F = F(f1,..., fm) € €, we have

OF oF
(HwF) - 8—f1(H’fl) - —a_figYa,-H =0
Conversely, if the function H such that for arbitrary F' € & we have (H, F) = 0, then for
arbitrary a € g, we have %y, H = Zx, H = (fe, H) = 0, hence H is invariant under ¢ or
H € 5. By this we know that 5# and % form two function groups which are the inverse
of each others, and 4% has a standard function basis pri1, ..., Pn, Grt+s+1, - - - » Gn, refer to [2]
and [5].
If we write any vector field X in #GLV as

n n
X_Y 0H 0 _§0H D
i=1

where H is a certain function of 5;, @, then when X € & = #GIV, we should have

O0H
iﬂzﬁi:_ﬁ_@:g’ i=1,...,r+s,
i
OH
ja)qiz"%f:O, i=1,...,r.
]

Summary the above mentioned, we obtain:

Lemma  The necessary and sufficient condition for X € & = £GIV is to have a
Junction H which only depends on

;57'+1)-"vﬁnaqT-i-s-i—l?"':(jn (5)
such that n .
Xo SN OHO N 0H D 6
51, 9Pi 0g; oy 93 OB
Introduce the notations

t = n—r—s
yz = qr+i:

y“’f = Dpti, (t=1,...,8) (7
21 = Qris+iy

M= Py (E=1,...,1)

Take the following range of indices:
a,b,e,...=1,2,...,s
{A,B,C,...=1,2,...,2t. ®)
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Also take matrix of order 2t, which are the inverses of each others

== % ¢),

o -1 9
77*=(7IAB)=(I _0>»
where 0 and I are the zero matrix and identity matrices of order ¢.
Accordingly any X € 2" of expression (6) can be rewritten
OH 0 g 0
X =n*® (10)

88 94 gytte ay®’
where H is an arbitrary function only depending on 24 and y*t2.
Now let 8 be any universal invariant form of degree m of GLIV. Write 6 as

0= szuil A A duik A Oil...ik,
k20 (i)

where all u; represent one of py,...,Pr,G1,...,q and 6;,..;, is a form of dz4 and dy®, dyst®,
their coefficients are all functions of the variables 5;, §;, for X in expression (10) we obviously
have
Px = szuil FAREEWA duik A fxeil...ik,
k20 (3)

and .%x6;,..i, does not contain any differential du, hence by Zx60 = 0 we obtain Zx0;,...;, =
0 that is all 8;,..;, are universal invariant forms,

By this the problem is concluded as determining the universal invariant forms of the
following shape (let it be of degree )

=" dis, A+ Adity Ay,
k20 (i)
where ; shows Pri1, ..., Bras, Grtls -« -, dr+s that is one of y2,4*+® and éiy--ik is a form of
degree m — k of dz4, its coefficients are all functions of the variables 7, §;.
Now we first consider a special case such as X = X' € & of expression (10), where H is
an arbitrary function of 24, but independent of y5+%:

X' = .
K 928 924

(1)

Accordingly
Lx10 = Z Zdah A Adidg, A .?X/(Z-l...,-k,
k>0 (i)
and from .%x/8 = 0, similar to the above, we obtain _leéi,...ik =0, here X' is to show as in
expression (11), besides it is arbitrary. By this we know that 0;,..;, is the universal invariant
form of all regular transformation infinite groups preserving the forms

n
Q= tnadeAnd® = Y dff ndg (12)
2 A
i=r+s+1
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invariant on 2t variables z4 (the variables pu, ..., Prys, @1, - - - » Gr+s are regarded as constant
parameters here). By H.C. Lee’s theorem we obtain:
B . = 0, m — k = odd,
T iy, (Q2)MTRY2 k= even,
where f;,..;, is a function only depending on pi, ..., Bris @1y - ) Grts-

Up to now the original problem is concluded further as the problem of determining the
universal invariant form of the following shape

0= Guragby-bdy™ Ao Ady®® Ady™ A Ady*HEA ()
k>0 (a,b)

where all g are functions of p1,...,Prys 1, - .., Grys, anti-symmetric for the lower index a,
also anti-symmetric for the lower index b, and 2h + k + 1 is a fixed integer, that is the degree
of .

Now take any fixed ¢ among the indices [, ..., s also take a special X = X, € 2 shape
as X. = 52"’%3%” Where H is an arbitrary function depending only on y*+¢, accordingly

2
L. = 0, %, (dy*?) = 0, also when a # ¢, Z;, (dy?) = 0, and 2, (dy) = b(%fT)zdym.

By %.p =0 (H is arbitrary) it is easy to know that in ¢ any term whenever contains dy°
it must at the same time contains dy®*¢ and has the factor dy¢ A dy®t¢, also g is a function
independent of y¢. Since this holds for any exponential ¢ in 1,..., s, therefore we can write

o as the following shape:
p= Zzwblmbu
20 (b)

where every v,..4, has the following shape (a; # b;):
w — dys+b1 Ao A dys-{-b; A 't/)I,
1/)/ = Zga,makdyal A dys+a1 Ao A dyak A dys+a;v A (Qz)e—k’
k>0

here all g are functions depending only on p1,...,Pr4s, @1, .-, Gr, also symmetric for the
lower index a, and the degree of ¢’ is then an even number, let it be 2e. When k = 0, the
relative coefficient g in the expression of ¢ has denote as gp.

Now take a general X € Z~ given by expression (10), where H are all arbitrary functions
of ¥*+2, and z4, by computation we obtain:

Lx = dy*™" Ao Ady*Te A L,
fx'tﬁ' = Zgal---ak,c,Adyal A dys+a1 Ao A dyak A dys+a;C A dys+c A dZA A (Qz)e—k~1 +eee

8*H

Gayar,e,a = —[(k + 1)gcas--ay, + (€ — k)gar"ak]W~

96



On Universal Invariant Forms 275
Since for any H we should have £x ¢ = 0, therefore we obtain (c, a;, b; are mutually not equal)

e—k
ngl"'ak = —-m . gﬂl"'ak'

= (1)

Hence

By this we obtain

Y=go-dy® A (-1)F ( Z ) dy™ Ayt A Ady®E A dytTOR A (Q)FF
a#b
=go-dy® A (D dy*t Adyt +,)°
a#b

.
=go-dy® A (Q =" dpi Adi)°.

i=1

In the above expression dyB = dys™¥1 A ... A dy* T,

From the above we know that any universal invariant form 6 of GIV must be a sum
formula, where each term is the outer product of some dp, ..., dprys,dd, .. .,dg and the
quadratic form 2, and with arbitrary functions depending only on p1,...,Prys, 1, - -, Gr 88
its coefficient, in other words, since P1,. .., Pris, @1, . . -, @ 18 a function basis of &, we have
already proved the following

Theorem  The universal invariant form of the infinite group GLV forms a differential
ring produced by functions in € and the form

Notice that the function in % can completely be determined through simple operations
and integrations from % of the effect to phase space (p;,q:), hence the conservative law
corresponding to a known symmetric group ¢ can completely be determined through com-
putations.
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ABSTRACT

According to a classical definition due to Engels, the pure mathematics has space forms and
qoantitative relations in the exterior world as its objects of study. These two fundamental notions
of mathematics are, however, not to be considered as unrelated, but are often interconnected by
“measures.” Previously we have introdueed the concept of I* which serves as a measure of space
forms by means of quantitative relations. This measurc is ealled a “functor” to follow the current
terminology in algebraic topology. This I*-functor or I*"-measure has the advantage over other
known funectors of being in gencral “ealeulable” to be understood roughly in the following sense:
If a new space form is constructed geometrically from some given space forms, the I*-functor of
this new space form is completely determined by the I*-functors of the given space forms. We
have given illustrations of this point in various papers. The aims of the present paper are twofold.
First, we not only show the caleulabiity of this functor in principle, but also give a method of
cffective caleulations for practical purposes in the case of finite complexes. Secondly, we have listed
a set of representative properties of I* which are sufficient to characterize it completely, forming
thus a so-called axiomatic system in the current terminology. The case of infinite complexes is also
considered.

In papers [5,6,7], the author basing himself on Sullivan’s theory of minimal
models!™ ¥ has introduced the notion of I*-functor of spaces and has pointed out that
in many cases the I*-functor is “caleulable” while the usual H- and »~functors are
often “non-calculable,” even restricted to the real field domain. The present paper makes
further studies to explain this point. Moreover, we give for the category .54, of
connected, simply-connected finite complexes methods to calculate effectively the
I*-functor from the combinatorial structure of the complex and establish also axio-
matic system for this funector.

The notations in the present paper as those in the preceding papers®™®7”) are to
be understood here.

1. I*-runctor or K/L ano K' U K”

Let K€ S, LE S, and f: L C K. Let C, be the cone over L. Denote the
union K U C, by K/L€ o¢. Then we have a commutative diagram of simplicial

maps:
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CL—— > FK/L
i 7
L— - k.

Set

= > 0.,

nal
C, = {z4*K/x takes constant value ¢R on the simplexes of L},
C,=Ker [f4. A"(K)— A"(L)], n>0.

It is easy to see that C; is a DGA-algebra ¢.o and there is a natural DG A-morphism
i C;—> A*(K) with the following sequence cxact for n > 0.

: A
00, —> 4"(K) L a(L) 0.
Proposition. 1. Min C; =~ I*(K/L).

Proof. Let z€ C; and define rz = € A*(K/L) as follows. If degz =0 with
z taking on the constant value ¢ € R by all simplexes in L, then set $€ A°(K/L) to.
take on the same constant value ¢ on all simplexes in K/L. If degz > 0, then
f4iz = 0. Hence we can take Z¢€ A*(K/L) with f4% =iz and j4% = 0. Clearly
z— % is a DGA-morphism 7 : C; — A*(K/L) and the diagram below is commutative:

. e ARH/L) — s 470D
ST I
O —— a4y —L > A%
We prove now
« + H(Cy) =~ H(A*(K/L)) = H*(K/L), €Y
from which the proposition follows immediately.

To see this, let € A¥(K/L) with d£=0. In case deg% =0 with £ taking
constant value ¢ € B on all simplexes of K/L, let us set € A°CK) to take the same
constant value ¢ on all simplexes of K. Then z€C,, dz=0 and rz=% If
degz > 0, then in €, we have dj4% = 0 so that there exists y€ A*(C,_) with dy =
745, As j4 1s an epimorphism, we can take j€ A*(K/L) with j y= y. Set Z =
& — dF, then j42Z = 0. Hence f4f45 = j4j42 =0 or j12€(C, Now rf2=2=2 —
dij ~ % and df45 = 0. From these we see that 7, is an epimorphism.

Next suppose z € C; with dz = 0 and 7z = dd, € A*(K/L). As dj4i =0, C,
is contractible and j4 is an epimorphism, there exists b € A*(K/L) with ;4G = dj*b.
Then f4(& — db) € C; and z = df*(d@ — db) ~ 0. Hence 7, is a monomorphism.

The isomorphism (1) is thus proved. Henece the Proposition 1.

Theorem 1. I*(K/L) is completely determined by the natural DGA-morphism

g=f": I*(K)—I*(L). (2)
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Proof. Set I*(K) = M, I*(L) = N. From §§15—16 of [2], we sce easily that
there exist K' € S, L'€ 5, f': L' C K" with M =~ I*(K'), N = I*(L") and the
following diagram is homotopically commutative (p being the eanonieal homomorphisms):

¥ —f = W
o o
, r ,
AYKY — > AX(L)

Moreover, we have K' =K, L'~1L, f =~ f, K'/L'=K/L so that Proposition 1
gives
I*(K/L) ~ I*(K'/L') ~ Min .

As K', L', f' are constructed from (2), so I*({/L) is completely determined by (2),
as to be proved.

The determination of I*(K/L) (to be denoted by J,) and the natural DGA-
morphisms [*(K/L) — I*(X) (to be denoted by j,) from (2) or

g: M- N

will be called the J-construction. The above gives only an existence proof of such
J-construction. In the next section, we shall give some explicit constructions of J,
and j; in the special case L = 8.

Entirely analogous to Proposition 1 and Theorem 1, the same method can be
applied to the study of union of complexes as in the Mayer-Vietoris sequence. Thus,
let K, K, K", Le ¢, K=K UK’, L=K NK" and f. LC K, - LCK".
Set Dy, = Z D,, where

n>0

() ’ o r
Dy= {(a’, a" )1 K4 &K /g" o take the same constant

values ¢ R on simnplexes of L},
D, = {(a, @) A"KANKD  frdg! = A0} > 0.

Then Dy ; forms naturally a DGA-algebra easily seen to be ew’. We have then
(proof omitted ):

Proposition 2. Min Dy, " = I*(K' U K").
Theorem 2. I*(K' U K") is completely determined by
f1o (K" — I*(L),

and
e Y (K) > I*(L).

1. J-construcTioN ofF DGA-morpuisM g: M — N 1N Case N = I*(8")

Let M, N€ o and N =~ I*(8"), n=2. "The purpose of this section is to con-
struct explicitly J, € .# and the DGA-morphism

Je: Je— M
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from a given DG.A-morphism g: M — N. This is the J-construction of 1. For this,
let

A(s), n = odd.

N A~ It Su == {
(8 ACs, D), = even,

in which
degs=mn, ds=0,
and also
degt=2n—1, di =3¢,
for even n. Let N € .o be the DGA-algebra as follows:
N =R @ Rs,
the degrees, multiplications and differentiations in N being given by:
degs =n, $§=0, ds=0.
Let S€ .o be the DG.A-algebra
§=R @R,
with degrees, multiplications and differentiations as follows:
degs=n+1, =0, d§s=0.

Denote by y the natural DGA-morphism from N to N which maps s to 3, and
also { to 0 in case n ig even. Set

rg=4&: M—N.
Define now K; according as §€ Im Z or not:

BE® D) #%0), for s€Img,

]{i—_= >0
MRS, for 5¢Img.

Clearly Kz under operations in M, is a DGd-algebra of .o’. Define also a DGA-
morphism

ki: Ki— M

as follows. In case §€Im gz, k; is the natural inclusion, while in case 5 ¢Im 2z, we
set

k(a®1)=ua, ki(a®35) =0 (a€ M).

In what follows we shall construet Jz€ .# and DGA-morphism jz: Jz — M from
Kz and kz, and Jg j; will be taken to be the Jz and j; in the beginning of this
section, which will be discussed in two seperate cases.

Case I. 5€Img.
Define now

i=MinK;e o#,
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and also
jg=kgpi: Ji > M,

in which pz: Jz;— K; is any canonical homomorphism.
Case II. 5¢Tm g.

Take any set z;€ Z(M) forming an additive homology basis of H(M). Then
H(Kj;) has an additive homology basis:

z;, §, z,QE.

In the set z; ® 35, let those of the lowest degree (say m; =2 m + 3) be denoted by u,
while the others with degree > m; be denoted by z,. Introduce 7; and construct the
D@ A-algebra

Ky = Kz ® A(xy),
in which

deg n; = mz; — 1,

dn; = y;.

As kz(y;) ~ 0 (in fact = 0), we may take ay € M with kz(y;) = da; (in fact ¢; may
be taken to be 0). Define the DG A-morphism

ky: K;— M,
by
k¥(a) = kia), a€ Kz,

ki (o) = a;.
It is easy to see that K} has an additive homology basis:
. Ty §7 y}y Z},,
in which
deg y} = my > mz,
deg 2z} > m},

and under kj,
kx(y) ~ 0, ki(zk) ~ 0.

Now introduce 7} and construct the DG A-algebra

K} = K: @ A(q)),
in which

degnj = my — 1, dnj = yj.

Define also a DG A-morphism

K. Ki— M,
by
ki(a) = k(a), ac€Kj,
k(n}) = a},
in which
ale M, degal=mi—1, da} = ki(y}).
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In K7, there is additive homology basis as before and the preceding constructions
can be continued to get

KiCKyCK;C---.
In this manner, we get a DG A-algebra

I(;E = KI_ & A(ﬂh 7];: "Ilz'y nt '),
and a DG A-morphism

with
k3(a) = kz(a), a€ Ky,

kE(n) = a5 ,k3(gi) =aj, r=1,2,---.
Moreover H(KZ) ~ H(M) @ H(S) has an additive homology basis

z,;, 5.
Define now the DG A-algebra

Ji=Min K7 € .#,
and the DG A-morphism
by
in which
oF: Ji—> K3
is any canonical homomorphism. Then we have

H(J) ~ H, (M) D I8, ¢>0,
and

jer: H(Jg) — H(M)

is an isomorphism on H(M), and is 0 on H(S).

IIT. PriviLecEp MorpHisMs of MinmarL Mobers

Let A4, B€ o, fi: A~ DB be a DGA-morphism, M = Min A, N = Min B, and
oa: M— A, pg: N— DB be canonical homomorphisms. The collection of all DGA-
morphisms g: M — N induced from f will be denoted by G(f). In general, the
diagram

A B
PAT , TPB (1)
M N

is only homotopieally commutative. It is easy to give examples with f given for
which no p,, py and g can be chosen to make (1) commutative. However, when f
is an epimorphism, e.g. when in the case A = A*(K), B = A*(L) and the DGA-
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morphism f = f*. 4 — B induced from a simplicial map f: L C K, then we have
the following;

Theorem 3. Let A, B€ .o and f: A—> B be a DGA-epimorphism. Then for
M = Min A, N = Min B and a given canonical homomorphism py,. N — B, there are a
canonical homomorphism p,. M — A and a DGA-morphism g- M — N such that (1)
is commutative.

Definition and notation. The morphisms g: M — N in the theorem will be called
privileged morphisms associated with f. A — B whose collection will be denoted by
G(f)CG(f). Inecase f: L CTK and f = f*. AMK)— AXL), G%(f) and G(f)
will also be denoted by G°(K, L) and G(I, L) respectively.

Proof of Theorem 3. We shall go into detail of the proof only in the case
N =~ I*(8") and B, =0 for m > n. The proof of the general case is similar, but
more complicate.

For this, let us take s as the generator of degree n in N, and set pzs = ¢. As
f is an epimorphism, we have a € A4 with fa = ¢. The choice of such an a will be
explained below.

Denote by M the minimal DG A-algebra generated by generators of M of degree
< m, with M@ = YD = R. We shall extend M successively as

MO =M =R)ycM?< ---CcM M~ C...CH,
and define DG A-morphisms
p;m): ]‘I(M)—’A,
g™, M™ >N,
such that the following induetion hypothesis is observed:
H 1(3"‘ p(Am)/nI(m—l) = pf‘m—l)] g(m)/ﬂl(nr—l) —_ g(m—l)‘

H, (M) ~ H(A), g<m,

o2, of: {
P (™) C Hopr(A).

H 3. The diagram below is commutative:

A4 —L >p
oy TPB
g(’"’

We shall construct suceessively from
G == [, o, g},
which satisfies f1%, — 3% to the set
G(m*D — {nl(m'ﬂ), p&m-ﬂ)’ g(mﬂ)},

satisfying H1%,, — 3%4. as follows.
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The construction of G'¥ is easy. Suppose that G has been constructed with
m<n—2.

From the induction hypothesis H1, — 2%, we have exact sequences

o

{0 = H, (M™) —— H, 1 (A) —> Coker,,,, o3 ~ 0,
tm) (2)m
0 — Ker,,,; Pf{? - H,,; (M("')) “pA—” Hm+)(A) .

Take now
eg”‘) E Am+ly de‘(/n) = 07
Em e M, dE™ =0, (3m
Z;M) € Am+17 pf{”‘)g;"‘) = dI§M),
such that the e¢{™ ¢ Z,,,(4) form an additive homology basis of Coker,,.p%, and the
Eme Z,. (M) form one of Ker,, 057 .
Since H(B) ~ H(N) ~ H(8") and m <n — 2, we have fe{™ ~ 0. As f is an
epimorphism, we have h{™¢ 4, with
feim = dfhi™. (4)n
From m << n — 2 we have further
psE™E™ = 0. O
From H3% we get

dfzi™ = fdzi™ = fp{E™ = ppg'™E™ = 0,
so that fzi™ € Z,,,,(B). As before, we have y{™ € 4,, with

fim = afyim. (6)n
Define now

D = I @ ACED, ), ™.
in which

deg &V = deg £{"*P =m + 1,

de{m*D = 0, (8)m

4z = £ € M.

Then M™*V¢ _# . Define also the morphism

PG MY > 4
by
PO M = o,
PPDEmAD — glm)  Gpm) (9
PG = i — dyi™.

Clearly dp{Pteim*d = pimtiie(m*D —  and

(mtDr(m+1) — Jp(m) — (mz(m) . (m+Dplm) . +: (m+
dp,{" )gim D d.l:i"') = pAm)gim) = o 1)§im) - P(Am x)dgim D,
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Hence p{**? can be uniquely extended to a DGA-morphism from M“*Y to A which
will still be denoted by p{"*V. If we define

gt =0, (10),,
then from (9),,, (10), we see that G™*? so obtained will satisfy H1%,, and H3%,.
Besides, H2%.,, is also easily verified.

Suppose now m = n — 1 and construct G from G~ as follows.

Take as before ¢{* Ve 4,, & Pe MY, =" D¢ A, to satisfy (3),—, such that
e"™? form an additive homology basis of Coker,o%®, and £{"™?, one of Ker,,,0%%".

As fef*Ye€ Z,(B) and H,(B) ~ R is generated by c, there are r,€ B and
R ¢ A, such that

fei ™V = r.c + dfhi"™. (4)a

If some r; 7% 0, then fy :H,(A)— H,(B) is an epimorphism and a will be chosen

with da = 0. Otherwise a will be chosen arbitrarily. Furthermore, as g™ = 0, we
have as before fz{"P¢ Z,(B) so that there are y{"?€ 4,, and ;€ R such that

fain D = yic + dfyi™. (6)ams

Now we define G by (7),~ — (10),~, where (9),- and (10),-, in view of
(4),~ and (6),—, are, however, replaced by formulas below:

pE‘n)/ﬂ[(n—l) = p;n-—l)’
P;")EE‘") = ci'"—l) - dhg"_l) - ra, (g)n—l
PP = 24 — dyrD,
g(n)/M(n—l) = g(n—l) = 0’
gME™ = 0, (10),—,
g(n)gﬁn) = 1‘;8.
It is easy to see that p4 can be extended to a DGA-morphism with the obtained G
satisfying H1% — 39%.

Let m = n. Then (5), holds still since B,,, = 0. Hence we can construct G*V
from G as before.

Set now
M= M,
P4t M— A:
g M—N,
such that

PA/M("I) = pfl'n)y

g/ M = g,

Then {M, p, g} thus obtained, meets the requirement of the theorem.
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IV. J-constructioN DETERMINED BY COMBINATORIAL SPHERES IN K

TLet K€ O, f: LK, and L be a combinatorial sphere of dimension n = 2,C,
be a combinatorial cell with L as boundary, and K/L be the complex K U C, € S¢.
Denote for simplicity

A = A*(K), B= A*(L), 4= A*(K/L),

and let f=f% A—B, C=0C, w CCA4, C— A4 f=JF1 A—A as in L
Set also M ~ Min 4 ~ I*(K), N = Min B ~ [*(L) = I*(8"), then by III there arc
DG@A-morphisms g: M — N, g€ G°(K, L) with the diagram below commutative (p
being the canonieal homomorphisms):

1S

K]
—

2—_°>Ud

=

Let N=R®Rs, y: N> N, and g=yg: M— N as in II. As z,. M,—~ N, is
nothing but the homomorphism f*: =¥(K)—> =*(L) induced by f: L—>K, the

morphism 7 is completely determined by L C K.
Definttion. The unique DG A-morphism
& M—N
determined by the combinatorial sphere L < K(L, K€ S¢") will be called the charac-
teristic homomorphism of L w.r.t. K.
The present section then aims at proving the following:

Theorem 4. From the J-construction (II) of the characteristic homomorphism
g M— N, we get
Jz=~Min 4 ~ I*(I{/L),

ji€ G(K/L, K),

which make the diagram below commutative (o, 5 being canonical homomorphisms):

Proof. We shall distinguish two cases whether §€ Im z or not.

Case 1. 5€1Im g.
In this case we have J; = Min Kz, K; = R @® D, g:7°(0), kz: K M, jz = kzos:
r>o

Jz—> M, and p;; Jz— Kz is some canonical homomorphism. Consider now the follow-
ing diagram
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] < z A f B 0
I3 - o
o ”T N, e
ol
| = / - p] s
0 K_E' i& M £ "\—J' / 1}

in which the two rows are exact in each positive degree, while the morphism 5. N > B
is determined by 5(5) = ps. Since the degrees of elements of B =~ A*(L) are all
< n, p is naturally a DGA-morphism. Then 8: K;-— C is the DGA-morphism
uniquely determined to make the above diagram commutative. I'rom p,: H(M) ~ H(4),
2. H(N) ~ H(B) and the 5-Lemma we get

Oa: H,(K3) =~ I(C), r>0.
Moreover, 0, is clearly an isomorphism also for r = 0.

Define now

by

Then the following diagram is commutative:

7

Y A

i \ c /
-~ o
> to

o ks
y e X
M
gy

g
By Proposition 1 of I, r,: H(C) ~ H(A). Hence we get
e: H(J7) ~ H(A).

Tt follows that J; ~ Min 4 ~ I*(K/L), 5 is a canonical homomorphism, and j; €
(K/L, K).

Case II. 3¢1Im 3.

This time pM C C so that p: M — A determines a DGA-morphism p¢ M — C
with 7p¢ = p. We have then

H(C) = SH, ), q#n+1,
Hoi(C) = oSH ,.(M) @ 6,H,(B),
ps: H(QI) < H(C),

5, H,(B) C H,,,(C).

The generator of 5,H,(B) is given as follows. Take a € A with fa = ps owing to the
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epimorphism f: A4 —B. Then da€¢ C, and da€ Z(C) forms an additive homology
basis of §,H,.(B) C H,.,(C). Take now any additive homology basis z,€ Z(M) of
H(M), then H(C) has an additive homology basis, viz.

o°z;, da.

As f: A— 4 isan epimorphism, there exist @ ¢ A with f& == q. In what follows we
shall suppose that @, @ have been so chosen and taken to be fixed.
Define now
P MQJ— 4,
9(2) = 16°(2), z€ M,
¢(5) = zda — da.

such that

As C_ is a combinatorial cell of dimension n+ 1, (7vde —da)* is 0 on C. and a
fortior: also 0 on K, so (vda — dd)? = 0. Hence the above two expressions determine
@ to be a multiplicative homomorphism. It is easy to see that ¢ is a DG A-morphism
and the diagram below is commutative:

i —1 52

| o
_—

MRS M.

Sinee 7da — dd ~ vda (in A) and r,: H(C) =~ H(A), H(A) has an additive homol-
ogy basis, viz.

7p°z;, tde — dé,

lp(zi): (p(§)’

in which the z; form an additive homology basis of H(M) as before.

or

Starting from the additive homology basis
z, §, ;@53
of H(M @ §), let us now construet successively according to IT
MRS =EK;CKycCHycC -+,
Ki = K; ® Alwj, n}, oy - <+,

Jz = Min K3,
and
ke: Kb~ M, k3 Ki—M,

o Ji— K3, ji=kios: Ji— M.
Prove now - K7 — A can be successively extended to DGA-morphisms
o' Ki— 4,

with following diagram eommutative
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o ) Tp
ks

K ——>M.
To see -this, suppose that @'™'. K%'—> A has been already defined (¢° = ¢, K% = K3),
and define @ as follows.
According to the construction of II, we have
Ky = K5 @ MG,
anft = o € K,
B = g e,
dai™ = EF'\(yi™).

Then ¢': K5 — A will be defined as the DG A-morphism determined by the following
expressions:

?(2) = 92, zEKF,
PG = w0 ai).

From ¢’ we get then a DGA-morphism

o= Ki— 4,
with
v"/Ks = ¢'
Define now
p: Jg—~ A
by
b= ¢ o,

then we have a commutative diagram:

- 7

A A

y w\
iy kA

From the construction we know that p,: H(J;) ~ H(A). Consequently J; ~ Min 4 ~
I*(K/L), # is a canonieal homomorphism, and j;€ G°CK/L, K).

7
iz

The theorem is now completely proved.

Remark. The construction of Jz depends on the choice of p: M — A, the additive
homology basis zf, and a¢ A, d€ A, ai€ M, ete: THowever, the theorem shows that
J7 is independent of such choice and is completely determined by the charaeteristic

homomorphism z: M — N.

From the J-construection, we get also easily the following:
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Corollary.

1°. Let L' € S¢ be any combinatorial sphere in K. Denotc the charactéristic ho-
momorphism of K w.r.t. L' by

then

is the characteristic homomorphism of K/L w.r.t. L.

2°. If in K/L there exists combinatorial spherc L’ of dimension n+ 1 which
contains Cp, then the characteristic homomorphism of K w.r.t. L

g: I*(K)—I1*(L)

ts g = 0. Denote the combinatorial cell L' "\ K of dimension n+ 1 in K by K', or
L' =K U CC,=K'/L, and the characteristic homomorphism M' = I*(K') =R— N by
g = 0. Then the characteristic homomorphism hz: Jz— J3 s completely determined by
£ which makes the following diagram commutative:

z

ol

Jz M

Al
ol
L=
~

b I 4 M —E=

V. Errrctive CaLcuLATIONs AND AxioMaTiC SysTEM of I-runcror oN S¢°°
Any K€ 5%, can be represented as
K=K,D>K, D - DK DK, (1

in which K, is the 2-dimensional squeclette, and K, the union of K,_, with an addi-
tional simplex A,, the boundary of A, being

A =L_ CK._, 2)
so that
K,=K_ UA =K,/L,,. (3
Let
fr-—l: Lr—l < Kr—n
and

=1 = f’—x: I*(Kr-—l) g I*(Lr—l)

(*) If M,N €, then h=0: M—>N will denote the DGA-morphism with ho: Mo = No(=E) and
hy = 0: M, > N, for r >0,
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be any DGA-morphism of G(X,.,, L,—). By I, I*(K,) is determined from g—, by
J-construction, and from this it is easy to establish an axiomatic system of I*-functor
on .5¢, by induction w.r.f. (1).

However, the J-construction of I is not explicit, while all L,—, are combinatorial
spheres, so that we shall rather establish axiomatic system of I*-functor by means of
HO—IV which permits to furnish at the same time an cffective method of caleulations
of I*(K) for K€ o¢,.

First of all, to any K € 5S¢, we have
I*(K)e #
unique up to DGA-isomorphism, and to any pair of K€ 5%, and combinatorial sub-
sphere L€ 47, of I, a characteristic DG.1-morphism
7 ") —>T(L).
We kuow also that I* and 7 possess the following properties:

1°. I* is a homotopic funetor, or more precisely, for K, K'€ ¢, with K=K/,
we have I*(K) ~ I*(K').

2° Let K€ ¢, and L€ S¢, be a combinatorial subsphere of K; z. I*(K) —

I*(L) be the characteristic morphism. Construet now by the J-construction of I

Jg€ A
and DGA-morphism
jar Ji— I*(K),
then
Ji~ I*"(K/L).

3° Let K, L, g be as in 2°. If L'€ ©¢, is any combinatorial subsphere of K
and let g': I*(K) — I*(L’) be the corrcsponding characteristic morphism, then
gig I*(K/L) — I*(L")
is the corresponding charaecteristic morphisni.

4°, Let Ke S, and L€ S, be a qoxnbinutorial subsphere of K. If L is the
boundary of some combinatorial cell of K, then the charaecteristic morphism z. I*(K)—

I*(L) is given by g = 0.

5°. Let K, L, g be as in 2°. 1If L is the boundary of some combinatorial eell
K’ of K, then the DGA-morphism

hg: I*(K/L) —I*(K'/L)

constructed by IV from the characteristic morphism g = 0. I*(K)— I*(L) of 4° is
the corresponding characteristic morphism.

6°. For K'," K" € S, we have
*(K' VK" ~ I*K') V I*(K").
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7°. If K€ 5¢, is an n~dimensional combinatorial sphere, then

1K) ~ {E(a:), n = odd,
E(y)@R[z], = even,
in which
degz = n, dz =0,
and also
degy = 2n— 1, dy = 23,
for even n.

Remark. Owing to 7°, I*(L) and characteristic morphism z.I*(K) — I*(L) are
both meaningful for any combinatorial subsphere L€ .97, of K.

It is now easy to prove that the above properties 1°—7° form an axiomatie
system for the I*-fumctor over the category 5¢°,. In other words, we have the
following

Theorem 5. Let °I* be any functor from S, to & such that to any K€ S,
we have a °I*(K)€ .o and to any pair of K€ S, and a combinatorial subsphere
Le XAy of K we have a characteristic morphism

°%g: ‘I*(K) —°I*(L),
which satisfies the azioms corresponding to 1°—7°. Then to any K€ S¢, we have
I*(K) ~ I*(K), @®

and to any combinatorial subsphere L'€ O, of K, there exists a commutative diagram
between the above isomorphisms and the various characteristic morphisms, viz.

“I*(K) i, oI#(L')

! ] | am

%K) —— (D)

Proof. Let K€ 9¢", and K be represented by (1)—(3). Denote the expression
(D) by (I), in case K = K,, and the expression (II) by (II), in case K = K,, and
L' = L, € S, being any combinatorial subsphere of K,. As K, >~ 8V --- V §, we
know by 1°, 6°, 7° that (I), and (I1), hold true. Suppose that (I),—, and (II),—, have
been proved and proceed to prove (I), and (I1), as follows.

Let us first prove (1),. Consider the diagram below

=t

UHK,) — > OPH(K,,) —
N

S
"K) — K- —s wT

I*(L,-)

By induction hypothesis (I),—, and (II),—,, the two vertical arrows on the right are
both DG A-isomorphisms, #,—;, °z,—, are both characteristic homomorphisms, and the
right square is commutative. By Theorem 4 of IV we have I*(K,) = I*(K,~./L,~) ~

114



No. 5 EFFECTIVE CALCULATION OF I*-FUNCTOR 663

Ji_, and g =ji_: Jz_, — I*(K,.). By Axiom 2° we have also °I*(K,) =
I*(K,—/ L) == Jog,_, and °z, = joz,_: Joz,_ —>°I"(H,,). From the construction of
J and j, we see then °I*(K,) ~ I*(K,), i.e.,, (I),. Moreover, under these isomor-
phisms, the left-hand square in the above diagram is also commutative.

Prove next (I1),. For this, let L, € S¢7, be a combinatorial subsphere of K, and
consider two cases separately.

Case I. A ¢L,.
This time L, C K,,.
Case 1. A€ L;.

This time
dim L, = dim 4,,

L: = K:—x U An
K,—, = combinatorial cell in K,_,, with boundary L,,.

Consider first the Case I. We have then the diagram below:

o P [
DI.(K,)—————’ “1‘(]('_‘; _g".l__ al.(l.’,),
. Z, z —_—
I"(Kp) 'K,y —Selae Uy

By the induction hypothesis (II),—,, the two right vertical homomorphisms are both
DG A-isomorphisms, °#,_,, .. are characteristic homomorphisms, and the left square
is also commutative (with the same symbols as before). Now by Corollary 1° at the
end of IV, § = 7,7.—, is the characteristic homomorphism, so is %z’ = °2,%,—, by Axiom
3°. Tt follows that the diagram is commutative or we have (II),.

For the Case II, we have also (II), by both Corollary 2° of IV and Axioms 4°,
5°. The theorem is now proved.

Remark. The Axiom 7° can also be slightly weakened to ‘7°. If K€ S¢, is a
2-sphere, then

I*(K) ~ E(y) ® Rlz],
in which
degz=2, dz=0,

degy = 3, dy = 2°.
VI. I*-suncror oF CountasLy Ineinite CoMPLEXES
Any countably infinite complex Ke¢ o is the union of finite subeomplexes

K,e.%.o: -
K. CcK,<---(CK). @)

Write for the inclusion f,: K, C K.y, then we have a sequence of DG A-morphisms:

4 . 4
A L ) A L AL —
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Clearly A*(K) = limA*(K,). As each f# is an epimorphism, we can construct succes-
«—

sively according to Theorem 3 of T {I*(K)), p:, gi—} starting from {I*(X,), o},
such that the following diagram is commutative in which the p; are canonical homo-
morphisms, and g; € G°(f#) are privileged homomorphisms:

A 7
AR L A e A% () L AR K)o
I 02 0; Pit (2)
I*(K) < I*(G) <+ «— I*(K) <= T*"(Kip) «<— -
We shall call (g;) a sequence of privileged morphisms.

Theorem 6. Represent arbitrarily a countably infinite compler K€ ¢ as (1)
and construct a sequence of privileged morphisms

I*(K,) <— I*(K,) <— -+ <— T*(K) <2 T*(K;0) <— -+ (3
Then _
I*(K) ~ Min lim I*(K). CY)

Proof. To any (£)¢€ 1<iin I*(K;) for which &€ I*(K,), gi—&i = Ei-y, let us set
() = (piki) € lim AX(K;) = AX(E).
Then we have the DGA-morphism
g lim I*(K.) — A*(0).
-
From this we get a commutative diagram:

H(lim I*(K.)) —— H(lim 4*(K.)) = H*(K)

I i

Yim H(I*(K;)) Low lim H(A*(K.))

In the diagram F' and F“ are both natural morphisms. Now [ is an isomorphism
by {11 Chap. VIIL and F“ is one by [3]. Moreover p,s: H(I*(K;)) ~ H(A*(K))) =
H*(K,) for all 1+ so that 5, is also an isomorphism. It follows that 5 is a canonical
homomorphism and we have (4) as to be proved.
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ON THE DECISION PROBLEM AND
THE MECHANIZATION OF THEOREM-PROVING '
IN ELEMENTARY GEOMETRY!

Wu Wen-Tsiin®

Abstract

The idea of proving theorems mechanically may be
dated back to Leibniz in the 17th century and has been
formulated in precise mathematical forms in this cen-
tury through the school of Hilbert as well as his fol-
lowers on mathematical logic. The problem consists in
essence in replacing qualitative difficulties inherited in
usual mathematical proofs by quantitative complexities
of calculations on standardizing the proof procedures
in an algorithmic manner. Such quantitative complexi-
ties of calculations, formerly far beyond the reach of
human abilities, have become more and more trivial
owing to the occurrence and rapid development of
computers. In spite of vigorous efforts, however,
researches in this direction give rise quite often to
negative results in the form of undecidable mathemati-
cal theories. To cite a notable positive result, we may
mention Tarski’'s method of proving theorems mechani-
cally in elementary geometry and elementary algebra.
The methods of Tarski as well as later ones are largely
based on a generalization of Sturm theorem and are
still too complicated to be feasible, even with the use of
computers. The present paper, restricted to theorems
with betweenness out of consideration and based on an
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entirely different principle, aims at giving a mechanical
procedure which permits to prove quite non-trivial
theorems in elementary geometry even by hands.

1. Formulation of the problem

A. Tarski in a classic paper [14] of 1948 has settled the deci-
sion problem of real closed field with one of its main aims to give
mechanical proofs of theorems in elementary geometry. Alterna-
tive proofs of Tarski’'s result have later been given by Seidenberg,
A. Robinson and P.J. Cohen, cf [12,9,2]. These authors have even
suggested construction of certain decision machines to carry out
such mechanical proofs. However, such a procedure seems to be
far from being realized. In fact, only proofs of very trivial
theorems in elementary geometry have actually been carried out
on computers, cif. e.g. [6,7]. The purpose of the present paper is,
leaving aside questions involving betweenness of points, to give an
alternative solution of the decision problem of elementary
geometry based on a principle entirely different from those
employed by the authors above-mentioned. Our method permits
to furnish mechanical proofs of quite difficult geometrical
theorems which can be practiced even by hands, i.e., by means of
papers and pencils only. The programming on a computer, based
on such a method, though has not yet been done, will present no

actual difficulties at all.

We shall restrict our considerations wholly to plane elemen-
tary geometry, though our method may be applied to the con-
sideration of various other kinds of geometry. The first step of
our method consists in the algebraic formalization of the geometr-
ical problems involved. Points in the plane are to be defined as
ordered pairs of numbers in a fixed field, say the field of rational
numbers K. A dictionary is then set up turning geometrical rela-

tions into algebraic expressions which may be considered as either
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definitions or axioms. For example, for points 4; = (z;, ¥;), dis-

tinct or not, we shall say:
A A, is parallel to A4,
if (z1-z)(y3—Y4) — (23—, )(y1-y2) =0,
A4z is orthogonal to 434,

if (z,—22)(z3—24) + (¥1-y2)(¥3—vy4) =0,

the length-square of 4;45is 72 = (z,-2,)% + (¥1—y2)% etc.

We may replace the basic field F by other fields, make
correspondence the points to other kinds of number-sets, or
modify the algebraic expressions in the axioms, €.g., instead of the
length-square function 72 given above, we consider the function
rt=(z,—z)* + (y,;~y2)*. We then go to other realms of
geometry, non-euclidean geometry, real or complex projective
geometry, finite geometry, etc. We shall however stick ourselves in
what follows to plane elementary geometry only which has some

representative character.

To illustrate our method of treatment, let us cite first a simple
example. Consider the following statement:

(S,) Let AgA A4, be a right-angled triangle with right angle at
Ag. If =), 2, denote the lengths of sides 434, 4p4; and z3 is the
length of the hypotenuse, then

n n — n
x +Iz ——.1:3

The problem is to decide whether the statement (S,,) is true or
not and to give an algorithmic procedure of proving or disproving
(S,) which holds good for all statements alike in elementary

geometry (with betweenness out of consideration).

119



216 WU WEN-TSUN

To solve this problem, let us remark first that the points, etc,,
occurring in the statement have a generic character subjected to
the conditions implied in the hypothesis of the statement. Thus, if
we represent the points in question in coordinates with
Ag = (zg,vg), 4y = (uy,vy), Ap = (uz, v3), the coordinates vg, uy,
Y, U, vy can be considered as indeterminates. On the other
hand, the other coordinates and geometric entities zg, 2, 23, 23
are then algebraically dependent on these indeterminates, being
restricted by following algebraic equations according to

hypothesis of the statement (S, ):

Jo = (uy—zo)(uz—zo) + (v1—vo)(va—vo) =0,
1= zf —(uy~z0)? - (v,-vp)? =0,
Jz2 = a8 —(uz—z0)2 — (va—vp)2 =0,
J3 = 2§ —(u—up)® — (v;-vp)? = 0.

The conclusion in the statement (S, ) is equivalent to
9n = 2§ -z} ~-z% =0

Let us now take once and for all the rational number field R as
the base field. Let A% be the affine space on R with coordinates
(vo, %y, V1, Up, Vo, Ty, Ty, Tp, Tg) arranged in that definite order.
Then the above equations f; = 0 define an algebraic variety V of
dimension 5, in the present case irreducible over R, with some
generic point (v, %y, vy, Ug, Yy, Zg, Ty, Tp, Z4) of which vy, u,, vy,
Uz, v are indeterminates. The truth or untruth of the statement

(S,) amountsto g, =0 or g, # 0 on V respectively.

It turns out that the general decision problem can be formu

lated in the following manner.
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Prablem. In a certain affine space A™ of dimensionn =7 +d
over R with coordinates (uy, ..., 44, Z;,...,2,), consider an alge-

braic variety V with defining equations (u; being independent

indeterminates)
Filuy, o ug,2q) =0,
faluy - ug, T1.23) =0,
(D
frluy, - ug, 2,25, .7,) = 0.

The variety V may eventually split into irreducible components, all
of (real) dimension <d. Those of dimension =d, with generic
points of the form (u,, ... ,uq, Z,...,%,) for which z; are alge-
braic over the field K = K(uy, . ..,uq) will have a union V' usually
coincident with V. Let a polynomial g (w,, ..., ,uq, 24, ...,2,) (ora
set of such polynomials g;) in Rluq, ..., ug, z,,...,7,] be given.

It is to decide in an algorithmic manner whether
g=0

(or all g,=0) on V' ar not.

In the above formulation the algebraic variety V, or preferably
V" reflects the hypothesis of the geometric statement considered.
Either V or V' will be called the associated variety of the state-
ment in question. The variety V' considered as one defined on the
field K = R(u,, ... ,uy) is of dimension 0. The form of equations
(I) shows that the algebraically dependent variables z,, ... ,z, are
to be adjoined to K successively which reflects the geometrical
fact that, starting from some generic points on certain generic
lines, circles, etc., new points are to be successively adjoined in an
algebraic manner by various geometric operations of joining
points, drawing parallels, perpendiculars or circles, forming inter-

sections of lines and circles, etc. These geometrical constriuctinne
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give rise to algebraic equations involving £ and w which can easily
be turned into the form (I) be simple elimination procedure. In
fact, the starting equations in z and w are rarely higher than 2.
We shall call the variables u as the parameters and z as the
dependents. It is also to be remarked that the condition for all
components of V to be of dimension <d over K reflects just the
determinate character of the geometric statements to be con-
sidered, and the restriction to V' reflects the depriving of degen-
eracies in our consideration. Both of these are, in reality, impli-
citly implied in the hypothesis of ordinary geometrical theorems.
On the other hand, the equation g=0 on V' (or set of g,=0 on V*)
is the algebraic equivalent of the conclusion of the statement to
be proved or disproved. We shall call g or set of g, in what follows
the deciding polynomial(s) of the geometrical statement in ques-
tion.

Thearetically, the methods given by Hermann in [4] permit
already to solve the above decision problem in an algorithmic
manner. However, his methods are so complicated to give rise to
astronomical expansions that even the simplest geometrical
theorems can hardly be proved. On the contrary the decision pro-
cedure given below takes advantage of the particular character of
the equations (I) and permits to prove mechanically quite non-
trivial theorems even by hands, i.e. by means of pencil and paper
only.

Our method of decision procedure is based on the following
three theorems:

Theorem 1. There is an algorithmic procedure permitting us to
split the associated variety V' of any determinative geometric
statement defined by (I) into subvarieties V' irreducible over R
each of which, considered as defined over the field

K=FR{u,, ..., uy) has a representative basis (ie. basis of the
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ON THE DECISION PROBLEM 219

associated prime ideal) of the form

@y -2

having the following properties:

(T1);. FEach p; is a polynomial in Rlu,, ..., %ug, 2, ...,%;] of
some degree m; > 0 in z;.

(T1);. The coefficients of p;, considered as a polynomial in z,,
are polynomials in Rlu,, ... ,uy, z,,...,%;_,] having no common
Jactor and with degree in z; lessthanm; forj =1,..., i-1.

(T1)3. The leading coefficient of p;, considered as a polyno-
mial in z;, is a polynomial #0 in Rlu,, ... ,uq] free of all z.

(T1)y. p;, as a polynomial in z,, is irreducible in the field
K=R(uy ..., uy), and for each i>1, p;, as a polynomial in z;, is
irreducible in the field obtained by adjoining z,,...,2;~; fo K by
the algebraic equations p, =0, -+, p;—; = 0.

It is clear that the polynomials p,, ... ,p, are uniquely deter-
mined by V' up to multipliers in R and will be said to form a
privileged hasis of V' (more exactly, of the prime ideal associated
to V' over K), with respect to the given order z,,...,z, of the
dependents. Remark that the notion is in reality due to Grébner
under the name of prime basis, cf. e.g. [3] and cf. also [8] for the
intimately related concept of characterisiic sets introduced by
R. F. Ritt.

Theorem 2. Let (p,, ...,p,) be a privileged basis of any
irreducible component V' of the associated variety V°. There is an

algorithmic procedure which permits us to deltermine, for any

polynomial h in Rlu,,...,uy, z;.....%,], an equation of the
form
m, -1 . . r
Dho="$ hygatteeat o+ 5 oAp,
%, =0 EE]
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verifying the following conditions:

(T2);. D, hy ...; are all polynomials in R[uy, ..., ug] and
D # 0,
(T2),. A; are all polynomials in Blu,, ..., Ug, Ty, ... Tp).

The polynomials h; i, which are uniquely determined up to

multipliers in K by the algorithmic procedure, will be called the
remainder constituents of the polynomial h with respect to the
privileged basis {p,,....p,) of V', or, by abuse of language, simply
the remainder constituents of h with respect to V'.

Theorem 3. For a geometrical statement with associated
variety V' and deciding polynomial g (or a set g, of deciding
polynomials) to be true, it is necessary and sufficient that for any
irreducible component V' of V°, all remainder constituents of g

(or of all g, ) should be identically zero.

II. Examples

Before giving proofs of these theorems in IV, we shall illustrate
their use by some examples below.

Fx. 1. For the geometrical statement (S,) about right-angled
triangles as cited in the beginning of the present paper, we see
readily that the associated variety V in parameters vy, u,, vy, ugz,
v, and dependents zg, 2, Z,, T3, is already irreducible over R and
possesses a privileged basis (p,, P2, 3. p4), where

Py = 2§ — (uytug)zo +ujug + (v —vo)(va—vy),
2

Pz = 2f + (u—up)zg —uf +uyuy = (v—ve) (v, —vp),

Py = 28 —(u,—uz)ry —uf +uwug + (va—vo)(v—vp),

Py = -'”fiz —(ul—uz)2~(vl—vz)2,
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It is readily verified that
92 P4 —Pz2 ~Ps
while for n > 2, we have
gn # 0 mod (p1.p2P3P4)

It follows that (S,) is true only for n=2 which corresponds to the
Keu-Kou Theorem.

Fx. 2. Our decision procedure can also be applied to give
mechanical proofs of trigonometric identities. Consider, e.g. the

following statements:
(S) If Ay + Az + A3 =180° then
sin 24, + sin 24, + sin 243 = 4 sin 4, sin 4; sin 4j.
(C) 1f Ay + Az + Az =180° then
cosRA; + cos B4, + cos 245 + 4 cos 4, cos A4z cos Ag = 0.
To decide whether (S) or (C) is true, let us set
sin 4; = s;, cos 4; =¢;, (1 =1.2),
sin B4; = x;, cos24; =y;, (1 =1,2,3),
sin A3 =2;, cosdjz=z,.
Take ¢, and c; as parameters and
§$1.52.21,22. 2. %2, 23. Y1, Y2, Y3

as dependents (in this order), then the assoclated variety of (S) or
(C) is already irreducible in F and possesses a privileged basis

(py.....p0) given by
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pz=s§ +cf -1,
P3=2zZ; —CpSy —CySg
Dy=2Zp—81Sp+cyCp
Ps =2, —RCy8,,
Pg =Tz —2CpSp,
Py =23—22,2;
pg=y, —Rcf +1,
pPg=Ya—RcE +1,
Pio=Yg3+4c,cp5 5, —4ccf +2cf +2cF - 1.

The deciding polynomials of the statements (S) and (C) are

given respectively by
gs =tz z5— 45,552,
ge =¥y TYzt ¥zt 4cce2;
We verify readily that
gs = —RcpSapy — 2151 pp — 2pg(sysatcgcy)

+2zpy +ps t+pgt Py

il

0 mod(p,,....P10)

ge =1 +4c cops+ Pyt Pyt Py
# 0 mod(p,,....P0)

Hence (S) gives a true identity while (C) does not.

Exr. 3. Let us consider the Simson-lLine Theorem which

corresponds to the following statement.:
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(Ssy- From a point 4, on the circumscribed circle of a triangle
AyAA35, perpendiculars are drawn to the sides of the triangle.
Then the feet of the perpendiculars are in a line.

To prove this, let us take for simplicity the center of the cir-
cumscribed circle as the point (0,0), while the radius is . Let the
points 4; (i = 1,2,3,4) be (z;, u;) and the feet of perpendiculars 4;

be (z;.y;), j =5,6,7. Consider 7, u,, U, 43, U, as parameters and

T, 22,23, 24, Y5 Y6 Y7 Tg Tg Ty

as the dependents in the order indicated.

A prime basis (p,,....pg) of the associated Simson variety

which is irreducible is readily given as follows:

= p2 2
Py=xy tuj _Tzv
pa=zf +uf —rf
py=zf +uf —r?

Pg = Up3Ts — TpgYs + UgTy — UpTy,
Pg=1U31Zg — Ty Yg + U Ty — UgTy,
Pio = U2%q — Typlq + UpTy — U T

In the above equalions we have set for simplicity:

127



224 WU WEN-TSUN

U = U —uy, Zy = x -z, (L) =1.2.3)

— 2
hs =uxozg — (UpZg + UzTy)x, + T5(Ug + Uz + Uy) — UUzU,.

Similarly for hg and h.

The deciding polynomial is given by
9 =25(Ye=ya) + T(y—ys) + 27(¥s—Ye)
Straightforward calculation shows again

g =0 mod{py..-..P10)

which proves the truth of Simson statement (S;).

Ex. 4. For a less trivial example, let us consider the Feuerbach
theorem which corresponds to the following statement:

(Sr) The 9-point circle of a triangle is tangent to the four
inscribed and the escribed circles of the triangle.

Let us take the three vertices of the triangle as (u,, 2v,), the
center and radius of the 9-point circle as (z,, ¥,;) and r,, and the
center and radius of either the inscribed or any of the escribed
circles as (2, yp) and r,. Introduce also variables z,, z,, zj
corresponding to lengths of the sides of the triangle. Then with
Uy, Vi, Up, Yy, Ug, V3 as the parameters and z4, 25, 23, 2, ¥1. T2,
Y2, 71, Ty as dependents in this order, the associated Feuerbach

variety Vg splits into irreducible ones having privileged basis

(pll LR :Pg) giVen by
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Ps =48y, — By,
Pg=RAzy — ay,
Pqy =Ry ~ B,
Pp = 4Ary — 2,252,
Pg=RAry + 7.

In the above formulas we have put for simplicity

1l

u._] Uy “u]', vij =Y _'Uj, ('l«,] = 1,2.3).

uy, vy, 1
RA=1{ uy, v, 1,

Uy, Vg 1

_ 2
Oy = VagVa Wiz + % Fueg + ufvg +ufv s

— 2(ugugVag + Uzl Vay + U UV 2),

Bi= —UgaUug Uiz — Viugs —vEug; ~viu;
+ 2(vaugUpg +vgv Ug, + U VU p),

ap =~ [Vpavg1Vyp + v (uf —uf) +vp(u} —uf) +vg(uf —uf)
+ 2aE3vaaZ 123 t £381V 31232 + €185V 122 122),

B2 = Uggug iz + u (vE —vE) + uy(v§ —vE) +ug(wf -v§)
T EafqlpaZazg t £38 U312 32 + £183U 12212,

7= ey(Ug Uz + V5V 12)2 1 + (U alag + VigVas)2Z2

+ e3(ugglay + Va3Vs))zg + £122832 12223

Remark that the choice of g = +1 or -1 corresponds to the 4

inscribed or escribed circles and reflegts the reducibility of the
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Feuerbach variety.

Now the deciding polynomial of statement (Sg) is of the form
9n = (nry “7‘2)2 - (z, _-"32)2 — (v, “yz)z'

in which n = +1 or -1. By a straightforward calculation, however
lengthy and tedious, we verify that g, will be a linear combination
of py,....pg for m = + £1£563 but not so for n = —g,£,65. Thus the
Feuerbach statement is a true theorem and n = + £;£3¢5 reflects
the manner of contaect hetween the 8-paint circle and the respec-
tive in- or es-cribed circle. Remark that in our formulation we
have left aside the question of betweenness and the manner of
contact of circles is not of interest to us. In this way we can take
g =g+ g-1 as the deciding polynomial if we like. We may also
take the Feuerbach variety in the affine space of w;, v;, z;, y; only
without the introduction of z,, z,, 25 so that it is irreducible at

the outset.

IIl. Some lemmas

To make some preparations we shall consider a field

R(wq, ..., uq, 2;,...,x,.) in which u, ... ,uq are transcendental
while z,, . .. ,z, are algebraic over the base field #. The algebraic
extensions to z,,...,x, are defined successively by the following
equations
m m,—-1
pi{zy) = prozy Pz + - APy, =0,
m -1

Pa(z1.72) = Pogz® +Payzpt o +Pam, = 0,

(1
mf m'_l —
p.,.(II,"',.'E,.) = Pro%y "t Pri2, + - +p77n,"0'
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It is assumed that for 1 1 <7, the Pi;'s are polynomials in the
ring Py = Rlu,, ..., ug, T,,...,2;_,], that p;o are polynomials
# 0 in Py = R[u,,...,uy3), and that p; considered as polynomials
in z; are irreducible over the field K_;= R(u, ...,uq,
z,,...,%;_,) defined by the equations p;(z,)=0, .,

Pi—y{zq, ..., 2;_y) =0. We put here
Ko=K=PR(u,, - uy).

Let T be the collection of sets of indices I = (i, ...,4.) with

0=<1i; =m; — 1. For such an I we shall write symbolically
z! =xﬁ! . -x:'.

Any polynomial of the form .
with coefficients a; in a certain ring or field F will be called then a
normalized one in Flz,,....z,]

lLemma 1. There is an algorithmic procedure which permits to
determine uniquely for any polynomial A in P,, a set of integers
S{,...,5 =0 and a set of polynomials 4; in P, for I € T verifying

the following conditions:

(L1),. Modulo some linear combination of p; over P,, we have
s S,
pPib P A=P Al

(L1),. A; are polynomials in Py, with coefficients linear in
those of A, considered as polynomial in P,.

(L1)3. sy.....8, are the least integers =0 to make (L1), and
(L1), possible.

Proof. Considering both 4 and p, as polynomials in z, with
coefficient in p,_;, we get by division for some integer s, = 0 taken

to be least possible
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prsbA = Qrpr + Rr—l-

with @,, R._; polynomials in P, for which the degree of F,._; in z,
is < m,. Considering now p,_; and R,_; as polynomials in z,_; with
coefficients in R[uy, ..., uq, Z1....,%2.% ], we get by division

for some integer s,_; = 0 taken to be least possible

Prito Beoy = @roy Ppoy + Froa,

with @,_;, R, polynomials in F, for which the degrees of F._; in
z, and z,_, are < m, and < m,_; respectively. Proceeding in this

manner, we get successively

S, —_
Pr3o Br2= @r2Przt B3

Pib R, =@,p, + Ry,

with K, as a polynomial in F,, for which the degree in z; is
<m;, 1<i=7r. We may then write Ry as ), 4;z/ and get the

expression verifying all the conditions in the Lemma as required.

Lemma 2. There is an algorithmic procedure which permits us
to determine for any polynomial in some indeterminate y of the

form
A=Agy™+Ay"TH+ -+ Ay
with each 4; in P, and 4, # 0 in K. expressions of the form
HA=B+Cp, + - + (Cp,,
with
B=By™+By™ 1+ - + By,

verifuino the following condifions:
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(L2),. All B; are normalized polynomials in P, and By is a
polynomial # 0 in Pg.

(L2)z. C; are all polynomials in P,[y] and H is one in P,.
(L2)3. H#£ 0 mod (py,....p,)
Any such polynomial B satisfying (L2), will then be said to be

a normalized polynomial over P, in the indeterminate y.

Proof. By Lemma 1, we have for spme integers s;,...,5, 20

an expression of the form

Pib PR A=Ay + Ay N+ - + Ay mod (P, Py)

with all 4, normalized in P, and 4'g # 0 in K,. Suppose that A’y is
free of 2;44,..., 7, but not so for z;. As A'g has a degree <m; in
z; while p; is irreducible in K;_; and of degree my in z;, we find by
the usual division algorithm polynomials h,k in P, and 4'yg in F;_,
such that

h4' o + kp; = A go,

in which h is #0 in K; and A'gpp# 0 in K;_,. We have then an

expression of the form
hplh - ProA +kpiy™ = Aooy™ +hAWTT 4 - 4 Ay

mod (pl: e vpr)‘

Applying Lermma 1 again to h4'; and 4'go, we get then some expres-

sion
h“A = A”oym + A“ lym_l + -+ A“m mod (pl' e ,pr),

for which all 4"; are normalized in P, with A" # 0 in K, and not
containing any z; for j=i, and A" is some polynomial in F,. which

is# 0in K. If A"y isfree of all x,, ... ,z,, we may take
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B=Aw™+A y™ 1+ -+ 4,

as the polynomial B required or otherwise we proceed as before.

lemma 3. There is an algorithmic procedure which permils to

Sfactorize in K, any polynomial in P,[y]
4 =A0ym+A1ym—l+ +Am

with 4; in P, and Ay # 0in K., m = 2. More precisely, it permits to

find expression of the form
HA = A + % Cp;,

with

verifying the following conditions:

(L3),. Fach A; is a normalized polynomial in R [y] and s
irreducible in K,.

(L3),. H is a polynomial in P, which is # 0 in K.

(L3);. C; are polynomials in P, [y].

Froof. The method of Hermann in [4] permits us to give, in an
algorithmic manner, a factorization of 4 into irreducible ones in

K., so that after clearing of fractions we have an expression of the

form
DA=By B+ % B,

with B; B'; polynomials in P,[y], B; irreducible in X, and D a
polynomial in P, whichis # 0 in K,. Applying now Lemma 2 to each
B;, we get then the expression required. Consider also the refer-

ence [15], p. 130.
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IV. Proofs of the theorems

We are now in a position to give proofs of Theorems 1-3 quite

simply as follows:

Proof of Theorem 1. For the defining system of equations (I) of

the associated variety V, let us consider fi{u, ..., uqg,2;) as a
polynomial in z; with coefficients in R[u,,...,u4] and factorize
f, into ones irreducible in K = R(u,,...,uy) by applying the

algorithm in Lemma 3, with =, as ¥y and 0 as r there. Take any
such irreducible factor as p(x;). Let K, be the field obtained
from X by adjoining z, defined by the equation

pi(z,)=0

Now f 3, considered as a polynomial in the indeterminate z,, can-
not be identical with 0 in the field K,, for otherwise the variety V
would be of dimension >4, contrary to the determinancy
hypothesis of our geometric statement. Applying Lemma 3 to f;
with z, as y and 1 as r there, we get a certain polynomial f'; in

Py = R[uq, ... ug, ,, p] with an expression of the form
hafa=f'2+ Cap,

in which f',, as a polynomial in the indeterminate z,, is a product
of normalized factors irreducible and #0 in the field K. Take any
such factor as pp(x,, z5). Let K5 be the field obtained from K, by

adjoining z, defined by the equation
palzyzz) = 0.

Then fg3 is a polynomial in the indeterminate zz over P which
cannot be identical with 0. Applying Lemma 3, we get an expres-

sion of the form

hafa=JS's+ Ca;py + Cazpa,
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in which the polynomial f'5 in x5 is a product of normalized fac-
tors irreducible and # 0 in K. Take any factor as pg{z;2z23),

adjoin 5 to K, by the equation
pa(zy,25,23) =0,

and proceed further as before. In this manner, we get finally sys-
tem of subvarieties V' irreducible over R, each defined on K by

systems of equations of the type

pl(xl) =0,

pa(z4.73) =0,
(111)

pr(xlvva e 'x'r) =0,

verifying some obvious conditions as described in I1I.

It is easy to see that the collection of all such subvarieties

exhausts the given variety V°. In fact, consider an irreducible

component in R of V' with a generic point, say (ug, ...,uq,
Zy ...,%.), in which u,,...,uy4, are independent indeterminates
while 2, . . . ,z, depend algebraically on them. As (u;, ..., ug, Z,)

should satisfy the system of equations (1), in particular the equa-
tion f; =0, they should annul some one of the irreducible factors
of f,, say p, before. Now, (u,,..., Ug, T,,25) should satisfy the
other equations in the system (I) as well as the equation
pi(z;) =0. It follows from the expression about f', given above
that they should also satisfy the equation f'; =0 and hence
should annul one of the irreducible factors of f',, say py(z,.2,)
above. Proceeding in the same manner we see that (u;, ..., uq,
T, ...,z,) should satisly a system of equations of the type (IlI)
and hence is a generic point of an irreducible subvariety among
the collection found above. This completes the proof of the

theorem.
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Proofs of Theorems 2 and 3.

Theorem 2 follows immediately from the algorithm in Lemma 1.

The truth of Theorem 3 is quite clear from Theorems 1 and 2.

Final Remark. Our algorithm for the mechanization of
theorem-proving in elementary geometry involves mainly such
polynomial manipulations as arithmetic operations and simple
eliminations, which were all originated and quite developed in 12-
l4c. Chinese mathematics, cf. e.g. the book of late Chien [1] for
the explanations. In fact, the algebrizalion of geometrical prob-
lems and systematic method of their solutions by algebraic tools
were some of the main achievements of Chinese mathematicians at
that time, much earlier than the appearance of analytic geometry

in 17c.
Added in Proof. (Dec. 1977).

The same principle has been applied to the mechanization of
theorem-proving in elementary differentjal geometry with the aid
of Ritt's theory of differential algebra, of which the details will be

given later.
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The great merit of Hilbert’ s classic “Grundlagen der Geometrie”
of 1899 is universally recognized as being representative for axiomati-
zation of mathematics, laying in particular a rigorous foundation of
the euclidean geometry However,another great merit (perhaps greater
in the opinion of the present author)of this classic seems hardly to be
noticed up to the present, In fact, this classic is also representative
for the mechanization of geometry, showing clearly at the same time
the way to achieve it, The present paper has the object of trying to
clarify these points,

First of all let us remark that in the statement of theorems (or
even axioms) there are usually some implicit assumptions about gene-
ricity or non—degeneracy of figures involved without which the the-
orems may be meaningless or even fall into fallacies The following sim-—
ple examples may serve as illustrations,

Ex.1 The three altitudes of a triangle are concurrent,

It is implicitely assumed here that the triangle in question should
be generic in the sense that it does not degenerate into one with verti-
ces collinear or with two vertices coincident, In the first case the
theorem is not true and in the second case it is meaningless

Ex.2 The opposite sides of a parallelogram are congruent,

*Received — Nov , 1981
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The theorem will not be true if the parallelogram in question dege~
nerates into one with vertices lying on the same line,

Ex.3 Desargues Theorem, If the three pairs of corresponding
sides of two triangles are all parallel to each other,then the three lines
joining the corresponding vertices of these triangles are either concur-
rent or are parallel to each other,

The theorem will not be true if the two triangles in question de-
generate into ones with collinear vertices,

Ex.4 Desargues Theorem, If the three lines joining the corres-
ponding vertices of two triangles are either concurrent or parallel,
and two pairs of corresponding sides of these triangles are both para-
llel to each other, then the same will be true for the third pair of
corresponding sides,

Again the theorem will not be true if one of the pairs of corres—
ponding sides parallel to each other degenecrates into a pair lying on
the same line,

In view of these examples we see that theorems of elementary
geometry are usually true only in the generic or non-degeneraie case
which are implicitely assumed as hypothesis but usually not clearly
expressed in the statements of the theorems, In each degenerate case
we have to investigate separately whether the theorem is meaningful
or not and if it is soc whether the theorem remains hold true or not,

Now to prove theorems in the usual euclidean fashion one should
incessantly make resort to previously proved theorems considered to
be already known, As these known theorems are only true under
certain non-degeneracy conditions one should,each time when these
theorems are to be applied,verify whether these non-degeneracy con~
ditions are observed or not, One should consider different cases to
deprive off one by one each c¢f these degeneracy situations, This ren-
ders the proof of a theorem very cumbersome,the more so because such
non-degeneracy conditions of theorems to be applied are usually not
clearly stated, In {act,even {or a theorem of moderate complexity, it
would be quite impossible to take care of all these non~degenerate
cases occured in the known theorems to be applied in order to make
the proof meeting the usual standard of rigor A scrutiny of the proofs
of theorems concerning the establishment of rules of number systems
in a Desarguesian geometry, in which Desargues theorem should be
applied over and over,as described in the classic of Hilbert, may well
illustrate this point,

On the other hand Hilbert,in his classic,after laying down the fo-
undation for the algebraization and coordinatization of a geometry in-
volving Desargues theorem and Pascal theorem,has stated a theorem
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(numbered Th 62 in the later editions),which isin essence equivalent
to a mechanized procedure for the proofs of a certain kind of theo-
rems_Let us call for short a plane geometry to be pascalian if the pla-
nar axioms of incidence,the axioms of order,the axiom of parallelism
in the strengthened form, as well as the so—called Pascal theorem all
hold true Then the original statement of the theorem in question runs
somewhat as follows,

Th.62 Each pure intersection—point theorem,in a Pascalian geo-
metry,if true,can always be proved by the aid of suitably constructing
auxiliary points and lines, as consequence of a combination of a finite
number of Pascal configurations,

For the meaning of pure intersection—point theorem (abb PIP-Th)
Hilbert has given two explanations which are in fact not equivalent,
For the first one Hilbert defined a PIP-Th as one in which only inci-
dence of points and lines as well as parallelism of lines are involved,
Then,he argued that every such PIP-Th_ may be described in more
details in the following form,

Select first a system of {inite number of points and lines arbitra—
rily. Then successively in a definite prescribed manner draw some
parallels to some of the lines get,choose some points on some of the
lines get,and draw some lines through some of the points get, If, by
constructing in this prescribed manner the joining lines, intersection
points as well as parallels through points already constructed, one
arrives finally to a {inite set of lines, then the theorem will assert
that these lines will be either concurrent or parallel to each other,

To distinguish between these two concepts of PIP-Th,in fact not
equivalent,we shall call the later one the PIP-Th of constructive type,
Now the explanations given just before the statement of Theorem 621in
the classic furnish an idea of a proof of the following theorem,
which may be considered as an alternative version of Th_ 62 and wil]
be called

Mechanization Theorem of Hilbert, In a planar Pascalian geo-
metry there is a mechanical procudure which permits to prove or dis—
prove in a {inite number of steps any pure intersection-point theorem
of constructive type under certain subsidiary non-degeneracy condi-
tions also generated mechanically during the procedure,

As the intended proof of Theorem 62 or the above Mechanization
Theorem as given in Hilbert’s classic is not only vague but also
somewhat inexact in various respects, we shall rewrite the proof in
what follows which consists in giving a mechanical procedure meeting
the purpose as described in the Mechanization Theorem,

First of all we shall take in the plane a coordinate system which
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may be chosen arbitrarily,K To save the labor of computations we may
choose, if we want, the coordinate system in a convenient manner
which is however immaterial to the reasonings to follow, The points
and lines involved in any pure intersection—point theorem will then be
represented by number pairs or linear equations, To fix the ideas,
we shall avoid the use of linear equations for lines and restrict our—
selves to considerations of points or number pairs alone as described
below, Asa point may be either chosen in an arbitrary manner or
constructed in a definite manner from prescribed geometric condi-
tions, we shall distinguish two types of coordinates,parametric ones
and geometrically-bounded ones, which will be denoted by u; and x,
respectively, They will be denoted by @, if no distinction foru or x
is necessary, We shall now represent the points occuring successively
in the PIP-Th, of constructive type to be proved by number pairs
(a;,a;) one after the other as follows,

First let us remark that the construction of a point occuring in
the theorem in question will be one of the following 10 types,

1.A point is arbitrarily given or chosen,

The point will then be represented as (u,,u;) with u,,u, as para-
meters,

2. A line is arbitrarily given or chosen,

Instead of representing the line by a linear equation of current
coordinates, we shall take arbitrarily two points represented by
Cu;suy), (uy,u;) respectively with the line in question as their join-
ing line,

3.Construct an arbitrary line through a point(a,,a;)already cons~
tructed,

As in 2,we shall take an arbitrary point (u;,u;) and represent
the line as the joining line of this point and the point (a,,a;),

4, Construct the joining line of two points already constructed,

As the line has been determined by the two points thereon, this
construction is no more necessary,

5 Choose a point arbitrarily from a line already constructed,

If the line is determined by two points (a,,ay), (a,,a;) already
constructed, then the arbitrary point chosen thereon may be either
represented by (u,,x,) or (x,,u,) satisfying the following equation,

@j—a)u, —(a; —a)x, +0,0;—0a;8, =0,
or
(@;—ap)xs—(a; —o)u, +0;a;, —2;j0, =0,

6.Construct arbitrarily a parallel to a line already constructed
As the line is determined by two points thereon already cons-
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tructed say (a;,a;), (a@y,a;), the parallel to be constructed will be
determined as follows, First take an arbitrary point (ug,u,), and
then a point (u,,x,) or (x,,u,) such that the joining line of this point
to the point (u,,u,) will be parallel to the line determined by
(a;,a;) and (ay,a;),s0 that x, will satisfy the following equation,
(ap—a)(xg—ug)—(a;—a;)(u,—uy) =0,
or
(a;—a)(xy—up)—(a,—a;)(u,—uy) =0,

7.Construct a line through a point (a,,a,) already constructed
parallel to a line already constructed,

Tet the line already constructed be determined by the points
(ay,ay) and (a,,a;), then the line to be constructed will be taken
to be one determined by (an,a,) and a further point (u,,x,) or
(x4,u,) satislying the following equation,

(@p—a)(Xy—an)~(0;~a;) (4, —0n) =0,
or
(a)—a;)(xy—xm)—(ar—a;)(u,—ay) =0,

8.Construct the intersection-point of two intersecting lines
already constructed,

Let the two lines be determined respectively by pairs of points
(a;,a),(a,a;) and (a,,a4),(a,,a,)already constucted Then the
intersection-point will be taken to be (x4,x,),satisfying the follow~
ing system of equations,

(ay—ap)xg—(a;—ap)xy +aya; —a;a, =0,
and
(ag—adxg—(ap—a )%y +apa,—~aza, =0,

9.Construct the intersection—point of a line already constructed
and a line through a point (a,,a,) already constructed and parallel
to a second line already constructed,

Let the two lines already constructed be determined respectively
by (a,,a;),(a,,a;) and (a,,ay), (a,,a,), Represent the point to
be constructed by (x4,x,), then =x,,x, will satisfy the following
system of equations,

(a,—ap)(xp—a,)—~(a,—ay)(xg—ap) =0,
(aj—a))xg—(a;—a)iy+a;a;, —a;a, =0,

10.Construct the intersection-point of two lines passing through
each of two points already Constructed and parallel respectively to
each of two lines already constructed,

This is similar to 8§ and 9 and may be similarly treated,

OY course we may reduce the constructions 9 and 10 to the pre-~
vious ones by introducing more coordinates 4 or x,
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We are now in a position to describe the mechanical procedure
to be followed, As the intersection-point theorem to be proved is of
constructive type, the points and lines as described in the theorem
will occur one after the other in a definite order of succession, It
follows that the coordinates of the points involved (with lines rep-
laced by two points thereon), whether parametric or geometrically-
bounded,can be arranged in a definite order in accordance with their
ordering of appearance in the construction as follows,

U <Lty < ereene < U,

Xy <oy eeees <%,
In particular, whenever a new point is introduced by the construc-
tion 8,9 or 10,its coordinates attributed will be two x’s in succes-
sion, say (xg’x§+1)-

Let us introduce now some sets as follows,

A set of parametric coordinates

U =Auy,,uy}.
A set of geometrically-bounded coordinates
X={xls"'9xN).

A set of degeneracy—pol ynomials
d:{Dl’“"DR}'-

with each D a polynomial £01in u,,---, alone,
A set of solutions
_{Quv .. Qn
TI)

with all P,’s,Q;’s polynomials in u,,--,u, alone and each P; anon-
zero power product of the D/s in A,

The meaning of the sets [J and X are already clear, The mea-
ning of the sets . and S is this,

Under the non-degeneracy conditions

D #0,,D.#0 (D in A)
the coordinates x; are given by
xlr‘%’%y"" Xy = %:.

with x, in X, Q,/P, in S,

We begin now by setting all the sets X, 4, and S to be empty
ones, U to te {u,,,u,},and proceed by enlarging these sets in

following in steps the successive constructions as described in the
thtorem to be proved in question,

Suppose that we have proceeded to a certain step of construction
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but not yet finished, We distinguish two cases according as the next
step of construction is one of the types 1-7 or of the types 8-10, In
the first case we get a single equaticn

Ays Xy + By, =0

with a new bounded coordinate xy,, and with A,,,,B,,, both poly-
nomials inu,,-,uy and x,,,x, already occured in the sets [J and
X, Replace now x,’s in Ay,, and B,,, by Q,/P, given already in
S,with P, 0 due to the already introduced non-degeneracy—-condi-
tiors D;#0 with D, in o already determined, Let the new frac-
tional expressions thus obtained inu,,...,u, alone be denoted by A%,
and B¥,, respectively so that the equation in x,,, becomes

Abixy + Bl =0,

Several possibilities may then occur,

1fA%, %0 then we write the numerator of 4*,, as D,,, and put
D, into the set 4/ to turn it into a new «/, and introduce as a new
non-degeneracy condition D, , #0.Next we solve for x,,, in the form

Xy = =B /AR = Quet /Pyt
and put xy,, into X and Qy, /Py.,-into S to turn X and S into new
set X and new solution set S, We note that P,,, is again a power
product of the polynomials D;/s in the new set A,

We proceed then to the next step of construction if there re-
mains any,

If instead A%, , =0, but B%, %0, then we set again D,,, =nu-
merator of B¥,, and put it into &/, The hypothesis of the theorem in
question is now itself contradictory at least under the subsidiary
conditions

Dy+0
for D; in the new 4/, The whole procedure will then be stopped,

If finally both 4%, and B%,,=0,then x,,, undergoes in reality

no restrictions and we may introduce a new parameter u,,, and set

Xner = Uyt = Quar /Pyss

(with Qu,, =tys:, Pys, =1, the same in what follows),
We put then uy,, into U, xy,, into X, and Qy,,/Py,, into S with
< unchanged, With this new system of sets [/, X, and S we then
proceed to the next step of construction if there remains any,

This ends the treatment in the first case,

Suppose now we are in the second case of a construction of the
types &,9,0r 10, For any such type we will get a system of two
pquations say

Ay xge, + A%y, + B =0,
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Ay 1%yar + Ay %4, + B2 =0,
with two new bounded coordinates %y,,,%y,, introduced atthe same
time, The polynomials 4’s and B’s are all in the variables u,,---,u,
of U and x,---,x, in X, Replace now these x;’s by Q;/F,; in S for
i=1,-,IV we get for the A’s and B’s some fractional expressions in
the u’s of U/ alone to be denoted by A* s and B*’ s, In this way the
equations above become then the following ones,
AY Xyyy + AYy 2y, + BY =0,
A¥ %y, + A%, 2%y, + BY =0,
Various possibilities may now occur,
First suppose that the determinant of the coefficients of these
equations in %y, ,,%y,, is not identically zero,
At A
| A%, A%, 17
In this case let us express E in the form of a fraction of which the
denominator is necessarily a power—product of D;’s already present
in 4, We set now the numerator of £ to be a new D,, and put it
into A to enlarge it into a new one still denoted by ./ Solve the two
equations above we get then two expressions of the form
Eye1 = Qunet/Prsrs Hner = Quaz/Pyias
in which both Py,, and Py, are power-products of D;’s in the new
A We put now xy,,,%y,, into X, and —QlL‘, Qusz jnto S, denote
N+t N+ 2
the sets thus enlarged still by X and S, and then proceed to the next
step of construction if there remains any,
Suppose now E is identically 0 but not all 4%'s are so, In this
case therc will exist polynomialsa,,a, not both ¢ such that

a, A%, +a,A¥ =0,
a,AY, +a,4%,=0,
From the two equations above we get
a,B* + a,B¥% =9,
If a,B* + a,B¥ £0,then we set
D,,, =numerator of ¢, B* + a,B*
and put it into 4, In this case the hypothesis of the theorem in

question is contradictory in itself under the non-degeneracy condi-
tions

Dj#()’
with D; in the new o, We stop then and proceed no more,
Incase a;B¥ + ¢,B¥ is=0, the two equations will reduce to a
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single one, say the first one to fix the ideas, Not both 4%, and 4%,
can be=0, say A¥%,#0 to {ix the ideas,

Set then
D,,, =Numerator of 4*,

and put it into 4, Introduce also a new uy,, to be put in U ,set
Kyt =ty = Quat /Pyay
and solve for xy,, in the form
XN 42 =QN+2/PN+2
with Py,, a power~product of D/s in the new 4 , We put now x,,.
Xyy, into X and Quy /Pusss Quas/Pus, into S, All the sets 4,U,
X,S thus enlarged will again be denoted by the same letters and
then proceed to the next step of construction if there remains any,
Finally let us suppose that all the 4% s are identically ¢, If at
least one of B* ,B¥ is not identically 0 then we set the numerators
of these non-zero B* s as new D,,, or D,,, and D.,,, put this one
or both into o with the new  still denoted by the same letter, We
stop then the whole procedure with the conclusion that the hypo-
thesis of the theorem is in contradiction under the non-degeneracy
conditions D;=0 with Dy in the new A,
If finally both B* and B* are identically zero, then we introduce
two new uy,,, Uy,, to be put into U, put xyg,,,%y,, into X, and set
Znay =thi = Que o /Puviy
Ansr=tuss = Qunaz/Puisy
with Qusi/Prsrs Quaz/FPuse to be put into S, The new sets U ,etc,
will ‘then again be denoted by the same letters, We proceed now to
the next step of construction if there remains any,
This procedure will be stopped with a final system of sets,
U ={uy,uyt,

X={x1""’xN},
Az{D];"'rDR),
Q1 .. Qn
and S—{’I;)Tl“y 1 P: }o

Now two cases may occur,

Case 1 The hypothesis of theorem in question is contradictory
under the subsidiary non-degeneracy conditions

Dj#oy (D,il’l A)-

In this case we have already achieved our aim of proof,

Case 2 In this contrary case we have to consider the conclusion
of the theorem in question which amounts to say that

G =0,

where G is a certain polynomial in the variables u ,-+, u, and
X,y ,%,, Now N is necessarily =n and M>m in the present case
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and we may thus put

2=Q /Py, i=1,-,n,
and substitute these expressions into G, The polynomial G becomes
then a fraction with denominator a power-product in the IJ;’s occu-
ring in 4. Under the non-degeneracy conditions
D’qﬁo (Dj in d),
we verify by usual computations whether G is identically zero or
not and arrive at the {two possible conclusions below,

1° G becomes identically zero so that the theorem is true under
the above non~ dezeneracy conditions, The whole procedure cons—
titutes then an actual proof of this theorem with resirictions cl-
early exhibited by the above non-legeneracy conditions,

29 & is not identically zero so that the theorem is not true at
least under the above non-degeneracy conditions,

This terminates the whole mechanical procedure with precise
conclusions under precise subsidiary conditions also mechanically
generated,

The mechanization theorem of Hilbertis thus completely proved,

As illustrations of the above mechanical proving procedure for
intersection-point theorems let us consider some examples shown
below,

Ex.5 Consider the Desargues theorem of Ex_ 3 stated in the
following form, Let ABC and A’ B’ C’ be two triangles with three
pairs of corresponding sides mutually parallel to each other, Let
the line |, = AA’ and [, = BB’ meet at a point 0,Then CC’ should
also pass through 0,

Let us turn the statement -of the theorem into a constructive
form as follows, To simplify the calculations we shall take I,,!, as
the two coordinate axes, We shall take first two arbitrary points
A,A" onl, with coordinates

A=C,,0), A =(u,,0)

Then take an arbitrary point B onl, and an arbitrary point C
on the plane with coordinates

B= 0,uy), C= (U, ts5),
Draw now through 4’ a parallel of 4B meeting/, in B’, and then
through 4’ and B’ draw parallels to 4C and BC respectively to

meet together at C’ , The coordinates of the new points will be taken
to be

B = (O,xl), C’ = (Xy,%5),
Then the theorem asserts that the points O,C,C’ are collinear,
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Now the hypothesis of the theorem consists of the following
equations
A'B’ JAB<=>u, %, —u,%, =0,
AC JACE=>(u,—u )%y —u (%, —u,) =0,
B'C' | BC&>u,(xs—2%,)— (us—us)%, =0,
The conclusion of the theorem is given by,
0,C,C’ are collineare=G =9,
with
G=u,x;—tigx,,
Following the mechanical procedure indicated above we get
U ={8,,u,,%5,U,,ug},
X={%,%,,%3)},

A=y uu,—tus—uzu,},

Ugtly UyU, U,lig
S:{ ] .

u, u, ' wu,

It follows that the non-degeneracy conditions to be observed are
u;+0,
and
U U, —t U —ugu,+0,
Under these conditions we verify that

Ualls _, JU2¥ae
- 5 PV ]
u, ,

G =, Xg—UgX, =t

so that the Desargues theorem in question is true in this non-dege-
nerate case,

The first degeneracy case u, =0 means that 4 coincides with O,
It is of no geometrical interest and may be left out of consideration
at all, If we want we may take 4=0 as one of the hypothesis of the
theorem and proceed in the same mechanical manner as before with
the result that the theorem will then be trivially true under however
some further non-degeneracy conditions,

The second degeneracy condition

Uy —Utg—usu, =0

means that the points 4,B,C are collinear, Take this as one of the
hypothesis we verify as before that the theorem will then be no
more true at least under certain further non-degeneracy conditions,
This accounts for the fallacies of the Desargues theorem as indicated
in Ex, 3. The same may be said about the other examples 1, 2 and
4. What is important for us is that the degeneracy conditions which
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may cause the fallacies of theorems present aufometically during a
mechanical procedure and may be treated alternatively and syste-
matically also in a mechanical way which is actually impossible for
the usual euclidean fashion proofs,

Ex, 6 To give a less trivial example let us consider the general
Pascal theorem in projective geometry, Let us call for short a
hexagon to be Pascalian if the three pairs of opposite sides intersect
in collinear points, Now the necessary and sufficient condition for
a hexagon to be Pascalian is that the six vertices of the hexagon

should lie on the same conic (or co-conic for short) It follows that

ifahexagon 4,4,4,4,A;A, is Pascalian, then, the six vertices
being co-conic, any hexagon 4y A, A; A; A, Ay, arising from re-
ordering of the vertices, is also Pascalian, In this way we may
announce theorems in the form of pure intersection-point
theorems in a Pascalian geometry with the mention of the notion of
conics completely avoided, The intersection-point theorems thus
arrived may be divided into various types and, to {ix the ideas, let
us consider for example the following one,

If the hexagon 4,4, 4,4, A3 A, is Pascalian then so is 4,4,4,
Ay A A,

In more details, the theorem states that,

If the points of intersection

P=A1Az/\A4A5’ Q=A2A3AA5A3, R=A3A‘/\-Ae-'41
are collinear, then so are the points of intersection
P =A AN Ag, Q@ = A, A NAA,, R = A, 4,04, 4,
(Here ) stands for intersection),

For the proof let us first turn the above statement into one of
constructive type as follows,

Take first an arbitrary point 4, and then two arbitrary lines
1,1, through A, . For the mere sake of simplifying the calculations
we shall take 4, as the origin 0 and the two lines as the coordinate
axes,

Take on !, an arbitrary point 4, = (4,,0)

Through A, construct an arbitrary line and take thereon an
arbitrary point 4, = (u,,u,).

Through A, construct an arbitrary line and take thereon an
arbitrary point A, = (u,,45).

Through A, construct an arbitrary line and take thereon an
arbitrary point 4, = (uy,u,).

Let the line 4,4, meet !, in the point R=(x,,0).

Let the line 4,4, meet |, in the point Q= (0,x,).
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Let the line 4,4, meet ], in the point Q' =(0,%,).

Let the line 4,4, meet [, in the point B/ = (x,,0).

Join the line QR and let it meet 4,4, in the point P =(x5,%¢).
Join PA, and let it meet !, in the point A; = (0,%,).

Join A, A, as well as 4,4, meeting in the point P/ = (x4, %) ,
With these hypothesis the conclusion is now, P',Q’, R’ are

collinear,
Now the hypothesis of the theorem in question reads as follows;

Rlieson A, 4, <= (ug—U, )X, +tu ti; —lUgtig =0,

Qlieson A, A, <2 (u,—u )X, —UUs +Ust, =0,

Q’ lieson Ag A, <= (U, —tg)Xs—t U, +UsUy =0,

R’ lieson A, A, <= (Uy—ug) X, +tldsg—Ugti, =0,

Plieson A, 4, <>u %y + (4, —,)Xg—t g =0,

P lies on QR<>x,%5 + %, X4 —%,%, =0,

As=PAN, <> Uy —X5)%, +U, %5 —Ug Xy =0,

Prlieson 4, A, <>u,%s+ (4, —Ug) % —t 4, =0,

P! lieson A, As <= (Uy—%,)Xg—U Xy +U %, =0,

The conclusion becomes,
P’ Q,R are collinear<&=>G=%,%s + X, Xg—X%,=0.
Fowllowing the mechanical procedure given in the Mechaniza-
tion Theorem of Hilbert we see that the theorem is true after a
long and tedious but easy and mecahnical computations under certain
subsidiary non-degeneracy conditions uninteresting to be explicitely
given. The computations constitute then automatically a proof of
the theorem in the generic or non-degeneracy case,
Ex.7 Let us consider the previous example again with however
the theorem in question not turned into constructive type, Thus,
let us take 4,4,,A4, A4, still as the coordinate axes but with coor-
dinates of the various points as follows,
A= (4,0, Ay = (uy,45),
Ay = (u,,ug), As = (0,uq),
A, =(u;,%,), Q =(0,%,),
R = (x,,0), R =(x,,0),
P o= (x5,%), Q' =(0,%4),
P’ o= (xa,%4).

The hypothesis of the theorem becomes then

A, ,As,P are collinear <= (%, —ug) X5 —t; Xg +tgth; =0,
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P,Q,R are collinear<=x,%5 + X326, —X,%3 =0,

Az, A,,R are collinear<= (%, —ug)x,—4,%, +usu, =0,
A, A4,,P are collinear<=u,xg + (U, —U,)Xg— g =0,
Ay, A,,Q are collinear<=>(t, — u )X, — U tis + 8, =0,

etc

From these we get an equation of the form
Ax* 4+ Bx, +C=0,
with 4,B,C all polynomials in the u/s alone and A not identically
zero, It follows that under the non-degeneracy condition 450 the
previous mechanical procedure does not work,

The last example shows clearly that we should distinguish
between two types of pure intersection-point theorems, those of
constructive type and those not, and that the idea of the mechanical
procedure as indicated by Hilbert in his classic works only for theo~
rems of constructive type, For pure intersection-point theorems
which cannot be turned into constructive form or for theorems
which involve non-~linear equations as are usual for various kinds
of geometries, we have to device other mechanical procedures to
give mechanical proofs, Now such mechanical procedures do exist
for a large class of theorems so far no order relations are invol-
ved and the procedures are even feasible in the sense that quite
difficult theorems may be proved in this manner on a computer of
moderate size in a reasonable period of time, The same can even be
done for (local) differential geometry, We shall not enter into this
more which has been sketched in some original papers of the present
author, A book with details is now also in preparation,
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The Out-In Complementary Principle
Wu Wenchun

Ancient Chinese geometry with its long history, rich content
and many achievements forms a school of thought peculiar in style
and systematically different from Euclidean geometry. Much of
its history remains to be explored. However, the ‘“out-in com-
plementary principle” pervades it and is clearly defined in the follow-
ing major classics handed down to date:

Zhou Bi Suan Jing (The Arithmetical Classic of the Grnomon
and the Circular Paths), or Zhou Bi for short;

Jiu Zhang Suan Shu (Nine Chapters on the Mathematical Art),
or Jiu Zhang for short;

Jiu Zhang Suan Shu Zhu (Annotation on the Nine Chapters on
the Marhematical Art) by Liu Hui, or Liu Zhu for short;

Hai Dao Suan Jing (Sea Island Mathematical Manual), or Hai
Dao for short;

Ri Gao Tu Shuo (Theory with Diagrams of the Sun’s Altitude), .
or Ri Gao Shuo for short; and Gou Gu Yuan Fang Tu Shuo (Theory
with Diagrams of the Right Triangle Making Use of Circles or Squares),
or Gou Gu Shuo for short, both by Zhao Shuang.

As everywhere else, geometry in China arises from land mensura-
tion and astronomical observation. These practices in ancient times
gave rise to the calculation of planar areas and mcthods of surveying
based on the properties of the right triangle. Later, solid figures
were involved in carthwork, etc., leading to a thcory of volumes.
One of the characteristics of ancient Chinese geometry is its fairly
high power of abstraction in formulating the seemingly most common-
place out-in complementary principle which arose from diverse ex-
periences. It has, however, been applicd successfully to solving

66
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problems of cx{rcme diversity.

Simple Applications and
the Theory of Proportion

The cssence of the so-called out-in complementary principle
is the assumption of the following obvious facts: 1) The area of a
planar figure remains the same when the figure is rigidly shifted to
another place on the plane. 2) If a planar figure is cut into several
sections, the sum of the areas of the sections is equal to the area of
the original figure. It follows that the areas of the various sections
involved before and after the out-in procedures possess simple arith-
metic relations. The principle also applies to solid figures in space.
It is casy to apply this principle to obtaining the ordinary for-
mula that the area of any triangle is equal to half the product of one
sidc and the associated altitude. From
this the arca of any polygon can be b s
calculated. H W
Another simple application is dia-
grammed as follows: w
If AACB is considered as AACD A s
shifted, and ’and 1}” as1 and II shifted,
then according to the out-in complementary principle 11l must be
cqual to I in area, too.
Likewise, (JPC=[]RC, ...

1]

From this we know
OP x OS = OR x 0Q, PQ x QC = RBXBC,...
Therefore AR:0Q = OR:CQ, AB:0Q = BC:QC,...
That is, the corresponding sides of the similar right triangles ARO
and OQC and also of ABC and OQC are in proportion. From this
we know that certain other corresponding parts are also in propor-
tion.

Though these simple results arc not explicitly stated in Jiu
Zharg, they are time and again manifested in the solution of various
practical problems (Ref. Liu Zhu).
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Gnomon, Shadow and Double Differences

The method of using two gnomons to find the altitude of the
sun is given in Zhou Bi. The formula appears below:

height of distance between
Altitude of _ the gnomon>< the gnomons height of
the sun "~ difference between the lengths the gnomon

of shadows of the two gnomons

As shown in the following diagram:

A is the position of the sun, BI represents the ground level,
ED and GF are the two gnomons, while DH and FI are the two shad-
ows projected on the ground.

In Hai Dao the same method is used to measure the height
of an island from the shore. In the same diagram above, AB is
the height of the island, H and I are the observer’s positions where
the observer’s eye, the tops of the gnomons and the top of the island
are in line. The formula then becomes:

height of distance between
Height of _ the gnomon the two gnomons + height of
the island difference between the the gnomon

distances of observer from
the gnomons
Liu Hui’s original proof and diagram have been lost. But we have
pieced these together drawing inspiration from other sources as well
as extant fragments of diagrams in Ri Gao Shuo to be roughly as
follows:

According to the out-in complementary principle, we know
O IG=[ GB (1)
0 KE=[] EB (2)
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1)-(2) [ JG -3 KE=[] GD,
Therefore (FI-DH)x AC=ED xDF,
That is

difference between

the distance of (height of _ height of ) -

observer from the island gnomon

two gnomons
height of _ distance between
gnomon ° the two gnomons

From this we arrive at the formula for the sea island.

In Hai Dao altogether nine practical problems are listed, all
having to do with the measurement of heights and distances. In all
the nine formulae given, differences occurring from two observations
are usually taken to be the denominator. Probably this is where
the term ‘‘double differences” comes in. The other eight formulae
can all be proved likewise on the out-in complementary principle.

Some of the problems carried in Si Yuan Yu Jian (Precious
Mirror of the Four Elements), written by Zhu Shijie of the Yuan
Dynasty 1,100 years later than Hai Dao, are essentially the same as
the nine posed in Hai Dao. Zhu must have drawn heavily upon his
predecessors’ work. Careful analysis of Zhu’s method as shown in
the rianyuanshu brings us to the conclusion that Liu’s proof of the

brrmo o
_2
credgrcmcaread

A L x
'

-———— - w-a

-
~

sea island formula is possibly somewhat more sophisticated than
that given above. Accordingly, we suggest the following alternative
proof to be considered as Liu’s ‘““‘original”:

By the out-in complementary principle we have besides (1),
(2) also
[ PG = [] GD in the diagram above. 3
From (1), (2) and (3) we get
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[0JN = [1EB = [JKE,
Therefore IM = DH, @)
FM = FI — IM = Fl —DH = diffcrence between the distances
from observer to the two gnomons

From (3) we arrive at the formula for the sea island.

If done in the usual manner according to Euclidean geometry,
an auxiliary linc GM’ should naturally be drawn parallel to AH
to make the proving plain, as shown in the diagram on the right.
The rest can then be proved by making use of the similar triangles
and the thecory of proportion. In fact the proving of the formula

has been so traced by historians of mathematics in China and else-
where in recent times, including Li Huang of the Qing Dynasty
(1644-1911). But this is surely not the original method of Liu
Hui; it is in fact totally out of accord with the spirit of ancient Chinese
geometry. Note GM’ parallel to AH makes FM’=DH. The con-
structced point M’ here and the M point taken for equation (4) are
quite different, cach being typical of an independent school of
geometry.

The Italian priest Matteo Ricci who came to China near the
end of the Ming Dynasty (1368-1644) took the teaching of Euclid-
ean gecomctry as onc of his academic missions. In the book
Method and Theory of Surveying dictated by him there appears a
problem almost identical with the sea island problem. However,
instead of proving it according to the Euclidean method he takes with-
out reason a point M on FI to mect the requirement of (4) above,
then gocs on to prove the formula by proportions. This runs counter
to Euclidecan geometry but coincides with the Chinese tradition.
Why Matteo Ricci should have done so is quite puzzling.
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The Gougu Theorem

The Pythagorean theorem is called the gougu thcorem in tradi-
tional Chinese geometry, and in both Zhou Bi and Jiu Zhang it is
clearly prescribed in the written texts: Multiply the shorter and
longer arms enclosing the right angle by their own values respectively
and add up thc squares; the sum is equal to thc hypotenuse multi-
plicd by its own value; i.e., gou? + gu? = xuan?. Though thc orig-
inal proof has long been lost, we can still tracc it from the texts of
Gou Gu Shuo, Liu Zhu, and espccially from the few diagrams left
from Zhao Shuang. It is clearly stated that the proof is based on the
out-in complementary principle ; therefore it can be something like this:

L 4 K
F 7 G
c
B ¢
[ ]
:
|
D E J; H

In the diagram on the left, ABC is the right triangle. BCDE
is the square on the gou (the shorter arm), while EFGH is cqual to
the squarc on the gu (the longer arm). In the planar shape DBCFGH,
cut off the triangle ABDI and shift it to the position of AABC; cut
off A GHI and move it to the position of A AFG. Wec then have
ABIG cqual to the square of the hypotenuse AB, and hence the
gougu thcorem.

In Euclid’s Elements of Geomerry the Pythagorecan theorem
is proved as illustrated in the diagram below:

It is clear that before the Pythagorcan theorem is tackled, a
lot of preparatory work must be done. First, a few theorems with

158



72 ANCIENT CHINA’S TECHNOLOGY AND SCIENCE

regard to identical triangles and triangular areas must be estab-
lished. That is why the Pythagorean theorem does not appear in
the first volume of Elements of Geometry until near the end of the
book. Euclid’s book gives practically no applications of the theo-
rem, but in ancient China the gougu theorem was widely employed

in diverse applications as early as in Jiu Zhang. It was a source
of development over more than 2,000 years of Chinese mathematics
(cf. the diagrams at the end of this article). The same theorem
played quite a different role in the Eastern and Western systems
of ancient geometry.

Gou, Gu, Xuan, Their Sums and Differences
and Methods of Finding One from the Others

Gou, gu and xuan, the sum of and the difference between any
two of the three, give out nine values. One can find the unknown
from two knowns. Any one of the three sides can be found provid-
ed the other two are given. This is mainly a problem of extracting
a square root. But the sum of or the difference between two sides
is more often employed in solving practical problems such as those
listed in the gougu chapter of Jiu Zhang:

1. Given the difference between xwan (the hypotenuse) and
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gu (the longer arm), and gou (the shorter arm); find xuan and gou.
Five problems are listed.

2. Given the difference between gou and gu, and xuan; find
gou and gu. One problem.

3. Given the difference between xuan and gou, and gu respec-
tively; find gou, gu and xuan. One problem.

4. Given the sum of xuan and gu, and gou; find gu and xuan.
One problem.

Formulae are given for the problems
in Jiu Zhang. The propositions in Gou Top of
Gu Shuo are of the same nature. In Liu bamboo
Zhu proofs of the formulae are worked
out, making use of the out-in comple-
mentary principle; sometimes also the
theory of proportion. Take Problem No.
13 in the gougu chapter, the problem of B";ﬁ:?
the “‘broken bamboo™, for example:

The height of the bamboo (gu plus
xuan) is known. When bent the top

touches the ground at a known distance Roof of Top of
from the stem (gow). Find the height of ~ Pomboo bamboo
the break (gu).
The formula is given as follows:
2
xuan—gu=— 8% .
xuan+gu

(sum of xuan and gu + difference between xuan and gu)

xuan, gu= 5

(sum of xuanand gu)? — gou?
2 x sum of xuan and gu.
To prove the former formula, see in the diagram below:

The side of the squares ABCD or AEFG is equal respectively
to the xuan or gu of the right triangle. According to the gou gu
theorem the area of EBCDGF is equal to gou?. Shift []] FD to the
position of [[] CH, then according to the out-in complementary prin-
ciple, the area of [] BH is equal to gou?, while the longer and shorter
sides of this rectangle are equal to the sum of xwan and gu and the

Liu Zhu provides another formula: gu =
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difference between them respectively. From this we get the former
formula.

H ',....‘
v
P
» 1
[} .
HE
o
:
D $ c
wauof
F
A r3 B

Liu Hui’s proof for the other formula is done likewise. In the
diagram below:

The area of the reversed L-shaped figure in the lower right corner
is equal to gou? by the gougu theorem. The area bordcred by the
bold lincs is thus equal to (xuan +gu)? — gou?. Shift I to the position

Xuan Gu

Gy < Xuan

of II and we see according to the out-in complcmentary principle
that this area is two times the shaded area; i.e., 2 X gu X (xuan+
gu). The formula is therefore proved.

1

»
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Qin Jiushao’s Formula!

In Qin Jiushao’s Shu Shu Jiu Zhang? (Mathematical Treatise
in Nine Sections) 1247, therc is a problem of finding thc area of a
scalene triangular plot. Given the three unequal sides of the triangle
da, zhong, xiao, (the longest side, the medium side and the shortest
side). Qin Jiushao’s solution can be formulated as follows:

1 ., da?+ xiao? — zhong?
2=_2 2, Jq2 —[F4°T |2
Area 3 [xzao da ( 5 ) .

Qin says nothing about the source of this formula. The proof
of the formula has also been lost. Making use of the results and
methods in Liu Zhu, we may infer the lost proof to be somewhat as
follows:

00\*

Gy

pry

Draw an altitude of the triangle perpendicular to da, dividing
da into two parts. Let the longer and the shorter parts be the xuan
and gu of a right trianglc. From Jiu Zhang we know the area of
a triangle to be 1/, x altitude x da, therefore our problem becomes
onc of finding the altitude, then further boils down to finding the gu
of that right triangle. Since

xuan + gu = da,
gou? = xuan® — gu? = zhong? — xiao?,
our problem is the same as that of finding gu, given gouw and the sum

1 Qin Jiushao was one of the grecatest Chinese mathematicians of the
13th century.

2 A very important mathematical classic written by Qin, known especially
for its treatments of numerical equations of higher degree and indeterminate
analysis,
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of xuan and gu. From Liu Hui’s formula we have:
_ (xuan+gu)* —gou*  da’> — (zhong? — xiao%)
T 2X (xuan + gu) 2x da

_ (da? + xiao? — zhong?)?
2 = xviao? — ou? = xiao? — ’
Altitude? = xiao? — gu? = xiao 2xda

From this we get Qin’s formula.

Qin’s formula looks rather odd. But the proof traced above
is quite natural and perfectly in line with ancient Chinese mathemat-
ical tradition. We may even regard it as the original proof.

Heron’s formula in Western geometry, however, is neat in form
and good-looking:

Area of a triangle= $~/(a +b+c)(b+c—a)(c +a—b)(a+b—c),
where a, b, ¢ are the three sides of the triangle.

Qin’s formula is not likely to have been derived from Heron’s,
and we may conclude that it has its indigenous origin independent of
Heron’s influence.

Extracting the Square or Cubic Root

To find the hypotenuse from the two arms enclosing the right
angle in a right triangle, we add up the two squares on the arms and
extract the square of the sum. Thus the application of the gougu
theorem inevitably leads to the extraction of the square root. In
fact, in the ancient mathematical classic Zhou Bi the square roots
of many concrete numbers are provided. Detailed steps in extract-
ing square roots are stated in Jiu Zhang. The method is geometric,
based on the out-in complementary principle. Suppose the task
is to find the square root of the number 55,225. In geometry this
is to find the side of a square the area of which is 55,225. Note
the decimal system has long been in use in China. First we must
decide on how many digits the root is going to have. The square
root of a five-digit number has three digits. So our task is to ascer-
tain the first, second and third digits successively. Since our number
55,225 lies between 40,000 and 90,000, its square root must lie
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between 200 and 300. Our first digit is therefore a 2. (In Jiu
Zhang this process of ascertainment is called yi,! or “to suggest”.)
In the diagram let ABCD be the square the area of which is 55,225.
On one side AB we take a point E and let AE be equal to 200. Draw
the square AEFG. Cut off AEFG from ABCD. The areca of the

D=M c=L
J T

¢ F

A 2 B=K

remaining inverted L-shaped figure is therefore 55,225—-2002=
15,225. We then suggest that the second digit be a 3. On EB we
again take a point H making EH equal to 30. Draw the square
AHIJ. Cut the inverted L-shaped figure into three parts: [] FH,
[JFJ,[JFL. Their arcas are respectively 30 x EF, 30 xFG, 302
But EF =FG =200, so the area of the remaining inverted L-shaped
figure is equal to

15,225 — (2 x 30 x 200 + 302) =2,325.
Let us then suggest that the third digit be a 5, and on HB we take
a point K making HK equal to 5. Draw the square AKLM. The
area of the remaining inverted L-shaped figure, if any, must be

2,325 -(2x5x230+52)=0

In that case K and B must coincide, and the square root of 55,225 is
235,

The same method is used in extracting the cubic root. It will
of course be more complicated to dissect a cube but the principle
is still geometric and still that of out-in complementation. The
method is described in detail in Jiu Zhang.

These methods of extracting the square and cubic roots date
back to very ancient times in China. They are clearly geometric

1 Some say the character means “‘to discuss”.
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and display a superiority in the decimal place-value system of numer-
ation employcd.

By the middle of the 11th century Chinese mathematicians had
already improved the methods of extracting the square and cubic
roots to the solution of equations of higher degree. This is called
zeng zheng kai fang fa (the method of extracting cquational roots by
successive additions and multiplications). A diagram illustrating
the differcent cocfficients of the various terms in the cxpansion formulac
of binomial powers of high degrees had also appearcd and was called
kai fang zuo fa ben yuan tu (diagram illustrating the origin and
method of extracting equational roots). The geomcetric nature and
the high degree notion involved in zeng zheng kai fang fa show that
Chinese mathematicians in ancient times might alrcady have had
primitive idcas about hypercubes and hypergeometry.

Quadratic Equations

In-extraciing the square root, we make usc of the diagram on
p.74. 2 x EF in the diagram is called the dingfa. Having obtaincd AE,
we come to find EB from the known area of the inverted L-shaped
figure EBCDGF. Shift [] DF to the position of [] CH, the arca
of [] BH is the same as that of the inverted L-shaped figurc according
to the out-in complementary principle. Note that the difference
between the longer and shorter sides of ] BH is equal to 2 XEF
(dingfa), which is also known. The problem of finding EB is there-
fore a problem of

(A) finding the longer and shorter sides of a rectangle, given its
arca and the difference between the two sides.

Converscely, the solution of problem (A) can be reduced to onc
as from the sccond step onwards in the method of squarc-root
extraction, which in Jiu Zhang is called kai dai cong ping fang fa.
The solution of (A) in Jiu Zhang is stated in the following words:

(B) “Take [the area of the rectangle] as sk and [the difference
between the length and width] as congfa, then kai fang chue zhi
(literally “‘to extract the square root™ which means here kai dai
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cong ping fang) and the root is the {width].”

The term congfa comes from dingfa in extracting the square
root. The term kaifang (root extraction) shows its origin.

The following problem is taken from Jiu Zhang. 1In the diagram
on the right, ABCD is a square walled city. At point G there is a
big tree of known distance in terms of human steps northward from
the north gate (north steps for short). A man takes a definite num-
ber of steps southward out of the south gate (south steps for short),
then turns west and also counts his steps till he is just able to sce
the trec (west steps for short). IFind the length of each side of the
square city. The answer given in Liu Zhu is obtained on the out-in
complementary principle as follows: [[J E] = 2 [ EG = 2[] KG
= 2 X north steps x west steps. In ] EJ the difference between the
length and the width is equal to the sum of north steps and south
steps. The problem is thus reduced to one in the form of (A) above.
According to Jiu Zhang its solution is as follows: Take 2 x north
steps x west steps as shi, and the sum of north steps and south steps
as congfa, kai ping fang chu zhi and we find the length of one side
of the city as represented by EI in the diagram.

G =Tree
---------------- J
r r North »
1 steps :
[} D H
K! --------------- c
L]
[}
[}
!
]
'
H A7 Somh 3 B
' Ol

H g \West steps =

Not only the numerical value of problem (A) can be found by
means of the kai dai cong ping fang fa method, but also a precise
expression of the solution of (A) may be obtained on, the out-in com-
plementary principle. In fact, if in the rectanglc we take the width
as the gou and the length as the gu of a right triangle, then problem
(A) becomes the following:
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(C) Given the product of gou and gu, and the difference between
them in a right triangle, find gou and gu.

Let us examine a diagram left by Zhao Shuang in which there
are two squares the sides of which are equal to the sum of, and the

Gou

difference between, gou and gu of the right triangle respectively.
We therefore have
(gou+gu)? = 4 (gou x gu) —(gu — gou)?.

From this we get the sum of gou and gu, and gou and gu conse-
quently. Similarly, gou and gu can be found given their sum and
their product. Reference can be made to the last proposition in
Gou Gu Shuo.

In the Song and Yuan dynasties (10th to 14th century) the no-
tion of the unknown was explicitly and clearly introduced into tradi-
tional Chinese mathematics. If x (called tianyuanyil then; while
the tianyuan notation is one used by the Song algebraists for the
expression of numerical equations of high degree. It is a way of
arraying counting rods on counting boards. The array is of a
“matrix” character. Different terms are used for distinguishing
figures on different “‘storeys”, with the constant term on the lowest,
and the coefficient of the highest degree term on the highest storey
above;) stands for the width of the rectangle, our problem (A) is
equivalent to solving a quadratic equation of the form

x2+ bx = c, with b as congfa and c as shi.
Ancient Chinese mathematicians furnished both numerical and ac-
curate solutions to quadratic equations of the above type (with b

1 Tianyuanyi has different meanings in the works of Song and Yuan
dynasty mathematicians.
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and ¢ positive). During the Song and Yuan dynasties the kaifangshu
(method of root extraction) was extended to solving numerical equa-
tions of high degree. As for the method of accurate solution of
equations of higher degree, historical traces have long been lost.
Judging from what Wang Xiaotong wrote in the early years of the
Tang Dynasty (618-907) and from historical comments on Zu
Chongzhi (429-500), we cannot totally rule out the possibility that
geometrical approaches have been attempted with some success in
accurate solution of cubic equations.

In other countries, the Arab mathematician Al-Khowarizmi
in his well-known classic on algebra (A.D. 829) gives accurate solu-
tions for quadratic equations of various types. His method was
geometrical in spirit, similar to ours on the out-in complementary
principle. Later, Italian mathematicians in the 16th century worked
out solutions for cubic equations. Their methods were also geo-
metrical.

Theory of Volumes and Liu Hui’s Principle

Since the area of a rectangle is the product of its length and width,
it is easy to infer on the out-in complementary principle that

(1) the area of a triangle = 1/, x its height X its base.

It is also easy to derive further the formulae for areas of
polygons. All these fall within the category of planc geometry.

In solid gcometry, however, although we know that the volume
of a rectangular parallelepiped must be equal to its length x its
width x its height, it is by no means definite whether we can on the
out-in complementary principle reason that

(2) the volume of a tetrahedron = 1/; x its altitude X the areca
of its base surface, and hence form a theory for volumes of polyhedra.
In fact this constitutes a most difficult problem in geometry which
was presented as one of the 23 unsolved problems at the International
Congress of Mathematicians in 1900 by the celebrated David Hilbert.
This problem has been solved by Max Dehn who proved that be-
sides being of equal volumes certain conditions must further be satis-
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fied before two polyhedra can be cut into a number of mutually
congruent smaller ones. These conditions have since been called
Dchn’s conditions. In 1965 the Swiss mathematician Sydler proved
that Dehn’s conditions are also sufficient. Even so, it appears that
the problem may still be regarded as not yet satisfactorily settled.
Dehn’s conditions are too complicated to be accepted as final.

A probe into how the problem was dealt with by ancient Chinese
mathematicians would probably provide us with some food for
thought.

In both Jiu Zhang and Liu Zhu the starting point from which
problems of polyhedra volumes are solved is to cut some rcgular
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polyhedra into several basic solid figures which will be helpful in
analysis. A rectangular parallelepiped can be cut diagonally (passing
through two diagonally opposite edges) into two giandu (right trian-
gular prisms), as shown in diagrams (1) and (2). A giandu in turn can
be cut into a yangma (pyramid) and a bienao (tetrahedral wedge)
as shown in (3) and (4). The basic features of a bienao are that it
has AB perpendicular to the plane BFG, and FG perpendicular to the

4)
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plane ABF as shown in the diagram. Since any polyhedron can be
cut into tetrahedra and any tetrahedron can be cut into six bienao
as shown in the diagram below, the whole problem boils down to
finding the volumes of the bienao (and the yangma) so produced.

In Liu Hui’s own words yangma and bienao are the *‘basic figures
for thc whole theory and practice involving volumes of polyhedra”.

We then come to the problem of finding the volumes of yangma
and bienao. If our parallelepiped is simplified into a cube, it will be
casy to see that the volume of the pyramid cut from the prism is
twice that of the tetrahedral wedge. Liu Hui proved in a long dis-
seriation that this is the case not only in the giandu from a cube, but
in all giandu alike. In Liu Hui’s words, “In a giandu the volume of
the yangma is always twice that of the bienao.”” We may well call
this statement Liu Hui’s principle. In modern language, “If any
rectangular parallelepiped is cut diagonally into two prisms, and
the prisms are further cut into pyramids and tetrahedra, the ratio
between the volumes of the pyramid and tetrahedron so produced
is always 2:1.”

From this principle it will be easy to arrive at the formulae for
volumes of yangma and bienao. 1t is then no problem to prove for-
mula (2) above. The wholc theory for volumes of polyhedra may
then be based on the principles of Liu Hui and of out-in complementa-
tion.

Liu Hui’s long and detailed dissertation is proof of his principle,
proof based on some limit considerations. What has been made
clear by Hilbert and his followers can be construed as that volumes
are diffcrent from planar areas in that the mere out-in complementary
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principle is insufficient for a satisfactory theory. In fact, it must
be supplemented by some axiom or principle of continuity. Though
in 1903 Shatunovsky argued that the principle of continuity could
be omitted and that the foundation of the theory of polyhedra vol-
umes could be built on formula (2), it nevertheless requires a proof of
the independence of the choice of altitude and base which is neither
plain nor trivial at all. In comparison with the method of exhaustion
of the ancient Greeks and the method employed in Legendre’s Elé-
ments, Liu Hui’s treatment of polyhedra volumes based on his prin-
ciple and the out-in complementary principle can be safely regarded
as the most natural one surpassing all others in simplicity and ele-
gance.
It seems that much yet remains to be proved in the field of the
polyhedra. It might be an aid if the conceptions and methods in
ancient Chinese geometrical approaches were duly taken into account.

The Xianchu Theorem

The term xianchu (a wedge with trapezoid base and both sides
sloping, see the diagram below) as well as other strange terms for
polyhedra have come down from ancient Chinese architecture and

earthwork.
In Jiu Zhang, volumes of polyhedra are calculated on the out-in

complementary principle and by the yangma and bienae formulae.
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Take the xianchu in the diagram for instance. ABCD form a trape-
zoid on the ground surface. CDEF is another trapezoid in a plane
perpendicular to the ground. ABEF is a slope. The whole solid
ABCDEF in the form of a tunnel is xianchu. Plane I1JK is perpen-
dicular both to the ground and plane CDEF. It bisects xianchu
into two symmetrical parts. EG, FH and KI show the depth of
xianchu. 1J is the length of xianchu on the ground. CD, EF and
AB are called the upper width, the lower width, and the hind width
of xianchu. The formula for the volume of xianchu given in Jiu
Zhang is as follows:
1 /upper , lower , hind

Volume of xianchu = € (wi dth t width + i dth) x depth x length.

To prove this, Liu Hui in his book Liu Zhu cuts xianchu into several
parts, and supposes CD> AB> EF as in the diagram above. Xian-
chu is therefore regarded as composed of a giandu EFGHLM, two
small bienao AGEL and BFHM, and two big irregular bienaoc ACEG
and BDFH. From formula (2) above and the formulae for giandu
and bienao, the formula for the volume of xianchu is therefore ob-
tained. The same method is employed in Jiu Zhang in calculating
the volumes of chumeng (wedge with rectangular base and both sides
sloping), chutong, panchi, minggu (three variations of a frustum of
pyramid with rectangular base of unequal sides), and other polyhedra.

A .|

4
-
-
-
-

The formula of the xianchu volume is of special importance in
that half of the xianchu standing erect on the right triangular base
JK will be equal to a right-angled prism cut slantwise at the upper
end. Its volume will simply be the product of the average height
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and the right triangular (gougu form) base. Now a pillar bounded
at the top by any curved surface can be regarded as composed of
such slant-topped prisms approximately. Therefore the integral
approximate formula of a function f(x, y) can be obtained analogous
to Simpson’s integral approximate formula in the case of an area
under a curve. This shows the particular significance of the xianchu
formula.

In Western mathematics, the earliest formula for the volume of
a pillar cut slantwise at the top appeared in 1794 in Legendre’s
Eléements de géométrrie, and has since been called Legendre’s formula.
Legendre’s book is the earliest work to take thc place of Euclid’s
Elements. Legendre’s proof of his own formula is also based on the
volume of the tetrahedron but with different method of dissection
from that in Liu Zhu. Reference can be made to both for comparison.

Volume of the Sphere and
the Principle of Zu Geng

Within the 300 years or so between the writing of Jiu Zhang
and that of Liu Zhu a fairly complete theoretical system with regard
to volumes of polyhedra had arisen. Yet ancient Chinese mathema-
ticians at that time stopped short at bodies bounded by curved sur-
faces, especially spheres, the volume of which remained unsolved
till Zu Geng of the 5th-6th centurics put forward a famous principle
named after him. In Zu Geng’s own words the principle is as follows:

“If the mi (cross-sections, areas) are the same on the same s/
(level), the ji (whole volumes) cannot be different.”

The same principle appeared in Europc in the 16th century
by the namc of Cavalieri’s principle, which was an important step
towards the invention of calculus.

Zu Geng’s proof for his formula of spherical volumes is describ-
ed in detail in an annotation by Li Chunfeng (in about 656) to Jiu
Zhang. The arguments are very clear in three successive steps:

1. Within a cube draw two inscribed cylinders at cross direc-
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tions. That part in common of the two cylinders is called mou he
Sfang gai (literally “‘the common square cover’’). Cut a small cube
1/g of the original cube. According to Zu Geng’s principle, the fol-
lowing proportion is obtained:

1/3 volume of sphere : 1/g fanggai = n:4.

2. That part of fanggai within the 1/g cube is the inner gi,
and those three parts within the small cube but left out of fanggai
are the outer gi.

From the small cube cut an inverted yangma. Prove by the
gougu theorem that if we cut the yangma horizontally at a certain
level from the base, the cross-section of the yangma is equal to the
total cross-sections of the outer gi cut at the same level in area.

3. Prove by Zu Geng’s principle that the total volume of the
outer ¢f is equal to that of the yangma.

From these the formula for the volume of the sphere is immediate.

The idea of mou he fang gai was first introduccd by Liu
Hui. The first step of Zu Geng had actually been worked out by
Liu also. In fact, in Liu Zhu he had time and again made use of
what was later called Zu Geng’s principle to find the volumes of
solid bodies bounded by curved surfaces, such as the volumes of the
cylinder from the polygonal pillar, of the conc from the pyramid,
of the frustum of conc from the frustum of pyramid, ctc. Zu Geng’s
merits not only consist in actual solution of volumes of mou he fang
gai and the sphere, but also in his summing up of practical experi-
ences and objective facts in the form of a general principle.
Whether the principle should be called the Liu-Zu principle to give
Liu Hui his due is a matter that deserves discussion.

Other Applications

Jiu Zhang is so comprehensive that, leaving other topics aside,
the out-in complementary principle is by no means applied merely
to the various problems above. The problem of the inscribed circle
11 a right triangle in Jiu Zhang treated on this principle has since
been further developed. It is fully treated in Ce Yuan Hai Jing
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(Sea Mirror of Circle Measurement, 1248) by Li Ye. In the works
of Qin Jiushao and Li Ye, the problem of the *“square city” above
has been replaced by a problem of “circular walled city” which was
beyond the masters of older times. The invention of such methods
as tianyuanshu in the Song and Yuan dynasties not only solves
heretofore unsolvable problems but also largely simplifies old
problems. Compared with the older methods, the new methods
give results with far less effort. The essence of the new methods
and new theories lies in the algebraization of geometry, which
blazed the trail for both analytical geometry and modern algebra.

Conclusion

The out-in complementary principle together with the prin-
ciples of Liu Hui and Zu Geng demonstrated the considerable abilities
of ancient Chinese masters in scientific abstraction. Drawing intrin-
sic conclusions from objective facts, they summed up the conclusions
into succinct principles. These principles, plain in reasoning and
extensive in application, form a unique character of ancient Chinese
mathematics. The emphasis has always been on the tackling of
concrete problems and on simple, seemingly plausible principles
and general methods. The same spirit permeates even such out-
standing achievements as the algebraization of geometry and the
place-value decimal system of numbers. Western mathematics, in
contrast, lays emphasis on conceptions and the logical relationships
between them.

The majority of the ancient Chinese mathematical classics have
sunk into oblivion because of feudal obscurantism — a most deplor-
able loss in human society. Zu Geng’s contributions would also
have been lost had it not been for the rather casual entry by Li Chun-
feng in his annotation to Jiu Zhang. However, judging from what
is still available, the historical facts that ancient Chinese mathematics
had its origin in human productive activities and had thrived in
its own, independent way before the 15th century are still clear, as
pithily shown in the following two diagrams:
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Diagram 1

Astronomy —— height and distance mensuration

— theory of right triangle and double differences—; out-in
Land mensuration —— area theory

-» complementary

Earthwork —— volume theory

principle

——>Liu Hui’s principle

———Zu Geng’s principle

Diagram II

Gougu theory — square root — cubic root — roots extraction of
extraction extraction higher equations

by successive
additions and

multiplica- —
tions _
square root cubic root
extraction —» extraction
with cong with cong

—numerical solution of higher equations with zAeng (positive)
and fu (negative) coefficients
————the tianyuan method — the siyuan method

(single unknown, (four unknowns, system
higher equation) of higher equations)
I
algebraization of geometry modern algebra

176



A CONSTRUCTIVE THEORY OI' DIFFERENTIAL ALGEBRAIC GEOMETRY
BASED ON WORKS OF J.F.RITT WITH PARTICULAR APPLICATIONS
TO MECHANICAL THEOREM-PROVING OF DIFFERENTIAL GEOMETRIES

Wu Wen-tsun (7%5‘('&)

Institute of Systems-Science, Academia Sinica

The nowadays algebraic geometry is mainly of an EXISTENTIAL
character. For example, it is proved that any algebraic variety
is the union of a finite number of irrecucible ones but with no
indications at all how such a decomposition can actually be
carried out. There are even no indications how a given variety,
defined by a set of equations, is known to be irreducible or not.
The criteria for the irreducibility of a variety is non-CONSTRUCTIVE
and cannot be applied to arrive at final result except rare cases
by means of special devices. On the contrary, J. F. Ritt has already
established a theory of algebraic varieties which is in the main
CONSTRUCTIVE. He has even established such a theory for the more
general case of a variety defined over a field possessing a further
operation of differentiation. We shall call such a variety a
DIFFERENTIAL-ALGEBRAIC VARIETY and the geometry thus founded the
DIFFERENTIAL-ALGEBRAIC GEOMETRY. The present note is the simplified
version of a paper bearing the same title to be published elsewhere
which has the aim of giving an exposition of this theory of Ritt
with emphasis on its CONSTRUCTIVE character. The concepts, and
most of the results too, are all due to Ritt as may be found in the
two books [R1,R2] of Ritt. We remark only that, while the original

aim of Ritt is to establish a theory of differential equations from

Reprinted from Differential Geometry and Differential Equations, Lecture Notes in Mathematics,
No. 1255 (Springer, 1984), pp. 173-189. With kind permission of Springer Science and Business
Media.
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an algebraic standpoint, our interest lies rather in its applications
to mechanical theorem proving of differential geometries in
particular. For this purpose we have suppressed all notions of IDEAL
and its alike, being not appropriate for mechanical theorem proving.

For the sake of simplicity we shall restrict ourselves to the
case of functions of only one independent variable. Let us recall
first some definitions of Ritt, naturally with due modifications.

A DIFFERENTIAL FIELD {abbr. 4-FIELD], say F, is a field of
characteristic 0 which has, besides the usual arithmetic operations,
a further operation of DIFFERENTIATION such that any element A of F
has a DERIVATIVE DiA verifying the usual rules. We write for
simplicity

DiA = D1...D1lA
with D1 i times and call DiA the i-th DERIVATIVE of A. The element
A itself is also considered as 0-th DERIVATIVE of A: A=DOA.

In what follows the d-FIELD F will be fixed in advance. An
INDETERMINATE Y is just a symbol having an infinity of DERIVATIVES
DiY none of which is zero. A DIFFERENTIAL POLYNOMIAL (abbr. d-POL),
say P, in INDETERMINATES Y1, Y2, ..., ¥Yn over F is a polynomial
inDiYj(i>=0,1<=j<=n) with coefficients in F. For P we can then
form its successive DERIVATIVES DiP as well as various PARTIAL
DERIVATIVES dP/d(DiYj) in the usual formal manner.

To any d-POL P<>0 is associated three characteristic numbers,
viz.,

(a) The CLASS cls(P) which is the greatest p such that some
DjY¥p is actually present in P. If no such Dj¥Yp is present in P
for any p>0 so that P is itself an element of I', then the CLASS
cls(P) will be set to be 0.

(b) The ORDER ord(P) which is the greatest m such that the
m-th DERIVATIVE DmYp with p=cls(P) is actually present in P. In

case ¢ls(P)=0 we define the ORDER ord(P) to be 0.
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(¢) The DEGREE deg(p) which is the highest degree in DmYp
present in P where p=cls(p) and m=ord(p). In case cls{(P)=0 we
define the DEGREE deg{(P) to be 0.

More generally, for any i with l<=i<=n we shall denote by
ord(i,P) the greatest m such that the m-th DERIVATIVE DmYi is
actually present in P and then by deg{(i.P) the highest degree
in DmYi actually present in P. If neither Yi nor any of its
DERIVATIVEs is present in P, then we just set ord(i,P)=-1.In
particular, ord(p,Q)=ord{(p,P), deg(P)=deg{p,P) if p=cls(P)>0. A
d-POL Q is then said to be REDUCED with respect to a d-POL P of CLASS
p>0 if either ord(p,Q)<ord(P), or ord(p,Q)=dor(P), but deg(p,Q)<deg(P).

Any d-POL P of CLASS p>0, ORDER m, and DEGREE d can now be
written in the form

P = CO*DmY¥p~d + Cl*Dm¥p~{(d-i) + ... + C4d,
with ¢ls(Ci)<p, or cls{Ci)=p and ord (p,Ci)<m for i=0,1,...,d. The
leading coefficient CO, which is itself a d-POL, is then called the
INITIAL of P and dP/dDmYp is called the SEPARANT of P.
A finite sequence of non-zero 4-POLs
Pl, P2, ... , Pr (ASC)
is called an ASCENDING SET (abbr. ASC-SET) if either

(a) r=1, or

(b) r>l, cls(Pl)>0, and for any j>i, cls(Pj)>cls(Pi) and Pj
is REDUCED with respect to Pi.

For the ASC-SET (ASC) as above let Si and Ii be respectively
the SEPARANT and INITIAL of Pi, i=1,2,...r. A 4-POL G will be said to
be REDUCED with respect to (ASC) if it is REDUCED with respect
to each Pi in (ASC). In particular all SEPARANTs Si and INITIALs Ii
are REDUCED with respect to (ASC).

For any system (DP) of d-POLs and any two d-POLs Q1, Q2 we
shall write for simplicity

01 :=: Q2 d-mod (DP)
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if Q1-Q2 is a linear combination of a finite number of d-PQLs of
(DP) or their DERIVATIVEs with coefficients themselves d-POls.
The following lemma is then fundamental in the theory of Ritt:

LEMMA. Let (ASC) be an ASCENDING SET as given above. For any
d-POL G there exist then unique non-negative integers Ki, Li such
that, setting J the power product of SEPARANTs Si and INITIALs
Ii of Pi in (ASC) as given below

Si”Ki*,.,.*Sn"Kn*Ii"Li*...*In"Kn = J,
we shall have an equation of the form

J*G :=: R d-mod (ASC) (REM)
in which the d-POL R is REDUCED with respect to (ASC).

The d-POL R uniquely determined is called the REMAINDER of G
with respect to (ASC). The procedure in passing from G to R as
described in the LEMMA is then called the REDUCTION of G with
respect to (ASC). The corresponding formula (REM) will then be
called the REMAINDER FORMULA of G with respect to (ASC). The
REMAINDER R will also be denoted as Rem(G/ASC).

Let a d-FIELD I be given. A d-FIELD Fl will be said to be an
EXTENSION of F if, as an algebraic field, it is an extension
field of F in the ordinary sense, and moreover any element A
of F1 which is also in F will have the same p-th DERIVATIVE for
any p>0 whether it is considered as an element of F or of Fl.

Let the d-~FIELD F and INDETERMINATEs Y1, Y2,..., ¥Yn be now fixed
in advance. Consider any finite or infinite system (DP) of d-POLs in
¥l, ..., ¥n over ¥. The system of equations P=0 for all P in
(DP) will be represented symbolically by (DP)=0.

Suppose that there exists a certain EXTENSION Fl of F and a
set of n elements 21,...,2n in Fl, such that when each Yi is
replaced by 2i in the d-POLs of (DP), these d-POLs all reduce

to 0. Then we call the set (Zl,...,2n) a ZERO of (DP) or
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alternatively a SOLUTION of (DP)=0. The totality of all ZEROs

of (DP), for all possible extensions Fl of F, will be called

the DIFFERENTIAL-ALGEBRAIC VARIETY (abbr. DIFF-ALG VARIETY) of
(DP) or (DP)=0, to be denoted in what follows by Zero(DP). A

ZERO of (DP) will also be called a POINT of the DIFF-ALG VARIETY
Zero(DP). If Zero(DP) is an empty set, then we shall say that

(DP) 1is a CONTRADICTOQRY system. Furthermore, if a certain 4-POL

G is given, then the totality of 2EROs of (DP) which are not ZEROs
of G will be denoted by Zero(DP/G).

Consider now a finite system (DP) of non-zero d-POLs in the
INDETERMINATEsS Y1,...,¥n over F. The following theorem plays an
important role in the theory of Ritt which we shall call the Ritt
Well Ordering Principle or simply the

RITT PRINCIPLE. There is a mechanical procedure which permits
to decide in a finite number of steps for a given finite svstem
(DP) or non-zero d-POLs, either (DP) is CONTRADICTORY and possesses
no ZEROs at all or there is some enlarged system (DP)’ of (DP) and
a particular ASC-SET (CS)

ci, ¢c2, ... , Cr (Cs)
consisting of d-POLs Ci in (DP) ' having the following properties:

(1) cls{cl)>0.

(2) (DP) ' has the same DIFF-ALG VARIETY cof ZEROs as that of
(DP) .

(3) Any d-POL in (DP)' has its REMAINDER 0 with respect to (CS).

More precisely, we have in fact the following explicit
formula for the structure of the DIFF-ALG VARIETY Zero(DP):

Zero(DP) = Zero(CS/J) + SUMi Zero(DPi')
(RITT)
+ SUMi Zero(DPi").
In the formula (RITT) the 4-POL J is the product of all INITIALs Ii
and SEPARANTs Si of Ci in (CS). Each DPi' is the enlarged system

of (DP) with i-th INITIAL Ii adjoined to it and each DPi" is the

181



178

one with i-th SEPARANT Si adjoined to it. The ASC-SET (CS) occuring
in the formula (RITT) is of particular importance and is called a
CHARACTERISTIC SET (abbr. CHAR-SET) of the given system (DP) of &-
POLs. Remark that this terminology of CHAR~-SET used here is a little
different from that one used by Ritt.

The formula (RITT) above gives a decomposition of set of
ZEROs of a system (DP) of d-POLs into several parts. It will
be decomposed further to an ultimate form which will lead to
some fundamental facts about DIFF-ALG VARIETYs. For this purpose,
let us consider an ASC-SET (ASC)

pl, P2, ... , Pr (ASC)
with steadily increasing CLASSes

(0 <) cls(Pl) < cls(P2) < ... < cls(Pr).
For any Kk with l<=k<=r let (ASCk) be the ASCENDING SET formed by
the first k d-POLs in the sequence (ASC)=(ASCr). Then we lay
down the following

DEFINITION. The ASC~SET (ASC) is said to be 4-IRREDUCIBLE if
the following holds:

For each k>=1 and <=r let h=k-1l. Then for any d-POL H REDUCED
with respect to (ASCh), which is of CLASS either < cls(Pk), or of
CLASS=cls (Pk) but of ORDER < ord{(Pk), there can exist no relations
of the form

H*Pk :=: P'*p" d-mod (ASCh),
in which P' and P" are both of the same CLASS and ORDER as PXk.

According to Ritt we can reduce the problem of deciding whether
an ASC-SET of d4-POLs is 4d-IRREDUCIBLE or not to a problem involving
ordinary polynomials over ordinary fields which we shall not enter.

Consider now a system (DP) consisting of a finite number of
non-zero 4-POLs and also a d-POL G. For the structure of the
set of ZEROs Zero(DP/G) we have then the following

ZERO DECOMPOSITION THEOREM. There is a mechanical procedure
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which permits to decide in a finite number of steps whether
Zero(DP/G) is an empty set and in the non-empty case to furnish
a decomposition of the following form:

Zero (DP/G) = SUMi Zero(ASCi/Ri). {Z-DEC)
In this decomposition formula each ASCi is a d-IRREDUCIBLE ASC-SET
and Ri is the non-zero REMAINDER of Ji*Gi with respect to (ASCi},
where Ji is the product of INITIALs and SEPARANTs of d4-POLs in
(ASCi), and Gi is certain non~zero d-POL.

The proof consists of giving such a mechanical procedure as
described below.

Step 1. Form, as in the RITT PRINCIPLE, a CHAR-SET (CS) of
(DP) . If (CS) is consisting of a single d-POL which is a non-zexro
element of the basic d-FIELD F, then 2Zero(DPP), a fortiori Zero(DP/G),
is empty and the procedure stops. In the contrary case let the INI-
TIALs and SEPARANTs of the d-POLs in (CS) be respectively Ii and Si.
Then the RITT PRINCIPLEwill give rise to a decomposition of the form

Zero (DP/G) = Zero(CS/J*G) + SUMi Zero(DPi'/G)
+ SUMi Zero(DPi"/G),
in which J is the product of all INITIALs Ii and SEPARANTs Si of
(CS), while each (DPi') resp, (DPi") is the enlarged system of (DP)
with Ii resp. Si adjoined to it.

Step 2. Consider the set Zero(CS/J*G).

Suppose first that (CS) is d-IRREDUCIBLE. Form the REMAINDER
R of J*G with respect to (CS). By the REMAINDER FORMULA we have
clearly

Zero (CS/JI*G) = Zero(CS/G).
If R=0 then Zero(CS/J*G) is empty and should be removed in the
above decomposition. Otherwise we just replace Zero(CS/J*G) in
the decomposition by Zero(CS/R). In any case we proceed to the next
step.

Suppose now (CS) is d REDUCIBLE. Let (CS) consist of 4-POLs
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¢, ¢2, ... , Cr (Cs)
of CLASSes
(0<) cls(Cl) < cls(C2) < ... < cls{(Cr).

There will then be some k<=r, h=k-1, and some d~-POLs H and P', P"
such that

H*Ck :=: P'*p" d-mod (CSh)
with corresponding properties observed. Let (CS') and (CS") be
now the system of d-POLs obtained from (CS} in replacing Ck by P’,
P" respectively, and (CSO) the enlarged one obtained from (CS) by
adjoining H to it. Then it is clear that

Zero(CS/J*G) = Zero{(CSO/J*G) + 2ero(CS'/H*J*G)

+ Zero (CS"/H*J*G) .
Replace now Zero(CS/J*G) in the decomposition of Step 1 by the
above union of sets of ZEROs and proceed to the next step.

Step 3. Treat now in turn each set of ZEROs occuring in the
decomposition of Step 1 or Step 2 in returning to Step 1, to be
considered as the new (DP), removing any empty set of ZEROs if it
appears, and proceeding as before.

It can be proved that we have to stop after a finite number of
steps. We have thus finally arrived at either an empty set or a
decomposition in the form as described in the theorem.

The ZERO DECOMPOSITION THEOREM furnishes us with a complete
description of the structure of the set of ZEROs of a finite system
of d-POLs. It can be applied to give a CONSRUCTIVE proof of
HILBERT ZERO THEOREM which, even in the case of ordinary polynomials,
is usually proved in a mere EXISTENTIAL manner. It can also be
applied to give a CONSTRUCTIVE proof of the decomposition of a
DIFF-ALG VARIETY intc IRREDUCIBLE ones in the following way.

Let a d-IRREDUCIBLE ASC-SET (ASC) be given as above with INITIALSs
Ii and SEPARANTs Si. Construct now a ZERO of (ASC) as follows.

For any two d-POLs P, Q the relation that P-Q has its REMAINDER 0
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with respect to (ASC) is easily seen to be an equivalence relation
and wve shall say accordingly that P, Q belong to the same REMAINDER
CLASS with respect to (ASC). It is also easy to see that the
original algebraic operations pass naturally to these REMAINDER
CLASSes so that these CLASSes form a ring. The d~IRREDUCIBILITY of
(ASC) shows that this is an integral domain so that we may form its
quotient field. TFurthermore, differentiation in the given G~FIELD
F will also induce one in the above quotient field to turn it into

a d-FIELD, to be denoted as d-~-FIELD(ASC). Let us identify the
INDETERMINATES Yi to its CLASS, denoted however by Zi, then the
above d~FIELD becomes an EXTENSION d-FIELD of the 4d~FIELD F. It

is clear that 2=(zZl1l,...,23j) is a ZERO of (ASC).

DEFINITION. The ZERO Z=(Z1,...,Zn)} of the d-IRREDUCIBLE ASC-SET
(ASC) with Zi the CLASS of Yi in the d-FIELD(ASC) is called the
GENERIC ZERO of (ASC).

The importance of this notion lies in the following

THEOREM G. A d-POL P has its REMAINDER 0 with respect to the
d-IRREDUCIBLE ASC-SET (ASC) if and only if P has the GENERIC ZERO
Z of (ASC) as a ZERO.

The system of all d-POLs P which has the above GENERIC ZERO as
a 2ZERO, or what is the same, those having REMAINDER 0 with respect
to (ASC), forms thus a prime ideal closed under a further operation
of DIFFERENTIATION and will be denoted by d~IDEAL(ASC). The ZEROs
of this system form then a DIFF-ALG VARILETY which will be denoted
by 4 VAR(ASC). Remark that d-VAR(ASC) is in general different
from Zero(AsC).

From the ZERO-DECOMPOSITION FORMULA (2-DEC) of (DI') given above
we see that Zero(DP) is non-empty if and only if terms actually
present in the right hand side since each (ASCi/Ri) has non-empty
ZEROs, say the GENERIC ZERO of (ASCi) which cannot be ZERO of the

non-zero d-POL Ri, known to be REDUCED with respect to (ASCi).
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It is also clear that each d-VAR(ASCi) is a non-empty DIFF-ALG
VARIETY which is d-IRREDUCIBLE. We deduce easily the following
VARIETY DECOMPOSITION THEOREM. There is a mechanical procedure which
permits to decompose any DIFF-ALG VARIETY, when non-empty, into a
finite sum of d-IRREDUCIBLE DIFF-ALG VARIETYs, viz.,

Zero(DP) = SUMi d-VAR(ASCi) (V-DEC)

We shall now apply the above ZERO DECOMPOSITION THEOREM to the
mechanical proving of theorems in differential geometries. For
this purpose we shall restrict ourselves in this note to the case
of differential geometry of curves which involves functions of only
one independent variable. We shall also restrict ourselves to
such theorems for which both hypothesis and conclusion are expressed
in the form of P=0 with P certain d4-POL in a number of INDETERMINATEs
Yl,...,Yn over a certain d-FIELD F (e.g. the field of all reals with
trivial differentiation). Thus the hypothesis is, say, (HYP) = 0 where
(HYP) is a finite system of such d4-POLs and the conclusion is, say,
CONC=0 with CONC another 4-POL. A ZERO of (HYP) is then just a
geometrical confiquration (over possibly certain extended field,
e.g. complex field extension of the real field) verifying the hypo-
thesis of the given theorem. To prove a theorem to be true seems
thus equivalent to the following problem
(A) To decide whether CONC=0 follows from (HYP)=0 or not, i.e.

to decide whether

Zero (HYP/CONC) = empty {2-CONC)
or not.
Mathematically we can give a complete answer to the above problem
(A). In fact, so far the hypothesis are not CONTRADICTORY in
themselves or Zeroco(HYP) is non-empty, we shall get by some mechanical
procedure the decomposition below:

Zero (HYP) = SUMi Zero(ASCi/Ri) (H~DEC)

In the formula (H-DEC) each (ASCi) is a d-IRRECUCIBLE ASC-SET and
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Ri = Rem(Ji*Gi/ASCi) <> 0
for some d-POL Gi with Ji the product of all INITIALs and SEPARANTSs
of (ASCi). The answer of the above-mentioned problem (A) is then
implied by the following

PROPOSITION. For (Z~CONC) to be true it is necessary and
sufficient that for each i we have

Rem (CONC/ASCi) = 0 (R-CONC1i)
which can be verified by direct computations.

This PROPOSITION, which in appearance completely settles the
problem (A), does not however meet the REALITY of geometrical
situations, and in this sense it cannot be accepted as a CORRECT
solution to the problem of mechanical proving of geometrical
theorems. In fact, if we define a THEOREM to be TRUE by (Z-CONC),
then actually no THEOREM will be TRUE by this definition. The
reason is this: The THEOREMs which one encounters in all kinds
of geometries are usually TRUE only in a certain GENERIC sense,
i.e., TRUE only if certain subsidiary NON-DEGENERACY conditions
are observed. Examples are too many to be cited here. One may
just take any one in the elementary plane geometry to see the
point.

To lay down a CORRECT formulation of how a THEOREM is TRUE is
to be defined,we shall first introduce the concept of DIMENSION
as follows.

DFEFINITION. For a non~-CONTRADICTORY d-IRREDUCIBLE ASC-SET (ASC)
consisting of r d-POLs we define the integer n-r as the DIMENSION
of (ASC) and will denote it by dim(ASC). This integer is also
defined as the DIMENSION of the DIFF-ALG VARIETY 4-VAR(ASC) ASSO-
CIATED to (ASC), to be denoted as dim(d-VAR(ASC)). If for a
system (DP) of d-POLs the set Zero(DP) is decomposed as the union
of Zero(ASCi/Ri) as in the formula (2-DEC) before, we shall define

the DIMENSION of the DIFF-ALG VARIETY Zero(DP) by
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dim Zero(DP) = MAXi (dim(ASCi))

MAXi (dim(d-VAR(ASCi))).

We shall leave aside the legitimacy of the definition. Admitting
this, we shall lay down the following

DEFINITION. A THEOREM with hypotheses system (HYP) and conclusion
CONC is said to be GENERICALLY TRUE if for the decomposition formula
(H-DEC) , (ASCi/Ri*CONC)=empty is true for all indices i for which
dim(ASCi)=dim Zero (HYP).

As Zero(ASCi/Ri*CONC)=empty is equivalent to (R-CONCi) which can
by verified by direct computations, we have the following theorem
which meets the REALITY of geometrical situations and forms the
underlying principle of our method of mechanical theorem proving of
differential geometries.

THEOREM T. There is a mechanical procedure which permits to de-
cide in a finite number of steps whether the hypothesis system of a
THEOREM is CONTRADICTORY or not, and if not so, whether the THEOREM
is GENERICALLY TRUE or not. In case that the THEOREM is GENERICALLY
TRUE, then the procedure itself gives a PROOF of the THEOREM.

As the procedure in getting a formula of the form (H-DEC)
requires factorization which is usually quite complicate and is
thus not so convenient to use in practice, we shall adopt an
alternative definition for a THEOREM to be TRUE, viz.,

DEFINITION. Let (HYP) and CONC be as before. Let N be a 4-POL
such that

Zero (HYP/N*CONC) = empty.
Then we say that the THEOREM is TRUE GENERICALLY under the sub-
sidiary NON-DEGENERACY CONDITION

N <> 0.
The CONDITION is said to be REASONABLE if

dim Zero(HYP-N) < dim Zero (HYP)
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in which (HYP-N) is the enlarged system of (HYP) with N adjoined
to it.

The difficulty of applying the above definition to mechanical
theorem proving lies clearly in the finding of such a d-POL N.
However, we have discovered a method to meet this difficulty
in the following way.

Let us form a CHAR-SET (CS) of the system (HYP) by the RITT
PRINCIPLE so that we get the formula

Zero (HYP) = Zero(CS/J) + SUMi Zero(HYPi')

+ SUMi Zero (HYPi").

In the formula J is the product of all INITIALs Ii and SEPARANTs
Si of (CS), and (HYPi'), (HYPi") are respectively the enlarged
systems of (HYP) with Ii and Si adjoined to it. Form now the
REMAINDER R of CONC with respect to (CS) to get a formula of
the form

J' * CONC :=: R d-mod (CS)
in which J' is some power product of the INITIALs Ii and the
SEPARANTs Si of (CS). Now if R=0, then we see that

CONC = 0
will follow from (HYP)=0 so far J<>0. On the other hand if
(CS) is A-IRREDUCIBLE, and if CONC=0 follows from (HYP)=0 so
far J<>0, then CONC will have the GENERIC ZERO of (CS) as a ZERO
and by THEOREM G we would have R=0. We have thus the following

THEOREM N. If the REMAINDER R of CONC with respect to the CHAR
SET (CS) of (HYP) is 0, then the THEOREM in guestion is TRUE
GENERICALLY under the subsidiary NON-DEGENERACY CONDITION J<>O0.

If (CS) is A-IRREDUCIBLE then the converse is also true.

This THEOREM N is at the basis of our method of mechanical thecem
proving and has been accordingly programmed. It turns out that it will
meet our purposes in general and has been proved to be guite efficient

in practice. In fact, based on the last THEOREM we have programmed

189



186

on some small computers like HP9835A and HP1l000. Several differential-
geometrical theorems have accordingly be proved on the computers in
this way. The following is one of such examples.

Let C, C' be a pair of curves in the ordinary 3-space which
are in 1-~1 correspondece. Suppose that the lines joining pairs
of corresponding points p, p' be common principal normals to the
curves. Let k, t be the curvature and torsion of C, similarly
let k', t' be those of C'. Then the following conclusions are
known to be true:

(a) The distance r between the corresponding points p, p' is
constant.

{b) The angle alpha between the tangents to the curves at
corresponding points is constant.

(c) The curvature k and torsion t of C satisfy some linear
relation with constant coefficients, i.e., there are constants
a, b, ¢ not all 0 such that a*k+b*t=c. The same is true for C'.

Less well-known are the following conclusions:

(d) The product t*t' of torsions of the curves C, C' at corres-

ponding points is constant.

(e) Let z, z'be the centers of curvature of C, C' on the common
principal normal at corresponding points p, p', then the cross
ratio (p,z,p',2') is constant.

To prove these theorems let us choose the arc lengths s, s'

on
the curves as parameters. Then s', r, alpha, k, t, etc. are all
functions of s. Remark that a computer can treat only rational
entities so we have to replace the transcendental functions of alpha
by rational ones, viz.

u = cos alpha, v = sin alpha,
connected by the rational relation

ut2 + v'i2 = 1.

Let us take now the usual moving frames (el,e2,e3) and (el',e2',e3')
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at the corresponding points p and p' with el, el' the tangent vectors,
e2 and e2'=+ or -e2 the principal normal vectors, and e3, e3' the
binormal vectors. To fix the ideas, let us suppose e.g. e2'=+e2.

Then we have:

p' = p + r*e2,
el' = u*el + + v*e3,
(FRAME)
e2' = + e2,
e3' = -v*el + + u*e3,
Treat now the functions
r, u, v, ds'/ds, k, t, k', t'
as indeterminates and replace them by symbols Y1, Y2,..., Y8 in the

above order. Then the hypothesis system (HYP), by comparing the

FRENET-DARBOUX EQUATIONs of the two curves, will be found to be

consisting of d4-POLs Pl,...,Pl0 listed below:
P1 = D1Y1l,
P2 = DlY2,
P3 = D1Y3,

P4 = y2"2 + v3"2 - 1,

PS5 = Y1*Y5 + Y2*Y4 - 1,

P6 = Y1*Y6 ~ Y3*Y4,

P7 = Y4*Y7 + Y3*Y6 - Y2*YS5,

P8 = Y3*Y4*Y8 + Y2*Y4*y7 - Y5,
P9 = Y2*Y4*Y8 - Y3*Y4*y7 - Y6,
P10 = Y4*Y8 - Y2*Y6 - Y3*Y5S,

It follows that the conclusions (a) and (b) are already seen to
be true from the eguations Pl=0, P2=0, and P3=0. The other conclu-
sions are however not so evident and we have to resort to our
program based on the last THEOREM N. We find thus a CHAR~SET (CS)
of the hypothesis system (HYP) after the removal of some simple
factors of Y1, Y2, Y3, to be consisting of d-POLs Cl,...,C7 as given

below:
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Cl = D1Y1l,

C2 = DlYy2,

€3 =v3*2 +y2"2 -1,

C4 = Y1*Y5 + Y2*Y4 - 1,

C5 = Y1*Y6 -~ Y3*Y4,

Cé6 = Y1*Y4*Y7 + Y4 - Y2,

C7 = Y1*Y4*Yyg - Y3.
The NON-DEGENERACY CONDITION is then seen to be given automatically
as some power product of the INITIALLs and SEPARANTs of (CS), viz.
for certain Ki»o0,

N = YITK1*Y2"K2*Y3"K3*Y4"K4 <> 0.
Alternatively we may replace the NON-DEGENERACY CONDITION N<>0 by a
set of CONDITIONs

Yl <> 0, Y2 <> 0, ¥3 <> 0, Y4 <> 0, (COND)
of which the geometrical meanings are quite clear.

The conclusions (c), (d), (e) may now be replaced by CONCi=O0,

i=1,2,3 with the d-POLs CONCi as given below,

CONC1 = DlY5*D2Y6 -~ D2Y5*D1lY6,

CONC2 DlY6*Y8 + Y6*D1lY8,

CONC3 = Y1*Y5*D1Y7 + Y1*D1lY5*Y7 + D1YS5 - D1Y7.

We find on the computer that all the d-POLs CONCi have their
REMAINDER 0 with respect to (CS). It follows that the conclusions
(a),...,(e) are all GENERICALLY TRUE and are proved under the NON-
DEGENERACY CONDITION N<>0. If we like we can proceed in the same
way as before to test in turn whether the conclusions remain true
in the respective degenerate case afforded by adjoining each of
the conditions in (COND) in turn to (HYP).

We add a final remark to our method. As our method of proving
is purely algebraic in character which has nothing to do with the
real nature of the curves of being analytic or not, we come to

the following
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PRINCIPLE. If a THEOREM is TRUE for all geometrical entities
which are analytic, then the THEOREM will remain TRUE for all geo-
metrical entities merely differentiable up to certain degree suffi-
ciently high.

This PRINCIPLE was already anounced by the author in some of the
previous works. It shows that the analyticity or high differentia-

bility plays actually no role in the truth of a THEOREM.
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§ 1. InTRODUCTION.

By elementary geometry we shall mean the one described in Hilbert's Grundlagen der
Geometrie in which no notion of differentiation is involved, as a contrast to differential geome-
try. It is well known by the theorem of Tarski that the ordinary Euclidean geometry, as
one of such elementary geometries, is decidable, or in our terminology, mechanizable in the
following sense: There exists an algorithmic method by which any “thecrem™ or a geometrical
statement meaningful in the geometry in question can be shown, in a finite number of steps,
to be either true as a real theorem, or false so that it is not a zheorem at all. Any elementary
geometry possessing such an algorithmic method will be said to be mechanizable, and the the-
orem in asserting that the geometry in question does possess such an algorithmic method will be
called a Mechanization Theorem. In the mechanizable case we may program according to the
algorithm shown to exist and practise on a computer so that the proof (or disproof) of a the-
orem in that geometry may be carried out on the computer.. This method will be called mecha-
nical theorem proving for short. It will lead to what may be called mechanical theorem dis-
covering of new theorems. We remark that all these notions can be naturally extended to the
case of a given class of theorems or meaningful statements in the geometry in question, not
necessarily to the geometry as a whole. In this sense the Theorem of Tarski mentioned may
be called the Mechanization Theorem of ordinary Euclidean geometry. However, the algorithmic
procedure given by Tarski, even with the great simplifications due to Seidenberg, is too com-
plicated 1o be feasible. In fact, no theorems of any geometrical interest seem to have been
proved in this way up to the present day. On the other hand, the author discovered in 1977
an algorithmic ethod which leads to Mechanization Theorems of many kinds of elementary
geometries including the ordinary Euclidean geometry, as long as we restrict ourselves to the
class of theorems involving no order relations. What is important to us is that our method is
very efficient. In fact, in the past years we have programed on some small computers and ar-
rived at the proof and discovery of quite nontrivial theorems. Mr. S. C. Chou, now at Uni-
versity of Texas at Austin, USA, has also practised on some computer there, or the basis of
our algorithm, and proved some interesting new theorems. The present paper is aimed at ex-
plaining the basic principles underlying our method with some illustrative examples about the
theorems proved or discovered in this way.

Consider a certain kind of geometry in the scnse of Hilbert. As shown in the classical
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Grundlagen of Hilbert, in starting from the defining axiomatic system of the geometry we
may introduce some number system intrinsically associated to that geometry and then to coor-
dinate systems which will turn any geometrical entities and relations into algebraic ones. Let
us restrict ourselves to the case that the geometry admits some axiom of infinity as well as
some Pascalian axiom so that the number system is a commutative field of characteristic Q.
The algebraic relations corresponding to the geometrical relations occuring in a theorem will
then be polynomial equations, polynomial inequations, or polynomial inequalities, with coeffi-
cients in the associated field, or even with rational or integer coefficients, as is usually the case.
Now let us restrict ourselves further to the case that no order relations and axioms are in-
‘volved in the geometry in question or to a restricted class of theorems in which no order rela-
tions are involved. In the algebraic relations above there will appear only polynomial equa-
tions and inequations but not any polynomial inequalities. Remark further that all theorems in
geometries are actually only generically true, or true only under some non-degencracy condi-
tions which are usually not easy to be made explicit and thus only implicitly assumed in the
statement of theorems. It turns out that the problem of mechanical theorem proving in the
restricted cases mentioned above is algebraically equivalent to the following one:

Problem. Given a system 3 of polynomial equations (or equivalently, system of polyno-
mials) as well as another polynomial g, all in the same finite set of variables x,%, ---, de-
cide in a finite number of steps either of the two cases below:

Case 1. A finite set of polynomials D, is determined such that g =0 is a consequ-
ence of the system 3 under the non-degeneracy conditions D, %= 0 such that D,=0 are them-
selves not consequences of the system X,

Case 2. No such set § = {D,} can exist so that Case 1 holds.

In the above formulated problem in the algebraic form the polynomials in ¥ correspond
to the hypotheses and g the conclusion of the theorem in question whose truth is to be deci-
ded. The theorem is seen to be generically true in Case 1 under the non-degeneracy con-
ditions D, 7= 0 found during the procedure but not so in Case 2. The polynomials naturally
have their coefficients in the field intrinsically associated to the geometry considered. A solu-
tion of the above problem constitutes the Mechanization Theorem of geometries in the algebraic
form. The algorithm in furnishing such a solution as well as the proof will be given in Sec-
tion 4. In Sections 2 and 3 we shall make some preparations. All these depend heavily on
the works of J. F. Ritt as exhibited in his two books [2, 3], which seem to be however
undeservedly little known in the present days.

§ 2. WELL-ORDERING OF A PorLyNomiAL SET.

In what follows K will be a fixed basic field of characteristic 0. Consider two sets of
variables

#yy s, and  x,ccc,xys
arranged in a fixed order
< L <y < <y

We shall consider a linear space K°*¥ of dimension ¢ + N over the field K, with a basis
corresponding to #,5 5 #s X15 -+ 5 ¥y, In what follows by a polynomial we shall always
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mean one in the variables #,, <++, u., x,, + >+, xy with coefficients in K, i.e., an element
in the ring Kluys= s thes ;5 =5 xn].

A monomial
;z=au';l"-ui¢xi"l'-'x}3N (a€K),
will sometimes be written in the simple form
u = aU'XH, 1=(,'” ...’,'e), M ==(m1, ...,mN)
or
pw=az"ya="(I, M) = (Fs + s iy my s my).
If a % 0, and the last one # 0 in the N-tuple (m,, **+5 my) is m,, then we say that

the monomial is of class p; otherwise we say that the class of the monomial w# 0 is 0 .In
that case in g there occurs at most # but not x.

For two sets of non-negative integers
a="(a;, "5 a,), g="(by "5 8)
we say that a precedes 8, or § follows a, which is denoted as
a<p or fra,
if there is some % such that
ki1 = bkﬂa crry g, = b

while a3 << b;. For two non-zero monomials

L= aujr s ulexhiexfN, a0,

uo=bulre cylexPie - xfN, b %0,

we say that A precedes p or p follows 1, which is denoted as

A<y or pr1i
if
(iys s das Bis mo 0 In)<(is == v fus Miys =+ =5 mn).
Any non-zero polynomial F can be written in the form
F = a;z" + a;2" + -+« + a,2%
in which

e, €Kya 550, 5a,7F0,
a1>az>" e >"a:.

In that case we say that a,z" is the leading term of F, and the class of 2% will be called
the class of F.

If a non-zero polynomial F has its class = p>~0, and the leading term a,z" of F has
its degree in x, = m, then F can be written in the form

F=Cuap +Cixp7' 4+ -+ C,»

in which the C’s are all polynomials in # and x, -+, x,_,, containing none of x,5 %pyss

+++5 xny with €y 5% 0 in particular. The polynomial C, will then be called the initial of F.
If the leading term of C, is ¢, then the leading term of F is clearly cyxj.

Consider two non-zero polynomials F and G and any variable x,, If the highest degree
of x, appearing in F is less than that in G, then we say that F has a lower rark than G
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or G has a higher rank than F with respect to x,. We say that F and G have the same
rank with respect to xp, when neither is of higher rank than the other.

For two non-zero polynomials F and G we say that F has a lower rank than G or G
a higher rank than F, which is denoted as
FLG or G>F,

if one of the following two cases occurs:
1. class F << class G

2. class F = class G, say, = p = 0, while the degree of x, in F is less than that of
xp in G, or in other words, F has lower rank than G with respect to x,.

In the case neither of F and G is of higher or lower rank than the other, F and G
will be said to be of the same rank, denoted as
F~G,
For example, two non-zero polynomials are of the same rank if both are of class = 0,
Let F be a polynomial of class p > 0. Any polynomial G of rank lower than F with res-
pect to x, will be said to be reduced with respect to F. Clearly the initial of F is of class <<
p and is already reduced with respect to F,

Let F be of class p > 0 written in the form
F—=foxi + fixg™ + - fas
in which
fi€ Klugs -5 thes x5 <=5 25415 o7 0.

Any non-zero polynomial G which has not been reduced with respect to F can then always
be written in the form

G =gy + gl + - + gu>
in which

€K [ty =+~ sthey Xys "5 Xp_ys Xprrs ** "5 X5 )5
and

E#*0, MZ=m.

By the division algorithm of polynomials, we would get, in dividing G by F, an expres-
sion of the form

fiG = OF + R,

where @, R are both polynomials with, in the case R 5= 0, the degree of x, in R <{m so
that R is already reduced with respect to F. The integer s will be determined as the small-
est to make possible such an expression that s is unique and is <X M — m. If G is already
reduced with respect to F, then we can simply take s=0, O =10, R = G so that the
above expression holds true still. In any way, the polynomial R will be called the remarnder
of G with respect to F. ‘The procedure to get the remainder R from G will then be called
the reduction of G with respect to F,

In what follows we shall consider sequences formed by a finite number of polynomials
A; like the one below.
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1Ay Ay ey A,
Such a sequence will be called an ascending set if either (a) or (b) below holds true:
(a) r=1 and 4, % 0;
() r>1, 0<class (A4,) <class (4;) < --+ < class (A4,), and moreover A, is
reduced with respect to A; for each pair § > 4.
It is clear that for an ascending set one always has r <N,

An ascending set will be said to be contradictory if r =1, A, # 0 with class (A;) =
0.
Given a second ascending set
% :B,, Bz:v R} Bn
we say that .o has a higher rank than 98 or B a lower rank than oz, which is denoted
as
A B or B<LL >
if either (a)" or (b)’ below holds true:
(a)" There is some § << min(r,s) such that
Al ~ B” MY A,'_l ~ B,‘_l, while A,'>“B,';
(b) s> r and
A~ Bn ] Ar~ Br-
If neither of the ascending sets .o and 4B is of higher rank than the- other, then we
say that (o7, %8 are of the same rank, denoted as .o ~ Z&., In that case we have
r=yg, and 4, ~ By, +-+» A, ~ B,.

It is clear that the collection of all ascending sets is partially ordered by the rank. Idence
for any set of ascending sets we can speak of the notion of minimal ascending set, if it exists.
The following lemma, simple as it is, will play an important role in the whole theory.

Lemma 1. L

Dy Doy -5 Py -
be a sequence of ascending sets ®,4 for which the rank never increases, or for any g we have

cither @g <Py or Pgpy ~ Dy, Then there is an index g’ such that for any q>q we

have
D, ~ Dy,

In other words, there is some q' such that any @, for which g 2 q' is @ minimal ascending

set of the above sequence.

Proof. For the ascending set @, let us denote by r, its number of polynomials and by
Ag the first polynomial in the set. Then

A"Az’...’Aq,-..

is a sequence of polynomials for which the rank never increases, or for any g we have either
Ay <Aq or Agyy ~ Aq. Consequently for any g we have class (Aqy,) < class (4,) and
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in the case class (Aq4,) = class (A44)5 say, == p > 0 the degree in x, of A4y, should be
<C the corresponding degree in x, of A44. As both class and degree are non-negative integers,
there should be some index ¢, such that all A, are of the same rank for ¢ = g,.

If there is some g; = ¢, such that all 74 =1 for any g == ¢}, then the lemma is clear-
ly true. Suppose the contrary. Then there should be some g; == 4, such that all r, =2 for
any ¢ = gi. Denote the second polynomial in such @, by 4. Then

AD, AW ey, A,‘,’),‘--

7, g1+
will be a sequence of polynomials with non-increasing ranks. As before there will then be
some g; == q; such that all 43 are of the same rank for any g = ¢, = q; = q,.

If all r;, <2, then the lemma is proved already. Suppose the contrary. Then there will
be some g; = ¢, such that all r, 2> 3 for any ¢ => g5 and we may take the third polynomial
AP in such @,'s to form a sequence of polynomials with non-increasing ranks. As for all g
we have r; <\ n, so proceeding in this way we should stop at some r and some g' such
that for all ¢ = ¢' we have 7, = r and the r-th polynomials taken from such @, will all
have the same rank. It follows that all such @,'s will have the same rank and the lemma is
proved.

From this lemma we get the following

Lemma 1'. If in a sequence of ascending sets the ranks arc steadily decreasing, then
such a sequence can only be composed of a finite number of ascending sets.

Suppose now we have a non-empty collection X = {F,} of non-zere polynomials F,. An
ascending set o7 of polynomials will be said to belong to X if each polynomial in o~ be-
longs to 3. Since each single F, 5% 0 forms by itself an ascending set, such ascending sets
belonging to X exit maturally. Any minimal ascending set of the collection of all ascend-
ing sets belonging to X will then be called a dasic ser of X,

The following lemma points out not only the existence of such basic sets but also some
constructive method of arriving at such basic sets.

Lemma 2. Ler 2 be a finite set of non-zero polynomials. Then 3 has necessarily
basic sets and there is a mechanical method in getting such a basic sct in a finite number of
steps.

Proof. As X is finite, the existence of basic sets is quite evident. So the problem redu-
ces to the mechanical generation of such a basic set.

To show this let us find at the outset a polynomial, say A, of lowest rank from = =
3,. This can clearly be done in a mechanical manner. If class (4,)==0, then A, alone will
form already a basic set. Suppose therefore class (A4,) > 0. Check whether each polynomial
except A4, in X, is already reduced with respect to A4,. If no such polynomial exists in %, then
A, by itself forms already a basic set of Z,. Otherwise let X, be the subset of X, formed by
all such polynomials except A, already reduced with respect to A,. From the choice of A, all
polynomials in X; will have a rank higher than that of 4,. Now let 4, be a polynomial
in 2, of lowest rank. If X, has not any polynomial which is different from A, and is already
reduced with respect to A4;, then A;, A, will form a basic set of 3. Otherwise let X; be
the subset of X, consisting of all polynomials except A4, which have already been reduced with

200



BASIC PRINCIPLES OF MECHANICAL THEOREM PROVING IN
No. 3 ELEMENTARY GEOMETRIES 213

respect to A;. Choose from X; a polynomial A4, of lowest rank and proceed as before. As the
classes of the polynomials A, 4,5 A5, - -+ are steadily increasing and unlikely to become >
N, we have to stop in a finite number of steps and get finally 2 basic set in a mechanical
manner, Q. E.D.

Lemma 3. Let X be a finite sct of non-zero polynomials with a basic set
.M:An Az’ Tt Ar

of whick class (A,) > 0. Let B be a non-zero polynomial reduced with respect to all A's.
Then the sct X' obtained from X by adjunction of B will have a basic set of rank lower
than that of o7 .

Proof. If class (B) = 0, then B alone will form a basic set of 3° of rank lower than
that of .<7. Suppose therefore class (B) = p > 0. As B is already reduced with respect to
all A’s, there should be some # 2= 0 and << r such that p > class (d4;.,) and p << class
(A4:). Moreover, in the case p = class (A4;), the degree of 2, in B will be less than that
of x, in A,;. Hence

Ayy Ayy »+-5 4iy» B

will be an ascending set of X' with a rank lower than that of .o, The basic set of 3’ will
have therefore 4 fortiori a rank lower than that of o, Q.E.D.

Remark. The above lemmas are clearly also true for any infinite set of polynomials and
the proofs remain essentially the same as long as the axiom of choice is applied. As the use
of axiom of choice will be in opposition to the mechanical thought, the main theme of the
whole theory, we have deliberately restrict ourselves to the case of finite sets of polynomials.

Consider now an ascending set
o Ay Ays vy A,
as before with class (4,) = 0. Let class (A4,) == p; and let the initial of A4; be I;,. Then
0<p<p << <p,
and for each i we have
dass (1) < pis
I; reduced with respect to A, -+ 5 4,4

Let B be an arbitrary polynomial, Set B = R,. With respect to the polynomials in . o7’
starting from 4, to 4, we can form successively the remainders R,_y5 ---, Ry of R, so that
we get (5;2=0):

IR, = Q,A, + R,_s»

IRy = 0,14,y + R,p»

IR, = 0,4, + R,.
Set R, = R. Then we get an expression of the form
fior I¥B =014, + -+ + 0,4, + R,

in which Q' are all polynomials. The polynomial R is determined from B and the ascending
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set .o . We shall call R the remainder of B with respect to .o/. We call also the above

formula the Remainder Formula.

It is clear that any term of R will have the degree in x,; less than the corresponding
degree in xp; of A;. In other words, R is reduced with respect to all polynomials A4, in e .
We shall say briefly that R is reduced with respect to o and call the above procedure of
getting R from B and o7 the reduction of B with respect to .o. As the determination of
one polynomial with respect to the other is done mechanically by the division algorithm, we
may state the result in the form of the following

Lemma 4. Given a non-zero polynomial B and an ascending set o of which the
first polynomial is of class > 0, there is an algorithm which permits to determine the
remainder of B with respect to of in a finite number of steps. Denote the i-th polynomial
in of by A; and its class by p;. Then any term in the remainder R will have its degree
of xp; in A; less than the degree of x,; in A; for each i.

Come now to the well-ordering of a polynomial set as follows. For this purpose let us re-

view briefly the notion zero of such a set.

Consider any polynomial F. Suppose that there is a set of numbers
wls v otigy als tt ey x?v

in K which will turn F into 0 when these numbers are substituted for the variables u,,- -,
#.5%5 > sxy in F. Then this set of numbers, which may be considered as the coordinates
of a point in the linear space K*¥, is called a zero of the polynomial F or alternatively a
solution of the equation F = 0. If the various #°, x° are not numbers of K, but of some
extension field K of X, which still turn F into 0 when substituted into it, then, the set of
numbers, considered as a point of the linear space RetV on K, will be called an extended
zero of F or an extended solution of F = 0. In order 1o make the involved field K expli-
cit, it will also be called a K-zero of F or a K-solution of F =0,

Given a set of polynomials X, if a set of numbers as given above is a zero (or extended
zero, or K-zero) of every polynomial in X, then it will be called simply a zero (resp. an
extended zero or a I’Z'—zero) of I or a solution (resp. an extended solution or a I?—mlmion)
of X =0,

Consider now a set X = X, of non-zero polynomials, supposed to be finite in number.
By Lemma 2, 3, will have some basic set, say @,. If @, is a contradictory set, then @,
consists of a single polynomial A, belonging to X, for which class (4,) = 0. Suppose on the
contrary that @, is not contradictory so that the first polynomial in @, has its class > 0. For
polynomials B, which belong to X but not to @,, let us form the remainders Rz of B
with respect to @, supposed not all 0. Adjoin all such remainders Rjp, whenever non-zero,
to the set 3, to get an enlarged set of non-zero polynomials X;. From the formula about re-
mainders each Ry, when non-zero, will be a linear sum of polynomials in @, as well as the
polynomial B, with polynomials as coefficients. It follows that the set 5; will have the same
set of zeros (or extended zeros, or K-zeros for any extended field K) as the original set 3.
Form now the basic set @, of Z,. By Lemma 3 @; will have a rank lower than that of @,.
If @, is not a contradictory ascending set then we can proceed as before. In this way we shall
get either a contradictory ascending set after a finite number of steps or a sequence of finite

202



BASIC PRINCIPLES OF MECHANICAL THEOREM PROVING IN
No. 3 FLEMENTARY GEOMETRIES 215

sets of polynomials
SIS T EgCee ey

where all 3; have same set of zeros (or extended zeros or K-zeros for any extended field 12)
with the corresponding non-contradictory basic sets @, having steadily decreasing ranks:

¢”¢2’ "'9¢q’ ..,

Now by Lemma 1, such a sequence can have only a finite number of terms. In other words,
if the last one of such a sequence of finite sets of polynomials is X,, with ®; as the corres-
ponding basic set, then the remainder of any polynomial of X, not in @, with respect to @,
will be equal to 0.

Let @, be
Dy;F 5 Fys --+5 F,y

in which each F; is either belonging originally to ®4_,, or is the non-zero remainder of some
polynomial in Z4_; with respect to @,_;. By the remainder formula each F; is thus a linear
sum of polynomials in @,_, with polynomials as coefficients. It follows that any zero of 3,_,
and thus any zero of X is also a zero of @,.

On the other hand let the initials of polynomials in @, be [, I,, --+, I,. From the
construction we know that for any polynomial G in X, there should be non-negative inte-
gers s; == 0 such that

fo0 o IG = Q,F, + -+« + Q,F,.

It follows that any zero of @,, if not a zero of any one of the initials I,, -+, I,, is nece-
ssarily also a zero of X, and thus a zero of X == X,. The same is clearly true for extended
zeros or K-zeros for any extended field K,

Denote @, by ®. Then what we have proved may be reformulated as the theorem be-
low:

Theorem (Ritt). There is an algorithm whick permits to get, after mechanically a
finite number of steps, either a polynomial A of class 0, i.c. ons in variables u,y-- -, 4, so
that any zero of X is also a zero of A, or a non-contradictory uscending set

¢:F19 ftte Fr)
with initials 1,5 -+, 1, such that any zero of 2 is also a zero of @, and any zero of @

which is not zero of any of the inivials 1,5 will also be a zero of 3. The same is ture for
extended zeros and K-zeros.

We shall call the mechanical procedure which permits to determine @ from X 2 well-

ordering of 5 and the above theorem will be called the Well-Ordering Theorem. The theorem

is due to Ritt and forms the basis of our method. We shall call the theorem Rirr Principle
accordingly. The polynomial set @ in the theorem is called a characreristic set of X.

§ 3. A ConstrucTiVE THEORY OF ALGEBRAIC VARIETIES

As before, let K be the basic field of characteristic 0 and

1, << <y
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be a set of variables arranged in a definite order with #,5 -+, u neglected. A polynomial
will always be understood as one in K[x,, -++5 2y],

A finite set of non-zero polynomials will simply be called a polynomial ser. The polyno-
mial set X obtained from putting together the polynomials in two polynomial sets 3, and X,
will be denoted as X, + X;. For polynomials F, G, etc., ¥ 4+ {F} will also be denoted as
>+ F, and X+ {F,G} as X+ F + G; etc.

We say that a polynomial set 3 defines an algebraic variety or simply a variety, to be
denoted as ||, with X as its defining set. For two polynomial sets ¥, and X,, if any ex-
tended zero of X, is also an extended zero of 3;, then we say that the algebraic variety de-
fined by X, is a subvaricty of that defined by 2, to be denoted as

Zz=0l2u or ‘leclzzl-
If, further, we have |2,|C{3,| so that ,, X, have the same set of extended zeros, then
we say that X, X; are equivalent, denoted as
2=, or |2 = 2.

If |Zic]Z] but [ = [Z], or |Z,|SF (3], then we say that the variety defined by
X, is a true subvariety of that defined by X,

Given a polynomial F, if any extended zero of X is also one of F, i.e.
{F} =0[2 or {Z[C|{F}|,
then we say that F = 0 on X, denoted as F = 0|X. Otherwise we denote this as
F=#0lz,

Given X + 1 polynomial sets X, Z;, ---, Zx(k > 1) having the following property:
Any extended zero of X is also an extended zero of at least one of the sets 3,, -+-, Zhy
and conversely, any extended zero of any 3 is also one of X, then we say that X, ---, 3,
are a decomposition of X5 or the corresponding algebraic varieties | X,],- -, | 24| are a decom-
position of ||, denoted as

3] =120 U--- UlZ] k> 1).

If for any i, |3;| cannot be omitted in the above decomposition, then the decomposition is
said to be uncontractible. In this case the variety defined by each X; is a true subvariety of the
variety defined by X, but not a subvariety defined by the union of other Xjs.

We say that the polynomial set X is reducible if it has some uncontractible decomposition
and the variety defined by it is also said to be reducible. In the contrary case we say that X
as well as the variety defind by it is irreducible. If in a certain decomposition of 3 each I,
is irreducible, then we say that this decomposition is an irreducible decomposition of 3; the
same for the variety defined by X. In this case each 3; or the variety defined by it is called
an irreducible component of X or the variety defined by it.

We consider now the problem of reducibility of a polynomial set or its defining algebraic
variety. The following two lemmas give some well-known criteria for their frreducibility.

Lemma 1. A necessary and sufficient condition for a polynomial set 3 to be irreducible
is tha! there cannot exist two non-zero polynomials G and H such that
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GH =05,
while
G >=0{Z, Hx0|X,

For the second criterion let us first introduce the important notion of the so-called generic
point of a variety. Consider two extension fields K and K’ of K and two points £ = (%,
cee ), HER, and & = (x}, -+, xn)» xi €K', in the N-dimensional linear spaces KV
and K'¥ on K and K’ respectively. Suppose that these two points possess the following pro-
perty:

For any polynomial F(x,, *+-, xy)in K[z, +++, xy], that £ is an extended zero of
F would imply that & is also an extended zero of F; in other words, F(xj, *++, xn) =0
as long as F(%,, -+, %y) = 0.

In this case & will be called a specialization of § with respect to K, or simply a spe-
cialization of £ if no misunderstanding can occur.

Suppose the polynomial set I has a certain extended zero £ such that any extended zero
of ¥ is a specialization of £ with respect to K, then we say that £ is a gemeric point of the
polynomial set X or one of the algebraic variety |X| defined by it. The following lemma
gives the second irreducibility criterion of polynomial sets or algebraic varieties:

Lemma 2. A nccessary and sufficient condition for a polymomial set ¥ or its variety
10 be irreducible is that X has generic points.

The two lemmas above give some necessary and sufficient conditions which are however
merely existential in character and not constructive at all. Given a polynomial set X', there is no
means to ascertain in a finite number of steps whether the conditions in the lemmas can be
satisfied or not. For the purpose of mechanical theorem proving, we have to devise some me-
chanical procedure which permits to decide in a finite number of steps whether a given poly-
nomial set is irreducible or not, and in the case it is reducible, to give in a finite number of
steps the various irreducible components of the decomposition. Such a mechanization may be
considered as constituting a constructive theory of algebraic geometry. It was given in details
in the two books of J. F. Rit»®) and we shall give some outlines in somewhat revised form

of this theory below.

Consider an ascending set
®:4,, 4, -, 4,

in which the class of A4; is p; with

0<p<<p<<-+r < Ppa.
We shall change the notations in setting

Xpy = V15 "> Xpg =5 Y
and denote the other x’s in the original order as u;,---,u,. We call
d=N—n

the dimension of the ascending set @, denoted as

d =dm@,
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Write now the polynomials 4; in @ in the following form:

Ay =Coyn + Cy?"™ + - + Ciys
o A= CpyTr+ Cpy7v' + -+ + Camys
Aw=Coyan + Coyag?™ + - - + Cpp,.

In the expressions Cj 3¢ 0 are initials of 4;, and each Cj is a polynomial in u,, -+, u,,
Yis * v 5 ¥ioy with coefficients in K, Furthermore each A; has already been reduced with res-
pect to Ays ++ 5 A;oy so that the degrees of y,,-++, y;_, in C;; are less than m,,- -, m,_,
respectively. The first problem to be considered is to give conditions for @ to be the basic set
of a certain irreducible polynoniial set.

For this problem let us suppose that the ascending set @ possesses the following proper-
ty:

Let the transcendental extension field K (e, * -+, u;) of K got by adjoining u,, < -+, uy
be denoted by K, then .4,, as a polynomial in K,[y,] with coefficients in K,, is irreducible
in Koly,].

Let the algebraic extension field of K, got by adjoining an extended zero n, of 4, = ¢
be denoted by K,(1,) = K3 then the polynomial 4, in Kily,] obtained by substituting »;
for y, in A, is irreducible in K[y,].

Let the algebraic extension field of K, got by adjoining an extended zero », of A, =0
be denoted by K,(7,) = K,; then the polynomial A4, in K:ly;] obtained by substituting 7,
for y, and 7, for y, in A; is irreducible in K,{y;].

Suppose that proceeding in the same manner we get successively algebraic extensions K;,=
Ki_y(n;), polynomials A4; obtained by substituting ,,°**>%:_; for yi, **+» y,-, in A;, and
some extended zeros 7; of Zi = 0, where each 4, is irreducible in Kiily:] for i =1, 2,

*+> n, Under these conditions we say that the ascending set @ is irreducible. By known
methods there exist some mechanical procedures which permit to decide in a finite number of
steps whether @ is irreducible or not.

Let @ be irreducible and satisfy the conditions above. Then w;, 7; are all elements in
R~ K, and §="C(uy- "5 thgs 5 "+ n,) can be considered as a point of the linear space
Retn — BN We shall call 5 a generic point of @ and K a gencrating field of @,

The followirg lemma is quite important for the theory.
Lemma 3. If the ascending set @ is irreducible with
= (15 * -5 g, Ms " "> M)

a generic point as above, then for a polynomial F € Kluys --+5 g5 y15 ** 5 yal to have
the remainder R = 0 with respect to @, it is necessary and sufficient that i is an cxtended
zero of F,

Proof. Denote the ascending set formed by the first & terms in @ by
¢k:An Ay o0y Ak (1 éké")-

Denote by K, the (4 -+ &)-dimensional linear space over K with basis a(, =+ <5 sy 315"+,
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y&. Similarly for the others. Then @, is clearly irreducible, and
iy = (un"'a Ugs M> """ nk)’
when considered as a point in K{*%, is a generic point of @, while K is the generating field
Of (p}\-.
We shall prove by induction on % the following two assertions:
lg. #jz-; is not an extended zero of Cpy,.
2y, I Ry€Kluys ---sugs y15 *+*» yx] is already reduced with respect to @, and 7j;
is an extended zero of Ry, then Ry is identically 0.
As Criw€ Kluyy <+ o5 ugy y15 =+ +5 y&] is known to be reduced with respect to @ and
is 2 0, so 1z, is a consequence of 2.
Suppose 2;_, has already been proved. Consider any R satisfying the conditions in 2,
Write Ry as a polynomial in yg,
Ry=3S8wy + Syt + - +S,,
in which §; € Koy, ~++5 2145 915 **+5 ya_,] with 7 < my, Substitute y;, -++, yz_, in S;
by m5 * -5 mi~; with the resulting S; as S; € Kgy. Set
Ry =Syk + 3057 + -+ + 5, e Kl
By hypothesis n4 is an cxtended zero of Ry = 0. As r << my and ny is an extended zero of
the irreducible polynomial A4 in Ki_,, Rs should be idemically 0 and so S, =0, +-+, §, =
0. As Ry is reduced with respect to @; so that each S; is reduced with respect to @; ,,
by induction hypothesis 24, we have necessarily S; = 0 so that Ry = 0, i. e., 2; holds true.
It follows that 1z, is also true. The above proof is clearly valid for 2, while 1, is quite
evident. Consequently 1, and 24 are true for £ = 1,2, n,
It is now easy to complete the proof of Lemma 3 as follows.
Let the remainder of F with respect to @, = @ be R; then we have the following re-
mainder formula
Ciye+-CF = QuA, + -+~ + 0,4, + R.
Suppose R = 0. Since # is an extended zero of all Ais while by 1, it is not an extended
zero of any Cyo, so by the formula above it should be an extended zero of F. Conversely,
if  is an extended zero of F, then by the same formula 7 should also be an extended zero of
R, By 2, we have necessarily R = 0. This completes the proof.
Lemma 4. Lot the ascending set
(DZA], Az; Tt An
be trreducible with a generic point
;l=(“1, T teUas Mis T 7In)
as beforc. If the polynomial F € Kluyy <+ 5 g, Y15 ***s ¥nl has its remainder 5= 0 with
respect 10 @, then in Kluyy 5 tg5 Y15+« 5 yal there are polynomials G and Q;5i =1,

<.m such that
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GF — (QuA, + -+ 4 0,4,) €Kluy, <+, uy)
end that
G(7) # 0.
Proof. Omitted.

Given an irreducible set @ as above, let @ be the set of all polynomials in Klu,, .y
%gs V1> " s ¥s] for which the remainder with respect to @ is 0. By Lemma 3, this set will
form clearly 2 module. By the Hilbert basis theorem, there will be a finite number of polyno-
mials in @, such that any polynomial of @ is a linear combination of these polynomials with
polynomial coefficients. We may add the Ais of @ into this finite set and denote the enlarged
finite set by Oy, By Lemma 3 this polynomial set will have clearly @ as its basic set and
7 as an extended zero.

Let G be any polynomial with # as an extended zero; then by Lemma 3 G has its re-
mainder = 0 with respect to @, By the construction of Qp, G is a linear sum of polynomials
in Qp so that G = 0/Qp. It follows that any extended zero of Qp is a specialization of 7 or
that Qp is an irreducible polynomial set with 7} as a generic point. We thus get the following

Theorem 1. Any irreducible ascending set ® is the basic set of some irreducible poly-
nomial set Qgp,

The above proof showing how to get an irreducible polynomial set Qp from a given ir-
reducible ascending set @ is based on the use of the finite basis theorem of Hilbert. As Q is
transfinite, and the existence of a finite basis depends on the axiom of choice, only the exis-
tence of such an irreducible polynomial set Q¢ has been actually proved. However, there does
exist some mechanical procedure to produce in a finite number of steps such aa irreducible
polynomial set Qp consisting of a finite number of polynomials. In other words, we may
strengthen the above theorem to the following form:

Theorem 1. There cxists some mechanical procedure for any irreducible ascending set
@ which will permit to determine in a finite number of steps a finite number of polynomials
including those of @ that form an irreducible polynomial set Qp with any generic point of ®
as i1s generic point.

The proof of the constructive Theorem 1’ is not a simple one. As in applications the
mere existence of such an irreducible polynomial set Qp will already be sufficient, as guaran-
teed by the Hilbert basis theorem, we shall satisfy ourselves in merely stating the theorem while
putting aside the proof.

The next problem to be studied is the decomposition of a polynomial set or the correspon-
ding algebraic variety into irreducible components. For this purpose let @, 7 and Qp be as
before. we have shown that the irreduciblity of @ is a sufficient condition for @ to be the
basic set of some irreducible polynomial set Qp with the same generic point 7 as @ which
can even be determined in a mechanical manner in a finite number of steps. To this we now
give the following supplement:

Lemma 5. Lez the basic set © of a polynomial set A be irreducible with the class of
each polynomial A; in @ being > 0. Denote the initial of A; by I;, i =1, ---, n. If
any polynomial in A has its remainder O with respect to @, then A has a decomposition
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Al =2l UlA+ LIU---UlA+ 11,
in which Qp or the corresponding algebraic variety |Qol is irreducible.

Proof. For such a polynomial G in A or not with its remainder 0 with respect to @ we
would have, for some s; = 0 and Q; € Kluy, <5 ug5 y15 * %5 ¥al»

I IpG = 014, + + o+ + 0,4,

By the construction of Qp, G should be a linear sum of polynomials in Qp so that any ex-
tended zero of Qs should be an extended zero of G and hence an extended zero of A, Con-
versely, any extended zero of A may be considered an extended zero of Ajs, Hence by the
above formula it should be an extended zero of either any such G or some I;, In other
words, it should be an extended zero of Qp or some A + I;, Thus we have the decomposi-

tion as shown in the lemma.
Lemma 6. Ler A, @ be as in Lemma 5 with A being irreducible. Then
A= Qpoor |Al = |Gy,

Proof. Let the initials of the polynomials in @ be I, 7 =1, ---,n, Then it is clear
by definition that

‘A+11|U"'U|A+1nl =IA+11"'In|.

The decomposition given in Lemma 5 can therefore be written in the form
Al = Qo UtA + 1,--- 1]

As the generic point of @ is also a generic point of Qp but cannot be any extended zero of
Iiov -1,y so |Qp| EVA -+ I-++1,|. If A has some extended zero which is not an extended
zero of Qp, it should be an extended zero of A + I,-+<], so that we shall have [A + [,
e+ 1,1 &|Qp|. In this way |A| would have an uncontractible decomposition contrary to the
irreducibility hypothesis of A, Hence we should have |A|C|Qp|. As conversely we should
have [Qp|C|A|,s0 {A] = |Qs|, Q.E.D.

Consider now an ascending set @ as before but with @ not necessarily irreducible. Then
there will be some % such that

‘pk—liAn Az: ) Ak—L
is irreducible, with
k-1 = (“u Tty Uds Mys t "’1/(~1>

as a generic point, and that the polynomial A got from A, by substituting 7., -, 74-,
for yy,-++,yg- is reducible in Ky_,[yz], where K¢, = Ko(n,, =<5 nmg_1). Let the ir-
reducible factorization of Ay in Ky ,[y4] be given by

Ay =g gn»
in which each g; € Ky_[y4] is irreducible, and A =2, As in g; the coefficients of powers
of yi are all elements of Kj., and can thus be expressed as the quotients of two polynomials

in #ys* " stgs Nys* s N41» multiplying by 2 common multiple of the denominators we would
get an expression of the form
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D4, = G,--- Gy,
in which D € Klusy * s ttas Y1» ***s Yerls Gi € Klthis “* 5 tegs ¥15 -~ *5 yil, while D,
G; are got from D, G; by substituting 5 - -+, 74, for y, -+, yx_, and are polynomials
in Kix_[yz]. We may also consider D as already reduced with respect to @,_,. Similarly we
may consider G; as already reduced with respect to @y,

Write the polynomial G,-++G, ~— DA, in a form according to powers of yi, say,
G,-+-Gy— DAy = D Bishs
i

in which B; € Klu;, “~+, g5 Y15 ***s Yx—]l. Denote by &; the element in Kz, = Ko
(n1s *** 3 ng-1) got from B; by substituting 745 ** 5 n4—1 for 945 = ++, ys_y. Then we have
bj =0 since DAy = G, - -Gy. In other words, each B; will have #iz_, as an extended zero,
It follows from the proof of Lemma 5 that each B; will have its remainder 0 with respect to
the irreducible ascending set @;_,, so that there are non-negative integers $;, ***, $j,4-; and
polynomials Qj; € Kluy, ==+, 2145 ¥15 ==+ yg—s] verifying the relation (C; =1,)

k—1

<. ik

Liv - IyA7B; = > 0.
=1

Set s5; = max(:,-;); we then get
1

£-1
Fi o IA3(G, -Gy — DA = D, 0.,
i=1
or
. A
I I}3'G,- -Gy = 0.4,

in which Q; are polynomials in #,, <~ ,tg5 Y1s =5 Y.

From the above it is easy to get the following

Lemma 7. Let the polynomial set A have @ as basic set, and let the class of term
A; be > 0 and the initial of A; be 1;51 =1, «+-, n. Suppose that ® is reducible, so thar
there is some k for which the ascending set ®y_, formed by the first k — 1 torms of @ is
srreducible with fjx_, € Ky, as a generic point, while the polynomial got from Ay by substi-
tating ijxy for the corresponding variables is reducible with an irreducible factorization into
polynomials Gy, -+, Gs. Then there is a decomposition of the form

fAl=1A+1{U---UlA+ L JUTA+ G
U---Uld + Gul.

Proof. Any extended zero of either a A+1; or a A+ G; on the right-hand side of the
above expression is clearly also an extended zero of A. Conversely, any extended zero of A is
also an extended zero of all A,'s, From the expression just before the lemma it is also an
extended zero of some I; or some Gj, i.e. one of some A + I; or A+ G;. This proves

the decomposition formula.

Lemma 8. Let A be o polynomial set with ® a5 besic set as in Lemma 5 or Lemma
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7. Then the basic set of any polynomial set A + I; or A+ G; appearing in the right-hand
stde of the decompositions of these lemreas will have its rank lower than that of @.

Proof. As each I; is already reduced with respect to @ and each G; is assumed to be
reduced with respect to @; and hence also reduced with respect to @, the present lemma

is an immediate consequence of Lemma 3 of Section 2.

Lemma 9. Let the polynomial set A be irreducible with an irreducible ascending set
@ as its basic set. Suppose also that any polynomial in e polynomial set A" or A has its re-
mainder O with respect to @, Then

[ATUTA] = A,
or the decomposition [AVUV A\ is contractible.

Proof. By Lemma 6 we have |Qp] = [A]. By hypothesis any polynomial G’ in A" has
its remainder 0 with respect to @, It follows therefore that the generic point of @, or the
generic point of Qp, is an extended zero of G', whence G’ = 0/Q;. Consequently A" = 0/Q,,
or Q| CIA'], or [AlCiA

This proves the lemma.

From the above lemmas and also the preceding section we get the following mechanical
procedure for getting the uncontractible irreducible decomposition of a polynomial set.

Let the given polynomial set be 2, By the well-ordering theorem given in the prece-
ding section, we can, in following some mechanical procedure, successively enlarge the given
set 3 to get a sequence of polynomial sets steadily increasing as shown below:

2 =2CIC- - CX;= 4.
These polynomial sets are actually mutually equivalent, viz.
=3~ =T, =A,

Two cases may appear. In the first case A turns out, in a certain step, to be a contradictory
set consisting of a single term which is a non-zero element in K, In this case X itself is a
contradictory set with no extended zeros. Hence it is only necessary to consider the second
case. In that case A has a basic set

@Ay, Ay 25 Ags
with Iy, ++,1, as initials and class of 4, > 0. Moreover, A will possess the following pro-
perties: Any polynomial in A will have its remainder 0 with respect to @, any extended zero
of 3 is also one of @, and any extended zero of @, if not one of any initial I;, is also an
extended zero of 3,

Now according to the beginning part of this section, there is some mechanical procedure
to verify whether @ is reducible, or whether 4,’s are reducible in the successively extended
fields K;_,. We have two subcases again.

In the first subcase @ is irreducible. By Lemma 5 there is a decomposition
Al = 1Q| UlA + LIU---UlA + L],

in which Qg is irreducible while all A - I; have some basic sets of ranks lower than that of
A, We may then consider each A 4 I; as a new polynomial set X and proceed again as in
the beginning.
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In the second subcase @ is reducible. Then we have by Lemma 7 some decomposition
IAI = |A+IllU"'U|A+Ik—lIU|A+GllU"'U‘A+Gh!’

in which each A + I, or A + G; has some basic set of a rank lower than that of A, We
may then consider eactr A + I, or A + G; as a new polynomial set and proceed again as

before.

Whatever the subcase may be, we may take each A -+ I; or A + G; as a new polyno-

mial set ¥’ in succession and proceed as before to get a sequence

S =S~ Sy e= A

In the case that A" has a basic set consisting of a single term which is 2 non-zero element
of the field K, we may remove |A’| or the original |A + G;| or |A + I;| from the de-
composition. In the contrary case |A’| will be decomposed further into several algebraic varie-
ties with basic sets of rank lower than the preceding ones for the corresponding polynomial
set, plus possibly one with corresponding irreducible polynomial set @y having an irreducible
ascendiné set @ as a basic set. In this way we will get a further decomposition of |[Af{ or
|21 itself. In the decomposition there will appear irreducible polynomial sets of the form Qg,
Q¢ as well as those of the form A" 4 I” or A"+ G'. For the latter ones we may decom-
pose them further as before.

As in each step for further decomposition the polynomial sets A"+ 1" or A" + G’ in-
volved have their basic sets of ranks lower than the preceding ones, the decomposition should
stop in a finite number of steps owing to the well-ordering theorem of Section 2. Conse-
quently, in a finite number of steps we shall arrive at a decomposition of the following form:

121 =196, 1 U1Q0, 1 U-+-UlQe,l,

in which each @, is an irreducible ascending set, and Q¢ is the irreducible polynomial set got

from @®; as described in Theorem 1.

According to the above construction, each (.Q@l-‘ cannot be a subvariety of any angpi( )
j >, but we cannot say that some |Qs;| cannot be a subvariety of any I.Q,pil , 1<,
This is because we apply only Theorem 1 which asserts the mere existence of @, from @,,
If we take into account Theorem 1° which asserts a mechanical procedure for the concrete
determination of Qp, from @;, then we may use Lemma 9 to prove if any [Qp] is a sub-
variety of a preceding I.Qq)l-l »1 < i, or not. It follows that, on the basis of Theorem 1, we
can get a noncontractible irreducible decomposition of |X| in a mechanical manner.

In a word, we get finally the following

Theorem 2. There is a mechanical procedure which permits to determine for a poly-
nomial set 3, in a finite number of steps, a noncontractible irreducible decomposition of the
form

[Z] = 1Qy{U---UlQyl,
in which cach W; is an srreducible ascending set of Qy,.

For the application to mechanical theorem proving, it is however actually not necessary
to carry out the decomposition up to the end to arrive at a noncontractible one. In fact, it
is usually sufficient to have an irreducible decemposition which may be a contractible one.
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Hence for the applications the existential Theorem 1, but not necessarily the constructive The-
orem 1, will be quite sufficient to meet the purpose.

§4. Proor of THE ALGEBRAIC MECHANIZATION THEOREM
We give below the proof of the Mechanization Theorem in the algebraic form as descri-
bed in Section 1. For this we first make some preparations.
Given a set of variables x;, -+, ¥y arranged in a definite order:
=2 =<y,
and given a basic field K of characteristic 0 and an ascending set of polynomials in K[z,
cenyxn],
P:dyy Ayy 005 Ans
for which the classes satisfy the relations
0<<p<pr<--- <Pn

we rewrite each xp; as y; and the other x's as uy, -+, 4y with d =N — n, Then 4,5 can
be put in the form

Ay = CiyTi+ CoyPi™t + -2+ + Cimp»
in which
CiiéK[“n Ttta Ugs Vi T ,Vi—xly i=1,---, ";i=09 1,205 my,

The initials I; of A, are then just the polynomials I, = Ciy € Kluy, ++«,tq5 1575 ¥i4l.
We call each inequation

I;%%0
a non-degeneracy condition.
Let a polynomial G € K [u,, ~**5 ugs y15 =**>» yn] be given. Construct the remainder R
of G with respect to @. Then by the remainder formula we have
Lo I59G = 0,4, + -+ + 0,4, + R,
for certain non-negative integers 5; == 0, with each Q; € K[uy, <=+, u45 ¥15 =5 ¥al.
We shall investigate the necessary and sufficient conditions such that
G=1n
may be deduced as a consequence of the equations 4, =0, i =1, ---, n. We shall prove
that, under the subsidiary non-degeneracy conditions I; = 0 and under- the hypothesis that @
is irreducible, the necessary and sufficient condition is just R = 0. Whether the set @ is irre-

ducible or not, the sufficiency of the condition is quite evident from the above remainder for-

mula. So we have the following

Theorem 1. Ler &, 4;, I;, G be as above and R=10; then under the non-degeneracy
conditions
I,=0,i=1, -, n,

G =0 is a consequence of A, = 0,i =1, ++-, n, whether @ is reducible or noz.
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If @ is irreducible, under the non-degeneracy conditions for G = 0 to be a consequence
of 4; =0, i =1, -+, n,the condition R = 0 is not only necessary but also sufficient, as
in the following theorem which follows directly from Lemma 3 in Section 3.

Theorem 2. Zet ®,4;, I;, G be as above and ® be irreducible. It under the non-
degeneracy conditions 1; 7= 0 the equation G = 0 1s a consequence of the equations A; =0,
i =1, -+, n (for a certain extension field of K), then the remainder R of G with respect
o @ 15 0.

Remark. The proofs of these theorems depend very much on the theory developed in
Section 3 and are rather involved. If we restrict ourselves to real field as is the case of ordi-
nary Euclidean geometry and pay no attention to the constructive aspects, then the proofs will

be much simpler.

We now give the proof of the Mechanization Theorem of unordered geometries in its al-
gebraic form.

Given a geometrical statement (S) in a certain unordered geometry, our object is to give
a mechanical method to decide whether (§) is true or not. For this purpose we choose first
a”coordinate system, express the points involved by coordinates, denote these coordinates by x;,
and arrange them in a certain definite order:

x2Sy,

Next we translate the various geometrical relations in the statement (S§) into algebraic relations
of these coordinates. Then the hypothesis in the statement (S) will be translated into a system
of equations

F,=0, -, F,=0,
in which F; are polynomials in K{x,, ---, wnyl, with K the basic field of characteristic
0 associated to the geometry in question. Actually all these polynomials are with rational or
even integer coefficients. The conclusions of the statement (S) will then be turned into an-
other system of equations

G,=0, +-+, G,=0,
with all G; being polynomials in K{x;, -+, xy], also with rational or integer coefficients.
Without loss of generality we may suppose that there is only one such polynomisl G;, denoted
simply by G henceforward. The polynomials F; are then called Aypothesis polynomials of the
statement (S), and the G;'s or G the conclusion polynomial(s) of (S).

The proof of the Mechanization Theorem consists in exhibiting a mechanical procedure
which permits to determine first in a finite number of steps a set of polynomials D,, - -+, D,
for non-degeneracy conditions, with all Dy in K[z, ---, xy], which will actually be all
with rational or even integer coefficients. Secondly the same mechanical procedure will also
permit to decide in a finite number of steps whether under the non-degeneracy conditions

Dx:#O) Tty DI#O}
the equation G = 0 will be a consequence of F, =0, -+, F, = 0,

With the language of algebraic geometry, the proof of Mechanization Theorem can also

be restated in an alternative form in the following manner:
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Denote the set of hypothesis polynomials F; by 3 = {F;}. The set 3 defines an
algebraic variety |Z], with dimension 4, viz., the dimension of any characteristic set of X.
The proof of the Mechanization Theorem consists then in exhibiting a mechanical procedure
which permits to determiie a set of polynomials Dy, -+, D, such that in adjoining each
D; to =, the resulting polynomial set ¥ + D; will define an algebraic variety |3 + D;| of
dimension < d, Furthermore, the same procedure will permit to decide, under the non-
degeneracy conditions Dy % 0,+++, D, 5 0, whether G = 0 or not; in other words, whether
G will be 0 or not on the remaining part of the algebraic variety | 3| after removal of the
true subvarieties |3 + D;}.

As briefly indicated in Section 3, we can decompose the algebraic variety into irreducible
components, each of which has an irreducible basic set @; which determines in turn that irre-
ducible component in question, denoted by {Q;[. Furthermore, in the case the dimension
d; of I.Qq)‘-| is less than the dimension 4 of {Z|, then this true subvariety is got from a
certain previous |Qg;| by adjoining to ®; some polynomial D; which is ecither an initial Iy
or some G; in the previous notations and |Qg,| is a subvariety of |®; + D;|, We take each
such D; as a non-degencracy polynomial. Suppose after removal of all these true subvaricties,
the remaining irreducible components of dimension & are

|~Q¢>.11 “t e I-Qo,

Denote the initials of each @; by I;5--+» Ij; and consider them also as non-degeneracy poly-
nomials Djx. Now whether G = 0 is a consequence of F, =0, ---, F,=10 under the
‘non-degeneracy conditions D; 2= 0, D;, = 0, is just the same as whether G =0 on the re-
maining parts of [Qp |5+ -+51Qp,| after removal of the components |®; 4+ D;| 4nd those
defined by D= 0, By Theorems 1, 2 above this can be decided by whether the remainders
of G with respect to @; are all 0, It furnishes the mechanical procedure required and thus
gives the proof of the Mechanization Theorem in question.

The above mechanical procedure of theorem-proving is theoretically quite simple in appe-
arance. However it would be quite difficult to apply this method to the proof of concrete the-
orems. The reason is that the irreducible decomposition of algebraic varieties depends on fac-
torization of polynomials which, though theoretically almost self-cvident, is a rather difficult
problem in practice for which no method of high efficiency is available even up to now.
Consequently, the above method is entirely non-feasible in practice. Fortunately, for the theorem-
proving in geometries, we usually hope that the theorem in question is really a true theorem
and we hope to prove it true in an affirmative manner. For this purpose it is enough to
prove, by Theorem 1, that the remainder of the conclusion polynomial G is 0 with respect to
some ascending set,whether irreducible or not. Therefore, to each concrete theorem whose
truth is to be tested and to be proved in the case it is really true, we may apply Theorem 1
directly. If by computation we know that G has its remainder 0 with respect to the ascending
set, then the theorem in question is true and the computation furnishes actually a proof of this
theoremn. In this case everything is dome. Only in the case that the remainder is not 0 should
we ask further whether the corresponding ascending set is irreducible or not. For this reason
we shall modify the above mechanical procedure of proof to ‘the following form which has
been proved to be very efficient in practice (some examples will be given in the next section).

The modified mechanical procedure runs somewhat as follows.
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Consider a set & of polynomial sets and a set A of polynomials, where A is called the
degeneracy set. In the outset, G will consist of a single polynomial set, viz. the set of hypo-

thesis polynomials

X=4§F,, -+, F,},
and the degeneracy set will be an empty one, viz.

A—=g,

During the procedure we shall increase or decrease the number of polynomial sets in & and
also adjoin non-degeneracy polynomials into A to get the final

A={Du -+, D}
as required.

Step 1. Let &7 be non-empty. Then take arbitrarily a polynomial set X from &2, and
remove it from & to get a new &, Using the well-ordering theorem in Section 2 to en-

large 3 to successive polynomial sets as shown below:
2 =3CXC---Cl,= A,

If A has an element which is a non-zero number in K, then A is a contradictory set. In
this case the hypothesis in the statement (S) is contradictory in itself and the procedure will be

stopped. In the contrary case let the basic set of A be
@:Ays Ays 205 Aa

The initials of A; will be denoted by I;, By construction, any polynomial in A except A;
will have its remainder 0 with respect o @, In that case we have also

dim|3| =dim@P =N —n=4d,
If Step 1 is just the first step from the very beginning of the whole procedure, then the
dimension d will be recorded for future reference.

If Step 1 is the successive step from the other ones during the procedure, then we com-

pare the new dimension d with the previous d recorded in the beginning.

If this new d= the previously recorded d, then we adjoin the initials I; to A to get
some enlarged new degeneracy set A, and proceed to Step 2.

If this new 4 <C the previously recorded d, and the present X is obtained as some A +
I; or A+ G; during Step 3 below, then we adjoin this I; or G; to A to get a new A, We
then return to Step 1 and proceed as before.

Step 2. Find the remainder R of G with respect to @,

Suppose R = 0, If in &2 there is not any more polynomial set, then the statement ()

is true under the non-degeneracy conditions
Dyx0 (DyeA),

and the procedure will be stopped. TIn this case the theorem is true and is proved under the
non-degeneracy conditions. Otherwise we return to Step 1 and proceed again as before.

Suppose R = 0, Then we proceed to Step 3.
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Step 3. Check the irreducibility of the basic set @,

Suppose that @ is irreducible. Thén as G has its remainder 2= 0 with respect to @, by
Theorem 2 under the non-degeneracy conditions

Dy*=0 (Dren)

statemnent (S) is not true; the procedure will then be stopped. In this case the theorem is not
true under the above non-degeneracy conditions.

Suppose that @ is reducible. Then there will be some decomposition
[Al ={A+ LIU---UlA+ L UlA+ GU--- Ula + G,l.

Consider such A 4~ I; and A + G; as new polynomial sets ¥, and adjoin all these to &P to
get a new enlarged set &7, Then return to Step 1 and proceed again as before.

According to the previous sections, the above procedure should stop in a finite number of
steps. In this way we get a final degeneracy set

= {D}
and one of the following three conclusions should be true:
1) Under the non-degeneracy conditions
Dy>=0 (Dre )
the hypotheses in the statement (S) are contradictory in themselves.

2) Under the above non-degencracy conditions, or under the additional hypothesis D, >
0, the statement (S) is true, or, what is the same, the theorem in question is true.

3) Under the above non-degeneracy conditions, or under the additional hypothesis Dy 3
0, the statement (S) is not true, or, what is the same, the theorem is not true.

Generally speaking, the degeneracy conditions
Dy=0

are not worth any more consideration. If there is some necessity to consider such a degener-
acy condition Dy = 0, we may simply take it as a new hypothesis to be adjunct to the sta-
tement (S), i.e., we consider {F,, -++, F,, Dy} instead of {F,, +++, F,} and then pro-

ceed as above.

The above mechanical procedure is very feasible. We have implemented it on small com-
puters, proving and thus also discovering quite non-trivial theorems in this way. The next

section will describe a few illustrative examples.

§5. ProGramMMING AND Examries.

Tt is clear how to program according to the procedure described in the preceding sections.
In fact, programming has been done and various theorems have been proved on rather small
computers. Before we explain certain theorems proved in this way, let us first add some re-
marks.

First, we may lessen the labour of computation by modifying slightly the definition of the
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basic set and characteristic set. Thus, we shall define an- ascending set
ot 1Ay Azs s A,

to be one in loose sense or in weak sense in requiring only that each A; in the set be
reduced merely with respect to the variables occuring in the leading term of A4; alone. The
notions of basic set, etc. derived in this way are then also said to be in loose semse or weak
sense. ‘This will not affect the final conclusions but will greatly simplify the programming and
the computation Thus. the polynomial set corresponding to the hypothesis of a theorem in the
ordinary geometry is usually already in the form of an ascending set and hence also a basic
set in the above loose or weak sense. In the worse case a few strokes of simple hand compu-
tations may be required. The procedure of well-ordering is not necessary in general because it

is quite laboursome.

Secondly, we arc only interested in arriving at zruc theorems so that only the sufficiency
part of our criterion will be considered in the programming. Thus, if the remainder of the
conclusion polynomial with respect to the hypothesis polynomial set, supposed already a basic
set in loose sense, is zero, then the theorem is frue generically under the non-degeneracy con-
ditions furnished by the initials of the hypothesis polynomials and we have achicved our aim.
Only in the case of non-zero remainders is the truth of theorem doubtful, and further investi-
gations about the reducibility of the polynomials may then be required.

Finally, we remark that though the hypotheses as well as the conclusion polynomials usual-
ly have only a few terms, the polynomials got successively during the reduction in the deter-
mination of the remainder may rise up quickly to hundreds and thousands of terms. To avoid
the appearance of this phenomenon the following éranching device has been adopted in our pro-
gramming. Thus, let some polynomial g of the form (m, = degrec in y, of A, of class p
in o)

g =gyt gy s g s

in which each g; is of class << p, appear during the successive reduction of the conclusion
polynomial. Then, instead of verifying further whether the remainder of g with respect to o
is zero, we may verify this for each g; in turn. Furthermore, we shall use an indexr sez
[TCD] to indicate the complexity of a polynomial, where 7 is the number of terms, € the
class, and D the degree in the leading variable y¢ of the polynomial. The successive reduction
of the conclusion polynomial up to the final remainder which constitutes in fact a proof of the
theorem in the case of zero remainder may then be clearly shown by a flowing chart of the
index sets. As a simple example, with suitable coordinates the well-known Pappus Theorem will
have 6 hypothesis polynomials already in the form of a basic set in the loose sense whose
index sets are:

[4 7 11, [3 8 11, [4 9 1], [3 10 1], [4 11 11, [4 12 1],
The conclusion polynomial has an index set [6 12 1] and the flowing chart of the reductions,
as done on a computer, runs as follows:

[6 12 1]—>[8 11 1]~—[12 10 1]—[l6 9 1] —
[18 8 1]—>[16 7 1]—>0,

The final zero means that the theorem is true (of course generically only) and is proved with
the above running chart as a proof. Remark that different choices of coordinates will give rise
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to different running charts which correspond to different proofs.

We have applied our program to the proof of various famous theorems in the ordinary
geometry: theorems of Keukou, Pappus, Pascal, Simson, Feuerbach, Morley, etc. Perhaps the
proof of the theorem of Morley is the most difficult and is quite instructive in iwself. So let
us state the theorem in full below.

Theorem of Morley. For a triangle A\A;A; the neighbouring trisectors of the three
angles of the triangle will intersect to form 27 triangles in all, of which 18 are equilateral.

In appearance this theorem is out of the reach of our method which works only for unor-
dered geometries without notion of order or only for theorems not inwolving order relations
in an ordered geomectry. Thus, in an unordered geometry, there is no notion of rays and an
angle cannot be defined in the usual way as two rays emanating from a common point.
However, we can define an angle £(l;5 1;) simply as an ordered pair of lines ;5 l;» and
attribute a magnitude T(/;, 1,) to it corresponding to the tangent function of the angle in
the case of ordinary geometry.

We may now define a bisector of the angle £(l,5 13) in the unordered geometry as a

line such that the reflection (weli-defined in the geometry) of I, with respect to 7 is just I;.
If ;5 I, intersect, then 7 is a line through the intersecting point such that T (¢, ) =
T(l,, ¢) corresponding to the ordinary formula £(¢, ) = L, 2) or 2.2(s, 1) =
£y, I;)mod #, However, in the unordered geometry there may exist two such bisectors for
an angle and there is no means to distinguish these two bisectors.

Similar ambiguity occurs for trisectors of an angle. To fix the ideas, let us call a line #
a primary trisector of an angle £(l,, 1) if a formula in T holds which corresponds to the
ordinary formula 3.2(t, I,) = £(i;, 1,) modw, There are 3 such primary trisectors which
thete is no means to distinguish from each other. To each such primary trisector ¢ however is
uniquely associated a secondary trisector ' such that T(l;y ') == T(2, I)).

Consider now a triangle 4,4,4;, Let #, be any one of the primary trisectors of the angle
Z(AA;5 4,45) at vertex A, with associated secondary trisector 7], Similarly let #;5 f; be a
primary and an associated secondary trisector of the angle £(A4,4;5 A,4,) and 25, £3 be those
of the angle L(Asd,> A54;), Let #, #; intersect at a point A4, in notation A== 1, Az,
Similarly let 4g = ;A 4, As= 1, \+], The triangles 44454, are cleartly 27 in all. The
Morley theorem asserts that 18 among them are equilateral,

First of =ll we have to settle the problem how the 18 triangles should be chosen. For
this let us denote by O an angle for which the T-value has square == 3, In ordinary geo-

metry this means 8 = i-z— mod 2, Remark in passing that in an unordered geometry it is

not legitimate to speak about -4 V3 or —a/ _3—, Now we choose the primary trisectors

t1s #;5 #; such that some relation in the T-values corresponding to the ordinary formula
Z(ts Aidy) + Z(1ys A3d4;s) + L(ts5 A34) =6 mod 2x

holds true. Under this condition the number of triangles 4,454 is then reduced to 18 which
will be proved to be all equilateral.
Adopting now a certain coordinate system with coordinates of various points and the T-
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values of various angles involved in the theorem as x;s arranged in a certain definite order,
we shall get a set of hypothesis polynomials #;, 18 in number, and a certain conclusion
polynomial g, Without entering the details we merely list the index sets of various polyno-

mials below:
For hypothesis-polynomials:
[2 3 11,03 4 11,[4 5 13,03 7 11,[3 8 11,[4 9 1],[3 10 11,
[2 11t 11,02 12 21,[8 13 11,[4 14 1],[{4 15 11,[4 16 11,
[2 17 11, [5 18 11, [3 19 11, [4 20 1], [4 21 1],

For conclusion-polynomial: [4 21 1],

To verify the theorem by means of our program we remark that separation will occur
when we come to the point after the reductions with respect to H; and H,, The following
is a rough scheme about the successive reductions with index set of successive polynomials indi-

cated.

1
Co[4 21 1] -—(—)> [1208 12 1] —>[592 11 2] —>[376 6 15] —> (19 5 3] —>0

!——> c,[616 11 2] —>[375 6 15] —> [20 5 3] —> 0

’ |—->C,[3S7614]—>[2653]—->0
—>C,;[355 6 14]—>[23 5 3] —> 0 |

l—~>C§-.. ——>C6

1——» Cis[54 6 3]—>[29 5 3] —>0 |—> Cxul53 6 3]—>[28 5 3]0

|-—> Cpl25 6 2]—>0 l—->C25[25 6 2] —>0

Remark that each arrow in the above scheme consists of a number of successive reduc-
tions. For example, the arrow marked (1) is detailed as follows.

Co[4 21 1] —>[8 20 1] —>[4 19 1] —>[18 18 1] —>[36 17 1]
—>[36 16 1] —>[66 15 1] —>[132 14 1]—>[236 13 2] —>[832 13 1]
— [1960 12 3] —> {1208 12 1],

Thus a certain polynomial of 1960 terms occurs in the whole procedure of reductions. If we
do not adopt separation devices at convenient places in selecting suitable coordinate systems and
coordinates of points, the polynomials during the procedure may quickly grow too large to
be admitted even by a big computer. For the present case as all remainders (28 in all) are
zero, the Morley theorem is true and the above scheme furnishes such a proof of the theorem.

We add fipally that the above scheme shows that we have indeed proved a theorem a little
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more general «than the original one. For the same proof holds also in the case of certain unor-
dered geometries like complex geometries, for example. In such geometries isotropic lines inay
exist. However, if we restrict our theorem so that no isotropic lines are involved in the state-
ment, then the mechanical proof applies still.

As a further example let us consider the problem of determining all triangles 4 BC with
two equal bisectors 7z, and #z of angles 4 and B, It is well-known, but is quite non-trivial
to prove, that the triangle 4BC should be isoceles (4C = BC) if the two equal biscctors in
question are both internal ones. Mr. S. C. Chou has raised the question of proving this fact
by the mechanical theorem-proving method. Now it is easy to see that 4C = BC would not
be true (generically) if one of the bisectors 24, 75 is an internal and the other is an external
one. Chou and I have tried on the computer and found the rather unexpected result that 4C
= BC is still not true if the equal bisectors are both external ones.

In principle the above problem is again out of reach of our' method. However, in view
of the nature of the problem that the order relations only enter the hypothesis but not the con-
clusion at all, our method in combination with that of Seidenberg in reducing inequalitics to
equalities by introducing new auxiliary variables will lead to some information about the final
results to be found. Thus, let us denote by AE and BD the two equal Dbisectors in question
and by I their point of intersection. Take coordinates with

A=(—1,0), B=(41,0)s I = (2,5 73)s C = (x5 x3), etc.

Denote also the slopes of 4E, BD by x45 x5, etc. Introduce a further auxiliary variable
x, by setting

2yt = —ats (1
or
rers =+, (2)
Equation (1) means that AL, BD are either both internal or both external bisectors which
will be distinguished by either
x> 0,
or
xyx < 0,
On the other hand equation (2) means that one of 4E, BD is an internal while the other

is an external bisector.

Consider e.g. the case of equation (1). From the hypothesis including the equality of
bisectors we get on running the program a set of equations, with extranecus factors correspon-
24 g prog q s p

ding to degenerate cases already removed, as follows:

xzf(x) =0, (3)
with
fle) = (1 — D (e — 1)(«f — 2) — 4, €))
w3 =2i(1 — 21), )
(1 — 2D xziy = 22, (6)
etc.

Equation (5) shows that in the non-degenerate case we have
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<1, ©)
Equation (6) shows that we have

H<lo >1

according as the two bisectors AE, BD are both internal ones or both external ones.

Suppose first 2 << 1, Then from (4) we see that f(x) << 0, From (3) it follows
that we have necessarily

x, =0

This just proves the classical theorem that a triangle with two equal intermal bisectors is isos-

celes.

Suppose next xi > 1 so that the two bisectors are both external ones. Then f(x) =0
will have positive roots of x? for x} << 1 so that there are an infinity of ron-isosceles triangles
ABC with equal external bisectors AE, BD for which the corresponding point I (x,, x3)
will lic on a certain oval defined by the following equation together with (7):

o3 — 4xd(1 — xd) + 5231 — 23— 2(1 — 23 — 4(1 — 2D =0,

The case of equation (2) or the case of one internal and one external bisector can be
treated in entirely the same manner. We find thus infinities of non-isosceles triaugles with equal
bisectors one internal and one external for which the corresponding points I will lic on two
ovals defined by the same equation above with the restriction 23> 1, The problem raised
above is thus completely settled.

We have also applied our method to the mechanical theorem discovering of “new” the-
orems in ordinary geometry. Several theorems have been discovered in this way. We shall illus-

trate below.
Ex. Pascal-Conic Theorem

Suppose we are given 6 points A5 +*+, A, on the same conic. Let us call any point of
intersection 4;4;NAgA; (for i5 7,5 k5 ! mutually unequal) a Pascal point. Such Pascal points
are 45 in all which lic three by three on 60 so-called Pascal lines. These points and lines consti-
tute a configuration which has been much studied by numerous geometers including Steiner,
Staudt, Cayley, Ki:kmaun. However, most of the interesting theorems found by them are of a
linear character: collinearity of certain points and concurrency of certain lines. Now we put
the following problem: What theorems of a guadratic character can be found about this confi-
guration? In particular, we ask what combinations of 6 among the 45 Pascal points will lie
on the same conic (co-conic for short). Of course we are only interested in such combinations
of 6 Pascal points lying on some conic not degenerated into two Pascal lines.

The problem will be studied with further specialization. Consider for example a permuta-
tion s = (123456) which will act on the 45 Pascal points. We now ask for what Pascal
points P the six points P, sP5 s°P,---, §°P will lie on some non-degencrate conic. By triais
we see that the only possible points are 4,45\ 4245 or the equivalent ones. Assuming that
the usual Pascal theorem is known, then this amounts to whether the hexagons formed of the
six points Py i = 0, 1,+++,5, are Pascalian or not, i.c., whether the three points of inter-
section of the opposite sides of the hexagons sre collinear or not. Formulating the theorem to be
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proved in this way we verified again on the computer that this is really the case. So we get
a number.of non-degenerate conics on each of which lie 6 Pascal points. We call these conics
the Pascal comics and the theorem thus discovered the Pascal-Comic Theorem. It was first dis-
covered in 1980 and verified on an HP9835A.

Of course it is very likely that the theorem is known already in the last century. Moreover,
simple and elegant proof may also be easily found for this theorem. However, these are nei-
ther of any interest nor of any importance to us from the point of view of mechanical theorem
proving. The example shown may well indicate the powerfulness in discovering really non-
trivial new theorems in various kinds of geometries besides the ordinary geometry, e.g. the
non-Euclidean geometries, the circle geometries, or geometries of even more modern nature, in
which known interesting theorems are rare. Even in the case of Pascal configurations we may
put forward some problems to which our method may give some answer: Are there other conics
through at least 6 of the Pascal points or touching at least 6 Pascal lines besides those found
above? Are there any interesting geometrical relations between these conics and the various
Pascal points, Pascal lines and other known points and lines of significance ? Are there also
cubic relations between the 45 Pascal points, i.e., are there non-degenerate cubics passing
through at least 9 out of the 45 Pascal points, etc. Of course innumerable problems can be
set forth in this way.
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Tet K be a basic field of characteristic 0, and f;,4 = 1,---,7, be polynomials

in K[z, - +z.]. Consider the system of algebraic equations
fi=0, i=1,--+,r

which defines an algebraie variety V consisting of zeros of the system in an arbi-
trary extension field of K. The study of the structure of 7 or that of the set of
zeros satisfying these equations is one of the main themes of algebraic geometry.
Moreover the actual determination of the zeros in the complex field when they are
finite in number for K = @, B, or C is of great importance in applications. The
present paper aims at giving a rather complete answer to these questions with a
decomposition of V into parts quite different from the usual one in algebraic geom-
etry but is more adapted to applications. The method is based on the so-called
Ritt principle as described in a previous paper™ of the author. Various notations
and terminologies are also to be referred to that paper.

Consider thus a polynomial system S consisting of a finite number of polyno-
mials and a polynomial @ all in K[x,- -, z,]. We shall denote the set of zeros
of equations § = 0 in an arbitrary extension field of K for which G is not 0 by
Zero (8/G). If the extension field is prescribed to be X, then the set of K-zeros
for which G # 0 is denoted by E-Zero(S/G). Our main result is then the following

Structure Theorem. There is an algorithmic procedure which permits to decide
in a finite number of steps whether Zero (S/G) is empty and in the contrary case
to furnish a decomposition of the following form:

Zero (8/G) = Union Zero (4,/R)).

In this decomposition formula each A4; is an irreducible ascending set and R; is the
non-zero remainder of J;&; with respect to A4;, where J; is the product of initials
of polynomials in 4;, and G; is certain non-zero polynomial.

The proof consists in giving such an algorithmic proecedure as described below.

Step 1. Form, as in [5], the characteristic set C of 8. If C is contradictory,
in other words C is composed of a single polynomial which is a non-zero constant
of the basic field I, then Zero (8), in particular Zero (S/@), is empty and the

procedure stops. In the contrary case let the initials of the polynomials in C be
I; with produet J. Then the Ritt principle as deseribed in [5] will give a decom-
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position of the form
Zero (8/G) = Zero (C[J @) + Union Zero (S;/@),

in which each §; is the enlarged system of S with I; adjoined to it. Of course
only pon-constant I, is to be considered.

Step 2. Consider the set Zero (C/JG). Suppose first that C 1is irreducible
which may be determined by various known methods. Form now the remainder E
of JG with respect to C. By the remainder formula we have clearly

Zero (C/JG@) = Zero (C/R).

If R=0, then Zero (C/J@) is empty and shonld be removed in the above decom-
position. Otherwise we just replace Zero (C/J@) in the decomposition by Zero
(C/E). In any case we proceed to the next step.

Suppose now that C is reducible. Let C be consisting of polynomials
Gis 925" 5 gr

of classes (0 <)p < -++ << p,. Then there will be some s<Cr enjoying the fol-
lowing properties: First, for each ¢ <Cs, ¢;€ K[, +, @] is irreducible as a pol-
ynomial of K;_,[z,,], where K, is the field K(a,--*, @p,.1) which is obtained
from K successively by either simple transcendental extension by zj, j == p,---,
Pi_1, or a simple algebraic extension of x,,---, 25, by means of the polynomials
i+ 5gi-t a8 minimal polynomials. Secondly, g,, as a polynomial in K, [z, ],
with K., likewisely defined, is a reducible one. By the known methods of factor-
ization, we get then, after clearing of fractions, an expression in K;_, of the form

hge = 9.9’
in which g}, ¢! are polynomials in K[z, -+, z5,] both of degree >0 in z,, and
h is one in Kl[=,,---,%p,—1] reduced with respeet to the irreducible ascending set
consisting of ¢, -+, go-. Let C’, C" be the polynomial systems obtained from C

in replacing g, by g, g; respeetively, and C* be one obtained from C by adjoining
h to it. Then it is clear that

Zero (C[J@) = Zero (C*/J@) + Zero (C'|hJG) + Zero (C"[RJG).

Replace now Zero (C/J@) in the decomposition of Step 1 by the above union of
3 sets of zeros and proceed to the next step.

Step 3. Let us say that one polynomial system is of higher or lower rank
than or equal rank to another according as their basic sets are so related. Then we
see that each polynomial system §; occurring in the decomposition of Step 1 is of
lower rank than §. Moreover, each of the polynomial systems C*, C’, or C”,
eventually occurring in Step 2, is clearly of lower rank than C, and hence of lower
rank than S too.

Treat now in turn each set of zeros occurring in the decomposition of Step 2
in returning to Step 1, removing any empty set of zeros if it appears, and pro-
ceeding further as before.

As the polynomial systems occurring in the sets of zeros of the successive de-
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compositions are of steadily decreasing ranks so we have to stop after a finite num-
ber of steps. Thus finally we arrive at either an empty set or a decomposition as
described in the structure theorem.

As immediate applications of the above structure theorem we may ecite the fol-
lowing ones:

(2) The usual unique decomposition of an algebraic variety into irreducible com-
ponents can be deduced from our decomposition into sets of zeros with G=1. More-
over, this can be done in a constructive manner instead of a mere existential one.

(b) The Nullstellen-Satz of Hilbert can be deduced in a quite simple manner
by our methods and again in a constructive manner, contrary to the usual mere
existential proofs.

(e) Let the basic field K be either Q,R, or €, and only zeros in the exten-
sion field K = C are to be considered. It is clear from the decomposition formula
that the set of zeros (i.e. C-zeros) is finite iff each of the irreducible ascending
sets A; occurring in the decomposition formula is composed of n polynomials where
n is the number of variables z;. These zeros may be then found by the usual meth-
od in solving successively the polynomial equations of each set 4;. The following
example is taken from a paper of Buchberger™ and may be used as an illustration
of our method in comparison with several known methods as given in [2] and [3].

Ezample. Problem. Solve the following system of equations:
fo=28 —ai— 2 =0,
fi =z, — 22, + 2, = 0,
fo=a— 3 =0
For the method of Lazard one has to consider a matrix of 35 rows and 50
columns, with elements involving 4 auxiliary variables U,,---, U,. One has then
to decide whether the rank of this matrix is << 35 or = 85. In the latter case
one has to decompose a certain polynomial, which is the determinant of a sub-matrix
of the highest rank 85, into linear factors of U;. The coefficients of U; in these

factors give then the solutions, including those at infinity, of the given system of
equations.

The method of Buchberger consists of first determining for the ideal a = (f,,
fi,f2) a Grobner basis of 6 polynomials in all in the present example. Next a
basis of the algebra E[z;, z,, z,]/a together with a multiplication table of the basis
are determined. In case the Lasis of the algebra is finite as in the present example
one proceeds then to determine successively a system of polynomials

w2, pm,2)s p2s,22, ).
It is proved that all zeros, now finite in number, of the given system of equations
are to be found among the system of equations p; = 0 by the usual methods.

Our method runs briefly as follows.

First find the characteristic set C of the system S = (fo,f., f;) which consists
of the 3 polynomials g; below:
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2

o = 2} + 4a} — Sz} + 42} — 4dai,

o= —x + i,

g = (1 — 2)z; + 5135,
The non-constant initial is J = &, — 2. Denote the system with J adjoined to 8
by &', then we have

Zero (8) = Zero (C/J) + Zero (8').
Remark that in the case for which the number of polynomials in C is the same as
that of variables z as in the present example, it is not necessary to factorize as in
the general procedure indicated in the structure theorem. We just solve the equa-
tions € = O directly and successively to get all the solutions for which J % 0. The
solutions are found by usual methods to be 6 in number: (0,0,0) counted twice,
(1,1,1), and 3 others.

To determine the set Zero (§'), we find first the characteristic set €’ of S’ to
be consisting of a non-zero constant or 8 is contradictory. The set Zero (§') is thus
empty and the totality of solutions is formed by the 6 zeros of the set Zero (S/J)
as indicated above.

To find the solutions at infinity we have only to replace each of the polyno-
mials f; by fP in keeping only the terms of the highest degree. Thus we have to
consider the system SA = (f§,D,f5) given by

{ = mzy + o,

= ai.
The characteristic set C® of S is seen to be consisting of 3 forms, viz.

gt = i,

g{\ = xxz%:

g = By + Tz
The non-constant initials are I, = z,,I;, = z,, with product J = z?. Hence we have

Zero (8M) = Zero (CMJ) + Zero (8P) + Zero (8%),

in which 8 and 8% are enlarged systems of S* adjoined by I, and I, respectively.
The set Zero (C7/J) is elearly empty. Treating as before the sets Zero (S9) we
find an infinity of solutions given by

x, =0, 223=14ai,
which represent two points at infinity
(za:zpims) = (0:1:1/4/2)
and (0:1: —1/4/2).
Remark. In practice the equations to be solved usually have coefficients com-

plicate real numbers, which, being arisen from measurements, are only approxi-
mate ones. We may thus assume that multivariate polynomials occurring in the
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procedure are irreducible ones so that the most difficult step of reducibility consid-
erations may be entirely avoided. This will make the method particularly ef-
ficient for practical applications.

REFERENCES

{1] Wu Wen-tsiin, Bagiec principles of mechanical theorem proving in elementary geometries, J.
Sys. Sei. & Math. Scis., 4 (1984), 207—235.

[2] Buehberger, B., Ein algorithmisehes Kriterium fiir die Lo¥sbarkeit eines algebraischen Glei-
chungssystems, deq. Math., 4 (1970), 374—383.

| 3] Lazard, D., Systems of Algebraic Equations, EUROSAM, 1979, 88—04.

229



This page intentionally left blank



R & B ¥ 5 oy o
J. Sys. Sc. & Math. Scis.
5 (4) (1985), 290—302

ON THE PLANAR IMBEDDING OF
LINEAR GRAPHS

Wu Wen-Jun (Wu WeN-TsiN)

(Institute of Systems Science, Acadersia Sinica, Beifing)

1. InTRODUCTION

The present paper is a reproduction of the results already published in chinese from
1973 onwards. It is concerned with the problem of planar imbedding of linear graphs (sup-
posed to be connected and possessing no loops henceforth). The problem may be separated
into four parts:

Pl. Decide whether a connected linear graph (or graph for short) G is imbeddable in
the plane (or imbeddable for short).

P2. Decide, in the case of 2 non-imbeddable graph G, 2 minimal set of edges the re-
moval of which will render the remaining part of G imbeddable.

P3. Give a method of imbedding G in the planc in the case G is imbeddable.

P4. Give a description of the totality of possible imbeddings of G in the plane in the
case G is imbeddable.

The problem P1 was already solved in the early thirties. Thus, Kuratowski has given the
following simple and elegant criterion [KU1)}: Let K1 be the graph with five vertices and
all cdges connecting any two of them. Let K2 be the graph with two triads of vertices and
all edges connecting pairs of vertices onc from each triad. Then we have the following

Theorem of Kuratowski. A graph G is imbeddable if and only if it does not
contain any subgraph of type K1 or K2.

Similar criteria have been given by Whitney and MacLane, also in the thirties. However,
all these criteria are only existensial in character, although they settde the problem P1 quite
satisfactorily at least in a theoretical sense. In fact, these criteria give no means of a construc-
tive manner for deciding whether 2 graph concretely given is planar or not. For example,
for the Kuratowski criterion we have no means of detecting subgraphs of type K1 or K2
well hidden in a concretely given graph. This fact thus has deprived these criteria of any
practical value.

After more than twenty years of silence the interest in the problem revived in the early
sixties owing scemingly to practical needs. This time however, the interest lay no more on
theoretical imbeddability of a linear graph, but rather, on practical decision of the imbeddability
of any given graph in giving algorithmic procedures. Beginning from a paper by Auslander
and Parter [AP1]), the study culminated in a paper of Hopcroft and Tarjan [HTI1] in
giving an efficient planarity algorithm for a linear graph. Nevertheless their method gives

Received January 16, 1985,
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merely an answer to problem PI from the practical side and leaves problems P2—4 completely
untouched. As mentioned by the authors themselves in their joint paper, their *“planarity
algorithm- + + tests a2 graph G for planarity, but it does not actually construct a planar repre-
sentation of G.” We remark that it is just the latter part corresponding to problems P2—3
above that renders the study of planarity of graphs so jmportant in applications.

On the other hand the present author discovered in 1967 a solution to problem P1 which
is both of theoretical interest and of practical value in being algorithmic. The method was
based on a theory of imbedding and immersion of complexes in a Euclidean space [WU1]
and was applied this time to linear graphs, i. e. complexes of dimension 1. It leads to the
criterion that a graph is imbeddable if and only if a certain system of linear equations on mod
2 cocfficients is solvable in integers mod 2. Thesc results, owing to circumstances, were not
published until late 1973, cf. [WU2]. Now each equation in the linear system of our crite-
rion has cither two or four variables. In 1978 Liu Yan-pei made an important complement
to our methd in reducing each such equation to one with only two variables [L1]. This
enables the decision of planarity to be carried out actually without any computation and is
extremely feasible. However, in cther [HT1] or [L1] or [TU1] only criteria of imbedda-
bility were given, with the important problem of actual imbedding in the case the. graph is
imbeddable entirely untouched. In the meantime the present author arrived at 2 complete solu-
tion of all problems P1—4 listed above and the proofs were purely algebraic with no more
use of algebraic topology. These results were published as an appendix to the chinese version
of the book [WU1], of. [WU4].

The present paper bhas the aim of giving an English version of all these results, so far
published only in Chinese, with due modifications.

To fix the idess, throughout the paper the following notations will be adopted:

We will always work over integers mod 2 and the field of mod 2 integers will be deaoted
as usual by Z2.

The plane in which graphs are to be imbedded is denoted by R2.

The graph (connected without loops) is denoted by G, with numbers of vertices No
and number of edges Ne.

The vertices of G are Vi, with / running over some index set 1. The collection of all
such vertices will be denoted by V(G), or simply V.

The edges of G are Eg, with g running over some index set O. The collection of all
such edges will be denoted by E(G), or simply E.

The letters i, §, &, I,+++ will be used for indices in I, and the letters g, 7,5, 1,---
for those in E.

The set of all unordered pairs of edges (Er, Es), with Er, Es disjoint from each other,
will be depowed by D2(G), or simply D2.

The set of all pairs (Vi, Eq), with Vi not an end of Eg, will bedenoted by D1(G),
or simply DI.

The collection of all functions,
A: D1—Z2
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forms naturally an additive group and will be denoted by C1(G), or simply C1.
The collection of all functions
F: D2—> 22
forms paturally an additive group and will be denoted by C2(G), or simply C2.

For any pair (Vi, Eq) in DI, the function 4 in €1 which takes the valuc 1 on
(Vi, Eq) but 0 on any other pair in D1 will be denoted by (Vi, Eg).

Similarly, for any pair (Eg, Er) in D2, the function F in C2 which takes the value
1 on (Eg, Er) but 0 on any other pair in D2 will be denoted by (Egq, Er).

The morphism
d; C1(G)— C2(G)
defined by
dA4[(Eq, Er) = A|(Vi, Er) + A[(Vij, Er) + A/ (Vk, Eq) + A/(VI, Egq)
for
A in Cl, Eq=ViVi, Er =VkVl, (Eq, Er) in D2,
will be called the differential in G.

For any two broken lines L1,L2 in R2 not both closed to become polygons for which
the ends of L1 (resp. L2), which exist if not closed, are disjoint from L2 (resp. L1),
there is a well-defined intersection number in Z2 which will be denoted by Int (L1, L2).

For any closed polygon P with possibly self-intersections and a point 4 not on P there
is the well defined order of A with respect to P in Z2 which will be denoted by Ord (4, P).

If B is another point in R2 pot on P and L is a broken line joining 4 and B, we
would have the following relation in Z2:

Ord(4, P) + Ord(B, P) = Int(L, P).
If 4, B, P are as above with P a simple closed polygon and
Ord(4, P) = Ord(B, P)

in Z2, then by the theorem of Jordan 4, B can be joined by a simple broken line in R2
disjoint from P.

2. A CriTERION FOR IMBEDDABILITY

Without loss of generality we shall restrict maps of G in the plane R2 to piecewise
linear ones which will always be so assumed in what follows. A (piecewise linear) map

f: G—~R2
is called an imbedding if it is topological or 1-1.

Let H be any subgraph of G. Then a map f will be called an H-immersion of G if
the following conditions (a)—(e) are observed:
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(2) The images of vertices are all different.
(b) The image of each edge is a simple broken line.

(c) The image of any vertex is not on the image of any edge except at the possible
end.

(d) f is an imbedding when restricted on H, while for any edge Eg not in H, f(Eq)
will not meet f(H) except possibly at vertices common to H and Eg.

(¢) The images of any two edges will meet at most at a finite number of points besides

the possible common ends.

The H-immersion will simply be called an immersion of G if H is the empty sub-graph.
Consider now any immersion

f: G—~R2,
Definition. The element ¢(f( in C2(G) = C2 defined by
c{)I(Eq, Er) = ot (fEq, {Er), for (Eq, Er) in D2,
will be called the immersion element defined by f.
Theorem 1. For any two immersions f and g of G in the Plane
fs 8: G—>R2,
the elements ¢(f),c(g) belong 10 the same class of the quotient group C2/dC1.

Proof. Consider first the case f and g coincide on all vertices of G and all edges of G
except a single one, say the edge Es.

Now fEs, gEs form a polygon P (with possibly sclf-intersections). For any verlex V,
of G disjoint from Es let us set

Ok = Ord(fVk, P), for Vk disjoint from Es.
Define now an eement ¢ in C1 by
¢ =SUM 0k.(Vk, Es),
the summation being over all vertices V£ disjoint from Es.

Now for any edge Egq disjoint from Es wec have fEgq = gEgq. Thercfore, with V%,
V1 as the two ends of Eg, we would have

e(I(Eqs Es) + e(8)/(Eq, Es) = ne({Eq, {Es) + (g Eq, gE¢)
= Int(fEq, P) = Ord(jVk, P) + Ord(§Vi, P).

On the other hand if the ends of Es are Vi and Vi, then we would have

dc/(Eq, Es) = c[(Vi, Eq) + ¢/(Vi, Eq)

+ ¢/(Vk, Es) + ¢/(Vi, Es) = Ok + 0Ol,
Comparing, we have
e(f) + c(g) = dc[(Eq, Es).

For any pair (Eq,Er) in D2 with Eq,Er both different from Es, it is clear. that
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e(f) + c(g) =dec=0/(Eq, Er),
So the assertion is proved in the above case.

Consider now the case that f and g coincide on all vertices of G and are arbitrary
otherwise. We may always define a sequence of immersions 40, A1,--+, As such that 40
coincides with f, As with g, and each A7 coincides with the preceding one with the exception
of a single edge. By the preceding case each element ¢(Ar) will belong to the same class
of C2/dC1 as the dlement ¢ of the preceding immersion 4 in the sequence. [t follows that
the assertion still holds true in the present case.

Consider now the general case with f, g arbitrary, with however the images of all ver-
tices under both f and g different from each other.

For any vertex Vi let us draw a simple broken line Li in the plane with ends jVi and
&Vi such that, what is clearly possible, these broken lines are mutually disjoint.

For cach edge E4 let us join now the ends of fEq by a broken line Lg disjoint from
all L7 except possibly at the images of their common ends.

Define now an immersion 4 and an immersion 4’ of G by
#(Eq) = Lg,
K(Eq)=Li+ Lg+ Lj,
where Vi, Vi are the two ends of Eq.

From the construction we see that the elements ¢(%#) and ¢(4’) belong to the same
class of C2/dCl. On the other hand by the preceding cases already proved ¢(4) and (%)
are in the same classes of C2/dC1 as ¢(f) and c(g) respectively. Hence ¢(f) and c(g)
belong to the same class of C2/dC1 in this case too.

Finally, for two arbitrary immersions f and g let us take an immersion 4 such that both
fs h and g, & are pairs of immersions as in the preceding case. Then both ¢(f) and c(4),
as well as both ¢(g) and ¢(4), will belong to the same class of €2/dC1. Hence ¢(f) and
¢(g) belong to the same class too.

The theorem is thus proved in all respects.
From the above theorem the following definition is legitimate:

Definition. The class in C2/dC1 of the elements ¢(f) for any immersion f of G
in the plane will be called the imdedding class of G and will be denoted by 7(G) in what
follows.

From the very definition of imbedding it is clear that for G to be imbeddable in the
plane it is necessary that

1(6) = 0,

We shall prove that this condition is not only necessary but also sufficient. For this purpose
we shall prove first some preliminary lemmas as follows.

Lemma 1. Ler G' bc a subgraph of G. Then the natural restriction will induce
morphisms r1 and r2 so that the diagram below is commutatiye:
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CI(G’)—;‘*CZ(G')
rl r2
CI(G)—TCZ(G)

Moreoyer, for the morphism thus induced
r's €2(G)/dC1(G)— €2(G")[dC1(G")
we have
r'(1(G)) = 1(G").
The proof is evident and will be omitted.

Lemma 2. Les G’ be a subdivision of G. Then there are natural morphisms sl and
52 so that the diagram below is commutative:
C1(6)—>C2(6)
sl 52
CUE)—>C2E)

Moreover, for the morphism thus induced
s':C2(G")[dC1(G") — C2(G)/dC1(G)
we have

s((6")) = I(G).

Proof. Suppose G’ is obtained from G by introducing a single new vertex V' on some
edge Eq of G with ends Vi and Vj. Define now s1 and 52 in the following way. Let
us denote the edges ViV’ and ViV’ in G’ derived from Eg of G by Eq’ and Eq” respec-
tively. Then for any eclements ¢l in C1(G') and ¢2 in C2(G’) we define slcl in C1
(G) and s2¢2 in C2(G) by

sle1/(Vk, Er) = c1/(Vk, Er), for Er{ )Egq,
s1c1/(Vk, Eq) = c1/(Vk, Eq’) + ¢1/(Vk, Eq"),
s2¢2[(Er, Es) = ¢2[(Er, Es), for Er, Es{ )Eq,
s2¢2[/(Eq, Er) = c2/(Eq’, Er) + ¢2/(Eq", Er).
[t is easy to verify that dslcl = s2d¢l and s'(I(G’)) = I(G). The lemma is thus true

for this simple case. Since any subdivision of G is formed of a sequence of such elementary
subdivisions of the above type, the lemma is proved.

Lemma 3. For Kuratowski’s graphs K = K1 or K2 we have
1(k)( o,
Proof. Let us consider e¢. g. the first Kuratowski’s graph K = K1. Denote the 5
vertices of K by V1,---, V5 and immerse K in the plane in the usual way with images

Wi of Vi forming a regular pentagon and images of the edges the respective sides and
diagonals of the pentagon. The element ¢(f) of the corresponding immersion is then given by

cNI(V1v3, vava) =1,
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c(HI(V1V3, vavs) =1,
(I(V2va, V3Vs) =1,
(NI(V1IV4, V2v5) =1,
(DIVIVE, V3V5) =1,
cNIVivi, VkvI) =0,
for any other pair (ViVi, VAVI) in D2(k). In other words, we have
e(f) =(V1V3, V2V4) + (V1V3, V2I5) + (V2V4, V3V5)
+ (V1V4, V2VS) + (V1V4, V3V5),
The differential 4 is defined by

d(V1,V2V3) ={V1IV4,V2V3) + (V1V5, VIV3), etc.
Consider any element
¢l = SUM Xijk - {Vi, ViVk)

in C1(K), in which Xijk = Xikj are all mod 2 integers in Z2 and the summation is over
all triples 1, j, &k chosen from 1, 2,-++, 5 which are mutually distinct. If c(f) is the
d-image of c1, then the following set of cquations should be true:

X124 + X324 4+ X213 4 X413 =1,

X125 + X325 4+ X213 4+ X513=1,

X235 4 X435+ X324 + X524 =1,

X125 + X425 + X214 + X514 =1,

X135 4 X435 4+ X314 + X514 =1,

X134 + X234 4+ X312 + X412 =0,

X135 + X235 4+ X312 + X512 =0, ew.,

X145 4+ X245 + X412 + X512 =0,
1o all there are 15 such equations. By adding all these equations we get 0 =1 since we
are working in the domain Z2. This proves that ¢(f) cannot be the d-image of any element

in C1(K) or I{(K){)0 for K = K1. The proof of the case K = K2 is similar and will be
omitted.

Fundamental Theorem 1. For a graph G 10 be imbeddable in the plance st is ne-

cessary and sufficient that
1(G)=0,

Proof. It is enough to prove only its sufficiency. Suppose G is not imbeddable. By
Theorem of Kuratowski G should contain a certain subgraph G’ which is some subdivision
of cither K1 or K2. By Lemmas 2 and 3 we should have I(G'){ }0. By Lemma 1 we
have then a fortiori 1(G){ )0. Hence I(G) = 0 would imply that G is imbeddable. This
proves the theorem.

As a complement we have also the following

Theorem 2. For any clement ¢2 in C2(G) belonging t0 the imbedding class 1(G)
in C2(G)[3C1(G) there is an immersion { of G such that
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2= c(f).
Proof. This is clearly a direct consequence of the following

Lemma 4. Let c2 be any immersion element of G in the imbedding class 1(G).
Then for any functon {Vk,Eq) of C1(G) the clement

¢2 = ¢2+ d{Vk, Eq)
is also an immersion element of some immersion of G.

Proof. Let g be any immersion of G defining the element ¢2. On the interior of the
image under g of Eq let us take a small segment L with ends Vi’, Vj' which contains no
image points of any other edges of G. Replace now L with a simple broken line L’ joining
Vi, Vi such that L 4+ L’ will form a loop with only image of V% and with no image of
any other vertices in its interior. Let g be the map of G in the plane which coincides with
g everywhere except that L is replaced now by L'. We may also clearly choose L’ in such
a way that g’ is a well-defined immersion, It is now easy to verify that c(g') = c2’ and
the Jemma is thus proved.

Remark. All the theorems and proofs here are of an algebraico-topological character,
but we have avoided the use of any such terminology as done in the original paper [WU2].
It is also clear that the concepts and results in this section may be naturally extended with
no essential changes to graphs G not necessarily connected.

3. Repucrion or CriTEriON TOo SoLvapmity or LiNear EquaTions

Consider the graph G and an arbitrary immersion f as before which will determine an
immersion element

¢(f) = SUM Igr - {Eq,Er) in C2, (1)
in which the summation is to be extended over all pairs (Eq, Er) of D2 and
I9r = Int(JEq, fEr), ¢))

According to the fundamental theorem in Sect. 2, the planar imbeddability of G depends
then on the existence of a function ¢1 in C1 such that

del = e(f). (3
As C1 has a basis consisting of functions {Vi,Er) with (Vi,Er) running over all pairs in
D1, we may set such a ¢l of C1 in the form

¢l = SUM Xir - {Vi, Er), (4)

with summation extended over all pairs (Vi, Er) in D1 and Xir unknowns in Z2 to be
sought for. Form dcl and compare both sides of (3). We then get a system of linear
equations

(EQNY): Xir + Xjr + Xkq + Xig = Iqr

with one equation corresponding to cach pair (Eg, Er) in D2, the ends of Eq being sup-
posed to be Vi, Vi, and the ends of Er to be ¥k, VI. Fundamental Theorem I in Sect.
2 can thus be reformulated in the following form:
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Fundamental Theorem IL. For a graph G 10 be imbeddable, it is necessary and
sufficient that for an arbitrary immersion { of G in the plane, the system of linear equations
(EQNY) possess solutions of ths X's in mod 2 integers.

We remark that the theorem remains true even if G is not connected.

Now the pumber of equations in (EQNY) is about Ne A2 and that of the unknowns X
is about Nov % Ne¢ where Nv and Ne are the numbers of vertices and edges in G respectively.
The determination of solvability of this system secems to be thus untractable in appearence.
However this is not the case. In fact, owing to the particular form of these equations we can
treat the system in a quite feasible algorithmic manner which will lead to a complete solution
of both problems P1 and P2,

To sece this let us arrange the edges of G in 2 definite order, say E1, E2,---, Eq,
+++, En, in which » = N¢_ For each edge Er of G with r > 1 let us denote the set of
equations in (EQNf) corresponding to pairs (Eq, Er) with ¢g=1, 2, -+, r —1 by
(EQNr) which may cventually be non—existent. We denote also the subgraph (not necessarily
connected) formed of El, +--, Er by Gr, Beginning from r — 2, let us arrange the sets
of equations (EQNr) successively in an cchelon form by the so-called Gaussian elimination
with certain sets of equations, to be eventually forsaken. We remark in passing that the me-
thod of Gaussian elimination occured in fact already in the early Chinese classic Nine Chapters
of Arithmetic together with introduction of negative numbers which appeared more than 2000
years ago. Now the set (EQN2) may be cither empty or consisting of a single equation so
that it is already in the echelon form. To start with we shall put (EQN2’) to be the same
set as (EQN2), empty or not, and introduce a further empty set to be denoted by (DEL2).
We set also G2' = G2,

Consider now r =2 and put s = r — 1, Suppose that the sets of equations (EQNg)
with ¢4 = 1, 2,-+-, 5 have already been treated with the result of 2 set of equations (EQNs")
in echelon form as well as a set (DELs) of edges chosen from Gs such that the subgraph
Gs' formed by edges in Gs but not in (DELs) is imbeddable in the plane. Remove now
from the set, if non-empty, of equations (EQN7) those corresponding to the pairs (Eg, Er)
with Eq in (DELs) and denote the set of remaining equations by (EQNr”), If the set
(EQNs"") is non-empty, then adjoin this set to (EQNs') and arrange these in echelon form
by Gaussian eclimination. Two cases may then occur. In the first case the equations newly
adjoined will render the whole set a contradictory one. The system of equations is then unsol-
vable so that the graph Gs’ with Er adjoined will become non~imbeddable. We delete thus
Er from G and adjoin Er to (DELs) to form (DELs). The subgraph Gr' will be set to
be identical to Gs’, and the system (EQNr’) to (EQNs’). In the second case the reduction
to echelon form can be caried out without arriving at contradiction. The system of equations
arrived at consisting of (EQNs’) and the newly adjoined (EQN#"") in reduced echelon form
will then be denoted by (EQNs’). The set (DELy) will remain the same as (DELs) and
Gr' will be G5’ adjoined by Er. We remark that as the set (EQNr”) is atmost r — 1 in
number and each equation in it has at most 4 unknowns with coefficients in Z2, the reduc-
tion to echelon form requires actually at most § % ( — 1) additions of mod 2 integers.

Finally, if the set (EQNr) or (EQNs") is empty, then we shall proceed to the next
step with (EQN7’), (DELr) the same as (EQNs’), (DELs), and Gr’ as Gs' with Er
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adjoined.
From the sbove we get thus the following

Theorem 3. There is an algorithmic procedure which permits to determine in a finite
number of steps whether a given graph G is imbeddable or not, and in the case it is not
imbeddable, a set of edges should be deleted from the given graph so ithat the remaining
graph is imbeddable,

The above method settles thus both the problems P1 and P2 and can be easily prog-
rammed. To apply it we have to choose first an arbitrary immersion of the graph G, form
successively the set of equarions (EQNr) and proceed as indicated above, As already re-
marked, the whole procedure requires at most

Na = SUM 4% (Ne — 1)*Ne << 4% Ne A2

mod 2 additions and is thus quite feasible. The only defect is that a large amount of memory
space may be required. We shall discuss this matter in later sections.

4. AN ALTERNATIVE REpucTioN OF CRITERION TO SOLvABiLITY OF LINEAR EQUATIONS.

In the original paper {(WUI1) the author has described a method of reducing the criterion
of imbeddability to the solvability of 2 system of linear equations on Z2, which is a little
different from that given in Sect. 3. Though the proof of this reduction is rather involved,
it has however the advantage of being able to greatly reduce the number of unknowns in the
equations. What is more important is that this method will lead to 2 complete solution of
problems P1—4, in comparison with the one in Sect. 3 which permits to solve only problems
P1—2. We repeat the remark already made in the introduction that it is problem P3 that is
the decisive part in view of applications.

In order to explain this method we shall first introduce some notions as well as nota-
tions. Henceforth G will be supposed to be connected,

By a srec of the graph G supposed connected we shall mean a maximal one belonging
to G, i.e. one passing through all vertices of G. Let a tree T be taken and fixed in what
follows,

With respect to tree T of G the vertices will be divided into two classes: internal ones
and terminal ones. The edges of G will also be divided into two classes: those belonging to
the tree and those not. We shall call these tree-edges and external edges and denote them by
Eu,Ev, Ew,*++ and Ea, Eb, Ec,--+ respectively.

Among the terminal vertices of T we shall choose one as the root of T which will be
denoted by O henceforth,

Without loss of generality we shall make the assumption that no external edges issue froms
O. In fact, in the contrary case we may adjoin an extra edge to the graph G with one end
at O and the other free. We may then take that free end as the new root of the new graph.
The problems are actually the same for the new graph and the original one so far as imbed-
dability is concerned. Hence we shall suppose that the zbove device has been adopted in what
follows so that the above assumption is always verified.,

For any vertex Vi of G different from O there is a unique path belonging to T which
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leads from Vi to O and will be denoted by Pi. For any external edge Ea there is also a
unique path belonging to T which joins the two ends of Ea and will be denoted by Pa. The
cyde of G formed by Ea and Pz will then be denoted by Ca,

For any two vertices Vi, Vj({)0) the two paths Pi, Pj will begin to meet first at some
vertex in running toward O which will then be called the V-meer of Vi, Vi or of Pi,Pj,
For any tree-edge Ev with ends Vi, Vj, one of them, say V7, will have the path Pi con-
taining the other end Vj, We shall then call Vi the head and V7 and the il of Eu,

Each tree-edge Eu will divide the tree T into twe disconnected parts, say T'w and
T"u. One, say T'u, will contain the head of Eu and the subtree formed by T'x and Eu
will be denoted by Twu. The sct consisting of Eu as well as all edges with two ends one in
T'u and the other in T"u will be denoted by CSu. In the network theory a set of edges is
called 2 cus-ser of G if in removing it G will split into two or more disconnected parts.
The set CSu is such a cut-set and in the network theory it is proved that the collection of
sas CSu corresponding to all the tree-edges Ex form a basis of all cut-sets in an evident
sense, cf. e. g. [SB1],

For any two sets of edges S1, S2 of G the function in C2 taking the value 1 on all
pairs (Eq, Er) of D2 with Eq in S1 and Er in S2 and the value 0 otherwise will be
denoted by [S1, 52]. In other words

{81, §2) = SUM (Egq, Er),
in which the summation is to be extended over all pairs (Eg, Er) as above. The following

lemma is now readily proved (cf. [WU1]):

Lemma 5. The subgroup dC1 of C2 has a set of generators (not necessarily a basis)
consisting of elements

{CSu, CSv) and {CSu, Ea),
corresponding to all pairs (Eu, Ev) and (Eu, Ea), disjoint or not, respectively.
fTntroduce now sets of variables or unknowns on Z2 as follows. To each unordered pair
{ Eu, Ev) of tree-edges disjoint or not is associated an unknown Xuv(= Xvu),
To each pair (Ew, Ea) of a tree-edge Eu and an external edge Ea disjoint or not is
associated an unknown Yua,

By the Jemma above and Fundamental Theorem I in Sect. 2 it follows that for G to be
imbeddable it is necessary and sufficient that for an érbitrary T-immersion f of G the follow-
ing system of linear equations in Z2 be solvable in the unknowns X and Y:

SUM Xuv - (CSu, CSv)+SUM Yua - {CSu, Ea) = SUM Igr - (Eq, Er),

in which the various summations are to be extended over respective ranges. Compare the
terms of both sides and note that by the very definition of a T-immersion /gr = 0 when
Eq or Er or both are tree edges, we get:

Xuv =0, for (Eu, Ev) in D2,

Yua = SUM1 Xuv, for (Eu, Ea) in D2,

lab = SUM2 Yua + SUM3 Yub 4+ SUM4 Xuv,
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The various summations are respectively =xtended over the ranges as follows:

SUMI over Ev in Pa,

SUM2 over Eu in Pb,

SUM3 over E% in Pa,

SUM4 over pairs (Eu, Ev), disjoint or not, with E« in Pa and Ev in Pb,

Corresponding to each pair (Eu, Ea) of a tree-edge Eux and an external edge Ea with
Eu, Ea disjoint or not let us introduce a new unknown Xua in Z2 by setting

Xua = SUM1 Xuv + Yua,
so that by equations about Yua above,
Xua =0, for (Eu, Ea) in D2,
‘The equation about Jad will then become
lab = SUM2 (SUMI Xuv + Xua) + SUM3 (SUM 5 Xuv + Xub) + SUM 4 Xus,
with SUM5 given by
SUMS over Ev in Pb,

As the terms SUM2 SUM1 Xuv and SUM3 SUMS5 Xuv are actually the same they cancel
cach other in Z2. Taking into account the equation Xua = 0 for (Eu, Ea) in D2, we
get then

SUMO0 Xuv 4+ SUM’ Xua 4+ SUM" Xub = lab, 1>
in which the various summations are to be extended over ranges as follows:
SUMO over pairs (Ew, Ev) non-disjoint with E» in Pz and Ev in Pb,
SUM’ over pairs Eu, Ea with E« in P and (E4, Ea) non-disjoint,
SUM" over pairs Eu, Eb with Eu in Pa and (E«, Eb) non-disjoint.
This leads to the following

Theorem 4. For a graph G to be imbeddable it is necessary and sufficiens that for
an arbitrary tree T and an arbitrary T-immersion | of G the system of equations (M)
corresponding to pairs (Ea, Eb) in D2 be solvable in the unknowns X in Z2,

(To be continued)
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5. TurtHER REDUCTION OF FUNDAMENTAL SYSTEM OF LINEAR BQUATIONS

The fundamental system of linear equations (If) in preceding Sect 4 can actually
be put in a much simpler form. For this purpose let us denote by NT a certain neigh-
borhood of T in G sufficiently small so that the T-immersions considered will be some
imbeddings when restrieted on N7 and that all possible intersections of images of dis-
joint external edges are not in N7. We shall call these T-immersions also NT-immer-
s10MS.

Lemma 6. For NT-immersions of G the immersion elements are already com-
pletely determined by the restricted imbeddings of the neighborhood NT of the respec-
tive smmersions.

Proof. TFor any external edge Ee with ends V7, Vj let us take two points on Ea
lying in the neighborhood NT and dencte them by Via, Vja. These points will be ta-
ken so near to the tree that the edge Ee will split into three parts from Vi to Via, from
Via to Vje, and from Vja to Vj, disjoint from each other except at possible common
ends. These parts will be denoted by Eia, Ea’, Eja respectively.

Consider now any two NT-immersions f and g which coincide on NT as imbed-
dings. For any pair of edges (Ea, Eb) in D2 with Vi, Vj the ends of Ea and Vk, VI
the ends of Eb let us denote the intersection number Int (fEa, fED) still by Iab while
Int(gEa, gEb) by Jab. We have then

Iab = Int(fEa, fED") = Ovd(fVkb, fCa) + Ord(fVib, fCa),

Jab = Int(gEa, gEb') = Ord{(gVkb,gCa) + Ord(gVib,gCa).
As f and g coincide on NT, so on Z2,

fCa+gCa=fEa + gEa',say = Ca’,
and we have therefore
Iab + Jab = Ord(fVEb, Ca’) + Ord(fVib, Ca’).
It follows that
Iab = Jab,

since fVkb and fVIb are the ends of the broken line fEED + fPb + fEID disjoint from
the polygon Ce’. The immersion elements ¢(f) and ¢(g) of fand g are therefore the
same. The proof is completed,

In order to avoid tedious verifications in the case that an external edge ends at
some internal vertex of the tree, we shall adopt the following devices: If the external

245



24 WU WEN-JUN (WU WEN-TSUN) vsl. 6

edge Ea has some internal end(s) of the tree as an end Vi (or both ends Viand Vj),
then we shall replace, with notations as in the proof of the above lemma, the edge Eb
with two (or three )edges VaVia, and ViaVj (or VaVia, ViaVja, and VjaVj). By
the lemma above as well as Lemma 2 of Sect. 2 we see that it is immaterial to replace
the original graph by this new one. We shall suppose in what follows that such a mo-
dification of the graph has already been dome so that we may assume the following con-
ventions for the graph G have been observed:

Convention 1. The root O of the tree T is a terminal vertex.

Convention 2. The ends of any external edge are both terminal vertices.

Let us call an unordered pair of tree-edges (Eu, Ev) a redundant one if the tail
of say Eu is the head of Ev. The corresponding unknown Xuv is then also said to be
redundant. Consider now any set of mod 2 integers (Agrs) corresponding to all
unordered triples of tree-edges (Egq, Er, Is) with one end in ecommon for which each
Agqrs ig independent of the order of indices(q, #, s). Let us also put for each such
triple

Xgrs = Xqr + Xgs + Xrs,
which is also independent of the order of the indices (g, r, s). We have then
Lemma 7. If the set of equations
Xqrs = Aqrs
corresponding to all unordered triples of edges (Eq, Er, Es) with o 'common end is

solvable for Xuv=Xvu in Z2, then the same set of equations is also solvable with all
redundant unknowns Xuv=0.

Proof. Let (Xuv)=(Auv) with Auv=Avu corresponding to each unordered pair
of edges (Eu, Ev) with common end be a solution of the above system of equations.
For each such pair (Eu, Ev) with common end Vm let Eg be the edge on the path
Pm with Vm as head. Then we see easily that

Xuv =0 for (Bu, Ev) redundant and
Xuv = Aug + Avg + Aup otherwise

is also a solution of the above system of equations and the lemma is thus proved.

We are now in a position to simplify the system of equations (If) of Theorem 4
in Sect. 4. We shall denote the equation in(If) ecrresponding to the pair (Ea, ED) in
D2by (EQab) and the ends of Ea, Eb by Vi, Vj and Vk, VI respectively.

Tirst let us remark that owing to econventions 1 and 2 the terms in SUM’ Xua
and SUM” Xub in the equation (FQab) are no more existent. For the terms in
SUMO Xuv we distinguish three cases.

Case 1. Pa, Pb are disjoint.

We see that SUMO is nonexistent and fEa, fEb do not meet. So the equation
(EQab) becomes 0=0 and is redundant.

Cash 2. Pa, Pb meet at a single vertex Vin.

Let the trce-edges with end Vi on the paths from Vi, Vj, Vk, VI to Vin be res-
pectively Ep, Eq, Er, and Es. Then we see that SUMO reduces to four terms

XApr+ Xps+ Xgr + Xgs.
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The equation (EQab) can thus be written in the form
Xpgr + Xpgs= Iab.
Case 3. Pa, Pb have a tree-path in common with end vertices Vm, Vn.

We may suppose that Vm is on the tree-path ViVk and Vn on VjVI Let the
edges with end Vm on the tree-paths Vi¥Vm, VkVm and VmVn be respectively Ep, Er
and Ew. Similarly, let the edges with end V= on the tree-paths VjVa, ViVa and VaVm
be respectively Eg, Es and Ez. Then we see that the equation (EQab) may be written
in the form

Xprw + Xgsz = Iabd.

Suppose now G is imbeddable so that (If) is solvable in the unknowns Xuv=Xuvu.
In view of the above analysis of the form of the equations (EQab) in (If) it follows
from Lemma 7 that the m (If) will . . Lo suivable in unknowns Xuv=Xwu with
all redundant ones =0. bi..eover, for any different terminal vertices Vi, Vj, both dif-
ferent from root O with Vm the V-meet of the paths Pi and Pj, different from O
owing to our conventions, let Er, Es be the edges on Pi, Pj with tail Vm and set

Xij = Xrs(=Xji).

Then, with all redundant Xuv=0 it is easily verified that the left-hand side of the
equations (EQab) either in Case 2 or in Case 3 can always be written in the form

Xik + Xjk + Xil + X1

which may eventually be reduced to only two terms.

It follows that the system of equations (If) may be replaced by a system (Xf)
below which is much simpler in form and the Fundamental Theorem II may also be
re-stated as:

Fundamental TheoremII’. A4 graph G is imbeddable if and only if, given a
tree T, a root O, and o T-tmmersion [, the system of equations

Xik + Xil + X jk + Xji — Iab, (X£)

corresponding to pairs (He, Eb) in D2 with Vi, Vj ends of Ea and Vk, VI ends of Eb,
is solvable in Z2.

We remark that, under the conventions above, each X4j occuring in equations (X{)
is some Xrs for a pair of non-disjoint tree-edges (Er, Es) having a common tail. We
shall call all such pairs (Er, Is) admissible patrs in what follows.

We see that each equation of (Xf) involves actually at most 2 or 4 unknowns of
X and eventually has the trivial form 0=0. Morever, the number of unknowns of X
are readily estimated as in the following

Theorem 5. If the maxzimum order of veriices in the graph G is m, then the

number of unknowns of X occurring in the fundamental system of equattons (Xf) is
at most

Nz = (m— 3)%Ne + Nv,

in which Nv and Ne are respectively the original number of wvertices and edges of G
before modification.
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Proof. Let Ok be the number of vertices of order ¥ in @. Then we have
SUM k% Ok =2%Ne,

the summation being over k> =1. Now to each vertex of order % the associated
number of unknowns of X that may occur in the equations (X{f) is eclearly at most
(k—1) % (k—2) /2. Hence we have.

Ne<=8UM((k — 1) % (k—2)/2) % Ok
— SUME % (k — 2) % 0k/2 — 1/2 % (SUM(k — 2) % Ok)
<=(m—2)%*Ne — Ne + SUM Ok
=(m —3)%Ne -+ No.

That Nv, Ne may be taken to be the original numbers of the unmodified graph is
also clear.

To determine the imbeddability of G we can now proceed as in Sect. 3 with the
result of getting a set of edges that is to be deleted and a set of solutions of remaining
equations in mod 2 integers of the unknowns X. The operations require only mod 2
cdditions at most 4 Ne A 2 in number as before. The number of unknowns has how-
ever been reduced so that much les memory space will be required. In particular,
if the graph G has only vertices of order < =3, then the number of unknowns will
be < =Nw, the number of vertices of G.

The great advantage of this method lies in reality in the fact that actual imbed-
ding of an imbeddable graph @, or more generally the imbedding of the imbeddable
graph which remains after removal of a certain set of edges, can be constructed from
the set of solutions obtained from the fundamental system of equations. This will form
the object of study in the next sectioms.

6. (GEOMETRICAL INTERPRETATION OF UNKOWNS X AND ROTATION

NUMBERS ASSOCIATED TO A T-IMMERSION

As stated at the end of last section, the solu‘ions of the fundamental system of
cequations (Xf) for a graph G supposed to be imbeddable or become imbeddable after
removal of certain edges will lead to a method of actual imbedding of such a graph. To
see this we shall first give in this section some geometrical interpretation of the un-
knowns X involved in these equations. In fact, by Lemma 6 of Sect. 5 the nature of the
T-immersion f will actually be determined byf on NT and this in turn will be determined
bv how the edges at a common end are mutually situated when immersed by f. This
suggests thus the introduction of the following notions.

Let L1, L2, L3 be three simple broken lines in the plane disjoint from each other
except that they have one end in common. We shall attach then to this ordered triple
of lines a rotation number (in £2).

R(L1, L2,L3) = 0 or 1

according as in passing from L1 to I3 through L2 we have to turn around their com-
mon end in a counter-clockwise or in a clockwise sense.
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Consider now an NT-immersion f of G with conventions 1, 2 observed. For any
admissible pair of edges (Er, Es) with common tail Vm we set then by definition
Rrs(f) = R(fPm, fEr,[Es).
For each pair of vertices V¢, Vj different from @ which lead to the admissible pair
(Er, Es) with Er on Pi and Es on Pj having a common tail we shall set by definition
Rij(f) = Brs(f).

Remark that the order of the indices are important in that
Rrs(f) = Rsr(f) + 1, Rij(f) = Rji(f) + 1.

Theorem 6. Let f be a T-immersion of G with conventions 1, 2 observed. Then

for any pair of edges (Ea, Eb) in D2 with Vi, Vj ends of Ea and Vk, V1 ends of Eb,
we have

1ab(f) = Rik(f) + Rjk(f) + Ril(f) + Rjl(f).

Remark. The cquation is of the same form as the corresponding one in the fun-
damental system of equations (Xf). Howsver the numbers Rik(f) do not form a solu-
tion of the system (Xf) since Rik(f)< >REi(f) while we are seeking for solutions
with Xik=Xks.

Proof. Let Vm be the V-meet of the paths Pi, Pj. Consider first the vertex Vk.
According as fO and fVk are interior or exterior to ‘the cycle fCa, and acecording as
the path Pk does not meet Ca or first meets Ca on Pi or Pj, there are in all 12 cases
to consider. We verify easily that in all cases we shall have

Rik(f) + Rjk(f) = Ord(fVE, fCa) + Ord(f0,fCa).

Similarly we have

Ri(f) + RjI($) = 0rd(f VL, fCa) + Ord(f0, fCa).
Henece we get

Rik(f) + Rik(F) + Ril(f) + Rjl(f)

Ord(fVk, fCa) + Ord(yVi, fCa)
= Iab.

I

Consider now two N7T-immersions f and g of ¢. For any admissible pair of edges
(Er, Es) let us set by definition

Wrs(f,9) = Brs(f) + Rrs(g).

For any pair of vertices Vi, Vj different fromi O and leading to the admissible pair
(Er, Es) we set then by definition

Wii(f,9) = Rij(f) -+ Rij(g),
or, what is the same,

Wij(f,9) = Wrs(f, ).

Remark that unlike the R’s the numbers W are no more dependent on the order of the
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indices:
Wrs(f,g) = Wsr(f,9), Wij(f,9) = Wji(f,g).
If the common tail of the admissible pair Er, Es is at Vm, then
Wrs(f,g) =0 or 1

according as the configurations (fPm, fEr, fEs) and (gPm, gEr, gEs) have the same
sense of rotations or not, Hence the set of numbers Wrs(f, g)=Wsr(f, g) correspon-
ding to all admissible pairs (Er, Es) serves to compare the configurations of the two
imbeddings f/NT and g/NT. More precisely we have the following

Theorem 7. Let f, g be two NT-immersions of G. Suppose the fundamental
system of equations (Xg) corresponding to g is solvable and has a solution

(Xrs) = (Brs),

in which Brs=Bsr are numbers in Z2 corresponding to all admissible pairs of edges
(Er, Es). Then the fundamental system of equations (Xf) corresponding to f is also
solvable and has a solution

(Xrs) = (Ars),
in which
Ars = Brs + Wrs,
where we have put for simplicity
Wrs = Wrs(f,g).
Proof. Let us set by definition
Ars = Brs + Wrs(=Asr).
Set also by definition
Bij = Br-, Aij = Ars,

if the pair of vertices Vi, Vj different from O will lead to the admissible pair of edges
(Er, Es). Then we shall have also

Aij = Bij + Wij(=4j1).
Consider now any pair of edges (Ea, Eb) in D2 with V%, Vj ends of Fa and Vi,

Vi ends of Eb. Write Iab, Jab for their respective intersection index under f and ¢ as
before. As (Brs) is a solution of the system (Xg), so we have

Jab = Bik + Bjk + Bil + Bjl.
By Theorem 6 we have also
Jab = Rik(g) + Rjk(g) + Ril(g) + Rjl(g),
lab = Rik(f) + Rjk(f) + Ril(f) + RI(f).

Adding all these three equations together and taking into account the definition of A4
and W, we get
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Iab = Ak 4+ Ajk + Asl + Agl.

This shows that the set of numbers (Ars) in 22 with Ars=Asr forms a solution of
(Xf) and the theorem is proved.

Suppose now in particular that G is imbeddable with g an imbedding not only of
NT but also of @ as a whole. Then we have Jab=0 for all pairs in D2 so that Xrs=0
for all admissible pairs (Er, Es) forms a trivial solution of the system (Xg). By the
above theorem

(Xrs) = (Wrs)

will form then a solution of the system (Xf). From the meaning of Wrs we have
therefore the following

Geometrical Interpretation of the unknowns Xrs:

The set Xrs=Xsr will serve as a set of indicators whether for each admissible pair
of edges (Er, Es) with common tail Vm their images under f should be modified to
change the sense of rotations of the triple (fPm, fEr, fEs) so that the modified im-
mersion of T may be extendable to an actual imbedding of the whole graph G. See
however the mnext section.

7. QuaprRaTIC RELATIONS AMONG THE UNKNOWNS X

By Fundamental Theorem II we know that for an arbitrary N7-immersion f of
@, if the fundamental system of equations (X£f) possesses a solution

(Xrs) = (Ars),

with Ars=Asr corresponding to all admissible pairs of edges (Er, Es) in D2, then G
is imbeddable. From the preceding section it seems further that from this solution we
would get an actual imbedding of @ by modifying the NT-immersion f to another one
g in changing the mutual rotational relaticnships of edges at the same vertices accord-
ing to the formulae

Wrs(f,g) = Ars.

However, this is entirely not the ease. In fact, thongh G is imbeddable if the system
of equations (Xf) is solvable, not every solution of (Xf) will lead to an actual imbed-
ding of G in the above manner. The reason may be seen as follows.

Let us consider any triple of edges Er,Es, Et with same tail ¥m. For any im-
mersion g we have then a set of 3 rotation numbers in Z2, viz.

(Rg) Rrs(g), Rst(g), Rir(g).

As each B may take a value of Q0 or 1, so apparently there would be 8 sueh sets of
values to be taken for (Rg). However there are only 6 different types of orientational
relationships of the edges Ev, Es, Et and Pm under g. This shows that among the 8
sets of values of (Rg) only 6 will actnally be geometrically realizable. In fact, (Rg)
can never take up the sets of values (0, 0, 0) and (1, 1, 1). The problem thus arising
is to pick out these 6 sets of values among the 8 sets. The solution of this problem will
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be furnished by the following device introduced in the original paper [WU4].
For an immersion g and 3 edges Er, Es, Et with same tall Vm lét us set by defini-

tion
Qrst(g) = Brs(g) % Rri(g) + Rst(g) % Rsr(g) + Rir(g) % Rts(g).

Remark that though the numbers Rrs(g), ete. depend on the order of indices (r, s)

ete., Qrst(g) is independent of the order of the indices (r, s, t). We have now the
following

Lemma 8. The rotation numbers (Rg) satisfy always the relation

Qrst(g) = 1.

Proof. Let us first remark that if ¢ is such that in turning around the common
end gVm, we shall get successively gPm, gEr, gEs, gEt in the counter-clockwise order,
then we have Rrs(g)=0, Est(g)=0, Rir(g)=1 so that Qrst(g)=1.

Suppose next that Qrst(g)=1 for a certain configuration of gPm, gfr, gEs, gEl
in the plane with e.g. gEr, gEs neighboring to each other in the arrangement. ILet us
interchange the orientational relationship between gEr, gEs but leave the others un-
changed to get 2 new immersion ¢g’. Then we have

Rrs(g’) = Rrs(g) + 1,
Bst(9') = Rst(g), Rir(g') = Etr(g).
It follows that
Qrst(g’) = Qrst(g) + Rrt(g) -+ Rst(g) = Qrst(g),

since, with gEr, gEs neighboring to each other in the plane, Rri(g) = Rsi(g). This
proves the lemma since any other configuration of Pm, Er, Es, Et under any immer-

sion may be got from the one under g by a number of such interchanges of immersed
neighoring edges.

For any immersion f of @ let us now introduce by definition a system of quad-
ratic forms

Qrst(f, X) = (Xrs + Rrs(f)) % (Xrt + Rri(f))
+ (Xst + Rst(f)) % (Xsr + Rsr(f))
+ (Xtr + Rtr(f))* (Xts + Rts(f))

corresponding to each triple (Er, Es, Et) with a common tail. Introduce also the sys-
tem of quadratic equations

Qrst(f, X) =1 (Qf)

corresponding to all such triples. Note that in the equations Xrs=Xsr while Rrs(f)=

Rsr(f)+1, ete. However Qrst(f, ) is independent of the order of indices (7, s, t). We
have now the following

Fundamental Theorem Ul. If corvesponding to a T-immersion of G the
fundamental system of equations (Xf) is solvable, then the systems of equations (Xf)
and (Qf) taken together are also solvable.
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Proof. As the system (Xf) is solvable, by Fundamental Theorem II’ @ is imbed-
dable with a certain ¢ as an imbedding of G as a whole. Corresponding to each ad-s
missible pair of edges (Er, Es) let us put

Wrs = Wrs(f,g9)
for simplicity. Then as in the proof of Theorem 7 of the last section, the system
(Xt) will have a solution

(Xrs) = (Wrs).

By Lemma 8 above the set of numbers (Rrs(g)) will satisfy the relations
Qrst(g) =1
corresponding to all triples of edges (Er, Es, Et) with common tails. As
Wrs = Rrs(f) + Rrs(g),

we see that Qrst(f, X) will become Qrst(g) when Xrs, etc. are substituted by Wrs, ete.
This shows that (Xrs)=(Wrs) will satisfy both systems of (Xf) and (Qf).

8. AcTuUAL IMBEDDING OF IMBEDDABLE (GRAPHS

We are now ready to settle problem P3 of actually imbedding an imbeddable graph
@ in the plane, assuming that certain edges have already been removed to make G the
remaining imbeddable part if necessary. For this purpose we shall first prove a con-
verse of Lemma 8 of the preceding section, wiz.

Lemma 9. Let (Nrs) be a set of numbers in Z2 with Nrs=Nsr+1 corresponding
to all admissible pairs of edges (Er, Es) with same teil which satisfies the relations

Nrssk Nrt + Nst % Nsr + Nir % Nts =1 (Nrst)

corresponding to all triples of edges (Er, Es, Et) with common tails. Then there is an
immersion g of G such that the rotation numbers under g coincide with the correspond-
ing numbers N, i.e.
Rrs(g) = Nrs

for all admissible pairs of edges (Er, Es) of G.

Proof. Let us consider the simple case that G consists of an edge OVm and a fi-
nite set of edges

Er,Es, -+, Iit,--+, (E)

all having Vm as common end. The tree T is then the same as G and O will be chosen
as the root. 1If the number n of the edges in (E) is n=3, then it is clear by the prece-
ding section that such immersion (in fact an imbedding) g of G=T in the plane exists.
We shall now proceed to prove this in general by induction on =.

Suppose thus the number of edges in (E) is #>8. By induction there is an im-
. b4 N
mersion g’ of G=T guch that for all pairs of edges (Ep, Eq) chosen from the set
Bs, -, Et, - (E)
we have
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Epqe(g) = Npg.

Suppose that in turning around the common end ¢'Vm in a counter-clockwise sense
on starting from ¢’Pm (Pm=0Vm) we shall pass in succession

e, g'Es, -, gEp,g'Eq, -, g'Et, -+ -.
Suppose that among the numbers

<o+ Nsy, -, Npr,Ngr,---, Ntr, - - -
in this order the first non-zero number is Ngr so that

+++=Nsr= -+ = Npr =0, while Ngr<>0.

The equation in N corresponding to a triple of indices (¢, g, ) with E¢ in the partial
set of edges after Eq in the above order is given by

Nrq# Nrt + Ngt % Ngr 4+ Nir % Ntg = 1.
As
Ngt = Rqi(¢9’) = 0, Nrq = Ngr +1 =0, Ntg= Rig(g’) =1
we get
Ntr =1, or Nrt = 0.

Modify now the immersion g’ to an immersion g such that g will be the same as g’ on
Pm and on all edges in (E’) while gEr will be brought to a position between gEp=
9’'Ep and gEg—=g’Eq. Then we see that for any edge Es in the partial set of edges be-
fore Ep in the above order and any edge Et in the partial set of edges after Egq in
that order,

Rrs(g) =1 = Nrs, Brt(g) = 0= Nrt,
Rrp(g) =1= Nrp, Rrg(g) =0 = Nrg.

For the other number R’s we have say Rst(g)=Rst(¢’)=Nst. Hence g will have its
rotation numbers all equal to the corresponding numbers N. The induction is thus
completed and the lemma is proved for the above special graph G.

For the general graph we shall proceed in just the same manner with the modifi-
cation that each time we bring a certain edge Er to a new position, we shall bring the
whole sub-tree T to such new position at the same time. Arrange now the vertices
different from O in a definite order and treat each vertex in turn as for the special
graph above, with the above modification taken into due account. The rotation num-
bers of the new immersion for admissible pairs of cdges with common tail at that vertex
will be identical with the corresponding numbers N. Remark that the interchanges at
one vertex will not affect the results of interchanges at other vertices. Hence in pro-
ceedintg successively we shall finally arrive at a T-immersion with the desired property.
The lemma is thus completely proved.

‘We have now the following

Fundamental Theorem V. If corresponding to o T-immersion f of G the
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fundamental systems of equation (Xf) and (Qf) taken together possess in Z2 a solu-
tion

(Xrs) = (Ars)

with Ars=Asr corresponding to oll gdmissible pairs of edges (Er, Es) with common
tails, then there is an 1mbedding g of G as a whole in the plane with

Rrs(g) = Ars + Rrs(f)
for all such pairs (Er, Es).
Proof. Set for each admissible pair of edges (Er, Es)
Nrs = Ars + Rrs(f) (=Nsr +1).

Then by the hypothesis of the theorem the set of numbers Nrs will satisfy all relations
of the form (Nrst) corresponding to triple of edges (Er, Es, Et) with common tails.
By Lemma 9 above there will be some T-immersion g of G with

Rrs(g) = Nrs
for all admissible pairs (Er, Es).

By Theorem 7 of Sect. 6, the fundamental system of equations (Xg) corresponding
to ¢ will have now a solution given by

Xrs= Ars + Wrs,
where
Wrs = Wrs(f,g) = Brs(f) + Brs(g).
Consequently (Xg) will have a solution identical to O:
Xrs=0

for all admissible pairs of edges (Er, Es). It follows from Fundamental Theorem II’
in Sect. 5 that for any pair of external edges (Ee, Eb) in D2 we should have

Ieb =0
or
Int(gEa, gEb) = 0.
Arrange now all the external edges of @ in a definite order, say
Eay---,Eb, -+, Ec,Ed, ---. (B)

Our aim is to extend the part of the 7-immersion g restricted to T successively to the
external edges of (E) to get each time an imbedding of T with successively adjoined
edges as a whole. The final imbedding achieved in this way will then be a required
imbedding of G in the plane as a whole.

Such an extension to Ee is trivial. Suppose that

Ba, -+, Eb, -+, B¢ ()

in the ordered set (E) have been extended so that we have an imbedding g’ of G'=
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T+ (B’ in the plane with g’ /T identical to g. Let us try to extend ¢’ to an imbedding*
including the next new edge Ed in the set (E). Consider any external edge disjoint
from Ed in (E"), say Eb. By Lemma 6 of Sect. 5, we have for the pair (Eb, Ed) in
D2

Int (¢'Eb, g’'Ed) = Int (¢Eb,gEd) = 0.
This means that if the ends of Ed are Vi and Vj, then we should have
Ord(g'Vi,g'Ch) = Ord(g'Vj,g'Ch).

Consequently ¢’Ve and g'Vj will lie in the same region in the plane separated by g'7T,
g'Xa, .. , g’Ec of ¢’G". We may thus join ¢g’Vi and ¢'Vj by a simple broken line not
mezeting g’G’ except at the two ends. We extend than g" to Ed by taking this broken
line to be the image g"Ed. This achieves the induction and proves the thorem.

9. PROCEDURE oF SOLVING ProBLEMs P1---3 ¥orR A GRAPH

From the developments of the last sections it is now clear how to solve problems
P1—3 for a given graph G. The procedure will be as follows.

Step 1. Choose an erbitrary tree T of G as well as o root 0. Modifications may
be made according to Sect. 5 if required.

Step 2. Take an arbitrary T-immersion [ of G.

Step. 3. Form the fundamental system of equations (Xf) successively and solve in
the way as shown in Sect. 5. We get then o set DEL of edges to be removed from @
to render the rematning graph G’ imbeddable. Denote the resiriction of f to G by
f’. As no ambiguity can occur we shall denote G7 and f’ again by G end f. The set of
solutions of corresponding fundamentol equations (Xf) will be denoted by (S).

Step 4. Form the system of quadratic equations (Qf) for G (ie. (Qf') for G')
und verify whether each solution in the set (8) s also a solution of (Qf) or not. By Fun-
damental Theorem IIT of Sect. 6, such solutions mecessarily exist.

Step 5. For any solution of (Xf) and (Qf) taken together, modify /T to a T-
mmmersion g of G as in Sect. 8. Such a T-immersion g may then be extended to get an
wmbedding of G in the plane as @ whole as shown in the Fundamental Theorem IV of
Sect. 8.

Remark. By introducing new unknowns and new system of equations it can be
shown that the totality of all possible imbeddings of the imbeddable graph essentially
different from each other will be obtained in correspondence with the solutions of the
three systems of equations taken altogether. This gives the solution of problem P4 as
stated in Sect. 1. We shall not however enter into this and will leave the details to the
original paper [WU4].
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1. InTrRODUCTION

The present paper is the first of a series of papers dealing with a mechanization method
of geometry and related domains, with emphasis on its application aspects. Tt bears the same
title as a short paper [WU6] presented to Kuxue Tonghao last year bur with more details
and also more materials. [t is mainly the content of part of lectures given by the auther for
a course on mechanical theorem proving in the Graduate School of Academia Sinica during
the September-December semester, 1984.

To begin with, let us first recall briefly some fundamental notions and facts that origi-
nated from works of J. F. Ritt, cf. [R1, 2], Let a finite set of polynomials (abbr. pols
and polset) PS in variables X1, -+, Xn with coefficients in a basic field K of characteristic
0 be given. The method of Ritt then permits to deduce from it by rational operations alone
a polset CHS of special type, called the CHARACTERISTIC SET (abbr. CHAR-SET) of
PS. In the case that PS is not CONTRADICTORY or CHS does not consist of a single

pol which is a non-zero constant of K, then we can divide the varisbles X{ inte two parts
Ul, ---,Ud, Y1, -+, Ye with d 4+ e = n such that CHS will be of the forms

Cl=11%YIAM] + lower degree terms in Y1,
C2=12%Y2AM2 + lower degree terms in Y2,
Ce=1¢xYeAMe + lower degree terms in Ye,

In the expressions the coefficients of powers of Yj in Cj are all pols in Ul, -, Ud,
Y1, -+, Y{ alone with y =7 —~ 1, Moreover, all the coefficients are REDUCED with
respect to the subset of preceding Cl, ---, C;' in the sense that for each Yi with i < j
there are only terms of degree << M7, In particular the cocfficients [7 of the leading terms
of the (i's are called INITIALS and play a particularly important role in the theory of Ritt.
For any polset PS and pol G let us denote the totality of zeros of PS in any arbitrary cx-
tension field of K for which G { ) 0 by Zero (PS/G). For G =1 we write simply Zero
(PS) for Zero (PS/1). Then the following two formulse constitute what we have called

Received February 4, 1986,
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the Ritt Well-Ordering Principle:
Zero (CHS/]) — Zero (PS)~Zero (CHS), (1)
Zero (PS) = Zero (CHS]J) + SUMi Zero (PSi). (2)

In the formulae CHS 1s the char-set of PS, J is the product of all initials I7 of pols in
CHS and PSi is the enlarged set of PS with I adjoined to it for each 7, We use here
and here after the notations — and >~ to mean “is contained in” and “contains™ respectively.
‘We remark in passing that for practical purposes we may understand CHS to be in some
broader sense with REDUCED in less stringerit conditions asdefined above. The formulae
(1), (2) will, however, remain to be true. Furthermore, we have a more general formula
describing the structure of Zero (PS/G) which we have called the ZERO DECOMPOSITION
THEOREM and can be put in the tollowing form:

Zero(PS/G) = SUM;j Zero (IRRj/G7y)., (3)

Note that the right-hand side may eventuslly be empty, which means in this crse that G
vanishes for all zeros of PS or Zero(PS) < Zero (G), In the formula each IRRj is a
polset of similar forms as CHS (the U’s are naturally different for differént j°s) and is mo-
reover IRREDUCIBLE in some sense which we shall not enter. Each Gj is also some pol
with non-zero REMAINDER with respect to I RRj which we shall not enter either. What is
important to us is that PS (and G) being given, the right-hand side of (1)—(3) will be
completely determined in 2 mechanical manner so that it can be accordingly programmed on
computers. For more. details we refer to [WU3, 4,5, 7],

The formulae (1)—(3) and their natural gencralizations to the differential case consti-
tute the basis of our mechanization method of (elementary and differential) geometry and
related domains. The method has diverse applications in a variety of directions, besides solu-
tion of arbitrary systems of algebraic equations and mechanical theorem-proving and theorem-
discovering of geometries as we have explained in various occasions, As one of further ap-
plications, our method permits to determine automatically unknown relations between various
geometry cntities in a quite simple manner. To serve as examples of illustration, the pre-
sent paper will deal with relations involving distances, areas and volumes in either euclidean
or non-cuclidean spaces. The micthod is however a general oné and may be explained as fol-
lows.

To fix the ideas, let a, &, ¢ be, say three known magnitudes and x be a magnitude al-
ready known to be compléetely determined by a, b, ¢ without knowing however the exact
relation which is to be found. Supposc that by given hypothesis x is connected by polyno-
mial relations with a, 4, ¢ through certain other magnitudes d, ¢, etc. Denote now the
known magnitudes a,b,c by X1,X2,X3 and the unknown magnitude x by X4, Denote the
other magnitudes d, ¢, ete. by X5,X6, etc. The given relations will then form a polset
PS consisting of pols in the variables X7, Let us form the char-set CHS of PS, By (1)
any zero of PS is necessarily a zero of CHS, The first pol C1 of the pols CHS is therefore
one in X1, ---, X4 alone whose vanishing will. give the exact relation to be sought for,

2. Tue QiN-HeroN Formura oF Area oF o TRIANGLE

The simplest example is perhaps the determination of the area of a triangle in terms of
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the lengths of its three sides 4, 4, ¢, Let s= (a4 b+ ¢)/2. Then it is well-known
that the area will be given by

Area N2 =s% (s —a) %) (s — B)x (s — ¢), 4)

In present-day geometry this formula (4) is usually attributed to Heron, whose life ranged,
according to historians of mathematics, from 2¢ B. C, to 10c A, D. In the famous books
of Heath there is a proof of this Heron’s formula, see [H], pp. 87—88. The proof is how-
ever so intricate and unnatural that the present author cannot refrain from suspecting that it
was only supplemented, in following the euclidean pattern of proofs, by someone much later
than the actual discovery of the formula in whatever manner and in whatever time.

On the other hand, in the Chinese classic Shu Shu Jiu Zhang, or Mathematical Treatise
in Nine Sections, 1247, of Qin Jiushao in the Sung Dynasty, there appeared a formula
which may be described as follows,

Let the three sides of a triangle be given by gr(=great), mid(=middle) and sm (=
small), then the area of the triangle will be given by

Area N2 = [smA2%grA2 — (grA2 +smA2 — midA2)A21/4. (5)

Clearly this is equivalent to (4), but is expressed in 2 form quite involved and is somewhat
mysterious at first appearance, The author of the above classic gave no indication of its sour-
ce or any idea of proof, However, based on the tradition of Chinese geometry entirely
different from the tradition of Euclid, the author has constructed a proof of (5) which
has the peculier character of arriving quite naturally at this peculier formula. It is therefore
not unreasonable to guess that this is just the same proof which was known to our ancestors.
Now it is a simple matter to transform (5) into the neat elegant form (4). But once (4)
is known, it would be completely insensible to turn it into a form so ugly in looking like
(5). For this reason the present author has drawn the conclusion that Qin (or someone in
earlier dates) discovered formula (5) at least independently of Heron. For more details cf.
{Wus8],

Return now to our mechanization method in dealing with the above,

PROB 1. Dectermine the area of a triangle in terms of its three sides.
For the determination let us choose for the sake of simplicity of computations the coor
dinate system so that the three vertices of the triangle will be given by

a0 = (0,0), al = (x5,0), a2 = (26, x7).
Let the lengths of the three sides be
alal = xl, alal = x2, ala2 = x3,
and the area be
area = x4,

Note that the order of the variables X7 is chosen in accordance with the principle stated in
Sect. 1. The hypothesis polset PS consists of then 4 pols given by

Pl = +2%x4 — 1 kx3%kx7,
p2 = +1%x5—1%xx},
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P3=+1%2x2AN2 — 1x26 A2 — 1%x7A2,
P4 =+1%x3A2 —1%kx6 A2 —1%25A2+ 2%x6%ka5 — 1kx7A\2,
The char-set CHS is readily found to consist of 4 pols of which the first one is given by
cl = F2%2l A2%x2A2 — 1x23A4+ 2% x2A2%x3A\2
+ 2k xlA2%x3A2 — 1k 22 A4—1% 214 — 16k x4 A2,

The relation ¢1 == 0 is just the Qin-Heron formula to be sought for.

3, FurtHer ProBrems 1N EucLipeaN Space

We give some further examples about distances, areas, volumes, ect. in 2 euclidean plane
or space in what follows. First of all, the problem about the area of a triangle as given in
Sect. 2 can be naturally extended to the case of the volume of a tetrahedron in a euclidean
space.  We lay down thus the following

PROB 2. Determine the volume of 2 tetrahedron T in 2 euclidean space in terms of
its 6 edges.

To solve this problem let us take coordinates so that the 4 vertices of the tetrahedron
T are given by

a0 = (0,0,0), al = (x8,0,0),
a2 = (x9, 210, 0),a3 = (x11, 212, #13), (6)
Set the lengths of the edges to be
alal = x1, a0a2 = x2, a0a3 = x3, ala2 = x4, alad = x5, a2a3 = 26, (7)

Denote the volume of T by x7, ‘Then the problem is equivalent to finding a relation be-
tween x7 and xl, -+, x6,

We remark in passing that, following the- general principle as described in Sect, 1,
have chosen the first 6 variables x to be those supposed known and the next one x7 the volume
to be determined. This is indeed the crucial point in applying our mechanization method,

we

The conditions implied by the problem are now pl =10, ---, p7 =0 with the p’s
given below:

Pl=+6%x7 4+ 1 kx8xrl0%xl3,

P2 = +1%kx8 — Lk xl,

P3 = 4+1%x2A2 — 1%x9A2 — Ixxl10A2,

Ph= 412302 — LkxlIAN2 — 1kxl2A2 — Ik xl3A2,

PS =+l x4 N2 — I kxOAN2 — Ik 28A2 + 2% 29 % x8 — 1k x10A 2,

P6=yt1kaSA2 — Iokxll A2 — I x8A2 4 2% xll%x8 — 1k xI2A2
— Ixx13A2,

P7 = +1%ka6 N2 — Ikxll A2 —1%29A2 4 2%xll k29 — 1kxl12A\2
— 1k x10A2 4+ 2%212%x10 —IxxI3A2,
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The corresponding char-set is readily found by our program to be consisting of pols c1,- - -

>
¢7 as shown below:

cl=—1kxd4N2% 23 N4+ 1%kx2A2% 24 AN2%x5A\N2 — I k22 A4 %252
F 1kxl A2% 22 AN2%25A2—1%x2\2%25\4
— 1kxl A2%x2 N2% x4 N2+ 1%k 22 \N2% 23 A\2% x5\ 2
1 xl A2% x4 A2%23A2—1k x4 Adxx3IN2
F 1k x2AN2% x4 AN2% 232 — 1x%xI A2%x3A2%25A2
— 1xkxl A4k26AN2—1%xx1A2%26\4
+ 1kl A2%x3A2%x6 N2+ 1xxl A2k 22 A2% 262
— Tk xd A2k xSAZ%26 A2+ 1% 22 \N2%x5A2% 26\ 2
+ 12l A2%25A2Z%x6 A2+ 1 kx4 AN2%kx3A2% 262
—1kx2AN2% 23 AN2% 26 A2+ 12l A2k x4 A2%xx6\2
+ 1k x4 A2%x3A2%x5N2—144%x7\2,
c2=+1%x8 — 1xxl,
3= —1%x4 N2+ 1%22AN2+ 1 %21 A2 — 2%x]l %29,
cd=+1%x2AN2 —1%x9N2 — 1%x10A2,
c5=—1%x5A2+ 1%x2x3A\2+ 1%2xI\2— 2%xl%xIl,

6= —1%x6 N2+ 1%x3AN2+ 1kx9N2 — 2kxllkx9 — 2% x12%x10
+ 1xx10A 2,

7= F+6%x7 + 1xxl k2l0% 13,

Remark that the char-set given here is in some broader sense as indicated in Sect. 1.
The equation ¢l == 0 may now be put in the form
144 % 27 N2 = —SUMI(2x1A2%x6 A4 + 26 A 2% x1 A 4)
+ SUM2(x2A 2% xl A2%x5A2)
—SUM3(x1A2%x2 A 2%k x4 \2), (8)
Tn the formula the SUM’ are summations to be extended over respective ranges as below:
SUMI over 3 pairs of opposite edges (x1, x6), (x2, x5), (x3, x4),
SUM2 over 12 triples of non-closed edges like (x2, x1, x5),
SUM3 over 4 triples of edges forming a triangle like (x1, x2, x4),

Fquation (8) gives now the expression of the volume x7 in terms of the edgesxl, : -+, x6
as required.

PROB 3. Find the relation between the 6 distances a0al, <+, a2a3 of the 4 points
a0, al, a2, a3 in a euclidean plane.

In zact if the three distances a0al, a0a2, ala2 are known, then the triangle a0ala2
is already rigid in form. With know distances 2043 and ala3 there are then just two po-
sitions for a3 to take and then the distance 2243 will be determined. Form this we see that
the relation to be sought for should be quadratic in @243 A2 or quartic in 4243 and hence
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also quartic in cach of the 6 distances involved., This can be readily verified by the compu-,
ter 45 before.

Let us take thus coordinates so that
a0 = (0,0), al = (x8,0), a2 = (29, x10), a3 = (x11, x12),

Set the 6 distances as in (7). Then the hypothesis polset will be the same as 2, -, #7in
PROB 2 in setting 13 =0, The first pol ¢l of the char-set should be a pol in x1,---,

x6 alone which is readily seen to be
¢l = —SUMI + SUM2 — SUM3, 9)

in which the SUM’s are just the same expressions as occured on the right-hand side of (8).
The relation to be found is then given by ¢l = 0 which corresponds to the fact that the
volume of the tetrahedron @0ale243 is this time 0,

We may ask the same question as PROBs 2, 3 about the volumes of a 4-simplex in a
4-dimensional euclidean space R4, of a 5-simplex in R5, and the relation between the dis-
tances of any 5 points in R3, or that of any 6 points in R4, and even those for a eucli-
dean space of arbitrary but fixed dimension, One can solve these problems in just the same
manner as above so far the dimension of the euclidean space is fixed in advance and so far
the limitations of the memory space and running time of a computer permit to carry out such
a computation, On the other hand, the determination of such a formula for a general di-
mension n is entirely out of the reach of our mechanization method, Remark that such for-
mulae have already been discovered by Cayley et al by ingenious manipulations of determi-
nants. This shows that, although the use of computers furnishes a powerful tool in mathe-

matical studies, we cannot solely rely upon it without resort to usual methods of mathematics.

As a further example let us consider the following interesting problem raised by Gauss
in a short paper (cf, [G]), viz,

PROB 4. Determine the area of a planar pentagon 2041424344 in terms of the areas
of 5 triangles with vertices taken from a0 -, a4

Gauss pre-supposed in fact that the pentagon is a convex one and the 5 triangles conside-
red are

a0ala2, ala2a3, a2a3a4, a3a4a0, a4alal, (10)

To deal with this problem by means of our method let us choose oblique coordinates such
that

a0 = (0,0), al = (x21,0), a2 = (x22,223), a3 = (224, x25),
a4 = (0, x26),

There are 10 triangles in all which can be formed form the 5 vertices of the pentagon. Denote

the areasxof the above 5 triangles by x1, -+-, x5 in that order. Denote the areas of the
other 5, viz.

ala2a3, ala3a4, a2a4a0, a3a0al, adala2

by x11,-++,x15 in that order. We remark that by the area of a triangle the order of the
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vertices or the orientation of the triangle has been taken into account here.  Similarly the
area of the oriented pentagon 2041222344 with vertices given in that order will be denoted
by #10, For the various areas we have then relations 1 =0, - -+, 15 = 0 with the pols
P given below:

Pl =+2%xl — Ixx21%x23 (area(a0ala2) = x1),
P2 =+2%x2 — 1 %221 %223 — 1%xx22%225 + 1 %x23%x24
+ 1%k 221 %225 (area(ala2a3) = x2),
P3 = +2%x3 — 1% x22%x25 — 1% x24 %226 + 1 % x223% x26
4+ 1%k 223 % x24 (area{a2a344) = x3),
pPé = +2%xx4 — 1 %224 %226 (area(a3a4a0) = 24),
PS5 = +2% x5 — 1% x21 % x26 (area(a4a0al) = x5),
P6 = +1%x10 — Ixkxl — 1xxll — 1%x4 (area(a0ala2alad)
= x10 == area(a0ala2) + area(a0a2a3) + area(a0a3ad)),
P7 = +1%x10 — 1% x2 — 1%xxl2 — 1 %25 (area(a0ala2a3ad)
= area(ala2a3) + area(ala3a4) + area(alada0)),
P8 = +1%x10 — 1%x3 — Ixxl3 — 1kxl (area(a0ala2a3a4)
= area(@Za3a4) + area(a2a440) + area(a2a0al)),
P9 = +1%x10 —1kxd — 1xxl4 — 1kx2 (area(@0ala2a3ad)
= area(a3a0al) + area(a3a4a0) + area(a3ala2)),
P10 = +1%x10 — 1kx5 — Ikxl5 — I %x3 (area(a0alaZa3ad)
= area(a4a0al) + area(adala2) 4 area(a4a2a3)),
pll = +2%xll — 1% x22% 225 + 1 % x23 % x24 (area(a0a2243)
= rll1),
P12 = +2%x12 — 1k 221 %k 25 — 1 )k 224 %k 226
+ Ik x2l k226 (area(ala3ad) = %12),
P13 = +2%xx13 — 1% 222% 226 (area(a24440) = x13),
pla = +2% x14 — 1k 221 %k 225 (area(a3alal) = x14),
P15 = +2% x15 — 1%k 221 % 223 — 1 %k x22 %k 226
+ 1% 221 %226 (area(a4ala2) = x15),

Suppose that we are interested as in the original work of Gauss, in the determination
of the arca x10 of the pentagon in terms of the areas of the 5 triangles in the set (10).
Then we may take our polset PS to be consisting of the 7 pols #1, -+, p5, p6 and pI1,
We readily find that the first pol c1 of the char-set is given by

— 1kxlOkalskxdskxd+ Iraxlkxdka2kx3 + Ukl kx4 A2%x3
4
— 1kxlOkadSkx2%ka3—1 % x]%kx5% 22 %x3

H IkxdkaSkax2kad -+ IkaSka2A2%x3 4+ 1kxl0%al % x5% a3
—1kxlkrd kaeSkaxd 4+ 1 kxI0A2% x5 %22
— Ikl a5k 22 A2 — I kxlOkaxdskaSka2—1%kxl AN2% x5 %22
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F 1kxlskaSk2A2 4+ 1xxl0A2%al kx4 — 1xxlOkal A2%24
—1lkxlOkxl kx4 N2+ 1kl %24 A2%x5 + 1kxl A2k x4%x2
+ 1xxl A2%kx4%ka5—1kxl0kxl kxdskx2 — 1k x 10N 2% 2] % x5
G+ 1%x10%kxl A2% 25 — 1 k2105 A\2% 22 + Ikxl ka5 A\2%a2
+ Ikadka5A2% 22 4+ 1kxl0kal kx5A2 — 1xxl A2%aSA2
—1xxlkxdxa5A2,

Now this pol ¢1, considered as one in x10, has its initial

I1=+1xa2%25+ Ixalkxd — Ikxlkas

as non-trivial content, Removing this content from ¢l = 0 which is equivalent to disregar-
ding certain degeneracy cases, we get the required relation
x1I0A2 — (21 4+ 22 + 23 + 24 + 25) ¥'x10

+ (xl1%x2 + x2% 23 + 2324 + x4 %25 + 25k x1) =0, (11)

This is just the formula found by Gauss by an ingenious method, We remark however that,

while Gauss had to suppose the pentagon to be a convex one, our method has no such restric-

tions and works for all cases, even for degenerate pentagons for which some of the vertices

may be collinear, Moreover, if we are interested in the expression of the area of the penta-

gon in terms of the arcas of any other 5 of the 10 triangles, we may just choose the due
polset from the 15 pols given above and treat in the same manner as above.

Let us consider now a problem of slightly different character, viz.

PROB 5. Determine the ex-radius of the circumscribing sphere S of a tetrahedron in
terms of its 6 edges.

Let us take the coordinates so that the 4 vertices and the 6 edges of the tetrahedron will
be given as in (6), (7). Let the ex-center of § be (214, 215, x16) and the ex-radius
be x7, Then we have to consider the polset PS consisting of the following 10 pols with the
first 6 ones the same as p2, «++, P7 in the polset of PROB 2, while the remaining 4 are
given by

P7 = -+1xx7N2 —1%2x14 A2 — 1%xI5A2 —1xx16A2,
P8 = +1%x7AN2 — 1%x14 A2 —1%x8AN2+ 2%xld4x28 — 1xxI5A2
— Ixx16A2,
PO = +1x%x7AN2 —1kxld N2 —1%xIAN2+ 221429 — 1%k2xI5A2
— 1xxl0OAN2+ 2%k x15% 210 — 1%xl6A2,
P10= +1%2x7A\N2 — 1% 214 N2 — 1%x11A2 4+ 2xxldkall — 1xxI5A2
— 1% 212 A2+ 2% x15%xl2 — 1%xl6 A2 — 1%xI3A2
+ 2% x16%x13,
The first ppl c1 of the char-ser which furnishes the solution is found to be given by
A N2k 3NAKATN2 + ARk 2N 2K AN 2K IS A2k 2T 2
— 42 NGk aSAN2R2TAN2Z + 4kl A2% 22 AN2% x5 A2k 27N\ 2
— 4k x2 N2 % xS ANdxxTAN2 — Akl A2k 22 A2 % x4 N2k 27N\ 2
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FARaZA2ZRAIN2R SN2 2T A2

+ 4kl A2k x4 A2k 23N2% 272

— 4% x4 N4k a3AN2%2TA2 4+ 4% 22 A2k x4 AN2% 23N 2% 27 N\2
—4xkxlA2%23A\2%25A2%x7A2

— 4%kl NdR26AN2% 27T AN2—4 %2l AN2%x6 N4 %27 \2
+ A%l AN2%kx3 N2 %26 N2%xT\2

+ 4% xl A2%x2AN2%x6 A2k 27\2

— 4k x4 N2k SN2k 26 A2x 27\ 2

F 4%k x2AN2%xSAN2%2x6\N2%k27 N2

+ 4%kl A2Z%25A2% 26 N2%x7A\2

+4%xxd A2k a3 A\N2% 26 N2k 27 \2

— 4% 22 AN2%x3N2%kx6 N2k 27N\2

+ 4%kl A2% x4 A2 %26 \N2%x2x7\2

+4xxd N2k x3 N2k a5 N2k 27 A2

— 2% xIA2%x2A2%x5A2%x6 N2+ 1 kx4 N4kx3 A4
+ Ikl Adskx6 A4 — 2% 22 N\N2%x24 N2k 23 AN2%xS5A\2
— 2% 2l A2% x4 A2% 23 AN2%xx6 A2+ 1 k22 \Nd%x25N\4,

In comparison with the pol ¢1 of PROB 2, we see readily that the coefficient of 7 A2 in
the present ¢l is equal to 4% 144 %« VOL A2, where VOL is the volume of the tetrahedron.
Denote the diameter of the circumscribing sphere by DIAM and let us set

§S=(4+ B+ C)/2,
with
A=xl%x6, B=2x2%25, C=x3%x4 (12)

corresponding to the 3 pairs of opposite edges x1, 263 x2, x55 and %3, x4, Then the pre-

sent relation can be put in the following neat form, viz.
9%k VOLA2%DIAMA2Z =S%(S—A)*x(S— B)*x(S— C). (13)

The author is at a loss where to find this formula in the literature of pasttimes, Note the
connection of the right-hand side of (13) with the Ptolemy formula about 4 points on the

same circle,

4. ProBLeMs 1N HypersorLic PLANE or Sepace

Our mechanization method may also be applied to same problems in other kinds of geo-
metries.  To fix the ideas, let us consider the case of plane hyperbolic geometry for which
Beltragni coordinates will be used in what follows. We remark that in studies of non-euc-
lidean geometries transcendental functions arc intensively used. On the other hand our me-
thod has to deal solcly with polynomials of pure ALGEBRAIC character. This is however not
an unsurmountable barrier to the applications of our method since we are dealing actually

with ALGEBRAIC relations between the TRANSCENDENTAL functions. It has been ex-
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plained in the book [WU3], Chap 6 and in the earliest paper about mechanical theorem pro-
ving [WU1] that there are already some examples illustrating how we can deal with suth
problems involving transcendental functions. In what follows one can see again how this is
done.

PROB 6. Find the relation between the 6 distances of 4 points 40,--+,43 in a hy-
perbolic plane.

Let us take the coodinate system such that the 4 points are given in Beltrami coordinates
by
a0 =(0,0), al = (x7,0), a2 = (x8, x9), a3 = (x10, x11),
Set also for the 6 distances:
x1 = cosh 40al, x2 = cosh 2042, x3 = cosh 4043,
x4 == cosh ala2, x5 = cosh ala3, x6 = cosh 4243,
We have then a polset as given below:
pPl=+1%xl A2 —1xxlA2%2x7A2 —1,
P2 = F1%kx2 N2 —1%x2AN2%28 A2 —1%kx2A2%x9A2 — 1,
P3=F1%xx3AN2 —1%23A2%x10A2 —1%kx3A2%xl1A2—1,
Pd=4+1xxd — I kxlxx2 + Ikalkr2kx7%xx8,
PS5 = +1%2x5 —1xkaxlxx3d + Ikaxlska3kax7xx10,
P6=+1%kx6 —1xkx2%x3 + 1kx2% x23%x8% 210
+ Lk x2% x3% x9% x11,
The first pol ¢l of the char-set is given by
+2%kxlkxdkx3%kx6 4+ 1%kx6 N2 —1k24 AN2%23A2 — 122 \N2%25A2
H 2kl kx2%k x5k x6 + Lka3AN2 + 1%a5SA2 + 2kxd sk x2% x5 %23
— 2k xlkxTk a3 — 2%k x4k a5k a6—1 % xI A2Kx6 A2 — 2% x2% x3% x6
— 2% xlkxdka2 + 1x22A2 4+ 1%x4A2+ k2l A2 —1, (14)
The equation ¢l = 0 is then the relation to be sought for.
PROB 7. Determine the area of a triangle in the hyperbolic plane in terms of its 3
sides.

To solve the problem let us take a coordinate system with the 3 vertices of the trian-
gle given in Beltrami coordinates as

a0 = (0,0), al = (x15,0), a2 = (x16,x17),
Let 4 be the area of the triangle so that we have
pi — A =a0+ al + a2, (15)
in which the a’s denote also the 3 internal angles of the triangle. Set now
xl = cosh a0al, x2 = cosh 4042, x3 = cosh ala2, x4 = cosd,

x21 = cosal, x22 = sina0, x23 = cosal, x24 = sinal,
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%25 = cosa2, x26 = sina2,
Then we have a polset p1, -+, P12 below:
Pl=+1%kxlAN2—1%2x1A2%xI5A2—1,
P2 =+1%x2AN2 — 1% 22 A2% 216 N2 — 1% x2\2%x17A\2 — 1,
P3=F1%xlxx2 —1kaxlka2*%xl5%xl6 — 1%23,
P4 =+1%x18AN2 —1%x16 A2~ 1%xx17A2,
P5=+1%x19A2 — 1% xl7A2 — 1k 21 A2%xI5A2 — 1% 21 A2% 2162
+2%x1A2*%x15% x16,
P6 = +1%xx18% 221 — 1% x16,
P7 = +1%x19% 223 — 1%k x1 %2154+ 1*kxl*kx16,
P = 4+ 1%x18%x22 — 1xx17,
P9 = +1%x19% 224 — 1%xx17,
P10 = +1%x18%k x19% 225— 1k xl % x17A2 + Ik xl sk xI5xx16— 1k xlkx16A2,
Pll = +1%x2% 218% 226 — 1k xl % x15% x24,
P12 = -F 1%k x21% 224 % 226 + 1% x22% x23% 226 + 1% x22% x24 % x25
— 1%k x2] % x23% 25—1 % x4,

The first pol ¢1 of the char-set is found to be one of 43 terms which may be considered
as a pol in x4 of degree 1 with coefficients themselves pols in x1, x2, x3, as shown below:
— 1k x2AN2%x3 4+ Ikl kx2 A3—2%xIA2%x2A2% 234+ 3% xl k2% x3A2 4+ -
—1%x3AN3 4+ 1kl A3%22 —Ixkxl%x2—1k2xl A2%x34+1%k23—1%k2x2A\3+ ---
— 1k xl A2%x2 4+ 1%kx2 + 3kl % x2A2%x3 — 2%k xl A2%x2%23A2
— Ik x2%x3AN2+ 1kaxlxx3A3 4+ Ikxl A3%ke3 — Ilkxlkx3 — 1kxl A3
4+ 1kxl 4+ 1%x2A\3%23 + ---
— 2k xl ka2 N2k x3N2 — 1%a2%x3 — Lkl %22 A2 4+ 3%xl A2% 2% x3 + ---
—1kxlkx3AN2+ 1kax2%x3A3 4+ Ikl A2k x2A2% 232+ 1kxlA2%x2A\2
G+ =1k xl A3k 2% 23 — Ikal kx2%x3 — Ikxlkx2%x3A3
+ Ik x2AN2%x3A2+ -+
—1xxlkx2A3%x3 + 1kl A2%x3A2+ 1kxl A2% x4
— 1kl A2k x3A2% x4 4 - -
— 1% a2 N2% 23N 2% x4 — 1%l AN2% 22 N2% x4 + 1k x2 AN 2% x4 — 1% x4
G 1k x3A2% x4+ 1kl A2k 22\ 2% 23N\ 2% x4,
After the removal of the content (x1 — 1)% (%2 — 1) (x3 — 1) we get a pol ¢1 of 18
terms only, viz,
el = +3%x2%xl% x4+ 3k ax2%xd -+ 3kaxlkxd + 3% xd 4+ 2% xl kx4
+ 2% x4+ 1kxd+4—1%kx3N2+ 3%kx2%kx] — 1%x3%x2
— 1k x3%kxl —1%kx3 —1xx2 N2 —Txa2%x]l —1%x2 — I%xIA2
— ¥ xl,
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We remark that this equation can be put in the form
(xl +1)%(x2+ 1) (23 4+ 1)% (24 — 1)
= —2%xl%x2%x3+ xIAN2+ x2AN2+ x23AN2—1, (16)
Replacing x1, x2, 23, x4 by cosh a0al, cosh 4042, cosh ala2 and cos 4 respectively we

see that this equation is also equivalent to 2 form as given in Ex. 27 of [GR], p. 361.

PROB 8. Determine the volume V of a tetrahedron in the hyperbolic space in terms
of its 6 edges.

This is a difficult problem which seems to be not yet completley settled. In fact, par-
tial results known involve already such transcendental functions called Lobachevsky functions
whose properties are yet not quite clear, cf. e. g. [MIL]. Moreover, Dehn has pointed out
that no expressions like (15) involving dihedral angles, etc. of the tetrahedron can exist, cf.
e. g. [KL], p. 203, Now a comparison of (8) and (9) shows that it would be legitimate,
taking into account PROB 6, to conjecture that the final relation to be found is of the form

A% Te(V) = B,
in which Tr ia a certain transcendental function, 4 and B are certain pols in xl,:--, 26,
with x1 = cosha0al, etc. (the a’s being the vertices of the tetrahedron), and B is given
by the pol in (14). We hope that some day we may return to this problem again.
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Recent Studies of the
History of Chinese Mathematics

WU WEN-TSUN

1. Introduction. We shall restrict ourselves to the study of Chinese math-
ematics in ancient times, viz., from remote ancient times up to the fourteenth
century. In recent years such studies were vigorously pursued both in China and
in foreign countries. Much deeper understandings have since been gained about
what Chinese ancient mathematics really was. The author will freely use their
results but will be solely responsible for all points of view expressed in what
follows.

Two basic principles of such studies will be strictly observed, viz.:

P1. All conclusions drawn should be based on original texts fortunately pre-
served up to the present time.

P2. All conclusions drawn should be based on reasonings in the manner of
our ancestors in making use of knowledge and in utilizing auxiliary tools and
methods available only at that ancient time.

For P1 we shall mention only [AR, AN, SI, MA], which will be referred to
repeatedly in what follows.

For P2 we shall emphasize that the use of algebraic symbolic manipulations or
parallel-line drawings should be strictly forbidden in any deductions of algebra
or geometry since they were seemingly nonexistent in ancient Chinese classics.
In fact, Chinese ancient mathematics had its own line of development, its own
method of thinking, and even its own style of presentation. It is not only inde-
pendent of, but even quite different from the western mathematics as descendents
of Greeks. Before going into more details of concrete achievements, we shall first
point out some peculiarities of Chinese ancient mathematics.

First, instead of calculations of pencil-paper type, the ancient Chinese made
all computations in manipulating rods on counting boards. This was possible
because the Chinese already possessed, in very remote times, the most per-
fect place-valued decimal system; it allowed them to represent the integers by
properly arranged rods placed in due positions on the board. In particular, the
number 0 in, or as, a decimal integer was just represented by leaving some empty
place in the right position. In fact the word “arithmetic,” the usual terminology

© 1987 International Congress of Mathematicians 1986
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for “mathematics,” was just a literal translation of Chinese characters “Suan
Shui” meaning “counting methods.”

Secondly, results were usually presented in the form of separate problems,
each of which was divided into several items, as follows. 1. Statement of the
problem with numerical data. 2. Numerical answer to the problem. 3. “Shui,”
or the method of arriving at the result. It was most often just what we call
today the “algorithm,” sometimes also just a formula or a theorem. Note that
the numerical values in Item 1 play no role at all in the method, which was
so general that any other numerical values could be substituted equally well.
Item 1 thus served just as an illustrative example. 4. Sometimes “Zhu,” or
demonstrations which explained the reason underlying the method in Item 3.
In Song Dynasty and later, there was often added a further item: 5. “Cao,” or
drafts which contained details of the calculations for arriving at the final result.

2. Theoretical studies involving integers. In this section, by an integer
we shall always mean a positive one.

In ancient Chinese mathematics there were no notions of prime number and
factorization or its likeness. However, there was a Mutual-Subtraction Algorithm,
for finding the GCD of two integers; its name literally meant equal. The algo-
rithm ran as follows:

“Subract the less from the more, mutually subtract to diminue, in order to
get the equal.”

As a trivial example, the equal (:= GCD) of 24 and 15 is found to be 3 in the
following manner:

{24,15) -» (9,15) -~ (9,6) -» (3,6) -~ (3,3). (2.1)
The underlying principle is, as pointed out by Liu Hui in [AN], that during
the procedure the integers are steadily diminished in magnitudes while the equal
duplicates remain the same.

In spite of the fact that the prime number concept was never introduced in
our ancient times, there were some theoretical studies involving integers which
were not at all trivial. We shall cite two of these mainly based on works of S. K.
Mo at Nanking University and J. M. Li at Northwestern University, China.

The GouGu form (:= right-angled triangle) was a favorite object of study
throughout the lengthy period of development of mathematics in ancient China.
In particular, the triples of integers which can be attributed to 3 sides Gou,
Gu, and Xuan (:= shorter arm, longer arm, and hypothenuse) of a GouGu form
had been completely determined early in the classic [AR]. Thus, in the GouGu
Chapter 9 of [AR] there appeared eight such triples, viz.,

(3,4,5), (5,12,13), (7,24,25), (8,15,17),
(20,21,29), (20,99,101), (48,55,73), (60,91,109).

The occurence of such triples was not merely an accidental one. In fact, in
Problém 14 of that chapter a method of general formation of such integer triples
was implied. We record this problem.
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“Two persons start from same position. A has a speed-rate 7 while B rate
3. B goes eastward while A goes first southward 10 units and then meets B in
going northeasternwise. Find the units traversed by A and B.”

The Shui (:= method or algorithm) for the solution was:

“Squaring 7, also 3, taking half of the sum, this will be the slantwise unit-ratio
of A. Subtract this unit-ratio from square of 7, rest is the southern unit-ratio.
Multiply 7 by 3 is eastern unit-ratio of B.”

As already mentioned in §1, the particular numbers 7 and 3 in the problem
serve merely as illustrations and we may equally well substitute these numbers
by any pair of integers say m,n with m > n > 0. The Shui then says that the 3
sides are in the ratio

Gou: Gu: Xuan = [m? — (m? + n?)/2]: m*n: (m? + n?)/2.
The eight triples given above may then be determined by the pairs
(m,n) =(2,1), (3,2), (4,3), (4,1), (5,2), (10,1), (8,3), (10,3).

In Liu Hui’s [AN] a demonstration or a proof of geometrical character was
given which was based on some general Out-In Complementary Principle, and
it will be explained in more detail in §3. We note here that Liu’s proof showed
also that m : n is in reality the ratio of Gou+ Xuan to Gu which will be a ratio
in integers if and only if the three magnitudes Gou, Gu, Xuan are in ratio of
integers. The Shui had thus given an exhaustive list of integer triples for the
three sides of the GouGu form.

As a second example let us cite the Seeking-1 Algorithm which is now well
known as the Chinese Remainder Theorem. Recent studies have shown that
the algorithm originated in calendar-making since Hans Dymnasty, and there
was a sufficiently clear line of development until the appearance of the clas-
sic [MA] of Qin in 1247 A.D. In Qin’s preface to his work he stated that
the method was not contained in [AR] and no one knows how it was deduced,
but it was widely applied by calendarists. The method was well-explained for
the first time in the first part of [MA] and contained nine problems, rang-
ing from calendar-making, dyke-erection, treasure-computing, tax-distribution,
rice-selling, military-expedition, brick-architecture, up to even a case of stealing.
All the problems were reduced to one which, in modern writings, would be of
the form (:=: stands for “congruent to”)

U:=:Uj mod My, 1€5<, (2.2)

with integers Uj, Mj known and U to be found. The integers Mj were called
by Qin Ting-Mu (:= moduli), literally meaning fixed-denominators which were
not necessarily prime to each other. Qin first gave an algorithm for reducing
the problem to one with the moduli prime to each other two by two in apply-
ing successively the Mutual-Subtraction Algorithm. We shall therefore restrict
ourselves, in what follows, to the case of U7 pairwise prime.

To a modern mathematician a solution to (2.2) would be found in the following
manner (cf., e.g., [AP, p. 250]).
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Let ¢(N) be the Euler function of the integer N which can be determined
from a factorization of /V into prime numbers. Set

M=M1* - *xMr

. 2.3
Nj = (M/M7P™M),  1<j<n (23)

Then the solution of (2.2) will be given by
U= ZU]'*N]' mod M.

J

Both the method and the result are really simple and elegant. However, in view
of the difficulty of factorization and the amount of computation involved in (2.3),
it would be rather difficult to get final answers to the nine problems in Qin’s
classic, even with the aid of modern computers.

On the other hand, the method of Qin ran as follows.

As a preliminary step let us take the remainder Rj of M/Mj mod Mj which
was called Qi-Shu, literally meaning odd-number, but just some technical term.
Now determine numbers K7 such that

Kj+*Rj:=:1 mod Mj. (2.4)
The final answer to be found is then given by

U= Uj*Kj*(M/Mj) mod M. (2.5)
J

The integers Kj were called, by Qin Cheng-Lui, also a technical term literally
meaning multiplication-rate (multiplier below). The algorithm for determining
K7 tosatisfy (2.4) was called, by Qin, da-yan giu-yi shut, for which giu-yi literally
means seeking-1, while da-yan is some philosophical term of little interest to us.
The first step of the Seeking-1 Algorithm consisted then in placing four known
numbers 1, 0 (i.e., empty), Rj, M7 in the left-upper (LU), left-lower (LL), right-
upper (RU), and right-lower (RL)

e ——— ==
corners of a s uare':LU RUI—: R]:
WL RLIT My

We remark that these four numbers verify the trivial congruences
LU x Rj :=:RU mod My, LL* Rj :=: —RL mod Mj. (2.6)

The next steps of the algorithm consisted then of manipulating the four numbers
in the square by steadily reducing their magnitudes while keeping the validity
of congruences (2.6). After a finite number of steps the number, say RU, will be
reduced to 1, and according to (2.6) the number LU is then the multiplier Kj to
be found. The underlying principle of this Seeking-1 Algorithm, as listed below
in details, is thus essentially the same as the Mutual-Subtraction Algorithm in
finding the equal (:= GCD) of two integers, only much more complicated. The
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algorithm was:

“Put Qi at RU, and Ting at RL, and put Tian-Yuan-1 at LU. First divide RL
by RU. Multiply quotient with 1 of LU and put it to LL. Next take the numbers
RU and RL, mutually divide the more by the less. Then mutually multiply
quotients to numbers in LU and LL. Stop until odd-1 in RU. Verify then the
number in LU and take it as multiplier.”

As a concrete example let us consider Problem 9 of Chin’s classic which dealt
with a stealing case. The judge in charge of the case was able to determine the
amount of rice stolen by each of the three thiefs by means of the algorithm. For
one of the thiefs the determination of the corresponding multiplier ran as follows:

M1 14 e,“f"ﬂf; N 1714, R ,rf"4'2 2 13 4 s

| 177 RG] [ [ | -
e T A I L B L L5y
r---" o0 | Pt | r——""

3 4 I3 4! 13 1,3 15 14
! b [ be_ ! —-» stop: k=15
| | lg 1 [ ! [ [ P! :
o I R Lo

One may compare this sequence of computations with the trivial one (2.1).

The numerical data in the above example is the simplest one among the nine
problems of Chin’s classic, but already not an easy one in using the mentioned
method with Euler functions. The other eight problems will eventually involve
astronomically large numbers which may be eventually out of reach of the Euler-
function method, but were still done with ease by Qin in using the Seeking-1
Algorithm.

3. Geometry. In contrast to what one usually believes, geometry was in-
tensely studied, in addition to being well-developed, in ancient China. The mis-
understanding is likely due to the fact that Chinese ancient geometry was of a
type quite different from that of Euclid, both in content and presentation. Thus,
there were no deductive systems of euclidean fashion in the form of definition-
axiom-theorem-proof. On the contrary, the ancient Chinese formulated, instead
of a lot of axioms, a few general plausible principles on which various geometrical
results were then discovered and proved in a deductive manner, as shown by Liu
Hui [AN].

The points of emphasis in Chinese ancient geometry and in the geometry of
Euclid were also quite different. Thus, the Chinese ancestors paid no attention at
all to the parallelism but, on the contrary, showed great interest in orthogonality
of lines. In fact, the GouGu form, or the right-angled triangle, had incessantly
occupied a central position among the geometrical objects to be studied through-
out thousands of years of development. Secondly, the Chinese ancestors showed
little interest in angles but heavily emphasized distances. Thirdly, geometrical
studies‘y were always closely connected with applications so that measurements,
determination of areas and volumes were among the central themes of study.
Finally, geometry was always developed in step with algebra, which culminated
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in the algebrization of geometry in Song-Yuan Dynasties. This later discovery
was rightly pointed out, e.g., by Needham to be the first important step (and
indeed, the decisive step) toward the creation of analytical geometry.

We shall illustrate these points with a few examples.

EXAMPLE 1. The Sun-Height Formula. On the earth-level plane erect two
gnomons G1, G2 of equal height with a certain distance apart. The sun-shadows
of the gnomons are then measured and the sun’s height over the level plane is
given by

Sun-hgt = Gnomon-hgt * Gnomon-dist/Shadow-difference + Gnomon-hgt.

This formula, already depicted in some classic of early Hans Dynasty and
cited very often in later calendarical works, was clearly too rough an estimate
to rely on. Liu Hui had, however, translated the formula into earth measure-
ments by replacing the sun by some sea-mountain, thus turning the Sun-Height
Formula into a realistic Sea-Island Formula. His classic [SI] contained all nine
such formulae beginning with the above one as the simplest. There were proofs
as well as diagrams accompanying this classic; they are still mentioned in some
classics of Song Dynasty but have since been lost. Based on fragments and
incomplete colored diagrams of some classic by Zhao Shuang in 3¢ A.D., the
author has reconstructed a proof of the above Sun-Height or Sea-Island Formula
by rearranging the arguments in that classic as follows (Y =yellow, B =blue):

sun ISt b Rl == == |Im——-r-——-——=-—--- heaven
N ! Y2 1 B6
sun | ~ t B et I 1 [
hgt b - = S o T Ead SR VR
:B3 Gl[ N Y1 G \\\:\:}.\ | gnomonhgt
_____ e e T T L — _ earth level
shadow 1 shadow 2

gnomon-distance

“Y'1 and Y2 are equal in areas. Y1 connected with B3 and Y2 with B6 are
also equal in areas. B3 and B6 are also equal in area. Multiply gnomon-distance
by gnomon-height to be the area of Y1. Take shadow-difference as breadth of
Y2 and divide, one gets height of Y2. The height rises up to same level as sun.
From diagram gnomon-height is to be added.”

With the accompanying diagram the proof of the formula is evident.

EXAMPLE 2. The Out-In Complementary Principle (OICP). In Example 1,
various area-equalities were all consequences of a certain general Out-In Com-
plementary Principle which was clearly formulated in the classic [AN] in very
concise terms. It means simply that whenever a figure, planar or solid, is cut into
pieces and moved to other places, then the sum of areas or volumes will remain
unchanged. This seemingly most common-place principle had been applied suc-
cessfully to problems of extreme diversity, sometimes unexpected, besides that
of Example 1. As further examples consider the GouGu form with three sides:
Gou, Gu, and Xuan. One may form various sums and differences from them
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B:Gu=n= Gou Hsieh
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FIGURE 1

¢+ d = Hsieh? — Gou? = d + e = Gu? = n?,

2+« EFGH = EFKL = m? + n? = (Gou+Hsieh)? + Gu?,

a +Y = Hsieh * m = Hsieh x (Gou+Hsieh),

b+ R = EFIJ— EFGH = Gou*m = Gou* (Gou+Hsieh) = m? — (m? +n?)/2.

like Gou-Gu sum, Gou-Xuan difference, etc. In the GouGu Chapter 9 of [AR],
there were a number of problems for determining Gou, Gu, and Xuan from two
of these nine entities, and all were solved by means of this principle. In par-
ticular, the general formula of Gou-Gu integers as described in §2 was obtained
by applying the principle to Problem 14 by considering as known the ratio of
Gou-Xuan sum to Gu. Liu Hui then demonstrated the result by OICP as shown
in Figure 1 (R =red, Y =yellow).

In [MA] there was formula for determining the AREA of a triangle with three
sides: the GReatest one, the SMallest one, and the MIDdle one in the form

4 AREA? = SM? « GR? — [(GR? 4 SM? — MID?)/2)2.

This formula is clearly equivalent to the Heron one. It cannot be deduced from
the latter since it is so ugly, in form, in comparison to the elegant latter formula.
By applying some formula given in [AN}] about Problem 14, based on OICP, the
author has reconstructed a proof which-is in accordance with Chinese tradition
and leads naturally to Qin’s formula.

We note that the Chinese ancient methods of (square and cubic) root-extrac-
tion and quadratic-equation solving were in fact all based on OICP geometrical
in character. We also note that all the formulae in [SI], in quite intricate form,
will be arrived at in a natural manner by applying OICP. On the other hand it
seems difficult, or at least a roundabout, unnatural manner, to get these formulae
if the euclidean method is to be used.

EXAMPLE 3. Volume of solids. With the OICP alone the areas of any polyg-
onal form can be determined. This will not be the case for volumes of polyhedral
solids, and Liu Hui was well aware of it. Liu Hui had, however, completely solved
the problem in reasoning as follows. Let us cut a rectangular parallelopiped
slantwise into two equal parts called Qiandu, and then cut the Qiandu slantwise
into two parts called Yangma (a pyramid} and Bienao (a tetrahedron on special
type). Using an ingenious reasoning corresponding to a certain limiting process,
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FIGURE 2

he made some assertion which the author has baptized as the Liu Hui Principle,
viz.,

“Yangma occupies two and Bienao one, that’s an invariable ratio.”

Together with the OICP the volume of any polyhedral solid can then be de-
termined, and a lot of beautiful formulae for various kinds of solids were deter-
mined in this way in the Sang-Gong Chapter 5 of [AR]. Liu Hui’s demonstration
of his principle, which was both elegant and rigorous, consisted of cutting a big
QIANDU into smaller yangma's, etc., as in Figure 2.

From Figure 2 it is now clear that
1 YANGMA — 2 BIENAO = 2(1 yangma — 2 bienao).

Continuing, the right-hand side will become smaller and smaller and can be
ultimately neglected, as argued by Liu Hui:

“The more they are cut into smaller halves, the smaller will be the remains.
The ultimate smallness is infinitesimal, and infinitesimal is formless. Accordingly
it is no need to take into account the remain.”

For more details see [WA), a remarkable paper by Wagner.

Liu Hui had also considered the determination of curvilinear solids, notably
that of a sphere. He showed that the solution will depend on the determination of
the volume of a curious solid defined as the intersection of two inscribed cylinders
ig a cube. Liu Hui himself cannot solve this problem and left it, being rigorous
in thinking and strict in attitude, to later generations, saying that

“Fearing loss of rightness, I dare to leave the doubts to gifted ones.”

280



THE HISTORY OF CHINESE MATHEMATICS 1665

The keen observation of Liu Hui had been closely followed and ripened finally
to a complete solution of the problem in 5¢ A.D. by Zu Geng, son of great
mathematician, astronomer, and engineer Zu Congtze. In fact, Zu Geng had
formulated a general principle which was equivalent to the later rediscovered
Cavalieri Principle, viz.,

“Since areas in equal height are equal the volumes cannot be unequal.”

We shall leave Zu Geng’s beautiful proof about the formula of volume of
sphere to other known works. On the other hand, this principle was, in reality,
already used by Liu Hui himself in deriving formulae of volumes of various simple
curvilinear solids treated in |[AR], though without an explicit statement. For this
reason the author has proposed to use the name Liu-Zu Principle instead of the
name Zu-Geng Principle which is usually used by our Chinese colleagues.

In a word, the OICP, the Liu Hui Principle, and the Liu-Zu Principle were
sufficient to edify the whole theory of solids, curvilinear or not, in a satisfactory
manner as done by the Chinese ancestors.

4. Algebra. Algebra was no doubt the most developed part of mathematics
in ancient China. It should be pointed out that algebra at that time was actu-
ally a synonym for method of equation-solving. The problems of equation-solving
seem to come from two different sources. One of the sources was rudimentary
commerce or goods-exchange which led to the Ezcess-Deficiency Shut in very
remote times up to Fang-Cheng Shui as depicted in Chapter 8 of [AR]. This
Chapter 8 dealt with methods of solving simultaneous linear equations along
with the introduction of negative numbers. The title “Fang Cheng,” the same
terminology for “equations” used in Chinese texts nowadays, could be better
interpreted as “square matrices.” In fact, “Fang” literally means square or rect-
angle while “Cheng,” as explained in Liu Hui’s [AN], was just data arranged on
the counting board in the form of a matrix, viz.

“Arranged as arrays in rows, so it is called Fang Cheng.”

Furthermore, the method of solution was just manipulations of rows and
columns as in elimination nowadays. Details of such stepwise reduction of arrays
to normal forms in some examples can also be found in [AN].

A second source of equations was from measurements or geometrical prob-
lems. Thus, in the study of sun-heights there were formulae for both sun-height
and sun’s level distance from the observer. The sun-observer distance was then
determined by means of the Gou-Gu Theorem, well known in quite remote times,
which then required extraction of square roots. Both the proof of the Gou-Gu
Theorem and the method of square root extraction were seemingly based on
the OICP—so, also, for the cubic root extraction. Now in Gou-Gu Chapter 9
of [AR] there was also a problem which led naturally, by OICP, to a quadratic
equation. There was some technical terminology for solving such an equation lit-
erally meanihig “square-root extraction with an extra term Cong,” which clearly
implied the origin as well as the method of solving such equations.
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The second line was developed further to solving cubic equations in early Tang
Dynasty, at the latest, and culminated in the method of numerical
solution of higher degree equations in Song Dynasty, identical, actually, to the
later rediscovered Horner’s method in 1819.

A discovery of utmost importance during Song-Yuan Dynasties (10-14c) was
the introduction of the notion “Tian-Yuan,” literally meaning “Heaven-Element,”
which was nothing but what we call an unknown nowadays. Though equation-
solving occupied a central position in the development of mathematics for thou-
sands of years already, this was perhaps the first time that precise notion and
systematic use of unknowns were thereby introduced. The Chinese mathemati-
cians at that time recognized very well the power of this method of Tian-Yuan
as expressed in some classic of Zhu Szejze:

“To solve by Tian-Yuan not only is clear the underlying reasons and is versatile
the method but also saved large amounts of efforts.”

The method of Tian-Yuan was further developed in Song-Yuan Dynasties up
to the solving of simultaneous high-degree equations involving four unknowns.
Along with it, algebrization of geometry, manipulations of polynomials, and
the method of elimination were also developed. The two lines of development
of equation-solving thus merged into one which was closer to algebra in the
modern sense. The limitation to four unknowns was largely due to the fact that
all manipulations had to be carried out on counting boards with coefficients of
different-type terms of a polynomial to be arranged in definite positions on the
board. If one was to get rid of the counting board in adapting another system,
as was fairly probable since communications with the outside arabic world were
more influential than ever, then mathematics would face an exceedingly fertile
era of flourishment. However, all further developments stopped and mathematics
actually came to death since the end of Yuan Dynasty. When Matteo Ricci came
1o China at the end of Ming Dynasty, almost no Chinese high inteliectuals knew
about “Nine Chapters”!

5. Conclusion. We shall leave other achievements about limit concept, high-
difference formulae, series summation, etc. owing to space limitation. In short,
Chinese ancient mathematics was mainly constructive, algorithmic, and mechan-
ical in character so that most of the Shuis can be readily turned into computerized
programs. Moreover, it used to draw intrinsic conclusions from objective facts,
then sum up the conclusions into succinct principles. These principles, plain in
reasoning and extensive in application, form a unique character of ancient Chi-
nese mathematics. The emphasis has always been on the tackling of concrete
problems and on simple, seemingly plausible principles and general methods.
The same spirit permeates even such outstanding achievements as the algebriza-
tion and the place-value decimal system of numbers. In a word, Chinese ancient
mathematics had its own merits, and, of course, also its inherited deficiencies.
It i surely inadmissible to neglect the brilliant achievements of our ancesiors,
as was the case in the Ming Dynasty. It would also be absurd not to absorb the

282



THE HISTORY OF CHINESE MATHEMATICS 1667

superior techniques of the foreign world, as was the case of early Tang Dynasty.
At that time the writing system of Indian numerals was imported, but its use as
an alternative for the counting board system was rejected. In fully recognizing
the powerfulness of our traditional method of thinking, and in absorbing at the
same time the highly developed foreign techniques, we foresee a novel new era
of achievements in Chinese mathematics.
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Abstract. In 1965 the author introduced the notion of Chern classes for an algebraic variety with
arbitrary singularities. Based on this definition the well-known Miyacka-Yao inequalities have been proved
and extended by quite simple direct computations.

In 1977 Miyaoka and Yau (see [M] and [Y]) have proved independently a remarkable
inequality about Chern numbers of a SMOOTH algebraic surface S, viz.

HS) < = 3xcs(S). (MY)

Some results and conjectures of similar nature have also been anounced for high dimensional
algebraic varieties (see e.g. [T], [Y]). Their considerations are all restricted to algebraic varieties
without any singularities since tools for complex manifolds were used throughout. Now in 1977
MacPherson [MP] has introduced the notion of Chern classes for any algebraic variety with
arbitrary singularities. It is natural to ask whether the above inequality remains true for this
general case for which the present author is quite ignorant of the present status. On the other hand
early in 1965 the present author has already generalized the notion of Chern classes to arbitrary
algebraic varieties in an entirely different way from that of MacPherson et al, ¢f. [WUl—3]. It
turns out that the formula (MY) and its alike can be easily dealt with by our treatment for varieties
with singularities. This will be the main theme of the present paper. Other applications of our
method will be dealt with later.

We use in this paper notations which, being readily done by computer—printing, are
somewhat different from the usually adopted ones. For the convenience of the reader a comparison
between these two types of some of these notations used are tabulated below:

new notations usual notations explanations
- < c, € “is d in” or “belongs to”
>— > “contains”
<= s “less than or equal to”
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i
> = > “greater than or equal to”
<> # “not equal to”

- “multiply by”

“to the power of” or “intersects with”

(nf/m) ( " ) binomial coefficient

Sect 1. The Composite Grassmann Variety

Let us recall first some fundamental facts about composite Grassmann variety due to
Ehresmann et al (see e.g. [EH], [HP], [CHOW], and [WUZ2]), which is at the basis of our
treatment. Note that we are working in the complex domain so the modifier “complex” will often
be omitted.

Consider thus a projective space CPn of dimension n. The linear subspaces of dimension k&
will be denoted by [£], [k]’, Sk, S'k, etc. For fixed integers p,g with 0 < p < ¢ < n the totality of
pairs ([p], [g]) with [p] — < {g] — < [r] = CPn will be denoted henceforth as GR(n; p, ). Itisa
special kind of composite Grassmann variety and is an irreducible algebraic variety without
singularities so that intersection can be well defined in it, see e.g. [HP], Chap.XI.

Following Ehresmann let us consider a fixed sequence of linear subspaces

N —-< 81 —< - ~< Sn=CPn. 1.1
Let Ai, Bj be integers verifying

0 <= A0 < A1 < -+ < Ap <= n, 1.2)

0 <= B0 < Bl < -+ < Bg <= n. (1.3)

With respect to (1.1) we shall denote by the Ehresmann symbol of the form
[A0, A1, ---, Ap/BO,B1, --- Bq] (1.4)
the totality of pairs ([p), [¢g]) such that
(E1) dim ([p]JA[SA4i]) >= i, for 0 <= i <= p;
(B2) dim ([QIALSB]) > = j, for 0 <= j <= g;
(E3) each Ai is some Bj.
The variety (1.4), usually called a Schubert variety, has a dimension
dim [A40, A1, ---, Ap/BO,Bl1, ---, Bg] = SUMi (4i — i)+ SUM’j (Bi—j). (1L5)

In (1.5) SUMi is to be extended over i from 0 to p while SUM’j is over only such j from 0 to ¢
for which Bj is not equal to any Ai. In particular, GR(n; p, q) is itself such a Schubert variety with
symbol and dimension given by
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GR(n;p,q) = [(n — p, -+, n)/(n — g, -, n)], (1.6)
dim GR(n;p,q) =(n —p)*{p+ 1) + (n — g)+{g — p}- (1.7

We remark that the bracket () in (1.6) means that the integers therein are consecutive ones.
Take now a second fixed sequence of linear subspaces

S0—<S1—<--—<Sn=CPn .1y

for which all S in (1.1) and §j in (1.1) are in general position. Denote the Schubert variety
corresponding to (1.4) defined however with respect to (1.1) by

[40, A1, -, 4p/BO, B1, -, Bq]. (L4y

We shall set
[4'p,---, 4’1, A0/Bq,---,B1,B0] = Dual [A0, Al,--,Ap/B0,Bl,:--,Bq], in which 4'i=
n — Aiand B'j = n — Bj. We see that any Schubert variety will intersect its dual in a single point.
According to Chow (see [CHOWY)), the variety GR(; p, ) has a rational dissection formed of
all the above Schubert varieties defined with respect to (1.1) with boundaries removed and the
totality of such Schubert varieties will represent a basis of the group of rational equivalence classes
of GR(n;,p,q). The rational dissection defined with respect to (1.1)" is then said to be DUAL to
the rational dissection above defined with respect to (1.1) in the sense of [WU2]. It easily follows
that the totality of Schubert varieties (1.4) (or (1.4)') form also a basis of the group of algebraic
equivalence classes of GR(n;p, q). For an algebraic variety with arbitrary singularities ¥V let us
denote by RATr(V) respectively ALGr(V)} the group of rational respectively algebraic
equivalence classes in dimension r of V. Denote also for any subvariety W of dimension r of V, its
rational respectively algebraic equivalence class, by R—Cls( W) respectively A-Cls(W). If V' is
devoid of any singularity, then the sum of ALGr(V) for all r will possess an intersection

ALGH{V) + ALGs(V) — < ALGe(V)

with £ = r + s — dim 7 which turns the sum into an intersection ring or CHOW RING of the
nonsingular variety V. In particular for the nonsingular GR(n;p,¢) we have for any Schubert
varieties E, E’ the formulae of intersection

A~Cls(E) # A-Cls Dual E = 1, while A—Cls(E) * A-Cls (E’) =0, for
E' <> Dual E, and dim E + dim E = dim GR(n;p,q).
Furthermore, the association of any Schubert variety to its dual will induce a natural morphism
Dual: ALGs(GR(n;p, q))—-e ALC!(GR(n;p, q)),
in which ¢ =dim GR(n;p,q) ~ s.

Sect 2. The Intersection Ring of GR(n;0,d)

For the purpose of the present paper we shall restrict ourselves henceforth to the particular
case of the composite grassmann GR(n;p,q) with p =0, ¢ =d. The dimension of our
grassmannian is then given by

dim G,R(n; 0, d) = (n — d) t(d + 1) +d.
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For reasons to be explained later we are particularly interested in algebraic equivalence classes
below:

GAMst = A-Cls [s—t/(O, cd=—t(d—t+2,-,d+ 1)1 — < ALGs GR(n;0,d)
for 0<=t<=s5<=d, and
CHs = SUMt (sgn(t) * (d—¢+1//d — s+ 1) *+ GAMst) —< ALGs GR{(n;0,d)

for 0 <= s <= d, in which SUMt means summation extended over ¢ from O to s.
Remark. In [WU1-3] there are some misprints in sign in the binomial coefficients.
For s =1,2 or 3 we have in particular

CHI =(d+1) x GAM10 — GAM11
=(d +1) * A-Cls [1/(0,--d)} - A-Cls [0/(0,-,d — 1),d +1], @
CH2 =d*(d + 1)/2+ GAM20 — d« GAM21 + GAM22
=d*(d + 1)/2% A-Cls [2/(0, -, d)] — d* A—Cls [1/(0,--,d —1),d + 1]
+ A-CIs [0/(0,-,d — 2),d,d + 1]. 2.2)
CH3 = (d + 1//3) s ACls [3/(0,....d)] — (d//2)x A—CIs[2/(0,....d — 1),d + 1]
+ (d = 1)xA—CIs[1/0, -, d — 2),d,d + 1]
— A~Cls [0/0,--,d —3),d — 1,d,d + 1]. @2.3)

The intersection structure or Chow ring of GR(n;0, d) will only be partially determined but
will Le sufficient for our purposes. For this we shall first prove the following lemmas.

Lemma 1. For the Schubert variety

A ={n-Ai/n-Ad,---, n—Ai, ---,n—A0Q] = Dual [A4i/ A0, ---, Ai, ---, Ad] to have a dimension
> = dim GR(n;0,d) —d it is necessary that

A0=0,A1=1,.-.,4di=1i
so that
A=[n—i/n-Ad,-, n—Aj,(n -1, ---,n)]
in which we have put i +1=j.
Proof. The hypothesis implies that
dim [A4i/A40,--, Ai,~, Ad} = SUMk (Ak— k) +i<=d.

Now the integers Ak should verify the conditions

0<=A0< Al <--<Ad <=n, or

O<=A0<=Al-l<=-<=Ai—i<=Aj—j<=+-<=A4Ad—d.

It follows that 4i > i would imply 4k > k for all k > = i so that SUMk (A4k — k) +i>d
contractory to the inequality given above. Consequently 4i = i and whence 40 = 0, 41 = 1, etc.
up to Ai =1 as to be proved.

Lemma 2. Let j=i+ 1. Then
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A-Cls [n —i/n-Ad, ---,n-4j, (n—i, B n)]
= A-Cls [n/n—Ad, -, n~4j,(n—i, -, n)] * A-Cls [n — if(n — d, -, n}]. (2.4)
Proof. Denote the Schubert varieties involved in the above equality by A4, B, C respectively
defined with respect to sequences of linear subspaces like (1.1) as follows.
For B: [0] —<[1] —< -+ —< [n] = CPn,
For C: [0} —<[1) —< - —<[n]) =CPn
with [n — i — 1] — < [r — i]' but otherwise the [} and [s]' are in general position. The variety 4
is then defined with respect to the sequence
O]—-<1]—-<-—<n—-i—-1]—-<n—i—-<[r—i+1) —< .- —<[n] = CPn.
Clearly an element (50, Sd) of GR(n;, 0, d) will belong to the intersection of B and C if and only if
dim (Sd A [n—Ak]) > = d-k,
for k=i+1,--,d and SO — < [n-i], ie.
(S0,5d) —< A.
Now
dim B = dim GR(n;0,d) — SUME(Ak — k),
dim C = dim GR(n;0,d) — i, and dim A = dim GR(n;0,d) — SUMk (A4k — k) — i,
in which SUME is to be extended over & from ¢ + 1 to d. Now by Ehresmann the variety A4 is an
irreducible one. It follows then from dimensionality considerations that the right—hand side should
be equal to an integral multiple of the class of A. This integer is the intersection multiplicity of B

and C and is easily seen to be 1. This proves the formula (2.4) of the Lemma.
It is clear that

A-Cls [n-if(n—d, ---,n)] * A~Cls [n~j/(n-d,---,n)] = 4-Cls [n~i~j/(n—d,---,n)). (2.5)
Furthermore we have also in the right dimensions
A-Cls [n/n-Ad,-+-,n-A0) * A-Cls [n/n—Bd, ---, n-B0]
= SUMc A-Cls [n/n~Cd, ---,n—C0], (2.6)
in which
A-Cls[n-Ad, ---, n—-A0] * A-Cls [n—Bd, ---, n—B0]
= SUMc A-Cls [n-Cd, ---, n—C0] 2.7

is the intersection formula in the ordinary grassmannian as shown in { HP], Chap. XIV, which can
in turn be explicitely determined by means of the well-known formulae of Pieri and Giambelli.
Let us now introduce some classes as follows:

P = A-Cls [1/(0,---,d)] (2.8)
Qh = A-Cls [0/(0,---,d ~1),d + &] (2.9)
P =Dual P=4A—cls[n—1/n —d,...,n}] .8y
Q'h=Dual Qh = A-Cls [njn —d —h,(n—d + 1, n)] 2.9
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for 0 <= h <= n—d. From the above we get easily the following.

Theorem. The Chow ring of algebraic equivalence classes of the composite grassmannian

GR(n;0,d) is generated by the classes P' and Q' h in the dimension > = dim GR(n; 0, d) —d.

The multiplicative structure in that range is completely detgrmined by the formulae (2.4)—(2.9)'.
By the theorem we deduce from (2.1)—(2.3):

Dual CHl =(d+ 1)* P’ — 1, (2.10)

Dual CH2 =d*(d+1)/2«P' A2 —d*x P’ x Q1 +(Q'1A2 — Q'2), (2.11)

Dual CH3 = (d + 1)*d+(d — 1)/6xP’A3 — d*(d — 1)/2%x P’ A2+ Q'] @12)

+{d—1)*P'#(Q1IA2 — Q2 —(QLA3 —2£Q12 Q2 + Q3). )

Sect 3. Ehresmann Classes of an Algebraic Variety with Arbitrary Singularities

Let ¥d be an irreducible algebraic variety of dimension d and V" a subvariety containing all
singularities of Vd. By considering subvarieties of a fixed dimension s, the author has introduced
in [WU1] the notion of group of UNNEGLIGIBLE algebraic equivalence classes modulo ¥ for
each dimension s, with methods as described in Chap. XI of [HP], which will be denoted by
ALGs(Vd/V") in what follows. There is also a natural morphism for each dimension s, viz.

Js: ALGs(Vd/V') —> ALGs(V).

Let Wd be also some irreducible algebraic variety of same dimension d with W’ a subvariety
containing all singularities of #d. Let T be a birational transformation of #d to Vd verifying the
following properties:

P1. T is everywhere defined on Wd.

P2. T(x) —< V' if and only if x —< W".

P3. T is biunivoque on Wd — W'.

It is proved in [WU1] that under these conditions the birational transformation T will induce in
each dimension s a natural morphism

Ts: ALGS(Wd/W') —> ALGs(Vd/V").

Note that for these groups of unnegligible algebraic equivalence classes no mulplicative structure
will be introduced in their sum.

Let Ge be now an irreducible algebraic variety of dimension € in a complex projective space
with no singularities so that intersection may be defined in Ge in the usual manner. Let #d be an
irreducible subvariety of dimension d in Ge and W' a subvariety of Wd containing all singularities
of Wd if exist. As Ge is in a complex projective space any subvariety of Ge is algebraically
equivalent to some one which will intersect simply with both Wd and W'. From this we easily
deduce that, by considering intersections with Wd in Ge, there will be natural morphisms

Is: ALGs(Ge) —— ALGt(Wd/W"),
in which t=s+d—e.
Consider now an irreducible algebraic variety Vd of dimension d in a projective space CPr of

dimension n. Take an arbitrary generic point PO of Vd and let Pd be the tangent space of Vd at
P0. With the pair (P0, Pd) as a generic point there will be a determined irreducible subvariety Wd
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of dimension d in the composite grassmannian GR(n;0,d) which may be considered as a
subvariety of a projective space of sufficiently high dimension. Now any pair (P, Pd’) of Wd is a
specialization of (PO, Pd) which implies that P ' is a specialization of P 0 and is thus a well-defined
point of Vd. Clearly, if the singular subvariety of Vdis ¥, then the subvariety " of Wd consisting
of all points (P0’, Pd’) with P 0’ in V" will contain all the singular points of Wd if there are any. The
correspondence

T: (PO, Pd) —> PO

is thus a birational one verifying the properties P1-3 with V' = T(W’). For the pair G
= GR(n;O, d) and Vd we have then a sequence of morphisms

ALGS(GR(n; 0,d) —2> ALGHWa/W)— > ALGu(Vd/V)—L'> ALGYVd),

in which ¢ =5+ d — e, with e = dim GR(n;0,d). Besides we have also the dual morphism
Dual: ALGs(GR(u,'O, d)) —_—> ALGs’(GR(n;O,d))

in which
s = dimGR(n;O, d)) —s.

Consider now any Ehresmann symbol

EH = [A0/BO, B, -, Bd} with s = SUMk (Bk — k) + A0
and
r=s+d— dimGR(n.;O,d) =d—s,

in which SUM 'k is to be extended over & from 0 to d for which Bk < > 40. We shall lay down the
following
Definition. The algebraic equivalence class

Jr T Is' Dual EH — < ALGHVd)

will be called the EHRESMANN CLASS of ¥d corresponding to the symbol EH and will be
denoted by

EH(Vd) = [40/B0, Bl, ---, Bd}(Vd).
More generally, for any algebraic equivalence class ACLS — < ALGS{GR(n; 0, d)), we shall set by
definition
ACLS(Vd) = Jr T Is' Dual ACLS — < ALGHid).

As particular Ehresmann classes we have also GAMKRELIDZE CLASSES and CHERN

CLASSES defined respectively by (r=d — s)
GAMs(Vd) = [s — t/{0,--,d — t){d — t + 2,--,d + 1J1(Fd) - < ALor(Vd).
CHs(Vd) =SUM: (sgn{) *(d — ¢ + 1)//(d — s + 1)» GAMsi(Vd)) — < ALGH{(Vd).
We note that in case that Vd is devoid of any singularities so that }'d may be considered as a

complex manifold in a complex projective space, then according to Gamkrelidze the homology
classes defined by the algebraic equivalence classes CHs(Vd) are just the dual of the usual Chern
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classes. This justifies the terminologies introduced above, cf. [G].
Remark that in the notations EH(Vd), CHs(Vd), etc., integer n, the dimension of the ambiant
projective space in which lies the variety Vd, does not enter into play, as is natural and easy to see.

Sect 4. Chern Numbers of an Algebraic Variety with Arbitrary Singularities

Let Vd be an irreducible algebraic variety of dimension d with arbitrary singularities.
Consider any Ehresmann symbol

EH = [A0/BO, B, ---, Bd] with SUM'k (Bk — k) + A0 = d,

in which SUM'k is to be extended over & from 0 to d for which Bk < > A0. The Ehresmann class
EH(Vd) of ALGO(Vd) is in the image of ALGO(Vd/V") under the morphism JO and can thus be
identified to an integer, to be called the EHRESMANN CHARACTER of ¥d corresponding to the
symbol EH in what follows. From the definition it is clear that all such characters are of projective
nature and were known as PROJECTIVE CHARACTERS of the variety in the sense of Severi, cf.
e.g. [SR]. Among these Ehresmann characters we have in particular CHERN CHARACTERs to
be defined as follows.
A sequence of integers p =(a, b, ---, ¢) will be said to be a partition of d if

O<a<=b<=+-<=c¢,and g+ b+ - +c=d.
Define now CHp — < ALGd(GR(n;0,d)) by
Dual CHp = Dual CHa* Cual CHb* --- * Dual CHec.

The integer identified to the algebraic equivalence class CHp(Vd) — < ALGO(Vd) will then be
called the CHERN CHARACTES of Vd corresponding to the partition p. By the intersection
formulae in GR(r; 0, d) as developed ir the preceding sections it is clear that any such CHp can be
expressed by means of algebraic equivalence classes P and Qh.

Let us consider as an example the case d = 2, i.e. the case of an algebraic surface V2 with
arbitrary singularities. For such a V2 we have 4 Ehresmann characters and 2 Chern classes besides
the trivial one CHO, viz.

[2/0,1,2](¥2) = Classical Mu0(¥2) = Order of V2,
[1/0,1,3)(¥2) = Classical Mu1(¥2) = Rank of /2,
[0/0,2,3](72) = Classical Mu2(F2) = Class of V2,
[0/0,1,4](V2) = Classical Nu2(V'2) = Type of V2.

The last terminology is for ¥2 in CPn with n > 3 alone, but we shall keep this term for V2 in CP3
too. Cf. [SR], Chap. IX.

CH1(V2) = 3+[1/0,1,2](¥2) — [0/0, 1,3)(V2) = (Dual(3x P’ — Q'1))(V2),
CH2(V2) = 3+[2/0, 1, 2J(V2) — 2+[1/0, 1, 3](V2) + [0/0, 2, 3}(V2)
= (Dual(3+P'A2 -2+ P'+ Q1 + Q1A 2 — Q2)(F2).
There are 2 Chern characters CH11(V2) and CH2(V2) for which we have for the former
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CH11(V2) = (Dual(9% P'A2 — 6% P'+ Q'L + Q'L A2))(V2).

It follows that

3+ CH2(V2) — CH11(V2) = 2+(Dual Q'1A 2)(V2) — 3 +(Dual Q'2)(V2).

Now in the grassmannian GR(n,' 0, d) we have the multiplication formula
A—Cls[n/n — 3, n-2,n] = A—Cls [n/n —3,n — 1,n] A2 — A-Cls [n/n — 4,n — 1,n].
Taking the dual of both sides we get
[0/0, 2, 3}(¥2) = (Dual @'1 A2)(¥2) — (Dual Q'2)(F2).

As the left side is Mu2(V2) and the last term is Nu2(V2) we get

2¢(Dual Q1A 2)(F2) — 3+(Dual Q'2)(V2) =2+ Mu2(V2) - Nu2(V2).
If P2 is in CP3 then Nu2(F2) is clearly 0 and hence we get the following

Theorem. For a surface V2 in CP3 with arbitrary singularities we have for the Chern
characters the inequality

3+ CH2(V2) > = CH11(V2).

Suppose that the surface V2 has no singularities so that it is a SMOOTH complex surface.
Then CH2(V2) is just the usual Chern number c,(¥2) and CH11(V2) the Chern number ¢3(F2).
The above inequality becomes then the Miyaoka—Yau inequality stated ir the beginning of the
paper. The above theorem can therefore be considered as a generalization of the Miyaoka—Yau
inequality to the case of algebraic surfaces with arbitrary singularities lying in CP3.

On the other hand suppose that the variety V2 is not in CP3. Then there are known examples
for which

2% Mu2(V2) < Nu2(V2)

Cf. formulae (10) and (11) on [SR], p.221. It follows that the Miyaoka—Yau inequality is not true in
general for surfaces in CPn with singularities present. We leave open the question of the truth of
the inequality in case of NON-SINGULAR V2 in CPn with n > 3.

Consider now any hypersurface ¥d of dimension d in CPn with » = d + 1. We have then
from the very definition

Qh=0 for h>=2.
For d =3 in particular we would have then from (2.10)—(2.12):
Dual CH1 =4+P — @1,
Dual CH2 =6 P'A2—-3+xP*Q1+ Q1A2,
Dual CH3=4+P'A3 —3«P' A2xQ1 +2+P' «Q1A2 - Q1A3.
There are 3 partitions (1,1,1), (1,2) and (3) of the integer d = 3 for which we have
Dual CH111 =(4*P’ — Q'1)A3 =64%P' A3 —48%P' A2+ Q1 + 12+ P'+Q'1 A2 — Q'1 A3,
Dual CHI2Z = (4+P' — Q1)*(6xP'A2—3+P'« Q1+ Q'1A2)
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=21x P AT 18P A2xQ1+TxP xQ'1A2— Q1A3.
whenoe

4% CH12(13) - 8% CH3(V3) — CH111(V3) = 5 +(Dual Q'1A3)(F3).

As (Dual ("1 A3)(P3) is necessarily non—negative we get the following generalization of a theorem
due to Tar (cf. [T]). viz.

Theorem. For a hypersurface V3 of dimension 3 in CP4 with arbitrary singularities we
have jor the Chern characters the inequality

4+ CH12(V3) — 8+ CH3(V3) — CH111(V3) > = 0.

Clearly the method is entirely general which will permit us to get generalizations of other
theorems of Tai to case of algebraic hypersurfaces with arbitrary singularities. We can also
investigate possible generalizations of inequalities of Miyaoka—Yau type in the case of higher
dimensions. We shall however not enter into these problems since the method of treatment is quite
clear.
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Mechanical Derivation of Newton’s
Gravitational Laws from Kepler’s Laws

Wu Wen-tsun
Institute of Systems Science, Academia Sinica

It is an important historical event that Newton derived his laws from Kepler’s laws.
However, how the former ones can be deduced from latter ones is rarely touched upon in
current texts on calculus or mechanics, though the deduction of the latter ones from the
former ones is treated rather often in such texts, e.g. [1]. The present preliminary report
aims at such a deduction, and, what is perhaps more important for our purposes, a deduction
in a MECHANICAL manner. The author owes for this report much to Professor Gabriel of
Argonne National Laboratory. In fact, during a visit to Argonne in 1986 Prof. Gabriel told
the author such a problem for which he was already quite successful in applying his own
automated reasoning method based on works of Ritt can be applied as well to deal with such
kind of problems.

To begin with, let us first recall some fundamental notions and the basic principles
underlying such method for which we refer for more details to [3,4] and [5, 6].

Let F be a DIFFERENTIAL FIELD (abbr. d-FIELD) which for the present paper may be
understood to be simply the d-field of all rational functions of some parameter t considered
as the time. To any DIFFERENTIAL POLYNOMIAL (abbr. d-POL) P (# 0) in some
indeterminates X3, ..., X, over the basic d-field F' we shall associate a 4-tuple of integers
[t crd], called the INDEX-SET of P, in notation ind (P), as follows.

t = number of actual terms in P,

¢ = the greatest subscript ¢ for which X, occurs actually in P, to be called the CLASS
of P, and be denoted as cls(P).

7 = the highest order r for which the r-th derivative D, X of the above X, occurs actually
in P, to be called the ORDER of P and to be denoted as ord(P).

d = the highest degree d of the above DX, which occurs actually in P, to be called the
DEGREE of P and to be denoted by deg(P).

For a d-pol P with cls(P) = ¢, ord(P) =, and deg(P) = d, we shall call the derivative
D, X, the LEAD of P, to be denoted by lead(P). Let L be this lead. Then the coefficient
of L4, which is itself a d-pol, is called the INITIAL of P, to be denoted as init(P). The
formal partial derivative of P w.r.t. L is then called the SEPARANT of P, to be denoted
by sep(P). Naturally, all these terminologies come from works of Ritt.

For d-pols in indeterminates Xj,..., X, over the d-field F' we shall consider a partial
ordering < defined in the following way. Let Pi, P, be d-pols with index sets [t1 ¢i71d;]
and [tacprada| resp. We say then P1 <« P if one of the following cases occurs:

(a’) ¢ < c2,
(b) ¢1 = ¢2, but 11 < 7,
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(C) c] = Cg, 1 =19, but dy < do.

With respect to such a partial ordering of d-pols we can then introduce the notions of DIF-
FERENTIAL ASCENDING SET, DIFFERENTIAL BASIC SET, and DIFFERENTIAL
CHARACTERISTIC SET (abbr. d-ASC-SET, d-BAS-SET, and d-CHAR-SET resp. )just
as in the case of ordinary polynomial. We define also the notion of &-REDUCED as that of
REDUCED in the ordinary case.

Consider now a d-asc-set d-ASC consisting of d-pols

-Pl,PQy“-yPs (d‘ASC)
with
0 < cls(P1) < cls(Pp) < -+ < cls(Ps).
For any d-pol G we have then the following REMAINDER FORMULA:

I T1S)6 = S QP+ R
J

1

in which I;, S; are the respective initials and separants of d-pols in d-ASC, L; and M; are
certain non-negative integers which will be taken to be as small as possible, and Qy, R d-
pols with R d-reduced w.r.t. d-ASC. The d-pol R is accordingly called the d-REMAINDER
{abbr. d- REMDER) of G w.r.t. d-ASC, to be denoted as d-remdr(G/d-ASC).

A finite set of non-zero d-pols is called a DIFFERENTIAL POLSET (abbr. d-POLSET).
Let such a d-polset DPS be given. A d-pol in the same indeterminates X; but over an
arbitrary DIFFERENTIAL EXTENSION FIELD (abbr. d-EXT-FIELD ), F of F will be
said to be a SOLUTION (abbr. SOL) or d-ZERO of the set DPS if it satisfies all the
equations P = 0 for P in DPS. The totality of all such solutions or d-zeros will be denoted
by d-zero (DPS) and the totality of only those which are not d-zero of a given d-pol G will
be denoted by d-zero (DPS/G).

Given a d-polset DPS we can deduce, just as in the ordinary case, a d-char-set DCHR in
a mechanical way. We have then, also as in the ordinary case, the formulas below:

d-zero (DPS) C d-zero (DCHR), (N
d-zero (DCHR/K) C d-zero (DPS), (IT)
d-zero (DPS) = d-zero (DCHR/K) + Z d-zero (DPSy). (11T)

k
in which K is the product of all initials and separants of d-pols in DCHR, and DPS;, are
d-polsets which are the enlarged DPS with one of the initials or the separants adjoined to it.
The formulas (I) - (III) are at the basis of all our considerations about mechanization of
mathematics in the case involving differentiation.
Come now to the problem proper as cited in the title of the present paper. Let us first
formulate the Kepler’s laws (K) and the Newton’s laws (V) in the manner as given below:

(K1) The planets move in elliptic orbits around the sun as focus.
(K3) The vector from the sun to the planet sweeps equal areas in equal times.
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(K3) The squares of periods of planet is motions are proportional to the cube of the semi
major axis of the elliptic orbits.

(N1) The acceleration of a planet is inversely proportional to the square of the distance
from the sun to the planet.

(N2) The acceleration vectors of planets are directed toward the sun.

In order to deduce mechanically the Newton’s laws (N}), (N2) from Kepler’s laws (K3) —
(K3) (actually only (K1) - (K9) will be sufficient) let us take first coordinates and transform
the various laws into equation forms as follows.

Take polar coordinates with the sun at the pole and the major axis of the elliptic orbit
as the polar axis. Then the orbit will have an equation of the form

r=p/(1 - e*cosw) (1)

in which w is the angle between the polar axis and the vector from the sun to the planet. The
Kepler’s law (K1) corresponds to the equation (1) and also (2)~(3) below taken together:

p = const , or p’' =0, 2)

e = const , or ¢ =0, (3)

in which the prime means derivative w.r.t. the time ¢. Similarly Kepler’s law (K3) will
correspond to the equations (4), (5) below:

2y = h, (4)

K =0. (5)

Let us take also rectangular coordinates (z,y) associated to the above polar coordinates
(r,w). Then the Newton’s laws Nj, Na will correspond to the following set of equations:

"+ ")) =k, (6)
kl = O, (Nl 3 7)
zy" = ym". (Nz, 8)

Now between the polar and the rectangular coordinates we have also the equations (9) - (13)
below:

Z = T1Cosw, ()]

y = rsinw, (10)

cos?w + sin®w = 1, (11)

(cosw)’ = —(sinw)w/, (12)

(sinw)’ = +(cosw)w'. (13)

To proceed further let us first remark that it is immaterial whether the equations (9) - (13)

are dependent or not. What is important for us is that the computer can not recognize
any irrational or transcendental entities like sinw or cosw. This can however be remedied
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simply by treating cos w and sinw just like indeterminates connected by relations (11) - (13).
To apply our implemented programs let us now introduce indeterminates in replacing the
various functions by z’s as given below:

(p,e,7,z,y,w, cosw, sinw, h, k) = (221, %22, T31, 32, T33, T1, Td2, T43, T51, T52)-

With this change of notations the equations (1) — (13) will turn to be the equations P; = 0
with P; given by (1')—(13') as shown below:

+1 31 ~ 1% 231 * Tag * Tgg — 1 % 22y, (1)
+1 * zhy, (2"

+1 * zbhy, (3"

+1x 23 vzl ~ 125, (4"

+1 % x5, (5"

+1xzd) # (2he)? + 1w xdy « (203)% — 1 % 250, (6"
+1 * zfy, (™

+1 % 232 * Ty — 1 * 233 * Ty, (8)

+1 % z31 * Tag — 1 * 239, (9"

+1 % z31 * 243 — 1 % T33, (107
+1xady + 1xzis— 1, (11)

+1 % Thy + 1 % T43 * Ty, (129

Ll aly — Lxzgp * Ty (13

Take now the d-polset DPS to consisting of the 11 d-pols (1) —(6), (9')-(13') of the
above set. Remark that the planets move in true non-degenerate elliptic orbits so that we
have

(1:21=p7£0,1'22=6-760,
z31=71#0,233=y#0.
In applying our algorithm for the finding of d-char-set DCHR, of DPS we can then remove

any factors xg1, 92,31 and x33 during the procedure. The DCHR is found to be the 3-th
d-bas-set consisting of the 10 d-pols C; given below:

(14)

—‘;—1*1"21,
+1*z'22,
—1%z31 * 75 * Ty + L* T3y * w9y * (hy)2 + -
—Lxady * (2h)? + 2% 2h v 2o v 2hy + -

41w xd *y waly — L a2l
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—1xz31 + 1% 291 + 1% z0p * 230,
+1 % 23 2 2 2 2
31— 2% 231 x o1 + Lrxy +1xxhp v 33+ -
._1>0<1L‘21>0<{/K§51-|'-1>k;1,‘31>;<:1;22>.<:1;33*ziuY
Flxxzzy —1%x31 % Tog * T4 — 1 % 203,
+1 %231 % x43 — 1 * 33,
+1*w§1*$:11‘1*151,

+1xzh * (2h) 2+ 1wzl * (235)% — 1 % zs0.

The CPU-time for bringing up this d-char-set is 146 sec.. The non-trivial initials are:

I3=—1*:1731*z%1+2*z§1*:l:21+1*acgl*a:gg——1*zgl=+1*131*z%2*m§3,
Iy = +1 % 299, ect..

The separants are essentially the same as the initials, with at most a further factor of
33.

The proof of the Newton’s laws is now readily done. In fact, we find the d-remdrs of the
d-pols (7') and (8') to be both 0 w.r.t. the above dpolset DCHR. By the equation (I) and
the remainder formula we see then the Newton’s laws are true at least in the non-degenerate
case (14). The degenerate case for which one of za1, 222, z31, 33 is zero can be dealt with in
a similar but much easier way.

The Newton's laws have thus been derived in a mechanical way from the Kepler’s laws as
required. However, in proving that the remainders are zero it requires, somewhat unexpected,
a quite long time, viz, a CPU-time of 10875.6 sec.. This defect comes seemingly from
two sources. One is due to inadequacy of programming in the procedure of reductions
so that improvement of the implementation of program is needed. A second one is due
to inadequate choice of coordinate systems. Thus, instead of a mixed use of polar and
rectangular coordinate systems we have tried to use the rectangular system alone. In this
way the Kepler’s law (K1) will correspond to following equations

r=p+ex, (15)

r? =22 447 (16)

together with equations (2) and (3). Similarly, the Kepler’s law (K3) becomes the equation
zy —yz' =h (1n

with h satisfying (5). Replacing now the various functions by the z's as before we have then
to consider a d-polset DPS’ consisting of 7 d-pols (2'), (3'), (5'), (6") and those corresponding
to (15) - (17), vie.

+1%x31 — %o 39 — 1 x 29,

+1 % xhy,
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+1 % zhy,
+lxad, +1xad; — Lxazd,
+1%m3p % Thy — L x B33 % Xy — L% Tp),
+1* zf;,
F1xafy * (afy)® + 1wz + (a43)* + -
—1 % z50.
The d-char-set DCHR’ is readily found in a CPU-time of 106.2 sec to be consisting of
the following 7 d-pols C] as the 2-th d- bas-set, viz.
+1 % xhy,
+1 % zhy,
1wzl (ah) 2+ 1rad vaf +
—2 % zd w oy *wly + 1w gy *aD Ty 4o
— 1l *xdy + ol — 14 237 % T # (zgl)2,
+1 %231 — 1 %299 * T30 — 1 * 291,
+lwady +1ealy —1xal,
+1 % z30 % xhy — L# o33 * Thy — 1 # 231,
1wy x (2lh)® + 1wy« () + -,
—1x I52.

The remainders of the d-pols (7’) and (8') w.r.t. DCHR’ are again found to be zero in a
shorter CPU-time of 5949.7 sec. The Newton’s laws are thus again deduced from the Kepler’s
laws in a mechanical way a little simpler than the way before. It seems that improvement
of the programming will further simplify the proofs in shortening the CPU-time to probably
less than half an hour. We remark that times are naturally all referred to the computer
which we are in use.

The proof presuppose that the Newton's Laws are already known and require merely a
verification. Now suppose that we are in the stage of knowing the Kepler’s experimental
Laws alone, but entirely ignorant of what will be the form of the underlying Laws of Motion.
The Principle in the form of (I) - (III) now furnishes us a method of automatically discover
such unknown governing Laws. For this purpose let us introduce the acceleration a by

a? = (2")2 + (y")? arranging the order of the various entities involved in setting

2y
(p7 €,x,y, 1, h7 a ) - (1321,.’1322,2}317.’1732,.’1,'127251,.’1)11).

Remark that we have deliberately arranged a and r to be the first two indeterminates in
expecting to find some relation between them as few first d-pols in the d-char-set which
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would give us the Laws of Motion to be found. The hypothesis d-polset is now consisting of
7 pols below:

Hy=+41%z12 - 1xzn*zs — 1 *x01,

Hy = +1 % by,

H3 = +1x 10,

Hy=+1%zd +1x22, - 1%z},

Hy = +1 %131 25y — 1 % 230 * Th; — 1 % 51,
Hg = +1#* x5,

Hy = 41 (zi)? + 1+ (@) = 1+ 2%,

In a CPU-time of about 21 min., we find the final d-char-set to be consisting of 7 d-pols of
which the first two d-pols are one in z;; = a? alone and the other in @12 = r and z1; = a?.
The first one gives us thus a differential equation observed by the acceleration. This equation
and the second one between a and r are both too complicate to be of any interest. However,
during the process there appears a d-pol in the 4-th d-polset given by:

'
B=t4xzlyxz1 + xz12 2]

By our general principle of MTD B = 0 should be a consequence of the original d-polset,
i.e., a consequence of Kepler’s Laws. The equation B = 0 is however nothing else but the
Newton’s inverse square law r2+a = const.. We have thus discovered in an automatic manner
the Newton’s Law {N7) from the Kepler’s Laws by means of our general Principle. Moreover,
the d-pol

Hy = Hs + He = +1 % x31 x x5y — 1 * x32 % 73

has its d-remainder already 0 w.r.t. the first d-bas-set BS; consisting of the successive d-pols
H,, H3, Hy, Hy, H5. Hence we have also automatically discovered during the procedure the
theorem Hg = 0, i.e., Newton’s Law (INp).
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Let K be a differential field (abbr. d-field) of characteristic 0 and DPS be a set of
differential polynomials (abbr. d-pols) in indeterminates X1, X2,-++, Xn with coefficients
in K. Let G ‘be any other d-pol in the same indeterminates Xi. Then we shall denote
by Zero (DPS/G) the collection of all zeros of DPS (or solutions of equations DPS = 0)
in any extension d-field of K which are, however, net zeros of G (or solutions of G = 0).
According to theory of Ritt, one determines from DPS a set of d-pols CHS to be called
the characteristic set (abbr. char-set) of DPS. Any such char-set (not unique) will enjoy
the following propertics: (i) CHS is an ascending set (abbr. asc-set) in the sense of Ritt.
(ii) Each zero of DPS is also a zero of CHS. (iii) Let the initials of the d-pols C1,
C2,+--, Cs in CHS, say s in number, be I1,12,--+Is, then each zero of CHS, which
is not a zero of the product J == I1%1I2% -++% Is, is also a zero of DPS.

More precisely, we have the following Ritt Well-Ordering Principle:
Zero(DPS) = Zero( CHS[]) + SUMiZero( DPSi), (1

in which each DPSi is the set of d-pols DPS with Ii adjoined to it. Furthermore, we
have also the following Zero Decomposition Theorem:

Zero(DPS|G) = SUMj Zero(ASCi/Rj), (2)

in which each ASCj is some irreducible asc-set and Rj some d-pol with non-zero remain-
der with respect to ASCj. The ASCj and Rj can all be determined in a mechanical
manner from the given DPS and the d-pol G. The determination of CHS from DPS is
also a mechanical one and we have accordingly programmed on some small computer. In
fact, it is on the formulae (1) and (2) that relies our method of mechanical theorem prov-
ing and discovering of differential geometries. For more details, See [1]. We remark
that as usual all theorems are to be understood in some generic sense.

In this note, we shall consider curve pairs of Bertrand type in metric or affine space
as an illustration of how our method can be applied to discovering theorems connected with
such curve pairs.

Consider thus a pair of curves € and C’ in one-to-one correspondence with arc lengths
s, & as parameters in the ordinary metric space. Let us attach moving frames (P, E1,
E2, E3) and (P, E’'l, E'2, E’'3) to C and C’ at corresponding points P and P’. The
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curvature and torsion of C, €’ will be denoted by K, T, aad K', T’ respectively. Let
P =P+ SUMidj - Ej,
E'i = SUMjUij - Ej, i =1, 2, 3.
Introduce now indeterminates X1, X2, ctc. and change the notations as follows:
ds'/ds A1 A2 A3 U1l U2 U13 U21 U22 U23 U31 U32 U3 KTK' T’
= X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X25 X30 X35 X40,
From the Frenet formulae of C, C' we easily deduce the following set of d-pols in
which d1X¢, d2Xi,--- mean successive derivatives of indeterminate Xi with respect to s:
Pl= 4 1%X5%X9 —1— 1%dI1X6 + 1% X25% X7,
P2 =+ 1%X5%kX10 —1%d1X7 — 1% X25% X6 + 1 % X30% X8,
P3 =+ 1*X5%X1] —1%d1X8 — 1% X30%xX7,
P4 =+ 1% X35%xX5%X12— 1%d1X9 + 1% X25% X10,
P5= + 1% X35%X5%x X13— 1%dIX10— 1% X25% X9 + 1% X30%x X111,
P6= 4+ 1% X35%x X5% X14 — 1%d1X1]1 — 1% X30%X10,
P7= +1%X35%«X5% X9 — 1% X40% X5% X15 + 1 %41X12 — 1% X25% X13,
P8 = 4+ 1% X35%k X5x% X10— 1% X40% X5% X16 + 1%d1X13
+ 1% X25% X12 — 1% X30% X14,
P9 = 4 1% X35% X5% XI1 — 1% X40% X5k X17 + 1 xd1X14
+ 1% X30% X13,

PlI0=— 1% X40%x X5% X12 — 1%d1X15 + 1% X25% X16,
Pll = — 1% X40%x X5k X13 — 1% d1X16 — 1% X25% X15 + 1%X30%x X17,
P12 = —1% X40% X5% X14 — 1 %d1X17 — 1 % X30% X16,

Pl3 =+ 1%X9™2 + 1% X102+ 1% X112 — 1,
Pl4 = + 1% X122 + 1% X132 + 1% X142 — 1,
PIS = + 1% X152 4+ 1% X162 + 1% X172 — 1,
Ple = 4+ 1% X9% X12 + 1k X10%x X3+ 1% X11%x X114,
Pl7 = 4+ 1% X9% X154+ 1%k X10% X16 + 1% X11% X17,
P18 = 4+ 1% X12% X154+ 1% X13% X16 + 1% X14% X17,

Consider now the cases (ij) for which the line of Ei coincides with that of E’j at
corresponding points. For example, the case (22) is the classical one of Bertrand curve
pairs for which the principal normals of C,C’ at corresponding points coincide. For this case
we should add to (DPS) some further d-pols Q1,---08 as shown below to form an
enlargedset (DPS22) such that the 26 equations DPS22 = 0 will coastitute the hypothesis
set for such curve pairs:

01 = + 1% X6,
02 =+ 1% X8,
03 =+ 1%X12,
04 = + 1% X14,
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05 — + 1% X10,
06 = + 1% X16,
07 = + 1% X9 — 1% X17,
08 = + 1% X11 + 1% X15,

Suppose that we are iaterested in finding the yet unkpown relations between the curva-
ture K and torsion T of C. For this purpose let us change the notations further in re-
placing X25 by X1 and X30 by X2 and denote the set of d-pols thus got from (DPS22)
by (KT22). The char-set of (KT22) is readily found to consist of 16 d-pols, of which
the first one is

Cl= 4 1%d1X1%d2X2 — 1%d1X2%d2X1,

We have thus discovered the theorem C1 = 0 which is equivalent to the classical theorem
of Bertrand saying that the curvature X1 = K and the torsion X2 = T of C are conaected
by a linear relation. Moreover, during the procedure we encounter various d-pols whose
vanishing shows that the distance between corresponding points and the angle between the
corresponding tangents are both constants. These classical theorems are thus rediscovered
in an automatic manner, too.

The above example can be extended in various manners as shown below:

(A) Iastead of relation between K and T for the case (22) we may also ask e. g.
relations between T, 7' of the curves C, C’. For this purpose we may first change X30,
X40 in (DPS) to X2, X4. It turns out that the first d-pol of the char-set of the corre-
sponding set of d-pols is

Cl=+41%X2%xdIX4 + 1% X4%d1X2,

We rediscover thus automatically the theorem due to Schell that the product of torsions
at corresponding points of a Bertrand curve pair is a constant. We may try also other pairs
of geometrical entities to see whether they are connected by any interesting geometrical re-
lations.

(B) We may also treat the cases (23), (32), and (33) in the same manner. These
are the cases for which at corresponding points of C and C’ we have respectively:
principal aormal of C = bizormal of C’,
binormal of € = binormal of C’,

We find the first d-pol C1 of the respective char-set with X; =K, X2 =T, X4=17T"
to be as follows:

(KT23):Cl = —1%X1"72%dIX1 + 1% X2 2% 4d1X] — 2% X1 % X2%x d1X2,
(TT'23):Cl = +1% X2 2% X4 2% d1X472 + 2% X2%x X4 3% d1X2x d1X4
1k X4 4% d1X272 — 4% X274 % d1X472,
(KT32) or (K'T'23):C1

=+ 1% X1 2%xd2X27™ 2% X2 — 2% X1 % d1X2%d2X2%d1X1% X2
+ 1% d1IX272%dIX17 2% X2 — 2% X177 2% d1X27°2% d2X2
+ 2% X1%d1X27 3% d1X1 + 4% X174 % d1X27 2% X2,
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(KT33):Cl = + 1% X2,

The formulae (K723) and (TT'23) show that for a Bertrand curve pair of type (23)
we should have KA2 + T A2 = constx K, atheorem due to Mannheim, and also T'%-T*A
2 =const* (T+7T'). On the other hand, the formula (KT33) shows that only planar
curves can form Bertrand pairs of type (33). All these theorems are discovered in an
automatic manner,

(C) We may also consider curve pairs C,C’ of Bertrand type in an affine space. In
fact, let ds be the affine arc element of C, then we may attach Freiet-Darboux frames
(P, E1, E2, E3) to C such that

dPlds = E1,
dEl[ds = E2,

dE2/ds = E3,

dE3/ds = —T.El — K.E2,

in which K, T are the affine curvature and affine winding of C, Similarly for €', If the
affine principal normals of C coincide with those of C’ at corresponding points of C, C’,
then treating the pairs as before in the case (23), we rediscover various theorems due to
Ogiwara, cf. [2]. For the relation between K and T of such a pair we get, however, a
d-pol of 30 terms involving 437 and d2K both to the power 2 which seems to be too com-
plicated to have any geometrical interest. Other cases can be treated in the same manner.

(D) We may consider also curve pairs connected by some relations of geometrical
interest, ¢. g. with tangents, principal normals, or binormals parallel to each other at cor-
responding points, etc. We may also consider curve pairs in a projective space, a confor-
mal space, etc., with certain significant lines of these curves at corresponding points con-
nected by certain geometrical relations, etc. Clearly our method applies equally well to
dealing with all these cases to discover possible new theorems of geometrical interest what-

socver.
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A MECHANIZATION METHOD OF GEOMETRY
AND ITS APPLICATIONS

1. MECHANICAL PROVING OF POLYNOMIAL
INEQUALITIES AND EQUATION-SOLVING*

Wu Wenjun (Wu Wen-tsiin % X&)

(Institute of Systems Science, Academia Sinica, Beijing, China)

Abstract

This is the third paper of the series entitled “A mechanization method of geometry
and its applications”, cf. {WU3—5]. In the present paper it is shown how inequalitie
can be proved by means of the author’s Zero Decomposition Theorem of eguations solving.
Numerous examples are given which deal with definiteness of polynomials, inequalities between
symmetric polynomials, trigonometrical inequalities, and geometric inequalities.

1. Some Generalities

Let PS be a polset in variables X1, X2, ***, Xn on the basic coefficient field

K of characteristic 0. Let us form the charset CS of PS with initials I7 of pols in
CS. During the procedure we may remove certain factors Fj for the sake of
lessening the computational work. Let us denote by J the product of all such
initials and removed factors. Then we have the following formulas for the sets
of zeros (—< stands for "is contained in”):

Zero (CS/])—< Zero (PS)—< Zero (CS), (1)

Zero (PS)=Zero (CS/])*+SUM#k Zero (PSk), (1)
in which each PSk is the polset PS enlarged by djoining to it either an initial
li or a removed factor Fj. By treating each of PSt in the same manner and
proceeding onwards, we shall finally arrive at the following ZERO DECOMPOSI-
TION FORMUIA (in the weak form):

Zero (PS)=SUM#k Zero (ASCK/]k), (Tm)
in which each ASCk is an ascending set with /& the product of all the initials in
ASCk and the zeros will be understood to be in a definite extension field of K
and in a certain pre-determined open domain O of the (X1,--, X»)-space §.
Formulas (I)—(IIl) offer us a general method of solving an arbitrary system of
polynomial equations. Moreover, these formulas and their extensions to the
differential case are also on the basis of our general mechanization method of
geometry. Some applications of this method have been described in the previous
onesones of this series, cf. [WU3—5]. As a further application we shall take / to be the
field and show in the present paper how to apply the method to the mechanical proving
and hence also mechanical discovering, of polynomial inequalities. In fact, for the proving
of inequalities a general method is already furnished by elemenfary calculus. We have only
to proceed a little further in solving the respective equations hy applying formulas (I) —(III).

+* Received December 21, 1987.
This work is supported by NSFC Grant J1 S5312.
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In more betails it may be described as follows.
In the simplest case a polynomial inequality may be put into the form for
some constant a,
G(X)>=alor G(X)>a) (1.1)
in which G is a pol on real (actually rational or even integral) coefficients and X
stands for (X1, -+, Xn) restricted to the given open domain O. (1.1) is equivalent to
saying that the greatest lower bound glb of G(X}or X in O is >=g (or>a). In
problems like linear programming () will be the interior of a convex polyhedron
and the glb will be attained as the least value of G(X)at some vertex on the
boundary of this polyhedron. On the other hand, for a large number of inequalities
(1.1) which one encounters in mathematics it could be verifified by direct
computations, geometrical considerations, or any other means, that the following
condition would hold true for R = closure of O:
(C) The values of pol G(X)for X in R will attain its least value in the interior
of R.
We shall now restrict ourselves only to inequalities verifying (C). For such
inequalities the problem is now reduced to proving that
min G(X)>=a (or min G(X)>a) (1.2)
for (X) in 0. Now the points (X) in O which render G to be extremal, i.e. either a
local minimum or a local maximum, should satisfy the following equations as
NECESSARY conditions:

Di G=0, =1, -, n, (1.3)
in which Di means derivative w. r. t. Xi. The proving of inequalities (1.1) is thus
reduced as a first step, under condition (C), to solving equations(1.3), which can be
done by means of (I)—(II). Among the solutions found we shall choose those whic
will render the value of G to be the smallest, say G 0. We have then to verify that G0>=
alor>a) and to test whether this is really a local minimum. The last test can be done
by forming the second variation, viz.

V=G{Z+ E)-G(Z), (1.4)
in which Z=(Z1, ---, Zn) is the zero of G in question and E=(E1, ---, En) is some
small variation of Z. It is then enough for the proof of inequalities (1.1) if we can
prove, as a SUFFICIENT condition, that the form V is positive definite for FEr
sufficiently small. The positive definiteness of such a form V is again a problem
of the same type as above and may be reduced to equations-solving. Moreover,
let @ be the quadratic part of the second variation V, viz. the quadratic form

Q=SUMy DiyG+ Ei* Ej, (1.5)
in which Dij means the second derivative w.r.t. X7, X; with values taken at the
corresponding point. Then it will be sufficient to show the definiteness of ¢ which
is easily done.

More generally we have to prove an inequality of the form (1.1) under some
restricted conditions (H; again real pols)

Hi(X)=0, i=1, 2, -, m. (1.6)
We shall restrict ourselves again only for the case with condition (C) verified,
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with however R to be understood as the closure of the intersection of O and the
algebraic variety defined by (1.6). In this case, again as in the elementary
calculus we may form the IAGRANGIAN pol
L=G+SUMi{Mi*Hi, a.n
in which Mi are the lagrangian multipliers. Then the points rendering G minimum
with (1.6) satisfied can usually be sought among the solutions of the system of
equations (1.6) and (1.8) below:
Di L=0. a.®
With zeros found by means of (I)—(III) we may then proceed as before. In general
equations (1. 6) may however be dependent. In such cases the method of lagran-
gian multipliers is usually non-applicable and some preliminary treatment, e.g.
formation of char-sets, may be necessary. Let us suppose that this has already
been done in case of necessity. Qur general procedure of proving inequalities under
condition (C) can thus be described as follows.
Step 1. Denote the system of pols H7 in (1.6) by PS and decompose Zero
(PS) as in (III).
Step 2. For each ascending set ASCL with successive  pols Akj and
corresponding initials 47 let us form the lagrangian pol

Lk=G+SUM; Mkj+Akj a.e»
with lagrangian multipliers M#;.
Step 3. Form for Lk the equations
Di Lk=0, i=1,-, n, a1.10
Solve #~r the system (1.6) and (1.10)together byour general method of equations-
solving amd determine all such zeros lying in the open domain O and rendering
JE<>0.

Step 4. Test whether each such zero in Step 3 is a real minimal point by
forming the second variation er its quadratic part as in (1.4) or (1.5). Note that
not only the zero Z, but also the variation Z+ E, should be so chosen to verify
equations (1.6). Suppose that this has been done. Choose then among the minimal
values the smallest G’ with corresponding zero Z=(Z1, ---, Zn).

Step 5. Test the validity of the lagrangian multiplier method in verifying that
the rank of the matrix [ D7 Hj] at the corresponding zero Z is equal to m. We
suppose that this is really the case.

Step 6. Determine the zero at which rank of the matrices [D; H;}isless than m
and verify whether they do not furnish the smallest value of G.

If the tests in Steps 4—6 are all done in the affirmative, thenthe procedure has
succeeded and (1.1 is proved as required under the restricted conditions (1.6),
so far (C) is assumed to be true.

The ahove procedure may be modified in various manners. We may, for
examplé, either omit Step 1 or, instead of using the complete decomposition (III)
in Step 1, use only (II) and proceed further with Zero (PSk) if it is necessary. We
may also omit Step 4 or 5 in case the definiteness of the quadratic part @ can be
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ascertained by direct geometrical or other considerations.

The above method of proving inequalities is a mechanical one but not at all a
complete one. In fact, even in such a simple case of a polynomial G there are no
existant conditions, which are both necessary and sufficient, for G to be a local
maxiaum or minimum at a certain point. We have therefore to satisfy ourselves
with methods which are sufficiently efficient to prove non-trivial inequalities,
leaving aside the question of completeness. We remark also that the procedure
described above is just the same as in any textbook on elementary calculus. The
only difference is perhaps the use of the method of polynomial equations solving,
as embodied in the formulas (I)—(III), which has greatly enlarged the field of
inequalities proving. Moreover, the method described, though far from being
complete, can however be programmed and worked out on a computer and is
-already found to be quite efficient as may be seen from examples in the following
sections. It furnishes us with a means of discovering “new” inequalities without
knowing a priori their possible forms as seen from these examples too. These
examples are somewhat of a typical character and hundreds of quite non-trivial
inequalities can be in fact proved according to their pattern.

2. Definiteness of Polynomials

Let O be an open domain in the (X1, - Xn)-space S. Then a real pol G in
X=(X1, ---, Xn) is said to be POSITIVE DEFINITE or SEMI-DEFINITE in O
if for all X in O, we have G(X) >0 or G(X)>=0. Similarly for NEGATIVE
DEFINITENESS or SEMI-DEFINITENESS. The determination of the defiitneeiss
of such a real pol can be reduced to a problem of equations-solving which, quite
often, can be achieved in the manner described in Sect. 1, if G(X) attains its least
value >0 or >=0 at points in the interior of 0. The following is a concrete
example which serves as a simple illustration of our general method.

Example 1. The Motzkin pojynomial

G=1+X1%» X2+ X1%» X22—3+ X1%2» X292 2.0
is semi-definite positive in the whole (X1, X2)-plane.

Probf. L'et X move along a line through the origin to the infinity. The values
of G will clearly become plus infinity 1f the line is different from the x1-or r2-axis
on which G has the constant value +1 . It follows that & will attain its least value
in some finite part of the plane or that condition (C) is observed in this case. We
may thus apply the procedure as described in Sect. 1.

Form thus the derivatives

D1G=2+ X1+ X2?= (X22+2+ X1*-3),
D2G=2x+ X12+ X2+ (2 X124+ X2?-3).
The set Zero (D1 G, D2 G) consists of 3 parts, viz.
{0, X2)), {((x1,0), {1, 1, (1, -1, (=1, 1), (-1, =D}

We have G=1 for (0, X2) or (X1, 0), but G=0 for (1, 1), etc. Consider e. g. the
point (1, 1). Set
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X1=1+E1, X2=1+E2

with E1, E2 small. The corresponding quadratic part Q of the second variation is
found to be

Q=4+ E124+4+ E22~4+« E1* E2>=0
with @=0 only for E1=FE2=0. It follows that G takes its minimums at the point
(1, 1), and also at (1, --1), etc. with value 0. Hence G>=0 as asserted.

It may happen that a real pol is definite or semidefinite positive in some smal
domains but not so in a certain larger open domain O. For example, let a, b, ¢ be
the three sides of a triangle so that besides

a>0, b>0, ¢>0 @2.2)
we have also
b+c—a>0, c+ta—5b>0, a+b—c>0. Q2.
Now the area A of the triangle is given by the formula
16« A?=—a*—b*—c*+2x b2+ 2+ 2+ 2+ g®+ 2+ a* + b?
=(b+c—a)*(c+a—b)*(a+b~—c)*(a+b+c).
The pol in the right side of the first line is thus a positive definite one in the open
domain O defined by inequalities (2.2) and (2.3). It is clearly not so in the larger
open domain defined by (2.2) alone. The following is another example.
Example 2. The pol
G=—a?—b?—c?+2+b*c+2+cra+2+a+b Q.0
is definite positive in the open domain O defined by (2.2) and (2.3).
Proof. In view of (2.3) we can set
b+c—a=2+2?
c+a—b=2xy? Q2.5
atb—c=2+2z*
with £ >0, ¥ >0, 2>0 so that
a=y?+ 2%
b=2%+12% 2.6
c=x2+y2
By direct compution we find G of (2.4) is given by
G=4+ (y? 22422 » 2%+ 22+ y?) >0
as to be proved.

Remark that G of (2.4) is again non-definite positive in the larger domain
defined by (2.2) alone.

The method of proof here in introducing (2.5) and (2.6> may be quite useful
in proving inequalities involving sides of a triangle.

3. Inequalities Involving Symmetric Polynomials

There are numerous inequalities involving symmetric pols. We shall prove a
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few below to illustrate our general method.
‘Example 3. For q, b, ¢>0 we have
(b+c¢)*(c+a)*(a+b)>=8*a+b+c, 3.
and the equality occurs only for a=b=c.
Proof. In order to take into account g, b, ¢ >0, let us introduce new variables
x21, x22, x 23 according to Seidenberg in setting
xll=a>0, x12=56>0, x13=c>0, Q.2
212+ x11=1, 2222+ x12=1, 2232+ x13=1. 3.3
We have then to show that
min G=8
under conditions (3.3) in which
G=(x124+213) * (x134+x1¥) * (x11+212) » x21%2 « 1222 » 232, 3.4
Form thus the lagrangian pol
L=G+z101 » (2212 * x11—1) + 2102 * (2222 + x12—1)
+2x103 * (x23%2* 2x13-1), Q3.5

in which 101, x102, and x103 are the respective lagrangian multipliers. We shall
denote also by x10 the extremal value of G to be found.

Denote by PS the polset consisting of the pols corresponding to (3.3), the 6
derivatives DiL with =11, 12, 13, 21, 22, 23 and the pol G—x102 Then we have
to find extremal values of G by determining the set Zero(PS). Now the char-set
CS (in the weak sense) of PS is readily found to be consisting of 9 pols with the
first three given by

Cl=x102-8,

C2=3+x12—x11 * (2102-5),

C3=—6+x13+x11 = (x102-2).
During the procedure we have however removed the following factors

x11, x12, 213, x10, x114+x12,

10241, 4+ x102+1, x10%41,
which are all necessarily non-zero. The only non-trivial initials of CS is x11 and
is also non-zero. It follows that (II) applied to PS becomes simply

Zero(PS)=Zero(CS).
We find thus the only possible solutions of our problem:
x10%=38,
xll=x12=x13>0,
121=x22=x23=+or—sqr(xrll).
To see whether these values furnish the true maximum or minimum, let us conside

e. g. the point for which x11, x12, x13, 21, x22, x23 are all equal to 1. Take a nearby
point by setting

z11=1+z11", x12=14+212", r13=1+213,
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x21=14x21", x22=14+222", x23=1+x23
with small ' such that (x11, -+, £23) satisfy all the above equations too. It is
readily verified that for the second variation the quadratic part of [G(1+z’)
-~ G(1)1/2 is given by
x1124 21224213 2—x12" » 213 —x 13 + 211" —x 11" » 2 12°

which is >0 for x11°, r12’, x 13" not all equal and =0 otherwise. In the latter
case we have however always G(1+2x")=G(1). It follows that x10>0 with
2102=8 is a true minimum and (3. 1) is proved.

In the above proof we have introduced new variables x 21, x 22, £ 23 to take
into account conditions (3.2). This would cause unnecessary complications in
computations. In fact, we can avoid this in removing simply any such factors x 11,
x 12, £ 13>0 during the procedure. Instead of treating Ex. 3 in this way let us
consider another example below as an illustration.

Example 4. For a, 5, ¢ >0 we have

3x(b+c)+(c+a)* (a+b)<=8x(a®+b3+c?). (3.6)
Proof. Let us introduce x 11, x12, x13 as in (3.2) and set also
x2l=x12+x13, x22=x11+x13, 2z23=x11+x12, (3.7
30=x11%4+21234+ 1133, 3.8
221+ x22+ x23=x10+ x 30, 3.9
The polynomial to be extremized is then
G=x10

under the above conditions (3.7)—(3.9>. Denote the pols corresponding to equa-
tions in (3.7)—(3.9) by P1, ---, P5 and form the lagrangian pol
L=x10+x101 » P1+---+x105* P5,
We have to find the set Zero( PS) where PS consists of the 5 pols Pi and the 8
pols DiL with 1=30, 23, 22, 21, 13, 12, 11 and 10. The char-set of PS is readily
found to be consisting of 12 pols of which the first three are
Cl=3+x10-38,
C2=x12—x11,
C3=—18*x134+15+x11+*210—22 + x 11.
The factors removed during the procedure are x101, £10, 221, x1l1.
The non-trivial initial occuring in the final char-set is x 11. It is readily seen that
there is no necessity to proceed further to study Zero(PS’) where PS’ is PS
enlarged by adjoining any one of the above factors or initials. Hence the only
solutions to our problem are given by
r10=8/3, xll=x12=x13 or a=b=c.
We ohmit the verification that they furnish actually maximums and (3.6) is thus
proved.

Let us write any pol symmetric in » variables V1, -, V# with a typical term
T=V1E » o x Uyt
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as SYM » T. Between the various typical terms of fixed total degree there may be
introduced a partial ordering by majoration, in notation: T1<72 or T2>T1 if
T 1 is majorized by T 2. For exact definition we refer to {HLP), p. 45. A theorem
of Muirhead says that between two symmetric pols SYM# 71 and SYM#» 72 in
the same variables Vi >0 and of the same total degree there is some inequality
connecting them if and only if 71, T2 are comparable in the above partial
ordering. More precisely, for T1<€ T 2 we have
N2+SYM#n T1<=N1*SYMu#n T2,
in which N 1,N 2 are the number of terms in the two symmetric pols.In particular,
for »=3 we have
VIS VI2« V2> V1 V2« V3.
By the Muirhead theorem we have therefore
2+SYM3 V13>=SYM3 V1%« V2,
SYM3 V12+ V2>=6+«SYM3 V1= V2+ V3.
Examples 3 and 4 follow immediately from these two formulas and are thus only
very special cases of the general Muirhead theorem. In view of this it is therefore

of interest to consider the following example which is not covered by the Muirhead
theorem.

Example 5. For a triangle with sides ¢, b, ¢ and perimeter

at+b+c=2+s (3.10)

we have the following inequality due to Santalo:
saqr(s—a)+sqr{s—b) +sqr{s—c)< =sqr(3 *s). (3.1D

Proof. Let us set, besides (3.2),
x10=s, x15=sqr(s), (3.12)
x2l=sar(s—a), x22=sqr(s—b), x23=sqr(s—c). (3.1
Then the po! to be extremized is x22 give by

x15 * x20=x21 +x22+ x23. (3.14)

Let Pi, i=1, -+, 6, be the pols in x corresponding to equations in (3.12)—(3.14)
in taking account of (3.10). Form the lagrangian pol

L=x20+2101+ P1+--+x106 * P6.
Let PS be the polset consisting of Pi and DjL for j=10, 11, 12, 13, 15, 20, 21, 22

and 23. The char-set is readily found to be consisting of 14 pols of which the first
five are

Cl=3+x11-2=* x 10,

C2=2+x12-2+x10+x 11,
C3=x13-2+x10+x11+x12, (3.19
C4=x15?—x10,

Ch=x20%+ x10—3 * x 152

The factors removed during the procedure and non-trivial initials in the char-set
are
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2101, 23, 20, x15, x11, x10, x11—x10.

All these are >0 except possibly 101 and 211 —x10 which occur both as removed
factors. The latter one causes collapse of the triangle and may be discarded. We
have therefore

Zero( PS)=Zero(CS)+Zero( PS1), (3.16)
in which PS1 is PS enlarged by adjoining the pol x 101. It is readily seen that PS1
is contradictory so that (3.16) reduces to

Zero(PS)=Zero(CS). 3.1
From the expressions of Ciin CSas given by (3.15) we see that the only solutions
are given by
z11=x12=x13=2+ £ 10/3, etc.
with the corresponding extremized value given by
z20=sqr(3).
It may be verified as usual that this value of £ 20 is a maximum. Now the open
domain O of the problem is defined by (3.2) and
2124+ 213>211, 2 11+213>x212, z11+212>213.
For a point on the boundary of O with 124+ x13=x11,we haves=b+c,s—a=0,
s—b=c, s—c=b so that
x29=(sqr(b) +sar{c))/sqr{b+c) < =sar(2) <sqr(3).
Similarly for a point on the boundary of O with x11=0 we have ¢=0, s=b=c,
s—a=s, s—b=0, s—¢=0, so that
x20=1<sqr(3).

Condition (C) is thus seen t6 be observed and the inequality (3.11) is proved.

4. Trigonometrical Inequalities

Inequalities involving trigonometrical functions occur quite often in examinations
or problems-solving of elementary mathematics, as may be seen from the columns on
Problems and Solutions of Amer. Math. Monthly. We shall show that our method
works also for such kind of problems, in spite of the fact transcendental functions
are involved in the inequalities. The point is to replace such transcendental
functions by their interrelated algebraic relations which, but not the functions
themselves, are the only factors playing the essential role in the inequalities. We
remark that this principle was already pointed out in the first papér on mechanical
theorem proving of the author ((WU1]) and has been applied to various kinds of
problems. The following example is now one of the simplest to apply the principle
this time t¢ inequalities.

Example 6. For a triangle ABC with angles

A+ B+C=pi, 4.D
we have
sin A+sinB+sinC< =3 *sqr(3)/2, 4.2
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sin A + sin B * sin C<=3 = sqr(3)/8, 4.3
cos A+cos B+cos C<=3/2, “.0
cosA +cos B *cosC<=1/8. 4.5

Moreover, in each of the inequalities the equality occurs only if the triangle is an
equilateral one.

Remark. Let us form as in elementary calculus, for e.g. (4.2), the
lagrangian pol
L=sinA+sinB+sinC+M+ (A+B+C—pi)
with M the lagrangian multiplier. From
DL/DA=DL/DB=DL/DC=0
we find

cos A=cos B=cosC

and (4.2) is readily proved. This is the same for (4.3)—(4.5) and many other
trigonometrical inequalities of similar type. However, such a method may lead in
more general cases to transcendental equations which it is almost impossible to
deal with. For this reason we prefer to apply our general method as indicated
above in the beginning of this section.

Proof. Let us set

sinA=x11, sinB=x12, sinC=x13, 4.6
cos A=x 21, cos B=x22, cosC=x23. “.D

Then we have between the z’s the following algebraic relations:
x 1124 121%2=1, 122+ 222=1, r13%2+ 1 23%=1. 4.8

Moreover, from (4.1) we have sin A=sin(B+C), cosA=—cos(B+C), etc.
Hence we have also

x1l=x12+ 2234213+ 222, x21=—x22+« x23+x13*x12, “. 9

x12=x13+221+x11*x23, £22=—x23*x21+x11* 213, 4.10

X13=x11+x22+x12* 221, x23=—x21 »x22+x 12 *  11. 4.1D

For the case 4.2) the pol to be extremized under the restricted conditions

4.6)—4.11) is x 114+ 212+ x13. The open domain O in which the extremal

points are to be found is defined by

0<x11«], O<x12<1, 0<x13<], 4.12)

0<x21<], 0<x22<1, 0<x23<]. 4.13)

In the present case the lagrangian multiplier method is inapplicable since equations

(4.8)—(4.1D) are not independent. We have first to find an independent set of

conditions equivalent to (4.8)—(4.11) by determining the char-set oi the polset

corresponding to these equations. This char-set is readily found to be consisting
of 4 pols‘of»which the first one is given by

Pl=x13*+x 12+ 2 11°+4 » x 112+ £ 122 » £ 132
—2+ 72122+ 21322+ x 112+ 2 132—2« 2 112+ 2 122 4.1
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We remark that P1=0 corresponds to the equality of two different expressions
for the area of the triangle. We remark also that the derivation of P1 follows our
general method of determining unknown relations, in the present time between
sin A, sin B and sin C of a triangle, as described in [WU4, 5]. It follows that we
may replace the polset corresponding to (4.8)—(4.11) by the pol P1 alone with
the corresponding open domain O defined by (4.12).

We are thus in a position to form the lagrangian pol

L=x114+x124+x13+ 2101 =« P1.
Let PS be the polset consisting of pol P1, the derivatives DiL with ;=13, 12, 11
and also the pol

x1l4+x124+213—x10

with x 10 as the extremal value to be found. By our general method we find that
the char-set of PS is a contradictory one if we remove during the procedure the
factors

x12, x 11, x13—x12, x12—x11.
As x12>0 and x11>0 we have by our general formulas

Zero (PS)=Zero (PS1)+Zero (PS2), 4.15)

in which PS1 and PS2 are the polsets PS enlarged by adjoining to it x13—x 12
and x 12—z 11 respectively.

Consider first Zero (PS1). The char-set of PS1 is readily found with first pol

Cl=(4*x102—27) » (x 102—4)2

The factors removed during the procedure are z 11, x 10and4 » x 102+ 9 whichare
all>0. Hence we may separate Zero(PS1) into two parts with PS1 enlarged by
adjoining 4 * £ 102—27 and x 102—4 respectively. For the first part the char-set is
given by

Cl=4»210%—27,

C2=-3*»x11+x10,

C3=2+x12+x11—x10,

Ci=x13-x12, etc.
No factors have been removed and no non-trivial initials appear. The only zeros
for this part are thus given by

r10=3+sqr(3)/2, z1l1=x12=x13=2x10/3. (4.16)

For the second part we find that the char-set is contradictory with £ 11>0 as the
only factor removed. Hence it contributes no new zeros and the set Zero (PS1) is
thus solely given by (4.16).

Consider next the set Zero (PS2). The first po1 of the char-set is found to be
—(4 » £102—27) » (2 102—4)® with the following factors removed during the
procedure:

210, 2+ x11—210, x 10254, 5 * x 102+ 216.
The set Zero (PS2) is thus formed by 4 parts: the zero-sets of PS2 enlarged by
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4+ 1102—27, £102—4, 2+ x11—x 10 and x 10%2—54 respectively. For the first part
the char-set is given by

Cl=4+2x102-27,

C2=3+x11—x19,

C3=x12—2x11,

Ci=—-xr13—r12~x114x10, etc.
The zeros are thus again given by (4.16). On the other hand the other 3 parts
are all contradictory and furnish no zeros at all.

In summary we see therefore from (4.15) that Zero (PS) is composed of the
set given by (4.16).

It remains to verify that the value of 10 taken on the boundary of Q is < =
the one given in (4.16), which is easily done.It remains also to verify that x 10 in
(4.15) is really a maximum, which is also easily done by direct computation. This
completes the proof of (4.2).

We have carried out the proofs of (4.3)—(4.5) in the same manner. We
remark only that in the case of (4.4) or (4.5) we have set, in order to simplify
the computations, instead of (4.6),

sin A=x 31, sin B=x 32, sin C=ux 33. 4.6)’
With relations as in (4.8)—(4.11) the char-aet of corresponding pols is then
given by
Pl =x2324 1222+ x21242+ 221 = 222+ x 231, etc. ‘
Remark that P1' =0 gives the relation between cos A, cos B and cos C under condi-
tion (4.1). The remaining proofs are similar to the one above for (4.2) and are a

little involved. We can however apply a much simpler method of proof as described
below.

Example 7. An alternative method of proving (4.2)‘(4.55.
We remark that both sin A and cos A can be expressed rationally in terms of
tanA/2, and similarly for the others. Let us set therefore

tanA/2=x11, tanB/2=x12, tanC/2=x13, 4.17

sinA=x21, sinB=x22, sinC=x23, 4.18

cosA=x3l, cosB=x32, cosC=x33. 4,19

We have then

£33 (1 +x133)=2+x13, 223+ (1+x132)=1—x13?% (4.20)

232+ (1+2128)=2+x12, 22+ (1+x12?)=1-x122%, 4.2D

31+ (14+x11%)=2+x11, x21 « (1+x113)=1-x 112 (4.22)

211+ 2124211+ 2134+212» 213=1. (4.23)

Remark that (4.23) is the relation between tan A/2, tan B/2, tan C/2 because of
condition (4.1).

Let us chnsider e. g. the case (4.2). Let P1, ---, P4 be the pols corresponding
to the equations in ¢4.23) and those in x21, x22, x23 of (4.200—4.22). Form
now the lagrangian pol

318



No.1 A MECHANIZATION METHOD OF GEOMETRY AND ITS APPLICATIONS III 13

22142224+ x23+2101 * P1+--+x104 + P4
and its derivatives w.r.t. 11, 212, 213, x 21, x 22, x 23. Consider now the pol-spt
PS consisting of these derivatives, the pols P7, and the pol
r2l4+x224x23—x210

with r 10 the extremal value to be found. The char-set CS is readily found to be
consisting of the following pols:

Cl=4+x10>-27,

C2=—9+*x11+2+ 210,

C3=—-x12+x11,

Ca=x13+x12+x13+x12* 2111, etc.
The factors removed during the procedure as well as the non-trivial initials of

the char-set are
x13, x 124211, £112+41, x122+1, x 13241

which are all>0. We thus find again Zero (PS)=Zero (CS) is composed of
x10=3 * sqr(3)/2,
x1l=x12=x13=sqr(3)/3,
xr21=x22=x23=sqr(3)/2.

Inequality (4.2) is thus again proved in a manner much simpler than the one given

in Example 5. Similarly for (4.3)—4.5).

The inequalities (4.2)—(4.5) are symmetric in the angles A, B, C and the
final result is easy to guess. For a non-symmetric inequality of which the final
answer is not easy to foresee let us consider the following

Example 8. For x1, x2, x3>0 we have for a triangle ABC

rl*xcosA+x2+cosB+x3*cosC
<=(x2+x3/xl+x3*xl/x2+x1*x2/23)/2 (4.24)

Proof. Let PS be the polset consisting of pols Pi corresponding to equations
in (4.20) — (4.23) not involving x21, x22, x23 and the derivatives of the
lagrangian pol

L=x1*x314x2+*x32+x3+*x33+x101+« P1+--+x104 + P4
w.r.t. x11, £12, x13, x 31, 32, x 33 as well as the pol

xl*x3l+x2+x32+x3+x33—x10

where x 10 is the extremal value to be found. The char-set of PS is readily found
with the first pol given by

Cl=—2+x210+x3*»x2+ x1+x3%+«x22%24+23% r12+x2%+ 212 (4.25)
The factors removed during the procedure and the non-trivial initials of the
char-set are all>0. (4.25) gives thus the extremal value x 10 and (4.24) follows
now easily.

The inequalities in Examples 6—8 can all be proved in a quite simple manner
as indieated in the Remark. The following example is. however, one which cannot
be treated in this way while our general method will furnish equally well the
required solution.
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Example 9. For a triangle ABC we have
. cosA * cos B+cos A * cosC+cosB * cos C<=3/4.
Proof. Let us set tan A/2=2x11, etc. as in (4.17)—(4.19> and set also

231 * 232+ 231 * £33+ 232 » x33=x20. (4.26)
with x 20 the extremal value to be determined. We have now 5 pols P/ corres-
ponding to the equations in (4.20) — (4.23) not involving x 21, x 22, x23 and
(4.26). Form the lagrangian pol

x20+x2101 » P1+---+ 2105+ P5.
The char-set of the polset PS formed by the 5 pols P7 and the derivatives of L
w.r.t. £33, £32, x31, 20, £ 13, 12, £ 11 is given by
Cl=x11%-2,
C2=x12—x11+* (x112-1),
C3=zx13+(x12+211)+x11 * 121, etc.
The factors removed during the procedure are
x13—x12, x13—2x11,
rl124+x11, 211241, £12%+1
which are all>0 except the first two. Now froms
C2=C2=C3=0
with z 11=tan A/2 >0 we get successively
x11=+sqr(2),
x12=x11* (x112—1)=+sqr(2),
x13=(1—-211+x12)/(x 11+ x12)=—sqr(2)/4<0.
The last equation shows that the char-set is a contradictory set in the open

domain defined by x11>0, xr12>0, x13>0, etc. It follows from our general
formula (II) that

Zero (PS)=Zero(PS1)+Zero (PS2),
in which the polsets PS1 and PS2 are both PS enlarged by adjoining to it the
removed factors £ 13— x 12 and x 13—z 11 respectively. We may now treat each

PSi in the same manner as before and arrive finally at the conclusion as to be
proved.

5. Geometrical Inequalities

We shall give in this section only a few examples of inequalities arising in
geometry as mere illustrations of our general method.

Example 10. A triangle with given perimeter has a greatest area when it is
an equilateral one.

Proof. Let the sides of the triangle be 4,5, ¢ with perimeter p and the area
be A. Set

a=x1l, b=x12, c=x13, p=x0, 4 » A=x20. (5.
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Then we have
2202=—x11*—x12'—x13*+2 +« £ 122« £ 13%+
+2+ 2132+ 211242+ £ 112+ £ 122 (5.2)
The problem is to find the maximum of x 20 under the restricted condition (5.2).
We may proceed by our general method which is actually the same as in the
ordinary elementary calculus. For a problem of the same type but not a trivial
one let us consider the following.

Example 11. For a triangle of given perimeter in a hyperbolic plane the area
is the greatest when it is an equilateral one.

Proof. This problem seemingly similar to Example 10, is clearly much less
simple to settle. First, we have to find an expression of the area A of the triangle
in question in terms of the three side-lengths, say a, b and c. Such an expression
has already been found in an automatic manner by our general mechanization
method of geometry, cf. [WU4, 5]. In fact, let

cosha=x21, coshb=x22, coshc=x23, B.3a
cosA—1=x20. 5.3
Then we have

x20% (x214+1) * (x22+1) * (2 23+1)
=—2+x121*x22* x23+1—x21>—122°—x 232 (WY
Next, because the perimeter 2 *» s of the triangle is given, cosh g, cosh b and cosh ¢
are no more independent. Therefore we have to determine the relations between

them, which can also be done by our general mechanization method. To¢ this end
let us set as in preceding Examples 7—9

tanha/2=x11, tanhb/2=2x12, tanhc/2=x13, (5.5)
tanhs=ux 0. (5.6)
Then from tanh(a+ b+ c)/2=tanhs we get
x1l*+ 212+ x13+2 114212+ 213

=(x12*x13+x11*213+x11*x212+1) * 2 0. B.7
For cosha, etc. we have also
23+ (1—2132)=1+2132 (5.8)
222+ (1—x12%)=1+x12% 5.9
221+ (1-x11%3) =1+x11% 5.1

The problem is now to determine the extremal value of area A, or rather x 20,
under the restricted conditions (5.4), (5.7) —(5.10) with corresponding pols
P1, ---, P5. The lagrangian pol will be thus

L=x20+x101* P1+-~+x105+ P5.
The char-set CS of the polset PS consisting of the pols /P77 and the various
derivatives of L, is found to be contradictory if we remove during the procedure
the following factors:

213712, x13—-rx1l, x12—2x11, B.1D
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x13-1, x12-1, x11-1, 20-1, G2
x13+1, x12+1, x11+4+1, x0+1, 3.1
xllxx12-1, x20+2, G140
2112+ 20-2* 211+ x0, (5.15
122+ 202+ 212+ x0. (.16

It is clear that £ 20+2=cos A+1>0 and all the other factors in (5.12)—(5.14)
are non-zero since O<tanhx <1 for any x >0. Moreover, for the triangle we have
b+c>asothat s > 4. Whence tanhs > tanhae or 112+ 20 —2+* 211 + 2 0>0.
Similarly the factor in (5.16) is also>0. It follows therefore from our general
formula (II) that

Zero (PS)=Zero (PS1)+Zero (PS2)+Zero (PS 3),
in which the polsets PS; are PS enlarged by adjoining to it the three factors in
(5.11) respectively. We may treat each of the Zero (PSi) in turn and proceed in
the same way as in the preceding examples to arrive at the final conclusion.
Example 12 (Pedoe Inequality, cf. [P]). Let ABC and A’ B’C’ be two triangles
in the same plane with sides a, b, ¢; @', b, ¢’; and areas A, A’ respectively. Then
we have always
@? (b4 c2—a?)+ b2+ (P a*— b2 +c'2+ (@®+ b2 —c?)
>=16+ A"+ A. (5.17)
Moreover, the equality occurs only when the two triangles are similar.
Proof. Let us set

a=x1l, b=x12, ¢=x13, (5.18)
a'=x21, b=x22 ¢c'=x23. (5.18)°

We are naturally restricted to the open domain defined by x 11 >0, etc. Set
4+ A =x30. 519

Then we have
r30%=—x21" - 122~ x 23" +2+ x21%* £22°
+2 % x 212+ £ 23242+ 2222 % x 232 5.20)
Introduce also x 25 by setting
x25*x30=x21%* (r 1224+ 1132~ 11?)
+x22%+ (x13%24+2112—212?)
+ax23%2* (11242122~ 13%). (5.2D
Let us consider the triangle ABC as already given while A" B" C’ is a variable one.
Then the problem reduces to the determination of the minimum value of x25 in
terms of known values g, b, ¢ under the restricted conditions (5.20) and (5.21).
Let PS be the pol-set consisting of pols corresponding to (5.20) and (5.21) as well
as the d,,erivatives of the lagrangian pol
x25+x2101* P1+x2102* P2
w.r. t. 230, 225, x23, x22 and x21. Then we have to determine Zero([’S) for
the extremal value of 1 25. Now the char-set of S is readily found to be consis-
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ting of the pols below:
Cl=—x22»x114+221+x12,
C2=—x232+ 21124 2222 » 1124+ 1212 » £ 132— 1 212 + £ 12,
C3=—x252—x11*—x12¢—-x 134
+2+ 2112+ 212242+ 2112+ 13242 » £ 122 » 1132,
Cé=x30+(x132—1r122—x11?%)
—x25* (x232—x222—x212).
The factors removed during the procedure and the nono-trivials of the char-set
are

x101, £25, x11, 221, x11 + 222+ 212 = x 21,
211 *»x234+x13+ 221 and x 1124+ 2 122— x 132

All these pols are non-zero except perhaps the last one which means that the
given triangle is a right-angled one. Leaving this case aside we see from the
expressions of the char-set that x 25 will reach its extreme value 4+ A’ in case
x 21, x22, x23 are proportional to x 11, £ 12, x 13, or that the triangles ABC,
A B’ C’ are similar to each other, as asserted. The case of ABC being right-
angled can also be treated in the same manner by adding at the outset the
restricted condition x 1124 x 122=x 132
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ON THE FOUNDATION OF ALGEBRAIC
DIFFERENTIAL GEOMETRY

Wu Wen-tsun

(Institute of Systems Science, Academia Sinica, Beijing 100080, China)

1. Introduction

By algebraic differential geometry we shall mean one which is so related to the ordinary algebraic
geometry just as what the metric, the affine, or the projective differential geometry is related to the
metric, the affine, or the projective geometry. As in the ordinary case, the first step in laying down
a foundation of algebraic differential geometry is to define the notion of algebraic differential variety
and to prove an irreducible decomposition of such varieties. Such a foundation may be traced back
to the works of Riquier, Janet, Cartan, Thomas, and particularly Ritt, cf. the references at the end
of the paper. We remark that, while the exposition of Ritt et al was highly analytical in character,
we have removed all traces of analytical reasonings to render the theory a purely algebraic one.
Furthermore, while Ritt et al were aimed at a study of differential equations, we are also interested
in its geometrical aspects as well as its applications, particularly for the mechanical or automatic
theorem proving of differential geometries, cf. e.g. [WU3-8].

The main topic consists in the study of the structure of an algebraic differential variety defined
as the zero set of a finite set differential polynomials. Various structure or decomposition formulas
are given for such zero sets which correspond to the ordinary ones for ordinary polynomials and
can be carried out by mere computations, cfe.g.[WUL, 2]. Such decompositions can then be
applied to differential geometries and other related subjects which render the proving of differential
geometrical theorems to mere computations. The applications are however not limited to theorem
proving as seen from [WU?7| and the example given in the last section of the paper.

2. Ordering Tuples

Let m be a positive integer fixed throughout the present paper.
DEF. An ordered sequence of m non-negative integers

t=(I1,12, 1 Im)

is called an ORDERING m-TUPLE or simply a TUPLE. I; is then called the i-th COORDINATE
of t, to be denoted by COOR;(t) = I;. The sum of all these coordinates is called the ORDER of
t, to be denoted by

Ord(t) = SUM;COOR,(t).

DEF. For any two tuples u and v, we say u is a MULTIPLE of v or v is a DIVISOR of
COOR;(u) > COOR;(v), i=1,2,---,m.

We write then u >>v or v<<u.
Notation. The totality of ordering m-tuples will be denoted by Tot. For any finite set of
tuples T— < T'ot, we shall set Tot(T") = Totalitylof multiples of some ¢ in T
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DEF. For any two tuples u and v, their PRODUCT wwv = vu is the tuple with
COOR;(w) = COOR;(u) + COOR;(v), i=1,2,---,m.

We introduce now an ordering among all the tuples according to the following

DEF. For any two tuples u and v we say that u is HHGHER THAN v or v is LOWER THAN
u if either (1) or (2) below holds true:

(1) Ord(u) > Ord(v).

(2) Ord(u) = Ord(v) and there is some k > 0 and < m such that

COOR;(u) = COOR;(v), i > k, COORk(u) > COOR(v).

‘We write then: u > v or v > u.
DEF. A finite set of tuples T is said to be PRIME if no ¢ in T is a multiple of another ¢’ in T'.
DEF. For any finite set of tuples T, the MAXIM of T, to be denoted by Maz(T), is the tuple
defined by
Maz(T) =n — tuple(MAX(T), -, MAXn(T)), with

MAX;(T) = Maz{COOR:(t)/t in T}.

DEF. For any finite set of tuples 7', the COMPLETION of T, to be denoted by Comp(T), is
the set of tuples defined by

Comp(T) = {u/u << Maz(T)u >>t forsome t in T}

DEF. For any finite set of tuples 7" and any tuple t << Maxz(T), the integer ¢ (1 < i <m)is
called a MULTIPLIER of ¢t w.r.t T if

COOR;(t) = MAX;(T).

Otherwise it is called NON-MULTIPLIER of ¢ w.r.t 7. In that case we have
COOR;(t) < MAX;(T).

Notation. For any finite set of tuples T and any tuple ¢, we shall set

Mult(t/T) = set of all multipliers of ¢ wurt T,
Nult(t/T) = set of all non — multipliersof ¢ wurt T.

DEF. For t << Maz(T), the set of all multiples tu of ¢ with COOR;(v) = 0 for i in
Nult(t/T) is called the TOTAL MULTIPLE SET of t w.r.t. T, to be denoted by

TMU@/T) = {tu/COOR;(v) =0 for i in Nult(t/T)}.

THEOREM. Let T be a finite set of tuples. For any tuple v there is a unique tuple t <<
Maz(T) such that v = tu for some tuple u with

v— < TMU(t/T) or COOR;(u) =0 for i— < Nult(t/T).

Moreover, if v is in Tot(T), then t is in Comp(T).
Proof. t is determined as COOR;(t) = Min(COOR;(v), MAX(T)).
TUPLE-DECOMPOSITION THEOREM.

Tot(T) = SUM,TMU(t/T),  Tot = SUM!TMU(t/T),

in which SUM, runs over t in Comp(T), while SUM{ runs over t << Maz(T'). Moreover, the sets
TMU (t/T) in the sums are disjoint from each other.
Proof. This follows directly from the precedigg theorem.
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3. Differential Field and Derivatives

DEF. An ordinary field of characteristic 0 will be called an ELEMENTARY FIELD (abbr.
e-fleld). An ordinary integral domain containing the ring of integers as subring will be called an
ELEMENTARY RING(abbr. e-ring).

DEF. A DIFFERENTIAFIEL (abbr. d-field) DF resp. a DIFFERENTIAL RING (abbr.
d-ring) DR in INDEPENDENTS X, -, X, is an e-field resp. an e-ring with m further DIFFER-
ENTIAL OPERATIONs D;, i = 1,2,- .-, m verifying the following relations:

DX, =1, D;X; =0 for j<>i,
Di(Al + A2) = D, Al + D, A2,

D;(Al x A2) = D; Al x A2 + Al x D; A2,
Di(D;A) = Dy(D;A),

for A, Al, A2 in DF resp. DR.
Notation., D;D;A = D;(D;A), DA = A, for A in DF on DR.
DEF. DERIVATIVEs of A in a d-field DF are elements in DF of the form

DERtA=Dypy-+ Dy D1+ D1 A,

in which ¢t = ({1, -, ;) is an ordering m-tuple, and each D; occurs [; times, i =1,2,---,m.

DEF. A d-field DF is called a d-SUB-FIELD of another d-field DF if DF" is a sub-field of DF
in the ordinary sense and for any element A of DF”, all derivatives of A are the same whether they
are considered as elements of DF' or DF. The d-fleld DF is then called a &-EXTENSION-FIELD
(abbr. d-ext-field) of DF.

DEF. The e-field resp. the e-ring consisting of same elements as a d-field DF resp. a d-ring
DR with relations of differentiation neglected is said to ASSOCIATED to the d-field DF resp. the
d-ring DR and will be denoted by Elem(DF) resp. Elem(DR).

With a d-fleld DF given let Y1,Ys,---,Y, be in some d-ext-field of DF which will be called
INDETERMINATESs and will be fixed throughout the whole paper.

DEF. For any derivative DERuY; with u a tuple we call Ord(u) the ORDER of DERuY;.

We now introduce among certain derivatives in two different types as follows.

DEF. For any tuples v and v we say that DERuY; is HHGHER THAN DERvY; or DERvY;
is LOWER THAN DERuY; if the following holds true:

For type 1: Either u > v, or u = v, and ¢ > j.
For type 2: Either ¢ > j, or i = j, and u > v.
‘We write in either type 1 or type 2

DERuY; > DERvY; or DERvY; < DERuY;.

4. Differential Polynomials and Their Ordering

Throughout the whole paper we shall suppose fixed a d-field d — BF' which will be referred to
as the d-BASIC FIELD.

DEF. An ordinary polynomial (abbr. pol} in certain indeterminate with coefficient is an e-field
will be called a ELEMENTAR POL (abbr. e-pol).

DEF. A DIFFERENTIAL POLYNOMIAL(abbr. d-pol) is an ordinary pol is X; (i =
1,2,---,m), Y;(j = 1,2,---,n) and their derivatives with coefficients in d — BF. The DERIVA-
TIVEs DER,DP and DERtDP of DP for any i = 1,2,---,m or tuple ¢ are then defined in the
usual manner.

DEF. A X-POL is a d-pol in which no Y; and their derivatives occur.

3
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DEF. Given a d-pol DP let us consider it as an e-pol in all X;(i = 1,2,---,m), Y; (j =
1,2,--+,n) and derivatives DERtY; appearing in DP as independent indeterminates, then this
e-pol will be said to be ASSOCIATED to DP and will be denoted by Elem(DP).

DEF. Let DP be d-pol which is not a X-pol. Then the highest derivative occuring in DP is
called the LEADING DERIVATIVE or simply the LEAD of DP. The order of the lead is called the
ORDER of DP and the subscript of Y in the lead of DP is called the CLASS of DP. Consider DP
as an ordinary pol in this lead the highest degree is called the DEGREE of DP. The coefficient,
as a d-pol, of the highest degree term in the lead of DP is called the INITIAL of DP and the form
a partial derivative of D w.r.t. the lead of DP the SEPARANT of DP.

Notation. For a d-pol DP which is not a X-pol we write

Ld(DP) = Lead of DP, Ord(DP) = Order of DP,
Cls(DP) = Class of DP, Deg(DP) = Degree ofDP,
Init(DP) = Initial ofDP, Sep(DP) = Separant of DP.

Thus, for such a DP with LD = Ld(DP), d = Deg(DP), I = Init(DP), we may write DP in the
form
DP = I LD Ad+ lower degree terms inL D,

with coefficient of each term a d-pol, which, if not a constant or a X-pol, will have its lead lower
than LD.

We now introduce a partial ordering among the d-pols in the following way.

DEF. Let DP, DQ be non-zero d-pols. Then we say that DQ is HHGHER THAN DQ or DQ
is LOWER THAN DP and we write DP > DQ or DQ < DP if one of the following cases (1)—(2)
takes place:

(1) DQ is a X-pol while DP is not.

(2) Both DP, DQ are not X-pols and either

Ld(DP) > Ld(DQ) or Ld(DP)=Ld(DQ) & Deg(DP)> Deg(DQ).

DEF. If DP,DQ are non-zero d-pols for which neither one is higher than the other, then we
say that DP, D@ are INCOMPARABLE in ORDER and we write in this case

DP <=> DQ.

DEF. A non-zero d-pol DQ is daid to be REDUCED w.r.t. a non-zero d-pol DP if DP is not
a X-pol and no proper derivative of lead DL of DP occurs in DQ. Furthermore, either DL does
not occur in D@, or DL occurs in DQ with a degree < Deg(DP).

The following proposition is clear from the very definitions:

PROP. Any sequence of d-pls steadily decreasing in order

DP1>DP2>...

is necessarily finite.
Remark. As in the case of derivatives, the partial ordering of d-pols and others in later
sections may be either of type 1 or type 2.

5. d-Polset, d-Zero, and Algebraic Differential Variety

DEF. A finite collection of non-zero e-pols resp. d-pols is called a eePOLSET resp. a d-
POLSET.

DEF. For a d-polset DPS the e-polset EPS consisting of epols associated to d-pols in DPS
is said to be ASSOCIATED to DPS and we wriZe then EPS = Elem(DPS).
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DEF. For any e-polset EPS we say that two e-pols EF) and EF, are e-CONGRUENT w.r.t.
EPS and we write then EFy = EF,, e—mod(EPS), if there exist a finite number of e-pols EA4;
such that

EF1 - EFZ = SUMiEAi * EP,‘,
in which EP; are e-pols in EPS.

DEF. For any d-polset DPS we say that two e-pols DF; and DF, are d-CONGRUENT w.r.t.
DPS and we write then DFy; = DF,, d—mod(DPS), if there are a finite number of d-pols DAt;
such that

DFy, — DFy = SUM[SUM¢t;DAt; *x DERtDP),

in which SUM; runs over a finite set of indices ¢, SUM¢%; runs over a finite number of tuples ¢
corresponding to rach ¢ and DP; are all d-pols in DPS.
Notation. We write for simplicity DFy = DF; e —mod(DPS) if

Elem(DF,) = Elem(DF;) e — mod(Elem(DPS)).

Below d — BF’, d — BF" will denote some d-ext-fields of d — BF.

DEF. Z' =(Z{,---,Z}) in{d—~ BF')Anisad— BF'— ZERO of a d-pol DP if DP(Z') =0
or DP =0 for (Y,---,Y,) = (Z{,---,2}).

DEF. Z'=(Z}---,Z!)in(d— BF'YAnis ad — BF' — ZERO of a d-polset DPS if Z' is a
d — BF' — zero of all d-pols in DPS.

Notation. Let IDPS be any set of d-pols which may be either finite or infinite, and DG be
any d-pol, we shall write

d—BF'—Zero(IDPS/DG) = Totality of d~ BF’'~—zeros of IDPS which are not d—BF’—~zeros
of DG.

d— Zero(IDPS/DQ@) = Totality of d — BF’ — zeros of IDPS which are not d — BF’ — zeros
of DG for all d-ext-fields d — BF' of d — BF.

d— BF' — Zero(IDPS) =d — BF' — Zero(IDPS/1),

d— Zero(IDPS) =d — Zero(IDPS/1),

d~Zero(DP) = d— Zero({DP}) for a d-polset{ DP} consisting of a single non-zero pol
DP.

Remark. When d — BF' is evident from the context or unnecessary to specify, we write also
simply, if no confusion can arise,

d— BF' — Zero(IDPS/DG) = d — Zero(IDPS/DQ),
d— BF' — Zero(IDPS) =d — Zero(IDPS).

DEF. An ALGEBRAIC DIFFERENTIAL VARIETY (abbr. alg-d-var) over d — BF as d-
BASIC FIELD is the set d — Zero(DPS) for some d-polset DPS.

DEF. An alg-d-var is said to be d-IRREDUCIBLE if it is not the union of two different
alg-d-vars different both from the given one.

DEF. For Z’ in (d~BF')An and Z" in (d— BF")An, we say that Z" is a SPECIALIZATION
of Z' if for any d-pol DP with Z' in d— Zero(DP) or DP(Z'} = 0, one has also Z” in d— Zero(DP)
or DP(Z") = 0. Notation: The totality of all specializations of Z' will be denoted by Spec(Z’).

DEF. For any infinite set IDPS of d-pols we say that a d-polset FBS is a FINITE BASIS of
IDPS if for any d-pol DP in IDPS, there is some positive integer p such that

DPAp=0, d-—mod(FBS).

FINITE BASIS THEOREM. For any infinite set of d-pols IDPS there is a d-polset F'BS
such that
d~— Zero(FBS)=d— Zero(IDPS).
Proof. By the theorem of Ritt and Raudenbush (cf. [R1, 2]) there is a finite FBS of IDPS

which may be served as the FBS in the assertion.
DEF. Any FBS in the theorem is called a FINITE BASIS of the set IDPS.

5
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THEOREM. For any Z' in (d — BF') An, Spec(Z') is a d-irreducible alg-d-var with
Spec(Z') = d — Zero(FBS),

in which FBS is a finite basis of the infinite set IDPS of d-pols having Z’ as a d-zero.
Proof. That Spec(Z’) is an alg-d-var follows from the evident equalities

Spec(Z') =d — Zero(IDPS) and d— Zero(IDPS)=d— Zero(FBS).

If d — Zero(DPS) is some alg-d-var contained in Sepc(Z’) and contains the point Z’, then any
point Z" in Sepc(Z') will be a d-Zero of any d-pol in DPS so that Spec(Z’) coincides with
d — Zero(DPS).

This proves the d-irreducibility of Spec(Z’).

In later sections we shall prove the converse of the above theorem, viz.

THEOREM. For any d-irreducible alg-d-var d — Zero(DPS) there is a Z’' in d — BF' An for
some d-ext-field d — BF’ of d — BF such that

d — Zero(DPS) = Spec(Z")

and any alg-d-var is a finite union of such d-irreducible ones.
6. d-Ascending-Set and d-Remainder

DEF. A d-ASCENDING-SET (abbr. d-asc-set) is either a single non-zero X-pol and is then
said to be TRIVIAL or a finite sequence of non-zero d-pols none of which are X-pols

(d— ASC)DP,,DPy,---, DP;

such that
DP, < DP,<---<DP,

with each DP; reduced w.r.t. any preceding DP;,j < i.

DEF. An IS-POWER-PRODUCT of a non-trivial d-asc-set (d — ASC) is any power product
of all these initials and separants of d-pols in (d — ASC). In particular, the product of all these
initials and separants is called simply the ISSPRODUCT of (d — ASC). The IS-PRODUCT of a
trivial d-asc-set is defined to be 1.

DEF. A d-pol DR is said to be REDUCED w.r.t. a d-asc-set (d — ASC) if (d — ASC) is
non-trivial and DR is reduced w.r.t. each d-pol in (d — ASC).

d-REMAINDER THEOREM. For any d-pol G and a non-trivial d asc-set (d — ASC),
there is a unique IS-power-product J of (d — ASC) such that

(R) J*DG=DR  d-mod(d— ASC)

with DR reduced w.r.t. (d — ASC).

Proof. Cf. [R1, 2].

DEF. DR in the above theorem is called the d-REMAINDER of DG w.r.t. (d — ASC) and
the formula (R) is called the d-REMAINDER FORMULA of DG w.r.t. (d — ASC).

Notation. DR =d— Remdr(DG/(d — ASC)).

We now introduce a partial ordering of d-ascending-sets in the following way.

Given two non-trivial d-asc-sets

(d ~ ASC - P)\DP\,DP,,---DP,,  (d- ASC - Q)DQ1,DQa,---,DQ;,

we shall say that (d — ASC — P) is HIGHER THAN (d - ASC — @) or (d— ASC — Q) is LOWER
THAN (d — ASC — P) if either (a) or (b) belowGholds true:
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(a) There is some k such that DP;, <=> DQ@; for i < k while DP; > DQy.

(b) r<sand DP;, <=> DQ, foralli <r.

DEF. A trivial d-asc-set is said to be LOWER THAN any non-trivial one or a non-trivial
d-asc-set is HHGHER THAN any trivial one.

DEF. Two d-asc-sets are said to be INCOMPARABLE in ORDER if neither one is higher
thaan the other.

Notation given two d-asc-sets (d — ASC1) and (d — ASCy), trivial or not, we shall write

(d— ASCy) > (d — ASCs), (d — ASCy) < (d — ASC3) or (d— ASC)) <=> (d— ASCy),

according as whether (d — ASC)) is higher than, lower than, or incomparable to (d — ASC5).
LEMMA 1. Any sequence of d-asc-sets steadily decreasing in order

(d— ASCy) > (d— ASC3) > -+

is necessarily finite.

Proof. Similar to the ordinary case in [WU1}.

DEF. A d-BASIC-SET (abbr. d-bas-set) of a d-polset DPS is any lowest d-asc-set contained
in DPS.

From the very definition we have the following

PROP. Any two d-bas-sets of a d-polset are incomparable in order.

From this proposition we see that the following definition is legitimate:

DEF. For two d-polsets DPS; and DPS; we say that DPS; is HIGHER THAN, LOWER
THAN, or INCOMPARABLE in ORDER to DPS; accor-to a d-bas-set of DPS) is higher than,
lower than, or incomparable in order to a d-bas-set DPS; or not.

Notation. We write DPS, > DPS; or DPS, < DPS,, DPS; < DPS; or DPS; > DPSy,
and DPS; <=> DPS, resp. according as DPS) is higher than, lower than, and incomparable to
DPS; resp.

From Lemma 1 we have also

LEMMA 2. Any sequence of d-polsets steadily decreasing in order

DPS, > DPS; > -

is necessarily finite.

The condition (b) in the definition of ordering of d-asc-sets furnishes us a means of lowering
the order if a d-polset, viz.

LEMMA 3. Let DBS be a d-bas-set of a d-polset DPS and DR be a d-pol reduced w.r.s.
DBS. Then the d-polset enlarged by adjoining DR to DPS is lower than DPS.

7. Completion of a d-Asc-Set

Given a non-trivial d-asc-set
(d— ASC) DF,---,DF,

we shall separate derivatives of ¥, for each p in various classes and then define the COMPLETION
of (d — ASC) in the following way.

DEF. Derivatives of leads of DF; in (d — ASC) are called the PRINCIPAL DERIVATIVEs
of (d — ASC).

DEF. Leads of DF; in (d — ASC) are called LEADING DERIVATIVEs or PROPER PRIN-
CIPAL DERIVATIVEs of (d — ASC), while other principal derivatives are called IMPROPER
PRINCIPAL DERIVATIVEs of (d — ASC).

DEF. Derivatives not principal ones are called PARAMETRIC DERIVATIVEs of (d — ASC').

Notation. For 1 <p<n, 7
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LTUP,(d — ASC)=Totality of tuples ¢t such that DERLY), is the leading derivative of some
DF, in (d — ASC).

MAX,(d— ASC) = Maz(LTUP,(d — ASC),i.e. the tuple(Mp,, Mps,---, Mpn)

with Mp; = Max{COOD;(t)/t in LTUP,(d — ASC)}.

CTUP,{d — ASC) = CompLTUP,(d — ASC), i.e. totality of tuples u which are divisors of
MAX,(d — ASC) and at the same time mulltiples of some tuples ¢ in CTUP,(d — ASC).

DEF. A principal derivative of the form DERtY, with tuple t in CTUP,(d — ASC) is called
a C-PRINCIPAL DERIVATIVE or C-DERIVATIVE of (d — ASC).

The condition that each d-pol in (d — ASC) reduced is w.r.t. any preceding ones implies readily
the following

PROP. The tuple set LTUF,(ASC) of a d-asc-set is a prime set.

DEF. For tuple v in CTUP,(d — ASC\LTUP,(d — ASC), let us form the d-remainder
d — Remdr{DERvY,)/{d — ASC)) = DRy, w.r.t. {d — ASC) so that

J* DERvY, = DRv, d — mod{d — ASC)

in which J is an IS-power-product of (d — ASC). Then:
DEF. The d-pol J x DERvY, — DRuy, is called a DERIVED d-POL of (d — ASC) rel. v and

Let the set of all derived d-pols of (d — ASC) be arranged in increasing orders:
DGy, DG, -+, DG,.

DEF. The sequence consisting of all DF; and DG; arranged in increasing orders (g = r + s):
(d— ASC+)DHy,- -, DHy is called the COMPLETION of (d — ASC).
PROP. For the derived d-pol DHy = J * DERvY, — DRuvy, rel. v, p as above we have

Ld{DH}) = DERvY,, Init(DHy) = Sep(DH}) = J,andDeg(DHy) = 1.

Remark. The initials and separants of DH} in (d — ASC+) are all IS-power-products of
(d — ASC).

8. Integrability Pols of a d-Asc-Set

Let a non-trivial d-asc-set (d — ASC)DFy, DFy,---, DF, be given with its completion (d —
ASC+)DHy,DH,,---,DH,. tosimplify the notation, we shall write simply LTUP, = LTU P,(d—
ASC), ete. with d — ASC omitted.

DEF. An M-DERIVATIVE DM of (d — ASC) is a d-pol of the form DM = DERuDHj,
with Ld(DHy) = DERtY,,t— < CTUP,, COOR(u) = 0 for i— < Nult(t/LTUP,) or u— <
TMU(t/LTUP,).

DEF. An M-PRODUCT of (d — ASC) is a product of at least one M-derivatives.

DEF. An M-POL of (d— ASC) is a linear sum of M-products with coeflicients d-pols in leading
and parametric derivatives alone.

Consider any d-pol DP in some M-derivatives DMh and other derivatives, parametric or
principal, of (d — ASC). Suppose that among these principal derivatives there are improper ones
of which the highest one is DERvY,. By tuple decomposition theorem we have then a unique
product representation

v = ut witht— < CTUP\LTUP,, andCOOR;(u) = Ofori— < Nult(t/LTUPp),

or
u= < TMU(t/LTUF,).
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Let DERLtY, be the lead of DHg. Then we have
J1+ DERvY, = DERuDH; + DU,

in which J; is an IS-power-product of (d — ASC), and DU a d-pol in parametric derivatives and

principal derivatives lower than DERvY,. Replacing DERvY, in DP by (DERuDH + DU)/J;

and clearing of fractions, we get a d-pol DP; = J1' x DP, Jj being a power of Jy, in such a form

which involves besides the M-derivatives DMh and the new one DM = DERuDHj, eventually

also parametric and principal derivatives. The latter ones are however all lower than DERvY,,.
DEF. The above procedure

DP — DP, = J|x DPy.

is called an M-REDUCTION of DP.

In the d-pol DP as before suppose that there is, besides the parametric derivatives, some
leading derivatives not in the M-derivatives DMh already present. Suppose that the highest
such leading derivatives DERLY,, for which the corresponding d-pol in (d — ASC) is DF; has a
degree d > Deg(DF;). In multiplying DP by some power Jo of the initial of DF we can replace
J2x(DERLY, Ad in DP by some linear sum of d-pols DFj; in (d — ASC) preceding DF; and some
d-pol DP, in which DERLY, will appear with a degree < Deg(DF;).

DEF. The above procedure

DP — DPy = Jy* DP

is called an -REDUCTION of the d-pol DP.
It is clear that in applying successive M-and I-reductions we will arrive finally at & d-pol J* DP
such that we can put it in the form

J* DP = M(DP) + N(DP)

possessing the following properties:

(1) J is a certain IS-power-product of (d — ASC).

(2) M(DP) is an M-pol.

(3) N(DP) is a d-pol containing parametric and leading derivatives alone.

(4) The leading derivatives in M(DP) and N(DP) not appearing already in M-derivatives have
each a degree less than the degree of that derivative in the corresponding d-pol DF; of (d — ASC).

DEF. In the above formula the d-pols M(DP) and N(DP) are called resp. the M-PART and
the N-PART or the NULL-PART of DP.

Consider now any DHp, of (d — ASC+) with lead DERtY, such that the tuple ¢ has a non-
multiplier { wr.t. LTUP,, or i— < Nult(t/LTUP,). We have then DH), = I * (DERtY,) Ad+
lower degree terms, in which I = Init(DH},). Hence we get

DER;DHy, = § x DERuY, + DU,

in which S = Sep(DH,), DERu= DER;DERt, and DU is a d-pol lower than DER;DH and its
lead DERuY,. As LTUP, is a prime set we have

u— < CTUP\LTUP,
and DERuY, is the lead of some DHy in (d — ASC+). We have then
DHy =1I'* DERuY, + DV,

in which I’ = Init(DHy) and DV is a d-pol lower than DHj and its lead DERuY,. It follows
that we have an identity of the form

Ji* DER;DH), =9J2 * DHy + DW,
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in which Jj, J; are IS-power-products of (d— ASC) and DW is a d-pol lower than the lead DERuY),
of both DHy and DER;DHj,.

DEF. The null-part of the above d-pol DW = J1* DER;DH}, — Jox DHy, or what is the same,
the null-part of J, * DER; DHy, is called the INTEGRABILITY POL of (d — ASC) corresponding
to DHy, and the non-multiplier 4.

DEF. A non-trivial d-asc-set is said to be PASSIVE if all its integrability pols are zero.

9. Passivity Theorem

Let a non-trivial d-asc-set
(d— ASC)DFy,DFs,---,DF;

be given as in Section 8.

Below we shall denote by Jy,Jg, etc. any IS-power-product of d-pols in (d — ASC), by
DMy, DM,, etc. any M-derivative, and by M Py, M P,, etc. any M-pol.

PASSIVITY THEOREM. If (d—ASC) is passive, then all derivatives of d-pol in (d—ASC+)
when multiplied be some IS-power-product of (d — ASC), have their null-parts zero. Moreover,
any such derivative DE can be written in the form

JxDE=J «DM+ MP,

in which DM is an M-derivative having same lead as that of the given derivative DE, while M P
is an M-pol in which all M-derivative are lower than DE.
Proof. Consider any DHj, of (d — ASC+) with lead DERtY);:

Ld(DHp) = DERtYy, t— < CTUP,, (1)
and any derivative DER;DHj, where 1 <i <m. If
i— < Nult(t/LTUP,),

then the null-part of DER; DHj, is an integrability-pol corresponding to DH}j, and i so that it is
zero by passivity of (d — ASC). If

i— < Mult(t/LTUPR,),

then DER;DH), is itself an M-derivative so that its null-part is trivially zero. Hence the theorem
is true for DH), and any DER;DHy with 1 <i<m.

Consider now any derivative DERwDH}, with Ord(w) > 1 and suppose that the theorem has
been proved for all derivatives of d-pols in (d — ASC+) which are lower than DERwDHj,.

Let us write the lead of DHy as in (1). If w— < TMU(t/LTUP,), then DERwDH),, is itself
an M-derivative and there is nothing to prove. Suppose therefore the contrary. Then we can write
DERw as DERvDER; with 1 <{<m, and i~ < Nult(t/LTUP,). As (d — ASC) is passive, we
will have an identity of the form

Jy * DER;DHy, = J} * DHy + M Py, @

in which DHj, has the same lead as DZR;DH}, while M P; is an M-pol with all its M-derivatives
lower than DER;DH},.
Form now DERuv of both sides of (2), we get then an identity of the form

J1* DERwDHy, = J{ * DERvDH + DERvMP,
—SUMu(DAu * DI:i)éZuDHh) — SUMz(DBz » DERzDHy), (3)
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in which
Ord(u) < Ord(w), Ord(z) < Ord(v) < Ord(w).
By induction hypothesis we have then

Jo* DERvDHy = Jy* DMy + M Py, (4)
Ju* DERuDH}, = Ju' * DMu + MPu, (5)
Jz x DERzDHy, = Jz' + DMz + M Px. 6)

Now each term in DERvM P; has at least one factors of the form DERzDH; with 0 < Ord(z) <
Ord(v) < Ord(w). Again by induction hypothesis we may write for Ord(z) > 0

Jz* DER:DHj = Jz' x DMz + MPxz, (7)

in which DMz has the same lead as DERzDH;, while all M-derivatives in M P, are lower than
DER,DH;
Substituting (4)-(7) into (3), we get an identity of the form

J+* DERwDH, =J « DM + MP,

in which DM has same lead as DE RwD Hj, while all M-derivatives in M P are lower than DERwDH),.
This proves the theorem for DERwDH,.

As the theorem is already seen to be true for DHy and any DER;DHy, for 1 < ¢ < m, the
theorem is proved by induction.

10. Irreducibility of d-Asc-Set

Let it be given a non-trivial d-asc-set
(d— ASC)DFy,DF,,---,DF,

and an e-asc-set or an ordinary asc-set (e — ASC)EFy,EFy,---,EF;.
DEF. A PARTIAL d-ASC-SET of (d — ASC) at STAGE i is the d-asc-set consisting of the
first ¢ d-pols in (d — ASC), viz.

(d — ASC;)DF,, DF,,---, DF..

DEF. A PARTIAL e-ASC-SET if (e — ASC) at STAGE 1 is the e-asc-set consisting of the
first ¢ e-pols in (e — ASC), viz.

(8 -~ ASC,’)EF], EFQ, e ,EF,'.

DEF. (d — ASC) resp. (e — ASC) is d-IRREDUCIBLE resp. e-IRREDUCIBLE if for any
1 <4 <rresp. < s there cannot exist any relation of the form

DH; * DF, = DF] x DF{' d — mod(d — ASC;) (1d)
resp.
EF; % EF, = EF] « EF}' e —mod(e — ASC}), (1e)

in which j = ¢ — 1, and for each i, DF] and DF/, resp. EF], EF," are d-pols resp. e-pols having
same lead as DF; resp. EF;, while DH; resp. EH; is some d-pol resp. e-pol with lower lead and
reduced w.r.t. the partial d-asc-set d — ASC; resp. the partial e-asc-set e — ASC}. In the contrary
case we say that (d — ASC) resp. (e — ASC) is d-REDUCIBLE resp. e-REDUCIBLE.

11

335



To a d-asc-set (d— ASC) over a d-basic field d — BF let us associate an e-asc-set (e — ASC) over
the e-field ¢ — BF = Elem(d — BF) with s = r and EF; = Elem(DF;) considered as e-pols in the
indeterminates Et, = Elem(DERLY,) corresponding to all derivatives DERLtY, for which those
corresponding to the parametric derivatives of (d— ASC) are to be considered as independent ones.
Furthermore, the indeterminates are to be arranged in such an order that those corresponding the
parametric derivatives come before those corresponding to the principal ones in arbitrary way,
while the latter ones are in the same order as the original derivatives.

DEF. The e-asc-set determine in the above manner is said to be ASSOCIATED to the d-asc-set
(d — ASC) and will be denoted by Elem(d — ASC).

IRREDUCIBILITY THEOREM. For a d-asc-set (d — ASC) over some d-field d — BF' to
be d-irreducible over d — BF', it is necessary and sufficient that its associated e-asc-set (e — ASC)
be e-irreducible over the associated e-field e — BF = Elem(d — BF).

Proof. (=) Suppose that (e — ASC) is e-reducible so that for some i there is an identity of
the form (1le) or more explicitely,

EHi*EFi=EF{*EF{,+SUM)CEQ;C*EF]C, (le)’

in which the summation is over k = 1,2,.-.,j where j =i~ 1. This is a pure algebraic identity in
the indeterminates X and all Et, = Elem(DERtY}) considered as independent ones. A fortiori
we have therefore necessarily an identity of the form

DH; + DF; = DF! » DF" + SUMDQy. * DF, ady

in which DH;, DF{, DF/’, and DQ); are the d-pols with Elem (DH;) = EH;, etc., by recovering
the various Et, to the original derivatives DERtY,. This proves that (d ~ ASC) is d-reducible
if the associated (e — ASC) is e-reducible, or what is the same, (e — ASC) is e-irrecducible if
(d — ASC) is d-irreducible.

(«<=) Suppose that (d — ASC) is d-reducible is that for some ¢ we have an identity of the form
(1d) as described above. We may rewrite this identity in a more explicit form:

DH,; « DF; = DF} « DF}' + SUMSUMt,(DQty + DERtDF), 2d
1 1

in which SUM¢y is to be taken over some tuple-set Ty, and SUMy over k = 1,2,.--,j withj =1—1.
Taking Elem at both sides we get then an identity of the form

EH; + EF, = EF! » EF! + SUMSUMt(EQty, » EFty), (2)

in which EH; = Flem(DH,), etc., while EFty = Elem(DERtDF}).
Suppose that in the sums of (2d) there are DERtDF}, with Ord(t) > 0. Let DERvDFj}, be the
highest such one with lead DERuYe. There is then some identity of the form

DS« DERuYe = DA+ DERuDF;. (3d)

Here DS = Sep(DF}y) and DA is some d-pol lower than DERuYe. As (2e) is a pure algebraic
identity in all X and Fue = Elem(DERuYe), etc. which are to be considered as independent inde-
terminates, we can substitute in it Eue by EA/ES with EA = Elem(DA) and ES = Elem(DS).
Clearing of fractions and recovering to original form in derivatives we get then an identity still of
the form (2d) but the term in the sum involving DERvDF}, has been removed. Proceeding in
the same manner we will finally remove all such terms and arrive at an identity of the form (1d)".
Taking Elem at both sides we get then an identity of the form (le) with EH; = Elem(DH,),
etc. which shows that (e — ASC) is e-reducible. Hence (e — ASC) is e-reducible if (d — ASC) is
d-reducible or (d — ASC) is d-irreducible if (e — ASC) is e-irreducible.

11. Formal Taylor Series and Generic Zero Theorem
12
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DEF. A CONSTANT w.r.t. the d-basic field d — BF is an element in a d-ext-field of d —~ BF
for which all derivatives are zero.

PROP 1. The totality of constants w.r.t. d — BF form an elementary ring under the natural
arithmetical operations.

Let Oy, ++,0p be a set of constants taken in some d-ext-field of d — BF which are independent
altogether.

Notation. For a tuple t = (I, -+, In), we write (X — O} At = PROD,((X; — O:) A I).
t! = PROD;(I;1).

DEF. A FORMAL TAYLOR SERIES at ORIGIN O = (04, -+,0,,) is a formal power series
of the form

FTS = SUMt[(Ct/t) « (X — O) At),

in which SUMt is taken over all tuples ¢t and Ct are all constants in some d-ext-field of d — BF.

DEF. The constant Cy corresponding to the tuple 0 = (0,---,0) is called the VALUE of FT'S
at origin O = (04, -+ ,0p).

Notation. Cp = Val(FT'S/0) or simply Val(FTS).

PROP 2. Under natural arithmetical operations and differentiations the totality of formal
taylor series at given origin O form a d-ring RFTS.

PROP 3. Val is an oridinary ring morphism of the elementary ring Elem(REFTS) into the
elementary ring of constants.

PROP 4. The value of DERt(FTS) at the origin O is Ct.

Suppose now we are given a passive d-irreducible d-asc-set

(d— ASC)DFy, DFy, -, DF,

with its completion
(d— ASC+)DH,,DH,,--+,DH,.

Below we shall construct for each Y, a formal taylor series
FTS, = SUMt[(Ctp/t) « (X — O) At))

such that FT'S = (FTSy,---,FTS,) is a d-zero of (d — ASC). For this purpose let us introduce
first for simplifications the following

Notation. For any d-pol DP we shall denote by DP’ the d-pol get from DP by substituting
0, for X;, and Cty, for DERtY,, whenever Ct, has already been determined.

Construction of FTSy,p=1,---,n:

Step 1. Take O; and all Ct, corresponding to parametric derivatives DERtY, as INDEPEN-
DENT constants.

Step 2. For leading derivatives Ld(DF;) = DERuY},.

Let KO be the e-ext-field of e — BF = Elem(d — BF) get by adjoining to it all the constants
in Step 1 as independent transcendental elements.

Determine now inductively on i the constant Cuh as a zero of the e-pol DF] in some e-ext-field
of the e-field Kj,j = i — 1. By the irreducibility theorem DF] is e-irreducible as an ordinary pol
in the lrad of DF; on coefficients in K. The e-ext-field of K; which is an algebraic extension by
adjoining Cuh by means of the equation

DF =0 (1)

is defined inductively as K.

A consequence of this determination is the following

PROP 5. For any non-zero d-pol DR reduced w.r.t. (d — ASC) we have (DR)' <> 0. In
particular, for any IS-power-product J, we have J' <> 0.

Step 3. For C-derivative DERvY, not any leading derivative.

We have in this case a derived d-pol DHy in (d — ASC+) such that

DH =Jx* le?‘vKp — DRy,
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in which J is an IS-power-product of (d — ASC) and DRuv, is the d-remainder of DERvY, w.r.t.
(d — ASC). In DRuj, there appear only either parametric or leading derivatives so that (DRuvy)’
is well-defined by Step 1 and Step 2. Since J’ <> 0 by PROP 5 we can determine Cv, by

J % Cup = (DRv,), or (DHy) =0. (2)

Step 4. Consider now' any improper principal derivative DERvY, which is not a C-derivative.
By tuple-decomposition theorem there is a unique C-derivative DERLtY, such that v = ut with
t— < CTUP, and v— < TMU(t/LTU P,).

Let DERtY), be the lead of DHy. Then we have an identity of the form

J1* DERvY, = DERuDH; + DU.

In the identity Ji is an IS-power-product of (d — ASC) and DU a d-pol in which all derivatives
are either parametric ones or principal ones lower than DERvY),.

Suppose that values have already been attributed to such principal derivative lower than
DERvY, so that DU’ and J| have already been well-determined. As the value Jj cannot be
zero in view of the PROP 5, we can determine a value Cv, by

J{ % Cv,= DU’ or (DERuDH,) =0. 3)

This gives an inductive procedure of determining the values of improper principal derivatives
which are not C-derivatives in terms of those of lower ones. The induction has to end at C-
derivatives whose values have already been determined in Steps 1, 2 and 3. Consequently the
values of any improper principal derivatives which are not C-derivatives will be determined.

Notation. For any d-pol DP, the formal taylor series get from DP by substituting F'T'S, for
Y, will be denoted by DP".

Now for any derivative DERtY, we have from PROP 4

Val(DERLY,)" = Val(DERtFTS,) = Ct, = (DERLY,)'.

From PROP 3 we get therefore

PROP 6. For any d-pol we have Val(DP') = DP'.

DEF. A point GZ = (Zy,--+,Zy,) with Z; in some d-ext-field of d — BF is called a GENERIC
d-ZERO of (d — ASC) if it is a d-Zero of all DHy, in (d — ASC+) while it is not a d-zero of any
non-zero d-pol reduced w.r.t. (d — ASC).

GENERIC ZERO THEOREM. If (d — ASC) is passive and d-irreducible then the point
GZ = (FTS,,---, FTSy,) with FTS, constructed as above is generic d-zero of (d — ASC).

Proof. That GZ is not d-zero of any non-zero d-pol reduced w.r.t. (d— ASC) is shown already
by PROP 5. 1t is sufficient therefore to prove for any DHj, of (d — ASC+)

DH} = 0. (4)
In turn we have to prove for any tuple u,
Val(DERw(DHy)") or Val(DERuDH)' =0.

By PROP 6, this is equivalent to
(DERuDH,) =0. (5)

Now according to the construction FT'S, we see from (1)—(3) that (5) is true for any DERuDH),
which is an M-derivative DM :
(DM) =0. (6)

It follows that for any M-pol M P we should have

(MPY, = 0. @
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By the passivity theorem we see that for any derivative DE of some DH}, in (d — ASC+), we
have an identity of the form

J1xDE = Jy x DM + MP, (8)

in which Jy, J3, are IS-power-products of (d — ASC), DM is an M-derivative, and M P an M-pos.
As (J1) <> 0 by PROP 5 we get from (6)—(8) (DE)’ = 0, or (5) for any derivative of DHj, a
theorem is thus proved.

The following theorem shows the significance of generic zero and will play an important role in
the whole theory.

GENERIC-ZERO-REMAINDER THEOREM. Let (d — ASC) be a d-asc-set which is
passive and d-irreducible and GZ be a generic d-zero. Then a d-pol DP will have GZ as its d-zero
or DP(GZ) =0 if and only if

d — Remdr(DP/(d — ASC)) =0.
Proof By the d-remainder theorem we have
J*x DP =d — Remdr(DP/(d ~ ASC)) d — mod(d — ASC)

in which J is some IS-power-product. As the d-remainder, if nonzero, is reduced w.r.t.(d — ASC),
the theorem follows directly from PROPs 5 and 6.

12. d-Char-Set of a d-Polset

For any d-polset DPS we form a certain particular d-asc-set DCS according to the following
scheme:
DPS = DPSy— < DPS;~- < ---— < DPS,

DBSy > DBS;, >---DBS, =DCS (S)
RISy RIS;---RIS, = Empty

In the above scheme (S) each DBS; is a d-bas-set of DPS;, each RIS; is the d-polset consisting
of all non-zero integrability pols of DBS; as well as all non-zero d-remainders of d-pols in DPS; —
DBS; wr.t. DBS;. Furthermore, each d-polset DPS; is the union of DPS; and RIS; with
j =14 — 1. It is clear that the d-bas-sets DBSy > DBS) > - are steadily decreasing in order so
that the construction should end in a finite number of steps and in certain stage s we should have
RIS, = Empty.

DEF. The corresponding d-bas-set DBS, = DCS in the above scheme is called a d-
CHARACTERISTIC SET (abbr. d-char-set) of the given d-polset DPS.

THEOREM(Well-Ordering Principle). Let I; and S; be the initials and separants of d-pols
in DCS and J be the IS-product of DCS. Then

d— Zero{DCS/J)— < d — Zero(DPS)— < d — Zero(DCS) (D)
d — Zero(DPS) = d — Zero(DCS/J) + SUM;d — Zero(DPS])
+SUM;d — Zero(DPS}). In

In these formulas each DPS] resp. DPS/ is the enlarged d-polset obtained from DPS by adjoining
to it I; resp. S;.
Proof. From the construction we see that

d— Zero(DPS) =d ~ Zero(DPSp) = - = d — Zero(DP5,). 1)
From the d-remainder formula and the emptiness of RIS, we have readily

d — Zero(DPS,) = d — Zero(DBS,/J) + SUM;d — Zero(DPSs})
+SUMd — qgro(DPSSQ'), (2)
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in which each DPSSs; resp. DPSs/{ is the enlarged d-polset get from DPS, by adjoining to it I;
resp. S;. It is also clear from (1) that for each i we have

d — Zero(DPSs,) = d — Zero(DPS}), (3)
d — Zero(DPSs}) = d — Zero(DPS}). (3)”

From (1), (2), (3)" and (3)” we get then (II). The formula (I} is also immediate from the construc-

tion,
PROP. Each d-polset DPS] or DPS; in (II) is lower than the given d-polset DPS in the

partial ordering of d-polsets.

Proof. As both I; and S; are reduced w.r.t. DBS, we see that DBSs] and DBSs] are
both lower than DBS,. As DBSy > DBS, we have DBSy > DBSs, and DBSs!. The implie
DPS > DPS; and > DPS! as to be proved.

13. Zero Decomposition or Zero-Structure Theorems

Given a d-polset DPS let us form a d-char-set DC'S according to the scheme (S). In the formula
(IT) the d-polset DCS is a certain passive d-asc-set. For the other d-polsets DPS] or DPS;] we
may treat in the same manner as for DPS so that each d ~ Zero(DPS]) or d — Zero(DPS}') will
be further splitted into a sum of d-zero-set a (II). The same procedure can be carried on further
so far some d-polset not already in the form of passive d-asc-set still appear in the sum. Since all
DPS] and DPS} are lower than DPS the procedure has to end in a finite number of steps and
so we get finally the following

ZERO DECOMPOSITION THEOREM (Weak Form). There is an algorithmic procedure
which permits to give for any d-polset DPS a decomposition of the following form:

d — Zero(DPS) = SUMd — Zero(DCSi/Jx). )

In the formula each DCSj, is a passive d-asc-set and Ji is the IS-product of DCSy.

Suppose that a d-asc-set
(ASCF) DF,,.--,DF,

is d-reducible at a certain stage ¢ so that we have a relation of the form
DH; « DF,; = DF} « DF]' d — mod(ASCF),

in which DF}, DF{’ are d-pols having same lead as DF; while DH; is a d-pol with lower lead and
is reduced w.r.t. the partial d-asc-set (j =1 — 1)

(ASCF}) DF,,.--,DF;.

Let DFS’ and DFS” be the d-polsets obtained from (ASCF) in replacing DF, by DF and
DF/' respectively and DFS the enlarged d-pols obtained from (ASCF) by adjoining to it the d-pol
DH;. Then have for any d-pol G

d— Zero(ASCF/G)=d — Zero(DFS'/DH; + G)
+d — Zero(DFS"/DH; * G) +d — Zero(DFS/G).

We remark that the d-polsets DFS’, DFS”, and DFS are all lower than the original d-polset
(ASCF).

Applying now to each of DFS’, DFS", and DFS the Zero Decomposition Theorem we would
get then a decomposition of the form

d— Zero(ASCF/G) = SU]\éde ~ Zero(ASC;/Gj  J;).
1
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In the formula each ASC} is a passive d-asc-set lower than ASCF, each J; is the IS-product of
ASC;, and each G; is some d-pol determined in the procedure.

Consider now any DC Sy in (III). If it is d-reducible then we can decompose d— Zero(DCSy,/ Ji)
into the sum of d-zero-sets for which the d-asc-sets are lower than DCSj. We can continue this
procedure so far there are still d-zero-sets of d-reducible d-asc-sets appearing in the sum. The
procedure has to end in a finite number of steps so that we get the following

ZERO DECOMPOSITION THEOREM (Strong Form). There is an algorithmic proce-
dure which permits to give for any d-polset DPS a decomposition of the form

d ~ Zero(DPS) = SUMyd — Zero{JRRy/Ji * Gy), av)

in which each TRR is a d-irreducible passive d-asc-set and Ji, is the ID-product of TRR;.
Let the generic d-zero of IRRy, be GZi. As Spec(GZ;) is a d-irreducible alg-d-var which is in
turn determined by IRRy, we shall denote it by Var(IRRy):

Spec(GZy) = Var(IRRy).

Remark that in (IV) we may suppose without loss of generality that GZ is not a d-zero of Gy,
since otherwise the set d — Zero(IRRy /Gy, * Ji) will be empty and can be removed from the sum.
With this understood we have then the further

VARIETY DECOMPOSITION THEOREM. For any d-polset DP.S we have a decom-
position of the form

d — Zero(DPS) = SUMVar(IRRy), (V)

in which Var(IRRy) is the alg-d-var determined as Spec(GZy) of certain d-irreducible passive
d-asc-set TRRy.

Proof. Let us consider the decomposition (IV). As each d-zero of JRRy, for which Ji <> 0 is
in Var(IRRy) it is clear that

d — Zero(DPS)— < SUMVar(IRRy).

Consider now any d-zero Z in some Var(IRRy) so that Z is a specialization of GZ. As GZx
is not a d-zero of Gy and Ji we see from (IV) that GZ; is a d-zero of DPS, or a d-zero of all
d-pols in DPS. The point Z, being a specialization of GZj, is then also a d-zero of all d-pols in
DPS, or a d-zero of DPS. It follows that

SUMVar(IRRy)— < d — Zero(DPS)

too and hence (V) is proved.
Combining the last two theorems we see that (IV) can be improved to the following form:

d — Zero(DPS) = SUMd — Zero(IRRy/Jx). y

Remark. For each k let FBSi be a finite basis of the d-polset IDPS), consisting of d-pols
having GZ;, as a d-zero. Then Var(IRRp)— < Var(IRRy) if and only if GZ, is in Var(IRR)
or Remdr(DF/IRRy) = 0 for any d-pol DF in FBS,. This permits to remove any redundant
components in (V) to make the decomposition uncontractable and hence also unique. In particular,
this implies as a colorrary the theorem stated in the end of Section 5.

14. Basic Principles of Mechanical Theorem Proving

DEF. A THEOREM is consisting of a d-polset called HYPOTHESIS SET (abbr. hyp-set)
and a d-pol called CONCLUSION d-pol (abbr. conc-pol).
DEF. Let the hyp-set and the conc-pol of a theorem T be resp. HY P and CONC. Then we

say: 17
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(1) Tis TRUE if d — Zero(HY P)— < d —~ Zero(CONC).
(2) T is GENERICALLY TRUE under NON-DEGENERACY CONDITIONs DEG; <> 0 for
DEGENERACY d-POLs (abbr. deg-pol) DEG;, if

d— Zero(HY P/PROD;DEG;)— < d — Zero(CONC).
(3) T is TRUE on a part PADV of an alg-d-var d — Zero(HY P) if
PADV -~ <d— Zero(CONC).

Remark. A d-zero in d — Zero(HY P) is nothing but a geometrical configuration verifying
the hypothesis of the theorem T and d — Zero(HY P) is just the alg-d-var of all such geometrical
configurations.

For the hyp-set HY P of a theorem T let us form a d-char-set DCS according to scheme (S).
Let the initials and separants of d-pols in DCS be I, and S; resp. and J the IS-product of DCS.
Let HY P} and HY P}’ be the enlarged d-polsets obtained from HY P by adjoining to it I; and S;
resp. Then by the Well-ordering Principle we have:

d— Zero(HY P) = d — Zero(DCS/J) + SUM;d — Zero(HY P)])
+SUM;d ~ Zero(HY P}').

From now the d-remainder DR of the conc-pol CONC of theorem T w.r.t. DCS : DR =d —
Remdr(CONC/DCS). The d-remainder formula gives then

J'* CONC = DR d—mod(DCS), (1)
in which J’ is an IS-power-product of DC'S. Moreover, we have
d— Zero(DCS/J)— < d —~ Zero(HY P)— < d — Zero(DCS). (2)

Suppose that DR = 0 as a d-pol. Then we see from (1-2) that HY P = 0 would imply that
CONC =0sofar J'<>0o0rno I;orS;is0i.e.

d— Zero(HY P/PROD;(I; x S;)— < d — Zero(CONC). (3)
The theorem T is thus seen to be generically true under the non-degeneracy conditions
I; <>0, S;<>0. (4)

If the passive d-asc-set DCS is furthermore d-irreducible, then the d-generic zero GZ of DCS is a
d-zero of DC'S for which no I; or S; is 0 and so by (2) it is also a d-zero of HY P. If the theorem
T is generically true under the non-degeneracy condition (4) so that in particular GZ is a d-zero
of CONC by (3), then it follows from (1) that we have necessarily DR = 0 as a d-pol. Hence we
have:

PRINCIPLE of MECHANICAL THEOREM PROVING or MTP-PRINCIPLE I
(Weak Form). If the d-remainder DR of CONC w.r.t. d-char-set DCS of HY P is 0, then the
theorem T' with hyp-set HY P and conc-pol CONC is generically true under the non-degeneracy
conditions (4) for which I; and S; are the initials and separants of d-pols in DCS respectively.
Moreover, if the d-char-set DCS is d-irreducible the above condition DR = { also necessary one
for the theorem T to be generically true under the above non-degeneracy conditions.

Let us now apply the zero-decomposition theorem (weak form) (III) to the hyp-set HY P so
that

d— Zero(HY P) = SUMyd — Zero(DC S/ Jx),

in which DCSy are passive d-asc-sets and Ji is the IS-product of DCSy. Let DRy be the d-
remainder of CONC w.r.t. DCSg. Then we ha\lrg the following
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MTP-PRINCIPLE I'(General Weak Form). If DR, =0, then the theorem T is true on the
part d — Zero(DCSy/Ji) of the whole variety of geometrical configurations verifying the hyp-set
HY P. The condition DRy = 0 is also necessary if DCSy is d-irreducible.

More generally, let us apply the variety-decomposition theorem to HY P so that we have

d — Zero(HY P) = SUMVar(IRRx),

in which TRRy are all d-irreducible passive d-asc-sets. Then we have the following:

MTP-PRINCIPLE II(Strong Form). For a theorem T with hypset HY P and conc-pol
CONC to be true on the d-irreducible component Var(IRRy) of the variety d — Zero(HY P), it
is necessary and sufficient that the d-remainder of CONC w.r.t. IRRy is 0:

d — Remdr(CONC/IRR) = 0.

15. An Example

The following example is taken from the works of Pommaret (cf. [P1, 2]} which will serve as
an illustration of our general method. For simplicity of notations we shall denote e.g. by D;;Y the
derivative DERt for the tuple t = (4, j) with m = 2.

Ex. Let Y, Z be functions of independent variables X;, X, connectes by the relations DP; =
0, DP; = 0 where

DP, =2+Y +DI0Z + Z A2,
DP,=23D20Y +4xY xZA2+8%Y A2— 4% Z DI0Y ~ DO1Z.

Then we have D@, = 0 and D@y = 0 where

D@1 = D30Y + DO1Y + 12+ Y x D10Y,
DQ2=D30Z+ D01Z — 6% Z A2 D10Z.

These two equations correspond to the usual as well as a modified KAV equation respectively.
In order to prove D@ = 0 let us set Y = Y;,Z = Y, so that we have a d-polset DPS =
{DPl, DP2} with

DP, =DI0Y2+2+Y1+ Y5 A2,
DPy=-D01Yo +4*Y1 Y, A2 — 4% D10Y; * Y2 + 2% D20Y1 + 8+ Y1 A 2.

Let us take the second type of ordering so that
Ld(DP,) = D10Y>, Ld(DPR) = D01Y,.

The d-bas-set DBSy of DPSy = DPS is then {DB;, DBy} with DBy = DP; and DBy = DP,.
The completion of DBSy is consisting of 3 d-pols, viz. DHy = DBy, DHy = DB, and a further
one which one readily finds to be

DH3; =D11Y2 + 8+ Y1 * Y3 A3 — 8+ DI0Y1 xYa A2+ 16x Y1 A2x Y,
+4 % D20Y] x Yy — 24 % Yy * D10Y; — 2 x D30Y;.

The integrability d-pol corresponding to DH; and non-multiplier X5 is found to be
IP, = D0O1Y; + D30Y7 + 12 % Y7 » D10Y].

On the other hand the integrability d-pol corresponding to DH; and non-multiplier X; is readily
found to be 0. The d-polset DPS; is thus consisting of the three d-pols DP;, DP, and I P;. The d-
bas-set DBS, is clearly the sequence I P, DPy, ?QPZ which is both passive and d-irreducible and is
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thus the final d-char-set. As the initials and separants are all non-zero, the alg-d-var d—Zero(DPS)
is d-irreducible, being consisting of a single component of which a generic d-zero may be found from
DBS; by computations. In particular IP; is the same as D@1 so that DQ; = 0 is automatically
proved.

In order to prove D@y = 0 let us set ¥ = ¥5,Z = ¥} so that

DP =2xY, +D10Y1+Y1/\2,
DP, =2%D20Y; -4+ Y1 *D10Y2 +8x Y5 A24+4+Y] A2 Yy — DO1Y;.

The d-bas-set DBSy of DPSy = DPS = {DP;, DP,} is then consisting of the single d-pol DB, =
DP; with lead Y5, the ordering being still of type 2. The d-remainder of DP; is readily found
to be DR = D — Remdr(DP,/DBSy) = —D30Y; — DO1Y; + 6 % Y A2x D10Y1 which coincides
with —D@5. This proves D@, = 0. Morover, the final d-char-set is consisting of the two d-pols
DR and DP; which shows again that the alg-d-var d ~ Zero(DPS) is d-irreducible with a single
component whose generic d-zero may be computed by means of the above d-char-set.
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Introduction.

For both equations-solving and theorem-proving, the two main topics of study
of our mathematics mechanization, there are two methods of approach to follow,
viz. the zero-set approach and the ideal-theoretical approach. While the latter one
dominates the present-day mathematics, we have proposed instead the former one
and has shown its advantages in certain instances. One of such instances is fur-
nished by the theory of elimination, as shown in [WU6] and some other papers in
this Preprints. More evident is its role in mechanical geometry theorem proving, to
be abbreviated ss MTP in what follows. Along with the zero-set approach and the
ideal-theoretical approach (mainly through the use of Groebner Basis, cf. e.g. [BUJ,
[KP], and [K-S]), Chou in [CH] has given a comparison through a large scale exper-
iment. In the last section of this paper we show that even in the intricate reducible

case of MTP, the zero-set approach is still very effective while other approaches may
become difficult to deal with.

We remark that, for the algebraic geometry as an example, the more intuitive
and more direct zero-set approach occured much earlier than the ideal-theoretical
one. In fact, the classical treatise of Van der Waerden on algebraic geometry, viz.
[VAW], was written in a manner with no mention of ideals at all. The whole theory
was based on the two central concepts: GENERIC POINT and SPECIALIZATION.
Only in later times algebraic geometry becomes more and more ideal-thcoretical in
character. The notions of generic points and specialization gradually disappeared.
The only trace of zero-set approach which remains seems to be the very definition
of an algebraic variety as the zero-set of a set of polynomials. It goes without saying
that the ideal-theoretical approach is a method which has been proved to be very
powerful and very fruitful. However, there are still interests in renewing the rather
old-fashioned zero-set approach of algebraic geometry. For example, the author has
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introduced a simple and computational definition of Chern Classes of an irreducible
algebraic variety with arbitrary singularities via its generic point, cf. [WU8,9]. Asa
consequence one may prove and even discover in a simple computational way a lot of
inequalities of such varieties, including the Miyaoka-Yau inequalities in particular.
Cf. [WU9] and a series of papers of Shi beginning with [SH1].

In the present paper we shall base our method of mathematics mechanization
on the rather naive notion of zero-set. We gather thereby results which have been
scattered in the diverse papers of the author. Briefly, an irreducible algebraic va-
riety (affine or projective) is completely determined by its generic point and such
a generic point may be describled in the explicit form of what we have called an
IRREDUCIBLE ASC-SET. From such an explicit form we can form, by means of
the so-called Chow Form, a basis of the prime ideal associated to the corresponding
algebraic variety in question. Such a basis will then be called a CHOW BASIS of
the irreducible asc-set. The first 3 sections of this paper give a summary of the
interrelations of the concepts involved. The 4-th section gathers together the vari-
ous Decomposition Theorems on which are based our methods of equations-solving
and also the thereby deduced various Principles on which are based our methods of
MTP. The last two sections give some examples of MTP to illustrate our methods
in view of jetting some lights on our zero-set approach in comparison with other
ideal-theoretical approaches. Cf. in particular [WU4,7].

§ 1. Generic Point of an Irreducible Ascending Set.

Let K be a basic field of characteristic 0 and Xj,..., X, be a set of indetermi-
nates fixed throughout the whole paper. Moreover, EK, K’, and K™ will denote
throughout some extension fields of K. Let us introduce a further indeterminate
Xo. For any point X' = (X{,..., X}) in the affine n-space EK(n) with X! in some
extension field EK of K the point (1: X1 : ... : X7) in the corresponding projective
n-space PEK(n) of homngeneous coordinates (Xg : X : ... : X;,) will be denoted
by Pr(X'). Conversely, a point X' = (X} : X{ :...: X}) in PEK(n) will be said to
be AT INFINITY if X3 = 0, and if X§ # 0, then the point in EK(n) represented
by (X1/X%,..., X4 /X{) will be denoted by Af(X').

By a POL we shall mean a polynomial in K[Xj, ..., X,,] unless otherwise stated.
Then a homogeneous polynomial in K[Xo, X3,..., X,;] will be simply called an H-
POL. The H-pol in Xy, X,,..., X, obtained from a pol F in making it a homo-
geneous one by means of adjoining X, in a natural way will then be denoted by
Pr(F). Conversely, the pol obtained from an H-pol F by setting Xo to 0 will be
denoted by Af(F).
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Consider now the case for which EK is a FINITE extension field of K. For
the point X' of EK(n) as above let Uy,...,Uy be those X} which are altogether
transcendental over K and arranged in the same order as in (Xj,..., X,,). Denote
the extension field of K in adjoining U = (Uy,...,Ug) to K by Ko. The X! other
than U; are all algebraic over Ky, which, in the same order as in (X{..., X}), will
be renamed as (Y{,...,Y/), with e + d = n.

The element Y/, being algebraic over K, will satisfy an equation of the form
F] = 0, where
Fi=1% YID ! + lower degree terms in Yj,

is a polynomial in K[U,Y;], irreducible over Kp. Let K be the algebraic extension
field of K by adjoining Y{. Then Y7 is algebraic over K; and satisfies an equation
of the form Fj = 0, where F} is obtained from a polynomial

=1 YZD 2 + lower degree terms in Y,

of K[U,Y1,Yz] in replacing Y; by Y{ and Fj} is irreducible over K;. We adjoin now
Y] to K, to get a field K,. The procedure can be continued and finally we get an
equation F] = 0 where F is obtained from a polynomial

F,. =1, % YgD‘ + lower degree terms in Y,

of K[U,YY{,...,Y/_,] in replacing Y1,...,Y,_; by Y{,.., Y/ | resp., and F! is irre-
ducible over K._; = Ko(YY{,...,Y/ ;). The final algebraic extension field obtained
from K,_, by adjoining Y, will be denoted by K,. It is a finite extension field of K
and is intrinsically determined by X’ up to a field isomorphism preserving Ko.

Now the sequence of pols
(IRR) R, F,,..,F,

forms what we have called an IRREDUCIBLE ASCENDING SET or IRREDU-
CIBLE ASC-SET of pols in X;,...,X, over K. The above thus shows how an ir-
reducible asc-set can be deduced from a point in an affine n-space over a finite
extension field of K.

Conversely, let an irreducible asc-set of the form (IRR) as above be given.
Rename the principal variables of the pols P; by Y; and the other X as Uy, ...,Uqg
in the same order as in Xj,...,Xn. Then F is a polynomial of K[U,Y;] which is
irreducible in Ko = K(U). Let Y{ be a zero of P; in a certain extension field of Ko
and set K; = Ko(Y)) as the algébraic extension field by adjoining Y{ to Ko. Then
F; is a polynomial of K[U,Y1,Y;] for which Fj obtained from F; in replacing Y3
by Y7 is irreducible in K. Take any root YJ of F}=0 in a certain extension field
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of K. Adjoin Y] to K; we get then a field K;. The procedure can be continued
and we get a point X’ = Perm{Uy,...,Uq, Y{,...,¥,) with Y/ in some extension field
EK of K where Perm denotes the permutation which brings (Uy, ..., Ug, Y1, ..., Ye)
back to (Xi,.., Xn). It is clear that the irreducible asc-set which one would get
from X’ is no other but the given (IRR) except some unimportant factors for each
Fi. The relation between an irreducible asc-set (IRR) and the point X’ as above
is a reciprocal one and we shall call the point X’ thus determined from (/RR) a
GENERIC POINT of (IRR).

Let {IRR) be now an irreducible ascending set as given above and
Gz = (2!, 2., 7')

be a generic point of (JRR). The importance of the notion of a generic point may
then be seen from the following theorems.

Theorem 1.1. The generic zero GZ of an irreducible asc-set {IRR) is not a
zero of any pol P reduced w.r.t. (IRR).

Theovein 1.2. The generic zero GZ of an irreducible asc-set (IRR) will be a
zero of a pol P if and only if the remainder R of P w.r.t. (IRR) is 0.

The Theorem 1.1 follows directly fromn the construction of GZ. The Theorem
1.2 follows then from the remainder formula of P, viz.

IP+P=SUM;A;+ F; + R,

in which R is the remainder and IP is a certain power product of initials of pols F;
in (IRR). In fact, as all such initials are reduced wir.t. (IRR), GZ is not a zero of
IP. As GZ is a zero of all F;, so from the remainder forraula we see that GZ will
be a zero of P if and ouly if it is a zero of R, as to be proved.

The set of all pols having GZ as a zero forms clearly a prime ideal in ithe
ring K[X1,..., Xn). This ideal will englobe all the pols F; and hence all the liazar
combinations of F; with arbitrary pols as coefficients. However, in general this ideal
will englobe much more pols than these mere combinations, as we shall see in later
sections. To avoid confusion with the ideal generated by F; which is usually denoted
as (Fy,..., Fe) we shall denote the ideal of pols having GZ a5 zero by Ideai[7d 7]
or Ideal[TRR]. On the other hand the usual ideal (£, ..., Fe) will be denoted By
Ideal(IRR).

The ideal Ideal[IRR] is consisting of an infinily of pols which has, howevar,
by the finite-basis theorem of {Iilbert, necessarily a finite basis, Siiaple sxamples

show that in general such a finite basis will nccessarily coutain pols not any linear
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combination of F;, i.e. pols not in Ideal(IRR). To determine explicitely such a finite
basis of Ideal{IRR] is however not an easy matter. One of such determinations is
furnished by the notion of Chow Forms which will be explained in the latter sections.

¥ 2. Generic Point of an Algebraic Variety.

Let HPS be a finite set of H-pols in Xo, X1,..., Xn over K. A zero X' = (X :
X!t XLY of all H-pols in HPS with X/ not all zero and all X in some ex-
tension field of K will be called an H-ZERO of H PS. The set of all such H-zeros
will be denoted by HZero(HPS). A PROJECTIVE ALGEBRAIC VARIETY in
the projective space PK(n) in the ordinary sense is just the set HZero(H PS) for
some finite set of H-pols HPS. Any zero in H Zero{ HPS), considered as a point
in PEK(n) for some extension field EK of K, will also be called a POFNT of
the variety H Zero(HPS). Such a projective algebraic variety is said to be TRRE-
DUCIBLE if it is not the union of two distinct projective algebraic varieties both
distinct from the given one.

Let Z' = (Z{ : ... : Z1) be a point in the projective n-space PK'(n) with Z] not
all 0 and all Z! in some extension field K’ of K. Similarly let Z2” = (Zo” : ... : Z,,”)
be a point in PK”(n) for some extension field K” of K. Thén the point Z” is
called an H-SPECIALIZATION of Z’ if any H-pol having Z' as a zero will have
Z” as an H-zero too. A point Z in a projective space PEK(n) for some extension
field EK of K is said to be an H-GENERIC POINT of the projective algebraic
variety HZero(H PS) if any point of HZero(HPS) is an H-specialization of Z. In
particular the generic point Z itself is then a point of that variety. A fundamental
theorem of algebraic geometry says now:

Theorem 2.1P. A projective algebraic variety is irreducible if and only if it
has an H-generic point.

Let Z = (%5 : ... : Z,) be a point in the projective n-space PEK(n) for some
extension field EX of K. The set of all H-specializations of Z will be denoted by

HSpec(Z). On the other hand the set of all H-pols with Z as a zero forms a prime
homogeneous ideal which will be denoted by HIdeal(7). It is clear that

HSpec(Z) = HZero(H Ideal(Z)).

Now by Hilbert Finite Basis Theorem the ideal HIdeal(Z) has a finite set of H-pols,
say ¥ B, as its basis so that

HZero(HIdeal(Z)) = HZero(FB).
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The last one is by definition a projective algebraic variety in PK(n) and is irre-
ducible since the ideal HIdeal(Z) is prime. Moreover it is easily seen from the very
definitions that Z is an H-generic point of this variety. Hence we have

Theorem 2.2P. For any point Z in a projective n-space PEK (n) with EK
some extension field of K the set HSpec(Z) is a projective irreducible algebraic
variety in PK(n) with Z as an H-generic point.

The above notions can be naturally extended to the affine case. Thus, for
extension fields K/, K” of K, a point X in the affine n-space K”(n) will be called
a SPECIALIZATION of a point X’ in the affine n-space K'(n) if any pol having
X’ as a zero will have X as a zero too. The set of all specializations of X’ will be
denoted by Spec(X"). For any polset, i.e. a finite set of pols over K, say PS, the set
Zero(PS) will be called an AFFINE ALGEBRAIC VARIETY in the affine space
K(n) and any zero in Zero(PS) is called a POINT of this variety. The variety
is said to be IRREDUCIBLE if it is not the union of two distinct affine algebraic
varieties both distinct from the given one. Furthermore, a point in K’(n) for some
extension field K’ of K is calleda GENERIC POINT of an affine algebraic variety
if any point of that variety is a specialization of that point. Given any point Z’ of
K'(n) the set of all pols having Z' as zero which forms a prime ideal will be denoted
by Ideal{Z’'). Analogous to the previous theorems we have then the following ones.

Theorem 2.1A. An affine algebraic variety is irreducible if and only if it has
a generic point.

Theorem 2.2A. For any point Z in an affine n-space EK(n) with EK some
extension field of K the set Spec(Z) is an afline irreducible algebraic variety in K(n)
with Z as a generic point.

Now the notions of projective resp. affine algebraic varieties have some close
relations as described below.

Let V = HZero{HPS) be a projective irreducible algebraic variety in PK(n)
with HPS a finite set of H-pols. Let GZ = (2} : Z{ : ... : Z},) be an H-generic
point of V. Suppose that V is not wholly at infinity. Then Z} is unequal to 0 so
that Af(GZ) is well-defined. The affine irreducible algebraic variety with Af(GZ)
as generic point will then be denoted by Af(V). It is clear that Af(V) = Zero(PS)
where PSS is the polset consisting of pols Af(F) with F an H-pol in HPS and any
point in Af(V) is of the form Af(X) with X a point of V. Conversely, given an
affine irreducible algebraic variety V' = Zero{ PS) with PS some polset let GZ' bea
generic point of V', Then there will be determined a projective irreducible algebraic
variety V = H Zero(H PS) with Pr(GZ') as H-generic point and HPS the set of
H-pols of the form Pr(F) for F in PS. The points of V which are not at infinity are
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just those of the form Pr(X') with X’ points of V'. The relations between Af(V)
and Pr(V') for V a projective irreducible algebraic variety not wholly at infinity
and V' an affine irreducible algebraic variety are clearly a reciprocal one in the sense
that

Pr(Af(V)) =V, and Af(Pr(V")) = V.

In conclusion, we see that the notions of (H-)generic point, irreducible as-
cending set, and irreducible algebraic variety (projective or affine) are in essence
equivalent ones in that one may be determined from the other.

¥ 3, Chow Form of an Irreducible Algebraic
Variety or an Irreducible Ascending Set.

In {C-VdW]| Chow introduced the notion of ZUGEORDNETE FORM of a
projective irreducible algebraic variety and then extended to that of an arbitrary
projective algebraic variety via its irreducible components. This notion was later
called the CAYLEY FORM by Hodge in [H-P] and was called CHOW FORM by
the French school of algebraic geometers. We shall adopt the terminology of CHOW
FORM owing to its originator which is quite current in the literature.

The Chow form of a projective irreducible algebraic variety is in fact determined
by its generic point as follows. Let V = HZero(HPS) be a projective irreducible
algebraic variety with I PS a finite set of H-pols. Suppose that V is not wholly at
infinity. Then V will have an H-generic point of the form

GZ=(1:2{:..:2}).

Let the degree of transcendency of Z over K be d which is in fact the DIMENSION
of the variety V. Introduce now a set of independent indeterminates Uy; with (i,j)
running over the range

R:i=0,1,....,d; j=1,...,n

Adjoin these U;; to K to form the transcendental extension field UK over K. Set
now Z§ =1 and introduce d + 1 elements Uy by

SUM; Us; * ZJ'- =0, +=0,1,..,d
in which SUM; runs over j from 0 to n. As the d+ 1 elements
U,'O = —SUMJ'I U.'J' * er
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in which SUMj runs over j from 1 to n are all algebraic over K and altogether
have clearly a transcendence degree d over UK, there will be an algebraic relation
among these U;o. This relation, after clearing of fractions, will be of a form CF =
0, with CF a polynomial in K[U;;], in which (i,j) is over the range

UR: i=0,1,...d; 7=0,1,...,n.

This polynomial CF, which is determined up to certain non-zero constant in K,
is then called the CHOW FORM of the projective irreducible algebraic variety in
question.

In [C-VdW] it was described how a finite basis of H-pols C'B can be determined
from the Chow Form of a projective (irreducible) algebraic variety V' such that
V = HZero(CB). In {H-P] a simpler method of such a determination is also given.
This method depends on the following two propositions.

Prop.H1. ({H-P] X7,Th.IV) For any (d + 1)-tuple of distinct integers t =
(Ioy F1, ..y I3) chosen from (0,1,...,n) let Pt be the determinant of a (d + 1) * {(d + 1)
matrix of which the element in #-th row and j-th columm is Uy with k = I, 4,
being both from O to d. Then the Chow form of a projective irreducible algebraic
variety of dimension d is a polynomial G in Pt with ¢ running over all (d-- 1)-tuples
t.

Let G be now the Chow Form of a projective irreducible algebraic variety V of
dimension d expressed in terms of Pt as in Prop. H1. Take a set of indeterminates
Aq;j with (i,j) running over the range

R': i{=0,1,.,n~d—-2; j=0,1,..,n.

Set n--u—2 = c. For any (¢+1)-tuple of distinct integers s = (Jo, J1, ..., Jc) chosen
from {0,1,...,n) let Qs be the determinant of a (¢ -+ 1) * (¢ -+ 1) matrix of which the
element in the 1-th row and j-th column is Ay, with k = J;, 1, j being both from
0 to ¢. In G let us replace each Pt by

Pt = Et « SUMy (—-1)* * Xk ¢ vk
In the formula:
(1) SUMj, runs over & from 0 to cl;

(2) r is the (n — d}-tuple which one obtains from (0,1,...,n) in deleting the
integers appearing in t;

(3) Et means +1 or —1 according as the permutation from the ordered con-
catenated set of ¢ and then r to the ordered set (0,1,...,7n) is an even or an odd
one;
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(4) Qrx Is @, with s the (¢ + 1)-tuple in deleting the (k + 1)-th integer in the
(n — d)-tuple r, k being from 0 to c;

(5) Xrk is the variable X}, with h the k-th integer in r, k being from 0 to c.

Denote now by G’ the polynomial in terms of Q, obtained from G as above
and write it in the form
G'=SUM, H, « K,,

in which SUM,, runs over p indexing all distinct power products Hp of A;;, and K,
are the corresponding coefficients which are H-pols in X = (X, X1,..., X,,). Then
we have ([H-P] X7,p45-46):

Prop.H2. The H-pols K, form a finite basis CB, to be called a CHOW BASIS,
such that
V = HZero(CB).

The above introduction of Chow forms and Chow basis and their determination
for a projective algebraic variety can be naturally extended to affine irreducible
algebraic varieties or irreducible asc-sets in the following way.

Consider an affine irreducible algebraic variety V = Zero(PS) with a generic
point GZ. Let V' = Pr(V) be the projective irreducible algebraic variety with
Pr(GZ) as H-generic point. Let us form the Chow Form CF of this variety from
Pr(GZ) as above described. Then CF will be defined also as the CHOW FORM
of the affine vasiety V.

Consider next any irreducible asec-set
(IRR) I, F,.., F..

Let GZ be the generic point of (IRR) which is also a generic point of the affine
irreducible algebraic variety Spec(GZ) = Var[IRR|. The Chow Form of Var{IRR|
which may be determined from GZ will then be defined as the CHOW FORM of
the irreducible asc-set (IR R).

The methed described above for a projective irreducible algebraic variety givas
also the means of determining the Chow Form of an affine irreducible algebraic
variety or an irreducible asc-set In the same way the propositions H1 and H2 will
give a Chew Rusis CB such that the corresponding affine irreducible algebraic
veriety V or the variety Var[IR2R] of an irreducible ascending set (IRR) will be
detsrmined as Zero{C'B). Such a hasis will also be called a CHOW BASIS of the
ideal Ideal[IRR] or simply a CIHOW BASIS of the irreducible asc-set (IRR). As
shown by examples ia later séctions, this basis may contain pels which differ from
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each by mere signs. The basis obtained by deleting the redundant ones will then
be called a CONDENSED CHOW BASIS of the corresponding ideal Ideal[I RR] or
the irreducible asc-set (IRR). For such a basis CB we have then

Var[IRR] = Spec(GZ) = Zero{CB).

From the above and the last sections we see that the notions of an irreducible
ascending set, an affine irreducible algebraic variety, the generic point, the Chow
Form or Chow Basis, etc. are intimately interrelated and in essence they are equiv-
alent to each other in that they may be determined one from the other. Among
these concepts the irreducible asc-set may be considered as the central one since
it is more explicit and from it others are relatively easier to be determined. The
following diagram illustrates such interrelations with the irreducible asc-set TRR
enjoying the central role. Cf. also the Sect 5 of the paper (WU7|.

_‘_ o —_——— _‘_
| l
(

| |
Ideal(IRR) — IRR — Generic Zero ——
| 1 | |
| | | I
| | | |
! | ! |
Zero(CB) — CB — Chow Form |
[ (Chow Basis) |
I |
I |
Var[IRR] ==== ====== ==== Spec(CGZ)

¥ 4. Decomposition Theorems and Principles
of Mechanical Geometry Theorem-Proviag.

We recapitulate in this section the fundamental theorems in the form of DE-
COMPOSITION THEOREMs of zero-sets which are at the basis of our mechaniza-
tion method of equations-solving and theorem-proving. For more details we refer
to the relavant papers of the author.

DECOMPOSITION THEOREM D1. For any polset PS we have

Zero(CS[J) C Zero(PS) C Zero(CS), (1)

10
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Zero(PS) = Zero(CS/J) + SUM;Zero(PS4), (I

in which CS is a char-set of PS, PS; is the polset PS enlarged by adjoining to it
the initial I; of the i-th pol in CS, and J is the product of all these initials.

DECOMPOSITION THEOREM D2. For any polset PS we have a
decomposition of the form

Zero(PS) = SUM, Zero(ASC;[J;), (111

in which each ASC); is an asc-set and each J; is the product of all initials of pols
in ASC;.

DECOMPOSITION THEOREM D3. For any polset PS we have a
decomposition of the form

Zero(PS) = SUMy Zero(IRRy[Jk), av)

in which each TRRy is an irreducible asc-set and Jy is the product of all initials of
pols in IRRy.

DECOMPOSITION THEOREM D4. For any polset PS we have a

decomposition into irreducible components of the algebraic variety Zero(PS) in
the form

Zero(PS) = SUM Var[IRRy). v)

In the decomposition (V) it may happen that one irreducible component is
contained in the other. Whether this is so for two such components may be verified
by mere computations via Chow Basis based on the following

Theorem 4.1. For any two irreducible asc-sets IRR and IRR' let CB be a
Chow Basis of IRR. Then

Var[IRR'| C Var[IRR]
if and only if for any pol B in CB we have
Remdr(B/IRR") = 0.
Proof. By Sect.3, we have
Var[IRR] = Zero(CB).
Let GZ' be a generic point of TRR'. By Theorem 2.2A we have
Var[IRR'| C Zero{CB)

11
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if and only if GZ' is in Zero(B) for all B of C B. By Theorem 1.2, the latter is true
if and only if Remdr(B/IRR') = 0. This proves the theorem.

It follows from this theorem that we can remove in (V) any redundant cornpo-
nent Var[IRR;] by mere computations of remainders to render the decomposition
uncontractible. That such an uncontractible decoraposition is unique is clear. So
we can strengthen the DEC.TH. D4 to the following

DECOMPOSITION THEOREM D5. The decomposition of Zero(PS)
in irreducible components as in (V) can be made uncontractible and unique by
mere computations. Moreover, if CBj is a Chow Basis of TREy in the above
decomposition, then we may also write (V) in the form

Zero(PS) = SUMj, Zero(CByg). v

The applications of the above decomposition theorems to equations-solving are
self-evident. Consider now the problem of theorem-proving. The basic field K will
then be understood to be the rational field Q.

Consider thus a thecorem T = {HY P, CONC?} with HY P the hypothesis polset
and CONC the conclusion pol in samé variables Xi,...,Xn. Use MTP to stand
for MECHANICAL THEOREM-PROVING. Then by DEC.TH.D1 we deduce the
following

MTP PRINCIPLE Pi. For a theorem T = {HYP,CONC} let
Zero(HY P) = Zero(CS/J) + SUM; Zero{HY Fy),

be the decomposition of Zero{ HY P) by means of DEC.TH.D1, in which C§ is the
char-set of HY P, J is the product of all initials I; of pols in CS and HY P; is the
polset HY P enlarged by adjoining to it the i-th initial I; of C'S. Suppose that. the
remainder of CONC w.r.t. the charset CS of HY P is 0, i.e.

Remdr(CONC/CS) =0, v

then the theorem T is GENERICALLY TRUE under the NON-DEGENERACY
CONDITION
J #0,

or the NON-DEGENERACY CONDITIONNs (r = nuraber of pols in CS§)
IL#0, 1=1,..r
Moreover, if the char-set CS is an irreducible one, thea the condition (VI) is also

a necessary one for T to be generically truz under the above nou-degencracy con-
ditions.

12
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By the various decomposition theorems about Zero(HY P) we deduce also:

MTP PRINCIPLE P2. For a theorem T = {HYP,CONC} let us form
the decomposition

Zero(HIY P) = SUM;, Zero(ASC;/J;)
in which each ASCj; is an asc-set and J; is the product of all initials of pols in
ASCj. Then T will be generically true on the part Zero(ASC;/J;) if
Remdr(CONC/ASC;) = 0. (VII)

Conversely, if the asc-set ASC; is an irreducible one, then the condition (VII) is
also necessary for T' to be generically true on the part Zero(ASC;/J;).

MTP PRINCIPLE P3. For a theorem T = {HY P,CONC} let us form
the decomposition

Zero(HY P) = SUM; Var{IRRy]

in which each JRRy is an irreducible asc-set. Then T will be true on the whole
irreducible component Var{IRRy] if and only if

Remdr(CONC/IRRy) = 0. (VIII)

We shall give in next sections some examples to illustrate how the above Prin-
ciples are applied in concrete cases. The method used here will also throw some
light on our zero-set approach vis-a~vis the usual ideal-theoretical approach at lecast
in the case of mechanical theorem proving.

¥ 5. Example: The Desargues Theorem.

We take again, as in [WUS,7], the Desargues Theorem as example to illustrate
our general theory and method explained in previous sections.

Example 1. Desargues Theorem. Let ABC, A'B'C’ be triangles with corre-
sponding sides parallel to each other. If two joining lines of pairs of corresponding
vertices, say AA’ and BB’, meet in a point O, then the joining line of the third pair
CC’ will pass through O too.

To prove this let us take AA’, BB' as coordinate axis. Let the points in
question have resp. the coordinates:

A = (Xl,O), B = (0, Xs), O: (X4,X5),
A= (Xz,O),B' = (O’XG)aC, = (X'f) XB)-

13
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Then the hypothesis-set will be HY P = {H;, Hz, H3} with

.Hl = X1 * Xg — Xz * X3, [AB”A'B']
H2 = X4 * (Xg — Xe) - X7 * (X5 - Xa), [BC“B'C’]
H3 = Xg * (X4 - Xl) - X5 * (X7 - X2) [CA”C’A']

The conclusion pol is given by
CONC=X4*X3—X5*X7. [O on CC’]

As pointed out in [WU6,7}, no power of CONC can be contained in the ideal
(H,, Ha, H3) so that CONC = 0 is not a consequence of the equations H; =0, 1 =
1,2, 3. This will be true only under certain non-degeneracy conditions in the form of
inequalitics which are not easily foreseen from the very hypothesis set HY P. This
will cause inherent difficulties in the ideal-theoretical approach to the mechanical
geometry theorem proving. However, in our zero-set approach the difficulties will
be automatically resolved as explained in what follows.

Method 1.

Based on Decomposition Theorem D1 we form first the char-set CS of HY P
with
Zero(HY P) = Zero(CS/J) 4+ SUM; Zero(HY P,).

In the formula CS = C},C4,C5 with

Cl =H1, C:.;:Hz, while
Cz=(X1*X3"X1*X5—X3*X4)*X1+(X4"Xl)*X4*X6+X2*X4*X5

The initials are
L=Xy, L=X*Xs X1+ X5 —Xa* Xy, In=Xy,

and J is the product I % I, * I3. Each polset HY P; is HY P enlarged by adjoining
to it the initial I;.

It is readily verified that
Remdr(CONC/CS) =0,

It follows that
Zero(HYP/J) C Zero(CONC),

or the Desargucs Theorem is true so far

J#0, or
11750, 12#01 I3¢0'
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Each of the conditions I; # 0 has some evident geowmetrical meaning. The more
troublesome one is the condition I # 0 which says that the triangle ABC {and
hence also the triangle A’ B’C’) should not be degererate into a line. If we are in
doubt whether Iy # C is really an unavoidable condition for the truth of Desargues
Theorem we may just add Iy to HY P to form a new hypothesis set HY P2 and
apply our method to HY P2.as before.

Method II.

In order not to unnecessarilly complicate the computations let us consider
X1.X2,X3 to be constants assurned to be non-zero and X; # X;. We will thus
be working in an affine 5-space of coordinates (X4, Xs, X6, X7, X3). A geometrical
configuration verifying the hypothesis HY P = 0 is just a point on the algebraic
variety Zero(HY P) in that affine space.

Based on Decomposition Theorem D2 we find now
Zero(HY P) = SUM; Zero(ASC;/J;),

in which SUM; runs over 1 == 1,2,3 and each J; is the product of initials of pols in
corresponding ase-set ASC;. The asc-sets ASC; are resp. consisting of pols C;; as

follows.
For ASC1: Cy; =0C;, 7=1,2,3.

For AS5C2: 021=12, CQQ=H1, 023:H2.
For ASC3: Ca; =15,C33 = H;,C33 = X7,
C34:X1*X8+X5*(X7_‘X2)-

It turns out that all these asc-sets ASC; are irreducible ones so we shall rename
them as JRR;. The DEC.TH.D4 gives then:

Zero{HY P) = SUM; Var{IRR;].
It is readily found that

Remdr(CONC/IRR;) =0, Remdr(CONC/IRRs) = 0,while
Remdr(CONC/IRR;) # 0.

it follows that the Desargues Theorem is true on the whole irreducible compo-
nents VarlIRR] and Var{I RR3}, but not so on the component Var[IRR,]. The
reason may be seen directly from geometrical considerations. In fact, A, A/, B be-
ing fixed as X, X4, X3 are given constants, B’ or X Is already well-determined.
The variety Var[{I RR;] is therefore consisting of the configuration of triangle pairs
ABC, A'B’C’with C in GENERIC position and of all other configurations obtained
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therefrom by specializations. The variety Var[IRR,]| is consisting of configurations
of such triangle pairs with C and C' taken arbitrarily on the lines AB and A'B’
resp. The variety Var{I RR;] is consisting of such configurations with C arbitrarily
chosen on the axis OB B’ and thereby C' is well-determined. We see also that these
three components will have their dimensions equal to 2,2,1 resp., being the degrees
of freedom of the configurations in question. Directly from geometrical considera-
tions it is also readily seen that on the component Var[IRR,] the theorem can not
be true. The above computations by means of remainder-formation serve to give
systematic verifications of such geometrical evidences. Furthermore, we see from
mere geometrical considerations that all configurations in Var{IRR3] are in fact
specifications of the generic configuration in Var[IRR,| with C generically chosen.
This means that Var{IRR3] should be contained entirely in Var[IRR,]. By The-
orem 4.1 this may also be verified by computations via the Chow Form or Chow
Basis as follows.

In the affine 5-space As the generic points GZ; of IRR; and hence also of
Var[IRR;] are readily seen to be:
GZ) = (X4, X5, Xo * X3/ X1, Xo * X4/ X1, X * X5/ Xy),
GZy = (X4, — X3+ {Xy — X1)/ X1, X2+ X3/ X1, X7, X3 % (X3 — X7)/ X)),
GZ3 = (0,X5,X2 % X3/X1,0, X2 * X5/ X).
The condensed Chow Basis are found to be consisting of pols B;; for IRR;, 1 =
1,2, as follows.
Bii=X1*Xe— X+ X3, Biz=X1*X7— X2+ X4, Bia=X;* Xg— X% Xs;
By = —X1"* X+ X1 # Xo ¢ X5 + Xo# X3 * Xy,
Boa=X1*+Xe— X1 % Xax X7 — X1 % Xo % X5 — Xo % X3 * Xy,
Bos = —X| * Xg — X3+ X7+ X *+ X,
Boy = X1 * Xg+ X3+ X7— Xq % Xg,
Bas = X1+ X5+ Xa* X4 — X1+ X3,
Bae = -X; * Xe + Xo % X3.

It is readily verified that
Remdr(B,;/IRR;) =0, 7 =1,2,3.

It follows therefore from Theaorem 4.1 that Var{JRR3! is contained in Var[IRR,],
as already signified. We get in particular the uniquc decomposition into irreducible
components of the affine algebraic variety Zero(HY P), viz.

Zero(HY P} =Var{IRR|]+ Var|[IRR,].
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The Desargues Theorem is now proved to be true on the whole first component but
not so on the second one.

We make now some comparisons between the two methods as exhibited above.
The Method I gives a complete answer to the problem of theorem-proving at the
cost of much more computations being needed. It seems that the Method I, in-
complete as it is in appearence, is often to be preferred in general. The reason is
this. Actually all theorems in elementary geometry are only true in the GENERIC
sense and are stated in a form with implicit GENERICITY hypothesis utterly un-
mentioned. Our Method I furnishes, disregarding at all any possible degeneracies,
just such a GENERICITY proof in case it is TRUE, which should mean GENER-
ICALLY TRUE and is in agreement with the real character what one means by a
geometrical theorem. It avoids thus the labyrinth of degeneracy conditions unless
some geometrical interest or practical necd urges one to do so. It is owing to this
reason that in our mechanical geomet:y theorem proving the Method 1 alone has
proved already a great success. See however the next section for further comments.
Finally, we would like to point out that the knowledge of Chow Basis of an irre-
ducible component, though of importance from a theoretical point of view, may
serve as little use for the proving of the theorem in question on this component.
This may be seen clearly from the Chow Basis of TRRs as explicitely given above.
Of course one can deal with TRR; easily from its Chow Basis. But this is just
because the Chow Basis happens to be already in the form of an asc-set whichis a
quite rare case.

§ 6. Mechanical Theorem-Proving in the Reducible Case.

In the last section we have pointed out that in applying the various decompo-
sition theorems to MTP, the method based on Dec.Th. D1 is preferred in general.
We have to make however the supplemen-tary remark that there may arise some
difficulties in applying D1 in e.g. the so-called REDUCIBLE case. In fact, for a
theorem T = {HY F,CONC} let

Zero(HY P) = Zero(CS/J) + SUM;Zero(HY F;) (%)
as before. It may happen that
Remdr(CONC/CS) # 0.

If the char-set CS is irreducible then by the decomposition theorems the theorem
T in question is not true generically and not true on the irreducible component
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Var[CS5]. If CS is however reducible then nothing can be concluded. The reducibil-
ity may however arise owing to an inadequate choice of the coordinate system and
may be avoided by adopting other coordinate systems. Such a choice may be furni-
shed by the method of separation of variables X; into two parts to be denoted by
U; and Y; resp. as in Sect 1. This is in fact the earliest method adopted by the
author, as exhibited in {WUL,2]. It amounts to choose among the X's those as
independent ones and the others as bounded or dependent ones. In many cases
with a suitable choice the corresponding char-set will become irreducible and Dec.
Th.D1 may well be applied. There are however no general guiding rules of such
choice to follow whick depends heavily on the mathematical understanding of the
theorem in question. There are also cases for which no such choice is possible at all.
The only way seems then to apply the other decomposition theorems other than
D1. The following is a concrete example for such cases.

Example 2. Center of Similitude Theorem. The three centers of similitude of
the three pairs of circles taken from three circles in the plane will lie on the same
line.

Let us take the coordinates such that the centers of the three circles Ci are
resp.
0 = (X1,0), O, =(X;,0), O3 =(0,X3).

Let the radius of the circles be X4, X5, and Xg resp. We assume here the three
circles to be in generic position so that in particular X, ..., Xg areall #0, Xj # X,
and X4, X5, X¢ mutually unequal. Denocte the three centers of similitude for the
pairs (C1,C3),(C1,C3), and {C2,C3) to be resp.

81 = (X7,0), S2=(Xs,Xo), Sz=(X10,X11)-
Then the hypothesis set HY P = {H}, ..., H5} with

Hy = X3« (X7 - Xo)? - X357 (X7 - X1)?,

Hy = Xg%  ((Xs — X1)? + Xo7) = X% » (X + (Xo — X3)?),
Hy=X1+ Xog+ X3+ Xsg— X1+ X3,

Hy=Xo" + (Xi0 = X2)? + XT) = X% % (X10® + (X011 ~ X)),
Hg = Xo+ X1 + Xa*x X0~ X+ X3,

The conclusion pol is given by

CONC = X, *(Xg—X7)—X1()*Xg+Xg*X7.

Let us consider X;,...,Xg as constants and X7,..., X1; as variables. It is easy
to see that no matter how we rename X;,...,X;; by a permutation which amounts
18
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to a separation of these X into U and Y, the corresponding char-set will always be
a reducible one, even if we replace Hy by one of its factors. For the char-set CS of
HY P as above it is consisting of 5 pols C; of which

C; = H; for ¢ = 3,5.
On the other hand
Cl = C{ * Cl”)‘ 02 = C; * Cz”, C4 = C; *04”

with

C; = ‘Yq * (X’,' - Xz) - Xs * (}:1 et Xl),

C” = X4 % (X7 — Xa) + X5 * (X7 — X4),

C; = .YG * (Xg bt Xl) — X4 * Xg,

Cg” = Xe * (Xg - Xl) +X4 * Xa,

Cy = Xo* (X10 — Xz) — X5 * X1o,

C4” = XG * (XIO - Xz) + X5 * X]_o.
Applying Dec.Ths 2-4 we get then

Zero(HY P) = SUMy Zero(IRR;) = SUMy Var|IRR;j,

with k running from 1 to 8. The IRP; are irreducible asc-sets each consisting of
5 pols C; to Cis with Cyz = Ca, Cis = Cs as above while each Cyj is either Cl;
or Cy;” for j = 1, 2, or 4. It is readily verified that Remdr(CONC/IRR;) = 0 for
four of these TRR; and # 0 for the other four. The theorem in question can thus
be more precisely expressed in the following form:

The 6 centers of similitude of pairs of cicles taken from 3 circles in generic
position lie 3 by 3 on 4 lines.

There are many methods in dealing with the reducible case due to various
authors like Chou, Gao, Wang, and the author himself. Cf. also an interesting
paper [SH2] in this MM-Preprints. Besides the one in using Dec.Ths. D2-D4, the
author has proposed, specially for theorems in ¢lementary geometries, the method
of oriented lines and oriented circles. For the Example 2 above we see that the 3
centers of similitude will be uniquely determined and lie on the same line once the 3
circles are cach definitcly oriented. There are in all 8 different ways of orienting the
circles which may be divided into 4 pairs with same triple of centers of similitude
for each pair. This accounts for the 4 lines of centers of similitude in the theorem.

For more examples we refer to [WU9]. Much harder theorems than the Example
2 above have been proved in this way with relative ease, including a difficult theorem

of Thebauit-Taylor-Chou.
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Abstract. Based on a well-ordering principle for differential polynomial sets, principles
of mechanical theorem proving (MTP) and mechanical theorem discovering (MTD) are
formulated and discussed. Examples are given to show how these principles may be
applied to problems in differential geometries and mechanics.
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1. Introduction

In 1977/8 the author has introduced a method of mechanical theorem proving of elemen-
tary geometries which has been proved to be a very efficient one. The method was later
extended to mechanical theorem proving of differential geometries and the present paper is
devoted to such an exposition. As the case of two or more independent variables is much
more complicate than that of a single independent variable, we have separated the treatments
into two parts. In Section 2 we explain with proofs omitted the basic principles underly-
ing mechanical theorem proving of differential geometries involving only one independent
variable. In Section 3 some examples in differential geometry of curves and in Sections 4
and 5 examples in mechanics are given for the sake of illustrating these general principles of
mechanical theorem proving as well as mechanical theorem discovering. In particular, it is
shown how Newton’s Gravitational Laws can be mechanically proved and even automatically
discovered from Kepler’s Laws. In Section 6, the case of two or more independent variables
is briefly described and some examples from theory of surfaces are also given to serve as
illustrations.

2. Case of one Independent Variable

For a basis of the present section, we refer to [4, 5] and [6].
A DIFFERENTIAL FIELD (abbr.d-FIELD), say F, is a field of characteristic 0 which
has, besides the usual arithmetic operations, a further operation of DIFFERENTIATION

1) The present paper to be published elsewhere is a summary of partial results of the author before 1988.
It is partially supported by NSFC Grant JI85312
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such that any element A of F" has a DERIVATIVE D; A verifying the usual rules. We write
for simplicity D;A = D; --- D1 A with D; i times and call D; A the i-th DERIVATIVE of A.
The element A itself is also considered as 0-TH DERIVATIVE of A: A = DyA.

An INDETERMINATE X is just a symbol having an infinity of DERIVATIVES D; X
none of which is zero. A DIFFERENTIAL POLYNOMIAL (abbr. d-POL) say P in INDE-
TERMINATES X, Xs,---, X, over F' is a polynomial in D;X; with coefficients in F. For
P we can then form successive DERIVATIVES D; P as well as various PARTIAL DERIVA-
TIVES dP/d(D;X;) in the usual formal manner.

To any non-constant d-POL P will be associated a 4-tuple [t ¢ r d] of integers, to be
called the INDEX-SET of P, in notation ind(P), as follows.

t = number of actual terms in P,

¢ = the greatest subscript ¢ for which X, occurs actually in P, to be called the CLASS
of P, and to be denoted as cls(P),

r = the highest order r for which the r-th derivative D, X, of the above X, occurs actually
in P, to be called the ORDER of P and to be denoted as ord(P),

d = the highest degree d of the above D, X, which occurs actually in P, to be called the
DEGREE of P and to be denoted by deg(P).

In case P is a non-zero constant, then we define ¢ = 0,7 =0, and d = 0.

A d-pol @ will be said to be &-REDUCED w.r.t. a d-pol P of class ¢ > 0, if either the
highest order m of derivative D, X, appearing in Q is < ord(P), or, if D, X, appears in Q
where r = ord(P),then the highest degree of D, X, in @ is < deg(P). On the other hand Q
is not d-reduced w.r.t. any d-pol P of class 0.

For a d-pol P with cls(P) = ¢ > 0,0ord(P) = r, and deg(P) = d, we shall call the
derivative DX the LEAD of P, to be denoted by lead(P). Let L be this lead. Then the
coefficient of L4, which is itself a d-pol, is called the INITIAL of P, to be denoted as init(P).
The formal partial derivative of P w.r.t L is then called the SEPARANT of P, to be denoted
by sep(P).

For non-zero d-pols in indeterminates X1, --, X, over the d-field F partial orderings
<« may be defined in various ways. To fix the ideas only the following ordering will be
considered in this paper. Let Pp, P, be non-zero d-pols with index sets [t; ¢; 71 di] and
[t2 c2 72 da) resp. We say then P; < P, or P2 > Py if one of the following cases occurs:

(a) er < ca,

(b) 1 = ¢, but 1y < ra

(c) et =¢co,r1 =1, but dy < dg .

If neither P, <« P, nor P; >»> P, so that P, and P, are incomparable in this ordering,
then we write P, <> Py .

With respect to such a partial ordering of d-pols we can then introduce the notions
of DIFFERENTIAL ASCENDING SET, DIFFERENTIAL BASIC SET, and DIFFEREN-
TIAL CHARACTERISTIC SET just as in the case of ordinary polynomials as follows.

DEFINITION. A finite sequence of non-zero d-pols

(ASC) P, Py, P,

is called a d-ASCENDING SET (abbr. d-ASC-SET) if either
(a) r =1 and cls(P1) =0, or
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(b) cls(Pt) > 0, and for any j > 4, cls(P;) > cls(P;) and the initial of P; is d-REDUCED
w.r.t. P ’

In case of (a) the d-asc-set is then said to be TRIVIAL.

For a non-trivial d-asc-set (ASC) as above let S; and I; be respectively the separant and
initial of P;,4=1,2,---,r. A d-pol G will be said to be &-REDUCED w.r.t. (ASC) if it is
d-reduced w.r.t each P; in {ASC). In particular all separants S; and initials I; are d-reduced
w.r.t. (ASC). For any d-pol G we have then the following REMAINDER FORMULA:

(I (IF % 57)) % G = Z (Qjx = D;P;) + R, M
i ik

in which /; and m; are certain non-negative integers which will be taken to be as small
as possible, and Qji, R d-pols with R d-reduced w.r.t. (ASC). The product [] is to be
extended over 1 < ¢ < r, and the summation ) is extended over only a finite number of
terms. The d-pol R in (I) is accordingly called the d-REMAINDER (abbr. d-REMDR) of
G w.r.t. (ASC), to be denoted as d-Remdr(G/ASC).
The d-asc-sets will also be arranged in a partial ordering < according to the following
DEFINITION. Let a second d-asc-set

(ASC)/ leQ??"' 7QS

be given. Then (ASC) « (ASC) or (ASCY » (ASC) if one of the following cases occurs:

(a) There is some k < r and < s such that for j < k, P; <> @Q;, while P, € Qy, .

(b) r>sand P; <> Q; for j <s.

If neither (ASC) <« (ASC) nor (ASC) > (ASCY so that (ASC) and (ASC) are
incomparable in this ordering, then we write (ASC) <> (ASCY'.

DEFINITION. For any system (DPS) of d-pols any d-asc-set ASC of lowest order for
which each d-pol belongs to (DPS) is called a d-BASIC-SET (abbr. d-BAS-SET) of (DPS).

Let a d- FIELD F be given. A d-FIELD F’ will be said to be a d-EXTENSION-FIELD
(abbr. d-EXT-FIELD) of F if, as an algebraic field, it is an extension field of F in the
ordinary sense, and moreover any element A of F' which is also in F will have the same p-th
derivative for any p > 0 whether it is considered as an element of F or of F'.

Let the d-FIELD F and INDETERMINATEs X, X5, -+, X, be now fixed in advance.
Consider any finite set (DPS) of d-pols in X1,--+, X, over F. The system of equations
P = ( for all P in (DPS) will be represented symbolically by (DPS) = 0.

A finite set of non-zero d-pols is called a DIFFERENTIAL POLSET (abbr. d-POLSET).
Let such a d-polset DPS be given. A set (Z;) of elements Z; in an arbitrary d-ext-field F’ of
F will be called a d-ZERO of the set (DPS) if it makes (DPS) = 0 when Z; are substituted
for X;. The totality of all such d-zeros will be denoted by d-Zero(DPS) and the totality of
those which are not d-zero of a given d-pol G will be denoted by d-Zero(DPS/G).

Given a d-polset DPS we can deduce a certain d-asc-set of particular interest in a
mechanical way according to the following scheme:

DPS =DPS, DPS, -« DPSp,,
DBSy>» DBS,>» --->» DBS, (IT)
DRSy DRS: ree DRSy, = empty.
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In (IT) each DBS; is a d-bas-set of DPS;, each DRS; is the set of non-empty d-remainders, if
there are any, of d-pols in DPS; w.r.t. DBS;. Finally, each DPS; is the preceding DPS;_1,
enlarged by adjoining to it all the d-pols in DRS;_1, i.e.

DPS; = DPS;_1+ DRS;1, (HI)

in which + means set union. It is easy to prove that the procedure will ultimately terminate
with some DRSp, = empty.

DEFINITION. The final d-bas-set DBSy, in the scheme (II) is
called a &-CHARACTERISTIC-SET (abbr. d-CHAR-SET) of the d-polset (DPS).

The importance of this d-char-set, say DCS, lies in the following

WELL-ORDERING PRINCIPLE. For the d-zeros of (DPS) we have

d-Zero(DPS) = d-Zero(DCS/K) + Z d-Zero(DQSy), (Iv)
k

in which K is the product of all initials and separants of d-pols in the d-char-set DCS, and
DQS), are the enlarged DPS with one of the initials or the separants adjoined to it. We
have besides

d-Zero(DPS) C d-Zero(DCS) V)

d-Zero(DCS/K) = d-Zero{ DPS/K) C d-Zero(DPS), (V1)

More general than (V), we have also
d-Zero(DPS) = d-Zero(DPSy) C d-Zero(DBSy) (V)

for any d-polset (DPS}y) and d-bas-set (DBS}y) appearing in scheme (II).

REMARK. During the procedure it is convenient to remove certain factors to make d-
pols occurring in the reduction not too high in term numbers. In such case the ), in (IV)
should run over also all factors removed besides initials and separants and the product K
should include all such factors too.

Consider now a differential-geometrical statement (S) with hypothesis (HY P) = 0 and
conclusion CONC' = 0 both expressed in terms of d-pols. Any d-zero of (HY P) is then just a
geometrical configuration, eventually in some imaginative extended space, which verifies the
hypothesis of (S). Let us form now a d-char-set DCS of (HY P) and form the d-remainder

R = d-Remdr(CONC/DCS).

Suppose that R = 0. From the remainder formula (I} and the relation (V) we see that
CONC = 0 for any d-zero of (HY P) for which

NDy #0, (VII)

with N Dy the totality of (non-trivial) initials, separants of d-pols in (DCS) and eventually
also factors removed during the procedure. Accordingly we lay down now the following
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MECHANICAL THEOREM PROVING (abbr. MTP) PRINCIPLE. A geometrical the-
orem with hypothesis d-polset (HY P) and conclusion d-pol CONC is GENERICALLY
TRUE under certain NON-DEGENERACY CONDITIONs (VII) if

d-Remdr(CONC/DCS) = 0. (VIII)

The above MTP Principle furnishes us not only a mechanical method of proving KNOWN
geometrical theorems, but also one of DISCOVERING in a certain sense yet UNKNOWN
theorems. For example, we may make guess about certain probable conclusions and then
just verify its truth by simply computing the corresponding d-remainders to see its generic
truth. What is more important is the following: The formula (V') shows that, if (DPS)
is the hypothesis set (HY P), then any d-pol P in any d-polset (DPSy) or any d-bas-set
(DBSy) appearing in the scheme (II) during the procedure, will furnish us a geometrical
theorem P = 0 whenever it has a geometrical meaning. Moreover, by deliberately arranging
the indeterminates in an order at the outset, we are able to get certain not previously
known geometrical relations between the first few indeterminates. This will furnish us thus
a general method of discovering unknown relations or new theorems. We may thus formulate
the following

MECHANICAL THEOREM DISCOVERING (abbr. MTD) PRINCIPLE. For a hypoth-
esis set (DPS) = (HY P) any d-pol P occurring in (DPSy) or (DBSy) of scheme (IT) will
furnish us a geometrical theorem P = 0, whenever it can be endowed an intrinsic geometric
meaning.

Illustrative examples for the applications of the above MTP and MTD Principles will
be given in successive sections. We remark that there are various refinements of the Well-
Ordering Principle in the form of Structure Theorems of a d-zero-set of a d-polset. Corre-
spondingly there are also refined MTP Principles which would comprise the most general
and also complete one about mechanical theorem proving of geometries. However, in view
of the high complexity in applying such refined principles it seems that the partial MTP
Principles would often be preferred which are already both efficient and fruitful in bringing
about non-trivial concrete results, as may be seen from the examples to follow. For this
reason we shall satisfy ourselves in this paper to the above special forms of Principles and
leave the more general studies to the relevant papers of the author.

3. Some Examples

Let a differential-geometry theorem be expressed in the form of T = {HYP,CONC}
with HY P the hypothesis d-polset and CONC the conclusion d-pol. Let DCS be a d-char-
set of HY P in accordance with the scheme (II) in Section 2. Denote the initials, separants,
and also eventually factors removed during the procedure by ND; and K be the product
of all of them. Denote also by HY P, the enlarged d-polset of HY P in adjoining to it the
d-pol NDy. Then the Well-Ordering Principle (IV) of Section 2 applied on HY P will be of
the form

d-Zero(HY P) = d-Zero(DCS/K) + Y  d-Zero(HY B).

k
Let the d-remainder of the conclusion d-pol CONC w.r.t. DCS be
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R = d-Remdr(CONC/DCS).

Suppose that R # 0. Then nothing can be concluded. It may be due to the fact
that the theorem T in question is utterly untrue at all or that the d-char-set DCS is RE-
DUCIBLE in certain sense which we shall not enter. Suppose however R = 0. Then the
MTP-Principle based on the above Well-Ordering Principle says that the theorem 7' in ques-
tion is generically true under the non-degeneracy conditions NDy # 0, or T is true on the
part d-Zero(DCS/K) = d-Zero(HY P/ K) of the totality d-Zero( HY P) of geometrical con-
figurations verifying hypothesis (HY P) = 0. If we are interested in knowing whether the
theorem will remain true in one of the degeneracy case ND; = 0, we may just add NDy
to HY P to form the enlarged hypothesis set HY P, and proceed with HY P just as HY P
before. We remark that though nothing can be concluded in case R # 0 and R = 0 gives
only a sufficient condition of proving a differential-geometry theorem, the method is already
of some consequence as may be seen from the illustrative examples below.

Ex. 1. Parallel Planar Curves.

Two planar curves C,C’ are said to be PARALLEL if there is a (1-1)-correspondence
P «— P’ such that the joining lines PP’ are common normals to the curves. Prove that for
such pairs the distance r between the corresponding points is a constant.

To prove it let the coordinates of P = (X1, Xp) and P’ = (X3, X4) be expressed in terms
of same parameter ¢ for which the values are same for points P, P’ in correspondence. Denote
the distance of PP’ by X5. The hypothesis set is then consisting of 3 d-pols

Hy = (X3 - X1)* D1X1 + (X4 — Xo) ¥ D1Xo,
H2 = (X3 - Xl) * D1X3 + (X4 — Xz) * D1X4,
Hy = X2 — (X3 — X1)? — (X4 — Xo)?,

while the conclusion d-pol is given by

CONC = Dy X5,

in which D4, Dy, etc. means derivatives w.r.t. £. The d-char-set DCS is easily found to be
consisting of the 3 d-pols below:

C1 = ((D1X1)? + (D1X3)?) * D1 X2 ¥ D1 X3 + (X3 — X1) * D1.X)
* (DyX1 % D1 Xy — D1 Xy % DaXo) — D1 X1 % D1 Xo x (D1 X1)? + (D1X0)?),

Co = D1 Xpx Xq+ (X5 — X1) * D1 Xy — Xo x D1 X2,

Cs=XZ — (X3 — X1)? — (X4 — X2)%
The leads are D) X3, X4, and X5 while the initials, separants, and removed factors, which
are all eventually split into factors, are 4 in number:

ND, =D1Xy, NDy=X3-X;,
ND; = (D1 X1)2+ (D1X3)%, NDy=X;s.
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The d-remainder of CONC is readily found to be 0 as shown by
2% ND} %« NDy+ CONC = A, % D1Cs + Az D1Cy + Az x Cy + Ag % C,

in which A; are all d-pols. It follows that the theorem in question is true under the non-
degeneracy conditions N Dy, # 0.

The condition ND; = 0 means that the curve C degenerates into a line parallel to the
X-axis or eventually a single point. If we want to know whether the theorem remains true
in this degenerate case we just add ND; to (HY P) to form a new hypothesis set (HY P,)
consisting of the 4 d-pols H; and ND;. Let us consider the case ND;y # 0 so that we may
remove the factor NDy = X3 — X during the procedure in forming the d-char-set. Then
the d-char-set DCS; will be found to be consisting of 4 d-pols

Cu=D1X:, Ciz2=DiXy
Ci3=Hy, Cu=Hs.

The new non-degeneracy conditions are now N Dy # 0 with

NDyy = NDy,NDy3 = X4 — X9, NDy3 = NDy.

We find readily the d-remainder to be 0 again so that the theorem is still true under the
conditions

ND]ZO, ND11*ND12*ND137$0.

We remark that in the present case C degenerates into a single point P while C’ becomes
a circle with P as center and radius non-zero. The correspondence is no more (1-1) and the
theorem is to be interpreted as to be true in some degenerate sense. By proceeding further
in the same way, we may verify the truth of the theorem under all possible degeneracy cases,
if we wish to do so.

Ex. 2. Curve pairs of Bertrand type.

For a space curve there is associated to any regular point X on it a triple of significant
lines L, viz. the tangent T', the principal normal P, and the binormal B. Suppose to C there
is associated some other curve C’ in (1-1)-correspondence to it such that at corresponding
regular points X, X’ one of the significant lines L of C coincides with some other significant
line L' of C'. There are in all 9 such possibilities for which (L, L') = (P, P') is the case of
classical Bertrand curve pairs.

For the study of such curve pairs of Bertrand type we shall use the Cartan method of
moving trihedrals for which only entities of intrinsic geometrical interest will be involved. In
fact, in contrast to the case of elementary geometries no coordinates having no geometrical
significance will enter which saves thus the memory storage as well as computational labor.

Let us take arc lengths S, .5’ of the curves C, C’ as parameters so that S’ is a function of
S under the correspondence. The derivatives w.r.t. S will be denoted by Di, D, etc. and
we put also D15’ = R.

Attach now to points of C the trihedrals (X, E1, Fs, F3) with lines of E; = T,P,B
respectively. The Frenet equations will be:
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D1 X =FE), DiEi=K:E,, (1)
D1Ey=—-K -Ey+T-E3, D1E3y=-T-FEy,

in which K and T are respectively the curvature and torsion of C. For C’ we have also
similar trihedals (X', B, Fj, E}) and equations.

Counsider the general case in which the trihedrals at corresponding points are related by
equations (with matrix (Uj;) an orthogonal one):

X/=X+A1-E1+A2-E2+A3~E3, (2)

E[=) Uj;E; i=123. (3)
J
Differentiating now both sides of (2), utilizing the Frenet equations of both C,C’, and com-

paring coefficients of E;, we get readily equations H; = 0,7 = 1,2, 3, with
Hi=R+xUj1—1-D A1+ A2+ K,
Hy=R«Uip—D1Ay— A« K + A3 x T,
H3=R+«Uys— DAz — Ay T.

Treating in the same manner the other equations (3) we get 9 further equations H; =
0,i =4, --12. Let K’ and T’ be the curvature and torsion of the curve C’, then these d-pols
H; are given by:

Hy =R+ K xUy — DUy — K + Upa,
Hs =R+ K' Uy — D1U1g — K+ Uy + T * U,
Hg =R+ K' xUy — D\Uyj3 — T x Uy,

Hy =R+ K Uy + R+T' +«Us; — D1Ugy + K + Usg,
Hy=-RxK' «Upp + R+T xUsyg — D1Usp — K x U1 + T + Usg,
Hy=-R+K' xUps+ R*T xUsz — DUy — T % Upg,
Hig=~R*T %« Up — DU + K % Usz,
Hy=—R*T «Usp — D1Usg — K + Uz + T + Uss,

Hig= —R*T % Uy — DUsz — T % Usg.

Change now the notations as given by
(R, A1, Aa, A3, U11, Uz, Us, Uat, Una, Uas, Usy, UspUss, K, T, K', T')

= (X5, X6, X7, Xs, Xo, X10, X11, X12, X13, X14, X15, X16, X17, X0y Xp> X, Xa)

Consider first the classical Bertrand case (P, P') so that E = + or —E;. To fix the ideas
let us take the + sign and similarly for the orthogonality relations between the Uj; ’s so that
we have:
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A =0, A3=0,
Upp=Uan=Un=Us=0, Un=1,
U = Uss, Uiz =-Us,

U +U% =1

4)

Suppose we are interested in finding the possible relations between the torsions T, 7" of

C, C'. We may then choose X, -+, Xy to be e.g.

K=X,=Xo5, T=2Xp=2X,
K=X,=X3, T =2X;=2X4.

The hypothesis system (HY P) is then consisting of the 14 d-pols in the X's below besides

the trivial ones of (4), viz.

H1=X5*Xg—l+X25*X7,

H) = —Dy X,
Hy = X5 x X11 — X2 x X7,
HY = —Dy Xo,
Hi = X0 * X5 — Xos * Xo + X2+ X1,
Hi = -D1Xu,

H;=X30*X5*XQ—X4*X5*X15—X25,
Hj = X30% X5 % X11 — Xa * X5 % Xa7 + X,

Hy = —D1 X35,

H{o = —Xyx X5 — Xos * X15 + Xo * X17,
Hy = —DiXan,
Hiy = Xo — X1,

Hiy = X1 + X5,
Hj, = X2+ X} -1

We remark that the derivation of these equations H] = 0 are entirely of a mechanical

character. Now

H,=0, H;=0, Hzg=0, Hyg=0, Hj;=0,

means that the distance A9 = X7 between corresponding points and cos A = Xg,sin 4 = X11
and so the angle A between the corresponding tangents or binormals are all constants. Hence

we have already discovered these classical theorems in an automatic manner.
The d-char-set of (HY P) is found to be a set of 10 d-pols C{-Cj, with
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C{ = Xy * D1 X+ Xy * D1 Xy, etc.
The equation C} = 0 means that X3 * X4 = const. Thus we have discovered automatically
the following
THEOREM of SCHELL. The product of torsions at corresponding points of a
Bertrand pair of curves is a constant.
Suppose we are now interested in the probable restrictions in K and T about the curve
C to have a Bertrand companion C’. For this purpose we may take e.g.

K=X,=X,, T=Xy= Xy,

K =X.=X3, T =Xq4=Xu.

The d-char-set of the hypothesis system is again readily found with the first one given by
Cy = Fy * (D1Xy x DaXy — D1Xy x Dy X1),
where
Fi = (X1% D1 Xy — Xo*x D1 X1) % (X1 % D1X1 + X2 % D1 X5).

Under the non-degeneracy conditions Fy # 0, D1X1 # 0, etc. we see that

D1 X1 % DaXg — D1Xox Dy X1 =0,

or X1 = K, Xy = T verify some linear relation. We have thus discovered automatically the
following classical

THEOREM of BERTRAND. If a curve C has another curve ¢’ to form a Bertrand pair,
then generically the curvature and torsion of C are in some linear relation with constant
coeflicients.

As before we may study the degeneracy cases F1 = 0, etc. if we are interested in doing
S0.

Let Z, Z' be now the centers of curvature of C, C’ at corresponding points X, X', and let
CR be the cross ratio of (X, Z, X', Z’). Then

1/CR=-(1+A:+K')* (A2 x K — 1) = G, say.
W.r.t. any one of the above d-char-set DCS we find readily
d-Remdr(D1G/DCS) = 0.

We have therefore proved the following

THEOREM of MANNHEIM. The cross ratio of any two corresponding points and the
centers of curvature of a Bertrand pair of curves is a constant under the non-degeneracy
conditions K * K’ # 0 among others.

We have also treated in the same manner the other cases (L, L') = (P, B), (B, P), (B, B)
and re-discovered such theorems of Mannheim, etc. in an automatic manner. Moreover,
for curves in affine space there are notions of affine principal normal, affine binormal, affine
winding coefficients, and affine torsion. There are also Winternitz equations and Darboux
equations connecting these affine invariants alike to the Frenet equations for curves in the
ordinary space. However, it seems that there are no analogues of theorems so interesting as
those of Schell or Mannheim as given above. Cf. [15].
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4. Example 3. Kepler’s Equation in Celestial Mechanics

Kepler’s equation in celestial mechanics plays an important role in astronomical compu-
tations. As a further example of illustrating our general method we shall show how to solve
Kepler’s equation in a manner entirely different from the usual known ones.

For this purpose let us consider a planet P moving in an elliptic orbit with eccentricity
e and period T. Let ¢t be the time elapsed in starting from the perihelion. The angle to be
determined F, is the angle spanned by the major axis toward the perihelion, and the radius
vector from the center of the elliptical orbit to that point on the circumscribing circle which
projects to the same point on the major axis as does the planet. The Kepler’s equation
which permits to determine E is then of the form

E—exsinE =M, (1)
with
M=2xmxt/T.

The equation (1) is usually solved by numerical or graphical methods. A solution is also
furnished by the Lagrange series of E in e with coeflicients in terms of derivatives of powers
of sin M w.r.t. M. The derivation of Lagrange series is somewhat intricate and the series
converges only for e(< 1) sufficiently small. We shall now give a simple device turning the
equation into a form which permits to, again by our general method, determine E, as well
as other simple functions of E like sin E, etc. in the form of convergent series of M.

The underlying principle of this method is quite simple. Let us consider sin £ as a
separate indeterminate function by setting

F=sinE. (2)

The sine function, as also most of transcendental functions occurring in mathematics, will
satisfy some differential equation. This differential equation, together with the original
Kepler equation (1), will furnish us a d-polset consisting of two d-pols in F and F on the
independent variable M. Applying our general method we get then equations in F or F'
alone which may then be solved in the form of series in M.

The computation is quite simple and runs as follows. Considering F and F' as functions
of M with primes denoting derivatives w.r.t. M, we get from (2)

F'=cosEx F', (2)
F'= —sinExE? +cosE x E". (2")
Multiplying (2”) by E’ and removing sin E, cos E by means of (2) and (2'),we get
ExF'—FxE'"+FxE®=0. (3)
In order to solve for £ we may now set
E=X;,F =X, (4)
Let us use again D; to denote the i-th derivative w.r.t. M, then(1l) and (3) will become

Xi—exXy—M=0, (1)
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12 ‘Wu Wen-tsun

DiXy * DXy — D1 X3 % DaXa + Xo # (D1 X1)2 = 0. (3"

The d-pols P| and P} in the left sides of (1’) and (3) form now a d-polset DPS’. To form
the d-char-set of DPS’ we just form the d-remainder of P} w.r.t. P{, getting thus a d-pol

R = DoX1 + (X, — M) * (D1 X1)3,

which, together with (1’), will form a d-char-set of the d-polset DPS’. The equation R’ = 0,
or

E'+(E-M)+xE®*=0 (5)

is then the equation of E in terms of M as required. The initial values of E and E' at M =0
are obviously
E@0)=0, E(0)=1/(1-e¢).

We get therefore a series of the form
E=(1/(1-e)«M—(e/(1—e)*)« M3/3l+... (6)

which is convergent in some neighborhood of M = 0 by the general theory of differential
equations. It can in fact be proved that the series (6) is convergent for all values of M.
If we are interested in the determination of F' = sin E we may set instead of (4)

E=X,; F=X.
The equations (1) and (3) become then
Xo—ex X, —M=0, (1"

D1 Xy % DaX1 4+ X1 % (D1X2)3 — D1.X1 % D3 Xg = 0. (3"

We get then a d-polset DPS” consisting of the left-side d-pols P’ and P§’ of (1”) and (3").
Forming the d-remainder of Pj w.r.t. Py, we get a d-pol

R’ = DoX1 + X1+ (ex D1 X1 +1)3.

The equation R” =0, or
F'+ Fx(exF'+1)¥=0

gives then F' = sin F in terms of M. With obvious initial values
F(0)=0, F(0)=1/(1-¢),
we get then the series of sin E as required:
sinE=(1/(1—e))* M~ (1/(1—e)*) « M3/3/ +- .- (1)

The series (7) can again be proved to be convergent for all values of M.

The above method is quite general and may be used to determine e.g. CosF, the sun-
planet radius vector, the anomaly, etc. in terms of M. It can also be applied to the case of
parabolic or hyperbolic orbits.
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Mechanical Theorem Proving and Discovering 13

5. Example 4. Automatic Derivation of Newton’s Gravitational Laws from Ke-
pler’s Observational Laws

It is an important historical event that Newton derived his gravitational laws from Ke-
pler’s laws. During a visit to Argonne National Laboratory in 1986 the author was told by
Prof. Gabriel there about the significance of deducing Newton’s Gravitational Laws from
Kepler's Laws in a mechanical way for which Prof. Gabriel was already quite successful in
applying his own automated reasoning method, cf. [3]. As a 4-th example of illustrating our
general method we shall show below how our method can be applied to deal with such kind
of problems.

For this purpose let us first formulate the Kepler’s laws (K) and the Newton's laws (V)
in the manner as given below:

(K1) The planets move in elliptic orbits around the sun as focus.

(K3) The vector from the sun to the planet sweeps equal areas in equal times.

(K3) The squares of periods of planet motions are proportional to the cube of the major
axis of the elliptic orbits.

(N1) The acceleration of a planet is inversely proportional to the square of the distance
from the sun to the planet.

(N2) The acceleration vectors of planets are directed toward the sun.

(N3) The proportinality factor of the inverse square law (V) is independent of the
different planets.

In order to deduce mechanically, or even discover automatically the Newton'’s laws from
Kepler’s laws let us take first coordinates and transform the various laws into equation forms
as follows.

Let us take e.g. rectangular coordinates (z,y) with the sun at the origin and the major
axis of the elliptic orbit as the X-axis. Let r be the radius vector from the sun to the planet.
Then the orbit will have an equation of the form

r=pt+exz. (1)

The Kepler’s law (K1) will correspond then to the equation (1) and also (2)-(4) below taken
together:

r?=z? 4y 2)
p= const, or p =0, (3)
e = const, or ¢ =0, (4)

in which the prime means derivation w.r.t. the time ¢. Similarly Kepler’s law (K3) will
correspond to the equations (5), (6) below:

zxy —yxz' =h, (5)

K =0. 6)

For (K3) let T be the period for a planet to turn once around the Sun on its elliptical orbit
and 2 % a, 2+ b be the major and minor axis of this orbit. Then Kepler’s Law (K3) means
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that T%/a® is a universal constant independent of the planets, though possibly dependent
on the sun. Now according to the meaning of h we have

h*T =2xmxaxb,
Since b?/a = p, we have
T2/a® = 4 x w2 x p/h2.
It follows that
c=p/r? @

is also a universal constant independent on the planets with ¢/ = 0. On the other hand the
Newton’s laws (N7), (N2), with A as the acceleration, will correspond to the following set of
equations (8)-(10):

AZ — z//2 + y//Z (8)
2% A= const, orsincer #0,2*r' x A+rx A =0, (9)
zry’ =yxa” (10)

For the Newton’s Law (N3) the constant r? x A as asserted by (V1) is a universal one and
there may exist thus some relations connecting this constant with ¢ which we have to try to
find out.

As Newton’s Law (Ng) corresponding to (10) follows directly from Kepler’s Law (K3)
corresponding to (5),(6) we shall consider below only the Laws (V1) and (Ns).

For this purpose let us now introduce indeterminates in replacing the various functions
by X's as given below:

(T7 Av c,p,e,T,Y, h)

= (X11, X12, X15, X1, X2, X31, Xa3, X51)-

The various functions are so arranged that r, A, and ¢ come as first few ones in order to
discover possible relations between them which we suppose to be entirely ignorant. With
this change of notations the equations (1)-(10) will turn to be the equations P; = 0 with P;
given by (1)-(10’) as shown below: (D; means i-th derivative w.r.t. t):

Pr= X1 — X31 % Xog — X1, 1"

Py = X5+ X3 — X1, 2)

Py = D1Xn, 3

Py = D1 X9, (4)

Py = X31 % D1 X3g — X2 x D1.X31 — Xs1, (5)
Ps = D1 Xs1, (6')

Py = X5 X3 — Xa1, (7)

Ps = (D2 X351)? + (DaX32)? — XPy, (8)
Py = 2% D1 X11 % X12 + X11 % D1 X1, 9)
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P1o = X31 * D2X32 — ng * D2X31. (10') .

Take now the d-polset DPS to be consisting of the d-pols (1')-(8') of the above set
corresponding to the Kepler's Laws. Remark that the planets move in true non-degenerate
elliptic and non-circular orbits so that we have

Xan=p#0, Xn=e#(,

1y
X11 =r 75 0, D1X11 =7 7/= 0,

and also
Xis=c#0,X12=A4#0 (12)

In applying our algorithm for the finding of d-char-set DCS of DPS we can then remove
any such factors during the procedure. The DCS is found to be the 7-th d-bas-set consisting
of the 8 d-pols C; with index sets given below:

[71141), 41202], 31501}, [32101],

[72202], 33101], [33202], [35101].

Of the 8 d-pols C; the first two are one in X;; = r alone and the other in X;; = 7 and
Xi2 = A. The first one gives us thus a differential equation of derivative order 4 observed
by the radius vector r. This equation and the second one between A and r are both too
complicate and are of little interest. However, during the process the 4-th d-bas-set DBSy
appears to be consisting of 6 d-pols By; of which the first one By is given by:

By =2xXi«D1X11+ D1 Xox X1 =2%r"«A+rxA.

By our general MTD-Principle, B4; = 0 should be a consequence of the original d-polset,
i.e. a consequence of Kepler's Laws. The equation Bg; = 0 is however nothing else but
the Newton’s inverse square law 72 * A = const. We have thus discovered in an automatic
manner the Newton’s Law (N7) from the Kepler’s Laws by means of our general principle.
Furthermore, the 3-th d-bas-set during the process is consisting of 6 d-pols Bs; of which the
first one is given by:

By = X5« Xh* X —1=cPxrtx A2~ L.
The equation B3; = 0 is a consequence of the Kepler’s Laws too, which implies
c=+ or —1/(rt % A). (13)

It follows that the proportionality constant 2 A as already asserted by Newton’s Law (Ny)
is equal to the reciprocal of the universal constant ¢ up to a sign and is thus itself a universal
constant. The Newton’s Law (NN3) is thus also discovered in an automatic manner.

The ambiguity of the sign in (13) comes from our introduction of acceleration A by means
of (8) which gives only its magnitude but not its direction. If we take the positive value of
Sqrt(A?) as A with corresponding acceleration vector pointing to the sun, then in (13) the
+ sign is to be taken so that
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A= +1/c= +h2/p

is the universal constant independent of the planets, though eventually dependent on the
sun.

Let us assume now the attractive force between two masses M and m be proportional
to both M and m. Let us assume also that the mass m under the action of a force F will
undergo a motion with an acceleration A given by the general Law F' = m % A also due
to Newton. Then we deduce immediately from the above Newton’s Laws (N;)-(N3) the
following general GRAVITATIONAL LAW of Newton:

The gravitational force between the sun of mass M and a planet of mass m is given by

F=G*Mxm/r?,

in which r is the distance between the sun and the planet while G is a universal constant
independent of the planet. The universal constant G is in fact connected with the above ¢
by the relation G = +1/(M = ¢) which should be independent of the sun if the roles of sun
and planet are to be considered as symmetric.

REMARK. In the above formulation we have supposed that Newton’s Gravitational Laws
are not known a priori and it turns out they will be discovered in an automatic manner by
our general method. The computations are carried out on a SUN3/140 with running time =
15'58" and maxt = 342, where mazt means the maximum number of terms of d-pols occur-
ring during the procedure. In the previous drafts {16]{17] different sets of coordinates and
equations have been tried. Comparing the various trials it shows that the mere mechanical
proving of Newton’s Laws supposed known already would be somewhat simpler than the
automatic discovering of these Laws supposed yet unknown.

6. Case of Two or More Independent Variables

Consider now the case of m independent variables with m > 2. Most of the notions in
the case of one independent variable as described in Section 2, e.g. d-field, d-bas-set, etc.
extend naturally to the present case and we shall keep the same terminologies and notations.
However, the notion of d-CHAR-SET requires some modifications because of presence of
integrability conditions.The general case is quite involved for which we refer to [18]. For the
sake of simplicity of exposition let us restrict ourselves therefore to the case m = 2. The
independent variables will be say t; and ty and the partial derivation ¢ times w.r.t. ¢ and
J times w.r.t. t; will be denoted by D;;. The set of partial derivatives in indeterminates
X1, , Xn will be ordered in some natural way. W.r.t. this order we shall define the LEAD
of a d-pol, etc. in the usual way. Let a d-asc-set ASC be given. Suppose in ASC there
are two d-pols F1, Fy with leads D;; X. and DX, in same X, for which i > h,j < k.
Differentiate a = k — j times Fy w.rt. ¢; and b = ¢ — h times F; w.r.t. o we get then
equations of the form

S1 % DogDiy X = Gy, Sz % DygDpp X = Go,

in which Si, Sy are separants of F}, F; respectively and G, Gy are d-pols with all derivatives
of lower order than D, X, = DooD;; X = DyoDprXe. The equality 5o G = S1 %Gy follows
as a consequence of the equations (ASC) = 0 and we shall lay down the following
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DEFINITION. The d-pol
IC(F,F3) = S * G — S1 G2

is called the INTEGRABILITY-POL (abbrINTEG-POL) of the d-pols Fy, F;. We now
modify the schemes (II) and (III) in Section 2 in the following way. For any i let DRS;_; be
the set of all non-zero d-remainders not only of d-pols in DPS;_; but also of all integ-pols
of pairs of d-pols in DBS;_;, if there are any. With this DRS;_; we form the schemes (II)
and (III) as before. The ultimate d-bas-set DBS,, with corresponding DRS,, = empty will
then be called a d-CHAR-SET of the original d-polset DPS.

‘We have implemented the procedure of finding d-char-set of a d-polset on our computer.
Experiments are not yet much done. It turns out that the formation of integ-pols requires
often a large amount of memory storage. However, it seems that such formation may be
avoided in some ways as shown by the example below.

Ex. 5. Surface pairs in 3-space.

For any pair of surfaces S, S’ in ordinary 3-space in (1-1)- correspondence we may ask
similar questions as in Ex.2. Thus, we may ask the geometrical conditions or interrelations
of 8,8 with corresponding points X « X’ for the following cases:

(NN) XX’ are normals to both S and S’ (case of parallel surfaces).

(NT) X X' are normal to S at X and tangent to §’ at X’ (e.g. case of surfaces of centers).

(TT) X X' are both tangents to S and §’ at X and X'.

Let us consider e.g. more in details the case (T'T). For this purpose let us attach moving
trihedrals MT = (X, E}, Ey, E3) and MT' = (X', E{, Ej, F3) to § and S’ in such a way that
Ej3, Ej are normals to S, 5" and E), B are along the common tangent line X X’. Denote the
distance between X, X’ by R and the angle between Ej3, E} by A. Then we have

X'=X+R-E, 1)
E| = By, (2)
Ey=U-Ey+V-Ej, (3)
Ey=-V . -Ey+U . E3, 4)

in which we have set U = cos A,V = sin 4 so that
U?+v2=1 (5)

With Wi, Wi; (4,7 = 1,2,3) the Cartan exterior differential forms in parameters ti,t3 on
S corresponding to the above moving trihedrals MT we have the following set of Cartan’s
structure equations ( A means here exterior multiplication and d means exterior derivation):

dX = Wi.E1 + Wy - Ey, (6)
dE; = Z Wij - Bj, (7

)
Wi = —Wj, (8)
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W3 = 0, (E3 being normal to S) (9)
aw, = Z VV] A Wj] = —-Wy A Who, (10)
J
dWy = Z Wj A sz = Wi A Wia, (11)
J
AWs=0=">" W; AWjs = Wi AWz + Wy A Was, (12)
J
dWyg = Z Wik A Wi = —Wis A Wag, (13)
&
AWy =Y Wik A Wig = Wiz A Was, (14)
k
dWa3 = Z Wai A Wiz = ~Wia A Wi, (15)
k
K- Wiy AWy = Wiz A Was. (16)

In the above equations all Z's are to be extended over 1,2,3 and K is the Gaussian curvature
of S at X. Refer the corresponding points on S’ to the same parameters 1, ¢z we have also
forms W/, W/ for MT" and Cartan equations (6")-(16') similar to (6)-(16).

The first step toward the establishment of hypothesis d-pol-sets is consisting of deriving
relations between various exterior forms W’ and W. For this purpose let us consider e.g.
the equation (1). Forming exterior derivatives of both sides, using equations (2)-(9), (6')-(9")
and then comparing coeflicients of E; we find:

W] = W) +dR, 17

U-Wy=Wo+ R W, (18a)

V-W;=R Wi, (18b)

V Wo+ R*xV -Wia=R+«U - Wis. (19)

Treating in the same way equations (2)-(4) in turn we find further equations equivalent to:
Wie=U Wiz +V Wi, (20)

Wig=-V Wi+ U Wi, (21)

Wiz = Waz + U -dV — V -dU. (22)

The relation (19) shows that there should be some geometrical conditions to be imposed on
the surface S to have a companion S in such a correspondence (T'T) if A and R are given.
In this respect let us consider the simplest case for which both 4 and R are constants. Then:

DU =0, DpU =0, (23)

DV =0, DV =0, (24)
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DyR=0, DjpR=0. (25)

The correspondence X < X' under these assumptions is then called a BAECKLUND
TRANSFORMATION. To study its geometrical properties let us express W; and W;; in
terms of the parameters t1,t; with Wi = 0, W, = 0 as the parametric curves as follows (dt;
and dt; are considered as exterior differential forms as in Cartan’s formulation):

W1 = Xa1-dty, W= Xj7-dta, (26)

Wi = X5 - dty + Xgo - dt, (27
Wiz = Xs3 - dt1 + X3 - dig, (28)
Was = X6 - dty + Xy6 - dio, (29)
W] = Xe1 - dty + Xeg - dta, W) = Xeo - dt1 + Xe7 - dio, (26"
Wiy = X7z - dt1 + Xgy - dia, (27)
Wis = X73 - dt1 + X3 - dts, (28"
Wis = Xrg - dt1 + Xgs - dta, (29"

Set also
U=2X21, V=X R=2Xna K=Xys K =X (30)

The equations (5), (10)-(30), and (10')-(16'), (26')-(29') will give rise to a hypothesis system
(HY P) consisting in all 34 d-pols in the X’s. In determining the corresponding d-char-set it
is rather complicate to carry out the computations up to the length owing to the complexity
of the integ-pols involved. However, it is unnecessary to do so. In fact, there appears already
in the 3-th d-bas-set (DBS3) a d-pol of the form

Bg = ng * X30 -+ X%Z

The vanishing of Bg gives us a condition for X3y = K’ to be satisfied by above surface
pair under some non-degeneracy conditions such as R = X3 # 0 among the others. As
the relation between S and S’ is a symmetric one the same is true for K. We have thus
discovered automatically the following
Theorem of Baecklund. Two surfaces in correspondence of Baecklund have equal constant
negative curvature given by:
K =K'= —sin® A/R%.

We remark that the method last described is also a mechanical as well as a general one.
For example, we may ask the same questions for pairs of surfaces in similar relations as
(NN),(NT),(TT) in affine space since notions of affine normals, affine curvatures, etc. are
also well-defined in the affine case. Experiments on such kind of problems are yet in progress.
cof. [1]
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1. Introduction

The present paper is devoted to the study of the following optimization problem:

Optimization Problem P. Let R"(X) be the real euclidean space of dimension n in
coordinates X = (1, ,%,) and D a domain in R R being the real field. Let f, hy, (i €
I={1,-,r}),95,5=1,---,s and g be all pols in R[X]. To determine the least or the
greatest value, if it exists, of the pol f in the domain D under the equality constraints

h;=0,2€l, (1.1)
the inequality constraints
g; 20, (or <£0,>0,<0) (1.2)
and the non-zero condition
g#0. (13)

Clearly, if D is closed and bounded and (1.2),(1.3) do not present, then such least and
greatest values will necessarily exist. We shall restrict ourselves to such domains D which
are closed and bounded with boundaries on a finite number of real algebraic surfaces. By
introducing eventually new variables and new equations we may turn all the inequality
constraints (1.2) into equality ones and turn the closed bounded domain D into a closed
domain of rectangular form in the due euclidean space. So in what follows we shall suppose
for the Problem P that the inequalities (1.2) are non-existant and that the domain D is of
the rectangular form

D:a; <z <bj,iecl. (14)

Let us write as H.S the polset of all pols k;,¢ € I. Let D' be an arbitrary domain in R,
not necessarily closed or bounded. Denote now the set of all zeros of HS in D' for which
g # 0 by D'Zero(HS/g) and set by definition

D'Vals(HS/g) = {f(X)|X € D' Zero(HS/g)} (1.5)

The present paper is partially supported by NSFC Grant JI85312 and TWAS Grant 86-93.
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With D’ the domain D in (1.4) our Problem P becomes the problem of determining Least DValf(HS/g)
and/or Greatest DValg(HS/qg), if exist, where Least resp. Greatest means the least resp.
the greatest value of the set of values in question. We shall now give a solution of such a
Problem P as expressed in the following theorem for which the proof will be given in the
next sectjon.
Finite Kernel Theorem. There is an algorithm which gives for any Problem P of
above type a finite set

K c DVals(HS/g) (1.6)
such that if the least or greatest value in question does exist, then K is non-empty and

Least K = Least DValy(HS/qg),

1.7
Greatest K = Greatest DVals(HS/g). (L.7)

Definition. The finite set of real values K eventually empty whose existence is asserted
by the Finiteness Theorem will be called a kernel set of the Problem P or one of the set
DValf(HS/g) to be denoted by

K = DKers(HS/g). (1.8)

In Sect 2 we shall describe the proof of the Finiteness Theorem and in Sect 3 we shall
give illusrative examples for the applications of our method to some concrete problems.

2. Proof of Finiteness Theorem

Let f, hi, and ¢ be as in Sect 1 but the domain D be an open one, say O. Let X° be a point
in O verifying the conditions (1.1), (1.3) such that f attains its local minimum or maximum
under conditions (1.1), (1.3). We shall say that X is an eztremal zero (abbr. E-zero } and
F(X®) an extremal value (abbr. E-value ) of the corresponding problem. Henceforth the set
of all such E-zeros and E-values will be denoted respectively by

E;OZero(HS/g) and E;OVal(HS/g). (2.1)

Let us consider first the particular case for which the polset HS is an asc-set of either
type 0 or type 1 with the pols A; in the form below:

hi = I * yfi + lower degree terms in y;. (2.2)

In (2.2) we have rearranged the variables so that

(Ily o 7-7:”) = Perm(ul, e, Udy Y1, 7y7‘)1 (T +d= TL), (23)
for some permutation Perm for which the ordering of uq, - - - , ug and the ordering of y1, -+ , yr
are same as in that of z1, - - - , z,,. Besides the initials I; of pols h; in HS we are also interested

in the so-called separants S; of h; defined by

Oh;
=5
oy

(2.4)
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Remark that S; coincides with the initial I; of h; in case d; = 1. Set

IP = PROD; I;, SP = PROD; S;, and ISP = PROD; (I, x S;), (2.5)

to be called the initial-product (abbr. I-product), the separant-product (abbr. S-product),
and the initial-separant-product (abbr. IS-product) respectively.

The solving of Problem P in the present case will now be done via the classical Lagrange
method of multipliers as follows. Introduce multipliers M = (mq, -+ ,m,) and form the
Lagrange pol

Set N = (1,---,n) and form now the following Lagrange polset
LG = {2L hi\keNiel). (2.7
Oz

Let Proj be the natural projection of the euclidean space R**"(X, M) to R*(X). Then we
have the following

Lemma 1. Suppose that the polset HS is an asc-set as in (2.2) and the pol g is divisible
by each of the initials I; and also by each of the separants S;. Then we have

EfOZero(HS/g) C Proj OZero(LAG/g). (2.8)
Proof. Let

XO = (1(1)7 e 712) = Pe'rm(utl), e 7’”’373/97 T 7y2) (29)
be an E-zero of f in E;OZero(HS/g). As each I; and S; is non-zero at X we may apply
the implicit function theorem to hy = 0,--- , b, = 0 in succession at X O There will be thus
some neighborhood V about X° contained in O and continuously differentiable functions

¢i(ur, -+ ,uq) in V such that for i =1,--- ,r we have
yi = pi(ur, - uq) in 'V, (2.10)
yg = ¢>i(u(1), S ,ug), and (2.11)
hi(Perm(ut, - ,ua, ¢, ¢p)) =0in V. (2.12)

Let us set

f(Perm(ul, s, Uds 4717 e 7¢T)) = F(’Uq, e ,Ud). (213)

We have then

oF of a(lh) of .

a— =SUM; (= * +—inV,ji=1,---,d 2.14

Buj ¢ (6y1 8uj au]- o J ( )
Now f attains its extremal value at X° in V implies that F(uy,- -+ ,uq) attains its extremal
value at (1, ,u9). So we have also
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6F
Uy

=0at X%5=1,---,d. (2.15)

Differentiating now (2.12) we get for each pairof i =1,--- ,rand j=1,--- ,d,
Oh; Ohi _ O

in V. 2.16
Bu; (e *Fu,) =~ 00 (2.16)
Differentiating (2.6) we get
oL af Ohs - oh,
o kS ma ol o mp_g + *
Oy Oy P 2" on 7o e
oL Of Ohr—1 Ohy
72— =5—+0 + mg*k S + o+ Mp_q* + Mk o,
2 Oya 2 " T8y, " Oy (2.17)
oL 9
9y +0 + -+ 0 + mp xS,
Oy, Oyr
As S; # 0 at X9 we may solve the equations
oL
gy 0=l (2.18)
at X0 to get M = M® = (ml, ,mY). For a fixed j = 1,--- ,d let us multiply the equations
in (2.17) successively by 3%,1 = 1, .-+, r and adding, then by (2.14)-(2.16) we get
oL
—— =0at (X°,M°). .
oy, 0at (X°, M") (2.19)

From (2.18),(2.19) we see that (X°, M®) is in OZero(LAG /g) and hence X° is in Proj OZero(LAG/qg).
This proves (2.8).
Lemma 2. Let HS and g be as in Lemma 1. Suppose that

fX)=ua1. (2.20)
Let Proj; be the projection of R**(X) to R defined by
Proj; (X, M) = z;. (2.21)
Then there is a finite set of real values

OKery, (HS/g) = Proj1 OZero(LAG/g), (2.22)
which may eventually be empty, such that

E;,0Zero(HS/g) C OKer,,(HS/g) C OValg, (HS/g). (2.23)

Proof. Owing to the chosen ordering of variables z; can only be either u, or ;. Consider
first the case z; = 1. Then by (2.20) we have
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of _of __of _, 9 _,
Oy O Oyr '

) T’U& -
For any (X°, M%) € OZero(LAG/g) we have g—i =0at (X% M%) and S; # 0 at X° so that
(2.17) gives M® =0 or mQ = 0,5 = 1,--- ,r. As g—uL] =0 at (X% MO) too this will be in
contradiction to the equation
%—ﬁ_‘_m*%_,_ +m*6hr
duy  Ow 1 Oup " Bus

Hence OZero(LAG/g) = empty in this case and (2.23) follows trivially from (2.8) and (2.22).
Consider next the case z1 = y1. Then by (2.20) we have

of 0 . _9 _

=1, ==
o Bya Oyr
Let (X%, M9) be again any zero in OZero(LAG/g). Then as before (2.17) will give us

=1at (X% MO).

0.

1
mg:"':m’rzov m(l):—'@?éo,
1

where S is the value of S at X°. Now h; = 0 at X° for any i = 1,--- ,r. Owing to our
chosen ordering of variables h; will have no variables u; involved and is a pol in y; = z;
alone with constant coefficients. The possible values of 2§ for which hy = 0 is to be satisfied
are thus finite in number. Then by Lemma 1 the set OKerg, (HS/g) defined by (2.22) is a
finite set of real values verifying (2.22). The Lemma 2 is now completely proved.

Consider now the case for which HS is a general polset in variables z1, -+ ,z,. Our
char-set method with slight modifications (cf. e.g. [WU1-3]) will give rise to the following
lemmas 3,4.

Lemma 3. For an arbitrary polset PS C R[X] let CS be a char-set of PS. Let I; and

S; be the initials and separants of pols in C'S and ISP be the corresponding IS-product.
Then we have

OZero(PS) = OZero(PS/ISP) + UNION; OZero(PS + I;)
+UNION; OZero(PS + S;).

Lemma 4. There is an algorithm such that for an arbitrary real polset PS we shall
arrive in a finite number of steps at a set of asc-sets AS; such that

(2.24)

OZero(PS) = UNION; OZero(AS;/ISP)), (2.25)

in which for each j, ISP; is the IS-product of AS;.
From (2.25) for PS — HS we have now for any f € R[X],

OValy(HS) =UNION; OVals(AS;/ISF;). (2.26)
It is clear that

E{OVal(HS) C UNION; E;OVal(AS;/ISP;). (2.27)
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Lemma 5. Let HS be an arbitary polset and f be given by (2.20). Then there is a
finite set of real values K such that

E;,OVal(HS) Cc K C OValg, (HS). (2.28)
Proof. Let us decompose OZero(HS) as in (2.25). By Lemmas 1,2 we have then a finite

set of real values K given by
K =UNION; OKery, (A5;/1SP;), (2.29)

By (2.27) we have then (2.28) as to be proved.
We are now in a position to prove our main theorem as follows.
Proof of Finite Kernel Theorem.
Let us introduce a new variable g and a new pol

ho = F(X) - a0, (2:30)

For any domain I’ ¢ R™(X) we shall write D't for the domain in R*!(zg, X) defined by
X € R™ while zg is arbitrary. Set also

HST = HS + {ho}- (2.31)
Then it is clear that for D' open,
D'Valp(HS/g) = D't Val,, (HSY/g), and (2.32)
E;D'Val(HS/g) = Ezo D' Val(HS"/g). (2.33)
Let s be now any set (s1,' -+, s,) with each s; a sign +, —, or 0. For any such set s let O;

be the open domain in R™ defined by the set of equations

z; = b;, or T; = ay, or a; < x; < by,

according as s; = +, or —, or 0,7 being from 1 to n. Consider any sign set s. By Lemma 5
we have a finite set of real values K|, to be called the kernel set for the open domain O; or
Of, such that

E,,OfVal(HS/g) C K; C OFValy,(HS/g). (2.34)

Now it is clear that

E,DTVal(HSY/g) c UNION; E,,OFVal(HS"Y/g), and

2.35
D*Val,,(HST/g) = UNION, OFValy,(HS/g), ( )

in the UNTON s is runing over all the possible 3" sign sets. Set now
K =UNION;;K;. (2.36)

Then by (2.33)-(2.36) we get
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EfDVal(HS/g) C K C DValg(HS/g). (2.37)

As the least or greatest value of f in question, supposed to exist, is necessarily one of the
E-values in EfDVal{HS/g), we get readily (1.7) from (2.37). As the algorithm for arriving
at the kernel set K is clear from the above context, the theorem is completely proved.

3. Some Examples

Problems in non-linear programming are typical optimization problems which have been
dealt with by our methods in e.g. [Wu5] and [WTJ1,2]. Problems involving inequalities can
also usually be reduced to optimization problems. A general method of inequalities-proving
is furnished by the CAD method of Collins, cf. e.g. [Col] and [A]. On the other hand in
the book [Wul] has been described a method of proving geometrical inequalities of some
special type which has been further exploited and extended by S.C.Chou and X.5.Gao, cf.
e.g. [C-G]. The author has also exhibited a general method based on a classical theorem
of elementary calculus (cf. [Coul, p.198) which has been applied to the proving of various
algebraic and geometric inequalities, cf. [Wu4,6]. The method described in the preceding
sections is a refinement and also a complement of the preceding method. The examples given
below may give some idea about the efficiency of the present method. Compare the papers
[Wub] and [C-G]J.

Example 1. The Pasch Theorem. Given a triangle ABC and a line [ passing none
of the vertices and intersecting the 3 sides BC, AC, AB in the points D, E, F. Then either
none or just two of D, E, F are inside the segments BC, AC, AB.

Proof. Let us suppose that D is inside the segment BC and E is outside the segment
AC in the order of ACE. We have to prove that F is inside the segment AB. The other
cases of the theorem may be deduced from this case by reductio absurdo.

For this purpose let us take oblique coordinates so that

A=(0,0),B = (a,0),C =(0,b), E =(0,7b), F = (x,0), and
D=(1-y).B+yC=({(1-y)rayx*b),

in which

a>0,b>0,r>1, and
O<y<1. (3.1)

Now instead of considering D as a fixed point in the open segment BC), let us take D to
be a point varying on the closed segment BC including the two end points B, C. Instead of
(3.1) with y fixed we shall have y a variable in the closed domain

D:0<y<1. (3.1)
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From collinearity of D, E, F' we have h = 0 where

h=y*x(rxa—z)—rx(a—zx). (3.2)
‘We shall take the ordering of variables to be

T <y.

The problem is now to determine the least and greatest values of z clearly exist for y varying
in the closed domain D under the constraint equation h = 0. The variable z plays thus the
role of zg in the proof of the proof of the Finite Kernel Theorem in Sect 2. For the above
purpose let us split now the domain D into 3 open ones O1, O, O3 with O; defined by (3.1)
and Oz, 03 defined by y = 0 and y = 1 respectively. For Oz we have z = a and for Oz we
have z = 0, being the projections on z of the points (z,y) = (a,0) and (0,1) respectively.
The kernel sets for O, and Os are thus

K = {a}, K3 = {0}, (3.3)
Consider now the open domain O : 0 < y < 1. We have here HS = {h} and the initial or
separant is given by

I=S=rxa—zx.

As r > 1 we see that Oy Zero(HS + S1) = empty so that

O1Zero(HS) = O1Zero(HS/S51).

Now HS is its own asc-set with the leading variable y but not z, the variable to be optimized,
By the general method it follows that the corresponding kernel set for O; is

K, = empty. (34)
(3.3) and (3.4) give now the kernel set of our problem as

K:K1+K2+K3={0,&}CR.

It follows that the least and greatest values of = are 0 and a corresponding to the positions
F=AD=C and F = B,D = B respectively. For other positions of D, i.e. for D inside
the segment BC, we have then necessarily 0 < z < a or F inside the segment AB, which
proves the theorem.

Example 2. Quadrilateral Convexity Theorem. Let ABCD be a convex quadri-
lateral with points O, P,Q, R on the inside of the sides AD, AB, BC, and CD respectively.
Then OPQR is also a convex quadrilateral.

Proof. Owing to convexity of ABCD oblique coordinates can be so taken that

0= (0,0),A = (07 ~a),B = (bl, *bg),c = (61702),D = (0, d),

by xcg+by*cy
Q=(q,0), g= 22277
(2,0}, g by + c2

)
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P=rg.B+(1—rg)A=(ro*xby,—rg*by— (L —rg)*a),0 <ro<1,
R=rC+(Q~r).D=(r4ci,rxco+(1—7r)*d), 0<r<Ll

The constants a, by, bg, ¢i, ¢, d will all be positive so that ¢ is also positive. Let us set

__ Oriented Area(ANOQR)
" Oriented Area (AOQP)

so that A = 0 where

h=kx(ro*ba+ (1 —rg)xa)+ (r*xca+ (1 —r)=*d).

We shall prove that k < OorR,Pareonoppositesidesoftheline0Q. To do this we shall, as
in the case of Example 1, instead of considering R as a fixed point inside the open segment
CD with r constant and 0 < r < 1, take R as a point varying on the closed segment CD
with r varying in the domain

D:0<r<1.

Let us take ordering of variables to be

k<.

‘We come then to the problem of optimizing k for the domain D under the constraint equation
h = 0. Here k will play again the role of z¢ in Sect 2. Split now the domain D into open
ones 01,03, 03 corresponding to the cases 0 < r < 1,7 =0, and r = 1 respectively. Suppose
first that c2 # d or CD is not parallel to OQ. It is then readily found that the kernel sets
for the open domains O; and for D are respectively (Proj, means projection on coordinate
k)

K, = empty,
Ky = {ks} = Proj {(k,r) = (k2,0)},
Ky = {ks} = Projy, {(k,r) = (ks, 1)},
K = K)+ Ky + Kz = {ka, k3},

in which
kzz_ro*b2+(dl—r0)*a <0, and
ks = 2 <0.

rorxba+ (L—rg)xa
We see therefore both the least and the greatest value of k are negative. If ¢; = d then the
least and greatest value of k are both equal to the same negative value kz = k3. In any way
we have k& < 0 so that R, P are on opposite sides of the line OQ. In the similar way we prove
that O, Q are on the opposite sides of the line PR. It follows that the quadrilateral OPQR
is convex and the theorem is proved.
Example 3. The Median-Bisector Theorem. For a non-isosceles triangle ABC the
median over the side AB is always greater than the interior bisector on the same side.
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This theorem has been proved in the previous paper [Wu6| by means of the method given
in that paper. We shall re-prove it by means of the method in the present paper to make a
comparison of the two methods.

Let us take coordinates as in [Wu6]| such that A = (—a,0), B = (a,0),C = (x0,y0), (a >
0,90 > 0) and center of circumcircle at (0,5). Let the radius of the circumcircle be ¢ > 0 so
that ¢ = a? + b%. Let U = (0,c+ b),V = (0,b — ¢) be the two extremities of the diameter
of the circumcircle through the mid-point M = (0,0) of the side AB. Let CV meets AB in
X = (z,0). Then CM is the median and CX is the interior bisector both on the side AB.
Introduce uniformizing parameters u,t such that

u 1— u?
IOZZ*C*H—UE, ygzc*m—l—b, (3.5)
1+¢2 1—#2
c=ax g b=er (36)

Set d = |CM|? — |CX|2. Then we have HS = {hy, ha} = 0, where

hi=z—axt*u, (3.7)

hy=a?stx (U2 +1)— 2%z rarux(t®+1)+dxtx(u?+1). (3.8)

Now consider C not as a fixed point but as a point varying on the closed arc BU. Here

we admit the degenerate triangle ABC for which C coincides with B, the side AC coincides
with AB and the side BC' degenerates into the tangent line at B of the circumcircle. We are

then led to the consideration of the problem of optimizing d for the above varying positions
of C. Here d will play the role of zg in Sect 2 and the ordering of variables will be

d<u=<z. (3.9)
The domain D in question is defined by

0<u<?te (3.10)
aQ

Split now the domain D into 3 open ones O, Oz, O3 corresponding to the ranges 0 < u <

b%c, v =20, and u = % respectively. Geometrically these ranges correspond to the cases

for which C varies on the open arc between B and U, C takes the single position U, and C
takes the single position B. The kernel sets for O,, O3 are readily seen to be

Ky ={d =0}, K3 = {d = a?}. (3.11)

Consider now the case of O;. We find

O1Zero(HS) = O1Zero(ASy/S1) + O1Zero( AS,). (3.12)
Here AS;) = {A11, A12}, ASe = {Ag1, Az, Ags} are asc-sets with
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An=a2*t2*u4~(a2*t2+2*a2—d)*u2+d,

Arg = ha,
A
S1 :8811 =2xu*(2xa®xt2x0® — (a2 12+ 250 — d)),
U
3.13
Ap =d? —2xdxa?+ (3% t2 +2) +a' + (12 +2)%, (3:13)
S1
dn=gw
A23:h1.

For O1Zero(AS1/S1) it gives no contribution to the kernel set. For O;Zero(AS;) we see
that there are two zeros d = d, dg of Ag; = 0 which are both positive. Consequently for the
kernel set K for Oy we have

K, C {dl,dg}. (314)
From (3.11) and (3.14) we have therefore

{0,a?} C K = Ky + Kz + K3 C {0,0%,d1, dp}

It follows that the least possible value of d is 0 which occurs when C = U or when the
triangle ABC is an isosceles one. This proves the theorem.

Example 4. The Equi-bisector Theorem. A triangle with two equal interior bisec-
tors is an isosceles one.

This theorem is not at all trivial and has intrigued geometers of last century. Clearly the
theorem follows from the following a little stronger theorem:

A triangle of unequal sides will have greater interior bisector for smaller angle.

The theorem in this strengthened from was in the first time proved by our general method
of mechanical geometry theorem proving as a joint work of S.C.Chou and the present author
(unpublished). The proof is again quite non-trivial. Cf. in this respect a popular pamphiet
[W-L] in Chinese. Below we shall give a different proof based on the method of the present
paper.

Proof. Consider a triangle ABC with |AC| > |BC|. Let the bisectors of the angles 4, B
be respectively AE, BF with E on BC and F on AC. We have to prove that |AE| > |BF]|.

For this purpose let us construct an ellipse passing through C and having A and B as its
two foci. Let the lengths of the sides AC, BC be respectively sy, s, the lengths of AE, BF
be respectively dg,d, and dy = d2 — d%. Let us take coordinates such that the equation of
the ellipse is

X% y?

7+b_2 =1, while

A=(=¢0),B=(+¢,0),C = (z,y), E = (Za, Ya), F = (6, 1),

in which

a>0,b>0,¢>0, and a® = & + b°.
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The points E, F’ will be so determined that :ggi l}ﬁgi and }ﬁgll ;gg}

set of equations HS = {hq,--- , h1o} = 0 with h; given below:

Then we have a
hi=y?sa® + a2+ (0® = ) —a’+ (a® — &),
hy = axsq — (a® — cx ),
hy=ax*s, — (a® +cxx),
ha=—Zg*xsp—2%xa*xc+sprxc+ 2% *c,
hs =ya*(sp+2%c)—2%c*y,
he = dj — (2 +¢)* — 42,
hy = —2p*xs, —2%xxpxc—Sg*xCc+ 2% *c,
hs =yp*(sa+2%c)—2%c*y,
hy = dj — (25— )* — 4§,
hio = d2 — d2 — dy.
Let U and V be the points (¢,0) and (0,b) on the ellipse. As before let us consider C

not as a fixed point but a point varying on the closed arc UV on the ellipse. Then we come
to the problem of optimizing dy in the domain D defined by

0<szr<a,0<y <),

for which optimal values of dy should exist. Again as before let us split the domain D into
3 open ones Oy, Oz, O3 corresponding to

0<2<a,0<y<b(zy)=(0b); and (z,5) = (a,0),

respectively. For Oy and O3 the kernel sets are readily seen to be

=%=%m=wwm““%zfﬁ}

For the kernel set corresponding to O let us take the ordering of variables to be

do < T <y <38, <8p < Ty <Yg <dg < Tp < Yp < d.
Then the char-set of HS is found to be CS = {C1,---,Cip} with

Ci=hi—y fori=2,.--10, while

Cr=xztxdy+ct

5 4 3

+48 %23 x P xa+ 64 % 2% * ¢ xa?+16x 25+ clx g

——8*x2*do*c4*a2—8*1:2*do*cs*a372*zz*dg*cz*a4

6 5 4 5

xa® —128xzx P xa? —112xzxclxa

—64*xxxcdxal —16xz+c?*a”
+16*d0*c4*a4+32*d0*c3*a5+24*d0*c2*a6

+8xdgxcka’ +dg*ad.

—64*x*c
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The only initials and separants worthy of consideration are

h=dore, = 50 5, = 2uyna?, S = 20dy, 10 = 24 b

Denote the I5-product of CS by ISP, then we have

O1Zero(HS) = O1Zero(CS/ISP)+ O1Zero(HS + {dy})
+ O1Zero(HS + {S1}/do) + O1Zero(HS + {y})
+O1Zero(HS + {d.}) + O1Zero(HS + {dp}).

The set O1Zero(CS/ISP) has no contribution to the kernel set K for O;. It is clear that
O1Zero(HS+{y}) = empty. From d, = 0 it would follow from C7, Cg, Cs that y, =0,y = 0,
and x = a so that O1Zero(HS + {d,}) = empty. Similarly we have O1Zero(HS + {dp}) =
empty too. So it remains only to consider Oy Zero(HS + {dp}) and Oy Zero(HS + {S1}/do).
Consider first the case dyp = 0. In the char-set of HS + {dp} the first pol is given by

Chi=3+2+ +a?xFxa—4xPxa2—4xc2+a® —3xcxat—a°

From Cy1 = 0 it would follow z < 0 or £ > a. Hence we have again

O1Zero(HS + {dp}) = empty.

Consider now the case of 51 = 0. In the char-set of HS + {51} the first two pols are given
by

Co1 =32+ dh+ >+ 80+ df* c*  a+ 80 % df + & % a?
+40*d§*c2*a3+10*dg*c*a4+dé*a5
+2304*d3*cg+9600*d3*c8*a+16480*d3*c7*a2
+ 15376 * d3 * B + a® + 8462 x d2 * ¢® x a* + 2695 * d2 x ¢ % a°
1408+ 2 xS xa® —14xdixPxad’ —M4xdircra® — B xd’

— 13824 % '3 — 62208 % ¢'2 % a — 139392 * ' 1 * a® — 208448 x c10 * a®
— 227584 % ¢® » a? ~ 188672 % 3 * a® — 120832 x ¢” x a® — 59264 % € x o”
— 21760 % ¢® x a® — 5632 % ¢* x a® — 896 % ¢ % 10 — 64 % 2 % a1,

Coa=48+x+di+ P+ 88z vdisxc®va+82xx*divct*a?
+53szrdiecdra® +16xaxxddx?rat +zxdixcxad
+ 5184« x+c!0+ 18144 xzx P v a + 27648 %z + S x a? + 25248 x z x ¢ % a®
+15168 xz# P xa? + 5664 xz x P xa® + 11524z x % a® + 96 xzx  x a”
—16xdixctva—32+di+x P xa® —2UdxdirxcPrad —8xddrcrat
fdg*a‘r’—1728*d0*c8*a—6144*d0*c7*a2—8936*d0*c6*a3
—6908*d0*05*a473064*d0*04*a5~768*d0*c3*a6

—96*d0*c2*a7~4*d0*c*a8.
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14 ‘Wu Wen-tsun

From Cag = 0 we see that do < 0 would imply z < 0. Hence in O any zero of O1 Zero(HS +
{S1}/do) have its dy positive. In particular K, if not empty, is consisting of only positive
values. It follows that the final kernel set K = Kj + Ko + K3 is consisting of dy = 0 and
utmost other positive values and consequently

Least K =0

which corresponds to the isosceles triangle ABC with C' at V. For all other positions of C
in arc UV we should have |[AE} > |BF| and the theorem is thus proved.
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On Surface-Fitting Problem in CAGD.

WU WEN-TSUN
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1. The Problem.

In the present paper we shall give a general method of solving the following
surface-fitting problem in computer-aided geometry design (CAGD):

Problem SF. Given in real 3-space R® three sets of irreducible algebraic
curves C;, C;,Cy withi € I, 57 € J, k € K respectively, I, J, K being all finite sets of
indices. Given also two sets of irreducible algebraic surfaces S;, Sk, (5 € J, k € K)
containing Cy, C respectively. To determine an irreducible algebraic surface S of
given degree m verifying the following conditions:

(a) S contains all the curves Ci,C;,Ck, forie I,j € Jk € K.

(b) S touches smoothly each of Sj, Sy along the curves Cj, Ck respectively,
for y € J,k € K. More precisely, for each point on C; or Cy which is regular for

C;,8,8; or for Cg, 5,5k, S and S; or § and Sx have same tangent planes at that
point.

(c) S possesses same curvature as Sy along the curves Cy, for each k € K.
Mare precisely, for each point on Cj which is regular for Cx, S and Sk, S and Sk
will have the same (Gaussian) curvature at that point.

We may also replace (c) by other more stringent conditions, e.g. on conditions
about normal curvatures, etc. which we shall not enter.

The problem for the requirements (a), (b) and some further smooth require-
ments have already been solved by Bajaj et al by the method of interpolation based
on the theorem of Bezout and its extensions, ¢f. [B] and [B-I1,2]. We shali solve
the above problem in all its generality based on some entirely different principle
and method to be described in next sections.
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We remark that in practice only real pieces of curves and surfaces Cj, 5j, etc.
are actually given and only piece of real surface S is required. Our method bears
however no influence on this restriction.

2. Basic Principles from Algebraic Geometry.

We recall first some {fundamental concepts and facts of algebraic geometry.
Cf. e.g. [H-P], [VAW], [WU1,2] as well as various papers of the author in MM-
Res.Preprints, e.g. [WU3,4].

Let K be the basic field of characteristic 0, K™ the affine space of dimension
n over K, and X = (z1,*+,,) with z; independent indeterminates.

Def. Eztended point in K™ := point in K™ with K’ some extension field of
K.

Any extended point E = (£1,---,&n) in K™ may be represented by a set of
polynomials

Pi=1I0 *Ig: + I *xg:’_l +ot g, 1 =100, (2.1)

such that (e;), (e2), (ea) below hold true:
{er) O<ey < - <ey.
(62) Ic.-,j GK[xly"'axc;—l]-

(ea) Let P! be the polynomial get from P; by substituting ¢; for z;,j =
1,---,¢; — 1, then P/ is an irreducible polynomial in the field K&, 0 &e—1)s
and £ is a root of the equation P/ = 0 so that each equation P/ = 0 is the
defining equation of &.;.

Def. The set of polynomials P; in (2.1) forms an irreducible asc-set in X[X]
and is called the defining asc-set of the extended point B = (&1, -, &n).

Def. n — r := Dimension over K of the extended point with defining asc-set
(2.1).

Remark that different extended points may have same defining asc-set.

Def. An extended point 5° in K™ is a specialization over K of an extended
point E in K™ if for any polynomial P € K|[X] with P(E) = 0, we have also

P(2%) = 0. In notation:
0

831
{11

— g

(2.2)

Notation. Set of all specializations over K of an extended point E in K" :=
Spec(E).
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Ex. Let £;,z, be independent indeterminates Then

oy .
(Il,mz, ;) —/ X (0,0, l).

Remark. There is analogous concent of specialization for projective spaces
and products of affine and projective spaces.

Def. An affine algebraic variety or simply a wvariety in K™ := zerc-set
Zero(PS) of some polset PS5 C K[X].

Theorem 2.1. An algebraic variety Zero(FS) in X" is irreducible over X i
and only if it possesses an extended poiny Z in K" such that al! points of Zero(PS)
are specicializations over X of that point E, in other words, if and caly if for some
extended point Z in K™,

—

Zero{ PS) = Spec(B). {2.3)
Def. The extended point £ in K™ verifying {2.3) := a generic point of she

irreducible variety Zero(PS).
The above thecrem can then be re-phrased as

Theorem 2.1°. An algebraic variety in X" is irreducible over X if and oniy
if it has a generic point over XK.

Def. For an irreducible asc-set TRE let & be any extended point with IR 2

as defining asc-set. Then the algebraic variety Spec(E) depends only on IZR 2nd
will be called the algebraic varieiy associated to IRR. In notation: Var[IRR}:

Var[IRR] = Spec(E). {2.4)

Remark. We have
Var{IRR] C Zero(IRR),

but in general
Var{IRR]# Zero(IRR).

For this reason we use square bracket [ | for the associated variety but not the
parenthesis { } to avoid confusion.

Def. Dimension of an irreducible algebraic variety := dimension of its generic
(=) =1
point

From the above we see that an irreducible algebraic variety is completely
determined by any one of its generic points which in turn is in correspondence
to its defining irreducible asc-set Hence irreducible algebraic varieties, generic
points, and irreducible asc-sets may be considered as equivalent concepts which
are different representations of same geometry entity.
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Theorem 2.2. For K the real field R a generic point of an irreducible
algebraic variety is a simple point of that variety, i.e. a point at which the variety
will have a well-defined tangent space of same dimension as that of the variety.

In accordance to the terminologies of differential geometry, such a simple point
is a regular point of the real algebraic variety.

Theorem 2.3. Let E in K™ be a generic point of an irreducible algebraic
variety Zero(PS) over K with defining irreducible asc-set IR R. Then for any pol
P we have

P(8) =0 <===> Remdr(P/IRR) = 0. (2.5)

Moreover, if a pol P in K[X] is reduced w.r.t. the irreducible asc-set TRR, then
P(B) #0.

3. The Methods.

Let KX = R be the real field and let n = 3 so that we are considering real
curves and real surfaces with real traces in the ordinary real space R3. Let us
replace z1,Z4,z3 by the usual z,y, z with the ordering

r <y < z

Then an irreducible algebraic surface in R? will be defined by an equation P =0
irreducible in R where P is a real polynomial with leading variable either z or y or
z. If the leading variable of P is z, then P is necessarilly linear in z and the surface
is a plane = = const. On the other hand an irreducible algebraic curve in R® will
be defined by an irreducible asc-set IRR = { Py, P,}. The leading variables of
Py, Py will be either z,y or z,z or y, z. In case the leading variable of P; is z, then
P; is necessarily linear in z so that the curve lies wholly in some plane z = const.
Remark that the irreducible curve C determined by the irreducible asc-set TRR,
is in general different from the curve Zero{IRR), which is in general reducible.

In what follows let C be an irreducible algebraic curve with generic point de-
fined by the irreducible asc-set IRR = {P1, P;} and S, S’ be irreducible algebraic
surfaces defined by P = 0 and P’ = 0 respectively all in R3.

From theorems in Sect 2 we have now the following

Theorem 3.1. The surface S will contain wholly of C if and only if

Remdr{P/IRR) = 0. (3.1)

Proof. Let E be a generic point of C. Then by Theorem 2.3 (3.1) is equivalent

to P(E) = 0. For any point E° of C we would have then P(E°) = 0 so that C C S.
This proves the theorem.
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Theorem 3.2. Suppose that C is contained wholly in S and also in S’ but is
not contained wholly in the singularity part of S or §'. Set P, = g_l:, Pl = 33%, ete.
and form the pols

D1=PZ*P;—Py*P;)
Dy =P, + P, — P, % P, (3.2)
D3 =Py P, - P, P,

Then S and S’ will touch smoothly along C.

Remdr(D;/IRR) =0, for i=1,2,3. (3.3)

Proof. Consider a generic point & = (£,7,¢) of C. Then E is a simple or
regular point of C. As C is not wholly contained in the singularity part of S, =
is a simple or regular point of S, or Pz, Py, P; are not all equal to 0 at the point
E. Similarly P;,P;,Pz' are not all equal to 0 at the point E. The normal of S
at B is then well-defined and has its direction cosines proportional to the values
of P;, Py, P, at E not all 0. Similarly the normal of S! at E is also well-defined
and has its direction cosines proportional to the values of P;, Py, P, at E not all 0.
The surfaces S, S’ will have same tangent plane at E if and only if (P, Py, P.) at
E is proportional to (P, Py, P;) at E or if and only if D; =0,1=1,2,3,at E, or
(3.3) by Theorem 2.3. This will imply then D; = 0 at all points 80 of C which are
regular for all of C,S,S’. This implies in turn that S,S" will have same tangent
planes at all such points E°. Hence S will touch smoothly §' along C and the
theorem is thus proved.

Lemma. For the irreducible algebraic surface S given by P = 0 the curvature
K at a regular point is given by

v
K= e where (3.4)

H = P!+ P} + P, (3.5)
V =Py % Py P} + Pyy % Poy x PL+ Pyy % Ppp + P
—~ 2% Prx P s Poy# Pyy — 2% Py Py# Py # Pyy — 2% Pyx Pyx Py, % Pry
+ 2% Pk Pys Prys Pyy 424 Po# Pok Py % Py + 2% Pyx Pyt Py % Py,
~ PIx P}, — Pl« Pl —P}«Pl.
(3.6)

In H and V all the partial derivatives P,, P,, = ‘gz}:,etc. take values at that
regular point.

Theorem 3.3. Let C, 5,5 be as before which satisfy the conditions in
Theorem 3.2. Then S, S’ will have same curvatures at points regular to C, S, S’ if
and only if

Remdr(H? V' — H? + V/IRR) = 0. (3.7)

5
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In (3.7, H' and V' are pols for P’ similar to H and V for P.

Proof. From {3.7) we have by Theorem 2.3
HX:V'=H?%V (3.8)

at a generic point of C. {3.8) will then hold for any point regma; to C,S,5’. Now
at such a point H # 0, H' # 0. Hence from {3.4} we have x = x/ at all smh points
where « and x’ are the corresponding curvatures of § and S’. The converse is
ciearly true and the theorem is thus proved.

Our method of solving the Problem S¥ may now be described as follows.

For the irreducible algebraic surface S of degree m defined by P = 0 let us
write now P in the form

P =5, uijr+ hx oy« 2F (3.9)

in which I, is to be extended over triples (1, 7, &} verifying

120,720,

I
-

O, i+jtk<m (3.10)

We shall denote by U, the set of all uy;i verifying {3.10).

Consider the conditions that S contains as a whole the irreducible aigebraic
curve £ with generic point defined by the irreducible asc-set JRR. Let X =
{z.y,2) be such a generic point. By Theorem 3.1 the conditions become

R = Remdr{P/IRR) = 0. {3.i1)

Let the polset formed of the coefficients of varicus power-products of z,y,2z in R
be US, € R{U,,]. Then the condition {3.11) is identical to the conditions

US, =0. (3.12)

D

For the requirement {a) in Problem SF let us form, in accordance to US,
of {3.12}, the polsets USq;,US,;,USqi for each of the curves C;, ,Cy,Cy. Sim-
tlarly for the requirement (b} in Problem SF Theorem 3.2 will give us polsets
T Sb],(JS,,c and for the requirement {¢}) Theorein 3.3 vive us polsets I/S.x whose
vanishing are the corresponding conditions to be verified. Remark that all pels
inUS,;, JDaj,JSak,quj,JDb}: are linear in the u's, whxle those in U/'Sgx are in
general non-linear in the u’s. Combining new all the above polsets into a single one
U8 ¢ R{Uy|, then all possible solutions S verifying the requirements of Problem

8
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ST are furnished by the real zeros of Zero(US). In next section we shall give some
examples to illustrate the above method.

4. Examples.

A general cubic surface § in R? is of the form

f{z,y, 2) =uaco * 2° + 2% % (ua10 * ¥ + U201 * T + u200)
+z*(u120*y2+u111*y*z+u1oz*z2+u11o*y+u1m*:z:+umo)
+ 30 * y° + uo21 * V% ¥ T+ ugr2 ¥ Y * T + ugog * T°
+ U020 * Y? + Uo11 * Y * T + ooz * z?

+ Uo10 * Y + o1 * T + Ugoo =0,

(4.1)

in which the «’s are all in the real field R. We give below some examples illustrating
our method of determining such cubic surfaces S meeting some requirements as
described in Sect 1.

Ex.1. In R3 consider two circular cylinders CY L;,CY L, with z-axis and
y-axis as their axis and two circular sections Cy,C; by planes orthogonal to these
axis respectively. Then these circular sections will have generic points with defining
asc-sets AS; = {C11,Ci12}, ASz = {Ca1,Ca2} given by

Ciny=z—dy, Cia=2"+y* —r}, - (4.2)

Ca1 =y —dg, Cag =ZZ+.‘L‘2—T§. (4.3)

The two circular cylinders are given by equations Cy2 = 0, Csy = 0 respectively.
Naturally we shall assume that dy,ds,r1,72 are all non-zero. We now ask for the
determination of such cubic surfaces (4.1) which will contain the circles Cy,C» and
touch the cylinders CYL,, CY L, smoothly along these circles.

Our method gives now a set of 28 equations in Uj for the solution. It is readily

found by the package wsolve of D.K.Wang of MMRC implemented in the MAPLE
system of some SPARC2 that such solution will exist only if

ri+dl =ri+dl (4.4)
In that case the only possible cubic surface is then given by

Zx(yrdy+oedi—df—df) + (¥° +dy + 2%+ dy)
+yxzx(yrdi+zrdy—2%dyxdy) — (y* + 2%) « (d + d})
+yxdy* (d} —r}) + 24 dyx (d] - 1))

+ (rP+d)x(ri+d2)—2+dixd} = 0.

(4.5)

7
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Compare for this example [B-11] Ex.5.2.

Ex.2. Consider besides circles C1,C> as in Ex.1 a third circle C3 with center
on z-axis and orthogonal to that axis. Let the defining asc-set of a generic point
of 03 be {C31, 032} with

C31 = y2 + Iz bl 7‘%, 032 =z - da. (4.6)

As before we assume that all d;, r; are non-zero. Suppose first that these d;,r; are
otherwise arbitrary. Then our method shows that the only cubic surface containing
all the 3 circles is the trivial one which degenerates into 3 planes containing the 3
circles respectively. If the d;,r; satisfy the relation (4.4) but otherwise arbitrary,
then besides the trivial surface of 3 planes, there are the only surfaces which
degenerate into the plane 2 = d3 containing the circle C3z and one in a family
of quadrics through the circles C;,C, given by the equation below, u being a
parameter,

(drrdetu)(z?+y?+22)+ (2 +dd) ryxz— (ri+-dD) #(dy vy +doxz+u) = 0. (4.7)
Suppose now there exists the relation
P+ d? =1 +dl=r2+dl=k? say. (4.8)

between d;,r; but otherwise arbitrary. Then clearly the sphere of center the origin
and radius |k| will contain all the 3 circles C;. Together with an arbitrary plane,
there will be a family of co® degenerate cubic surfaces containing all the 3 circles.
However, our method shows that there are in fact 4 families of 0o?, 00%, 003, c0*
cubic surfaces containing the 3 circles. The cubic surfaces consisting of the sphere
and an arbitrary plane form only a subfamily of the family of co? surfaces. In fact,
the last family is defined by 15 equations and depends on the parametric ratios
%100 © Ugoz @ Uplo ° Uool : Uooo- Setting uoyy = O, then we get uyyy = uyye =
%101 = O too and the other equations show that the family degenerates into the
subfamily of co® degenerate cubic surfaces consisting of the sphere 22 +y?+z2 = k?
and the plane %190 * 2 + 2930 * ¥ + Uoo1 * T + Uggo = 0.

Our method shows that the above are the only possible cubic surfaces which
contain the 3 circles. As each non-degenerate family of cubic surfaces given above
depends on several parameters, we may determine, if we like, such ones among
them which will meet further requirements as in Sect 1 by our method. However,
if CY L; are the cylinders with z,y, z axis as axis and bounded by C;,t = 1,2,3
respectively, then in view of the form of (4.5), there cannot exist any cubic surface

containing all the 3 circles and touching smoothly the 3 cylinders along these
circles.

The above two examples concern curves like circles and surfaces like circular
cylinders which are easily parametrized. With such parametrizations the problems

8
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in these examples can be dealt with by other known methods, cf. e.g. [B-I1].
However, curves and surfaces are generally non-parametrizable except in the very
rare case of rational ones. This is already so for general cubic curves and cubic
surfaces. The following is such an example which cannot be treated by means of
parametrizations.

Ex.3. Let fi(z,y,2) and fa(z,y,2) be as f(z,y,2) in (4.1) with coefficients
ui;x replaced by a;jx and bk respectively. Let S;,S5; be the irreducible cubic
surfaces defined by f; = 0 and f; = O respectively and C;,C; be the irre-
ducible cubic curves having generic points with respective defining asc-sets IRR; =
{v,91},IRR2 = {92, 2}, where g; = f1(z,0,2),92 = f2(z,¥,0). Our problem is to
determine cubic surfaces S as in (4.1) which will contain both C; and C; and meet
eventually further requirements. Now C;,C, will intersect the z-axisy =z =0 in
points with z-coordinates given by the respective equations

@003 * T + @00z * T° + Goo1 * T + agoo = 0, (4.9)
boos * 2° + booz * 2 + boay * T + bggo = 0. .
For a cubic surface S containing C;,Cs to exist it is necessary that these two
triples of intersection points should be the same. So we assume at the outset that
@003 = boos, @ooz = boo2, 2oo1 = boo1, Gooo = booo. (4.10)

For the sake of simplifying the computations we shall assume that the coincident
triple of intersection points will none of them be the origin or the point at infinity

on the z-axis so that
ago0 = booo # 0, @ooz = boos # 0. (4.11)

We assume further that neither the z-axis will be asymptotic to the curve C} nor
the y-axis will be asymptotic to the curve C; so that

a300 # 0, bogo # 0. (412)

Under the conditions (4.10)-(4.12) our method, in applying the package wsolve
, shows that the only cubic surfaces S of (4.1) containing the the two cubic curves
will form a family of co* cubic surfaces depending on the parametric ratios U110 :
Uy11 Y120 * 210 ¢ Ugoo and are defined by, besides (4.10), the equations below:
%000 * @300 — %300 * @000 = 0, Uoo1 * @300 — U300 * @001 = 0,
%010 * €300 — U300 * bo10 = 0, %ooz * @300 — U300 * Gooz = O,
uo11 * 6300 — U300 * bo11 = 0, o20 * @300 — U300 * bozo = O,
2003 * @300 ~ %300 * Goo3 = 0, Uo12 * @300 — U300 * bo12 = 0, 4.13
tg21 * @300 — U300 * bo21 = 0, %030 * @300 — %300 * bozo = O, (4.13)
%100 * €300 — U300 * G100 = 0, U101 * @300 — Uz * Ay01 = O,
U102 * @300 — U300 * G102 = 0, U200 * @300 — U300 * G200 = O,

2201 * €300 — U300 * G201 = 0.
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We may determine subfamilies meeting further requirements by our method if
required. Complete set of families of cubic surfaces containing the two cubic

curves with some of the intersection points at infinity or (4.1) not observed have
also been determined.

Further much more complicate examples have been treated by D.K.Wang.
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Abstract The determination of central configurations in planet
motion may be reduced to a problem of polynomial equations-solving. We
determine thus these configurations in the case of three planets by the
char-set method. It shows that the only solutions are the classical ones
due to Fuler and Lagrange. The same method permits also to determine
the rigid configurations formed by three parallel filaments in an incom-
pressible nonviscous fluid eztending to infinity moving under their own
influences.

1. Central Configurations in Planet Motions.

Notations 1.1.

J"L = {17 e ,TL};
J7ZL = {(1)]) 4,7 € Syt # 5}
my, -, m, = masses of n particles moving under mutual Newtonian gravi-

tational attractions.

Iy, -+, I, == positions of these masses at a certain momermt, with r; # r; for
i 7.
my ma - M . "
1 < ™| 1= a configuration formed of masses m; at positions
r rs e Tn
ri,t=1,---,n.
o . iy ma . .
Definition 1.1. The configuration | is a rigid configura-
Iy rs o Ty
tion (respectively a central configuration with respect to the masses my,- -+, m,, =

There are initial velocities of the masses m; such that under the Newtonian grav-
itational attractions the configurations formed by the masses during the motion

will remain congruent (respectively similar) to the initial one.
.—1_
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As a direct consequence of Newtonian mechanics for a rigid or a central con-
mi Mg - M
" | the center of mass of the masses m,, - - -, m,, may

figuration
ry T2 e Ty

be considered to be fixed during the motion.

Definition 1.2. An inertial coordinate system associated to a rigid or a

. m m . .
central configuration [ . ! R 2 T"J := A cartesian coordinate system for
1 2 e "
which the origin is at the fixed center of mass of the masses my,--+,m,,.

Again as a direct consequence of Newtonian mechanics, we have the following
proposition:

Proposition 1.1. For arigid or a central configuration | % "2 o
1 rs Ty
we have in any associated inertial coordinate system
Y, mixr; = 0. (1.1)

Definition 1.3. Two rigid configurations with respect to same masses my, - - -,
m,, belong to the same configuration class := they have same center of mass and
there exists an orientation-preserving similarity transformation which keeps the
center of mass fixed and tranforms one configuration to the other.

Some Historical Account about Ceniral Configurations.

Clearly a rigid configuration is also a central configuration with same set of
masses. The converse is known to be true, see e.g. [Wint], Sect.355-382. It follows
that a central configuration determines a class of rigid configurations and vice

versa.

In what follows only inertial coordinate systems are considered.

Notations 1.2.

gs(n) = gs(n;my, -+, my) 1= number of classes of rigid configurations with
given masses mq,- -+, My,

ga(n) = qz2(nymy,---,m,) = number of classes of rigid configurations with
given masses mq, -, m,, for which the masses m; are situated in the same plane.

a1(n) = q(nymy, -+, my) = number of classes of rigid configurations with
given masses my,- -, ™, for which the masses m; are situated in the same line.

Remark 1.1. Our notations differ from those of Wintner in his book [Wint]
in that ¢y, qs of that book correspond to g2 — g1, 95 — g2 here.

Results known. For given masses my,---,m, we have:
@(2) =g:(2) =a(2) =1
q1(3) = 3. (Euler 1767);

___2__
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72(3) = ¢q3(3) = 4. (Lagrange 1772);
q1(n) = 2. (Moulton 1910);

gs(n) > gz2(n) for each n > 4 with some particular sets of my,---,m,,. (Wal:i-
vogel 1972).

It is clear that

qi(nyma, -y ma) < g2(nsmy, o0 my) < gs(nymy, -, my). (1.2)
It is known that g;(n;m;,---,m,,) is finite for all n» and masses my,--,m,, owing
to the results of Moulton.
Wintner Conjecture. g3(n;m;,---,m,) and hence also g(n;my,---,m,,)
are finite for all n and masses my, -, m,.

In recent years Smale and his followers have studied central configurations
with topological methods via Morse critical point theory. See e.g. [Sml,2]. Tt
seems that Wintner’s conjecture remains open. In this section we shall restrict
ourselves to the actual determination of rigid or central configurations in treat-
ing it as a problem of polynomial equations solving. For this purpose we shall
adopt an inertial coordinate system associated to the rigid or central configura-

My Mg v My

tion and the following notations will be used:

r Pz_ o Iy
Notations 1.3.
v = (z4,yi),% € Ju;
Tij = @i — i, Yij = Yi— Y5, (6,7) € I3

Tij T 4/ z?j +y?ja (¢,7) € J72l,

Fundamental Equations for Rigid Configurations.

my moy v My,

For a rigid configuration in a plane it is known that

1 rs e Ty
during the motion the plane will be fixed to keep the configuration congruent to the
original one, cf. [Wint] again. Take now planar inertial coordinate system (z,y)
with origin O at the center of mass. Then the configuration will move around O
with an angular velocity w such that

s
w? kwy = Ty s+
, y; i€ J. (1.3),,
w® kY = Bz My K 5
i
Up to factors m;theright — handsides represent the total Newtonian attractive

forces exerted on the mass m; by all the other masses, while the left-hand side
_3..__
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represent the corresponding centrifugal forces. The equations (1.3),, show in par-
ticular that w is a constant. Furthermore, the equations are invariant under
orientation-preserving similarity transformations with origin keeping fixed., The
constant w may then be changed.

We have assumed 73i; # 0,(3,7) € JZ, which means that collisions are out of
consideration. The determination of rigid configurations and hence also central
configurations amounts then to the solving of polynomial equations obtained from
(1.3),, by clearing of fractions. To achieve this we shall introduce some preliminary
transformations of (1.3), to make easier the solving.

Let us take the complex number field C as the basic field and introduce
complex variables u;, v;, zi;, w;; as follows.

ui:zi’*'i*yi? ’U,;Zﬂii—i*yi, iEJna
1 1

Wi =
* (’U,‘ - vj) * i

4 = (Ui — uj) *Tij’ 3 (i’j) € J:n (1.4)”

My = —W .
From (1.3) we have now the following set of polynomial equations:

™Mo * U; + Ej;é{ mj * wi; =0,

my * Vg + E];;h, mJ * Zi5 = 0. v e J"' (1.5)”
(ui — wj) % zij *7i5 —7° =0,

(vi—v) vwijxryg —1° =0, (5,5) € J2. (1.6)n

(s ) s 5) =
rig =g =0, 255 + 25 =0, wij +wyi = 0. (§,5) € J5. (1.7),

To these we may also add

Ei M ok Uy = 0’

(1.8).

Ei mi*vi:(),

which follows from (1.1) or (1.3).

Remark 1.2. In the above equations ¥ is to be extended either on 7 € J,,
or (i,7) €"J2 as is evident from the context and the variable r is introduced to
render the equations homogeneous in the relevant variables.

Remark 1.3. In the above equation u4,v;, etc. should satisfy the following

conditions to meet the reality of the situation:
.__4_
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Ty, M1, -+, M, are all real numbers, with mo < 0,m; > 0,1 € J,..
Actually r = 1, and all r;;,(i,j) € J2, are real and positive.

u;,v; for i € J,,, are conjugate complex numbers, i being +/—1.
zij # 0,wy; # 0, for (3,5) € J2.

my Mz - My
r Iy et )

Definition 1.4. For a rigid or central configuration
reality conditions := the conditions in Remark 1.3.

Determination of Rigid or Central Configurations for n = 3.

The determination of rigid or central configurations for n = 2 is trivial. Let
us proceed to the case n = 3 which amounts to the problem in the example below.

Example 1. To solve the system of equations (1.5)3 — (1.8); for the variables
Ui, Ui, mo,74j with i € Ja,(ij) € J§ in terms of the parameters m;,i € J;.

For the solving let us first replace the variables uy, u3,v2,v3 by uia,u13,v12,v13
in setting

Uiz = Uy — U2, U1z = Uy — Uis,
(1.9)

Vi = V3 — V2, V13 = V1 — V13,

so that

U3z = U13 — U12, V23 = Vi3 — Vi2. (1.10)

To solve (1.5); — (1.8); is then easily seen to be equivalent to the solving of the
system QS = 0 below for variables uy,uy2,%13,v1,v12,v13, M0, 12,713, T23 in terms
of known parameters m,, my, m3. Here QS = {q1, -, qo } with

@1 = uy x (M3 +ma 4+ my) — uis * M3 — U1z * My,
gy = Uiy *Tag * T3 ¥ (T3, ¥ Mg + My + 1)
— V33 % Vgg % T3 * P13 =o<(r:1’2 *mg + mgy + my)
+ V13 % Upy # 71y * My * (723 — T13)
—vfz * Ta3 % T1g % T3,
g3 = vfs * o3 % Py3 * Mg
4 Vg3 * Vyg * Tog k Ty ¥ (r'f3 * Tyg *k Tg — TNy)
+ V13 * Vi kTyp * (Ta3 kg 4 Tag x g+ Tyy * )
—vfz ® Tog % T'7q % (rf3 *mgy + mg +m1),
s = V1 K Uyz ¥ Ujg ¥ T3 ¥ Ty ¥

+ w13 * 713 % My + Uy * P12 * M3,
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gs = ufa * To3 ¥ T13 * (rf2 *mg + my + my)
— U3k Uy K 7oy ¥ 713 * (T3, x Mg + My +my)
+ u13 # Urp *T12 * M3 * (T23 — r13)
- ufz * T3 ¥ T12 ¥ Mg,

ge = 11.%3 * T'g3 ¥ P13 ¥ My
+u1s * Uyp * Ta3 ¥ T1g ¥ (7] % T1a ¥ Mg — my) (1.11)
+urs *x ugp k712 % (P23 # My 4+ Tag * My 4 715+ M)
—ul, krgg ks * (1":1’3 *mg + my + my),

g7 = Vi2 ¥ U12 — 7‘32)

gs = Vi3 * U13 — 7'%3)

g9 = ('013 - '012) * (Uls - ulz) - 7‘33-

Remark that the reality conditions have to be observed. In particular 713, 713, a3,

mg,m1,Ma, my are all non-zero. Let NZ be the product of all these non-zero vari-
ables and parameters. Then the problem is reduced to the determination of

Zeroqoy(QS/NZ) C Zeroc(QS/N Z), (1.12)

in which (rc) means that the zeros are restriceted to those for which the reality
conditions are observed.

To determine (1.12) let us first arrange the variables and parameters involved
in the following order:

my < Mg <m3 <7112 <713 < T2z X Mg <X Uj2 < Uy < V132 < V13 < U3 < V;.
(1.13)

Let us apply now the Replacement Rules in replacing ¢»,g; by the remainder ¢y
of g2 with respect to g3 and the resultant g;; of ¢» and g;. The resultant ¢y, has
an index set [57 mg 3] while gy is of the form

g0 = V13 * go + V12 * fg, (1.14)
where gg, ho have index sets [12 my 2] and [8 my 2] respectively. Similarly, let us
replace ¢s,gs by the remainder g3 of g5 with respect to ¢; and the resultant g3

of g5 and - It turns out that g3 is the same as ¢;; so that it may be removed
while g1, is of the form

g1z = U13 * o + U2 * hq, (1.15)
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Forming remainders of gg with respect to gip, ¢12,¢7 in eliminating vy3,u33,v19
successively we get a pol ¢;4 which may be factored as

q1a = fa * fln
fa = ~T13 % go + 712 * ho, (1.16)
fo = 4713 % go + 712 * ho.

It follows from g4 = 0 that either f; = 0 or f; = 0. Form next the remainders of
go with respect to gs, 97, ¢10, q12 We get a pol g5 of the form

Q15 = —r5y % go + iy * go + 715 % go + 2 % 73, % by, (1.17)

Consider first the case f, = 0. Then after reduction it turns out that ¢;5 will be
factored into three factors f,i,7 = 1,2, 3 as shown below:

fa1 = go,
faz =123 — 713 — T12, (1~18)

foz =723 + 713 + 7120

Consider next the case f, = 0. Then ¢;5 after reduction will be factored into
factors fpi,t = 1,2,3 given below:

for = ga,
foz =723 — 713 + 112, (1.19)
o3 =123 + 713 — Ty2.

It follows that Zero()(@S/NZ) is included in the union of Zero(,,(A4Ss/NZ)
and Zero(.oy(BSx/NZ) for k =1,2,3 in which

ASy = QS + {q10, 011, 12} + {fay far }s

k=1,2,3. 1.20
BS, = QS+ {q10, a1, a2} + {fo, for }s (120

It is easy to see that this inclusion is actually an identity so that we have

Zeroqe(QS/NZ) =) Zerope)(ASy/NZ) +| ) Zerogo(BSy/NZ). (1.21)
k k

In {1.21) the union is to be extended over k = 1,2,3 Let us denote for simplicity
the six zero sets in (1.20) by Z Ay and Z By respectively. Then owing to the reality

conditions f,3 # 0 so that we have
_._7_
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ZA3 = ZCT‘O(,.C)(ASa/NZ) = 0 (122)
On the other hand by our general method we have

ZAy = Zeroo(AS1/NZ) = Zero(roy(CSa1 /N Z),

1.2
ZA; = Zerope)(ASy[NZ) = Zero()(CSaz /N Z), (1.23)

In (1.23) CSur = {cak1, - Cars }, k = 1,2 are triangulated or asc-sets with pols
Cakiyt = 1,+--,8 given below:

Cq11 = T13 —T12,
Caq12 = T23 —T12,
3
Ca13 = Mg * T, + (M3 +ma + m),

2 2
Ca14 = Uyz — U13 ¥ U1z + Upy,

\ (1.24)
Ca1s = V12 * U12 — T2,
2
Cal6 = V13 ¥ U13 — T12,
Ca17 = Uy ¥ (Mg + My +my) —uis * Mg — Uy * Mg,
Ca1s = V1 * Uiz ¥ Uy * T12 * Mg + U3 * My + Uyg * ™3,
5
Cya1 = T3 * (M2 + my)
+ ik x (3xmy +2%my)
2
+ 735 %715 * (3% ma + M)
2 3
— i3 * 712 * (3 ¥ M3 + my)
4
— 13 % Ty * (3xma 4+ 2% my)
5
~ 71y * (M3 + my), (1.25)

Cg22 = T23 — T13 — T12,

Caz3 = Mg * 7'%3 * T?g * (13 + 7"12)2
+ ng # (r13 + 7‘12)2 # (ma + my)
— 2%7ry3 *r?z * —T‘;z*mg,

Caza = U13 * T3z + W12 * T13,

and ¢,z same as cqik, for k = 5,6,7,8 From ¢q19, €a13, Caga 1t is readily seen that
Z A, gives'the central configuration of Lagrange while Z A4, gives that of Euler for
which the particles m1,my,m3 are collinear with m; lying between m; and m;.
In particular, cy»1 gives a quintic equation in 73 which has one and only one real
solution positive owing to the reality conditions as originaly given by Euler.

—8—
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The sets ZB1 = Zero(,¢)(BS1/N Z) coincides with Z4; = Zero(re)(AS) /N Z)
and the sets ZB; = ZCTO(TC)(BSk/NZ),k = 2,3 are similar to ZA; = Zero()
(AS,/NZ) which correspond to the other two collinear central configurations of
Euler.

The set of all possible central configurations in case of n = 3 is thus completely
determined which is consisting of the classical ones due to Euler and Lagrange but
no others.

2. Rigid Configurations in Vortex Motions.

Consider now vortex movements in an incompressible and nonviscous fluid
extending to infinity.

Notations 2.1.

Fy,---, F, = n parallel rectilinear vortex filaments moving under their own
influences.

ky, -+, k, := strengths of the n vortex filaments F;.

P := a fixed plane perpendicular to all the n filaments F; with a coordinate
system (z,).

ry,--+,I, = traces of vortex filaments F; on the plane P, or vectors from the
origin O to that trace.

e := unit vector orthogonal to the fixed plane P.
r;; := distance between the parallel filaments F; and F}.

kl k?. ctt kn

ry rz -+ Ty

Hypothesis K.

:= vortex configuration of the n filaments F;.

i ki # 0. (2.1)

Under Hypothesis K it is known that there will exist a cenfer in the finite
part of the plane P such that, if the center is taken as the origin O, then we will
have

x
Ei k‘i*l‘.,;-‘:o, or

21' ki*zi:(),

2.
Yy kixyi=0. (2:2)

_9_
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. . kl m ek
Consider now a vortex configuration 2 ™
r rs tes Ty
Definition 2.1.
! 2 ™| is a fized configuration := the configuration remains fixed
L ry ) e Iy
during the motion under its own influences.
Definition 2.2.
.
kl kZ e kn
ry rp -+ Ty
gruent to the original one during the motion under its own influences.

is a rigid configuration := the configuration remains con-

Remark 2.1. There is no analogue of fixed configurations for particles mov-
ing under mutual Newtonian attractions.

Some Elementary Properties of Rigid Vortez Configurations.
kl kz e kn

ry ra - n
K so that the center of the system exists which is taken to be the origin of the

Below will be a vortex configuration verifying Hypothesis

coordinate system.

Proposition 2.1. For a rigid vortex configuration which verifies Hypothesis
K the whole configuration will rotate about the fixed center with a uniform angular
velocity.

Proof. Let the origin O be at the fixed center. Let us denote by ;(:72 the

angular velocity about O of the whole rigid configuration at time ¢. Then the
velocity v;(¢) of ¢-th filament at time ¢ will be

vil) = 28 (e xri(t)).

T 9%

Now the velocity of filament F; due to filament F; at time ¢ is given by

vii(t) = ! * kjox ex (rl(:) — rj(t)).

2xm 2.

o

Hence the velocity of F; at time ¢ is

1 e x (r;(t) —r;(¢
Vi(t): . *E];“ ]C]* Tgl J ))
)

Comparing the two expressions of v;(t), we get

ri(t) —r;(¢)

T ;‘]

= ct) *r;(2).

Yz kjox
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As r;(t) differs from r;(0) = r; by a rotation independent of i, we see that ¢(t) is

independent of ¢{. Hence ;g? = 35 is the uniform angular velocity of the whole

rigid configuration as to be proved. Moreover we have

r; —r;
Ej;éi kj* "’ I = c¥r;. (2.3)

if

Remark 2.2. From the proof we see that ¢ = 0 corresponds to the case of a
fixed vortex configuration.

Proposition 2.2. For a fixed vortex configuration it is necessary that
Ei#j k; * kj = 0. (2.4)
Proof. From (2.3) we get
C*Ei ki*l‘? = Ei;_x]' k,;*kj.

As ¢ = 0 for a fixed vortex configuration, we get (2.4).
Fundamental Equations of Rigid Vorter Configurations.

From (2.3) we get

:Eij

Ej#l’ kj*-—;* = Cc* I,
’I'Z']
. i€ Jy. (2.5)
Y n
E];ﬁl k]*r% = C*Y;.

ij
Let us introduce ui, v;, 2;j,w;; as given below:

wp =1k yy, v —ixyg, 1€y,

.. 2
Ujj = U; — Uj, Vij = U — Uy, (s,7) € Js,

1 . . 2 (2.6),
Zij = uij’ Wwi; = 'U—ij, (1'1.7) € J”,
ko = —<C.
Then (2.5),, will be transformed into the equations below:
ko *u; + Dz k; xwy; =0 )
0 FES IS 3 vy €, (2'7)”

ko xv; + Djpi kj * z;; = 0.
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Uij * 245 —’!‘2 = O,
vijxwi —r2 =0, (i,j) € JZ. (2.8),,

2 . R
T — i * vi; = 0.

ri; — 7T =0, zjj + 25, =0, wi; +wj; = 0. (1.,]) c Ji. (2.9),

To these we may also add

Yikixu; =0, I; ky*xv; = 0. (2.10),,

The variables and parameters involved in (2.7),, — (2.10),, are subject to some
reality conditions, viz.

ky,---,k, are real and non-zero, and ky is real.

u;, Vi, are complex conjugates for i € J,.

7;; are real and positive, for (ij) € J2.

Uij,Vij, Zij, Wi; are all non-zero, for (i7) € J2.

7T is actually equal to 1.

Determination of Rigid Vortex Configurations in Case of n = 3.

In comparing (2.7), — (2.10), with (1.3),, — (1.8)s we see that the deter-
mination of rigid vortex configurations will be analogous to that of rigid planet
configurations. Consider in particular the case n = 3 or the problem below:

Example 2. To solve the system of equations (2.7); — (2.10); for
variables u;,v;, ko, 7i; with 1 € J3,(i5) € JZ in terms of the parameters k;,1 € Js.

For fixed configurations we have ky = —c = 0 and the solving is quite easy.
So in what follows we shall consider only the case kg # 0.

For thts purpose let us replace as before uq,us,v2,v3 by wis,u13,v12,v13 by
means of (1.9), (1.10). Then the solving of (2.7); — (2.10); is equivalent to the
solving of @S = 0 under the relevant reality conditions where QS = {q1, - ,qs}
with g¢; given below:
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g1 = uy * (ks + ko + k1) —ugs * ks — w2 x kg,
gz = viy * (ko ¥ 73, + k2 + k1)
~v13 % w1z * (ko * 71y + ka2 + 1) — v, % ks,
q3 :vfs * ka
+ vyg % vya * (ko * 72y + ks + kr) — vy * (ko * 125 + ks + k1),
ga = V1 * Upg * Uz * ko + urg ¢ kg +upa * kg,
gs = uls * (ko x 1y + k2 + k1) (2.11)
— w13 * urg * (ko %713 + k2 + k1) — ul, # kg,
qs =ufa*k2
+urs * gy * (ko %735 + ks + ki) — uly * (ko x 735 + ks + ki),
g7 = V12 ¥ U1z — 7‘%2,
Qs = Vi3 * U313 — T'I’:n

go = (V13 — v12) * (w13 — u12) — T35

We have to determine

Zerore)(QS/NZ) C Zeroc(QS/NZ), (2.12)

in which (rc) means that the zeros should be chosen among those verifying the
relevant reality conditions and NZ is the product of the non-zero variables and
parameters k(] y kl y kz, ks, T12,713,7T23.

Proceed now as in Example 1 we get finally the result below:

Zero;)(QS/NZ) = U Zeroroy(CS,/NZ), (2.13)

k=1,2,34

In (2.13) we have CS; = {cr1, -, cks} for each k with cg; given below:

C11 = T13 — T12,
Ciz2 = T23 — T12,
2
c13 = ko #7iy + (ks + ka2 + k1),
2 2

C14 = Ul3 — U1z * U1z + Uy,

- ) (2.14)
€15 = Uiz ¥ U12 — T1g,

2

C16 = V13 * U313 — Tyg,
cir = uy * (kg + ko + k1) — uis x ks — ugs % ks,

€18 = U1 ¥ U3 * Uiz * T1a % Ko + urg * ko + ugs * ks,
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oy =135 * (ka + Ry) 472 g # (2% kg + k1)
—rig ki x (2x kg + ki) — 1, (ks +k§)a

Ca2 = T23 —T13 — T12,

Cos = ko #7153 %72y % (713 +71g) + 72y ¢ (kg + ky)
+ 7z xriz k (k2 + k) —sz * k3,

Cag = U3z * T12 + Uz ¥ T13,

(2.15)

and c,; same as ¢;;, for ¢ = 5,6,7,8. The polsets CS3,CSy are similar to C'S,. The
zero-set of C5) is analogous to the Lagrange case while those of CS,,CS;,CS,
are analogous to the Euler cases of planet motions.

Remark 2.3. As k;, k;, ks, though non-zero, may be either positive or neg-
ative, so from c;; = 0 we will get either none, or 1, or 2, or 3 positive real roots
for the corresponding rectilinear vortex motions, in comparing with the single one
rectilinear planet motion in that case.
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Abstract. The char-set method of polynomial equations-solving is naturally extended to
the differential case which gives rise to an algorithmic method of solving arbitrary systems
of algebrico-differential equations. As an illustration of the method, the Devil’s Problem
of Pommaret is solved in details.

Key words. Algebrico-differential equations, (Differential) Zero-decomposition theorem,
Riquier-Janet theory and method, integrability d-polynomial, compatibility d-polynomial,
Pommaret’s devil problem.

1 Introduction

Let y,uj,j € J, be infinitely differentiable functions in independent variables X = {zx,k =
1,2,---.n}. A polynomial in various derivatives of y and u; with respect to z with coefficients in
the differential field of rational functions of X will be called an algebrico-differential polynomial.
Suppose given a finite system of such polynomials DPS = {DP; | i € I}. Let us consider the
associated system of partial differential equations of y with u; supposed known:

DPS =0, or DP,=0, i€l

Our problem is to determine the integrability conditions for y to be solvable in terms of xx, u;
and in affirmative case to determine the set of all possible formal solutions of y.

Criteria and even algorithmic methods of solving the above problem were known in quite
remote times for which we may cite particularly Riquierl!?l, Janet(®4, and E. Cartan®¢l. In
recent years J. F. Pommaret had given a systematic formal intrinsic way of treatment and had
published several voluminous treatises, cf. e.g. [7, 8, 9]. On the other hand, the present author
had given an alternative method in following essentially the steps of Riquier and Janet, cf.
[10]. The present paper is actually a simplified version of the above paper. An example due to
Pommaret, the so-called Devil’s Problem will be treated in details to illustrate the procedure
of our method.

For the illustration of our procedure let us first recall our char-set method of solving arbitrary
purely algebraic polynomial equations. Thus, consider a set of variables X = {z;, 22, -, %n}
and polynomials in X with coeflicients in the complex field C. We shall introduce some partial
ordering among all finite systems of such polynomials. For this purpose let us arrange first the
variables z; in natural ascending order. Any non-constant polynomial P in C[X] may then be
written in axanonical form

P=Igvzdqly yxa®™ 4.+ I,

Received October 29, 2003.
*The present paper is in honor of late Professor R.Thom as a great mathematician, a great scientist, and

also a great thinker of modern times.
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in which I; are themselves polynomials in variables z;, s, -, z.—1 with Ij # 0. We call then
¢ the class of P, d the degree of P, z. the leading variable of P, and I; the leading coefficient
or initial of P. We then introduce a partial ordering of non-zero polynomials first according
to class and then to degree, the non-zero constants being considered as polynomials of lowest
ordering.

For the partial ordering of polynomial systems let us consider first such polynomial sets
well-arranged in the following sense. The polynomials in the set are non-constant ones and may
be so arranged with classes ¢; steadily increasing:

O<er <ep < < ¢y

The leading coeflicient or the initial of the i-th polynomial in the set is either a non-zero constant
or has a class less than ¢; which, if it is of class ¢;,1 < j < 1, should have a degree less than
that of j-th polynomial in the set. Such a polynomial set is then called an ascending set (abbr.
asc-set). Some partial ordering is then introduced among the system of all such asc-sets, with
the set consisting of a single non-zero constant considered as a trivial asc-set to be arranged in
the lowest ordering.

Consider now arbitrary finite systems of non-zero polynomials. For such a polynomial
system, any asc-set of lowest ordering contained wholly in the given system is called a basic
set (abbr. bas-set) of the system. A partial ordering is then unambiguously introduced among
all non-empty polynomial systems according to the partial ordering of their basic sets. Any
polynomial system containing a non-zero constant polynomial will be clearly one of lowest
ordering.

After the introduction of partial ordering among all finite polynomial systems let us consider
now such a given system PS and consider the scheme (S) shown below:

PS= ps® pst ... pS§t ... psm
BS® BS' ... BS' ... BS™ = CS (S)
RS® RS* ... RS' ... RS™ = {.

In the scheme (S) each BS® is a basic set of PS?, each RS is the set of non-zero remainders,
if any, of polynomials in PS*\ BS* with respect to BS*, and PS**! = PSUBS*URS® if RS®
is non-empty. It is easily proved that the sequence of BS® is a steadily decreasing sequence:

BS° >~ BS' > - > BS" > -

Such a sequence cannot be an infinite one and should terminate at certain stage m with RS™ =
@. The corresponding basic set BS™ = CS is then called a characteristic set (abbr. char-set)
of the given polynomial system PS. The zero-set of PS, Zero(PS), consisting of all possible
complex solutions or zeros of the system of polynomial equations PS = 0, is closely connected
with that of C'S by the Well-Ordering Principle in the form below:

Zero(PS) = Zero(CS/IP)| | Zero(PS | J {1P}),

in which IP is the product of all initials of polynomials in CS and Zero{CS/IP) = Zero(CS)\
Zero(IP).

Now PSU{IP} is easily seen to be a polynomial set of lower ordering than PS. If we apply
the Well-Ordering Principle to PSU {IP} and proceed further and further in the same way we
should stopped in a finite number of steps and arrived at the following

Zero-Decomposition Theorem For any finite polynomial system PS there is an algo-
rithm which will give in a finite number of steps a finite set of asc-sets CS* with initial-product
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IP?® such that
Zero(PS) =|_J Zero(CS* | IP?). (Z)

Now CS* are all asc-sets. Hence all zero-sets Zero(CS*) and all Zero(CS*/ 1P*) may be
considered as well-determined in some natural sense. The formula (Z) gives thus actually an
explicit determination of Zero(PS) for all finite polynomial systems PS which serves for the
solving of arbitrary systems of polynomial equations.

Mathematics should be incessantly faced with the solving of various kinds of problems,
both theoretical and practical ones. Such problems are abundant in nature, in sciences, in
reconstructions, in engineering, in administrative works, etc., besides those in mathematics
herself. As the data given and results to be found are usually connected by some form of
equations, so equations-solving becomes naturally one of the main concern of mathematics. As
the algebraic polynomial equations and differential equations, ordinary or partial, appear as the
usual form of equations which arise most often, so the solving of such kinds of equations become
naturally our most urgent task to deal with. In this section we have presented an algorithmic
method of solving arbitrary systems of polynomial equations. It is conceivable that there will
be various kinds of applications of this general method. This is really the case. Among the
applications we may cite in particular the mechanical proving on computers of theorems in
various kinds of geometries, those of euclidean geometry in particular. See e.g. the book [11] of
S.C.Chou. For the methods of our theory as well as their applications we refer to the author’s
book [12] and the references there. For the extension to differential case we refer to the next
sections.

Remark finally that, instead of theorem-proving, polynomial equations-solving occupies a
central position throughout the long history of thousands of years of development of Chinese
ancient mathematics. In fact, the above general method of polynomial equations-solving had its
origin in some of our ancient classic due to the scholar Zhu Shijie in Yuan Dynasty (1271-1368
A.D.), see [13]. Of course, there are many defects in Zhu’s work. However, the main lines
of thought and treatment are sound and the above Well-Ordering Principle is just a modified
reformulation of Zhu’s work in applying the modern techniques even terminologies of the works
of J. F. Ritt, see [14, 15]. For more details we refer to various writings of the present author,
notably the book [12].

2 Partial Ordering of Algebrico-Differential Polynomials and Algebrico-
Differential Polynomial Systems"

Let us consider now the case of algebrico-differential polynomials (abbr. ad-pol or simply
d-pol) and such polynomial sets (abbr. ad-polset or simply d-polset} with notations X, zx, y, u;,
DPS, DP,, etc. as in the beginning of Section 1. A d-pol with no y or its partial derivatives

actually occuring in it will be called a trivial d-pol. For each tuple of n non-negative integers

T . . o . . o Hllull
g = (41,12, -, in) let us write |Ju|| for 43 +i3 4 - i, and 9, for the partial derivative Fmmry

We shall arrange all the partial derivatives 8,y of ¥ in the usual lexicographical order of . For
any non-trivial d-pol DP the highest derivative occuring in DP is then called the leading
derivative or simply the lead of DP. If the lead is 8,y, then u is called the class of DP. If
the highest degree of 8,y occuring in DP is d (> 0), then d is called the degree of DP, with
class and degree undefined for trivial d-pols. For non-trivial d-pol D F with class g and degree
d (> 0), we can write DP in the form

DP =% (8,y)* + lower degree terms in 8,y.
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The coefficient I (# 0) of (8,y)? in DP , which is itself either a trivial d-pol or non-trivial d-pol
in partial derivatives of lower ordering than 8,y, is called the initial of DP. The formal partial
derivative of DP with respect to 8,y is called the separant of DP. Clearly the separant is the
same as the initial when degree d of DP is 1, and of the same class but of lower degree than
DPifd>1.

We now introduce a partial ordering among all non-trivial d-pols by first according to
their class and then to their degree, with trivial d-pols in the lowest ordering. The following
proposition is now clear from the very definitions:

Proposition 1 Any sequence of d-pols steadily decreasing in ordering

DPy >~ DPy > - > DP.» ---

is necessarily finite.

For two non-trivial d-pols DP, DQ we say that DQ is reduced with respect to DP if no
proper derivative of the lead of DP occurs in DQ and the lead itself is either not occuring in
D@, or occuring in DQ with a degree less than the degree of DP.

For the introduction of partial ordering among arbitrary d-polsets let us consider first that
of particular d-polsets called ad-ascending sets (abbr. ad-asc-sets or simply d-asc-sets) defined
as follows. A d-polset is called a d-asc-set if it is either consisting of a single trivial d-pol or
a d-polset for which the d-pols are all non-trivial ones and may be arranged in a sequence of
d-pols in increasing ordering such that each one in the sequence is reduced with respect to the
preceding ones. In the case of a single trivial d-pol the corresponding d-asc-set is then called a
trivial d-asc-set.

Consider now two non-trivial d-asc-sets DAS, DBS with d-pols arranged in increasing or-
dering as follows:

DAS: DA, <---<DA,,

DBS: DB; <---<DB;,.

We shall say that DAS is of higher ordering than DBS or DBS is of lower ordering than DAS
if either (a) or (b) below holds true:

(a) There is some k (< min(r, 5)) such that for each i < k, DA; and DB; are incomparable
in ordering while DAy > DBy, as d-pols.

(b) r < 5 and DA;, DB; are incomparable in ordering as d-pols for all ¢ < 7.

It is easy to see that the above definition introduces really a partial ordering among all
d-asc-sets with trivial d-asc-sets considered to be in the lowest ordering. As Proposition 1 we
have also the proposition below for d-asc-sets:

Proposition 2 Any sequence of d-asc-sets steadily decreasing in ordering

DAS, = DASy >~ .- > DAS, > ---

is necessarily finite.

Consider now an arbitrary d-polset DP. Any d-asc-set wholly contained in DFP will be
called an ad-basic-set (abbr. ad-baset or simply d-baset) of DP. We shall introduce now partial
ordering among all d-polsets according to the partial ordering of their d-basets. It is easily seen
that this is unambiguously well-defined independent of d-basets chosen from the d-polsets.

Th¥ above completes the introduction of partial ordering among d-pols and d-polsets. After
this preparation we shall show how to solve arbitrary systems of algebrico-differential equations

in next section. We remark however that the partial ordering in the present section is only one
of many possible ways which will meet our purposes.
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3 (Differential) Characteristic-Set Formation and Solving of Arbitrary
Algebrico-Differential Polynomial Equations

To extend the notion of char-set and the method of solving polynomial equations in the
ordinary case to differential case we need two fundamental procedures of remainder formation
and integrability-condition formation to be described in what follows.

For this purpose let us consider a non-trivial d-asc-set DAS as given below:

DAS : DAy < DAy < --- < DA,. (dA)

With respect to DAS we have then the following theorem due to J. F. Ritt*41% which is
fundamental for the whole theory:

Ritt’s Remainder Theorem  For any non-trivial d-pol DP there are for each a €
{1,--,7} integers s, t, and certain partial derivatives 8;,, and d-pols Cqp, forb € {1,2,++,b,},
such that

DR=S %4 S w I -+ I" x DP =Y " Cap % 0,,, DA, (dR)
a,b
s reduced with respect to DAS, i.e. reduced with respect to each d-pol in DAS.

The above formula (dR) will be called the d-Remainder Formula of DP and the procedure
of getting DR from DP the reduction of DP with respect to DAS.

Consider now a pair of nontrivial d-pols DP,DQ with classes p = (41,42, *,in),V =
(41,J2, -, Jn) respectively. Suppose that neither <y > jx nor jr > ix for all k € {1,2,---,n}.
Such a pair will be called a legal pair with respect to DAS. Now for each k let my =
max(ik,jk), P = Mk — ik, @k = Mp — Ji- Set & = (P1,P2, ., Pn)yM = (1,42, ,qn) and
¢ = (m1,myg, -+, my). Then 8¢ DP and 8,DQ have the same lead 8¢y with degree 1. Let the
initials of ¢ DP and 8,DQ be I¢ and I, respectively. Then the difference 1,,%8; DP —~ I x8,DQ,
after eventually reduction with respect to DAS, will be called the eventually reduced integra-
bility d-pol of the legal pair DP and DQ with respect to the d-asc-set DAS.

With the above notions of d-remainder and integrability d-pol, eventually reduced or not,
with respect to a non-trivial d-asc-set we can now extend our procedures in ordinary polynomial
case as given in scheme (8) of Section 1 to the differential case as shown in the scheme (dS)
below:

DPS = DPS° DPS!? ... . DPS? . DPS™
DBS® DBS! ... DBS! ... DBS™ =DCS (ds)
DRIS® DRIS* ... DRIS® ... DRIS™ =0

DCPS° U DCPS*U---UDCPS'U---U DCPS™ = DCPS.

In the scheme (dS) DPS is the given d-polset. For each i, DBS® is a d-baset of DPS*, and
the set DRIS® is the union of two parts. One is the set of all possible non-zero d-remainders
formed from d-pols in DPS*\ DBS*® with respect to DBS?, while the other is the set of
integrability d-pols formed from all possible legal-pairs of d-pols in DPS?, eventually reduced
with respect to DBS?, so far they contain actually y or its derivatives. On the other hand those
containing no y or its derivatives but containing possibly u; or their derivatives will form a set
of compatibility d-pols for which the vanishing will form compatibility conditions in order that
the given set of equations DPS = 0 will have solutions. In case DRIS® is non-empty, then the
union DPS U DBS*U DRIS? will form the next d-polset DPS !,

As is easily verified, the d-basets DBS® will form a sequence of steadilly decreasing ordering:

DBS® - DBS' > ...~ DBS® » ...

By Proposition 2 this sequence can only be a finite one, to be stopped at a certain stage m
with DRIS™ = §. The corresponding d-baset DBS™ = DCS is then called an ad- or simply
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d-characteristic set (abbr. d-charset) of the given d-polset DPS. The union DCPS of all
sets DCPS*i = 1,2,---,m, will form the totality of all possible compatibility d-pols Whose
vanishing form the compatibility conditions to guarantee the existence of solutions of the partial
differential equations DPS = Q.

For any d-polset DPS and d-pol DG let dZero(DPS) be the set of all possible solu-
tions of the partial differential equations DPS = 0 and dZero(DPS/DG) = dZero(DPS) \
dZero(DG). Then we have from scheme (dS) the following (differential) Well-Ordering Prin-
ciple:

dZero(DPS) = dZero(DCS | DISP)| JdZero (DPS U{DJSP}) , (dW)

in which DISP is the product of all initials and separants of d-pols in DCS, so far the com-
patibility conditions DCPS = 0 are assumed to be verified.

As in the case of ordinary polynomial equations-solving, we deduce by successive applications
of the above (differential) Well-Ordering Principle the following theorem, which is at the basis
of solving arbitrary systems of algebrico-differential polynomial equations:

(Differential) Zero-Decomposition Theorem For any finite d-polset DPS there is
an algorithm which will give in a finite number of steps a finite set of d-asc-sets DCS® with
initial-separant-products DISP?® as well as sets of compatibility d-pols DCPS® such that

dZero(DPS) = | JdZero(DCS* | DISP®), (d7)

so far some compatibility conditions are supposed to be verified.

In order to give formal explicit solutions of the partial differential equations DPS = 0 for
d-polset DPS let us consider first the case of a non-trivial d-asc-set DAS as given by (dA). Let
the classes of DA, in (dA) be ya,a =1,2, -+, 7. Then all partial derivatives of the leads 8,,.y,
proper or improper, will be called principal derivatives, and all the others paramatric ones.

Consider now any set of constants ¢y € C,k = 1,2, --,n, and also constants ¢, € C for each
parametric derivative 8;y. The values z; = c; will give definite values to the known functions
u;,j € J, as well as their derivatives. We suppose that the above values will not render zero
the initial-separant product ISP of DAS. The set of these constant values cg,c, will then be
called an admissible preliminary constant set with respect to the d-asc-set DAS.

With values of such admissible preliminary constants substituted in the equations DA, =
0,a = 1,2,---,7, we can solve for them to get values for the proper principal derivative ¢,
for classes p,. Let us take any set of such values for each p,. By differentiating DA, and
substituting the preliminary values as well as the chosen values of c,,, we get also definite
constant values ¢, for arbitrary improper principle derivatives 8,y. With these constant values
we form now a Formal Taylor Series FT'S of the form below:

cr e
FTS:ZW*I’;I(Ik“Ck) ,

in which 7 runs over all integer-tuples 7 = (t1,t2, -+, t,) with ||7|| = ¢; +ta + - + t,,.

It is easy to verify the following

Formal Taylor Series Theorem = With a given admissible preliminary value set all
possifle solutions of the partial differential equations DAS = 0 for which the initial-separant
product of DAS is non-zero are given by formal Taylor series of above form FTS.

Consider now an arbitrary non-trivial d-polset DPS with a non-trivial d-charset DCS as
given in the scheme (dS). Then for any admissible preliminary value set for the d-asc-set DCS,
for which the corresponding initial-separant product ISP of DCS is not zero, we will get
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totality of solutions of the partial differential equations DPS = 0, so far all compatibility d-
pols in DCPS are rendered zero. We may treat in the same way the d-charsets DCS® in the
(differential) Zero-Decomposition Theorem (dZ) of DPS and get the totality of solutions of
DPS = 0 in the form of Formal Taylor Series, so far the preliminary value set will not render
zero the corresponding initial-separant product I.5P°, while render zero all the d-pols in the
corresponding compatibility d-polset.

Remark that the above is only a special case of our general theory and method which we
refer to the previously cited paper [10]. In fact, in the general theory there may be several
unknown functions y,y2, etc. instead of a single one y. Moreover, the coefficient field may
be an arbitrary differential field with differential operators obeying the usual differential rules.
Furthermore, instead of pairwise determination of integrability d-pols, we may apply the device
of multiplicativity of variables originated by Riquier and Janet to make smaller the number of
pairs of forming the integrability d-pols. However, as the essence of these methods are actually
the same as in the above particular case so we shall not enter into them.

Besides, the relations between the notions of d-charset, d-asc-set, etc. in our procedure and
those of passiveness, prolongations, involutiveness, etc. in the procedures of Riquier, Janet, and
Cartan require some clarification which we shall do in later occasions. Instead we shall show
as an illustration how to solve a particular example by our procedure which will be described
in details in the next section.

It is clear that our general method of algebrico-differential equations-solving will have an
immense variety of applications as in the case of ordinary polynomial equations-solving. In
particular, as in the ordinary case, we have applied our general method of differential equations-
solving to the mechanical proving of differential geometry theorems, and to the automated
determination of explicit form of relations for which only the existence of the relations is known.
We refer these to the author’s papers {16-18] and the paper [19] of S. C. Chou and X. S. Gao as
well as the references in these papers. On the other hand, we shall leave the studies of various
other applications to later occasions. .

4 An Example: Pommaret’s Devil Problem

For the sake of illustration of his formal intrinsic method of treatment of algebraic partial
differential equations, Pommaret had exhibited in details an example, what he called the Devil’s
Problem, in his paper 7], his treatise [9], as well as in various courses or lectures taken place
in France, in Germany, in Beijing, and elsewhere. We shall treat this Devil’'s Problem also in
details by our own method as exhibited in Section 3. For this purpose let us reproduce the
original statement of the Devil’s Problem as well as its final solution from Pommaret’s writings
as given below.

Devil’s Problem Let u,v,y be 3 functions of the cartesian coordinates z!,z?,z* on
euclidean spaces related by the following system of 2 PDE where 833y = B‘:Ziay:;’ ER-
D33y — 2201y —u =0, (D)
agzy —v=0.

(1) If w = v = 0 the space of solutions of the resulting linear system of PDE for y is a
vector spage over the constants. What is its dimension?

(2) Otherwise, what kind of compatibility conditions must be satisfied by © and v in order
to insure the existence of solutions for y?

(3) Does there exist a “general” way to solve such problems?

The final result of Pommaret on this problem may be described as follows:
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The final general solution is furnished by a “Good” Set consisting of 4 “good” algebraic
differential polynomials Gy, -, G4 below:

Gy = 0uny — 2,
Gy = O112y — w,

G
GS = 822y - v ( )
G4 = B33y — %811y — u.

In (G) w and z are given by

1
w = 5(33311 ~ 2200 — a1, 2z = Bsgw — Oy 12u — 2O w.

Pommaret solved the above question (2) in deriving two Compatibility Conditions A =
0, B = 0 with A, B given below:

1

L4 = 8w — oy,
2 s 222 oy : (c0)
B = 03333w — 22%0naw + (2°)?01111w — O11233u + 22011112 — 1w

Pommaret showed further that the two compatibility conditions A = 0, B = 0 are not indepen-
dent of each other. They are in fact connected by the following differential identity

8333314 — 2Z231133A + (1‘2)28111114 - 2(923 =0.

In the case of u = 0,v = 0 so that w = 0,z = 0 too the “good” sets become simply
O111y = B112y = Oy = Oa3y — 22011y = 0. It follows that there remain only 12 derivatives
below which can take arbitrary values, viz.:

Y, 01y, 011y, 8111y, B2y, O12y, 83y, B13y, 0113y, D1113Y, B2y, Or2sy.
As a consequence Pommaret solves the question (1) in giving a vector space of dimension 12
spanned by the above vectors.

Let us now apply our own method to the solving of the Devil’s Problem. For this purpose
let us first change the notations in order to make mainly in accordance with those in Section
2. Thus, instead of z1,z2,2° we shall write x1, 75,23 and instead of 33y for a—x"%’z—s we shall
write da00y, etc., as in Section 2. In this way the system of 2 PDE (D) of the Devil’s Problem
will be DPS = 0 with DPS = {DP;, DP,} in which

DPy = Oa00y — 2 * Ogoay — u,
DPZ = aozoy — V.

As in the scheme (dS) of Section 3, we have then DPS® = DPS = {DP?, DPJ} with
DP} = DP,, DP) = DP;.
The d-baset chosen from DPS® is then DBS® = {DB?, DBY} with
DBY=DP], DB} = DP?
in increaging ordering. There are clearly no d-remainders but there is one integrability d-pol

eventually reduced to be determined from the legal pair (DP?, DPY). To determine it let us
first form

B200DPY — Bono DPY = @3 + Boazy + 2 * Bg12y ~ Daoov + Jozou
= A, say.
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We reduce now A with respect to the d-baset DBS® to get the reduced integrability d-pol
DI?2 =A—z9* aogzDB? = 2% 012y — 2% w,

in which

1
w = _2_(82001) — Ty * 3002‘0 b BOZOU')'

We see that %DI 9, is actually the same as the “good” set Gz and w is actually the same as the
w given by Pommaret but in different way of notations.

As the integrability d-pol DIP, contains actually derivatives of y it will form the set DRIS®
with the corresponding compatibility d-polset DCPS® empty. Hence, in adjoining DI, or

simpler £ + DI}, to DPS® we get the new d-polset DPS' = {DP}, DP}, DP;} with

DP} = DP} = G200y — T2 * Gov2y — U,
DP21 DP20 = aozoy - v,

i

1
DP31 = 5 * DI?Z = 6012y —u.
The d-baset chosen from DPS! is then DBS* = {DB}, DB}, DB} with

DB} = DP;, DB)=DP}, DB} =DP}
in increasing ordering. Again there are no d-remainders but there are 3 legal pairs (DP}, DP}),
(DP},DP}),(DP}, DP}). The first pair has already been considered so there remain only two
new ones to be considered which give two integrability d-pols eventually reduced below:
DI{‘3 = 6200DP31 - 6012DP11 — Ik aOlzDBé
= Booay — 2,
DCP)y = 8010DP} — 8p02DP}
= ~ Jg10w + Boo2v,
in which z is given by
Zz = 820011} — Ty * 80027.1) - 6012’LL.

Tt is readily seen that DI}, is the same as the “good” set “G,” and z is same as that given before,
both by Pommaret in different notations. We see that DI};, containing actually derivatives of
y, is to be a d-pol in DRIS?, while DCPJ;, containing only derivatives in u,v, but not y, is to
form the compatibility d-polset DCPS!. Furthermore the compatibility d-pol DCPJ, is readily
seen to be equal to —1 A, where A is the compatibility d-pol also already given by Pommaret
in different notations.

Adjoin now DI}; to DPS? to get DPS? = {DP?, DP?, DP2, DP?} with

DP? = DP}, DP} = DP;, DP? = DP), DP? = DI),.
The d-baset is then DBS? = {DB?, DB, DB3, DB}} with

DB? = DP? = DI,

DB2 = DP2,
DB? = DP?,
DB = DP?
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in increasing ordering. Again there is no d-remainders but there are 3 new legal pairs to be
considered: (DPZ, DP}), (DPZ, DFP?), (DP}, DPZ) which give 3 compatibility d-pols DCP},,
DCP},, DCPZ as given below:

DCP124 = 3200DP42 - 3004DP12 — T2 ¥ aoogDB%
= — O2002 + 2 * Dgo2z + Boosy,
DCPZ, = 8yp0DP? — 804 DP}
= ~ 80202 + Goo4v,
DCPZ, = 8010DP2 — 8902 DP}
= — Op102 + Foo2w.

As DRIS? = 0, the procedure ends at the stage m = 2 so that the scheme (dS) in the present
case becomes (dS)’ below:

DPS = DPS° DpSs? DPS?
DBS® DBS! DBS? =DCS
DRIS® DRIS' DRIS®> =0
DCPS® U DCPS' U DCPS? = DCPS.

(dsy’

Remark that DCS here is the same as the “good set” {G1, G2, G3,G4} given by Pommaret,
while the compatibility d-polset here is given by

DCPS = DCPS°uDCPS' U DCPS?, with
DCPSO = p,

DCPS' = {DCPL},

DCPS?* = {DCP%,DCPZ, DCPZ}.

The compatibility d-pols in DCPS are not independent of each other. To determine their
interrelations let us first turn these d-pols to be in v and u by means of the expressions of w and
z in v and u. Let us consider now these DCP’s as d-pols in v as unknown function while u as
known function in X = {z1,z3,23}. Then the leads in v of the d-pols DCP);, DCP%, DCP},,
DCP}, are seen to be respectively 0210v, Jgo0v, Dazov, Bq10v. Let us treat now DCPS as a d-
polset in v as we have treated DPS as a d-polset in y by means of our general method. The
d-baset is then seen to be consisting of the-two d-pols DC P, DCP}, with leads 8210v, s00v-
It is readily found that the d-remainders of DG P%,, DC PZ, with respect to the d-baset are both
zero with corresponding d-remainder formula given below:

DCP224 = 6210DCP213 — Ig * 3012DCP213,
DCP:;Zq = agooDCPZIS — T2 * 3002DCP213.

On the other hand there is only one legal pair (DCP3;, DCPY) for which the integrability
d-pol after reduction with respect to the d-baset is found to be zero with the corresponding
interrelation given below:

8010DCP?, — 0400DCPly + 2% x5 % 8200 DCPyy — T3+ 9904 DCPy3 = 0.

It follows that the procedure ends at the stage rn = 1 with the d-charset consisting of the two
d-pols DCP},, DCP},. 1t is also easily verified that these two d-pols are respectively equal to
—A/2 and —B of Pommaret, and the interrelations between DCPj,, DCPZ, are the same as
that between the two compatibility d-pols A, B given by Pommaret, only in different notations.

We see that Pommaret’s results are completé for the Devil Problem and our results too,
though by different ways of treatments. Remark that Pommaret uses a method with quite in-
volved logical reasonings and modern techniques in applying exact sequences, diagram-chasing,
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etc. On the other hand our method is highly computational with little mental efforts, and the
computations are almost straightforward.
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On the Construction of Groebner Basis of
a Polynomial Ideal Based on Riquier—Janet
Theory

Wenjun Wu (Wen-tsiin Wu)

Abstract. As a consequence of a previous study of algebraic differential geom-
etry ([see WU1]) there may be associated to certain special kinds of differential
ideals some well-behaved basis enjoying some well-behaved properties. If the
differential ideals are further specialized so that they correspond to ordinary
polynomial ideals then such a well-behaved basis will become the usual Groeb-
ner basis of the polynomial ideals while the latter is not known for differential
ideals.

Mathematics Subject Classification (2000). Primary 13P10; Secondary 13N10.

Keywords. Polynomial ideal, differential ideal, well-behaved basis, Groebner
basis.

0. Introduction

Riquier and Janet have created a theory of PDE which has been further developed
by Ritt and Thomas and is closely related to the corresponding theory of E. Cartan.
Based on such a theory the author has shown in a previous paper [WU1] how to
construct a d-char-set DCS of a d-polset DPS for which their d-zero-sets are closely
connected according to the following decomposition formula:

d-Zero(DPS) = d-Zero(DCS/J) + SUM; d-Zero(DPS;).
In the formula J is the product of all initials and separants of the d-pols in DCS,
and DPS; are the enlarged d-polsets of DPS in adjoining to it one of such initials

The present paper is partially supported by NSFC Grant JI85312. It is reprinted, with permission
and with minor editorial changes, from Systems Science and Mathematical Sciences 4/3 (1991):
193-207, originally received on September 4, 1990.
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or separants. In the particular case for which all these initials and separants are
non-zero constants in the basic d-field, the above formula becomes simply

d-Zero(DPS) = d-Zero(DCS).

Moreover, denoting the differential ideal with DPS as a basis by d-Ideal(DPS), we
see from the construction of DCS and theorems proved in that paper that DCS is
also a basis of this ideal, or

d-Ideal(DPS) = d-Ideal(DCS).

Furthermore, this basis DCS possesses the following well-behaved property:
A d-pol DP will belong to the differential ideal d-Ideal(DPS) if and only if
the d-remainder of DP w.r.t. the basis DCS is (:

d-Remdr(DP/DCS) = 0.

For this reason we shall call the corresponding d-char-set DCS, in the above
particular case, a well-behaved basis of the differential ideal d-Ideal(DPS) with
DPS as a given basis.

Let us consider now the further specialized d-polset DPS with the following
restrictions:

1. The basic d-field is one with trivial differentiations so that it is just an
ordinary field of characteristic 0.

2. The independent variables are still Xy,...,X,, while there is only one
dependent Y.

3. Each d-pol DP in the d-polset DPS is of the form
DP = SUMtCt * ]:)ER,tYV7

in which ¢t runs over a finite set of n-tuples of nonnegative integers and C; are
non-zero constants in the basic field.

‘We are thus in the situation of a system DPS = 0 of linear PDE with constant
coefficients. Now to each partial derivative DER;Y we may make a corresponding
monomial X! = X;* .- % X¢ in which (i1,...,4,) is the n-tuple . Under the
correspondence the d-pols will then be turned into ordinary pols in Xy,..., X,
with coefficients in an ordinary field of characteristic 0. The above theory will
then give a well-behaved basis of an ordinary polset PS. It turns out that this well-
behaved basis is, in the present non-differential case, just the usual Groebner basis
of the corresponding polynomial ideal Ideal(PS). This offers thus an alternative
method of constructing a Groebner basis of a polynomial ideal different from that
of Buchberger.

In the present paper we shall consider the last case of ordinary polsets alone.
Our exposition will be so given that it is independent of the Riquier-Janet theory
and the previous paper [WU1], though it will follow closely the steps exhibited in
that paper. In studying the properties of the well-behaved basis of a polynomial
ideal introduced in this way it will follow that this basis is just the Groebner
basis of that ideal. We prove now several well-known beautiful properties of the

438



Construction of Groebner Basis 347

Groebner basis in a way along the line of the thoughts of the previous paper based
on Riquier-Janet theory. The proofs are thus somewhat different from the known
ones scattered in the literature. These proofs may in fact be carried over to the
differential case as stated above for the well-behaved basis, while the Groebner
basis is undefined in that case. We remark in passing that our theory will give a
unique expression for an arbitrary pol w.r.t. such a basis of a polynomial ideal,
while for the usual theory of the Groebner basis such an expression is unique
only modulo the basis in some way. Finally, we give a concrete example for which
the Groebner basis is determined by the present method in using the REDUCE
implemented in our machine SUN3/140. Further examples are yet to be studied
and a complexity study of the present method is required.

1. Tuples of Integers

Let n be a positive integer fixed throughout the present paper.
DEF. An ordered sequence of n non-negative integers
t=(I1,...,1n)
is called an n-tuple or simply a tuple. I; is then called the i-th coordinate of ¢, to
be denoted by
COOR;(t) = L.
DEF. The particular tuple with all coordinates = 0 will be called the 0-tuple, to
be denoted as 0.
Notation. For any tuple u and any integer ¢ > 1 and < n, the tuple v’ with
COOR;(u") = COOR,;(u) + 1,
COOR;(u') = COOR;(u), j#1,
will be denoted by ui or iu.
DEF. For any two tuples u and v, we say u is a multiple of v or v is a divisor of
u, if
COOR;(u) > COOR;(v), i=1,...,n.
We write then
u>>v or v u.
DEF. For any two tuples u and v, their product uv = vu is the tuple with

COOR; (uv) = COOR,(u) + COOR;(v), i=1,...,n.
We introduce now an ordering among all the n-tuples according to the fol-
lowing
DEF. For any two tuples u and v we say that u is higher than v or v is lower than
u if there is some k£ > 0 and < n such that
COORk(u) > COOR(v).
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‘We write then
u>v or v<u.

DEF. A set of tuples T is said to be autoreduced if no t in T is a multiple of anther
tinT.

The following two lemimas are already known or easily deduced from known
results.
Lemma 1. Any sequence of tuples steadily decreasing in order is finite.
Lemma 2. Any autoreduced set of tuples is finite.

DEF. For any finite set of tuples T', the mazimum of T', to be denoted by Max(T'),
is the tuple defined by

Max(T) = n-tuple MAX;(T),...,MAX,(T)), with
MAX;(T) = Max{COOR;(t)/ t € T}.

DEF. For any finite set of tuples T', the completion of T, to be denoted by Comp(T),
is the set of tuples defined by

Comp(T') = {u/ u < Max(T) and u > ¢ for some t in T'}.

DEF. For any finite set of tuples T and any tuple t <« Max(7), the integer
i(> 1, <n) is called a multiplier of t w.r.t. T if

COOR;(t) = MAX(T).

Otherwise i is called a non-multiplier of t w.r.t. T. In that case we have
COOR,(t) < MAX,(T).

Notation. For any finite set of tuples T' and any tuple ¢t < Max(T), we shall set

Mult(t/T) = set of all multipliers of ¢ w.r.t. T,
Nult(¢/T) = set of all non-multipliers of ¢ w.r.t. T.

DEF. For t <« Max(T), the set of all multiples tu of ¢ with
COOR;(w) =0 for ¢ in Nult(¢/T")
is called the total multiple set of t w.r.t. T, to be denoted by
TMU(t/T) = {tu/ COOR;(u) = 0 for ¢ in Nult(t/T)}.

Lemma 3. Let T be a finite set of tuples. For any tuple v there is a unique tuple
t « Max(T) such that v is in TMU(¢/T). Moreover, if v is a multiple of some
tuple in T', then ¢ is in Comp(T).

Proof. t is determined as COOR;(¢) = Min(COOR;(v), MAX;(T)). O

Tuple-decomposition Theorem. For any finite tuple set T the totality of tuples each
of which is a multiple of some tuple in T is the disjoint union of sets TMU(¢/T)
with t running over Comp(T).

Proof. This follows directly from Lemma 3. a

440



Construction of Groebner Basis 349

We shall now introduce an ordering in the totality of autoreduced sets as
follows.

Let us consider any two autoreduced sets AS and AS with tuples arranged
in increasing order:

(AS): ti<ta< - <t

(ASY : 1) <th < - - <t
DEF. The autoreduced set (AS) is said to be higher than the autoreduced set
(ASY, or (ASY lower than (AS), if either of the two following cases holds true:

(a) There is some k& < r and < s such that
t; = t, for i <k, while tx >t}
(b)r<sandt;, =t, for 1 <r.
In notation, we shall set then
(AS) > (AS)!, or (AS) < (AS).
Lemma 4. Any sequence of autoreduced sets steadily decreasing in order is finite.

Proof. Let the sequence be
(S) A81>ASZ>"-

and suppose the contrary that it is infinite. For each autoreduced set AS; let its tu-
ples be arranged in increasing order. By Lemma 1 the sequence asi1,as21,. .., as;1,
... of which as;, is the first tuple of AS; should consist of the same tuple, say ¢;,
from a certain stage onwards. Denote the corresponding infinite sequence of au-
toreduced sets from that stage onwards by

(Sl) AS;1 > A8, > -

Again by Lemma 1 the sequence of second tuples in ASy;, should consist of the
same tuple, say t2, from a certain stage onwards. Denote the corresponding infinite
sequence of autoreduced sets from that stage onwards by

(52) : AS21 > A822 >
The above reasoning can be repeated indefinitely so that we get an infinite sequence
of tuples
(TY: tg <ta<---,
which is clearly an autoreduced set. This contradicts however Lemma 2 and hence
(S) is finite. O
From the very definition of the ordering we have also

Lemma 5. Let T' be an autoreduced set and u be a tuple which is not a multiple
of any tuple in T. Let T' be the autoreduced set obtained by adjoining u to T and
then removing all tuples in T which are multiples of u. Then T' is of lower order
than T'.

441



350 Wu

2. Well-Arranged Basis of a Polynomial Ideal

Henceforth throughout the paper there will be fixed an integer n, a set of variables
X1,...,Xn, and a field K of characteristic 0. By a pol will then be meant, unless
otherwise stated, a polynomial in K[X1,...,X,].

By a monom is meant a power-product in X; of the form

t__ oyt ij i
X —Xn"*---*Xj * ook X1

in which the tuple t = (41,...,%,) will be called the degree-tuple of the monom
X*. Any non-zero pol P can then be written in the unique normal form

P=A+ XU + Apx X2 ...+ A x Xt
with A; non-zero in K, and the degree-tuples t; in decreasing order, viz.
t1 >t > > 1,

We call A} x X%, X% A, and t; resp. the leading term, the leading monom, the
leading coefficient, and the leading degree-tuple, to be denoted resp. by

Lterm(P), Lmonom(P), Leoef(P), and Ldeg(P).

DEF. For two non-zero pols P, and P, P; is said to be higher than, lower than, or
incomparable to P according as whether the leading degree-tuple of P, is higher
than, lower than, or identical to that of P». In notation, we shall write resp.

Py > Py, P < Py, and P; <> P;.

DEF. For a finite polset PS of non-zero pols the set of leading degree-tuples of
pols in PS will be called the degree-tuple-set of PS to be denoted by DTS(PS).

DEF. A finite polset PS of non-zero pols is said to be autoreduced if its degree-
tuple-set is autoreduced.

DEF. Let AS be an autoreduced polset of non-zero pols and T' = DTS(AS) be
its degree-tuple-set. A non-zero pol P is said to be reduced w.r.t. AS if for each
term in P, the corresponding degree-tuple is not a multiple of any tuple in T. The
autoreduced AS itself is said to be reduced if each pol of AS is reduced w.r.t. the
autoreduced polset formed from AS by removing that pol.

For any autoreduced polset AS consisting of non-zero pols F; there may be
different ways of putting P into a form

P = SUME;  F; + R, (2.1)

in which E;, R are pols and R, if not zero, is reduced w.r.t. AS. We shall now
proceed in the following way to get a unique R from P as follows. Write P in
the normal form. Let ¢ * X, ¢ in K, be the non-zero term in P, if it exists, such
that ¢ is of highest order with ¢ a multiple of some tuple w in T, u being chosen
to be the highest one in T. Write ¢ = uv and let the pol in AS having u as its
leading-degree-tuple be

Fi=axX"+ FZ-/,
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with a * X™ as its leading term, a # 0 being in K. Set
P, =P/c— X"« F;/a.

Then P, is such a pol that the term of highest order in P; having its degree-tuple
t; as a multiple of some tuple in T, if it exists, is of lower order than ¢t above. We
can then apply the same procedure to P; as above to get a pol P,. The procedure
can be continued until we get a pol P, which is reduced w.r.t. AS. This pol P, will
then be the R required.

DEF. The unique pol R reduced w.r.t. the given autoreduced set AS got from P
in the above manner will be called the rest of P w.r.t. AS, to be denoted by

R = Rest(P/AS).

DEF. The autoreduced polset AS is said to be higher than the autoreduced polset
AS', or AS lower than AS if

T = DTS(AS) > T' = DTS(AS).

Given an arbitrary finite polset PS of non-zero pols let us form now a scheme
(SA) below:

PS=PS, PS, --- PS.
ASy AS, --- AS, (SA)
RS() R51 T RS-,« = Empty.

The scheme is formed in the following manner:

For each ¢ AS; is an autoreduced polset with pols chosen from PS; such that
the degree-tuple of any remaining pol in PS; is a multiple of the degree-tuple of
some pol in AS;. Each RS; is then the polset of all non-zero rests, if it exists, of
the pols in PS; — AS; w.r.t. AS;. The polset PS;; is just the union of the previous
ASZ and RSz

From the construction we see by Lemma 5 of Sect. 1 that the autoreduced
sets AS; are steadily decreasing in order:

ASyg > AS1 > .

By Lemma 4 of Sect. 1 the sequence is finite so that the procedure has to stop
at a certain stage with its corresponding rest-set RS, = Empty as shown in the
diagram (SA).

Theorem 1. The final autoreduced polset AS, in the scheme (SA) forms a basis for
the ideal Ideal(PS) with PS as a basis. In other words,

Ideal(PS) = Ideal(AS,).
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Proof. Let ASy consist of pols P; and the other pols in PSq be @, so that Ideal(PS)
has a basis consisting of pols P; and @Q;. Let R; = Rest(Q,;/ASo). Then by defini-
tion of rest, it is clear that the ideal Ideal(PSp) has also a basis consisting of pols
P; and those R; which are non-zero, or

Ideal(PS) = Ideal(PSy) = Ideal(ASy + RSp) = Ideal(PS1).
In the same way we have
Ideal(PS;) = Ideal(PSy) = - - - = Ideal(PS;).
Hence Ideal(PS) = Ideal(PS,) = Ideal(AS,) as to be proved. O

DEF. The final autoreduced polset AS,. in the scheme (SA) will be called a well-
arranged basis of the ideal Ideal(PS).

3. Well-Behaved Basis of a Polynomial Ideal

Let AS be an autoreduced polset with degree-tuple set T. For any tuple u in
Comp(T) let u = tv with ¢ the highest tuple in T which is a divisor of u. Let F} be
the pol in AS with ¢ as its degree-tuple and let us set H, = X" * F;. In particular,
if u is itself in T, then v = ¢ and v is the 0-tuple so that H, is just the pol F} of
AS.

DEF. The pol H, defined above will be called the completed pol of AS relative to
u. The polset consisting of all such completed pols will be called the completed
polset of AS.

DEF. A product of the form M xH, in which H, is the completed pol of AS relative
to u in Comp(T’), and M a monom X* for which each ¢ with COOR,;(w) #0is a
multiplier of u will be called an M-product of AS.

DEF. A finite linear combination of M-products of AS with coefficients in K will
be called an M-pol of AS.

Theorem 2. Any pol P can be written uniguely in the form
P=MP+ N, (3.1)
in which MP is an M-pol of AS and N is reduced w.r.t. AS.

Proof. Suppose that P is not reduced w.r.t. AS. Then in P there will be a term
a x X* of highest order with u a multiple of some tuple in T, a # 0 being in K.
By Lemma 3 of Sect. 1 there is a unique ¢ in Comp(T") with u=vt such that each ¢
with COOR;(v) # 0 is a multiplier of ¢. Let Hy be the completed pol of AS relative
to t with leading term Lterm(H;) = b* X?*. Set

P1 ‘:P/CL—XU*Ht/b,

or
P=Cl*MP1+b1*P1, (clza/b,blza)
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with MP; = XV x H, an M-product. If P; is not reduced w.r.t. AS, then there
will be a term a; * X"t of highest order in P, with u; a multiple of some tuple
in T and u; is of lower order than u. Apply now the preceding procedure to P;
and we get a pol P, so that Py = ¢g * MPy + by x P5, with by, ¢y in K and MPy
an M-product of lower order than MP;. The procedure can be continued to get
pols Py, etc. until we arrive at some pol P, which is reduced w.r.t. AS. We may
then write P in the form (3.1) with MP an M-pol and N = b, x P, reduced w.r.t.
AS as required. That the decomposition of form (3.1) is unique follows also easily
from Lemma 3 of Sect. 1. O

DEF. The pols MP and N in (3.1) will be called resp. the M -part and the N -part
of the pol P w.r.t. AS.

Consider now any u in Comp(7T) with corresponding completed pol H, and
any non-multiplier ¢ of 4. Then ui = v is also in Comp(T) and the decomposition
of X, = H, into the M- and N-parts can be put in the form

Xi*Hu :a*HU—f—MPui—f—Nui, (32)

in which a # 0 is in K, MP,; is an M-pol with each M-product in it of lower order
than H, or X; x H,, and N,; is the N-part of X; x H,. Note that N,; is reduced
w.r.t. AS. Owing to its importance we shall lay down the following

DEF. The N-part Ny; of pol X;x H,, in (3.2) will be called the N-pol of AS relative
to the tuple u in Comp(7T) and the non-multiplier ¢ of .

Consider now a finite polset PS and let us form the scheme (SB) below:

PS=PSy, PS; --- PS;
WS, WS; --- WS, (SB)
NSO NSl e NSS = Empty‘

The scheme is formed in the following way:

For each i WS; is a well-arranged basis of the ideal Ideal(PS;), determined
from PS; as in Sect. 2 with scheme (SA) applied to PS;, and NS; is the set of all
non-zero N-pols of WS;, if it exists. Finally, the polset PS;,; is the union of the
preceding sets WS; and NS;, or

As in the case of scheme (SA), the sequence of autoreduced sets WS; is steadily
decreasing in order so that the above procedure will end in a certain stage with
corresponding NS; = Empty as shown in the diagram (SB).

Theorem 3. The final polset WS, in the scheme (SB) is a basis of the ideal
Ideal(PS), or

Ideal(PS) = Ideal(WS;).
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Proof. By Theorem 1 of Sect. 2 we have Ideal(PSy) = Ideal( WSp). Now each pol
N in NSy is the N-part of some pol X; x H,, with H, the completed pol of WS
relative to the tuple u in Comp(Ty) where Tj is the degree-tuple-set of WS and
i a non-multiplier of u so that X; * H, = MP + N with MP an M-pol of WS,.
As both H, and MP are clearly pols in the ideal Ideal(WSy), the same is for V.
Hence

Ideal(PS,) = Ideal(WSy) = Ideal( WSy + NSg) = Ideal(PS1).
Proceeding further in the same way we get then successively
Ideal(PS) = Ideal(PS;) = - - - = Ideal(PS;,) = Ideal(WS;,),
as to be proved. O

DEF. The final autoreduced polset WS, in the scheme (SB) will be called a well-
behaved basis of the ideal Ideal(PS).

In the next section it will be shown that the notion of well-behaved set
coincides with the usual notion of Groebner basis.

4. Identification of Well-Behaved Basis with Groebner Basis

Consider any ideal ID for which the well-behaved basis, say WB, has been deter-
mined as in Sect. 3 so that ID = Ideal(WB).

Theorem 4. Any pol in the ideal ID is an M -pol of its well-behaved basis WB, or
the N-part of any such pol is 0.

Proof. Let T be the degree-tuple set of WB. For any u in Comp(T’) let H, be the
corresponding completed pol. It is enough to prove that any product of the form
M x H,, with M a monom and v in Comp(T') is an M-pol. We shall prove this by
induction on the order of M x H,, as well as on the number of X’s in the monom
M as follows.

If each 7 for which X; appears in the monom M is a multiplier of u, then
M x H, is already an M-pol and nothing is to be proved. Suppose therefore M =
M’ x X; with i a non-multiplier of u. As WB is the well-behaved basis of the ideal,
the N-pol relative to u and ¢ is 0 so that (3.2) of Sect. 3 may be written as

X; % Hy = a + Hy + MP, (4.1)

in which v = w4, and MP is an M-pol of lower order than H, or X; x H,. It
follows that M x H, = ax M’ x H, + M’ * MP, of which M’ * MP is of lower order
than M * H, and M’ has a smaller number of X’s than M. By induction M’ * H,
and each term in M’ x MP are M-pols and so is M x H,. The theorem is thus
proved. 0

Theorem 5. The rest of any pol P w.r.t. the well-behaved basis WB coincides with
the N-part of P w.r.t. WB.
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Proof. The rest is determined as the pol R in P = SUM,Cy * Wy, + R, in which
Wy, are the pols in WB, Cj, are pols too, and R is reduced w.r.t. WB. By Theorem
4 SUMCy, x Wy, is an M-pol so that R is the N-part of P, as to be proved. [

From Theorems 4 and 5 we get the following

Theorem 6. A pol P belongs to an ideal ID if and only if its rest w.r.t. the well-
behaved basis WB of ID 1s 0:

P e ID <= Rest(P/WB) =0.
The previous results may be further put into a strengthened form as follows.

Theorem 7. A well-behaved basis WB with degree-tuple-set T of an ideal ID pos-
sesses the following well-behaved property:

Any pol P in K[Xy,...X,] has a unique expression
P =SUMya, * My, x H, + N, (4.2)

in which H, are completed H-pols with u running over the completion Comp(T)
of T, M, are monoms in these X; with each i a multiplier of u, a,, are constants
in K, and N is reduced w.r.t. WB. Moreover, P is in the ideal ID if and only if
N =0.

From the unique expression (4.2) for any pol in ID w.r.t. WB we get imme-
diately the following theorem due to Macaulay, cf. [M]:

Theorem 8. The Hilbert function of an ideal is completely determined by the degree-
tuple-set of a well-behaved basis of the ideal.

Theorem 9. Let the well-behaved basis WB of an ideal ID consist of the pols
Wy, ..., W,. For any completed pol H, of WB and any non-multiplier i of WB
w.r.t. u let us rewrite (4.1) in the form

Then the sets Syi = (Suil,- .., Suir) form a basis of the linear space of possible
solutions (Sy,...,S;) in pols for the syzygy equation

Proof. Consider any solution of equation (4.4) in pols S;. Denote the left-hand
side of (4.4) by S. Then S is a pol belonging to the ideal ID with a well-behaved
basis WB. From the proof of Theorem 4 we see that § can be shown to be 0 by
successive reductions in the form of (4.1) or (4.3). Hence S = 0 is a consequence of
equations (4.3) or S is a linear combination of S,; with pols as coefficients, as to
be proved. We remark only that the solutions S,,; are not necessarily independent
ones.

If the ideal ID is given a basis F1, ... F,,, then each F; is a linear combination
with pol-coefficients of W; in the well-behaved basis WB and vice versa, which
can be explicitly determined by means of the constructions in schemes (SA) and
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(SB). Hence the above will furnish a method of deriving a basis of the solutions
(S1, ... Sm) of the syzygy equation

SUMkSk * Fk =0. D

Theorem 10. The reduced well-behaved basis WB of an ideal ID = Ideal(PS) with
polset PS as a basis is uniquely determined up to constant multiples by the following
two properties:

(a) WB is a reduced autoreduced basis of ID.

(b) Let T be the degree-tuple-set of WB. Then for any tuple v in Comp(T)
with completed pol Hyand any non-multiplier © of WB w.r.t. u, the N-part of

Proof. We have shown how to determine from PS by schemes (SA) and (SB), by a
further reduction if necessary, a well-behaved basis WB of ID verifying properties
(a) and (b). From the proofs of Theorems 5 and 6 we see that there will follow also
the following property (c).

(c) The rest of any pol P in the ideal ID w.r.t. WB is 0.

Consider now any polset WB’ verifying the analogous properties (a)’, (b)’
and hence also {(c¢)’. There is no loss of generality in assuming that all the pols in
WB and WB' have been normalized to have their leading coefficients = 1. We are
to prove that WB’' coincides with WB.

To see this let us arrange the pols in WB and WB' both in decreasing order,
viz.

(WB): Wi>We>..>W,,

(WBY : W{>Wj>- - >W.
By (¢) we have Rest(W{/WB) = 0 and by the corresponding rest formula we see
that the leading degree-tuple of W{ should be a multiple of the leading-degree-
tuple of some pol in WB , say W;. In the same way, by (¢)’ the leading-degree-tuple
of W; should be a multiple of the leading-degree-tuple of some W]’ of WB'. As WHB'
is autoreduced it will only be possible that W} coincides with W{. Then W] will
have the same leading-monom as W;. Applying the same reasoning to W, we see
that W; should have the same leading monom as some W, of WB'. This is only
possible when W; = W1, W, = W] and W1, W] have the same leading-monoms.

Applying now the same reasoning to Wa and W4 we see that they should
have the same leading monoms. Continuing we see then WB and WB’ should have
the same number of pols or r = s and each pair W; and W/ should have the same
leading monoms.

Consider now the last two pols W, and W/ in WB and WB'. As W/ has the
same leading monom as W,. and W/ has rest 0 w.r.t. WB we see that W/ should
be identical to W... Let us consider the pair W,_; and W/_,. As the rest of W/_,
w.r.t. WB is 0 we should have an identity of the form

7{—1 = WT‘—l + Mra
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in which M, is an M-pol constructed from W,. Now W/_; and W,_; have the
same leading monoms and no other monoms in W/_; and W,._; can be multiples of
the leading monom of W,.. It follows from the Tuple Decomposition Theorem that
this will be possible only when M, = 0 or W/_; is identical to W, _;. Applying
now the same reasoning to the other pairs of pols in WB and WB' successively in
the reverse order we see that all the pairs should be identical to each other. The
theorem is thus proved. O

Consider now an ideal ID with a reduced well-behaved basis WB. For m <
n let ID' be the ideal of all pols in ID in Xq,...,X,, alone. Let WB' be the
autoreduced polset consisting of such pols in WB in X,..., X,, alone too. Then
we have the following,.

Theorem 11. Let WB be a reduced well-behaved basis of an ideal
ID C K{X,,..., X5
Then the autoreduced polset
WB' = WBNK[X1,...,Xm)
is a reduced well-behaved basis of the ideal
ID =IDNK[X1,...,Xm]

Proof. Let T be the degree-tuple-set of WB and T’ that of WB’. Consider now
any pol P in ID'. Let us consider P as a pol in ID and write it in the form (4.2).
By Theorem 6 we have N = 0. By the Tuple Decomposition Theorem we see
that in (4.2) for each term in H, we should have COORy(u) = 0 for k¥ > m. Let
Max'(T') be the m-tuple got from Max(T) by deleting the last n —m coordinates.
It is clear that Max(T”) < Max'(T). It follows that for each H, in (4.2) for which
COORk(u) = 0 for k > m, each 7 with X; occurring in M, which is a multiplier
of u w.r.t. WB should also be a multiplier u w.r.t. WB’. Hence the N-part of P,
considered as a pol in ID', is 0 too w.r.t. WB'. This implies in particular property
(b) in Theorem 10 corresponding to WB' of ID'. By Theorem 10 again WB' is
thus a reduced well-behaved basis of the ideal ID'. This completes the proof of the
theorem. O

Finally, in comparing with the usual definition of Groebner basis of a poly-
nomial ideal we see readily from Theorem 6 the following.

Theorem 12. Any well-behaved basis of a polynomial ideal ID is a Groebner basis
of ID. If the well-behaved basis is reduced and the leading coefficient of each pol in
the basis is normalized to 1, then the basis is coincident with the reduced Groebner
basis of ID.

The well-behaved basis of a polynomial ideal, being nothing else but the
usual Groebner basis of ID, will enjoy the various already well-known properties
of Groebner basis. Some of such properties have been restated and reproved in the
form of well-behaved basis as given above. The treatments and proofs are however
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done along the line of the thoughts of previous sections, giving thus alternative
proofs of these known theorems about Groebner basis different from the known
ones. Moreover, the proofs are given in order that they may be readily transferred
to the differential case as described in the Introduction for which the corresponding
notion of Groebner basis is non-existent. Furthermore, the above treatment shows
that any pol in K[X3,...,X,,] will have a unique expression w.r.t. a well-behaved
basis, i.e. & Groebner basis, of a polynomial ideal in the form of equation (4.2),
which is a property more precise than the corresponding known one for a Groebner
basis under the usual known treatment.

5. An Example

The schemes (SB) and (SA) in the previous sections give an algorithm for the
determination of a well-behaved basis, i.e. a Groebner basis of an ideal Ideal(PS)
with a given basis PS. As an illustrative example (Problem 9(b) in [CG]) let us
consider the following polset PS = {P;, P, Ps} with

Pl=X?24+Y+«Z+DxX+1,
Po=Y24+Z+X+ExY +1,
Pa=Z24+X*«Y+F+Z4+1.

Introduce now an ordering among the various indeterminates by
Z>Y>X>D>FE>F.
This amounts to equating these indeterminates to X; such that X; > X; if and

only if 1 > j. We shall retain however the usual notations of Z, etc. as it will not
cause misunderstandings.

According to the scheme (SB) we form first the well-behaved set (in decreas-
ing order) WSy consisting of Wy, Wa, W3 with

Wi=P, We=PFP, W3;=P~.
The leading-degree-tuple set of WSy is
T = {(07 07 2)) (07 ]-7 1)7 (1) 0; 1)}

so that Max(T) = (1,1,2). The completed H-pols arranged in descending order
are thus 7 in number, viz.

}:11:Y=0<)(.’*VV17 H2:Y*W1, HgZX*Wl,
Hy=W,, H;=Xx*xW,;, Hg=W, Hr=W;
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Let the N-part of an H-pol H w.r.t. a non-multiplier ¢ be denoted by N(H/X;).
Most of the N-parts may be directly seen to be 0 by definition and the only non-
zero N-parts are readily found to be the following ones:

N1 = —-N(H;5/2)
—Z*H5+H1—F*H5+X2*H7+D*X*H7+H7
=2%Y2x X2+ Y?xX*xD+Y? 4+ Y« X?*xE+Y+«X*D+E
+Y* X +Y*E—-X3«F-X?«D«F+X>+X*xD—X«F+1,
Ny = N(Hg/2)
=ZxHg— Hy+FxHg— X *H;— D x Hy
=Z-2xY?+xX -Y*«xD-Y*«XsxE-YxD+xE-Y
+X*+«F+X*«xD+«F—-X-D+F,

Il

il

N3 = N(H:/Y)
=Y x H; — Hs
=Y3+Y?xE+Y - X*-X%«xD-X,
Ny = N(H,/Z)

=ZxHy—H3~Y «Hg — Ex Hg+ F x Hy
=Z4+Y?+F-2+xY X2 ~Y*«X+«D+Y+E+F-Y
—X’«E-X*xDxE-X-E+F

The polset PS; = WSy + NSy thus consists of 7 pols, W; and N;. We proceed to
form a well-arranged basis WS; of Ideal(PS;) according to scheme (SA) in starting
from QS, = PS;, viz.

QS QS; ... QS,,

AS, AS, ... AS,,

RSy, RSy ... RS,

It is found that for 7 = 6 the polset QSg consists of 4 pols Q; below:

QL =Z+4Y?+«F—-2xY+«X?’-Y*X*D+Y*«ExF—-Y —X?>xE
~X*xD+xFE—-X—-FE+F,

Q=Y?+«DxF+Y?4xF242xY%4+...|

Q3:Y*X2*G3+-~-,

Qs=Y*xX*xGyg+---,

in which G35, G4 are pols in D, E, and F alone. The number of the terms of @3
and Q4 are resp. 90 and 314 and @, is non-factorizable. To make computations
not too complicated we shall consider the special case of F' = E which will not
influence the computations already done. It turns out that in this case of F = E
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the pols @; will be simplified to the following ones:

Qi =Z+Y*+xE—-2+xY*« X Y« X*xD+Y+«E*-Y - X?%E
~X*DxE—X,

Qo=Y?+«D+E+Y25xE24+2xY244xY*X?>4+2+xY x»X?>%D
2% Y+ X?+E—-Y+«XsD+E—-Y+«X«xE>+2+Y %X
+Y«D+xE2 + Y« E3 424 Y« E+24 X2« FE+2+« X2+« D+ E
2% X2%«E?4+2%xX? 2+« X*D*E*+ D+« E—~ E? 12,

Qs = I+ Iy,

Q4 = F1 x F3.

The pols @3 and Q4 split into factors F; with
Fi=2+X24+X*xD-XxE+2,
Fp=Y*DxFE-Y+*E?—2+X%-3xX%2+«D-X«xD*- X —E,
F3=2xX*+3xX3xD+2x X3+ E+X%+D*+2+ X%« DxE

+X?2%E?4+ X2+ X«D+xE*+2%x X xE+ E%

The polset QS is now already an autoreduced one and may be taken as the
corresponding well-arranged set ASg. Let us denote the completed H-pols by

Hyj=X'+Y7%Q1, i<6,5<2,
Hy=X'xQz, i<6,
Hy = X'xQ3, <4,

Hy = Qq.
The variables corresponding to the non-multipliers are then resp. at most
XY for Hyj,
X,Z for Hg,
X,Y,Z for Hs;,
Y,Z for Hy.

To determine the N-pols let us consider first N(Hzo/Y) where Hzy = Q3.
By direct computation we find

(D+E+E*+2)*E*(D~E)*Y *H3y = Py* Q4+ PsxQ3+E*x(D— E)? x F1 xQa,

in which P», P3 are pols in X of degree 2 and 3 resp. As all terms X* *(); occurring
in the right-hand side of the above equation are M-products, it follows that

N(Hs/Y)=0.

Consider now N(H,/Y) where Hy = Q4. Write F» in the form Fp =Y x E *
(D — E) — P with P a pol in X of degree 3. Then by simply rewriting we get

E>l<(D—_E)>l<}/>|<I{4:F13>|=Q3—*—_P>0<Q47
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in which all terms X * (); on the right-hand side are M-products. We thus again
have
N(H4/Y)=0.

That other N-pols are all 0 may be deduced from the above ones or directly
by rewriting in a similar way almost without computation. In conclusion it follows
that QSs is already a well-behaved basis or a Groebner basis GB of the ideal
Ideal(PS).

The zero-set Zero(PS) = Zero(GB) may be determined as follows. As Fy, F}
are easily seen to be prime to each other (D, F are independent indeterminates)
so Q4 = 0 has 6 zeros of X, 2 from F; = 0 and 4 from F3 = 0. For each zero
of F1 = 0,Q3 will be 0 too and @2 = 0, @1 = 0 will give 2 zeros of GB. On the
other hand, for each zero of F3 = 0 we have F} # 0 and the resultant of ()2 and
F is found to be 0, so such a zero of F3 will be extended to only one zero of GB
determined by F5 = 0 and @J; = 0. In all we have 8 zeros of GB or PS. We remark
that in the present case each zero of Q4 = 0 can be extended to at least one zero
of GB. This is however not the case in general. Cf. e.g. [WU2] and [L].
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Ideals
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Abstract. The characteristic set method of polynomial equations-solving is
naturally extended to the differential case, which gives rise to an algorithmic
method for solving arbitrary systems of algebrico-differential equations. The
existence of “good bases” of the associated algebrico-differential ideals is also
studied in this way. As an illustration of the method, the Devil problem of
Pommaret is studied in detail.
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1. Introduction

In the seminar DESC held in Beijing, April 14-16, 2004, the present author gave
a talk bearing the title “On ‘Good Bases’ of Polynomial Ideals” [10]. The present
paper is an extended form of that talk in extending the notion of “good bases” of
polynomial ideals to that of algebrico-differential ideals.

To begin with, let us consider a finite polynomial set PS in the polynomial
ring R = K[z1,...,z»], K being a coeflicient field of characteristic 0. Then there
are two important problems to be studied, viz:

Problem P1. Determine the totality of solutions of PS = 0 in all conceivable
extension fields of K, to be denoted by Zero(PS) in what follows.

Problem P2. For the ideal Ideal(PS) with basis PS, determine some kind of good
basis which will enjoy some good properties to be made precise.

We shall show how to solve Problem 1 in the polynomial case in Section 2,
explain how to extend the solution to the algebrico-differential case in Section 3,
and solve Problem 2 in the polynomial case in Section 4 by using the method
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developed in Section 3. In Section 5 we shall study Problem 2 in the algebrico-
differential case and introduce the notion of probably existing “good basis” for
certain algebrico-differential ideals. Finally in Section 6 we shall provide a solution
to the Devil problem of Pommaret as an illustrative example.

2. Problem 1 in the Polynomial Case

For Problem P1 the present author has given a method for determining Zero(PS)
completely, which may be described briefly as follows.

Arrange the variables x1,...,z, in the natural order; then any non-constant
polynomial P € R may be written in the canonical form

P=1Iyxl+ Lzt t .. 4+ 1,

in which all the I; are either constants or polynomials in zj,...,z.—; alone with
initial Iy # 0. With respect to class ¢ and degree d, we may introduce a partial
ordering < for all non-zero polynomials in R, with non-zero constant polynomials
in the lowest ordering. Consider now some polynomial set, which either consists
of a single non-zero constant polynomial, or in which the polynomials may be ar-
ranged with classes all positive and steadily increasing. We call such polynomial
sets ascending sets. Then we may introduce a partial ordering < among all such
ascending sets, with the trivial ones consisting of single non-zero constant poly-
nomials in the lowest ordering. For a finite polynomial set consisting of non-zero
polynomials, any ascending set wholly contained in it and of lowest ordering is
called a basic set of the given polynomial set. A partial ordering among all finite
polynomial sets may then be unambiguously introduced according to their basic
sets.
For any finite polynomial set PS C R, consider now the scheme

PS=PS® PS' ... PS¢ ... pgm
BS® BS' ... BSi ... BS™=(S (S)
RS® RS' ... RS* ... RS™=0.

In this scheme, each BS* is a basic set of PS*, each RS’ is the set of non-zero
remainders, if any, of the polynomials in PS*®\ BS* with respect to BS?, and
PSS+l = PS U BS*U RS® if RS® is non-empty. It may be easily proved that the
sequences in the scheme should terminate at certain stage m with RS™ = (. The
corresponding basic set BS™ = CS is then called a characteristic set (abbreviated
char-set) of the given polynomial set PS. The zero set of PS, Zero{PS), which is
the collection of common zeros of all the polynomials in PS, is closely connected
with that of CS by the well-ordering principle in the form

Zero(PS) = Zero(CS /IP) U Zero(PS U {IP}),
in which IP is the product of all initials of the polynomials in CS and
Zero(CS [/IP) = Zero(CS) \ Zero(IP).
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Now PS U {IP} is easily seen to be a polynomial set of lower ordering than
PS . If we apply the well-ordering principle to PS U {IP} and proceed further and
further in the same way, we should stop in a finite number of steps and arrive at
the following

Zero-Decomposition Theorem. There is an algorithm which may compute, from
any finite polynomial set PS and in a finite number of steps, a finite set of ascending
sets CS® with initial-product IP® such that

Zero(PS) = | ] Zero(CS*/IP*). (Z)

Now all CS¢ are ascending sets. Hence all the zero sets Zero(CS*®) and all
Zero(CS*®/IP*®) may be considered as well-determined in some natural sense. The
formula (Z) gives thus actually an explicit determination of Zero(PS) for all finite
polynomial sets PS, which serves for the solving of arbitrary systems of polynomial
equations. This solves Problem 1 in the polynomial case.

3. Extension to Algebrico-Differential Systems

The above method of solving arbitrary systems of polynomial equations has been
extended to arbitrary systems of algebrico-differential equations, either ordinary
or partial ones, which will be explained below.

Let y,u;,j € J, be infinitely differentiable functions in independent variables
X = {z1,...,zn}. A polynomial in various derivatives of y and u; with respect
to x with coefficients in the differential field of rational functions of X will be
called an algebrico-differential polynomial. Suppose that we are given a finite set
of such polynomials DPS = {DP;| ¢ € I'}. Let us consider the associated system
of partial differential equations of y with u; supposed known:

DPS =0, or DP, =0, i€l

Our problem is to determine the integrability conditions in terms of z¢, u; for y to
be solvable and in the affirmative case to determine the set of all possible formal
solutions of y.

Criteria and even algorithmic methods for solving the above problem in some
sense were known in quite remote times, for which we may cite in particular the
work of C. H. Riquier, M. Janet, and E. Cartan. The method of Riquier and Janet
was reformulated by J. F. Ritt in his books [5, 6]. In recent years, J.F. Pommaret
has given a systematic formal intrinsic way of treatment and published several vo-
luminous treatises. On the other hand, the present author has given an alternative
method in following essentially the steps of Riquier and Janet as reformulated by
Ritt [7]. The method consists in first extending naturally the notions of ascending
sets, basic sets, remainders, etc. in the ordinary case to the present algebrico-
differential case. Orderings among all derivatives and then partial orderings may
then be successively introduced among all algebrico-differential polynomials, all
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differential-ascending sets, and finally all systems of algebrico-differential polyno-
mial sets, somewhat analogous to the ordinary case.

For any system DPS of algebrico-differential polynomials, we may then form
a scheme (dS) analogous to the scheme (S) in the ordinary case as shown below:

DPS = DPS? DPS? ... DPS? ... Dpsm™
DBS?° DBS! ... DBS? .~ DBS™ = DCS
DRIS® DRIS! .- DRIS? ..« DRIS™ = §
DCPS® U DCPS'uy --- U DCPS*U --- U DCPS™= DCPS.

(ds)

In the scheme (dS), DPS is the given algebrico-differential polynomial set. For
each ¢, DBS"* is a differential basic set of DPS®. The set DRIS® is the union of two
parts: one is the set of all possible non-zero differential remainders in the sense of
Ritt formed from differential polynomials in DPS*\ DBS*® with respect to DBS?,
while the other is the set of integrability differential polynomials formed from
certain pairs of differential polynomials in DPS?, so far they contain actually y or
its derivatives. Such pairs may be determined by the notions of multiplicativity and
non-multiplicativity due to Riquier and Janet. On the other hand, those containing
no y or its derivatives but containing possibly u; or their derivatives form a set
of compatibility differential polynomials whose vanishing gives the compatibility
conditzons under which the given system of equations DPS = 0 has solutions.
In case DRIS® is non-empty, the union DPS U DBS* U DRIS? forms the next
differential polynomial set DPS?+1,

As in the ordinary case the sequences will terminate at a certain stage m with
DRIS™ = §. The corresponding differential basic set DBS™ = DCS is then called
a differential characteristic set (abbreviated d-char-set) of the given differential
polynomial set DPS. The union DCPS of all sets DCPS¢,i = 1,...,m, will form
the totality of all possible compatibility differential polynomials whose vanishing
forms the compatibility conditions to guarantee the existence of solutions of the
system of partial differential equations DPS = 0.

As in the ordinary case the above will lead finally to the formation of the
totality of formal solutions of the given system of algebrico-differential equations
under suitable initial data for which we refer to the paper [9].

4. Problem 2 in the Polynomial Case

Let us now consider the particular case for which the differential polynomials in
DPS are all linear with constant coefficients. For each tuple of non-negative inte-
gers p = (i1, .. .,in), let us write {ul| for 41 +- - - +4, and make the correspondence

Alull
Partial derivative —

— «— Monomial z%* --- 2.
1 in 1 n
Il . 6$n

Then the partial differentiation of a derivative with respect to some x; will corre-
spond to the multiplication of the corresponding monomial with the variable ;.
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In this way a differential polynomial set DPS consisting of only linear differential
polynomials with constant coefficients will become, under the above correspon-
dence, a polynomial set PS in the ordinary sense. The scheme (dS) will then be
turned into some scheme (W) for PS somewhat of the following form:

PS=PSY pst ... pst ... PS™
ws? ws! ... WSt ... WS™ = WS (W)
ISO st ... IS¢ ... IS™ = .

In the above scheme the WS* are certain subsets of PS? enjoying some well-
arranged properties and each IS? consists of remainders of the polynomials in
PS*\ WS* with respect to WS* as well as those determined from certain pairs
of polynomials in WS* determined by the notions of multiplicativity and non-
multiplicativity of Riquier and Janet. The union of WS*, IS? and eventually PS°
will then be PSi*+! so far IS* # 0. It turns out that the final set WS is a basis
of the given ideal Ideal(PS) and possesses many nice properties. It turns out
too that this basis WS is just the well-known Grébner basis of the given ideal
Ideal(PS), which may now be found in some way different from the original one
of B. Buchberger. Moreover, many known properties connected with the Grobner
basis which are dispersed in the literature have been proved in some simple and
unanimous manner. We refer to the paper [8] for details. In particular, we have the
following nice property of Grobner bases which solves the important membership
problem.

MP. A polynomial P in R belongs to the ideal Ideal(PS) if and only if the remain-
der of P with respect to the Grébner basis of PS is 0.

It turns out that the Russian mathematician V.P. Gerdt has also found the
Grobner basis of a polynomial ideal essentially in the same way as above. He has
used an alternative name of involutive basis and has given also a detailed analysis of
various possible notions of multiplicativity and non-multiplicativity due to Riquier,
Janet, Thomas, and Gerdt himself. For more details we refer to the paper [2] by
Gerdt. At this point the author would like to express his hearty thanks to D. Wang
who pointed out to the author the above-mentioned work of Gerdt.

5. Problem 2 in the Algebrico-Differential Case

Let us consider now Problem 2 of algebrico-differential systems in the general case.
Let DPS be an arbitrary finite algebrico-differential polynomial set as before. The
problem is to find some finite differential basis of the differential ideal dIdeal(DPS)
that enjoys some nice properties as the Grobner basis in the polynomial case
and solves in particular the corresponding membership problem. It is natural to
extend the method of Buchberger in the polynomial case to the present algebrico-
differential case. Unfortunately, in 1986 G. Carra Ferro showed in a well-known
remarkable paper [1] that such a finite differential Grobner basis does not exist in
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general. In later years the possibility of existence of such finite differential Grobner
bases was widely studied, notably by F. Ollivier (see [3]).

Now let us try to deal with this problem by our method explained in Section 3.
Consider again the diagram (dS). We suppose naturally that all the compatibility
conditions are verified. It is clear from the constructions that

dIdeal(DPS) = dldeal(DPS°) = dldeal(DPS*') = - - - = dldeal(DPS™).

Suppose that for the final d-char-set DCS the following condition GC is
verified.

GC. The initials and separants of the algebrico-differential polynomials in DCS
are all constants.

By the differential remainder theorem of Ritt, it is readily seen that DCS
is a differential basis of dIdeal(DPS) and a differential polynomial DP belongs to
dIdeal(DPS) if and only if the differential remainder of DP with respect to DCS
is 0.

It is thus seen that under the condition GC the final d-char-set DCS will serve
as a finite differential basis of dIdeal(DPS), which solves the membership problem
in a simple way. The condition GC is clearly less stringent than the condition of
linearity and coefficients-constancy, which leads to the usual Grobner basis in the
polynomial case. On the other hand, the verification of the condition GC can be
seen only after lengthy computations of d-char-set. In any way we may lay down
the following definition.

Definition. An algebrico-differential polynomial set DPS verifying condition GC
is called a good set and the corresponding differential basis formed by the final
d-char-set is called a good basis of dIdeal(DPS).

In view of the significance and also the weakness of the above notion of good
basis, we suggest now some problems for further study.

Problem 3. Try to find some intrinsic conditions for an algebrico-differential poly-
nomial set to be “good” directly from the given set without passing to the final
d-char-set.

Problem 4. Try to weaken the condition GC such that the differential ideal gen-
erated by the given algebrico-differential polynomials still has a finite differential
basis that verifies some simple membership condition.

Problem 5. Compare our condition GC with other known conditions introduced
by Ollivier and other authors.

6. Example: Pommaret’s Devil Problem

To illustrate our treatment of algebrico-differential polynomial sets, let us consider
the Devil problem of Pommaret, given for example in his paper [4]. We shall treat
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this Devil problem in detail by our method as exhibited in Section 3. For this
purpose let us reproduce the statement of the Devil problem below.

Devil Problem. Let u, v, y be three functions of the Cartesian coordinates x1, z2, 3
in Euclidean spaces related by the following two partial differential equations

DP; = Ga00y — 220002y — u =0,

DP; = Gg20y — v =0, (D)

with the corresponding algebrico-differential polynomial set DPS = {DP;, DP5}.
Note that here and below we use the notation 0;,i,;, for the partial derivative
ai3+’i2+i1
OxPaRay

The functions u, v are supposed to be known. The problem consists in finding
the compatibility conditions to be satisfied by w and v in order to insure the
existence of solutions for y and to see whether the given algebrico-differential
polynomial set DPS is a good one or not.

It turns out that our procedure ends at the stage m = 2 so that the scheme
(dS) in the present case becomes

DPS = DPS?® DPS! DPS?2
DBS® DBS! DBS? = DCS (as)
DRIS® DRIS? DRIS? = ¢

DCPS® U DCPS! u DCPS? = DCPS.

The final d-char-set DCS is found to consist of 4 algebrico-differential poly-
nomials

G = dooay — 2,
Gy = Ooiay —w
’ G
G3 = Oo20y — v, (©)
G4 = D200y — 220002y — u-
In (G), w and z are given by
w = 1(0200v — T28002v — Bozou),
z = Oypow — G124 — T20002W-
The compatibility conditions are found to be A = 0 and B = 0 with
14 = —
5 Bo10w ~ Boo2v, (CC)

2
B = 8400w ~ 2220202w + 5004w — F212u + 2200141 — goau.

It may also be shown further that the two compatibility conditions A = 0 and
B = 0 are not independent of each other. They are in fact connected by the
differential identity

840014 - 2.’1)28202/1 + ZL‘36004A - 260103 =0.

Naturally all the above were found by Pommaret by his method and in his
notations, which are different from ours.
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Now we see that the d-char-set DCS consisting of the 4 algebrico-differential
polynomials Gi,...,G4 verifies the condition GC so that the given algebrico-
differential polynomial set DPS is a good one with a good basis for the corre-
sponding dldeal(DPS).
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Wu Xing-Xi, Chen Pi-He, 1978

Wu and Professor Chern Shiing-Shen, 1980
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