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Foreword 

The present “Selected Papers” may be considered as a brief survey of my 
scientific career in mathematical sciences. 

My researches in mathematical sciences are consisting of two stages. 
The researches in the first stage, started in 1947, are in pure mathematics, 
mainly in algebraic topology, occasionally also in algebraic geometry. This 
ended actually in 1965, the beginning of cultural revolution. See Nos. 1-5 
of &‘Selected Papers”. During the cultural revolution there were however 
some sporadic research works in pure mathematics, with papers published 
a little later. See Nos. 6, 7, 14, 15, 18 of “Selected Papers”. Such researches 
stopped completely at the end of cultural revolution, viz. the year 1976. 

The second stage of my mathematical researches took place during the 
cultural revolution. It took place owing to my learning of the history of our 
proper mathematics in ancient times. See No. 17 of “Selected Papers”. 

During the cultural revolution I was sent to some computer-manufacture 
company to learn and work with laborers. Being striken by the powerful- 
ness of computers I began to consider of applying computers to the study 
of mathematics. It results in a method of proving geometry theorems by 
means of computers. Extending further the method it gave rise to the sub- 
ject what I called the Mathematics Mechanization which had an immense 
varieties of applications in science and technology, besides the mathematics 
itself. See Nos. 16, 19-30 of the “Selected Papers”. 

For some general description of my scientific career one may refer to the 
book “The Road of WU Wen-tsun” , written in Chinese by Professors HU 
and SHI, published by Shanghai Science-Technology Press, year 2002. 

Wen-tsun Wu 
Dec. 27, 2007 
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ON THE PRODUCT OF SPHERE BUNDLES AND THE DUALITY 
THEOREM MODULO TWO 

BY Wu \ji‘m-wux 

(Ibxivetl  August 15, 1947) 

Introduction* 
Given two spiierc brindles GI and S2 over the base complexes f i i  and fi, 

respectively, it is possible t,o define in a natural way a “product bundle” over the 
product complex ]<I X 1<2 . When K 1  = fi? = li (say), the part of the product 
hindle o w r  t1w tliagoiial of the protluct coniplcs Ii x I< is tlic product 
bundle in the sense of \\’l~itney.~ We shall prove in the present paper that n 
certain duality theorem holds for the product Oundle over K1 x Ii2 and that 
Whitney’s rlunljt2y theorcm for sphere bundles follows from this more general 
duality theorem as a consequence. (Throughout the paper coefficients mod 2 will 
be used.) The idea of this proof seems to be quite different from Whitney’s 
original one, of which only a brief sketch is known.‘ 

The paper is divided into three sections. In $1 some preliminary considera- 
tions and theorems on vector fields are given. A duality theorem for the product 
bundle overKI X 1iZ is then proved in 82. 53 is devoted t,o a proof of Whitney’s 
duality theorem. 

81 
1. We recall in this paragraph the definition of a bundle of linear spaces or 

more simply, a vector bundle. 
A complex K nith cells u1 , u 2 ,  . . . and a v-dimensional vector space V are 

given. To each point p of I< LL v-dimensional vector space V ( p )  is associated SO 

that  V ( p )  and V(p) are disjoint if p and q are distinct points of K. Suppose 
there are non-degenerate linear mappings t r ip  of V on V ( p )  for every ui of k’ 
and every point p of ui with the following condition satisfied: For p common 
to  ui and uj , &‘p€sjp gives a continuous map of ui n ui into the group of non- 
degenerate linear mappings of V on itself. ‘ h e n  \ve can make the union of all 
the spaces V ( p )  into a single topological space 93 in a natural way so that for every 
cell ( ~ i  e Zi the topological product 1’ x u i  is homeomorphic to the union of all 
V ( p )  for which p E u L  . This homeomorphism is in fact given by & . ( p ,  .) = 
&,,+(z), where x E 1’. 

We shall introduce the following terminologies : 
%, the vector btindle; 
I<, the base cmnplcs; 

* Tlie ~~r.ot~lcii:s i i i  ilii:; 11:i[wr ~ Y C I ‘ P  N ~ ~ I ~ S I C ~ I  i o  iiic tiy J’rofcssor S .  S .  Chnrn. wi th  whom 

1 \YIIITSLY, r . , , ( . i i i r t  i iii ‘ ~ ~ ~ p o l o g y .  1I:trvru.d [7iiiv., I!WI, 11. 131 I 
I have 1i1:iriy licl!,ful ~iiwussioiis. T u  h i r i i  :irv t ~ \ ~ i r ( ~ ~ ~ i I  1wr1* in\ t hmiks. 

2 \ V i r r ~ s e ~ ,  1’n.r.. Stil. . \ r : i i I .  S . .  3i (l!l.!ltl, 1 1 1 ) .  I42-14S. 
( 2 1  
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i', the director space; 
l ' ( p ) ,  t,he vector space over p; 
v ,  the 1)uridle-dimen..ion of 23; 
tnP , the coordinate system in u.  

2. Lct 23 be the vertor Inindle defined in p:wngraptl I .  I<? :L c:ontinuous 
iixipping ~f I< or il suhomplcs of K into 23 we shall ~ I I V L L ~ S  1tle:tn one that. lnilps 
the p0int.s p of I< or u subcomplex of I\' into t,hc wspct.ivc. I-(p) o\'cr p .  .I set, 
of continuous mappings cp1 , . . . qnr of a subcomples I, of f< into 23 is sxid t,o form 
an m-field We say that 9 is continuous (or cliscon- 
tinuous) a t  a point p t L if q~(p), . . cp,.,(p) are linearly independent (or linearly 
dependent) in V ( p )  and that CP is a continuous na-field over I, if it is continuous 
a t  every point p e L. 

A s  is \vcll known,3 for m 6 Y 

cont.inuous m-field (pi , . . . pm f always exists over IC-"'. Sow orient V and the 
cells of the complex arbitrarily and consider any (v - m + 1)-dimensional 
oriented cell ui . For points p in h i  , Fzlpcp~(p), * . . fl;Dq,m(p) together give a 
map psi of ani into the Stiefel manifold' V,,,,, of all ordered sets of m linearly 
independent vectors in V. The characteristic' d(uJ of this mapping is either an 
integer or is defined only mod 2. 

= ( 9 1  , . . . qVJa I over I , .  

Let K' be the r-dimensional skeleton of K. 

In  any way, the chain 
w = c d(+; 

i 

when reduced mod 2 if necessary, is a (v - m + 1)-dimensional cocycle mod 2 
of K the class of which is independent of the particular choice of the continuous 
m-field and the orientations of the cells uf I<. The classes thus obtained will be 
called the characteristic classes and their cocycles characteristic cocycles. We 
denote them by W', r = 1, 2, . . . v. 

For convenience we shall define IF"' to  be the class containing the cocycle I, 
which is the sum of all vertices of K. 

3. We shall put [a - b] = n - b for a We 
shall prove that in a vector bundle 8 it  is possible to construct on K an m-field 

= {pi , . . . cpna}, (nt. not necessarily sv) which satisfies the following condi- 
tions (P,), r = 0, I ,  2, . . . : 

( ( I , ) .  

( '.\sI.: I .  If 
 is^; 2. 

We also put all 1P' = 0, for r > v. 
b and [a - b] = 0 for 6 > a. 

I& p be :my point in K'. The conditions arc: 
+ I' S v ,  thcn cpI , . . . cp,,, are linearly independent at  p;  

If 171 + I' > v, then there is an integer 0 S i S m - [v - T ]  such 
that cpl(p), . . . cp[.-.I+,(p) are linearly independent, while 

q + + + , 4 ( p )  = . . . = cpm(p) = 0. 

Swli :i field wilt be (*u11ccI :I cxnonic:id ti(:ld. 

I". Clonstruction over KO, . . . I < ' ~ - ~ I .  

3 Sce for csainplc STIEPEI., Cornm. >Iat~li. IIelv. S (1036), 331. 
.I STI~;PEI. ,  loc. rit,.. :<10-:;%. 

We shall (!onstriict it successively 
over ZC", I?, . . . as foIlo\vs: 

The c.li:rracteristic will be dcnot.etl sonietimes by Char 
. , [ c p , . . . ~ , , , J ,  Clrnr q. iu i ,  " t i , .  

2 



I f  nt < v, wc kdic p,(p), . . . p,,,(p) at n vcrtcx p to he any ))I. linearly indc- 
prnclcnt vcctors in  l - ( p )  and 1,licn estmd succcssi*bdy to I T " ' .  IF 'in 2 v and 
p n vcrtes, we takc pl(pj, : . . p.(p) to bc v linearly indcpcndcnt vcctors i n  V ( p ) ,  
while we setp,+l(p) = . . . = p.,#(p! = 0. In this wily (f'"), . . . (C[v-n,l)  evidently 
hold. 

2". Construction o w '  I<<, r > [ v  - m], assuming tbat pl , . . . p,,, have been 
constructed over Kr-' with (C,-,) satisfied. 

Consider any r-dimensional cell u'. We can dcnotct its points by / p ,  0 5 I =< 1, 
where p is a point on au' and 0 . p  = 0 is :t lisctl interior point of U. 

(91  , . . . I I)eingtletincd and continuoirs on ar \vc( :m rst,rntl it, cont.i~iuousIy 
into t~ i r  interior of ur. = t;bp1(/p), . . . $T,-ri(/p) = .5$+9[,-,l(tp) arc 
[u - r] continuous mappings of u' into V so that for e:tch / p  thcsc are [u - r] 
1ine:irly indcpentlent vwtors. JVc can find v - [ v  - r ]  further mappings 
q:Y-,]+I(/p),  . . . q.*(/p) of ur into ~ ' s v  tlurt for (:very / p  in ur, $ ( l p ) ,  . . . q : ( / p )  
are linearly independent and form a positive system in t', assuming that IT 

has been oriented. Put &@?(fp) = $i( lp) ,  i = 1, 2, . . . v ,  we get a U-field 
(@I , . . * 

Tlicn 

continuous over u'. We have moreover 

g i ( ~ p )  = qi( tp) ,  for i = I ,  * . * [v - rj. 
Let 

where al"(p) are real numbers. We define 

d t p )  = 2 t a y ( p ) @ j ( t p ) ,  i = [v  - 71 + 1, * ' *  m. 
j-1 

The field (pi , . . p,,,) is then extended over 6'. Tloing this for all ur, we get 
an m-field over K'. 

The only places in ur where discontinuity occurs are either 1) 0, or 2) t p ,  t # 0 
for which ((pl , - - . q,,,} is discontinuous at p. 

In case I), [ql , . . . q+.]) is continuous, whilc p[r-rl+l(0) = . . + = qm(0) = 0. 
Condition (C,) is thus satisfied with i = 0. 

In caae 2), there esists by induction an integer i so that ( ( ~ 1 ,  . * * (~(,-r+l]+i} 

is continuous at p ,  while 

~ [ v - r + l l + i + ~ ( p )  = = cpm(p) = 0. 

This is true when p is replaced by tp, / # 0. A s  

([u - T I  + I .  r < v + 1 

ir. - rl, for r h v + l  

for 
[ v  - r +  I )  = 

we see that condition (('r) is satisfied. 
Kc remark in passing that in case. T u ,  riot a l l  of 

cl::;;'A"(p), * - * a y + ' j ( p ) ,  p e au' 

3 



644 wu WEN-TSUN 

are zero. For \ye have 

qs,(pj = $ , ( p ) ,  i = 1, 2. . . . Y - r 
Y 

r.p-r+l(p) = C a:'-""(p) .@,(P). 
,=I 

A s  py-r+I(p) is linearly independent of ( p i @ ) ,  i = I ,  2, . . . Y - r ,  for p 6 au', the 
matrix of their components with respect to the field over ur, namely, , . . - 

1 0 . . .  0 0 .  
0 1 ... 0 0 .  

0 0 ... 1 0 .  
............ . . . .  

b - F + l )  (-r+l) . . . ( 8 4 + 1 )  (v-r+l) . 1 01 a2 0.4 a.-,+l 
must be of rank v - r + 1. 

& , of which the 
other symbols are distinguished by the subscripts 1 and 
bundle 8 according to the following table: 

4. Given two vector bundles 

Base complex: K = K 1  x Kz ; 
Director space: V = VI @ VZ ;6 

base complexes and the 
2, we shall define a third 

Vector space over pl x pz : ~ ( p 1  x p2)  = IrI(pl) o ~ 2 ( p 2 ) ; 5  

Bundle dimension: Y = v1 + va ; 
Coordinate system in ul X a2 : 

€ c I ~ v . . , P I ~ p z t r ~  + r z )  = € Q I P l , I ( r ~ )  + t.zpt,,(fi), where rI c VI , r2 c Vz . 
This bundle 3, as a topological space, is a topological product of 8 1  and 3 2  . 

In fact, by means of the coordinate system € r l ~ e 2 . P ~ P 2 ( r ~  + FZ) in u1 X U Z ,  

we map the point, €cIXrz.FIyP2(rI + 12) into the point (€slpl,drl), €e2p2,dfi))  of 
B1 x 232. Wc can therefore write 81 X 
!B2 for 8 without confusion and shall call 8 the product bundle of 8 1  and %z. 

Let the characteristic. classes of 8, $1 and 82 be respectively denoted by 
W ,  11'1 , 11.2 , ~ i t h  the convcntion made at  the end of paragraph 2. Then our 
main theorem is thc following 

THMH~ISM J .  Tlw rharackr ish i  classcs of fh.r prodiicl hiitidle 23 = X 3 2  arc 
c.rprcssal)k~ i j i  krrnrs o,/ ~hosrj o j  a?id . Xorr pncisrhj,  uv haw flw ./orniirIn 

This mapping is clearly tqpological. 

4 



(5.1) 

where I?, W 1 ,  IVz are the respective charaeterislic classes o j  & 31 , S2 with the 
conimition of paraoraph 3 .  

5 
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DU-QLITY IN SPHERE BUNDLES 647 

where x: t S: (x, t S.), 

tl = 1 and 0 5 Q 6 1 or h = 1 and 0 6 I ,  5 1. 

Or, O:(O,)  being the centers of V:(V,), S’(S) is composed of the sets x: X 0:z: and 
OX x d (.q x o2xZl? and O ~ T ,  x s2>. 

I&t S: (S,) be orirnted. Orient V:  (V,) in rohrrcnrc with S: (S,), then (7.1) 
defines an orientation of 8’ (X). 

Suppose we are given continuous mappings f, of S: into S, with degree d,  . 
Define a mapping f of S‘ into S by 

(7.2) f(kd x h d )  = tfl(x:) x hf?(ll). 
Then we have the following 

LEMMA. Thc d q p e  of the mapping f is pmvet& h j  

(7.3) d = d i d .  

PROOF. Subdivide S: , S. (i = 1, 2) into sufhciently fine simplexes and de- 
Xext we subdivide S’, S into cells form fi , fi into simplicia1 approximationsf: . 

so that the ground-cells of S ,  say, are of the form 

(OlUd x 0 2 ,  Ul x (ON*) 

where u, are ground-simplexes of the subdivisions of S,(i = 1, 2). 

always hold, with the final result 
Deform f to f* so that during thc deformation relations analogous to (7.2) 

f*(tlz: x &:I = t d ( Z 2  x tf:(x:). 
We shall determine the degree of mapping off*. 

For this purpose consider my oriented ground-cell of S, say 

(Om) x m .  

For ground-simplexes r:,  of S: and d i  of , we have 

(7.4) f*[(O:r:i) x T:,] = f (OlSl) x u2 
if and only if 

(7.5) j?(T;i) = f Ui , $ ( T i ) )  = f U2. 

Let the number of simplexes T,, , T~~ for which (7.5) hold with positive (negative) 
sign be Zi , P2 , (IV, , N?) so that 

7’1 - AT1 = dl , I’? - K t  = dz . 
Then the number of cells (0:~:~) x 
tive) sign is P = P,P2 + 

for which (7.4) holds with positive (nega- 
IIrncP (K = PlN2 + P2.Vl). 

d = I’ - N = ( f J 1  - N , )  (1’: - .V:) 

= did2 . 

7 



648 \VU WEN-"SUN 

The loninia is thus proved. 
S. l\.e noiv come to the determination of characteristics for the field defined 

in puragrapli 6. For this purpose let us consider a ( v  - ~n + ])-cell u =y u;' X 
u;' of iTi? where rl + r2 = v - t n  + 1. We suppose first t.hat 0 < rl I v1 , 
0 < f.2 s uq . 

, i = 1,2, . . . v1 of 
0;' in $1 and continuous mappings gi.2 , j = 1,2, . . . vz of ui2 in 3 2  sat.isfying the 
follon-ing conditions: 

are linearly independent at every point tpl e u1 and 91,2 , 
. . . $12.? are linearly independent. at every point tp t uz , where we denote as 
usual hy p1 a point in aul , p2  a point in au2 and 0 S 1 I 1 .  

~ p i , ~ ( l p ~ )  = ~ ; , ~ ( t p ~ )  for a = 1, 2, - - v1 - rl 

q ~ ~ . ~ ( t m )  = ~ ~ . ~ ( l p 2 )  for j = 1, 2, . . . v2 - rz 

-As sholvn in paragraph 3, there are continuous mappings 

1". $l.l , . . . 

2O. 

3O. If 

 pi,^(^> = d : ) ( ~ ~ h , 1 ( ~ 1 )  + * * * + df?1(pl)~v,.l(pl)1 
i = v1 - rl + 1, y1 

q j , z ( p t )  = d . ? ( m ) 0 1 , * ( ~ v )  + . * * + d f 1 2 ( p v ) * v * , 2 ( p v ) ,  

j = v2 - r2 + 1, . - -  q 

then 

pi.l(tp1) = h$)(~1)01,1(tp~ + * .  * + t a l f : ( ~ ~ ~ v Z r . , . 1 ( t ~ ~ ,  

i = v1 - rl + 1, v1 

qj .z( lp2)  = t d , i ) ( p v ) ~ 1 , 2 ( t p v )  + * * + la~f:(pv)~, , .z( tp , ) i  

j = v2 - r? + 1, ..- v2 

4". If 
spst,ern in 

and V 2  are definitely oriented, $?l(@Jl . . . ~ ; ~ , ~ ( t p l )  form a positive 
and 3:2(tp?), . . . q:2,?(L~) form a positive system in V z  , where 

@ ' : k ( t p k )  = & k , I : ~ i . k ( b p k ) ,  i = 1, 2, * * * v/; ; 1; = 1, 2. 

Whence the vectors 

*i,l(tlp1), ~j ,2( tZp2) ,  = 1, 21 *.. ~1 ; j  = 1, 2, * * *  vz 

form a tiasis in V(tlp1 x h p ) .  
\\'rite for simplicity 

. n ! l J (  ) = u ( . j )  ,,k , 2 . = 1, . - 3.k pk vk  ; j = vI: - rl; + 1, - vk ; k = 1, 2. 

Then ne have for every point tip, X tzp2 in au, where 

/I = 1 and 0 5 t2 i 1 or t 2  = 1 and 0 I I I 

8 



(@)< 

9 

' e i ( t l p l  x t?p2) = t-, I p p 2 e f ( i l ~ 1  x ~?.p?), i = 1,2 ,  . . n~ 
,,,+I-;) ( " t + l - i )  

OT(t1p1 x h p ? )  = L l  + t2ar.2 

Or(tlp, x hp?) = t1ar:I)zl.l + - .  * + IIUt,i!l F u 1 . 1  + &+I-i.? , 

e ~ l - 7 1 + l ~ ~ l p l  x t 2 p 2 )  = t l ~ i : ~ - r i + l ) ~ l , l  + - . . + i l~ , ( ; ; ;r l+ l l~vl . l  

FI .?  + * . *  + /?a",.? & , ? ,  

1 5  i 5 v I  - r1 

v1 - rl + 2 6 i 57n 

"n-r, +I)  
\ + t 2  d . 2 -  - &,2 + - * . + t2a:;5-r~+"~"r.2 . 



650 WU WEN-TSUN 

for ot.herwise we can bring about this by a further deformation. 
at8 the end of paragraph 3.) 

(See the remark 

For p l  c au1 , pz B ao2 , let, us put 

+;l(pl) = ri.1 i = 1,2, . . . v1 - rl 
(uI-rI+l )  ( v l - r , + l )  

+?1-r1+1 ,1 (~1)  = o v l - r l + l . l  rv1-r1+ln1 + . . . + ~ 1 . 1  

$ T . z ( p ~ )  = Ti.?, 

$?2-r,+1.2(~2) = & . r 2 + 1 . 2  ~ v , - 7 2 + 1 . 2  + . . . + ~ " 2 . 2  

1-1.1 

j = 1, 2, . . . V2 - rz 
u--ry+l )  (*2-r~+1)  

rv2.2 

E~~~~ + ~ P J  = $i,l(p1), i = 1,2,  - .  - u1 - rl + 1 

t u t p * + T 2 ( p ~ )  = $j,*(p), j = 192, ' * * ~2 - r 2  + 1. 

Then we can prove in a similar manner that \kl = IIL.1.1 * * * $pl-rl+l,l} :and 
\k2 = { $ 1 , 2 ,  . . . +r2-,2+1.2} form continuous (u1 - rl + 1)- and ( ~ 2  - TZ + 1)- 
fields on au1 and auz and are respectively continuously deformable from the fields 

= Im.1  , . * * P , ~ - ~ ~ + I , ~ }  and 4 = f q 1 , 2  , . . . ~ q - r 2 + 1 , 2 J .  

Put8 Chm.,,\kk = d(uh), k = 1, 2 

and Char.,* = d(u), 

then, from what has proved above, we have 

Chrtr.,,@h = d(uk), k = 1, 2 

Char.*+ = d(u). 

The vectors + ~ l ~ , l + l , l ( p l ) ,  $:2-rp+1,2(p) and +:,-,, +l now define respectively a 
mapfl of aul in an (rl - 1)-dimensional sphere Sl , a mapfi of a u 2  in an (r2 - 1)- 
dimensional sphere S 2 ,  and a map f of au in the join of Sl and S 2 ,  of which the 
degrees are respectively say dl , As thesc maps are connected by the 
relat,ion 

and d. 

f(hP1 x hP) = tlfi(P1) x h12(P) 

it, follows from paragraph 7, 

d = dld2. 
* *  * Sincc $; , , $ j . ?  arc c~oiistnnt vect,ors for i # u1 - rj + I ,  j # v2 - r2 + 1, 

d,  tll and d2 are respectively cqual, or congruent mod 2, t o  the characteristics 
d(u) ,  d(ul) and d(az). Hence 

(8.1) d(u)  = d(ul).d(a2) mod 2. 

Scst consider a ( V - ttt. + ])-cell u = a;' X ui' of I< \\here rz > v2 , rl > 0. 
The field ( ( c ~ . ~  , . . . ( p m , l }  is t,lius cont,in- \Ve must, t,hen have v1 - rl + 1 > 471. 

ti Sec I I l ~ l C  4). 

10 



DUALITY IN SPHERE BUNDLES 651 

uous a t  cvery point of a?. 
given field (PI , * . p m )  is deformable to a second one 

Using the same reasoning as before, we see that the 

i = 1, 2, 

, . . . +,,,) so that 

€~::LPIxL?P1+~(~lPl x hp2) = hi,], * * m. 

Hence in this case 

(8.2) d ( U )  = 0. 

The case rl > v1 is similar. 

same way that 

(8.3) d(o) = d(u2) mod 2 

respectively d(u) = d(ul) mod 2 

where d(uJ is the characteristic of the field ( ( P ~ . ~ ,  - .  . (P~~-,~+~,;) on ani , and 
d(u)  is that of the field (ql , ... (pml on au. 

9. The proof of Theorem I is now immediate. The canonical fields on K1 , 
k; constructed in the preceding sections give chains 

For the last case where rl = 0, rz 5 vz or r2 = 0, r1 S v1 we can prove in the 

wil = C d ( u l ~ f ~ ) .  ul~!, , r1 = 0, 1, . . . v1 
(9.1 ) 

k 

in which d(ui;i) is the characteristic of the field {pl,;, . . . (o~,-,~+~,;) on au.2; , 
u;f; e Ki . 
(9.2) 

When reduced mod 2 if necessary, these chains give the characteristic cocyles 
of the respective bundles. 

According to @.I), (8.2) and (8.3), the coefficients of these chains are con- 
nected by the following relations: 

Also the m-field {PI , . . . cpm) defines a chain 

tor = & i ( u i ) . u ~ ,  r = v - m + 1. 
k 

d(u;tl X u;5) = d(a;fd.d(uLTz) mod 2, 

d(ujf1 X uZ) = 0, for > v1, r2>0 or rz > v2, > 0 

d(ag,~ X u&) = d(&) mod 2, 

d(u;fI X a:,%) = d(ul!z) mod 2, 

for r1 5 v1 and rz 5 vz 

(9.3) 
for r2 5 vz 
for r1 5 YI. 

Let8 us put 

w:' = C d(a;fi).o;fi = o for r; > v i ,  i = I ,  2 

WP = c d(&) 'fY:],i = c ot,; , 

k 

and 
i = 1, 2. 

k k 

11 



652 \VU WEN-TSVN 

This is in agreement with the convention made in the end of paragraph 2. Then 
the equations (9.3) ran he mingled into a single one: 

d(u;fl X &) = d(at! l ) -d(uL~2) mod 2. 

It follows t,hcrcforc from (9.1) and (9.2) that  

1.e.. 

mod 2 
1-0 

r 
11'' = c wf x w;+. 

1-0 

53. 

10. This section n-ill be devoted to  a proof of Whitney's duality theorem 
mod 2. 

Our first remark is concerned with the definition of the cup product in a com- 
plex K by means of our product defined in paragraph 4. This method of intro- 
ducing the cup product is due to  Lefschetz,' but we shall summarize for our pur- 
pose the main result, in a simplified form. 

Then f3 X y is a cohomology class 
of K x h-. 

I n  preparing for the proof we shall make a few remarks. 

Let p, y be two cohomology classes of K .  
The diagonal mapping 

d :  K + K X Zr', 

defined by 

d - x - + x  X 2, Z €  (KI, 

induces a chain t.rsnsformntion of I -  into I< X I< and hence a homomorphism 
d* of the cohomology groups of K X I< into those of K .  The theorem of Lef- 
schetz asserts that d*(p x y) = B u y, where the latter is the cup product. 

11. Our second remark is related to the notion of an induced sphere or vector 
bundle. To a point q E L 
wc associate t.hc \cct.or space q X V(f (q ) ) .  The union of all these vector spaces 
can he made in ;L natura! wiy t,o a vector bundle over L ,  the coordinate systems 
v,~,, , for q c 7,' e I,, 1)cirig defined by qrie = .$ l (r i ) l i , , )  . We shall call this vector 
bundle the biindlc ovcr I ,  i,id,uced by the mapping f. I t  follows immediately 
from the definit.ion of thc induced vector bundle that j*W', r = 0, 1, . . . , are 
the characteristic cohomology classes of L,  where IVr are the same of K and f* 
the homomorphism of the cohomology groups of Zi into those of L induced by f. 

12. With :dl t.lic a1)ovc preparations the proof of Theorem I1 follows immed- 
iately: 

Let, %, , I)(. 1)iindles over K, and let 8, x 932 be the product bundle over 
I< x Ii. 1,et r l :  K ---f Ti x K be t,he diagonal map, and 8 the hiindle over I< 

Let a comples L be mapped simplicially into K by f. 

I,P;VSCHVIZ, .\lpcliraic Topology. Amer. Rlnth. Sor. C'olloquiurn puLl., 1012, pp. 173- 
IS]. 
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DUALITY IN SPIIERE BUNDLES 653 

From para- induced by d. 
graphs 10 and I 1  it follows respectively that 

I t  is clear th:Lt 5 is the span 1)undle of '& and 3 2  . 

and that 
cl*(rrr; x = ii-f U rv;-' 

d*ll" = 17.'. 
Applying the liomoinorphisni d* to the formula (4.1) wc :we tlicreforc Icd to (5.1). 
This proves Theorem IT. 

INSTITUTE O F  A~ATIIEMATICS 
ACADEMIA SINICA 
SHANGHAI, CHINA 
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Reprinted with permission from C. R. Acud. Sci. Paris, 230 (1950) 508-511. 

TOPOLOGIE A L G E B R I Q U E .  - Classes caractkristiques et i-carris d ’ m e  vari&. 

Note (*) de M. W u  WEN-TSUN, presentee par M. filie Cartan. 

1. 
a. 
6. 

Soit M un espace topologique verifiant lcs condiLions suivantes : 
IJe groupe H’I(M) (’) est de  rang I dont la base est X:; 
O n  a Hp(M) x Hom[Hn-/J(M), Z,]  dont I’isomorphisme cst etabli par le 

cup prod uit XlJ ( Yn-/’) X: = XI] u Y”-/> , XIJ E HP( M ), Yl“” E HfL-lJ( M). 
P a  exernple, une variktk compacte de dimension n est un tel espace. Dans 

un tel espace on peut dkfinir un  systkme de classes U p €  HP( M),  0 - L 2p A n ,  
par  les equations suivantes : 

( 1 )  U P U Y ~ - P = S ~ P Y ~ - P  (I) [pour  Yn-p quelconque de H’‘-p(M)]. 

Nous les appellerons les classes canoniques ou les U-classes de M. Les 
classes Wi, o L ZL n, definies par 

seront alors appekes les classes caractiristiques ou les W-cla.rses de M .  On a, 
par exemple, Wo= U o =  I ,  W’=U‘, W 2 =  U 2 +  U’ u U ’ ,  etc. 

Le  nom des classes caracteristiques cst justifii: par lc thCorkme suivant : 
T H ~ O R ~ M E .  - Pour une vnriktk compacte M les W-classes ainsi difinies s’iden- 

tzjent aux  classes carnctkristiqucs de Slit fel-  IVhitney de cette varikte‘. 
2. La demonstration de ce theorbme s’appuic s u r  un tbeor&me de Thorn ( 3 ) ,  

et le lemme suivant, demontre par H .  Cartan (’) : 
LEMME. - h n s  ~n espace-produit M x M’ on a 

st/?( x g Y )  = J’ s yjX @ s p j Y ,  x E I I * (  RI ), Y E H* ( M’). 

(*)  SQance du 30 janvier 1950.  
(I) H * ( M )  [ H p ( M ) ]  le  groupe de cohomologie (de  dimension p )  de I’espace M. Le 

groupe des coefficients sera erclusivement le groupe Z, des entiers mod 2 sauf, mention d u  
contraire. La classe unite de H o ( M )  est d8signCe par  I .  

( 2 )  Nous adoptons ici la nouvelle notation de Steenrod pour les i-carres : 

( 3 )  Voir la Note precedente de Thorn s u r  les variktes ploiagdes e t  i-carres (mhme 
numero des  Cornptes rendus) et 14 Note prBcedente de H. Cartan sur une thkorieaxiorna- 
tique des i-corres (Cornptes rendus, 230, 1950, p. 4 2 5 ) .  

s g p x q =  sq,-,Xv. cf. STEBNRon, AfLRUlS Of .MLZ/h . ,  48, 1947, p. 290-319. 
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( 2 )  

On en dkduit que, dans un  m6me espace M, on a 

S ~ ~ ( X U Y )  =C ,sgix u sgi-iy,- x, Y E H * ( M ) .  
J 

Prenons maintenant Line base {XP,} de H*(hl> dans l a  variete M, supposke 
de dimension n,  telle qiie XP, uXE-"= Ga?Xy. La classe A €  H"(M x M )  
correspondant A la diagonale de l'espace-produit M x M s'exprime alors par 

A=c (X: @ X%"). D'aprks le lemmc precedent, on a donc 
u> P 

S siAi'=C S g ' - i X / j  @ S g i X ! p .  
a , p J  

D'autre part, soit x u a h X t  la classe carnctcristique de Stiefel-Whitney de 

dimension i de la variete M qui est aussi la classe de SLiefel-Whitney 
de la structure normale d e  M par rapport :I M x M .  On a, d'aprks la 

formule (6)  de Thom (3j ,  SqiA"=r $*(zfXf, oh +* applique Hi(M) 
dans Hnii(M x M ) .  On en deduit 

-dU 

En considerant les termes de la forme Xi@ X: dans les deux expre- asions * 

de SqiA", on trouve q u e  
-+& a t  Xk z X/, Sq'-" U/J , 

c'est-i-dire la classe de Stiefel-Whitney de dimension i coincide avec la 

3.  Le thkorkme precedent montre que les classes caracteristiques de 
Stiefel-Whitney d'une variete compacle de dimension n sont complktement 
dkterminees par les classes canoniques Up, o L a p L n ,  et par conskquent 
par la structure des cup produits et les i-carrCs de cette variktk. On peut en 
dkduire d'autres proprietes concernant les classes de Stiefel-Whitney, ainsi 
qu'il suit (4) : 

a.  Les classes W' pour 2 i > n sont complitement deteiminies par  les classes W' 
pour o L 2 i 4  n, et par  les ope'rations de cariis. 

b .  W"=o pour n impair; W ' L = S q / ~ U 1 = U A u U A  pour n = 2 k  pair; 
W'=WiuW4 pour n = 3 ;  W ' u W ' u W 2 = o  pour n = 4 ( o n p e u t m & m e  
demontrer W '  uW' = o pour n L 5 ) .  

c. Pour M orientable et n = a h  pair, U L  est une classe de premikre espkce, 
c'est-&dire, UL est d6duite d'une classe aux coefficienks entiers par reduction 

classe WL, dkfinie par ( I )  et (2) .  C .  Q .  F .  D. 

(4) Cf. 11. W I n T N i w ,  Michigun Lectures, 1941, 11. 1 0 1 - 1 4 1 .  

16 



( 3 )  
mod 2. Pour n = 4 la classe Wa = Ua + U’ u U’ = Ua est alors de premibre 
espbce e l  par consequent la troisibme classe de Stiefel-Wiitney (aux coeffi- 
cients entiers) est nulle; ce n’est pas le cas en g&nCral pour n >  4 ,  comme le 
montre la vari6te orientable de dimension 5 construite de la facon suivante : 
M5 est le produit topologique d’un plan projectif complexe P et d’un 
segment I = [ o , ~ ]  avec l’identification (z, y ,  z )  x (0) = (Z,  7, z )  x (I), 
o~ x, y ,  a sont des nombres complexes, coordonnees homogbnes de P, 
et Z, 7, Z leurs complexes conjuguks. 

d. Dkfinissons un autre systhme de classe Up (ici o d p d  n) parrecurrence 

par les equatioiis Uo = uo = I  et 2 06 u UP-’= 0, pour p > 0. Les cIassesW 

definies par mi=c Sqf-lJ UP (0 Lid n) satisfont alors aux Cquations wo = I 

et 2 w1 u WIJL1= o pour p > 0. Cela veut dire que les classes ne sont 

autres que les classes caracteristiques duales de M introduites par Whitney . 

- 

1 

P 

L 

- 
O n a W “ = C  Sg ’‘-1’ UIJ=~~U‘”P u 0, d’aprbs ( I ) .  

P 

e. D’aprbs H. Cartan, Up= o pourp  impair et M orientable. On en dCduit 
que W-‘ - - o pour M orientable et n = 4 k  + 2, ce qui est aussi une cons&- 
quence de c .  

(Extrsit des Coniptes rendus des st‘ances de I‘Academie des Sciences, 
t .  230, p.  508-511,  seance du 6 fevrier 1950.) 

- 
RAUTHIER-VU&AR% IYIPWEW-LIBRKU3 DES mmE3 RENDUS DFS SdANCES DE L‘ACAD- DES S(XEN0EB 

13535640 Pam - Qoai d s  Qrsod.3-Augustin3, 56. 
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Reprinted with permission from C. R. Acad. Sci. Paris, 230 (1950) 918-920. 

T ~ P O L O G I E  A L G I ~ B R I Q U E .  - Les i-carris duns une varikttd grassmannienne. 

Note de M. Wu W E N - T S ~ ,  prCsentCe par M. €!lie Cartan. 

1. L'anneau de coefficients del'anneau de cohomoiogie H*( M )  d'un espace M 
sera dans ce qui suit exclusivement l'anneau des entiers mod 2. 

Soient W ,  i h o  quelconque, les W-classes (classes caracteristiques de  
Stiefel-Whitney) d'une s. f .  s. (structure fibrke spherique) avec la conven- 
tion Wo= I (classe unite de la base), et Wi= o si i > m ,  m- I elant la 
dimension de la fibre sphkre. Nous allons dkmontrer la formule suivante : 

o l i  C: = coefficient binomial pour p l q  > 0, = o pour p < q > 0, et = I 

pour p = - I et q = o (tous sont rkduits mod 2). 

Signaloils d'abord quelques consequences de cette formule : dkfinissons, dans 
la base, un systbme de classes U"(p 1 o quelconque) par les equations suivantes : 

w~='&s~~-PuP, i l o  quelconque; 

nous les appellerons les classes canoniques de la structure considCree. Si la 
s. f .  s. est en particulier la structure tangente associke une variete differen- 
tiable M de dimension m, on voit, en comparant avec les Cquations ( I )  et ( 2 )  

d'une Note prCcCdente ( i ) ,  que le,nom de classes canoniques est justifik; de  
plus, parmi toutes les s. f. s. (aux fibres 9 - I )  sur la variete M comme base, 
la structure tangente de M possbde la proprikte remarquable suivante : 

( 3 )  UP=o pour z p > m ,  

De ( I  ) et (3)  on deduit : 

a.  Pour  une structure orientable on a U"+' = 0, k quelconque, ce qui g h 6 -  

b .  Pour  la structure tangente d'une variCtC differentiable de dimension m, 
on a W ' W ~ - ~ = Q  si m=4k; W1Wnz- -3=~;  W'Wm-'- -0 si m = 4 k + 1 ;  
Wm = W' W m - 1  sim: 4 k + 2; W' Wnrpi= 0, Wm-' = W' WPa sim=4 k+ 3. 

ralise un thCor6me de H. Carlan (I) ,  

(I) Comptes rendus, 230, 1950, p. 508-51 I .  
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( 2 )  

2. Soit Gn,m la varietk grassmannienne des m-elements lineaires dans un 
espace euclidien R"'" de dimension n + m passant par l'origine de R+"l. On 
sait. ( a )  que l'anneau H*(G,,,) est engendre par les classes W i d e  la s. f. s. 
(fibres Sm- ' )  de base G,,m canoniquement associke B Gn,m. De plus, comme 
m'a fait remarquer H.  Cartan : 

LEMME 1. - Soit ?p(  W i )  un  poZyndme non identiquernent nu l  en  W', . . . W'" 
telquepourchaque terme W'x . . . W'kde  cepolyndme on ait i, + . . . -+ ik=p L n. 
d o r s  y,,( Wl) est un  klkment non nul  de H*( Gn,m). 

Supposons alors que R f m  soit le produit de deux espaces euclidiens R?+"* 
de dimension nj+mj ( j =  I ,  2 ) .  Soient G,, j , , j ( j= I ,  2)  les varietes gras- 
smanniennes definies respectivement dans R?+lnj. Pour Xj E G,j,nLj soit X E Gn,", 
le joint de X, et X,, on a alors une application canonique 

f : x Gn2,m2 + Gn,m 

definie par f ( X ,  x X,) = X. Eri designant par W; ( j  = I ,  2)  respectivement 
les W-classes des structures G,,j,,nj, on a : 

LENME 2 .  - Le type d'homologie mod 2 de f est dkterrnink par  ( j : 

? W ~ = Y  wjLg wk-j ( i s 0  quelconque) 
d i  

Cornrne consequence des Igmmes I et 2, en conservant les notations, on a : 

LEMME 3. - P o u r p L n ,  et n,, y p ( W )  est u n  kldment non nu1 de H*(G,,,,) 
s i  et seulernent si f * y,>( W )  est u n  dkment non nul  de H*( Gnl,  ,n, x G,r3, ,n,). 

3. Dimonstration de ( I ) .  - Nous poserons 

'p ,.,, *(Wi) = sg'.vc'"+x c:-r+l-l Wr-'W"'. 
1 

La formule ( I ) ,  ou, ce qui revient au m h e ,  la formule y'.,s(Wj)=o, etant 
kvidente pour m= I ,  nous supposerons par induction qu'elle est exacte pour 
les structures dont les fibres sphbres ont une dimension < m - I ,  o l i  rn > I .  

Soient maintenant W ,  W,! respectivement les W-classes des structures (&m 

et $ & , n j ( j = ~ ,  2)  oti n=n,+n,, ni&r+s, m , = m - ~ ,  m2=1. De la 
formule f * S q ' =  S q ' f  *, d'un theorbme de H. Cartan ('), et du lemme 2 du 

( ? )  S. CHERN, Annals of Math., 49, 1948, p. 362-372.  
( 3 )  Nous remarquons que le tli6oreme de Whi tney  sup le produit de deux structures 

fibrees spheriques est une cons6quence de ce lemme dont  la dCmonstration est donnee dans 
ma These, Strasbourg, 1949. 

( b )  Comptes rendus, 230, 1950, p. 425-427. 
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( 3 )  
paragraphe 2, on dkduit 

f*y?.,dw~) = y,.,s(w:)@ 1 + yP,o-I(w;)@ w: + yr-i,s-1 (w:) 63 (w: )’. 
D’aprks l’hypothbse d’induction on a doncf* yr,$(WL) = o et par consequent 

Y ~ , ~ ( W ~  = o d’aprhs le lemme 3. La structure g,,,, Ctant universelle pour n 
assez grand, on a ( P ~ , ~ ( W )  = o pour une s. f. s. qnelconque. La formule ( I )  est 
ainsi dCmontrCe par induction. 

sur la base G,,,n. 
L’anneau H*( Gn,,J Ctant engendrk par les classes W1, on voit que la formule ( I )  

dkterniine complbtement les i - c a d s  dans G,,,, en les exprimant comme des 
polynbmes en WL. 

Soient en particulier W1 les W-classes de la structure 9, 

(Extrait des Comptes rendus des seances de l’dcaddmie des Sciences, 
t .  230, p. 918-920, seance du 6 mars 1950.) 
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SCIENTIA SINICA 
Vol. VII, No. 3, 1958 

MATHEMATICS 

ON THE REALIZATION OF COMPLEXES IN 
EUCLIDEAN SPACES I" 

ABSTRACT 

I t  was early known that any  n-dimensional abstract complex may 
be realized in a (2n+ 1)-dimensional euclidean space RZnf'. From 
this theorem, whose proof is quite simple, i t  follows that the (2n+l)  
-dimensional euclidean space contains in reality all imaginable 
n-dimensional complexes. However, the complete recognization of all 
d imens iona l  complexes in  an euclidean space of a given dimension m 
where m<2?2+1, is a problem much more difficult which cannot, i t  
seems, be solved completely in  the near future. Among the miscel- 
laneous results so far obtained along this line the most remarkable 
one is no doubt that  of Van Kampen[3*41 and Flores'sl, who first 
proved the existence of n-dimensional complexes which, even under 
further subdivisions, cannot be realized in an R'". 

The invariant by means of which Van Kampen was able to con- 
clude the nou-realizability of a (finite simplicial) n-dimensional 
complex in an Rz" may be described as follows. Denote the &dimen- 
sional simplexes of the given n-dimensional complex K by S!. Any 
two simplexes of K with no  vertices in  common will be said to be 
disjoint. Let A be the set of all unordered index pairs (i, j ) ,  cor- 
responding to pairs of disjoint n-dimensional simplexes Sl and Sl. 
Construct a vector space P on the ring of integers with dimension 
equal to the number of elements in A .  Any vector of P may then 
be represented by a system of integers (q,) where (i, i )  C A.  To 
each pair of disjoint simplexes g-' and S; in K a certain vector 
V,,=(ai,) of P may be determined i n  the following manner. If both 
i, j t l  or one of them, say j=l, but S:-* is not a face of Sl, then we 
put a,, = 0. Otherwise we put a,, = f 1 (with sign conveniently 
chosen). Two vectors P, P' of P will then be said to be equivalent, 
if P-P' is a certain linear combination with integral coefficients of 

'First published i n  Chrnesc i n  Aria Mnthrmntirn Sin;ca, Vol. V, No. 4, pp. 505-552, 1955. 
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vectors of form V,, above defined. The vectors of P are thus 
distributed in such equivalence classes. 

Take now an arbitrary simplicia1 subdivision K ,  of K and t ry  to 
realize Kl in Rz” as far as possible. We shall obtain then some “almost 
true” realization such that parts ’S; and ‘Sl, corresponding to disjoint 
S: and S: of K will be disjoint in Rz” when 4+Z<2n, while they in- 
tersect only in isolated points when k=l=n. With respect to an 
orientation arbitrarily chosen of RZ”, ‘Sl and ’S: determine then a de- 
finite intersection number f ajj (with sign conveniently chosen). 
These numbers determine in  turn a vector P=(aii) of P. Van Kam- 
pen’s work shows that, whatever be the subdivision K ,  of K and the 
“almost true” realization of K1 in RZn, the corresponding vectors P 
always belong to one and the same equivalence class in f. I t  follows 
that this equivalence class is an invariant of the complex K. I t  is 
evident that the belonging of the zero vector to this invariant equi- 
valence class is a necessary condition for the existence of “true” 
realization of K in Rzw. I t  is this invariant which has enabled Van 
Kampen to assure the existence of n-dimensional complexes non-real- 
izable in Rz”. On the other hand, Van Kampen failed to ascertain 
whether the above necessary condition is also sufficient and the 
problem of characterizing n-dimensional complexes in  Rzw remains 
unsettled up to the present. Moreover the method of Van 
Kampen-Flores cannot be seen to be readily generalizable to the real- 
izability in R”, m being arbitrary. We remark also that whether 
Van Kampen’s invariant is a “topological’’ invariant of the space of 
K ,  or even whether i t  is a combinatorial invariant of K,, cannot be 
decided from his works. 

At  the time of Van Kampen and Flores the cohomology theory 
has not yet been created. To get a deeper insight of their results 
we will reformulate them in  the modern terminology of cohomology. 
Their statements will then become clear and natural as follows. 
From the given simplicia1 complex (of any dimension) let us con- 
struct a sub-complex K” of K x K ,  consisting of all cells b x r  such 
that a, T are disjoint in K. Identify each pair ~ X T  and T X ~  of g* 
to the same cell ~ * T = T * s ,  we get a cell complex K”. Suppose that 
the cells aC K are oriented and let us orient the cells a * ~  of K* as 
~ X T  in  the product complex K x K ,  such that 

u 

T * b .  (1) 

Then for dim K = n ,  any vector P in may be regarded as an in- 
tegral 2n-dimensional cocycle of K*, and the equivalence of vectors 
in f is the same as the cohomologousness of their corresponding 
cocycles. I t  follows that Van Kampen’s invariant is essentially an in- 
tegral cohomology class i n  K”. 

* = (- 1 ) d h  o dim r 

24 



253 

From this reformulation we may naturally extend Van Kampen's 
method to the realization problem of complexes of arbitrary dimen- 
sion in euclidean space of arbitrary dimension m. For this let  us 
take an arbitrary simplicia1 subdivision K1 of K and try to realize 
K1 as much as possible in  R", such that any two simplexes of K,  are 
in general position whenever possible. Let the chain in R" thus ob- 
tained, corresponding to any 5 E K ,  be denoted by c'. Then, with 
respect to a fixed orientation of R", to any two disjoint simplexes 
c, T in K with sum of dimensions just equal to m, there corresponds 
a definite intersection number Q)(c', T'). Let Z(,,,) be either the addi- 
tive group of integers I or the group of integers mod 2 I,, depend- 
ing on m, and p(", the corresponding identity or reduction mod 2. 
Then an m-dimensional cochain 9 E Cm(KX, Z(,,,)) may be defined by 

q(c * T) = E ,  p(m) 0(d, T'), dim d = f, dim T = m - r ,  ( 2 )  

where ~ , = + l  or  -1, depending on r. To make q a cocycle on co- 
efficient group Z(,,,) and to make the definition of q consistent with 
(1) we should take E ,  such that  

P(m) Er + ~ ( m )  Er+l = 0 9 

P ( m )  €7 = P ( m )  Em-r . 

If we make the further restriction that ~,,=+1, then to make the 
above equations consistent, we may take 

I ,  when m = even, 

Iz, when m = odd 
I(m) = 

and to choosc 8, to be, say (-1)'. We thus obtain an integral cocycle 
9 in the case. that m be even, while only a mod 2 cocycle q i n  the 
contrary case Just as in  the special case considered by Van Kampen, 
i t  turns out that these cocycles, whatever the subdivision K ,  and the 
almost true" realization may be, always belong to one and the same 

cohomology class @'" E H"(K",  Z(")). Moreover, it may be shown that  
so far as m>l,  any cocycle in W" may be realized as one arisen from 
some subdivision K1 of K and some almost true realization of K,  in 
R". However, this is not true for m=1, as seen from very simple 
examples. 

The  series of classes @" E H"(K",  l(,,,)) will be called in  the pre- 
sent work the imbedding classes of K. The vanishing of @"' is 
evidently a necessary tondition for the realizability of K in  R". We 
have 2@"=0, when m is even; but in general @'" are nontrivial and 
thus  they serve as effective tools in the study of realization problems. 

We remark that  we may define, just as in ( 2 ) ,  with respect to any 

<< 
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simplicia1 subdivision K1 of K and any "almost true" realization of 
K, in R", a certain integral m-dimensional cochain @ in X" by 

N 

Q(a x 5 )  = (- l)d''''o 0(d, r'), d x r C k*, dim 6 + dim 5 = m. 

I t  is true that Q is always an integral cocycle and its class am is uni- 
quely determined. However, i t  turns out that  8- is always 0 (what  
is not easily seen from the definition itself) and therefore the com- 
plex g* is not so useful as K", so fa r  as the realization problem 
is concerned. 

Let R' c R2 c . . c R" be a sequence of linear subspaces of increas- 
ing dimensionality in  R". By trying to realize the complex K in a 
certain canonical qanne r  such that KO c R', K' c R3, etc., representa- 
tive cocycles in @'" may be explicitly constructed. This not only gives 
the means to compute effectively these classes in  every concrete case, but 
also makes i t  possible to derive a series of properties of 0"' which 

Y mod 2. This 
also enables us to determine, for some particular complexes genera- 
lized from those of Van Kampen, exactly the lowest dimension of R"' 
in which they may be realized. I t  seems that this cannot be done 
with any other known methods. 

At last we should point out  that the realization problem is in  real- 
i t y  "topological", but not "homotopic" in character. For example, 
a segment and a triangle have the same homotopy type, but the 
former may be realized in R' while the latter cannot. I t  follows 
that the problem cannot be completely solved without the aid of to- 
pological invariants which are in general not invariants of homotopy 
types. I n  a previous paperI6' the author has described a general 
method of constructing such invariants. The above-mentioned groups 
H"(K",  G )  (and Hm(gm, G ) )  are particular cases of these invariants 
and we may thus legitimitely write H",' ( K ,  G )  or H'"' (P, G )  instead 
of H" ( K " ,  G )  where P=K is the space of K.  Similarly we write 
H m ( g " ,  G )  = @'""(K, G )  = ~ " ' ( ( P ,  G).  Based on [6] we may prove 
that  0" H",' ( K ,  Z(,,,)) HmS2(P, I(,",) are not only combinatorial in- 
variants of K but also topological invariants of P, an important point 
completely disregarded by Van Kampen in  the special case studied by 
him. On the other hand, 0"' are not invariants of homotopy type of 
P. I t  seems that this is the very reason for the successfulness of 
methods, originated from Van Kampen and developed here. 

We restrict ourselves in the present paper to give a basis of the 
whole theory and leave to later considerations the study of relations 
of the imbedding classes with Steenrod squares and also with Stiefel- 
Whitney classes in  the case of a manifold. We leave also to a later 

are not easy to foresee, e.g., - 1 s p  - I = @2m ,p u @!=p'+i 
2 
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occasion the proof of the sufficiency of our condition for the realiza- 
bility in certain extreme cases. 

§ 1. LINEAR REALIZATION OF COMPLEXES IN EUCLIDEAN SPACES 

In what follows, K will be a finite euclidean simplicial complex," 
and R" a euclidean space of dimension m. 

Suppose given in  R" a euclidean simplicial complex K', which is 
isomorphic to K under the correspondence T : K - K', then we 
shall say that  K'= T K  is a linear realization of K in R". Denote 
the topological map induced by T of the spaces z, of K ,  K' by 
T : K f r, then T or T will be called a linear imbedding of K in  R". 

I t  is known that any abstract simplicial complex of dimension r 
may be realized as the associated abstract complex of a euclidean 
simplicial complex in  Rz'+' of dimension 2r + 1, but not necessarily 
so in euclidean spaces of lower tlimen~ion"-~'. From this we may 
draw two conclusions. First, the problem of existence of euclidean 
complex in an Rm associated with a given abstract simplicial complex, 
is equivalent to the problem of linear realizability of euclidean 
simplicial complexes i n  R". For that reason, whenever we speak of 
complexes, we mean euclidean complexes in a euclidean space of 
sufficiently high dimension, and a subdivision will always mean a 
euclidean subdivision. Secondly, a euclidean complex K in general 
has no linear realization in R" if m < 2 dim K + 1. To study this 
problem, we shall recapitulate and introduce some concepts as follows; 

Let or, T' be two euclidean simplexes in R", of dimensions r 
and J respectively. If for any r'-dimensional face d of a' and any 
s'dimensional face T' of T, the linear subspace determined by G' and 
T' has a dimension min (r' + 5' + 1, m ) ,  or  in  other words, if any 
r'+ 1 vertices of 6' and s'+ 1 vertices of T' are linearly independent 
so far as r' -t s'+ 1 Q m, then d, d are said to be in general position. 

Suppose given in R" a set of points v:, "', u,' and a set of geometric 
simplexes" b:, "', 6: spanned by these points of which the totality K' 
satisfies the following conditions: 1'. If S: is spanned by ui0, .", u ; , ~  and 
4 5 m, then ulo, ..., are linearly independent so that gi may be 
considered as a euclidean simplex. 2'. If c,! C K', then any face of 
a: is in  K' too. 3". If a:, 6; E K' are both euclidean simplexes and 
have no vertices in common, then a:, are in  general position. In 
such case we shall say that K' is an almost euclidean simplicial complex 
i n  R", and K' = C g,! is defined as the space of K'. 

I 

1 )  We consider only finite conisplcxes in this work, so that the modifier "finite" will be omitted 
throughout , 

2') For the definition of geometric simplex cf. [2] ,  pp. 607. The geometric simplex spanned 
by uo, --., u, of Rm will be denoted by ( u o ,  ..., a,) .  

27 



256 

Suppose that to a euclidean simplicial K we have in R" an almost 
euclidean simplicial complex K' isomorphic to K ,  i.e., K ,  K' have same 
number of vertices vi, vl, i = 1, -.., n and the 1-1-correspondence 
v j  ++ vl between these vertices is such that (u;,, ... vj , )  6 K is equivalent 
to Let the induced correspondence be T : K -+ K', 
then we will define K'= T K  as an almost linear realization of K in 
R". The continuous map T : K -+ E' induced by T and also T itself 
will then be called an almost linear imbedding of K in R". 

Evidently a linear realization (or linear imbedding) of K in  R" 
is also an almost linear realization (or almost linear imbedding) of 
K in R", but the converse is not true. I t  is easy to see that K has 
almost linear realizations in  R'" of arbitrary dimension m, though i t  
has linear realizations only in R" of dimension m sufficiently high. 
We shall introduce in what follows some invariants of K through 
its almost linear realizations in R" with the aim to study the linear 
realizability of K in R". 

Since a complex is equivalent to its subdivisions from the point 
of view of combinatorial topology, we shall introduce the following 
concepts.') 

Suppose given a simplicial subdivision K,  of K and a linear (or 
almost linear) realization K: = T K ,  of K ,  in  R", then we shall say 
that KI is a semi-linear (or almost semi-linear) realization of K in 
R" through its subdivision K1, and T or the induced topological map 
T : Fz: (or  continuous map i-' : K - xi) will be defined as a semi- 
linear (or almost semi-linear) imbedding of K in  R" through its sub- 
divisioii K1. 

Let K be an almost euclidean simplicial complex in R" and o be 
a point of R". The ( Y  + 1)-dimensional geometric simplex 06 spanned 
by o and any r-dimensional geometric simplex 6 of K will be called 
the central projection of cs from 0. The totality of all such simplexes 
o c and the simplexes of K form a simplicial complex, called the 
central projection of K from o and denoted by OK. I n  general, OK 
is not an almost euclidean complex even if K be so. However, we 
have the following 

If K is an almost euclidean simplicial complex i n  
R" and L a subcomplex of K ,  then there exist points o in R" such 
tha t  oL+ K is an almost euclidean complex. Moreover, such points 
o may be chosen in any neighbourhood of any point 0' of R". 

Proof. Consider any pair of simplexes 6, rs in  K having no 
vertices in common, for  which the sum of dimensions r+s is <m-2. 

"', v:,) 6 K'. 

- -  

( A )  Lemma. 

I )  From mmr exarnplcs pivcn by Cairns and Van li:im,pcnl7~ " I ,  it  may ,bC seen rhar the problem 
of rcalizition ~vould hr tolwlogically incnninglms b y  mnsidrrin): only the original complex without 
inrrducinc furrlicr whdivisions. 
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Since K is almost euclidean) the linear subspace P(6,  T )  determined 
by 6, T has a dimension Y f s  + 1 < m  - 1. Again the linear subspace 
P(.) determined by any simplex 6 of dimension Y 4 m - 1 in  K has 
a dimension Y < m - 1. Hence in any neighbourhood of 0' there exist 
points not belonging to any of such linear subspaces P ( 6 ,  T )  or  P ( 6 ) .  
Evidently any such point may be chosen to be a point o as required 
in the Lemma. 

Let K be a euclidean simplicial complex, L a sub- 
complex of K ,  and L, the subcomplex formed of all simplexes of L 
which has no vertex in common with any simplex of K - L. Let 
f : 4 R" be a continuous map such that f / Z  is an almost linear 
imbedding of L in R", i.e., f ( L )  is the space of an almost euclidean 
complex L' in R" : z' = f ( Z )  and L' is isomorphic to L under the 
map f. Then for any e > 0, there is an 6-approximation 7 : 4 R" 
of f such that T is an almost semi-linear imbedding of K in  R" 
through a subdivision K1, T I Z E f ,  and K1 has a subdivision L1 of L 
as a subcomplex which coincides with L,  on z,. 

Proof. Since K is finite, we have 6 > 0 such that for any two 
points x, y E i?, p(x,  y )  < 6 would imply p ( f ( x ) ,  f ( y ) )  < e/5. Take 
now a simplicial subdivision KO of K such that L, is a subcomplex 
of KO and any 2implex of KO on KO - L has a diameter < 8. The 
part of KO on L is a subdivision of L which will be denoted by Lo. 
Let K ,  be the subdivision of KO obtained by constructing central 
subdivisions') of simplexes of KO - L,, the centre of 6 C KO being oa. 

The part of K ,  on z will be denoted by L1. Under f ,  Lo and L1 will 
correspond respectively to a simplicial subdivision Li of L' and its 
central subdivision Li. By convenient choice of KO and centres o,, 
we may make LL and L; the almost euclidean complexes which will 
be supposed to bc so. Arrange now the simplexes in  KO but not in 
Lo in an order c1 < ... < c,, such that those of lower dimension will 
precede those of higher dimension, but otherwise arbitrary. By (A), 
we may take successively points o:, .. , 0: to satisfy the following 
conditions: 

1". 

2". 

(B) Lemma. 

o: is in the e/5 neighbourhood of f(o.,). 

If we define T(oOi )  = o:, I = 1, .. , n, and T ( 6 )  =/(a) for  
6 t L1, then T determines an almost semi-linear imbedding of KO in 
R" through K,. 

Let x C 7 = ( v o  ... u,) C. K ,  - L1, o, being ver- 
tices of K,,  then 

Evidently T I E  EE f .  

1) 
subdivision. 
the barycenter, may be usrd as thc ccntre of projection in thc construction. 

By a central subdivision wc mean a subdivision analogous PO the convtruction in b a r y c c n ~ c  
The only  &ffercnce is that liere any in.tcrior jxiinn of mrrcspncling simplex, not necessarily 
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Hence T is an E-approximation of f and (B) is proved. 

52. THE IMBEDDING COCHAIN OF AN ALMOST SEMI-LINEAR REALIZATION 

Let R" be a euclidean space of dimension m with fixed orientation, 
K ,  L be two euclidean simplicia1 complexes in R"' and x = I= a j a r ,  
y = C b,Ti be two chains on integer coefficients in  K ,  L of dimension 
r, s respectively with r + s = m. The subcomplexes of K ,  L deter- 
mined by those s;, T, for which aj, b, are # O  will be denoted by 1x1 
and ly l  respectively. Suppose that 1x1, IyI are in  general position, 
i.e., any  simplex c of 1x1 and any simplex T of I y I  are in general 
position, then with respect to the oriented R"', the chains x, y have 
an intersection number ( [2]  Chap. 11) 

0 ( x ,  y >  = 2 ai bjO(~i9  TI), 

which is bilinear and possesses the following three properties (dim x=r, 
dim y=s and all intersection numbers are supposed to be defined): 

(1) 

(2)  

and finally, change the orientation of R" and denote the intersection 
number with respect to this otherwise oriented R" by @', then 

(3) 

We may also extend the definiticn of intersection number @ ( x ,  y) 
of chains x ,  y with sum of dimensions r + s = m for which only the 
conditions n 7 = n = 8 are satisfied by considering them as 
singular chains. The properties ( l ) ,  (2 )  and ( 3 )  hold still for such 
intersection numbers. 

In  what follows gm will be used to denote the intersection number 
or  the intersection number reduced mod 2, according as m is even or  
odd. 

For an arbitrary euclidean simplicia1 complex K, define now two 

0 ( x ,  y )  = ( -I)rJ O(y, x )  , 

0 ( x ,  a y )  = (-1 >' 0(c3x, y )  , 

r + s = m , 

r + s = m + 1, 

0 ( x ,  y )  = - O'(x, y ) ,  r + s = m . 
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abstract complexes R" and K" as follows. First, we define 3' as 
the subcomplex of the product complex K x K consisting of all cells 
6 x r  for which 6, r C K have no vertices in common. Orient each 
cell 6 x r of K" in the usual manner we would have 

a(a x r )  = a6 x r + (-1)'s x as, I = dim 6 (4) 

(6, r are oriented cells of K ) .  111 P ,  6 x r + r x 6 defines a cell. map 
t of period 2 and having no fixed cells, which induces a chain map 
given by 

(5) 

With respect to t ,  R" has a modular complex z"/t = K", which is 
obtaiiied by identifying each pair of cells CT x r ,  r x c in i?" with a 
single cell c * r (or what is the same, r * 6). Orient 6 * T now as 
6 x 7, then by (4), (5) we have ( r =  dim 6, s = dim r ) :  

(6) 

g a r =  ( - -1 ) " r*s .  ( 7 )  

Then by [ 6 ] ,  
the homotopy type of g* and K"¶ in particular the homology and 
cohomology groups of K" and K", are all topological invariants of 
K = P, n fortiori combinatorial invariants of K .  For this reason we 
shall adopt the following notations: Hr(g", G)=Er2(K, G)=HS'*'((P, G ) ,  
H ' ( K " ,  G)=H', '(K, G)=H"(P ,  G). 

Consider now any almost semi-linear realization KI = T K ,  of a 
simplicia1 complex K in R" through a simplicia1 subdivision K1 of 
K. Let the chain map induced by the subdivision K 4 K ,  be Sd, and 
the chain map from K 1  to KI induced by T be T,. Write for simplicity 
T,Sd  by T. Similar notations will be used throughout this work. 
For any oriented cell 6 x r of dimension m in K;*¶ T 5 and T T are in 
general position since 6, r have no common vertex in K and T is 
almost semi-linear. 

t#(a x r )  = ( -1Ir' ( r  xa) , r = dim c , s = dim r . 

a(a * r )  = * r + (-1)'~ * ar , 

We may regard z" and K" as euclidean complexes. 

N 

u 

It follows that we may define an integer by 

B T ( a x r )  = (-l)di'no @(Ta,Tr) .  (8) 

Then @, is a cochain i n  g" on integer coefficients. 

Let 
m even {::, m odd I(") = 

Let ,o(") : I --+ Z(,,,) be the identity or the reduction mod 2. 
@(,,,) = P(,,,) (d so that (-I) '&, = (- 1)'&, for r + s = m. 
have always 

Further let 
Then we 
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(-1>'@,(Tr,Tc) = (-1)'s (-l)rJO,(Ta,Tr) = ( - I ) " ( - I ) ' B ~ ( T ~ , T T )  

for any 6 * r E K* with dim 6=r, dim r=S and r+s=m. 
with (7) we see that (6 * r C K*, dim 6 + dim T = m) 

Comparing 

( 9 )  r p T ( ~ *  r )  = ( - I ) ~ ' " ' ~  &(Ta. Tr  ) 

defines unambiguously in K" a cochain qT E C" ( K " ,  I(,,,)). 
Then 

u 
Let E X ?  be any cell of dimension m+l in KX. 
G ~ T ( E X ? ) = @ T a ( E X ? ) = q T ( a E X ? )  + (-1)"'"' @ T ( c x a ? ) =  

= ( - 1 ) d ' m E - l  0 ( T  aE, T?) -!- 0(TE, T a?> = 
= ( - 1 ) d " " E - l  . ( - 1 )"'"' ' 0( TE, aT9) + O( re, Ta?) = 0 . 

Similarly we have 6 p7(E * 71) = 0 mod I(,,,). Hence q,, qT are all 
m-dimensional cocycles of g* and K X  on coefficient groups I and 
I,,,,) respectively. If T is a semi-linear imbedding, then BT and qT 
are evidently 0. Hence from the definition of TT and qT we see 
that they may serve as a measure of T to the deviation from a true 
semi-linear imbedding. We shall accordingly define qT and qT as the 
imbedding cochnins of the almost semi-linear imbedding (or realization) 
T. 

With respect to R" with a fixed orientation, the 
imbedding cochains qT E Cm(E*) and p T  E Cm(K", I ( " ) )  of an almost 
semi-linear realization T of a euclidean simplicia1 complex K in R" 
are all cocycles (and may be thus called the imbedding cocycles of T ) .  

The definition of imbedding cocycles depends on the orientation 
of R". 

Theorem 2. With respect to R" with the two opposite orien- 
tations, the two imbedding cocycles qT and $; (or qT and 9;) of an 
almost semi-linear imbedding T of K in R" differ a t  most by a sign: 

The above results may then be written as follows: 
Theorem 1. 

By ( 3 )  we have 

qT = - @;, 9 7  = -q;- ( 1 0 )  

$3. DEFINITION OF IMBEDDING CLASS& 

Let K ,  R"' be the same as in the preceding section, K1, K ,  be two 
simplicia1 subdivisions of K ,  and TIKl = K;, T,K, = Ki be two almost 
semi-linear realizations of K in R" through K ,  and K ,  respectively. 
The aim of the present section is to prove that the imbedding cocycles 
of T ,  and T ,  are cohomologous to each other. We shall suppose in 
what follows that T,Kl and y2g2 are disjoint. As this may be achieved 
by at  most a parallel translation of T,R2 and as the imbedding cocy- 
cles qT,=q2, qTa=qz remain unchanged after the parallel translation, 
there will be no loss of generality in making this supposition. 
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Arrange now the simplexes of K in an order 61 < c2 < "', such 
that simplexes of lower dimension will precede those of higher dimen- 
sion, but otherwise arbitrary. Let [ 1, 21 be the closed interval 1 4 t 4 2 ,  
and K x  [ 1, 21 the complex with usual cell decomposition which will 
be considered as a euclidean complex. Let 1, be the set of all indices 
i for which dim ci=O, / r = / r - l + ( ~ ) ,  L o = K x  ( l ) + K x ( 2 ) +  C a ~ x [ 1 , 2 1  

and Lr=L,-l+6,x [ 1, 21, ~ = l ,  2, .... We shall construct now for each 
r = 0, 1, 2, ... a simplicia1 subdivision L,, of L, and an almost semi- 
linear realization HrL,,O=L:,O of L, in R" through the subdivision L,,, 
such that the following conditions are satisfied: 

1 c I ,  

1". 

2". 

3". 
4". 

L,,,=K,x ( l ) + K , x  ( 2 ) +  C 6 ; X  [l, 21. 
i C 1 ,  

H,(T~x ( j ) ) = T j ( T j ) ,  r j C K j ,  j=1, 2 and for ; E l o ,  R(Zix [ l ,2 ] )  

Lr-l.o is a subcomplex of L,,o and H,/L,-l.o = H,-I. 
If i, j C  lr, dim ai+dim ai=m-2, and gi, 6, have no vertex of 

K in common, then Rr(Z,.x [ 1,2] n Rr(Zj x [ 1,2])=@. 

For the construction let us first draw in R" for each iC], a 
simple broken line 1; joining x ( i ) ) ,  j = 1, 2, such that these l; 
together with T,K,+T,K, form an almost euclidean complex. In the 
case m 2 2 ,  we shall choose li  to be disjoint from each other. Define 
now Lo,, and Ho according to lo, 2", then 1"--4" are all satisfied for 
them. Suppose now Lisa and H i  have been constructed for i < r - 1 
which satisfy 1"-4" and let us define L,,, and H ,  as follows. If r C lo, 
then L,,o = Lo,,, H ,  E H ,  having been defined. Furthermore, as the 
case dim 6, > m - 2 is trivial, we shall suppose in what follows 
dim 6, = e S m - 2 and > 0. 

Any two simplexes E', 7' in L:-l,o not 
belonging to H,-,(K,x (l)+K,x (2)) and having a dimension 4d-I-l 
have an intersection which determines a linear subspace P(c' ,  7') with 
a dimension < max (-1, 2(d+l)--m). Let c' be any simplex in L:-l,o 
lying on Rr-l(Zr x (1) + Zr x (2) +-,:Z: x [ 1, 2]), then c' and P(€', 7') 
will determine a linear subspace P ( c ' ,  T', c') with a dimension 
4 max (--1,2(d+1)-m)+e+l = max (d+l, e )  < m-2. Take now a 
point or in the interior of Z,X [I, 21 and form the central projection 
of the boundary of a,x [ 1, 21 with centre or, thus obtaining a simp- 
licial subdivision Lr,, of L,-l,o+b, x [l, 21 which contains L,-,,O as a 
subcomplex. By 5 1 ( A )  we may choose a point 0: in R" not lying 
on any linear subspaces P(E' ,  v', C') such that H~/Lr- l . o~H, - l ,  
H:(o,) = o: will induce a n  almost semi-linear realization H:L,, = L:,l 
of L, in R" through L,,l. Then Lrsl and H: satisfy lo, 2", 3" and for 
i, j E /,-.l also satisfy 4". Suppose now il, i2, ... C Jrml  be the totality 
of indices for which dim bi,=d and cj,, a, have no common vertex 

is a simple broken line li. 
- 

Put d = nz - 2 - e < m - 3. 
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in K. Then for each p, Ff:(z, x [l, 2])nR:(biP x [ l ,  21) consists of 
a t  most finite number of points pi,+,, .“, Owing to the choice 
of o:, R:-l(p;,,) consists of only one point in C ZiP x [I, 21, say phP, 
where h = 1, ..., 5,. Consider now any fixed index i = i,. In L,-lp, 
let us take any d-dimensional simplex y lying on Z i x  (2). Take also 
point x interior to y with R:(x)=x’. If d=O, we shall denote by p 1  
that point among pbl=pb (h=l, *.., si=s on aix  [l ,2])  which is nearest 
to x = a i x  (2) from b i x  (1) to x, and denote by B the part of a i x  [l, 21 
from p1 to x. Then f?:(B)=B’cl i  is a simple broken line. If d>O, 
then as 2(d+l)-m<(d+l)-2, we may still join p1  to x by a simple 
broken line B lying wholly on zi x [I, 21 such that for any point 
y C Qirx [ 1,2], we shall have R:(y) 4 B’=R: (B~so  far asy 4 B. I t  follows 
that, whatever the case may be, B has always a neighborhood N in 
Zix [l, 21 such that A : ( N ) = N ’  is disjoint from p:(C z i P x  [I, 21-N); 

R : / N  is one to one, and B does not pass through the points p2, .* ’ ,  
p,. Let the vertices of the broken line B be successively x,  xl, .“, x k = p l  
and suppose that the segment X X ,  is in the (d+l)-dimensional simplex 
E l ,  the segment xi is in the (d+l)-dimensional simplex ej of 
L,-l,o lying on G i x  [ 1, 21 (j=2, ’“, I < ) ,  and xi is an interior point of 
the d-dimensional simplex yi which is the face common to cj  and 

Prolong xlx to xi such that xfxL meets A:(Z a i P x  [I, 21) only in XI .  

Denote by xI, .”, xI the totality of points in n:-’(p;) n a,x [ 1, 21 and 
denote by Ci the (e+l)-dimensional simplex of L,,, lying on Q,x [ 1, 21 
which contains xi in its interior. The integer t will be called the 
multiplicity index of pi. and denote by Pi the 
(ef1)-dimensional linear subspace determined by C’=R:(C). Through 
each xi’ (0 < j < k )  draw now an (m-1)-dimensional linear subspace 
Pi’ such that for 0 < j < k, Pi, contains 7; with ti, Fi+l on opposite 
sides of Ptf, and Pi meets xi  xi only in xi. Take an (e+l)-dimensional 
simplex T containing x = x1 in its interior and contained in r, with 
diameter less than a sufficiently small E>O. Put T f = H , ( r ) .  For any 
y f E  T we shall draw a broken line B: = y; ... y: yi xi such that y( E Pi, 
yk = R:(y) and yi yj-l is parallel to xi x j - l  ( j  = 1, .“, 4). Evidently 
for 6 sufficiently small we may make Bin C H,(biP x [l ,  21) = 8 for 

y E 5. After the choice of such an 6 we may define a continuous map 
pif : zr,l- R” by n:‘/z,,, - ?=B:, while for any y C T ,  R:’ maps 
linearly yz, to the segment BI. By 5 1 (B), we may construct an 
arbitrarily- small approximation R:’) such 
that R;lf L.,al is the space of an almost euclidean complex, and Lr,l has 
a simplicia1 subdivision L,,2 having L,-,, as a subcomplex, while R:ff 
is the continuous map associated with the simplicia1 map El:’’ (Lr2)=L:,2. 
By taking the approximation sufficiently small, we may make f?;”(6,x 

L 

P 

E j + 1 ( j = l ,  ?,;-, k-I). Put R : ( x j ) = x ; ,  R:(Cj)=C;, R:(yi)=$, i y (y )=y ’ .  

P 

Consider any 

-1 - 

I f  I f  

-1 - 
P 

-111 - 
of Rif ( H ,  /L,., - T 
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x [ I ,  21) n W:’’(Zi x [I, 21) consist of only 4- 1 points pi, .*., pi ,  or 
though of the same number of points p;, ..’, p i  as before, the mul- 
tiplicity index of p i  is decreased by l, while the number of inter- 
secting points and the multiplicity indices of ,:’’ (?, x [l, 21) and 
Q:”(zi, x [ 1, 21 ) (besides a t  p ; )  are all unchanged. 

Proceeding successively with the same process, we shall make the 
number of intersections of the images in R” of 2,x [l, 21 and six [l, 21 
reduce to 0. Using the same procedure to each air we get finally 
a complex L,,o and a realization H,L,,,, = L:,o which satisfies the con- 
ditions lo-4”. 

By induction on Y, we get finally a simplicia1 subdivision L of 
K x  [ 1, 21 and an almost semi-linear realization HL=L‘ of K X  [l, 21 
in R”’ through L. By 4”, this H will satisfy the following condition: 
If dim a; + d im aj = m - 2 and ci, a; have no common vertex in  K,  
then 

(1) 

Now let the chain map induced by the subdivision of K x [l, 21 
into L be denoted by Sd, and that induced by H be denoted by HB. 
Orient [l, 21 by the direction from 1 to 2 and put for simplicity 

H ( a i  x [1 ,2])  n H(aj x [1 ,21 )  =0.  

h e . -  I -  ( - l ) d i m a l  H,Sd(bi X [1 ,2] ) ,  
then 

ah 6; = T,  6;- Ti - h & i ,  ai 6 K - ( 2 )  

If dim ai + dim aj = m - 2 and ai, aj have By (l),  we get further:  
no common vertex in K ,  then 

we know, by comparing with (7) of 5 2, that  we may define unam- 
biguously a cochain (F, E Cm-’ (K”,  I , , , )  by 

#‘(ei * Sj )  = 0,(%ai, h b j ) ,  dim bi 4- dim aj = m - 1, ai * bj E K* . (5) 
u 

For any ~k x 61 6 K” with dim ak + dim c, = m we have now 
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Q1- 4%. 
Similarly, we have also 

The above imbedding cocycles q7, qT are defined with respect to 
R" with a fixed orientation. If we reverse the orientation of Rm and 
denote the corresponding imbedding cocycles of T by @;, qk, then we 
have by Theorem 2 of $2, @; = - @ T ,  9; = - qr. Hence by (9) ,  (11) 
we have 

Q ; - Q T ,  (13) 

v;-w, mod I w .  (14) 
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From (9)-(14) we get therefore the following two theorems: 

Theorem 3. The imbedding cocycles @T and qr of an almost 
semi-linear realization T of a euclidean simplicia1 complex K in an 
oriented R" each belong to a fixed cohomology class 8'" fims2(K) 
and @"' 6 H"'*(K, Z(,,,)). Moreover, these classes are independent of the 
chosen orientation of R" and the chosen realization T .  

The cohomology class @" in the above theorem will 
be called the m-dimensional imbedding class of K ,  m > 0. 

All imbedding classes on integer coefficients have 
order 2:  

2 @" = o (m even > 0) .  (15) 

We have also 28" = 0, m > 0. However, we shall prove 
later that we have always @"=O (cf. Theorem 9 of $ 5  and Theorem 
16 of 5 8). 

From the definition of imbedding cocycles and imbedding classes 
we have 

Theorem 5. A necessary condition that a euclidean simplicial 
complex K may have a linear (or semi-linear) realization in R", is 
that 

# " = O .  (16) 

Definition. 

Theorem 4. 

Remark. 

Hence in reality 5"' are of no significance at all. 

We shall see later that in certain cases, this condition is also 

Evidently g" is a two-sheeted covering complex of K". Denote 

sufficient. 

the projection by A: 

R(b x r )  = b * r  ( a x  T E A ? * ) .  

Then by the definition of @T, qr we have evidently A' pT = ,qm) qT. 
Hence we have 

Let A be the covering projection of g" on K", then Theorem 6. 

n* #a = $=, (m even > 0) (17) 

R* @" = p, 6"', (m odd) (18) 

in which pz denotes reduction mod 2. Suppose for the moment 6"' = 0 
(cf. the remark above), then (17) and (18) may be reduced simply 
to 

x * @ " ' = O ,  m > O .  (19) 
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$ 4 .  THE REALIZABILITY OF ANY COCYCLE IN THE IMBEDDING CLASSES 

W e  have proved that the m-dimensional imbedding cochains FT 
(or pT) of K are all cocycles and belong to one and the same co- 
homology class 6'" E g"''* ( K )  (or  0"' E H"" ( K ,  Zcm)). Conversely, by 
the definition of $= in $ 2 ,  any "imbedding cocycle" qT in  8"' must 
satisfy the conditions (gi x 6, E .K*, dim ci $. dim sj = 7%) 

N 

@ T ( 5 i ~ a j )  = ( - l ) m + d i m r . d i l n o .  I @ T ( c j x 6 ; )  . 

Hence if we change FT into an arbitrary coboundary 84, &c C"'-'(?), 
the cocycle @= + 8 4 of a'" thus obtained is in  general no more an 
imbedding cocycle, a i d  is not necessarily realized as one of an almost 
semi-linear realization of K in  R". On the contrary, for the class 
0" we have the following 

If 7% > 1, then any cocycle in @'" may be realized 
as an imbedding cocycle. In other words, there must exist an almost 
semi-linear realization of K in the oriented R"', with any given cocycle 
in @"' as its imbedding cocycle. 

This theorem is not true for m = 1. For example, let  
K be a one-dimensional complex consisting of three vertices n, b, c 
and two segments nb, nc. Since K may be realized in  R', we have 
@' = 0. Hence defining a mod 2 cochain $ E C" (K" ,  Z2) by $ ( b  * c )  = 1, 
$ ( n  * 6 )  = $ ( a  * c )  = 0, we would have p = 8 $ E 0'. Suppose that 
there exists an almost semi-linear realization T of K in  R' with 
imbedding cocycle pr = p. Let T ( n )  = a', T ( b )  = b' and T ( c )  = c'. 
Then since q r  ( b  * ( n c ) )  = a $  ( 6  * ( n c ) )  = $ ( b  * c )  # 0, we have 
p2Q)(b' ,  T ( n c ) )  # 0 so that b' must lie between n' and c'. Similarly, 
since pT(c * ( n b ) )  # 0, c' must lie between a' and b'. But this is 
impossible. Consequently p C cannot be realized as an imbedding 
coc ycle. 

Consider any almost semi-linear realization 
ToKO = KL of K in  oriented R"' through a subdivision KO of K with 
corresponding imbedding cocycle pTo = po E 0"'. Denote the simplexes 
of K by g,, a, . I .  with dim si = d;. Consider an arbitrary but fixed 
( m  - I)-cell 6; * cj in K" : d; + dj  = m - 1, and define a cochain 

Theorem 7. 

Remark. 

Proof of Theorem 7. 

X;,j 5 C"-'(K*, I,,,) by 

0 , 6 b  * 61 # bi * bj or 5, * bi, 
(1) 

1 ,  c**ar=a;*a j .  
Xi, j ( ~ k  * = 

Our object is to modify To to an  almost semi-linear realization of K 
in  the oriented R" through a subdivision K ,  of K such that the 
imbedding cocycle of T, is 
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Q)T= = TI = To $. c 8 Xi, i 3 (2) 

where c = =k 1 is arbitrarily but previously assigned. * aj is 
an arbitrary (m-1)-cell of K", we may start from v0 and arrive a t  
any cocycle in @"', and our theorem would be proved in this manner. 

For this purpose let us remark first that, as m>l  by hypothesis, 
we may suppose di > 0. Consider any simplexes of KO of dimension 
di, d j  with T i c Z i ,  i j c d j  respectively. Let ri=Tori, (=Torj. In each 
of ri, rj  take an interior point xo, x such that x i = T o ( x o )  6 To(K?-'-Y;) 
x' = T o ( x )  4 To(K,"-' - r j ) .  Construct a simple broken line B, with 
successive vertices xo, x l ,  ..', x:, such that the following conditions are 
satisfied : 

1". x'E x, , -~ x,,, x,,-~ x, is orthogonal to the linear subspace R 
determined by r; and B n 7; = ( x ' ) .  

2". B is disjoint to the space of ] T o K O  - ToStori - ToStor.j lm-2 in 
which Sto denotes the star in KO. Finally, 

3". xixX; is ,- orthogonal - to the linear subspace ,Oo determined by 
r,! and meets ToK,"-' only in the point xi. 

Let Q be the di-dimensional linear subspace in R" passing through 
x' and completely orthogonal to R and xL-l xi.  Let T be an orthogonal 
transformation of R", transforming Qo to Q, xb - to x', and the xbx; 
direction to x ' x i  direction. For any point yo E Stori and any 6 >/ 0 
and 4 1, let y o ( € )  be the point on xoyo with x o y 0 ( 6 )  : xoyo = E. Let 
Byo be the broken line with successive vertices yi = To(yo), xo, xl, -*., 

Y,,-~,  y: = T(y i ) ,  'y: and x:, where y:-l y', y' y: are parallel and 
equal to x , - ~  x', x' x, respectively. From lo--" and the above con- 
struction we see that 

4". If E is sufficiently small, then for any yo C Stori, is 
disjoint from the space of I To KO - To Sto Ti  - To Sto rj I m-Z. 

5". If s > 0 is sufficiently small, then for any yo E Ti, Byocc) is 
disjoint from Ti .  

Now for any rk C Cl Sto rj, let rkae be the contraction of rk with 
centre xo and ratio of contraction B : 1 (0 4 E 4 1). In particular, 
T k , l  = rk, Fkno = ( x o ) .  Let L, be the complex formed of all r4,6 for 
which rk C Cl Sto Ti. Construct a simplicia1 subdivision K,, with both 
KO - S ~ , , T ~  and L. as its subcomplexes. In K, x [0, 11 identify each 
segment (2) x [0, 11 with a single point, where x C Kw - Stw Ti,, (St, 
beinx star in Kw),obtaining thus a space &fro and a natural map 
f c  : Kw x [0, 11 MSo. Under f., Km x [0, 11 will induce on M,o a 
cell decomposition such that fc  is a cell-map. Denote this cell de- 
composition of a,, by MCo. Then the parts of M,, on fl(xw x (0)) 

Since 

- -  
- -  - 

I '  

I J / / I  

, I  

, I  

-- 
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and f L ( K O O x  (1 ) )  are isomorphic to K W x  (0) and Kw x (1) respectively 
itnder the map f.. 

First, for any yoCStor i ,  
let ayo be a linear map of [0, 13 to By, such that ay0(i/2 (tz + 2)),  
i = 0, 1, '", n + Z are successively yo, x0, ..., x "-,, y "-,, yn while aye( 1) = x i  
(for the symbols cf. above). If z E f , (Koo - Stoo rjs , ) ,  then define 
p ( z )  = i ' , (z) .  Finally, let T k E S t o r i ,  yo be any point E T k , 6 ,  but not 
interior to T j , < ,  then for any t E  [O, I ] ,  W' linearly map f s ( y o x o ,  t )  to 
the broken line 

- 
Define now a map no : nco+ R" as follows. 

I ,  t f f  

such that 
I 

R0fE(YO(4), I )  = ay0(l-'l) , 1 - y < 4 4 1 , 

I H0 f . ( ro(4) ,  t )  = a Y " ( 2 7 m - t ) )  (3) 9 0 4 P s 1 - -. 2 

The map Do thus defined is evidently continuous. Let gt : K+K %[O, 11 
be the map g , ( z ) = ( z , t ) ,  z C z ,  and @:x+R'" be the map E:= Hof,g,. 
Then n:G To, and ny maps yoxo to By,, where yo E 'k ,e  - Int  '+, rk E Sto r,. 
By 4", 5' we have then 

If s is sufficiently small, then for any rk E St, ri rI E IKo - 
- St, r ,  -St, r, I "-', we have 

4;. 

5,. If 6 > 0 is sufficiently small, then ~ ~ ( ~ i . e )  is disjoint from 

Choose now E > O  sufficiently small such that 4; and 5; are both 
satisfied. By 5 1 (R),  there exist a simplicia1 subdivision M ,  of MCo 
and an arbitrarily small approximation g:a,o-+R"' of no such that 

~ o / f . ( K o o  x (0) ) ,  and f? be an almost semi-linear imbedding of 
M,, in R"' through M,. This approximation A of Ro may be chosen 
so small that the following conditions corresponding to 40" and 5; will 
be supposed to be satisfied. 

For any  rk E St, r ,  and T I  E ]KO - St, r j  - St, r,I m--l we have 

To T,. 

6". 
(A,  = RfcgJ 

FL(?k,6) n T o s l = O ,  t e [ o , 1 1 .  

7". Rl(T,,e) n TOT,= 8.  
Define now a map TI : -+ R" by TI = A,fcgl, then T,  determines 

an  almost semi-linear realization T ,  of K in R" through a certain 
subdivision K,.  Let Sd and Sd' be the chain maps induced by the 
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subdivisions K or KO-+&, and Meo+M,  respectively. For any chain 
c of K or  KO, HSd'f,(Sdc x [O, 11) is a chain in R", which will be 
denoted for simplicity by (-l)dimc h ( c ) .  

(3) 

h ( r )  = 0 ,  r E KO but ( S t ,  r; .  (4) 

By 5",  7" and the construction we see easily Q),,,(hri, Toai) = 41. By 
conveniently choosing the orthogonal transformation T of R" to be 
orientation-preserving or orientation-reversing, we may always make'' 
(c = f I as i n  ( I ) )  

0(Ar i ,  Tog;) = ( - l ) d i + ' ~ .  (5) 

Let rk C Sto T i ,  rI C KO - Sto ri-Sto T i ,  where dim r4 + dim T, = m - 1. 
Then since dim r4 >, dim pi > 0 we have dim r ,  < m - 2 and T~ E I KO - 
St, Ti - St, ri I m-2. Hence, by 6", 

O(hrk,  To r,) = o . ( 6 )  

Let the imbedding cocycle of TI be q7., = q l .  We shall prove 

(7 ) 

Then we have 

c C C*(&) or C*(K) . %(c) =;: T , ( c )  - TO(c) - h a ( c )  , 

that  for any cell a/, * aI C K" with d, + d, = m, we have 

'?I (a/, * 0,) -- Vo(6, * 01) = C 6 xi, ; (Uk * 5,) . 

Case I. a4, 6 1  4 St a,. 
I n  that case TI / Gk f To,  TI / bI z To.  Hence ql(ak * 6,) = 

Case I I. ak C St ai, a, = a;. 

We have d, = Ji + 1, and T ,  / 5, 

- - 

= qo(ah * 01) .  As 6xj,j(ak * a,) = 0, we have (7). 

- - - 
T ,  f 5; To / bi. Let 

a a k = n 5 j + c ,  u = k ~ ,  (8) 

( c  contains no term involving a;), then 

8 xi, ; (u,  * GI) = xi. j ( a 6 4  * a,) = u x i , ,  (0; * a;) = a . (9)  

Let rrc C S t o  7, be the dk-diniensional simplex of KO with f/, c b/,, and 
le t  T i ,  rk  be oriented concordantly with a,, a, respectively, then by 
(8) we get 

a T 4  == n T i  + C', d = 3z 1.  (10) 

(C' contains no term involving T i ) .  By (3 ) - (6 )  and (lo),  we get 

I )  This is nclt neccssarily possible when m=I (cf. the remark before the proof). 
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As T I  4; = To 6l, we have ~ ~ ( 6 ~  * 61) - v0(bk * bl)  = 0. On the other 
hand, that 6Xi,j(a4 * 6,) = 0 is evident, Hence (7) is true. The same 
holds on interchanging the role of 4 and 1. 

From the all possible cases considered above, we see that (7) is 
always true for any o4 * nI C K" with dk + dl = m. Hence (2)  is 
established and our theorem is completely proved. 

55. RELATIONS BETWEEN Ym-' AND ern - 1 
' 2  = ern 

In  this section the vertices of a euclidean simplicia1 complex K 
will be arranged in a definite order a, < a, < ... < a,,., and any simplex 
6 C  K will be written in the normal form 6 = (aio ... air) with io < 
< ... < i, and oriented accordingly. The dimension of 6 will be denoted 
by d(6), the barycentre of 6 by o,, and the barycentric subdivision 
of K by K,. The simplexes of K will also be arranged in an order 
<such that 6 = (ai, 3.. ni,) < r = (ajo ... aj,) if and only if either 
d(6 )  = Y < d(7) = s, or Y = s and z exists with io = io7 -.., it-, = ice, 
but it < it. 

Between the imbedding classes em-' C H2"-"2(K, I,) 
and @2m C H2m'2(K) of K we have the following relation: 

Theorem 8. 

Proof. Let RZm be a euclidean space of dimension 2m, with a 
rectangular system of coordinates (x , ,  ..., xZrn). Let R' be the linear 
subspace of dimensions defined by x , + ~  = ... = x , ~  = 0 which is separated 
by R'-: into two parts F+ : x, > 0 and R'- : x, < 0, and will be oriented 
according as the ordered sequence of coordinates xl, '", x,. Let I ,  

that f,c R2+' and I, n R*-' = 8. Define an almost semi-linear reali- 
zation T K ,  = K ;  of K i n  R2" through K ,  as follows. Let us take on 
R' a set of mutually different points A,, A,, "', A ,  and on I ,  a set 
of mutually different points Ai,...i, (1 < io < ... < i, < N ) ,  1 < s < m - 1. 
Then 

(1 < s < m - 1) be the line x ,  = ... = x,, = 1, x? ,+~  = ... = x,, = 0 so 

T ( a j )  = Ai,  

T(0,) = Ai ... i, = A,(a = (aio a * '  fzi,) C K )  

defines uniquely a semi-linear realization T of K"-' in  R z r n - ' ~ R 2 "  
through its barycentric subdivision. For any 6 = (aio ... ai,) K with 
d ( a )  = s > m we may choose by 51 ( A )  a point A,  = Aio...i, in R?," so 
that on defining 

T ( o s ) = A a ,  a E K ,  d(a)>m, 
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we may extend the above defined semi-linear realization to an almost 
semi-linear realization T K ,  = K;  of K in  Rzm through K,. Similarly, 
for any a E  K with d ( s )  >, m, we may also choose a point A: in 
RZ,"-' such that 

T'(ai) = T(a;)  = A ; ,  

T'(o,)=T(o,)  = A , ,  d ( a ) < m - l ,  a C K ,  I T'(o,) = A : ,  d ( a )  >, m ,  a C K ,  

will define an almost semi-linear realization T'K, = K:' of K in R2"-' 
through K,. 

With respect to KZm and Rz"-' already oriented, T defines an 
imbedding cocycle q7 = 9'"' E QZm and T' defines an imbedding cocycle 
q T r  = q2"-' W- ' -  Let 8' and Lks denote the intersection number 
a i d  the linking number in the oriented R' respectively. If 6*7 E K", 
d ( a )  i- d ( r )  = 2m - 1 and d ( a )  < 112 - 1, J ( T )  > m, then by con- 
struction = T S C  RZm-3, T'(Znfi) n Rzm-3 = @, so that p? n T'r = @ 
and we have 

and 
pz qim-1 = q z m - 1  , 

where p2 denotes reduction mod 2. Our object is to prove that 

(4 )  

For this purpose let E * v  E KX, d ( 6 )  -t d ( p )  = 2m, and consider the 

Case I. 
We have the 

various possible cases as follows: 
d ( t )  < d(7 )  so that d(6 )  < m y  d ( p )  > m. 
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= ( - , ) m p - I  (T'aE, T'?) + (-1)"' * ( - l )d(O Ba"'-'(T'E, T'a?) = 
== (-1)"' B2m-1(T'a5, T'?) + (-1)'" OZ"-'(~T'E,  T'I]) = 

= 2(--l)rn 0zm--i(T'a5, T'?) . 

A5 d ( 6 )  < m, any face in aE has a dimension < m - 1, so that by 
(2) we have 

( 5 )  

On the other hand, as d(6 )  < m, we have by construction F$c 

( 6 )  

6 v/;'"-'(5 .# 7) = 0 .  

RZ"-', T(lnt?) n R2"-' = 8, so that n T q  = 0 and we have 

v/Z"(E * 7) = ( - l )d 'E)  0 2 " (  T5,Z-T) = 0 . 
Comparing ( 5 )  and (6),  we get 

8 q;"'- ' (E * 7) = 2 @"(E * 7) = 0 .  ( 7 )  

Case 11. d(5 )  > d ( q )  so that d ( 6 )  > m, d ( 7 )  < m. 
We have then 

On the other hand, let B, be the reflection of A, with respect to Ram-', 
then A,Taq - B,Taq is a cycle on integer coefficients, B,F$ is disjoint 
from Tg, and T ~ E  = T'ae. Hence 

~ a " ( 5  * 7) = (-1)" 0'"'(TE, T?) = (-1)" 0""(TE, A ,  Taq) = 

= (-1)"' OZ"'(TE, A ,  Ta? - B, TaV) = 
= (-I)* L ~ ( ~ T E ,  A ,  T ~ V  - B, ra?) = 

= (-1)" LkZ"'(aT'E, A ,  Ta? - B, Ta?) = 

= (-1)"' Da"'(T'E, A, Ta? - B,  T&'> = 

= (-1)" 0yr 'E ,  A ,  T a s ) .  
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I t  may be seen that the last expression is the same as +*m-i(T'e, Ta?), 
so that we have 

P ( E  * 7) = DZm-'(T'P, 2-37). (9) 

Comparing (8) and (9) we get 

6 q J y - ' ( C  * 7) = 2qJ2"(E 4 q) . (10) 

From (7) and (lo),  we see that for any e*qCK* with d(5) + 
Hence we get (4)'. From (4) + A ( ? )  = 2772, we have always (10). 

and (4)' we get (1) and the theorem is proved. 
Theorem 9. 3'"'= 0. 
Proof. Let x : g" --+ K" be the covering projection. Then by 

.-., Theorem 6, 
r* p n - 1  = p z  8Zm-1, p m  = #am. 

1 1. 
2 2' AS x* - - 6 = - 6 - x", we get by Theorem 8 

1 w 

2 
- 6 ( p 2  82rn-1) = @'m. 

As 82%-1 is a cohomology class on integer coefficients, we have 8'"' = 0. 

§ 6. EXPLICIT EXPRE.SSIONS OF CERTAIN REPRESENTATIVE 
&CYCLES IN 

We will make the same assumptions and use the same notations 
about K as in the preceding section. For any c * r  E K", let ( s * T >  
denote the cochain on integral coefficients of K" which takes the 
value 1 on the cell 6 * T  and the value 0 on all other cells of K". The 
purpose of this section is to prove the following 

The (2m - 1)-dimensional imbedding class Q2'"--? 

of K has a representative cocycle 
Theorem 10. 

vZm-' = PZ C {(ai,, aim-l> * (ajo aim>> 9 (1) 

in which X is extended over all possible sets of indices (i, j )  for 
which j o  < i, < jl < ... < i,-l < jm. Similarly, P'--l has also a repre- 
sentative cocycle q2"-' given by 

jjzm-l = C [{(ai , '* .aim-l)  x (aj;..aj,)) - {(aj;.*aj,,,) x ( a ; ; * . ~ i , ~ - , ) ) I ,  (1)' 

in which 

follows. 

has the same meaning as in  (1). 
The proof of this theorem will be divided into several steps as 
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1". Lemma. Let R2h-3C R'-' and 6, r be euclidean simplexes - of 
dimension r, 3 respectively, with r + s = 2h - 2. Suppose 6' and ? 
to be disjoint, and T a semi-linear imbedding of a'fr '  i n  R'-3. Let 
I be a line in  RZh--' not meeting and also not parallel to Ru-3, and 
A,. A,, A ,  be three mutually different points on 1. Orient R"-3 as 
an oriented simplex E in R2h-3 and orient R2"-' as the oriented 
simplex A,A2c. Then 

OU1-'(Al A2 Tab, A. Tar)  = 

(-l)r L42A-3(Ta~,  T a r ) ,  if A0 lies between A1,  A2 , 
(2 1 

= I O ,  if otherwise; 

or what is the same, 

B2"-'(Ao T ~ T ,  A1 A, Taa) = 

Lk2"-3 (Tar,  T a a )  , if A0 lies between A1, Az, 
(2If 

in which Ok and LkR denote respectively the intersection number 
and the linking number in the oriented Rk ( k  = 2h - 1, 2h - 3). 

Proof. Suppose first A. does not lie between A,  and A,. If 
A,A,T2 and AoT+ have an intersecting point, then there must exist 
points x, y in TZ., T?' respectively and a point x on 1 between A,, 
A,, such that the segments xx and A,y will meet in the above point. 
As A, # x and x # y by hypothesis, the two lines Aox = I and x y c  
R2h -3 would have intersecting points, contrary to supposition. Hence 
A , A , W  and A,T? are disjoint and we get the lower half of (2) or 

Next suppose A, lies between A,, A,. We may then take in 
R2"' a point A 4 T(2 + T'). Prolong AoA to A: and join A,&, ALA,. 
Let C = AiA, + A,A, + A,Ai. Take also in RZhe3 a point 0' such that 
O'(T6' + T T ' )  is an almost euclidean complex. Define a semi-linear 
imbedding T' of a in  RZh-3 through its barycentric subdivision by 
T ' / d  T and T'( 0,) = 0'. Then 

= { 0 ,  if otherwise, 

(2)'. 

~ p 3 (  T ~ S ,  T&) = L t y 3 (  m a ,  Tar)  = 
= Lk2h-3(aT'a, T ~ T )  = 02h-3(Tfa,  Tar) .  

Since the 2-dimensional simplex A,A,A; and RZhd3 meet in  the 
single point A,  we see according to the chosen orientations of R2A-3, 
RZh-' that  

02h-3(T'a, T a r )  = 02n-1(CT'a, T a r )  = 0202A-1(CT'a, a(Ao Tar) )  = 
= (-1)' mZ"-'(a(CT'a), A. Tar)  = (-1)' 02h--'(CaT'a, A. Tar) = 

= ( -I)r  O ~ - I ( C T ~ ~ ,  A0 Tar)  - 
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Hence 

L4"-3(T&, Tar)  = (-1)'ffm-'(CT&, A0 Tar)  = 

= (-1)' [02'-'(A1 A2 T ~ c ,  A0 Tar)  f OZ"-'(A6 A, Tag, A0 Tar)  + 
-I- Oth"(AZ A6 Tab, Ao Tar)] . ( 3 )  

Denote by RZh-' the linear subspace determined by AoAi and P-9 
Consider any point z of ALA, + ALA,, any point x of Ta, and any 
point y of T?. 
while A,y c RZh-', A o y  n RZA-3 = ( y )  # ( x ) .  In case z = A:, Aix and 
Aoy will lie wholly in R2"' but on opposite sides of R2"'. Hence 
whatever z AiA, f AIA,, x C Tb' and y E F p  may be, zx and Aoy are 
always non-intersecting. Consequently AiA,Tg' f AiA2Tb' and A&??' 
are disjoint and we have 

In case z # A;, zx will meet RZh-' only in x C 

02A-1(~; Tab, Tar)  = O ~ , - - ' ( A ~  A;  m a ,  A,, ~ a r )  = 0. 

I t  follows that ( 3 )  becomes the upper half of ( 2 )  and our Lemma 
is proved. 

2". Let R2"-' be a euclidean space of dimension 2m - 1, having 
a rectangular system of coordinates (xl, . . . y  x ~ , - ~ ) .  Let R'(l<s<2m-1) 
be the s-dimensional linear subspace of RZm-' defined by x,+, = ... = 

x2, = 1, xa+z = -.. = - xZm-, = 0, I ,  (1 < s < m - 1) the line x1 = ... = 
in the single point 

0, = (1, "', 1, 0, .-', 0). Corresponding to each J 2 1 and < m - 1 

and each 6 = (a;, ... a;,) C K, we shall take a point = A.  with 
xU+'(A,) > 0 such that 5 < T (T is another s-dimensional simplex of K )  
would imply x2,+,(A,)  < X ~ + ~ ( A , ) ,  or in simpler form, A,  < A,. Take 
also points A; = (il 0, -*., 0) on R'. Define now an almost semi-linear 

imbedding T of K in R2'"-l through its barycentric subdivision K1 by 

- 

- - x,,,,-~ = 0, such that l,C Ra+' and 1, meet R" -- zr Zm-2-1  

__c 
2m-2 

T ( a ; )  = Ai , 
T(oo)  = A., a C K ,  0 < dim 6 < m - 1, 

and for 5 C  K ,  let dim 6 > my T(o, )  = A,  be a point conveniently chosen 
in R~;"- ' (X , , -~  > 0). We have then 

T(a;, ..- u;*> = A~,...;hTa(a;o a ; h ) ,  (4) 
and 

Ta(ai, a * *  a;,) = a 2 (-~)'+'Aj" ...~~... i~Ajo...~,...ihT(~io ... Sir S;, a;,), (5) 
I-, I 

in which li < m and &(i,) means that a;(;,) does not appear in the 
corresponding sequence. 
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From (6) and (6)' we get ( 5 ) .  
3". Let us orient R', s=1, .", 2m-1, as its coordinate sequence 

xl, '.., x, and orient I, by the increasing values of x,. For any 
0 4 k 4 m - 1 and any two simplexes 6 =  (ai, ... aim-,), t = (a j ,  .*. aim) 
of K having no vertices in common, let 

Proof. For k = m - 1, we have 
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I m - 1  = W T ( G , , , - ~ ) ,  - AjmAjm-l) = @(Aim-l. Afm-1Ajm) 

Since Atmdl, Ajmm1, A!,,, are all on the line R' and 
Aim-1 and Aim if and only if  

:lies between 
< imdl < jm, we have 

+1 ; im-1 < im-i < i m  9 { 0 9 im-1 < im-1 or i m - 1  > i m  

Im- l  = 

Hence (8)m-l is true. Suppose now (8),,+,, %.., (8)m-l have been 
proved and let use prove ( 8 ) ,  as follows. 

Case I. i, < j,, or  i,, > 
By construction A; ,,... im-l, A; ,...; ,... and Aj,...;,...jm are all on the line 

l l ( t  = m - h - 1) and for i,, < j,,, we have always A;,,...im-l < A;,,...; ,... j,,,, 

r = h, ... , m. Hence whatever be 4 and r # s ( h < 4 < m -  I, h <  
r < 5 < m), we have 

r = h, ... m, while for i, > i,,+l, we have always Aih...im-, > Aj,...;r...j rn' 

- - 
Air.im-lT(ai, 0 . .  2jk ... Il Aj ,...; ,... j%Aj8..; ,... j,T(aj, --. 2jr ***i?jJ *.* u ' m  ) = 0.. 

Hence by (4) we get 

I,, = p7-"-' (Ai,...i,n-lr C (-l>"*(ai, Bik uimd1) , 
k 

( - ~ ) ' + I A  j , . . . ~ ~ . . . i m ~ i , . . . 7  ,... ;,,,T(u~,, - * .  4, z;, *.. u;,,,>> = 0 .  
r. I 

This is the lower half of 

Case 11. i, < i, < j,,+l. 
Again by (4) we get 
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= ( - l )"+"+'Ih+l .  

By induction hypothesis (8),+,, we get ( 8 ) h .  
4". 

Take the point 

We now prove Theorem 1' as follows. 

: x ~ ~ - ~ ( A ~ ~ . . . ~ ~ - , )  < . O  symmetric to A+,-, 
and define a semi-linear realization with respect to om-' = lm.-l 

TL of 5 = (a jo  .-. aim-,) ( K  in R2"-' through the barycentric subdivision 
of 5 by 

n RZm-2 
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. .  
T:(aj)  = Ai; I = so, a * * ,  im-l ; T:Ia*? T ;  T:(O.,) = A:. 

Then Ta - T:a is a cycle. For any T E K having no vertex in 
common with a where d ( ~ )  + d ( a )  4 2m - 1, we have ?-: bn FF = 8, 
hence @'"-'(T: 6, T I )  = 0. 

u 

Let a = (aio ... aim-, ) ,  T = (a .  10 ... a.  I ,  ), a x T C K*, then 

(-1)m-1@:m-'(.5 X T )  = D2"-'(Tu,  TT) = . 0 " " - ' ( T U  - T:S, TT)  = 

=@"'-I [Ta - Tlu , TT - (-l~'+' ~ j ~ . . ~ , . . . , m A j ~ . . ; ~ . . / m T (  m ) ]  4- 
r. I 

+ 0 ~ m - 1  [ T O  - T:G , c (-i)'+'Ai0...; ,... i,nAiw..; ,... j m ~ ( a i 0  ... 4, . - a  ai, -.. aim) . 

By ( 5 ) ,  Ta - Ti 6 and T I  - Z' Aio...; ,..., A,& ,... im T ( c ~ , ~  .. Sir ... 
z,, . . . a i m )  are both cycles, so that the first term of the right hand 
side in the above expression vanishes. As F: 2 is disjoint from 
Ajo...; ,... im Aio...;,...im T ( n j o  ' . .  2ir ... &, . . .  aim),  the above expression may be 
simplified as 

I, I 1 
r. 

--. 

From this we get further 

(a x T )  = @ ; m - q T  x a) = -P)= -2n-1 

= { ~ (-1)'"-1)(m-Q/z , lo < io < iI < ... < imel < j m ,  

otherwise. 

Next let a x T C g*, d(o) + d ( ~ )  = 2m - I, while d(a )  < m - 1, 

(9)' 

d ( 7 )  > m. Then T 6 c R2"-3 and T(1nt T )  Cl T 6 = (4. Hence 

+;","-'(o x 5 )  = 0 ,  d(a) < m - I, & T )  > m . (LO) 

@";"-'(T x a) = 0 ,  d(a) < m - I ,  d ( ~ )  > m .  (10)' 

Similarly, 
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From ( 9 ) ,  (9)', (10) and (10)' we get 

pF-1 = C ( - L ) ( m - I ) ( m - z ) / z  [ ( ( a i ,  ... a i m - , )  x (a,,, ... atm)> - 

- ( ( a i n . . * ~ j m )  x ( ~ i ; . * a i m - , ) } l 9  

in which is extended over all possible sets of indices (i, j )  for 
which io < io < I l  < .. .  < im-, < j m .  Now by Theorem 4 and the 
remark below FT and -FT are both cocycles in 62m-1. Hence $""-' 
has a representative cocycle as given by (I)'. 

Our theorem is thus completely proved. 
Similarly we have a representative cocycle in em-' as given in  (1). 

57. EXPLICIT EXPRESSIONS FOR CERTAIN REPRESENTATIVE COCYCLES IN em 

The notatioiis will be the same as in the preceding section. 

Theorem 11. I n  ern there is a representative cocycle 

in which C is extencled over all possible sets of indices (i ,  j )  such 
that io < j o  < ... < i, < im. 

Proof. I3y Theorem 10 of 56, @*"'-' has a representative cocycle 

in which C is extended over all possible sets of indices (2 ,  j )  such 
that io < io < j l  < . . < i,,,.-l < i m .  Define now q$"'" E Cznr-l( K " )  by 

in which is as before, then 

1 By Theorem 7 of 55, OZm = 6@z"-', hence ern has a representa- 

tive cocycle qim such that 

We prove now qim is the same as cpZm in ( I )  as follows. 

Let Q * T = (aio ... a -  ,p ) * (aio ... aj,) C K*, io < j o ,  p + q = 2m, then 
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Consider now various possible cases as follows (io always < j o ) :  
Case I. 
By (2) we have 

p = q = m, io < j o  < ... < i, < jm. 

Hence El = 1, C, = (-l)"', and (5) becomes 

&p,2"'-' ( U * T )  = 2 .  

Comparing with (1) we get 

Case 11. 
In that case there exists either an index s with no jk satisfying 

p = q = m, and i,, < jo  < ... < i, < j m  does not hold. 

is < j 4  < so that 

vim-1 (ajo lii, --. ajm)*(ajo -.. aim)) = 0 ,  (8) 

or an index s with no ik satisfying j ,  < ik < In the second 
alternative we have still (8) for Y # s, s + 1, while for Y = s, s + 1, 
cp;"-'( (aj, 
a;,)) have the same value 0 or 1 so that x2 = (-1)' + (-l)'"=O- 
Hence we have always Z2 = 0. 

As io < j o ,  we have q$"( (ai, ... Ci, ... aim) * (aio ... aim))  = 0 for 

h 4, -.- ajm) * (aio ... aim))  and &"'-'( (ajo ... aj,+l ... aim) * (a;, 
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r > 0. 
true. 

I t  is also = O for r = O since j o  < i, < j ,  < .*.  < i, < jm is not 

As q2'"(a * r )  = 0 by (l), we 
Hence we have always XI = 0. 

I t  follows that 6qJim-'(6 * T) = 0. 

Case 111. 
In that case each term of El, C ,  is 0 and we get still (7) by 

Case IV. 
As  i,, < j o  < j , ,  we have C, = 0. Comparing with (l),  we get 

Case V. 
In  that case C, = 0, while 

€9 (7). 
p < m - 1 or q < m - 1. 

comparing with (1). 
p = m -1, q = m + 1. 

(7).  
p = m + 1, q = m - 1. 

c, = c ( - l ) r q J y ( ( u j o  ujm- , ) * (a io  Ciir . 

Now we have necessarily an index s with no j ,  satisfying i, < j 4  < 
i,+l (0  < s 4 m). Then q$'"-'( (aj, ... ajm-,) * (as ... &, aim+,)) are all 
0 for r # s, s + 1 while for r = s, s -t 1 they are both of same value 
0 or 1. We have thus always z, = 0. Comparing with (1) we get 
again (7). 

Thus whatever the case may be, we get always (7) for any 
6 * C K " ( d ( 6 )  + d ( r )  = 2m). Hence pirn in  (4) coincides with 9'" 
of (1) and the theorem is proved. 

$8. RELATIONS BETWEEN @ AND THEIR TOPOLOGICAL INVARIANCE 

As before let the vertices of K be arranged in a fixed order 
a,<a,< a", and all simplexes of K be written in normal form (a io. . .  
a;,), with io < i, < ... < i,. Since ~g" is a two-sheeted covering complex 
of K", we may define as in  [9] $1 chain transformations 

and 

i: C ( z * ,  G ) - + C ( X * ,  G )  , 
IP: C(x*, G) C ( K * ,  G )  , 

%: C ( K * ,  G )  -+ C ( g * ,  G )  , 

such that for (a;, ... a;p) ,  (aj0 
we have 

qQ) E K with no vertices in common, 
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z ( ( u ; ~  ... ~ i , ) * ( ~ i ,  .*. a;,)) = (a;, * * .  x (aj, aj,) + 
4- ( - - l )PQ(ajo - * a  U j y )  x (a;, ... a;,) . ( 3  1 

Put 5 = 1 + t, d = 1 - t, and let x', z', t', s', d' be the dual cochain 
transformations of n; ... . W 
( K " ) ,  let us take Zoy Z,CC"(~",Z, )  and go, g l ,  j j2EC"(EX)  such 
chat 

2' x"0 (2 x , 820 = d'x"1, (4) 

5' YoEY,  8y0 = d'yl , = s ' T ~  * (4)' 

Then G'.?,, and G'p2 are cocycles mod 2 and integral respectively 
whose classes are independent of the choice of x ,  y and may be 
denoted by ,us X C W+'(K*,Z,)  and v' Y C N'+'(K").  By [9] $1 (or 
[lo] S l ) ,  we have (I  denotes the unit class mod 2 or integral in K")  

p * x = p * 1  u x .  ( 5 )  

For any classes X E H'(K" ,  Z,) and Y 

Similarly we have (cf. [ lo]  Sl): 

and 
V*Y = v* 1 u Y ,  

PZV* = (,u*)zP* * 

We shall now first establish the following 

Theorem 12. Let @' be the integral unit class of K', then 

Then we shall show that 
8 F 2 m - 1  = S!@'2m, 

and 
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For the calculation of (13) let us consider various possible cases 
as follows. 

Case I. 

In that case (p-1, q )  # (m-1, m), hence 
( p ,  q )  # (m, m). 

= 0 by (11)'. If 
( p ,  q )  # (m - 1, m + l ) ,  then by (11)' C, = 0 too. Suppose now 
p = m - 1, q = m + 1, then there exists an index s with no it 
satisfying is < i, < j,+,. For r # s, s f 1 we have then @jZm-'(  (ai,, ... 
aimtl) x ( n ; , , . . ~ ~ ~ j , . . . a i , ~ , , ) )  =O,  while for Y = S ,  s +  1, @jzm-l(ai,,~~~ai,-l) x 
(aj ,  ... a^. 1, ... . a i m ) )  and qZm-'( (aio ... aim-,) x (aj ,  - ' :  Gj,+l ... a im) )  are either 
both 0 or both 1, Hence Cz = 0 always and we have 

~@zm-'((a;,, ... uip )  X (a,,, .* .  aj,)) = 0 ,  

Case It. 
By (11)', 2, is evidently 0. 

If there is an s with no it satisfying j ,  < i, < j,+l , then El = 0 

If there is an x with no it satisfying i, < j c  < is+l,  then by ( l l ) ,  
qzrn-l( ( a .  10 ... 2. 'I ... ai rn ) x (aja ... a;,)) = 0 for r # s, s + 1, while for 
r = s, s + 1, they are either both 0 or both 1. Hence XI= 0 always. 

If there is no such s, then either io < io < ... < i, < jAl or j o  < 
io < ... < jm < i,. 

( p ,  q )  4 (m, m ) ,  p f 4 = 2m - 
(p, q )  = (my m ) .  

by (11). 

By (lo),  we have then 

1, r = m  

0 ,  r < m  
( j o  < io < < 1% < in) . 
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Hence 

io < j o  < --. < i, < j , ,  

j o  < io < ... < j ,  < i,, El = ( - I . ) ~ ,  i :I otherwise. 

Combining the above cases together, we have 

1 1, p = q = m ,  io<jo<-**<i,,,<j,, 
@am-'( (ai, * * .  uiR) x (uj, -.. aj,)) = (-I.),, p = q = m ,  j~<io<*-.<j ,<i , ,  (14) I 0 ,  otherwise. 

Next, by (1) and (12), (12)', we have 

$'p( (Ui, a;m) x (a;, - a .  a,,)) = 

= @ " ( ( a j , . ' . ~ i , )  x ( a j o * * * a j m ) )  + ( - l ) m @ z m ( ( ~ j o * * ~ a j m )  x ( a i , . . * ~ i ~ ) ) =  

io < io.< .*. < i,,, < i, , ={  (:;I,, j o < i , < - . . < j , < i m ,  
0 otherwise. 

S'@""(.i0 ..*@iJ x (Ui, .*-ajq>> = 0 ,  ( p q )  # (m , m) . 
Comparing with (14), we get (I). 
Next let us prove' (11) as follows. Consider any cell *(aio 

(aio .-. uj,) E E*, p + q = 2m + 1,- we have 
a;#) x 

(15) S@Zm((aio -*a;R> x (a], - * . u i q > )  = c1 -I- (-1)P 2, , 

El C (-1)'BZm((aj, * * .  yii, .*. sip) x (aj, ~ j , ) )  , (16)l 

C, = C (-~)~~'"((ai, atp) x (a,, 4, aj,)) * (1612 

where 

Case I. 
We have evidently El = xz = 0 by (12)'. 
Case II. ( p , q )  = (m, m + I). 

By (12)' we have C ,  = 0, while by (12) we have by the same 
method as above 

( p , g )  # (m, m + 1) or (m + 1, m). 

j o  4 io < < i, < j , + l ,  

otherwise. 

Case 111. 
In that case we have C, = 0, while 

( p , q )  = (m + 1, m). 
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Combining together all the preceding cases, we get 

SgZm( (aj, -.. aj,,) x (ajo ~ j , ) )  = 

(-lP, ( p ,  q )  = ( m ,  m -t- 1) , jo<io<...<i,a<j,+l, 

(-I.)"'+', ( p ,  q )  = ( m  + I, m )  , io<jo<*..<j,<i,+l, ={  0, otherwise. 

Next by ( l ) ,  (11) and (11)', we have 

d'qP+'((ar,  * . a  Ui,) x (yo ..- u $ )  = 
- - @a"'"( (U;o.-*ujp) x .  (ujo-..ajq)) - (---I)pqtj5*=+1( (aio...aiq) x (c?jo...a;*)) = 

1, 
= -I., 

( p ,  4) = ( m ,  m -I- 1). j o  < io < < im < i ~ m + ~ ,  
( p ,  q )  = ( m  + I., m), io < jo  < ..- < j m  < i,,,+l, i 0 ,  otherwise. 

Combining with (17), we get (11). 
Define now qi C C ' ( K " )  by 

qi = xlp', i > o .  

Then by ( 3 ) ,  (ll),  (ll)', (12) and (12)', we have 

p"((ajo * a *  ajp)*(ajo *.- U j , ) )  = 

1, p = q = m ,  io < io < 1.. < i,,, < I,,, , 
(io < iJ . (20) =( 0, otherwise, 

By Theorem 10 of 96 and Theorem 11 of 57, 

and 

Moreover qo is the integral unit cocycle 011 K". Hence from ( I ) ,  
(11), (18), ( Z l ) ,  (22) and the definitions of ,ti* and Y", we get (8), 
(10) and also Y* Q" = (-l)"'@'""2. By Theorem 4 of 93, 2@"+'= 0. 
Hence the last equation is the same as (9) and our theorem is 
proved. 
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From the above theorem and ( 5 ) ,  ( 6 ) ,  (7) we get also the 
following theorems: 

(24) 

(25)  

p2 C g Z i  u @ Z i + l  = @ Z i + Z i + l  

@2i+l u Q Z i + l  = pz Q ) a i + Z i + Z .  

Theorem 14. Denote by ( )' the i-fold powers by cup products, 

fp = ( C g Z ) i ,  i > o ,  (26 )  

(27) ( p i + '  = ( @ 1 ) 2 i + l ,  

pz @ Z i  = (@y, i > O .  (28) 

= 0. 

then 

i > 0 ,  

Theorem 15. 
Theorem 16. 
Proof. 

If Om = 0, then for any i > 0, we have 

$'"'--I = 0, for m > 0. 
Define @'"'-I by (11) and (ll)', we have by Theorem 10 

of 5 6 (C being extended over all possible sets of indices (i, j )  with 
j o  < ro < jl < ... < < j,,,): 

Rut by (11) we have d"?2a-' - 0. 

Combining this theorem with Theorem 9 of $5 ,  we see that a"' 
are always = 0 (m > 0). Hence 6"' are practically useless. On the 
other hand, as we shall see in the two following sections, 0"' are 
generally #O and play an important role in the study of realization 
of complexes. 

Theorem 17. All the imbedding classes 0" C H""(K, I,,,) = 
= H""(P, I , , , , , ) ,  m > 0, of a complex K are topological invariants of 
the polyhedron K = P. 

Proof. Let L be another simplicia1 subdivision of P. As the 
construction of K" and g* from K ,  let L", L" be the corresponding 
complexes constructed from L and let w : E" 4 L" be the covering 
projection. By [ 6 ] ,  we know that the spaces L", g" of the complexes z", g" have same homotopy type, and the same is true for the spaces 
E*, R* of L", K". Moreover, the identity of these homotopy types 
may be realized by continuous maps f : z"+z* and f : E"-gV such 
that xf= =fw. I t  follows that p", u" are commutative with f" (cf. 
[9] 5 1 or [ lo]  5 1) and by Theorem 12 we have (0' denotes the 
integral unit class) : 

Hence 6zm-1 = 0. 

P -  

60 



289 

f* @2'(K) = f * ( V * ) ' C ( K )  = ( V * ) ' f *  W ( K )  = ( V * ) ' @ " ( L )  = @"(L), 
f* @PZI'+I(K) = f*(p*)Zi+l pz @ " ( K )  = (p*)2i+l f* pz @O(K) = 

= (p*)*'+' pz W ( L )  = @t'*'(L) . 

Since f" : H""(K, I ( , ) )  z H " ' ~ ( L ,  I , , ) )  may be considered as the identity 
homomorphism of H""(P, I(,,,)), the last two equations show that 
@"(K)  and @"(L),  m > 0, are identical elements in H""(P, Z(,,,)). In 
other words, @"(K) C Hm"(P, I ( , ) ) ,  m > 0, are independent of the 
subdivision K of P and are therefore topological invariants of P. 

The above theorem may also be slightly extended as follows. 

Let P c Q be a regular pair of finite polyhedrons so that P, Q 
have simplicial subdivisions L, K respectively for which L is a regular 
subcomplex of K (cf. [ 6 ] ) .  Construct complexes L" and K" as before, 
then L" is a subcomplex of K" and the inclusion map i will induce 
homomorphisms 

or 
i* : H"' ( K * ,  G )  -9 H"' (L*, C )  , 

i* : H"J (K, G )  + HmJ ( L ,  G )  . (29) 

As in [ 6 ] ,  these homomorphisms are really independent of the choice 
of the subdivisions K,  L and may thus be written as 

i* : H"J ( Q ,  G )  -+ H",' ( P ,  C) . (30)  

As in the preceding theorem we may then prove the following 

Let P c Q  (or L c K )  be a regular pair of finite 
polyhedrons (or a regular pair of finite simplicial complexes). Define 
i" as the homomorphisms in (29),  (30) induced by the inclusion map 
i : P c Q  (or i : L C K ) ,  then 

Theorem 18. 

i ' W ( Q )  = ( P " ( P ) ,  

i* Qm(K)  = P ( L ) .  

$9, COMPLEXES REALIZABLE IN R"'" BUT NOT IN R" 

Given integers n > 0 and N 2 12. Let us take N f 1 linearly 
independent points uoy -", nN in RN which span an N-dimensional 
simplex A N .  The n-dimensional skeleton of A,  is an n-dimenional 
complex KNs,. Using the notations K c R "  and K 4 R" to denote 
that K can or cannot be semi-linearly realized in R", we have the 
following 
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Theorem 19. 

KN,,,C R a n + l ,  N > 2 n  4 - 2 .  (1) KN," 4 Rz", N > 2 n  + 2 .  (1): 
Km+Z,n C R"+', 2n > m > n . (2) K,+z,, 4 R" , 2n 2 m > n . (2)2,, 

K,+l,n C R"". ( 3 )  K n + l , n  4 R " .  (3)' 

K, , ,  C R" . (4) K,n 4 R"-'- (4)' 

In the proof below, ai will be arranged in the order a, < ... < aN 
and Q)'" will denote the representative cocycle in @"' as asserted in  
Theorem 10 of 5 6 and Theorem 11 of S 7. All simplexes of KN,,, 
will also be supposed to be written in  normal forms (ai, ... a+) : 0 < I, 
< ... < i, < N .  

Proof of (1). 
This is a classical result, of which the proof is quite simple (cf. 

Proof of ( 2 ) .  
In Rm+' let us take nz + 2 linearly independent points a:, - - * ,  $,+1 

which span a simplex and a point a:+, in  the interior of A,,,+~. 
Let KL+z,n be the complex formed of all 4-dimensional simplexes 
(0 < 4 GI"). with vertices taken from a: ( i  = 0, 1, *.., m + 2). Then 
T ( a i )  = ah I = 0, 1, *.., m+2, define a linear realization KL,+2,n=TK,n+Z,n 
of K,+z.n in  R"+'. 

[ I ]  Chap. 1 and [ 2 ]  Chap. 3 S 2 ) .  

( 3 )  and (4) are evident. 
Before proceeding to the proof of (1)'-(4)', let us first remark 

that (1)' is the well-known result of Van Kampen and Flore~[~- ' '  (3)' 
states that  an ?+sphere is not imbeddable in  R" and (4)' states that  
an n-simplex is not imbeddable in R"-'. Both (3)' and (4)' are 
classical results, of which the proof of the former depends on 
Alexander's duality theorem, and that of the latter is a consequence 
of a theorem of Brouwer connected with theory of dimension. In 
what follows we shall give (1)'-(4)' a unified proof which makes 
i t  plausible that in  all these cases the non-imbeddability is owing to 
the same fact, namely, the corresponding imbedding class Qrn is # 0 
(cf. Theorem 5 of !$ 3 ) .  

Proof of (1)'. 
Evidently i t  is sufficient to prove that KZn+z,n 4 R". 
For this let us consider in K:+*,# the following integral chain 

or what is the same, 
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in which the preceding C is extended over all possible cells with 
i o  < io, the second is extended over all possible cells, and 6i0i0=+l 
or (-1)" according as io < jo or io > 10. 

Consider any cell ( u ~ o ~ ~ ~ u a , ~ l ) * ( a ~ o ~ ~ ~ a l , )  E 
K&.*,". Let r, s be the two remaining numbers after removing 
ko, "', knd1, lo, ..., I ,  from 0, 1, .*., 2n + 2. Suppose r < s and ko < 
< ka-l < r < ka < ... < kpv1  < s < k p  < - 1 .  < kn-l. Then the term 
(aaa akn41)*(ala ... a/,,) in ax is produced from the following terms 
in ( 5 ) r :  

Let us now calculate ax. 

a (ak,, aka-l ar ata aq,,-,) * (a/, ar,) , 
a (aka a * -  akg-l as aaP aa,,-,) * (ale *.. arm) , 
(a!, .*. ar,) * a (aka -.- aka-% a, aka aknJ , 
(ar, * * a  a/,) * a (aa, - * *  a, at8 ak,,-,) . 

Hence the coefficient A of the term (aao 
given by the following: 

1 
2 

aan-l)*(u/a urn) in az is 

for (0 < Y, 

A = - [(-l)" Sk0fa + (-1)B SkaIa + (-l>"-(-l)".(-l)"("-') E l a ~ o  + 
+ (-1)". (-1)'. ( - 1 ) n ( " - U  Elokol  = [ f (-1)'l 64,& 3 

for r < ko < s, 
1 
2 

+ (-1)"' (-1)'- (-1)"("-') 610401 = 6rlo -k (-1)' 6k0/,, , 

A = - [Sd, + ( - - l ) 'Eb/ ,  + (-1)". ( - l )"(n- ' )  El,r + 

and for r < s < ko, 
1. 
2 A = -- [&to + Sd,, f (-1)". (-I)"("-') 6rOr + 

+ (-1)". (-I)"("-*) E / ~ ~ J  = srlo + ~s/, - 
Consequently we have always L E O  mod 2, and p2z is a mod 2 cycle. 

For any r >, 0 and < 2n + 2, define now 

i < S < f - l *  

&(')= r '+I, r ~ s < 2 2 n + 1 .  

By Theorem 11 of 5 7, the 2n-dimensional imbedding class cpz" of 
K2n+l,n has a representative cocycle 

Hence ~ " ( x )  = 2n + 3 and p z 9 2 n ( p 2 ~ )  # 0. 
and we have K2n+2,n 4 R'". i.e., 

I t  follows that p2@' # 0 
by Theorem 5 of 5 3. 
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Proof of (2)L-1,n, i. e., Kzn+l,n @ Ran-'. 
This may be derived from (1)'. Suppose we have a realiza- 

tion T : K2n+l.nC Rz"-', Consider Raw-' as a linear subspace of Ran and 
KZn+],,, as a subcomplex of K27+2,n. Take a point a:,,,, E Ran and 4 R2"-'. 
Then by setting T(a,,+,)  = a2n+2, we may extend T to a realization 
T : Kz,+2B, C R2", contrary to (1)'. Hence K2n+l,n Q R2"-'. 

we may also give a direct proof as follows: 
By Theorem 10 of 5 6, @"-I has a representative cocycle 

q)2n-l = pa 2 { (ai, ... * (ajo ... aj,) I = 
Z " + l  

= pa C { ( a = , ( ] )  aa,(3) * * *  aa, (zn-1) )  * (aa, (o)  aar(2) a.,tzn))> 9 

,=O 

in which the first C is extended over all possible sets of indices 
(i, j )  with 0 < io < io < jl < ... < inel < in G 2n + 1, and a, is defined 
by 

Consider now in KX a (2n - 1)-dimensional integral chain 

in which C is extended over all possible sets of indices (i, i )  with 
10 > 0. I t  is easy to see that p2z is a mod 2 cycle and p2"-1(p22) = 1 
mod 2. I t  follows that q2"-' + 0 or @"-I # 0 and K2n+l,n 4 R2,-', as 
we require to prove. 

Proof of (1 ) 'm,m 

When n = 1, we have m = 1,2 and (2)' becomes K3,1 ct R' and 
Kq,l 4 R2 which is (2)im-1nn and (1): in the case n = 1 and hence is 
already proved. 

Suppose now (2)&,-1 for 2(n  - 1) > m > n - 1 has already been 
proved. 

When m = 27.2, (2)& is the same as (1); and has been proved. 
The case m = 2n - 1 has also been proved. We may suppose there- 
fore m G 2 n - 2 .  By 
induction hypothesis Km+2,n-l 4 R", hence we have 2 fortiori Km+2,,, $ R", 
what we require to prove. 

Consider the following assertion: 

Prove now (2),,," as follows. 

In that case Km+2r has a subcomplex Km+Z.n-l. 

We may also reason as follows. 

@"'(Km+~,n) 0 ,  2n > m 2 n (2): ... 
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When m = 2n or m = 2n - 1 and in particular for n = 1, we know 
already that (2):,,, is true. Suppose now (2):,,,-1 is true and m 4 
2(n  - 1). AS Km+z,n- l  
is a subcomplex of Km+2,n, we have by Theorem 18 of 4 8, @m(Km+Z,n) # 0 
and (2):'," is also true. 

From this reasoning i t  is seen that 
the truth of ( 2 ) &  is again due to Q m #  0. 

Then by induction hypothesis QAI(Km+2,n-1) # 0. 

From (2):," we get ( 2 ) &  

Proof of (3)'. 
Suppose first n = 2n'. Then 

{ (a0 a2 0 . .  * (a1 03 * * *  a2n'+1)> E 9 " s  9" = p n '  = 

and 
i 

= P2 2 ( a i ~  . * '  ai,,.) * (aio "' ai,,.) + Pz 2 (aka akn,-r) * (ale aln,+,) 9 
i o < l o  ,=l 

may be easily seen to be a mod 2 cycle, in which the first C is 
extended aver all possible sets of indices (i, j )  with io < jo, and the 
second X in the second term is extended over all possible sets of 
indices (4 ,  I ) .  As p2qP(z)  = 1 mod 2, we have v" + 0 or Q" # 0 and 
hence Kn+,," ct: R". 

Suppose next n = 2n' - 1, then 

9" = Fa"'-' 
~2 { ( a ,  '13 aZn'-l) * (a0 a2 0 . .  ~z.')) E Q" . 

Moreover 
"'-1 

= C C ( G O  ai,,,-,-*) * (aio ... +r) 
r=O 

is a mod 2 cycle, in which C is extended over all possible sets of 
indices (i, j ) .  Since ~ " ( z )  = 1 mod 2 we have 9'' 7 ~ .  0 or Q" # 0 and 
again K,+r,, 4 R". 

Proof of (4)'. 
First, (4) may be derived from (3)' .  Consider R"-' as a linear 

subspace of R" and K,, as a subcomplex of K,+,,,. If there exists a 
realization T : K.," c R"-', then on taking a point a:+, E R" but 4 R"" 
and setting T(n,+,) =a:+,, we get an extension of T to a realization 
T : K,+,,, C R", contrary to (3)'. 

Given now a direct proof by the unified method as follows. 

Suppose first n be even: n = 2n'. 

Hence K., 4 R"-'. 

By Theorem 10 of $ 6  we have 

Cpn-1 = p'-' = p2 ( (a1 a3 -.* az"'-') (Go a1 .-. az,.)} G @"-1. 

Put 
n' 
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in which C is extended over all possible sets of indices (2, j ) .  
p2z is a mod 2 cycle and p"-'(p2z) = 1 mod 2. 
we have K,,, + R"-' 

have 

Put 

Then 
Hence W - '  # 0 and 

Next suppose n be odd: n = 2n'+ 1. By Theorem 11 of 97 we 

V-l= 9"" = { (ao a2 ..* az,t) * (a1 a:, az,'+l)} Vn. 

in which the second 2 is extended over all possible sets of indices 
(2 ,  j )  and the last C is extended over all possible sets of indices 
(i, j )  with io < jo. Then p2z is a mod 2 cycle and p2pn--l(p2z) = 1 
mod 2. 

From the proof we have 
furthermore the following theorems: 

The necessary and sufficient condition for K,.c R" 
is @"'(KNbn) = 0 

To any n > 0 and 7n Q 2n and >, n - 1, there exist 
complexes K ( m ,  n)  c Rm+l. But 4 R". In other words, for n - 1 4  
< m < 271, Rm+' contains always more n-dimensional conplexes than 
does R". 

The complexes K ( m ,  n )  in this theorem may be taken to be 
Km+2.n for 2n >, m >, n and K., for m = n - 1. 

Hence #'-I # 0 and we have again K., 4 R"-'. 
Our theorem is now completely proved. 

Theorem 20. 

Theorem 21. 

10. ANOTHER EXAMPLE OF Van K a m ~ e n [ ~ l  AND ITS GENERALIZATION 

In this section we shall apply the theory developed in the pre- 
ceding sections to give an alternative proof of the non-imbeddability 
of another n-dimensional complex in  Rz" also due to Van Kampen. 
We give also its generalizations. 

The n-dimensional complex K ,  in this second example of Van 
Kampen is constructed in the following manner. Consider n + 1 sets 
of triple of points a?), a?) (i-= 0, 1, . . ' y  ? I ) .  Take one point from 
each of these n + 1 sets to form an n-simplex, say ( & o ) L z ~ )  ... a)') 
( i  = 0, 1 or 2 ) .  Then K ,  is formed by all these simplexes as well 
as all their faces. We have then 

Theorem 22. (Van K a m p e ~ ~ ) ' ~ '  The Van Kampen complex K,  
defined above is non-imbeddable in R". 

Proof. Arrange the vertices of K ,  in an order such that a y < @  
if and only if either i < j or  i = j and 4 < 1 (i, j = 0, 1, *.., n; 4, I = 
= 0, 1 or 2). By Theorem 11 of '$7, the 2n-dimensional imbedding 
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class v" C H2""(K.) of K ,  has with respect to this ordering of vertices 
a representative cocycle 

in which C is extended over all possible sets of indices (i, j )  with 
io < joy i, < j,, '", in < in. Next construct a 2n-dimensional chain 

in which X is extended over all possible sets of indices (i, j )  with 
io < jo. I t  is easy to see that pzz is a mod 2 cycle and @'(z)=3"*'=1 
mod2. Hence P#O and K. 4 RZn, what we require to prove. 

Let us now extend Van Kampen's example in the followjng 
manner. Suppose we are given p + 1 sets ( p  > -1) of triple of points 
a:), a ~ " ,  a:), i = 0, 1, '", p ;  and q sets (q >, 0) of pairs of points a:', 
a:), j = p + 1, .", p + q. Take one point from each of these p + q + 1 
sets and form a ( p  + q)-dimensional simplex. The complex formed 
by all these simplexes as well as their faces will be denoted by A , ,  
In particular, A,,o is the above-defined Van Kampen's complex K,,, 
and A-l,q is a subdivision of the ( q  - l)-dimensional sphere. 

For p>O, we have A , ,  c R2p+Q+1, but @2p+Q( Ap,q) f0, 
so that A , ,  Q RZp+'. 

If n < m 4 2n, then the n-dimensional complex 
c R m f '  but 4 R" as stated in  Theorem 21 may also be taken as 

Theorem 23. 

Theorem 24. 

Theorem 25. The necessary and sufficient condition for AP,'c R" 
is @" = 0. 

The last two theorems are both simple consequences of Theorem 
23. In order to prove Theorem 23, we shall prove first a general 
result as follows. Given a simplicia1 complex L and two points bo, 
b,, the set of all simplexes boa, b p  and 5 (s, 5 6 L )  forms a simplicial 
complex K ,  written as K = boL -I- b,L. In fact, K is the join complex 
of L and the 0-sphere {bobl) .  

Theorem 26. Let K be the join complex of the simplicial 
complex L and the 0-sphere So = {bo, b,]. If pZ@'"(L) # 0, then 
@Zm+l(K) # 0. 

Proof. Let us arrange the vertices of L in an order a, < a,< ... 
and the vertices of K in  the order bo < b, < a, < a2 < .... With 
respect to such ordering of vertices, the imbedding classes @"(L), 
@"(K)  of L, K would have respectively representative cocycles p"(L) 
and @ " ( K )  as follows. 

We have then 

If @*"'-l(L) # 0, then p2OZm(K) # 0. 
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p Z r n ( ~ )  = 2 2, ( ( b t  "i0 . * *  a;,n-,) * (aj, Oj,,,)) + 
-I- C4 ( ( 6 0  aio 1.. aim-,) * (61 Ria 0 . .  aj,,,-l)) + 

4 

+ 2 ( v - 0  a;,,,) * (aj, . a -  aj,J 1 . (4) 

1n:these equations El, .", X, are to be extended over all possible 
sets of indices (i7 i )  satisfying respectively: 

io < j o  < i, < 
j o  < i, < jl < ..- < im-, < j m  , 

j o < i , < j l < . . . < i , < j , + l ,  (2,) 
io < io < il < (X,,) 

< i, < j m  , (XI) 
(CJ 

< L., < im-l. 

To any chain z = C  ci(6;*5;)  E C,(L"), define now a chain BozEC,+,(K") 
i 

by 
BOZ = 2 ~i (Ci * 60 ~i + bo Ci * T i )  

I 

Then Bo : C,(L")  - C,+,(K") is a homomorphism satisfying 

a B O z = B o a z  mod 2.  (5) 

For any 6 * 5 E L", dim a + dim T = r,  c E C,(L"),  we have also 

(6 * 60 5 )  (&c) = (60'6 * T) (Boc )  = (6 * r }  ( c )  mod 2 , ( 6 )  
and 

(6 * 61 5 )  (& C) = (61 6 * 5 )  (Bo C) = 0 - (7) 

Then in  L" there must exist a mod 
By (l), (3), 

Suppose now pzP" (L )  # 0. 
2 cycle P2z7 z€C2m(Lx), such that P,~~" ' (L)(P,Z) # O .  
( 6 )  and (7) we get 

Vrn+'(K) (Pz Bo 4 = P2 V"(L) (PZ .) # 0 * 
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By ( 5 ) ,  p2Box is a mod 2 cycle , in  K*. Hence the last equation 
shows that q z m f ' ( K )  +.O or @*"*'(K) # 0. In the same manner we 
may prove that (oZRI-I(L) # 0 implies p2@**(K) # 0. 

Proof of Theorem 23. 
When q = 0, is the same as the Van Kampen complex K ,  in 

As Theorem 22. By that theorem we have already pz@2p(AP.,,) # 0. 

Ap., = a y  Ap+1 + Qb" A p . 4 - 1 ,  

by induction on applying successively Theorem 26 we obtain that 
#2*iq(Ap~,) # 0. 

On the other hand, let us take a rectangular system of coordinates 
' " Y  x2R+4+1 ) in R2pfq+'. Let R2P+' be the linear subspace of R2P+qi1 

defined by xI = ... = x, = 0, and Rj (i = 1, 2, -", q )  the line defined 
by xi = 0 j # 1. Let us take on each line R: two points by) = (0, ..., 0, - 
1, 0, "', 0) and bjl) = (0, "', 0, -1, 0, .", 0). As A , ,  is a complex of 

dimension p ,  there must exist a realization T : ARSoc Rzp+'. On setting 
T(n$;) = by', T(a:Ji) = b:'), i = 1, 2, "', q, we get then an extension 
of T : AP, , c  RZp+qf'.  The theorem is thus completely proved. 

Remark. The theorem 19 of $9 concerning the realization problem 
of complex KN,,  in R" is in reality settled by known method (prin- 
cipally the method of Van Kampen-Flores). However, the realization 
problem of the complex A , ,  in R", so f a r  as the author knows, 
seems impossible to be settled by any known methods (Alexander, Van 
Kampen, Flores, Thom, etc.). 

Consequently A , ,  4 R2p+q. 

- 
i -1  
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ON THE REALIZATION OF COMPLEXES IN EUCLIDEAN SPACES. 111 

wu WEN-JUN (wu WEN-CHUN) 

(Institute of Mothemotics, Acodemia Sinico) 

Let K be a finite simplicial complex. We can always view K a s  a Euclidean complex in a - 
Euclidean space  of sufficiently high dimension N. Let i t s  underlying space  be denoted by K .  In 
studying whether K can be imbedded in the Euclidean space R m  of some fixed dimension m, we have 

introduced the following definitions (in [I]  the notation is slightly different). - 
Let  T: K -- R m  be a topological mapping such that for every o € K, T/o  i s  a linear mapping, 

- 
then T is c a l l e d  a l i n e a r  imbedding of K .  If T :  K -- R" i s  a l i n e a r  imbedding of some 
simplicial  subdivision K'  of K ,  then T is called a semilinear imbedding of K in R m  through the 
subdivision K' . Again, if T: K -+ R m  i s  a continuous, mapping such that for any 0 € K ,  T/o is a 

linear mapping (perhaps degenerate), T/o  is nondegenerate if d i m o  S m ,  and for any simplices u and 
7 with no common vertices,  and with dim u + dim r _< rn, T(o) and T(r) are in general position, then T 
is called a linear pseudoimbedding. If 7': K -+ R m  is a linear pseudoimbedding of some subdivision 
K I ,  then call  T a semilinear pseudoimbedding of K through K ' . 

- 

- 

In [I], for a semilinear pseudoimbedding of K in R m ,  we have inaoduced a system of invariants 
@ " ( K )  € h'"(K', 
symmetric product of K ,  l ( m )  i s  the additive group of integers if rn i s  even, integers mod2 if m is 
odd. We have a l s o  proved that 9°K) = 0 i s  a necessary condition for K to be semilinearly imbed. 
dable in R m .  The purpose of this paper is to prove that these conditions a re  a l so  sufficient i n  certain 

extreme c a s e s .  

rn > 0, called the imbedding index of K ,  where K' i s  the reduced two-fold 

More explicitly, let  K' be a 1-dimensional complex, then Q 1 ( K 1 )  = 0 i s  the necessary and Suffi- 

cient condition for K' to be semilinearly imbeddable in R ' .  This  i s  obvious. Similarly, a2(K') = 0 

i s  a necessary and sufficient conditiou for K J  to be semilinearly imbeddable in R 2 .  A s  was poinred 
out in [2], this is another way of stating Kuratowski's Theorem. Otherwise, if the dimension n Of 

is greater than 2, then a'"&) = 0 i s  a necessary and sufficient condition for K to be semilinearly 
imbeddable in R'". This  i s  the main theorem of this paper ( see  $2, Theorem 1). This t h e a m  Was 

first studied in the work of Van Kampen (see  [3]). The invariant introduced by Van Kampen i n  i s  

another way of expressing p 2 Q 2 " ( K ) ,  where p2 i s  reduction mod 2. There are errors i n  both his 

statement and proof of the theorem (see [4]). But the method of our proof of the theorem still follDCs 

mainly the original proof of Van Kampen; where the mistake occurs,  we use  a construction of U'hilnc)." 

to correct it. 

In the following, a complex will always mean a finite Euclidean simplicia1 complex in Euc t id rW 
space.  

$1. Several constructions 

In order to prove the main theorem of this paper, namely Theorem 1 of $2, we need the 

Rece ived  February  4, 1957. 
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following simple constructions: 

A. Tube construction. Let C be an infinitely differentiable simple arc in R m  (i.e. the image 

0 in  R"' of a line segment under an infinitely differentiable topological mapping), with endpoints a 

and d l .  Let L: and L ;  be  two n-dimensional linear subspaces  orthogonal to C a t  a. and a 

respectively, let  S:-' and S7-I be (n - l)-spheres in 1,; and L y ,  with centers a. and al, and each 
with sufficiently small radius 6 > 0. Assume further that each S7-l i s  oriented. We will prove that 
if m 2 n + 2,  there always ex is t s  an n-dimensional differentiable tube T in the 6-neighborhood of C, 
i.e. T i s  the image under a differentiable topological mapping of the topological product of an  

(n-l)-spheres with a line segment, such that the two ends of T are S:-' and SY-' respectively, and 
after suitably orienting T, J T  = 5'"-' - S"-' 

1, 

1 0 '  
To prove this, write the points of c a s  Q,, 0 _ < I s  1. Let Lr - '  be the ( rn - l)-dimensional 

linear subspace orthogonal to C a t  a,. Let the Grassmann manifold of all  oriented n-planes of LY-'  
through nt be denoted by R:Ln-l,n. Then there ex is t s  a fiber space L on C in which the fibers are the 

image of the Grassmann manifold Rg)n-l ,n,  whose projection n:  L -+ C i s  defined by n-'(aI) =%gln-l,n. 
Since C is  a simple arc,  this fiber bundle has  a product s t r u c t ~ ~ e .  
m - n  - 1 2  1, %lnf)_n-I,n is an arcwise connected space,  so any cross  section on Q ~ ,  a 1  may he 

extended to a cross section on C. In particular, take the cross section / (Q ) = L:, / (a l )  = L ;  on 

so, a l ,  where the orientation of L:, L ;  corresponds to that of Sy-', i t  may be extended to  a 

tioss section / on C, / ( a t )  = L:, such t h i t  L: i s  an oriented n-plane of LY-' through a t .  From a 
theorem of Steenrod, we can make / into an infinitely differentiable cross section. Let S f - '  be a n  

h-l)-sphere of radius c ,  center aI in L y ,  and T be the space  formed by the S7-1.s far 0 < t  _< 1. 
Then for sufficiently small  c , ' T  i s  a differentiable tube with ends Si-' and S7-l in the r-neighbor- 

hood of C. Furthermore, with a suitable orientation, we have J T  = S"-l = S:-' a s  required. 

1 2 - 
w e x  and n > 2 ,  and le t  T be a continuous mapping of K into R 2 "  satisfying the following conditions: 

r L  - 
Also  from the assumption that 

0 

. .  

1 
8. Whitney construction. Let 0 and 0 be two n-simplices in the complex K with no common 

1'. The restriction of T to the (n - l)-s!ieleton of K i s  a linear imbedding. 

2'. The restriction of T to the  interior of any n-simplex of K is a differentiable topological 
mapping. 

3'. T has only double points, but no triple points 

4'. T(o,) and T(o ) i'ntersect in an even number of points q ,, . . . , q r ,  q i ,  . * ' ,  q r ' .  At each  
paint li or q l ,  t he  tangent planes of Tb,) and T ( a 2 )  intersect only in the point q i  or q(  . Further- 
more, with respect to a fixed orientation of R 2 " ,  the intersection numbers of T ( o , )  and ?'(a2) tol 

2 

o2  are already oriented) are + 1 a t  each q i ,  and - 1 a t  each 7:. 

Whitney's construction (see [ S ] ,  5$10-12) permits us to alter T into another continuous mapping 
",Preserving properties 1O-3' and changing 4'10 

2 

- 
4'. T'(ol)  and T ' ( 0  ) do not meet. Furthermore, the  alteration on ly  occurs on a1 and a2' and 
"0' change the other double points. In other words, we have 

5'. T and T' agree on K - I n t o l  - In to2 .  Furthermore, apart from eliminating the double points 

we briefly s ta te  the construcrion of T I .  

we 

- - 

fi and T and T ' have the same remaining double points. 

construct a simple differentiable arc O i  (i = 1, 2),  connecting q = q and q ; = ' in 
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T(oi) such that B i  does not go through any other double points in T(ui), and B ,  and B ,  have no 
common poin ts  o t h e r  than  t h e  two endpoints q and q '. 
space  with Cartesian coordinates ( x l ,  . . ., z ~ ~ ) ,  E 2  will be the (xl, x ) plane. Let A 
segment 0 _< x < 1, x 2  = x 3  = . . 
A 2  be a smooth curve: x - X(x,), 0 < x i  5 1, connecting r and r '  in E 2 ( x ,  2 0). Let  A = A l  t A,, 
and r be a 2-cell formed by a sufficiently small  neighborhood of A and the interior of A .  It follows 
from [ 5 ] ,  $10, that f a  n > 2, we may cons t ruc t  a differentiable mapping $ of r ,  such  that $ ( r )  = q ,  
$ ( r ' )  = q ' ,  $ ( A  = B , ,  $ ( A 2 )  = B,; t h e  differentiable 2-cell $(r )  = u intersects T(o;) only at  8 .  
for i = 1, 2,  i t  does  not in te rsec t  T ( K  - Int (I - I n t o  ); and a t  any point of B i ,  the tangent planes 1 -  2 
of T(oi) and of u only intersect a t  the tangent l ine of B i  a t  that point. 

Let E2" be a 2n-dimensional Euclidean 

be the line 2 
= x Z n  = 0,  whose endpoints are r = (0 ,  . . . , 0) and r '  = (1, 0, ..., o), 1 -  

2 -  

Since the intersection numbers of the two oriented c e l l s  T ( a l )  and T(u2) a t  9 and 9 'are ti and 
1 respectively,  and n > 2, i t  follows from [ 5 ] ,  $11, that we may define a sys tem of vector fields 

W 1 ( q * ) ,  * * , w 2 n ( q * )  on $ ( r )  = (I, where a l l  the Wi(q')  are  linearly independent a t  each  q' € 0, 
depending continuously and smoothly on 9'. and satisfying the following conditions:  

(a )  Let e i ( r * ) ,  i = 1, . ., 2n be the unit vectors parallel  to  x i  a t  r* € r. Then W1(9*) and 
v2(q*) are the images of e ( r ' )  and e 2 ( r * )  respectively,  under the vector mapping induced by 3, 
where q* = $ G * )  E: (I. 1 

(b) When q* 6 B,, Wj(q*),  . . a ,  W,+,(q*)  are the tangent vectors of T ( u , )  a t  v*.  
(c )  When q* 6 B,, Wn+2(q*)r . . . , W 2 , , ( q * )  are the tangent vectors of T ( 0 2 )  a t  9'. 

Now for r* € r ,  define 

Then in a sufficiently small neighborhood U of r C E 2 " ,  $ is one-to-one. Now in each u i ,  take a 
sufficiently small neighborhood M i  of Ci = T - ' ( B i ) ;  such that 7 ( Y i )  c V = $ ( U ) ,  i = 1, 2. Let li be 
the projection: (xl, x 2 ,  * * a ,  x 2 n )  -+ (x 
small  S O  that n ( N I )  and n W 2 )  only in te rsec t  on the %,-axis,  where N i  = $ - I ( T ( M i ) ) ,  i = 1, 2. This 
i s  always possible in view of conditions (a), (b) and (c). 

Now take 6 > 0 sufficiently small ,  and construct a continuously differentiable real  function v ( t ) ,  

0,  x 3 ,  9 . .  , z Z n ) .  We may assume M i  to  be sufficiently 

such  that 

IU(Z)l < 1, V ( 0 )  = 1, and when x 1 >_ c2, u ( x )  = 0 

Construct another continuously differentiable function x 2  = p ( x l )  such that 

~ > P ( Z l ) - - ( z , ) > o ,  0 s z 1 s 1  

p(zl) = 0,  2, 

. . . , x 2 " )  = I *  in N,, ler 

- t or zl > 1 + 6 .  

For any point (x 

e ( r * )  = r *  - u(z: + ... + z C ) p ( z , ) e , .  
- - 

Then O ( N 2 )  does  not meet N , .  Now alter T: K - R2" to T I :  K 
T on  K - M,, and on M,, 

R 2 " ,  so that T I  agrees a'iNh 
- 

T l j M I  = B+-'T. 
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Then, if < i s  sufficiently small ,  T I  i s  obviously continuous, and i s  a differentiable topological map. 
ping on u1 and u,, does  not have q = q and q '  = q ;  a s  double points,  but otherwise has  the same 

double points a s  T .  
Now use the same technique on ( q ,  q ' ) = ( q 2 ,  q ;  ), . . , (q r ,  4: ) to  finally obtain a mapping T ', 

1 

- - 
satisfying 1 O - 3 9  4 O  and 5' a s  required. 

C. Van Kampen construction. L e t  u1 and u 

> 2, having common vertices.  L e t  T be a continuous mapping of K to R2" satisfying the followinj 

be two n-simplices of a 2n-dimensional complex 2 - 
1, 
conditions: 

19 T i s  a semilinear pseudoimbedding of K through some subdivision K '. 
2 4  T i s  a semilinear imbedding of the subcomplex K ,  (or K,) defined by u1 (or u,) and i t s  

faces through the subdivision K ;  (or K ; )  of the above K ' res t r ic ted  to u1  (or u2). 

3". T has  only double points,  but no tr iple points. 

In this si tuation, Van Kampen's construction ( s e e  proof of Lemma 2 of [4]) permits us to  change 
T to another continuous mapping T 'satisfying the following cooditions:  - 

1'. T '  i s  a semilinear pseudoimbedding of K through some subdivision. 

2 9  T ' i s  a semilinear imbedding of the subcomplex L formed by ul ,  u, and their faces  through 

3'. T' coincides with T on K - !ntul - Int u2. Moreover, T '  h a s  no triple points and h a s  the 

- 

[lie subcomplex induced by the above subdivision of K restricted to L .  - - 

same double points a s  7' except that the original double points common to T(o,) and T b 2 )  have 
been removed. 

Following the original construction of Van Kampen, we reconstruct the above T '  a s  follows: 

Let x i  = T h , , )  = T ( x , , ) ,  i = 1, . . , r ,  where x l i  € I n t o l  and x Z i  E In to2 ,  be the double points 
01 I' formed by the intersection of T(o,) and T(o,). We will change T s t e p  by s t e p  to diminish the 
number of common double points in 7'(u ) and T(o,), and make the l a s t  mapping so obtained sa t i s fy  

I _ -  
io-j0. 

For this let 0 be a common vertex of u1 and u2, and let r be an n simplex of u1 belonging 

10 K ;  and having 0 a s  a vertex. In T(o,) construct a broken l ine 1 ,  from x l  to an interior point 
1; of T ( r l )  such that the broken l ine does  not go through xz, * .  . , x r  or any  other double points in 
q. Also construct a sufficiently small  linear iube C,  of 1 ,  with one end the boundary of a 
sulliciently small neighborhood V 1  of x 1  in T ( 0 2 )  and the other end the boundary of a sufficiently 
m a I I  n-dimensional convex neighborhood V ;  which intersects T ( r , )  only at  x i ,  and such  that c, 
dops om contain any double points of 7'. Now alter T to T I  so that T I  maps u2 n T -'(v1) to 

c1 t 1'; and on the remaining K - u2 n Int T-'(V1), T I  i s  the same a s  T .  Then this new mapping 
TI st i l l  has properties 

1 

Only i t s  double points xl, * * . , xr have been changed to x i ,  
1 2 , ... , x,. The same technique can  be applied to x 2 ,  * .  . , x r .  Hence we may assume from the s ta r t  

[he double points x ,, . . . , x ,  a l l  l ie in T ( r l )  and on any line segment O ' X ,  has  no double 
P o h s  except for X ,  . Here 0 ' = T ( 0 ) .  Similarly, by slightly moving T b , )  if necessary ,  we may 

lrsm that T has the following additional properties: 

4'. For any 7 '  G K; which does  not have 0 a s  a vertex the l inear subspace  spanned by T(7') 

not pass through 0 '. 
lo. For any r €  K '  and any r' € K ;  such  that r'  does  not have 0 a s  a vertex, and r ,  r'  have 

PncOmmon vertex, then 0 '  and the subspace  spanned by T ( r )  and tha t  spanned by T ( r ' )  are in 
P c r a l  positi0;hn. 
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Now l e t  6, b e  the n -d imens iona l  s implex  in K ;  wi th  z 2 ,  a s  a n  inter ior  point. Obviously,  
d o e s  not  have  0 as a ver tex.  H e n c e  the re  e x i s t s  a cha in  of n - s impl i ces ,  6,. . . . , [, in K; , such 

tha t  eve ry  two consecu t ive  s i m p l i c e s  ti, (i = 1, . . - ,  s - 1) have  an  (n - l ) -s implex qi in 
common, [, h a s  0 a s  a ve r t ex ,  bu t  none of the o the r  t i ' s  ( i  < s )  h a s  0 a s  a ver tex.  It follows from 

5'that for any  s implex r € K '  , r f el, when r and 5, have  no ver t ex  in  common or  only one,  the 
l inear  s u b s p a c e  L(0, r) s p a n n e d  b y  0 '  and  T ( r )  i n t e r sec t  t he  l i nea r  s u b s p a c e  L ( t , )  spanned by 
"(El) in a l ine  segmen t  s(r)  a t  most .  When the common f a c e  of r and  El h a s  d im?  1, L(0, r)  and 
L(f1) i n t e r s e c t  in t h i s  common f a c e  only.  Hence ,  b e c a u s e  df the  a s sumpt ion  that  n > 2 ,  we can con- 

s t ruc t  a l i ne  segmen t  in  T(,fl) through zl, which i n t e r s e c t s  the inter ior  of T(q , ) ,  bu t  intersects  all 
the  l i n e  segmen t s  s ( r )  only a t  z l ,  and  d o e s  no t  p a s s  through any  o the r  doub le  po in t s  i n  T(fl). 
Denote  by y l  t h e  in t e r sec t ion  of t h i s  l i n e  segmen t  with T(ql). and by yo the intersection with another 
(n - l ) - face T ( q o )  of T(tl). Again from d o a n d  So, for a n y  s implex  r € K ' , r f f 2 ,  the l inear  suh- 
s p a c e  spanned  by 0 '  and  T ( r )  i n t e r s e c t  L([ , )  a t  most  in a l ine  segmen t  or a f a c e  of TLf2) .  Since 

n > 2, i n  the inter ior  of T ( f 2 )  w e  may cons t rue t  a l i ne  through y1  which d o e s  not  go through any 
double  po in t s ,  which d o e s  no t  i n t e r s e c t  a n y  o the r  s u c h  l i n e  s e g m e n t s ,  and  wh ich  in t e r sec t s  T ( q 2 )  at 
y2.  Cont inuing t h i s  cons t ruc t ion ,  w e  ob ta in  a broken l i ne  1 = y o y l  . . . y s - l ,  where  y i  is a n  interior 
point  of T ( q i ) .  Now in  T(q ), c o n s t r u c t  a su f f i c i en t ly  s m a l l  (n  - l ) -s implex qi with yo  a s  an inre- 
rior point .  Through e a c h  point  y i  on the  boundary of q i  , cons t ruc t  a s t r a i g h t  l i ne  paral le l  to yay,, 
which in t e r sec t  T(q , )  a t  y ; ;  through y;  cons t ruc t  a s t r a igh t  l i n e  pa ra l l e l  to y I y 2 ,  which intersect 
T ( q 2 )  a t  y; ; follow t h e  s a m e  method,  cons t ruc t  y;, * * ,  y: . T h e n  for e a c h  i = 1, 2, * * * ,  s - I ,  
a l l  the y i  form the  boundary of an  (n - 1,-simplex q; i n  T(qi ) ,  a l l  the l i ne  segmen t s  y;-lyi form a 

tube ,$ i n  T(&) with y i - ,y i  as  a x i s .  L e t  f '  = 

of the  cons t ruc t ion ,  4 9  5'and the a s sumpt ion  tha t  O ' x ,  c o n t a i n s  no doub le  point  other  than xi, we 

know tha t  if we choose  q' su f f i c i en t ly  sma l l ,  C d o e s  not  con ta in  a n y  doub le  points .  If we projrct c 
with 0 '  a s  cen te r ,  t he  r e s u l t a n t  c o n e  C is a n  n -ce l l ,  which only i n t e r s e c t s  T ( K )  on C t O ' \ s ' - l .  
and only i n t e r s e c t s  T W , )  a t  0 ' .  

L e t  /( [ '  ) be the porcion of T((,) + . . . + T([,-,) e n c l o s e d  by 5 '  + qi + q: 

I O  T I  so tha t  T I  c o i n c i d e s  with the o r ig ina l  T o n  K - o2 n Int T - ' ( / ( ( I )  + 0 ' 7 :  

u2 T-'(/(( ' ) + 0 '7: 
n o  longer  a doub le  point  of T I .  

Now u s e  this  method on e a c h  of z2, . . . , z ; w e  ob ta in  a mapping T', which sa t i s f i e s  1°-30ar 

+ .. . + f S - [  , and C = ( '  + 7;. Then, because 

0 ,u - 
- 

Now alter 7 
and T i  maps 

- ._ 

z 
t o  c. Then  the  new mapping so ob ta ined  s t i l l  s a t i s f i e s  1°-3", but 'I is 

T I  h a s  n o  new doub le  po in t s .  _ -  

required.  

$2. Main theorem-the n e c e s s a r y  and  su f f i c i en t  condi t ion for  K" c R2" when n > 2 

In [ I ] ,  we have  introduced a s y s t e m  of inva r i an t s ,  @'"(K) € / / ' " (K* ,  I ( , ) ) ,  rn > 0, of a finite 
s implicia1 complex K ,  ca l l ed  the m-dimensional  imbcdding index of K .  
fold symmetr ic  product  of K, 
ing a s  in i s  even  or odd.  We h a v e  a l s o  proved tha t  (D"'(K) = 0 i s  a n e c e s s a r y  condition [hat K br 
semi l inea r ly  imbeddable  in R m .  I n  [2], we ind ica t ed  that  a f amous  theorem of Kuratowski about 

curves ,  in the c a s e  of a complex,  c a n  b e  r e s t a t e d  in  the fol lowing manner :  @ ' ( K )  = 0 i s  a nrrcss'") 
and su f f i c i en t  condi t ion for a I -d imens iona l  complex t o  be imbeddBble in the  plane. The P"T'Sr "' 
this  s e c t i o n  i s  t o  prove the fol lowing theorem: 

in R.;", it is necessary and su l f i c i en l  l/ml @*"(K) = 0. 

Here K *  i s  the reducedfwo. 

i s  the add i t ive  group of i n t ege r s  or t h e  mod 2 integer group, accOrcl '  

Theorem 1. For Q finile s impl i c ia l  complex K o /d i rnens ion  n > 2 to Ire semilinearly in l*rd ' ' ' l i ' ' r  
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The n e c e s s i t y  of the  condi t ion Q 2 " ( K )  = 0 h a s  a l r eady  been s t a t ed .  We wil l  prove the suff ic ienc 
as follows. We will  a s s u m e  tha t  K is a Euc l idean  complex i n  a Euc l idean  s p a c e  R N  of suff ic ient ly  
high dimension N .  

Let R2"- '  be a n  (n - I ) -d imens iona l  l i nea r  s u b s p a c e  of 8'" d iv id ing  R2" into two h a l f s p a c e s ,  
Rz," and RF. L e t  T be  a l inear  imbedding of  the (n - I ) -skeleton K"-'  of K i n to  R 2 n - 1 .  For  any 
n.simpIex (r of K ,  l e t  0, be the  barycenter  of a, l e t  0, be the  barycenter  of the n-simplex in R2"- '  
determined by T(b), l e t  P ,  be the n-dimensional  l inear  s u b s p a c e  spanned  by T(b), and  l e t  5, he t h e  

For  e a c h  x 6 S,, cons t ruc t  t he  half l ine 0,z from 0, to z, 

intersecting T(b) a t  x ' . L e t  the  d i s t a n c e  between 0, and  x ' be p, (z). Then  p, is a cont inuous 
function on the  d i f f e ren t i ab le  manifold S u .  Choose  arbi t rary 6 > 0,  then,  by a n  approximation theorem 

n i t n e y ,  we may e a s i l y  cons t ruc t  a con t inuous ly  different iable  funct ion / on s,, s u c h  that  for any  

- 

(n - l l - sphe re  in  P u  with cen te r  0, 

I E S,, 
tance from 0, is u f ( x ) .  T h e n  for a >  1, /,,ais a different iable  topological  mapping of s, to p,. 

Now, through 0, cons t ruc t  a half l ine L in  R Y ,  orthogonal  to R2"-', and  choose  an arbi t rary 
point 0; on it. Through 0; cons t ruc t  the n-dimensional  l i nea r  space Pb para l l e l  t o  Pm.  
the previously choosen  
and orthogonal to R2"-' i n t e r s e c t  P6 a t  f:, ( x ) ,  l e t  the l i ne  segmen t  connec t ing  I,, ] - < ( x )  and 
\ i , ( ( x )  be l Z ,  and l e t  n, be the or thogonal  project ion on to  .% ' 0, of the broken l ine with consecu t ive  

vertices z', f,,l-f(z), / A , < ( x )  and  Q A .  Define T(Kn- ' )  as before .  Extend T t o  the inter ior  of 
tach n.sirnplex 0 € K a s  fo l lows :  for..any T '  € b ,  if x '  = T ( x ' ) ,  x i s  t he  in t e r sec t ion  of the ha l f -  
line O u x '  with s,, and  TT;, i s  the l inear  mapping of t he  l i ne  segmen t  z ' O u  to the line segmen t  
r'Oo, then T / F ' S m s  n i lT ; .  Next ,  on the plane determined by Ouz,  1,  and  OAf; , ( (x ) ,  cot is t ruct  
acircular arc C x ,  t angen t  to the s t r a igh t  l i ne  O u x  a t  I - ~ / 2 ( x )  and tangent  to L x  a t  p,. Also  

construct a circular a r c  CL t angen t  to 0; { ; , < ( x )  at 0: and t angen t  to L r  at p:. L e t  1; be t h e  s e g -  
mmof 1% between p, and p:, and  l e t  nx be  the or thogonal  project ion of the union of the l i ne  s e g -  
ment x'fu,l-f/2(x), the a r c C Z ,  the  segmen t  1; and the a r c c ;  onto ~ ' 0 , .  Define T ' ( K " - I )  a s  
T(K"- I ) ,  and extend T '  to the  inter ior  of e a c h  n-simplex u 6 K ,  so t h a t  for a n y  F' € b ,  if z ' , 
I 2nd T; ,  are as previously de f ined ,  then T I  /F' 0 = ni -' 7';. It i s  obvious tha t  by choos ing  6 

rufliciently small and su i t ab ly  choos ing  01, we may make  T i n to  a semi l inea r  pseudoimbedding 
lhfough some subdivis ion of K ,  with no t r iple  points ,  and any  doub le  po in t s  must be in die inter ior  of 
Ihr segments 1 ; .  Similar ly ,  T '  h a s  no t r iple  po in t s ,  i t s  double  po in t s  ag ree  with those  of T ,  its 

itsfriction to the interior o f  every n-simplex (I € K i s  a different iable  topological  mapping, T '  is 
''((iciently c lose to  T ,  and in a su f f i c i en t ly  sma l l  neighborhood of K '-', 1'' co inc ides  with 1'. 

? p , ( x )  - f ( x )  > 0. For a n y  a >  0, l e t  be  the point  on t he  half l ine 0,z whose d i s -  

Assume 

is su f f i c i en t ly  small .  Fo r  any x € S,, l e t  the s t r a igh t  l i ne  through f , , (x)  

- 
- 

- 

- 

In the following, F €  will  be c a l l e d  a s ingular i ty  of T or T '  if i t s  image,  1'(;) = T'(r)  is a 

point of both T and  T ' ,  
Choose an arbitrary or ientat ion of R 2 "  and l e t  ,$ be the integer  i n t e r sec t ion  number with r e spec t  

' a i l t h e  (n - 1)-s implices  of K ,  e a c h  arbi t rar i ly  o r i en ted ,  so  that  for any oi* (I. or ui  * T ~ €  K ' ,  we 
Lnc 

orientation. L e t  u i ,  i = 1, . . . , r be a l l  t he  n-s implices  of K ,  and  7%' and l e t  a = 1, . . . 9 s  
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According t o  the def ini t ion in  [I], for any  arbi t rary 2n-cel l  ui * a. € K ' ,  
/ 

(2)  
de te rmines  the imbedding cocha in  d,,, € Q 2 " ( K )  € / 1 2 " ( K * )  of a semi l inea r  pscudoimbedding T .  But 

by a s sumpt ion ,  a2"(K) = 0, so the re  e x i s t s  a y € C2"-' ,  s u c h  tha t  

Q T ( U i  U j )  = ( - l ) " + ( T U i ,  TUj )  

ax = Q T s  
where x i s  de f ined  as 

x(ui * r,) = Cia, u i  0 r. E K'. 

( 3 )  

(4 )  
L e t  J deno te  the s e t  of all p a i r s  of ind ices  (i, a), s u c h  tha t  oi * 7 ,  € K *. L e t  ai = Z: ,jCial, 
b a =  xilcial, e a c h  summed over  all  a or all i, s u c h  tha t  (i, a )  € J. In e a c h  ui, c h o o s e  ai distinct 

inter ior  po in t s ,  all d i s t i n c t  from any s ingu la r i t i e s :  1 . .  , zis , C i a l ,  ( i ,a)  € J .  In e a c h  r,, also 
c h o o s e  ba d i s t inc t  inter ior  po in t s :  7. ( i ,  a ) €  J: L e t  T ( Z i s k )  = z ~ , , ~  and 

T(Yia,k) = Y ~ , , ~ .  Fo r  e a c h  y i a , k  cons t ruc t  an (n  + l ) -d imens iona l  l i nea r  s p a c e  
t o  l ' ( r a )  and  p a s s i n g  through y i a , k .  Cons t ruc t  an n-sphere in  P i , , k  of su f f i c i en t ly  small 
r ad ius  > 0 and c e n t e r  at y i a , k ,  which i n t e r s e c t s  R 2 " - l  i n  the ( n  - I b s p h e r e  S$!' ,k ,  dividing 

S i , , k  i n to  two hemisphe res :  s 
ra,k 

with the ha l f l i ne  through Y~,,~, orthogonal  t o  R2"- '  and  in R Y .  L e t  z : , , ~  be a suff ic ient ly  small 

sphe r i ca l  neighborhood of z ~ ~ , ~  in S ; a , k .  L e t  z ; , , ~  be what  r ema ins  of 

the inter ior  of z ?  

- 
- 

..., yia  

orthogonal 

C 8:" and s ;a,k C RF. L e t  z ~ ~ , ~  be the  intersect ion of S i  

af ter  taking away 

Le t  the common boundary of ~ f , , ~  be z(::,~. We or i en t  P i n k  s o  that r a , k  ' 

+(Pi.,, L. Tr,) = ( - 1)" sgn Cim, ( 5 )  

where s g n C i a  = + 1, - 1 or  0 accord ing  as c ia>  0, < 0 or = 0. Orient  S i a , k  with r e spec t  to thc 

or ientat ion of P i , , k .  T h e n ,  by raking su f f i c i en t ly  s m a l l  e i a , k  > 0 ,  wc may cons t ruc t ,  in T(o,), 

(n - l ) - s p h e r c s  s i a , k  
d i s jo in t  on T(ai)  and they d o  no t  con ta in  a n y  double  po in t s  in any  of their  inter iors .  Let  Ti,,/, br 

the  inter ior  of with the  or ientat ion induced from tha t  of ai. L e t  7:a,i, be the intersection 
of 

s imple a r c  C i a , k ,  connec t ing  x , a , k  and z ; , , ~  so that  the a r c s  mutually do  not  meet ,  and  meet Y ' ( h ' ) t  

T ' ( K )  and a l l  the Fol lowing c o n s u u c t i o n  A of '$1, we may m -  
s t ruc t  a d i f f e ren t i ab le  tube C i a , k  in a su f f i c i en t ly  sma l l  neighborhood of C i a , ,  , connecting s,'e,L 
and zr:',, , s u c h  tha t  af ter  su i t ab ly  or ient ing the or ientat ion on .S;,,k inducrd by cto,h 
and Tta ,k  are the same, while the orientation on z $ : ) , ~  induced by Cia ,k  and z : , , ~  are oppositc. I n  odler 

wmds, 

C i a , k  + z L a , k ,  ( i ,  a )  C 1; T"  coincides with T '  on the remainder of oi. The w p p i n g  may be smwthc~ l~ )u t  
near . y ( a , k  and z I O ~ , ~  by a t  most infinitesimal changes, SO we may assume that 7"' i s  a differentiable "lP". 
logical mapping in the interior of ai.  By choosing all the fia,k's sufficiently small, we INY 8150 aSSU"'e 

all die Cl,,k are  mutually disjoint, a d  only meet 7 ' ' ( K )  a t  S l a , k .  Then, T" : K -- /1*" is continuous 
possesses  the following properties: ?"' i s  a differentiable topological mapping in the interim o f  each 0,; '' 

h a s  no rriplc po in t s ,  and e a c h  of i t s  double  po in t s  i s  i n  tne intcr ior  o f  both T " o i  and 7 f l i ;  t ' l c  t " " ~  

gen t  p l anes  of 7'"oi and T " a .  a t  t h i s  double  point i n t e r sec t  only a t  t h i s  point. Also,  since for '"lh 

a, F: K ,  7'" co inc ides  with T or T in a suff ic ient ly  s m a l l  neighborhood of b i ,  1" i s  a linear lnll''J' 

ding on a yuff ic ient ly  sma l l  neighborhood of K " " .  

with cen te r  z ~ ~ , ~  with r ad ius  s u c h  that  the ( . S i a , / c  )'s a re  mutually 

and b i ,  also with the or ientat ion of u .  In R Y -  cons t ruc t  an ( inf ini te ly)  differentiable - 
- 

only a t  x ~ ~ , ~  and 

+ C i a , k + ~ i a , k  i s  a r e l a t i v e c y c l e m o d b .  Nowalter  T ' / o i  to  T",  mapping T ' - ' ( T f a , i ) C u l  I" 

- - 

1 / /  

I 

- 
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On the other hand, w e  have  

By Camparing (6) and (7), we get 

+ ( T " U i ,  T " U j )  = 0 ,  U i  * uj E K*. 
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Since the intersection number of T"ui and T"u. a t  each  double point i s  +I, we know that T"oi and 
T"u. must intersect a t  an even number of points. L e t  this number be 2n ... Then the intersection 
number a t  each of n . .  double points i s  +1, and the intersection number a t  each of the remaining n. .  

' 1  'I 
double points i s  -1. Since 7"' is a differentiable topological mapping in the interiors of ui and 

I 
and a t  every double point, the tangent planes of T"ui and T"u. intersect only a t  this point, by con- 
struction B of $1, we may alter the restriction of T"  on ui and u., to obtain a mappipg which is 
s t i l l  a differentiable topological mapping on ui and u., but whose images of oi and u .  will be dis. 
joint; and there a re  no new double points result ing from the intersection of the images of ui and a ,  

I 
with the image of any other uk. Now apply this construction to every ui * u.  6 K' to obtain a map- 
ping T o :  K - R'", with the following properties: 

I 

I ' I  

I 
I 

I I 

- I 

1'. T o  i s  a differentiable topological mapping in the interior of every oi. 

2". T o  is a l inear imbedding on a sufficiently small neighborhood of K"- ' .  
3'. T o  h a s  no triple points. Fa every double point, To(%)  = To(y) = p, z and y must be in the 

Because of I", 2" and a theorem of Cairns (e.g., s e e  [ 6 ] ,  Theorem 2), we may construct a suffi-  

- 

interior of two separa te  s impl ices  ui and u . ,  and 0. have  a ccmmon vertex. I I 

ciently c lose  approximation T i  of T such  tha t  for any u i ,  7'; coincides with T o  in some suffli- 
ciently small  neighborhood of bi. By choosing this approximation sufficiently c lose ,  we may obviously 
s t i l l  preserve property 3'. So following the Van Kampen construction ($1, construction C ) ,  we may 
alter Ti to  remove a l l  the double points. The  result ing mapping h:  K -, R Z n  i s  a semilinear imbed- 
ding of K through some division of it. 

0 

- 

Thus ,  we have obtained a semilinear imbedding of K to  R z n  and proved the sufficiency of [he 
theorem. 

F a  an arbitrary Hausdorff space  A', we have introduced a system of topological invariants 

@"(X) € Nm(.X' ,  
twofold symmetric product of X. We have a l s o  proved tha t  when X i s  a f inite polyhedron and K is 3 

simplicia1 subdivision of i t ,  under a fixed isomorphism H m ( X ' ,  I ( , ) )  = N " ' ( K * ,  It,,)), @"(X) and 

am(K) are cohomologous. Hence the above theorem has the following corollary: 

), m > 0 of X, called the rn-dimensional imbedding index of X. Here, x" is 

Theorem 1'. For a f i n i t e  poly/Ledron X of d i m e n s i o n  n > 2 LO b e  s e m i l i n e a r l y  imbeddable ill RZn,  
it is n e c e s s a r y  a n d  s u f l i c i e n l  t h a t  @"(X) = 0 .  

$3. Some suficient conditions for K" C R2" 

The purpose of t h i s  sec t ion  i s  to derive,  from the main Theorem 1 of l a s t  section, some sufflciCn' 
conditions for a n  n-dimensional f initc complex K to be semilinearly imbeddable in R 2 " .  ThCsc 
ditions are either determined by the homology of K ,  or eas i ly  derived f rom the complex Struc["rc Of 

K ,  s e e  Theorems 2-6 below. 
7 "  

Theorem 2. A f i n i t e  s i m p l i c i a 1  c o m p l e x  a /  d i m e n s i o n  n f o is s e m i l i n e a r l y  imbeddable i n  

Proof. The theorem i s  obvious if n = 1. So assume n > 2. Let  K' be the subcomplcx Of " *  
il / / " ( K ,  mod 2)  = 0. 

2 

spanned by all c e l l s  u x 7 ,  where 0 and r €  K have no common vertex. By assumption, 

H , ( K  x K, mod 2 )  - H , ( K ,  mod Z ) @ H . ( K ,  mod 2 )  = 0 
H,+,(K x K ,  R';  m o d ) )  = 0 
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-t 
and from the e x a c t  s e q u e n c e  of ( K  x K ,  K ), 

- 4 H , + , ( K  x K ,  R';  m o d 2 ) + H p ( f l ' , m o d 2 ) - ,  
-+ H , ( K  x K ,  mod 2 )  4 ... 

-* -* . 
it fo lkws that  H 2 , , ( K  , mod 2 )  = 0. S ince  the  h ighes t  dimension of K IS 2n, t h i s  implies  that  
Z,,(K*, f40d2) = 0,  where Z,,, d e n o t e s  the group of 2n-cycles .  In other  words,  there  e x i s t  no mod 2 

2"-cycles in K . 
IS a twofold cove r ing  complex of K ' ,  where the  cove r s  for u * 7 C: K *  are the ce l l :  

(IX 7 and 7 x u .  If p 2 Z ; = l u i  * ri is a mod 2 2n-cycle  of K ' ,  where the ui * ri a re  mutually d i s jo in t ,  
and p, denotes  i educ t ion  mod r ,  then p2 1 ui x ri t p2 ri x ui will  be a nonzero mod 2 2n-cycle  of 
K', contradicting t h e  above ,  So we must  have  z,,, ( K  *, mod 2) = 0, and hence  Z,,, ( K * ,  mod 2m) = 0 
la any integer m 2 0. So, a s suming  4 to be a cocyc le  of CP'", 4 mod 2 is orthogonal  t o  a l l  mod 2m 

Zn-cycles of K ' ,  i.e. 4 
Q 2 " = W S @ 2 n - 1 ,  so 4 = K S C b ' ,  where p2d' 6 @ ' " - I €  H 2 " - ' ( K * ,  mod2).  T h u s ,  for a n y  arbi t rary 

mod(2rn t 1) 2n-cycle  z of K' ,  if we l e t  z' be an in t eg ra l  cha in  s u c h  t h a t  p 2 m + l ~ '  = z ,  we have  
0 * I '  = % a d '  * z ' = = 0,  modzm t 1. Hence ,  whether  m is even  or odd,  4 is orthogonal  to 

any modm 2n-cycle  of K'. From a theorem of Whitney [Whitney, O n  m a t r i c e s  o/ i n t e g e r s  and c o m b i -  
nolional topology, Duke Math. J. 3 (  1937) 35-45], 4 is a coboundary, or @'" = 0. Since n > 2, the theorem 
lollows from Theorem 1. 

** 
--* . 

Obviously, K 

z = 0 mod 2m for a l l  z E Z,,(K*, mod 2m) = 0. Next, from Theorem 8 of [I], 

Theorem 2 has the fol lowing corol lary.  

Theorem 2 . A finite p o l y h e d r o n  X of d i m e n s i o n  n f 2 can b e  t o p o l o g i c a l l y  i m b e d d e d  i n  R2" 
I( /In (x, mod 2 )  = 0. 

Theorem 3. A f i n i t e  s i m p l i c i a 1  c o m p l e x  K of d i m e n s i o n  n f 2 c a n  b e  s e m i l i n e a r l y  i m b e d d e d  i n  
P" i/ V ( K )  = 0. 

This theorem obviously fol lows from Theorem 2 and the lemma: 
Lemma. I [ ,  f o r  an n - d i m e n s i o n a l  / i n i l e  c o m p l e x  K ,  H " ( K )  = 0 ,  t h e n  H,, (K,  mod2)  = 0. 

Proof. From the universal  coeff ic ient  theorem, we have  

H , ( K , m o d 2 ) - H H , ( K ) @ , I , +  T o r ( ~ ~ - ~ ( K ) , ~ ~ )  

H " ( K )  zz t i o m ( H , ( K ) ,  I.) + E x t ( H , - , ( K ) ,  1 )  
h e  I is the add i t ive  group o f  i n t ege r s  and I, i s  the mod2  integer  group. By formula ( 2 )  and  the  
ais"mption that H " ( K )  = 0 ,  it fol lows that  Hom ( f i n & ) ,  I )  = 0 and EXI ( / f n - I ( K ) ,  I )  = 0.  From the 
lormet, i t  follows tha t  If,(K) must  be  a f in i t e  group. Since K is of dimension n, there  is no  tors ion 
I n h e  n t h  dimension, s o  H ( K )  = 0. From the l a t t e r ,  i t  fol lows that  t / n - l ( K )  h a s  no e lemen t  of f ini te  

adPC, hence Tor ( I / " - ]  ( K ) ,  I 
Theorem 3 ' .  A f i n i t e  p o l y h e d r o n  X of d i m e n s i o n  n f 2 can be t o p o l o g i c a l l y  i m b e d d e d  i n  R2" 

In Topologie I of Alexandroff  and  Hopf (AH for brevity), Chapter  7 ,  '$1, there  w a s  de f ined  the so- 

- 0. From formula\(  I ) ,  we have U n ( K ,  mod 2) = 0 .  2 '  - 

l i  l i " i . Y )  = 0. 

' * I k d  closed complex and  i r reducible  c losed  complex ( i r reduzible  g e s c h l o s s e n e  Komplexe). We  will 
Pore 

Theorem 4 .  If a f i n i t e  s i m p l i c i a 1  c o m p l e x  K o /  d i m e n s i o n  n f 2 i s  a n  i r r e d u c i b l e  c l o s e d  c o m p l e x ,  

''O0f. If n = 1, then from p. 284 of AH, Theorem 12, k' i s  a s imple  c losed  polygon, so  the  

con be s e m i l i n e a r l y  i m b e d d e d  in R 2 " .  
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theorem is obvious.  So we may a s s u m e  n > 2. I t  fo l lows  from AH, Chapter  7 ,  $1 No. 4 Theorem 5 
and  Chapter  7 ,  $ 1  No. 5 t ha t  K has  a natural modulus m, m = 0 or m >- 2. When m >_ 2, there exis t  a modm 
rr-cycle P,L in  K ,  where i = x a i u i ,  the  a i s  a re  nonzero in t ege r s ,  a i  and  m a r e  re la t ively prime and 

c o n s i s t s  of all the c y c l e s  gz, where g € G and  ing = 0. So when m is odd,  /f,(K, mod2)  = 0, and it 
fol lows from Theorem 3 tha t  K c a n  be  semil inear ly  imbedded in R 2 " .  If m 2 2 is even ,  then 
Z,(K,  mod 2) h a s  on ly  one nonzero mod 2 cyc le ,  z 2  = p2 xaiui  = p 2 z u i .  From the  Kunneth Theorem, 
we know that Z,,(K x K ,  mod 2) = W 2 , ( K  x K ,  mod 2)  a l s o  h a s  only one nonze ro  mod 2 cyc le ,  z @ z  - -* 2 2' 
p 2 x u i  x uj. Now le t  ?* = p z ' n . . u .  x u. be a mod 2 2n-cycle  of K , where a . .  = 0 or 1 and 1' is 
summed over  a l l  pa i r s  of i nd ices  ( i ,  j )  such  that  ui and u. have  no common ve r t i ce s .  Then,  viewing 
'YI 1 
z as a mod 2 c y c l e  of K x K ,  w e  shou ld  have  ;* = a ( z  @ z  ), where a = 0 or 1. But z 2 @ z 2  has 

terms of the form ui x u i ,  while  ;* canno t  have  s u c h  terms,  so a must be 0, and  H 2 , ( K  , mod2) = 

Z 2 , ( K * ,  mod 2) = 0. From reason ing  s imilar  t o  tha t  in  the proof of Theorem 2, w e  have  a2"(K) = 0. 
Hence ,  from Theorem 1, K may be semi l inea r ly  imbedded in  R 2 " .  

i s  summed over a l l  n-s implices  ui of K ;  so t h a t  fo r  a n y  c o e f f i c i e n t  group G ,  /f,(K, G) = z (K, G) 

2 ' I '  I ' I  

2 2  
-I 

-.- 

Next ,  a s sume  m = 0. Then  from Theorem 4 of AH, Chap te r  7, $ 1  No. 4, K h a s  an n-cycle with 
integral  coe f f i c i en t ,  z = x u i ,  where the 2 is summed ove r  a l l  n - s impl i ces  ui of K ,  each with suitahlc 
or ientat ion,  s u c h  t h a t  for any coe f f i c i en t  group G, f I n ( K ,  G )  = Z,(K,  C) c o n s i s t s  of a l l  cyc le s  gz, 

where g € G is arbi t rary.  In par t icular ,  Z,(K,  mod 2)  h a s  only one nonzero mod 2 cyc le ,  p z = p xo.. 2 2 1  
By the same  reason ing ,  w e  have  W 2 , ( X ' ,  mod 2)  = 0 ,  hence  a2"(K) = 0 ,  and  so K can  be semilinearly 
imbedded in  R 2 " .  T h e  theorem is now completely proved. 

From AH, Chap te r  10, $3 No. 5 and Theorem 4 of AH, Chap te r  13, $4 No. 4, whether a finite 
complex K i s  a c losed  complex or not i s  a topological  invariant  of K. Similar ly ,  from AH, Chapter 8, 

$4 No. 7,  whether a f ini te  complex K i s  an i r reducible  c losed  complex or not, i s  a l s o  a topological 
invariant  K .  L e t  us c a l l  the s p a c e  underlying a c losed  complex or a n  i r reducible  c losed  complex, a 
c l o s e d  polyhedron or a n  i r reducible  c losed  polyhedron. T h e  Theorem 4 h a s  t h e  following corollary: 

- 

- 

Theorem 4 ' . If X i s  an irreducible c l o s e d  polyhedron o /  dimension n f 2,  Lhen X can be l o p -  

l og ica l l y  imbedded in R'". 
Theorem 5 (Van Kampen). I [  any ( n  - I ) - s implez  of the n-dimensional complex K i s  al mosf LAC 

[ace o [ t i u o  n-s impl i ces ,  then K can be semil inearly  imbedded in R'". 
Proof. The theorem i s  obvious if a < 2. 

Now assume  11 = 2. A l so  a s s u m e  f i r s t  that  K is a 2-dimensional  homogeneous complex. Then 
m u s t  be constructed a s  fo l lows :  l e t  K i ,  i = 1, . , r be some complexes ,  obtained by suitably sub- 

dividing some connected s u r f a c e s ,  with or without boundary; then K i s  obtained by identifying SOrnP 

ver t i ce s  of the ( K i ) ' s .  

there  e x i s t  s emi l inea r  imbeddings T i  : K i  - R 4 .  We may as sume  tha t  the T i ( K j ) ' s  are  mutually d i r '  
joint. T h e n  the Ti's together determine a semi l inea r  imbedding T: I K i  4 R 4 ,  where T/Fj 
Now l e t  e. ,  j = I ,  2, . . . , N ,  be a l l  the ve r t i ce s  of the (K, ) ' s  that  wil l  become the ver t ices  of On'!. 

a f t e r  iden:ification. Assume a l s o  that  a l l  the e. a re  divided into s e v e r a l  famil ies  (5 ..., 5,). 
j ,  < j 2  < . . . < j , ,  where the vertices in the same family will be identified, while those of different familiCs 
wil l  not be iden t i f i ed .  Let T(e.) = a , .  For e a c h  family (0. . . . , rj>, we may construct  a family " 

s imple  broken l i nes  l j  , . . . , l j ,  , connect ing a j ,  , a j  ; . . . ; a j ,  , a .  r e spec t ive ly ,  such  that thrsr  

broke&lines  and T ( K i )  are mutually d i s jo in t ,  e x c e p t  for the common endpoints .  Le t  j = j z v  ' ' ' 8  ''I 

j , ,  a .  be a vertex of K . ,  and v .  6e a suff ic ient ly  smll linear neighborhood of a. in T(x..). Thcfl, in ' 

From the  well-known re su l t  of the r l a s s i f i c a t i o n  of su r faces ,  we know that - - 
- 

I I '  

I 1  11' 

- 2  1 ,  

- 

' I  
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sufficiently small neighborhood of each broken line li , we may construct a "linear conical surface" 

Cj, with "vertex" a i l ,  "base" the boundary of V j  , "axis" the broken line l j  , and we can 
assume that these conical surfaces are mutually disjoint except for the vertices, and only meet 
T(IK,) a t  the vertices and the bases.  Alter T to 7": PKi -- R4 so that 7" coincides with T on 
I K i  - Z Int V., and 7" maps V .  to C. .  Then 7" can be viewed a s  a semilinear imbedding of K 
into R4 as  required. Next, st i l l  assume n = 2, but let K be arbitrary. Let K '  be the subcomplex of 
K,consisting of all 2-simplices of K and their faces. From the preceding, we may construct a semi- 

linear imbedding T: K ' - R 4 .  Obviously, this imbedding can be extended to a semilinear imbedding 
of K.  Hence the theorem is poved for n = 2. 

r 

r r 

J J J  

- 

Now we prove the theorem, assuming n > 2.  

First, assume K i s  a regular connected (regularer zusammenhiingender, see .AH, Chapter 4)  n-dimen- 
sional homogeneous complex. Then, f o r  any two n-simplices u and u' € K with no common vertices, 
here exists a chain of n-simplices in K, u1 = u, u2, . * .  , ur = u' such that ui and uitl (i = 1, . . . , r - 1) have 
mly an (n- Iksimplex ri as  their common face. Among ul, . . , let us be the last simplex having no com- 

mmvertex with or, 1 5 s  < r  - 1. Then after suitably orienting the 0's and r's, in K*, we have 

(ar I a , )  - 10, 0 , )  = b l r ,  
{u, a , )  - { a ,  a , )  = blr,  a,J, 

(a , - l *a ,J  l a .*u , l  = b { r , - l * a , J ,  
10. * a.1 = blr ,  a , ) ,  

vhcre I f *  71 (& 7 € K, E *  7 C K') represents the integra: cochain wtth value 1 on f *  7, but value 
0 on any other cell of K'. Adding these formulas, we see that the cochain 10, * o r ]  = {u * u' 1 is  a 
&wndary. Hence / / * " ( K ' )  = 0, and in particular, @ * " ( K )  = 0. By the assumption that n > 2 and 

lheorem 1, K can be semilinearly imbedded in R'". 
Next, consider the general case for n > 2. Let K ' be the homogeneous complex consisting of 

111 the n-simplices of K and their faces.  Let L be the subcomplex consisting of all  the r-simplices, 
' ( n  - I ,  which are not faces of any n-simplices. According to AH, Chapter 4, $ 5  No. 8, K' can be 
Atcomposed into regular connected regular components (regularer Komponenten) K,, . 9 * ,  K s ,  such 
that 

K = K 1 +  + K, + L, 
Ihcre the common portion of any two subcomplexes on the right-hand side is  a subcomplex of dimen- 
' Ion at  most n - 2. Thus 

K l j .  L I  and L *  are  formed by cells of the form u * T, u and T have no common vertices, 

u F b i v  r C  K., or o €  K i  and r €  L, or u, T €  1,. It i s  easy to see  that L' is  a subcomplex of 
'lrnrnsion at'tnost 2n - 2, each L :  i s  a subcomplex of dimension at most 211 - 1 and the common 
W'm of a n y  two subcomplexes aAong the (K* . ) ) s  and ( L ;  )Is i s  a subcomplex of dimension at most 
h -  L Hence, any mod 2m (ni > o), 2n-cycle L of K ' 1  * 

can be written as - 
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where e a c h  z . .  is a mod 2m cha in  of K ;  , i ndeed  i r  is a mod 2111 cyc le .  

0 
K i  ( i  = 1, . * , s - 1)  a r e  a l l  in  f ront  of t h o s e  of X i + , ,  bu t  no t  i n  front of t h o s e  of K , ,  . . . , or K i _ ] .  
At the  end  of the s e q u e n c e  a re  the v e r t i c e s  tha t  a r e  in  L,  but not  in a n y  of the  K . ' s .  
ordering is arbi t rary.  It fol lows from Theorem 11 of [I], t ha t ,  with r e s p e c t  t o  t h i s  ordering, t h ~ e e ~ i ~ l ~  

a c o c y c l e  in Q'"(K), 

' I  
Now order  the v e r t i c e s  of K in a s e q u e n c e  a < a ,  < * * .  <an,  s u c h  tha t  t h e  ve r t i ce s  of  

Otherwise, the 

(p- = X((Ui, ..- a; , )  (at, a j " ) ] ,  

where I is summed over  a l l  p o s s i b l e  groups of ind ices  ( i ,  j )  s u c h  tha t  io < j 
L e t o . = ( a i  , . . . ,  a i ) ~ K K i , u  . =  ( a j o , . . . . , a j ) € K . , i  <... < i n , j O <  ... < j n a n d o i * o . E X f .  

' 0  n 1 0  I 'I 
If i < j ,  t hen ,  s i n c e  ii a n d  K .  \as at mo$t a n  ( n  -2)-simplex in common, by cho ice  of the order of thr 
v e r t i c e s ,  we cannor  h a v e  e i the r  i 
d2"(oi * a , )  = 0. Therefore ,  by formula (3),  we h a v e  p 2 , + 2 n ( z )  = Z p 2 , $ 2 n ( z i i ) .  Now let  hi be the 

i nc lus ion  mapping of K f i  i n to  K * .  Then  obviously,  6 @'"(K, )  6 H'"(K; , ) .  But from the lasi 

part  of t h i s  proof, @ ' " ( K i )  = 0. Hence  A!! dZn - 0, a n d  p z m  q5 ' " ( z i i )  = A! p Z m  q5'"(zii) = 0 m d 2 m .  

T h u s  p 2 m  + ' " ( I )  = 0, i .e. q5Zn mod 2111 i s  or thogonal  t o  any  mod 2m 2n-cyc le s  of K'. Analogous to 

t he  l a s t  pa r t  of the proof of Theorem 2 ,  we have ,  for any  in t ege r  m = 0 or 2 2, that  d2" modni is 
or thogonal  t o  any modm 2n-cyc le s  of K*. T h u s ,  4'" - 0, or @'"(K)  = 0. By the assumption that 
n > 2 a n d  Theorem 1, K c a n  be semi l inea r ly  imbedded in R'". T h u s  Theorem 5 i s  completely provnl. 

Remark. Theorem 5 above  i s  Theorem 4 of Van Kampen's  or iginal  pape r  [3]. His  corrected prol)f 

< i < . . . < in < j,. 

I 
< jo < i l  < . . . < i n  < in  or  j o  < io c: j ,  < . . . < j, < i n .  So 0 

I 

( see  Lemma 6 of 141. uses a deformation theorem of [3] ([3], Theorem 2), so is different from tllc 
proof g iven  here .  

Theorem 5 h a s  the  fol lowing corol lary:  

Theorem 6. E v e r y  combinntorial  m a n i f o l d  ( w i l h  or rvilhoul b o u n d a r y )  of dimension 11 can bc S"m'. 

l i n e a r l y  i m b e d d e d  in R 2 " .  

BIBLIOGRAPHY 

111 Wu Wen-jun (Wu Wen-chiin), On t h e  r e a l i z a l i o n  a [  c o m p l e x e s  in e u c l i d e a n  s p a c e s .  I ,  Acts b h i h  

S in i ca  5 (1955). 505-552. MR 17, 883. 

[2] ------, on rhe realization of c o m p l e x e s  i n  e u c l i d e a n  s p a c e s .  11, Acta. Math. Sinica 7 (175;)* 
79-101. M R  20  #3536 .  

[ 3 ]  E. R. Van Kampen,  Kornplexe in e d d i d i s c h e n  Ruumen,  Abh. Math. Sem. Hamburg 9 (1932)i j2--' 

[4] ----, Supplement  to the p reced ing ,  ibid. 152-153. 

151 H. Whitney, The s e l f - i n l e r s e c t i o n s  a{ a srrioolh n - m a n i f o l d  in 2 n - s p a c e ,  Ann. of Math. 4 5  ( ' 9 . ' ' '  

220-246. MR 5 ,  2 7 3 .  

161 1. H. C. Whitehead,  On C ' - c o n l p l e x e s ,  Ann. of Math. 4 1  (1940), 809-824. MR 2, 73. 

T rans l a t ed  by: 
V. Kra ines  

83 



This page intentionally left blankThis page intentionally left blank



Acta Mathernatica Sinica, 263-273 
Vol. 18, December 1975 

On Universal Invariant Forms 

Wu Wen-tsun 

Institute of Mathematics 
Academia Sinica 

(Received May 23, 1974) 

1. Introduction 

The concept of integral invariant of invariant form has already had a fruitful effect on 
the theory and application of mechanical system. In 1947, Mr. H.C. Lee [6] in our country 
introduced also the concept of universal integral invariant or universal invariant form for the 
Hamilton system,and proved that besides those already discussed by Poincare and E.Cartan, 
there are no other such invariant forms. Those universal invariant forms under Lee's meaning, 
can be generalized to following more general understanding: let M be a space of n variables, 
G be an infinite transformation group on'M under E.Cartan's meaning, a vector field X on 
A4 will be called belonging to G, if the transformation in the local single parametric group 
produced by X only needs to be sufficiently closed to the identity transformation then it 
belongs to G. We denote the collection of these vector fields as 9 G .  Accordingly an exterior 
differential from 0 on M will be defined as an universal invariant form of G (in the following 
we abbreviate it as the universal invariant form). If for any vector field x E T G ,  the 9 i e  
derivative of 0 along X :  3&3 = 0. When M is a symplectic manifold and G is an infinite 
transformation group formed by all symplectic transformations on M ,  the universal invariant 
form of G is similar to that defined by H.C. Lee. 

E.Cartan has pointed out that there are six classes of primitive infinite transformation 
groups, where four classes are single( see lo, 2", 4", 6" in the following). Cartan's results up 
to now still have not been proved, we list them as follows: 

1" 
2 O  

The group Gf, formed by all transformations on n variables. 
The group Gf,I formed by all transformations preserving the volume element 

0 = dxl A . . . A dxz 

invariant on n variables 21,. . . ,xn. 

factor of the above mentioned volume element 0 on n variables xi, . . . , x,. 
3" 

4" 

The group G;Ir formed by all transformations which varies only a non-zero constant 

The group GhV formed by all regular transformations preserving the form 

f2 = dpi A dqi(= dpl A dql + ' '  ' + dpn A dqn) 

invariant on 2n variables pi , .  . . ,pnr  q 1 , .  . . , qn(n > 2). 
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264 Wu Wen-tsun 

5" 

6" 

The group G," formed by all transformations on 2n variablespi, qi(i = 1, . . . , n; n 2 2 
which vary only a non-zero constant factor of the above mentioned form R. 

The group GK' formed by all transformations preserving the form 

w = d t  + pidqi - pidpi 
( = d t  + pidqi + . . +pndqn - qldpl - ' '  ' - Qndpn) 

invariant on 2n+l variables t , p i ,  qi(i = 1, .  . . , n). 
This paper will determine the universal invariant form of these above mentioned infinite 

groups. The group Giv in 4' is what H.C. Lee exploring. The case of 1" is insignificant, 
the group in 3' and 5" are subgroups of the groups in 2" and 4" respectively, therefore its 
exploration may be concluded trivially to the latter. Hence we need to explore only Gi' in 
2" and GK' in 6" (see Section 2 and Section 4). 

Many conservative laws in mechanics reflect a certain symmetry of the mechanical system. 
They can be expressed by using the concept of universal invariant form of certain subgroups 
in Giv, these subgroups are formed by all transformations preserving a group of function that 
is the so-called "moved constants". The complete determination of the universal invariant 
forms of these subgroups is equivalent to the determination of the corresponding conservative 
law of the system, (see Section 5) .  

The function, vector field and form etc. mentioned in this paper belong to Cm. More 
accurately, they should be treated as sprout rundle section of function, vector field, the 
form. Similarly, the so-called transformation also implies the local homeomorphism C" 
transformation, the transformation group is the so-called pseudo-group. But since we con- 
sider only the problems of local property on the whole, hence sprout bundle, pseudo-group 
such vocabularies are not very necessary and have not been used in this paper. 

In many formulas, in accordance with the custom of differential geometry overlapping 
exponent indicate to take sum, we only write the sigma sign C and its range of taking sum 
clearly when the range of indices my cause confusions, otherwise neglected. 

2. Infinite Group of Volume-preserving Transformations 

Let GL' be the single infinite group of type I1 formed by all transformations preserving 
the volume element 

Invariant on n variables 5 1 , .  . . , xn. For any vector field X = Xi& we have 

0 = d x l  A . . . A d x ,  

Therefore the necessary and sufficient condition for X EdipGA' is 

Hence 2zG;' contains the following in(. + 1) special vector fields: 

8 .  
8 X i  ' A , - -  ~ = 1 ,  . . . ,  n. 2 -  
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a . .  A . .  - 2.- , , = 1,. . . , n; i # j .  ' 2  - 3 a x i  

Now let 
6 = ai ,...i,.dxi1 A . . . A dxi, 

be an universal invariant form of GA', where ai ,... i, are functions of X I , .  . . , xn ,  anti-symmetric 
for the lower index i l ,  . . . , i,. Accordingly for any X E GA', particularly for X = Ai or Aij 

we have 2x6 = 0. We have computed 

TA,~'  = w d x i ,  A . ' .  A dxi, 
X i  

By 2 ~ , 6  = 0 we obtain = 0, hence ail.+ are constants. If r = n then 6' = 
n!ul ... ,dx1 A ' . .  A dxn is a constant multiple of 0. Let T- < n, then for any r indices 
(i,il , .  . . , ir-l) such that i < i l  < . . < i,-l we can take any index j not equal to i and 
21,. . . , for this pair (i,j) the condition d P ~ , ~ 6  = 0 gives aii,...i,-, = 0. By this we obtain 
6' = 0 and have the following 

xi 

Theorem The unique universal invariant form of the infinite group GfNI of type 11 is 
a constant multiple of the volume variable 0. 

3. Regular Transformation Infinite Group- H.C. Lee's Theorem 

Let GAv be the single infinite group of type I V  formed by all regular transformations 
preserving the symplectic form 

invariant on 2n variables pi, qi(i = 1,. . . , n). H.C. Lee has proved the following described 

0 = dpi A dqi (1) 

Theorem ([6] 1947) The unique universal invariant form of the infinite group GAv is  
a constant multiple of 0 and its outer power 0' = R A 0, n3 = O2 A R, . . . , 0'' = On-' A 0. 

Since this theorem and the computation in its proof is needed to use in future, therefore 
we repeat it according to the form a bit different from the original paper as follows. 

Showing the indices of range 1 , .  . . , n with the Latin letters i, j ,  k, . . . and showing the 
indices of range 1,2, .  . . ,2n  with the Greek letters ax@, A, p, . . .. We introduce the new 
variable as follows 

(2 )  xi = qir xn+i - 

also we show the anti-symmetric matrix which are the inverses of each others with E * ,  E * :  

- Pi ,  

&* = (&+) = ( O I ) 
-I 0 ' 
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where 0 and I are the zero matrix and identity matrices of order n respectively, accordingly 
R becomes 

1 
2 

R = -Eapdxa A dxp.  

With respect to any vector field 

(4) 

where X x  is a function of x a ,  there is 

3 x 0  = aEap(dXa A dxp + dxa A d X p )  = -d(E,pXpdxa). 

Therefore the necessary and sufficient condition of X E 2 G i v  is 

d(EupXPdxa) = 0. 

Since we only consider within a local range, therefore from Poincare’s lemma the condition 
becomes that there is function H determined to a constant such that 

E,pXpdxa = dH,  

or ~ , p X p  = & , X x  = &%. By this we obtain the following dX 

Lemma The necessary and suficient condition for X E YGiV is that there is a func- 
tion H such that 

X is determined in this lemma by H uniquely, in the future we will denote it as X H .  
Conversely, H determines a constant by x E YGA” uniquely, in future we will denote a 
difference of constants as H x .  

Now let any form of degree T (1 5 r 5 271): 

9 = Aal...a,dxal A . . A dxuT. (6) 

Where Aal...a,, are functions of x x  and anti-symmetric for the lower indices al, . . . , aT. 
For any 

there is 

where J i  means to change the i th index ai in Aal...aT to the operator of A: 

J~Aal.-a~...a,. - - Aal...a,_l~a,+l...or,. (7) 
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The necessary and sufficient condition for the form 0 is to an universal invariant form is that 
for any H hence for any #$ and h$,& we should have 2x0 = 0. By this we obtain the 
following H.C. Lee’s system of equations: 

By the front part of the system of equations, all Aul...uT are constants. By the rear part 
( where p, v, a l , .  . . , aT are arbitrary), H.C. Lee uses pure algebraic method to obtain that 
when r is an even number 2s, 

0 = c . R  A . . . A  R 
J’ 

3 

where c is a constant, and when r = odd number 

e = 0. 

By this Lee has proved his theorem. 

4. Tangential Transformation Infinite group 

preserving the form 

invariant on 272 + 1 variables t ,pi ,  q,(i = 1,. . . ,n). Applying the similar symbols in Section 
3 we may write w as 

Let GZr be the single infinite group of type V I  formed by all tangential transformation 

w = dt + pidqi - qidpi 

w = d t  + EupadxB,  (1) 

hence 
dw = E,qdxa A dx’ = 2R, 

here 0 is same as (4) of Section 3. 
Consider any vector field a a 

X = T - + X A -  at axe"' 
where T ,  X x  are functions of xu and t ,  setting 

Then we have aK 8K 
~ X W  = 2-t + 2(- + Ea~Xu)dxX .  

at axx 
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By YXW = 0 we obtain = 0 or K is independent o f t  and X a  = hence 

(4) 
a a X = (2K - xaKa)- + €OLxKx- at axa ’ 

Its inverse is obviously true therefore we obtain the following 

representation of (d),where K is any function of xx  but independent o f t .  
Lemma 

Now we write any form of degree r as 

The necessary and sufficient condition for X E YGAv is that X possesses the 

% =  ‘p+$ A d t ,  (5) 

(5’) 

(5”) 

‘p = Aal...aTdxal A . . . A dxaT 

$ = Bp ]... pP-,dxP1 A ’ . ’ A dzpr-‘, 

where all A and B are functions of xx  and t ,  and anti-symmetric for the lower index, for the 
X determined by (4),we directly compute and obtain: 

23’ = A, a,dxal A . . . A dxaT + B p  ~ ~ - ~ d x ~ ~  A . . . A dzPr-’ A d t ,  (6) 

a&l...av 

- ( x  ~ 

Aal...a,. =2K- 

at 

at 
AaAal...a, + &- aAal..a7 - (-l)r-’c5:lBa bj...ar)Kx (6’) 

dX’l 
+ (6&&‘LJ~Aa1...,, - (-1)T-’6~jx’B al.,,6j...a~)Kp”, 

. .  + 6;j~xfi J ~ B ~  pv-l K ~ ~ .  

Because of K ,  KxandK’, can be selected arbitrarily, therefore the necessary and sufficient 
condition for 8 to be the universal invariant form of group GK’ is that the following equalities 
hold: 

(8’) 
€X’l aAal-aT (-1)‘-’6:,Ba &,...a, = 0,  

(6&~’” + 6gZ~’”)JiAa a, - (-1)‘-’(6&~’l + 6Z,xU)B, = 0. (8” )  

By ( 7 )  we know all B are constants and by (7‘) such as the proof of Lee’s theorem in Section 
3 we know (b =constant): 

r = odd 2s $. 1, 
r = even. * =  (9) 
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Now set 
A& ,y = Aml...,T - (-1)T-jEyajx7Ba ,i ,... ,?. (10) 

By direct computation we know that (8),(8’),(8’’) can be changed to the following equalities 
respectively: 

( 6 & ~ ’ ~  + 6$~~~) .7~A&, . . . , ,  = 0. (1 1,’) 

Still similar to the proof of Lee’s theorem in 53 we know that there is a constant a such that: 

First let r = 2s be an even number, then by (9) we obtain $ = 0 and (10) becomes 
ALl,..,T = A, ,r. Hence by (12) we obtain: 

0 = ‘p‘ = a .  (dw)’, r = 2s. (13) 

Next let r = 2s + 1 be an odd number. Then p‘ = 0 and (10) gives 

A, a, = ( -l)j+l+jxYBal...~j ...a, 

By (5 ‘ ) , (5” )  and (1) we obtain 

‘p = Aa, ...,, dxml A . . A dxaT 
= (-1)j+1eyaj27B ml...,ij...a,dx“’ A . . . A d P  

= EyajxYdxUj A Be 
= (W - dt )  A $. 

h 

,ij...a,dXal A . . . A dxaj A . . A dxaT 

By ( 5 )  and (9) we obtain: 

8 = (w - dt )  A $  + $17 dt = w A $  

= b . w  A (dw)‘, r = 2 s +  1. 

To sum up, we have the following 

Theorem The unique universal invariant form of the infinite group GXI is a constant 
multiple of w A (dw)’ and (dw)’ ( s  = 0,1 ,2 , .  . . ,n). 
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5. Regular Transformation Infinite Group Possessing Definite Symmetry 

Still using the notations in Section 3 we consider the infinite group Giv formed by all 
regular transformations preserving the form 

(1) 
1 R = dpi A dq. - -E,pdx" A dz' 

% - 2  
invariant on 2n variables p i ,  qi (i = 1,. . . , n).  Let '3 be a given Lie's group acting on 
the phase space M on the right, that is there is a mapping @ : M x 9 + M such that 
for any x E M , g  E 9, setting Q(x,g) = Q,(g) = Qg(z) E M ,  we have @, E Giv and 
Qgg/ = QgtQg(g, g' E 9). We also let Qg be non-degenerate when g is not an identity element 
e in 9. Denote the Lie algebra of tB as g, then for any a E g, regarding a as a left invariant 
vector field on '3, Y,(x) = Q,,a(e) defines a vector field Y, on M .  By Qg E Giv(g E 9) we 
know Y, E Y G i v  or Y y a R  = 0. Similarly it is easy to prove that corresponding a -+ Y, is a 
Lie's homomorphism from g to -YGiv. We call the collection denoting Y,(a E g) as the Lie 
algebra CY. It is easily known that for any function H ,  if H is invariant under 9, that is for 
any g E 9, there is @:H = H ,  then for any Y E CY, we have 2 y H  = 0,or H is constant of 
the motion produced by Y ,  or H takes similar values on each integral curve produced by Y( 
refer to, for example, [I]). 

For any two functions H ,  K define the Poisson bracket to be 

Here Ha = #, similar for the others. According to the lemma in Section 3 from H ,  K we 
can determine two vector fields in GLv 

Accordingly a a 
axx axa 

[XH, XK] = [&"lHP-, ~ ~ ' K p - 1  

interchanging (a,  p) and (A, p )  in the first team on the right hand side, and a and /3 in the 
second team,we then obtain 

a 
= E ~ P ( E ~ , H ~ K  ) x, 'lax 

or 
[XH, XKI = X(H,K). 

Hence the function under the Poisson bracket and the vector field under the Lee bracket 
possess certain dualities. 
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Now we denote the collection of invariant functions under 9l as X .  Since the Poisson 
bracket is invariant under regular transformations. Therefore for arbitrary g E 9, ag E GAv, 
we have (@;H, Q:K) = QE(H, K ) ,  hence when H ,  K E X , w e  also have ( H ,  K )  E X .  Also 
by the known properties of the Poisson bracket, we know that X becomes a Lie algebra 
under this bracket, if according to the lemma in Section 3 we denote the collection of all 
vector,fields X H  corresponding to H E 2 as X C YGAv.  Then the Lie algebra formed 
by X under the Lie's bracket and the Lie algebra formed by X under the Poisson bracket 
possess the previous described dual property. We will denote the infinite group generated 
by the regular transformations produced by the vector field X in X with Gf", and denote 
X as YGfV.  

Our purpose is to determine those forms which are invariant forms under the usual 
meaning for all H in X ,  or that is the universal invariant form of GfV. Every such universal 
invariant form corresponds to a conservative law possessing relative symmetry with 9l in 
physics. 

Because of this for any vector field Y,, a E g in 9, according to the lemma in Section 3 
take a relative function fa (determine to a constant) such that Y, = Xfa. For a, b E g by 
[Y,,Yb] = Y [ a ,  b] and [X,,Xfb] = X(fa,fb) we obtain (fa, fb) = f(,,b) (differs by a constant). 
Let the whole group of f,(a E g) be V, also let the collection after adding all arbitrary 
functions F ( f R l , .  . . , fRk), (ai E g) in V be p. Then it is easy to see that ?? is the smallest 
function set possessing the following two properties and 3 V: 

1" 

2" 

There is a function basis fl, . . . , fm,  the rank of its Jacobi expression = m. 

For any f', f" E we also have (f', f") E p. 

Proof. take a basis ai, i = 1, . . . , m (rn = dirng) for g, and set fa, = fi, then fi satisfies 1' 
and (fi, fj) = cfj fk (differ by a constant). Here cb is the structure constant of g, accordingly 

for any f', f" E 3, f', f" are functions of fi and has (f', f") = $ . ' (fi, fj) E 9. That 
is what we want to prove. 

The function set possessing the two properties of 1",2" is called a function group (see 
[2] chapter 9 or [5] $69). By the theory of function group we know that we can take a 
standard function basis p i , .  . . ,pr+s,  qi, .  . . , qr in ?? and it can be spanned into a function 
basis p i , .  . . , p n ,  41,. . . , qn on A4 such that it possesses the following relations (as above, 
particularly see [5] theorem 69.6): 

$ 3  

According ( p z ,  Qa)  can be treated as a group of new coordinate on the ( p z ;  qz) phase space and 
the transformations form ( p a ,  q2) to (Pz, qz) E GAv; and (in the expression i is from 1 to n): 

R = dP% A dq,. (4) 
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For any H E 3c" and F = F ( f 1 , .  . . , f m )  E 9, we have 

Conversely, if the function H such that for arbitrary F E 9 we have ( H ,  F )  = 0, then for 
arbitrary a E g, we have 9 y a H  = 2xfa H = ( f a r  H )  = 0, hence H is invariant under tB or 
H E A?. By this we know that 2 and 3 form two function groups which are the inverse 
of each others, and .X has a standard function basis pT+l, .  . . ,pn, QT+s+l,.  . . , i jn,  refer to [2] 
and [5]. 

If we write any vector field X in 2GAv as 

where H is a certain function of pi, Qi, then when X E % = 2 G f v ,  we should have 

dH 
dQi 

yxpi = -- = 0, i = 1,. . . ,T  + s, 

Summary the above mentioned, we obtain: 

Lemma The necessary and suficient condition for X E 35 = YG:" is to have a 
function H which only depends on 

pT+l,...,pn,Q~+s+l,...rQn (5) 

such that 

Introduce the notations 

t = n - r - s  

= FT+i, ( 2  = 1,. . . ,s) 

Zt+i = pTfs+%. (i = 1,. . . , t )  

Take the following range of indices: 

(7) 

a,b,c , . . .  = 1 , 2  , . . . ,  s 
A,  B,C,.  . . = 1,2, .  . . , 2 t .  
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Also take matrix of order 2t ,  which are the inverses of each others 

where 0 and I are the zero matrix and identity matrices of order t .  
Accordingly any X E X of expression (6)  can be rewritten 

where H is an arbitrary function only depending on zA and y3+a. 
Now let 0 be any universal invariant form of degree m of Gf". Write 0 as 

0 =  x x d ~ i ~  A . . .Adu ik  A0i1. . . ik ,  
k>O (i) 

where all ui represent one of p1, . . . , p T ,  61, . . . , & and Oil...ik is a form of dzA and dya, dy3+a, 
their coefficients are all functions of the variables pi ,  qi, for X in expression (10) we obviously 
have 

and 2x0i,...ik does not contain any differential du, hence by 2x0 = 0 we obtain 2 ~ 0 i  l...ik = 
0 that is all 0i l . . . ik are universal invariant forms. 

By this the problem is concluded as determining the universal invariant forms of the 
following shape (let it be of degree m) 

where iii shows pr+l,. . . rpr+3, Qr+1,.  . . , &+s that is one of yar y3+a and 
degree m - k of d z A ,  its coefficients are all functions of the variables pi, &. 

an arbitrary function of zA,  but independent of 

is a form of 

Now we first consider a special case such as X = X'  E X of expression (lo), where H is 

and from 3 ~ ~ 6  = 0, similar to the above, we obtain 2 ) ~ r & ~ . . . i ~  = 0, here X' is to show as in 
expression (ll), besides it is arbitrary. By this we know that 8il...ik is the universal invariant 
form of all regular transformation infinite groups preserving the forms 

n 

(12) 
1 R, = p B d Z A  AdzB = d$ Ad$ 

i=r+s+l 

95 



274 Wu Wen-tsun 

invariant on 2t variables z A  (the variables PI , .  . . rPr+s, q1,. . . , qrfs  are regarded as constant 
parameters here). By H.C. Lee's theorem we obtain: 

m - k = odd, 
f i  - k = even, 

0 .  . - { 0, 
j i l . . . i k ( ~ z ) ( m - k ) / 2 ,  

%I"%* - 

where fi l...ik is a function only depending on PI, . . . ,Pr+,,  q l , .  . . , Qr+s. 

universal invariant form of the following shape 
Up to now the original problem is concluded further as the problem of determining the 

'p = C C gal ... a k b l  ... brdyal A ' .  A dyak A dys+b' A " .  A dys+b' A ( O z ) h  
k>O (a$) 

where all g are functions of P I , .  . . ,pr+sr Qi, . . . , qr+s, anti-symmetric for the lower index a ,  
also anti-symmetric for the lower index b, and 2h + k + 2 is a fixed integer, that is the degree 

Now take any fixed c among the indices 1,. . . , s also take a special X = X c  E X shape 
as X c  = @&. Where H is an arbitrary function depending only on ys+c, accordingly 

of $9. 

-%& = O,.%,(dys+b) = 0 ,  also when a # ~ , 2 ' ~ , ( d y ~ )  = 0, and Y z c ( d y c )  = a2H 2dys+c. 

By TX,'p = 0 ( H  is arbitrary) it is easy to know that in 'p any term whenever'contains dyc 
it must at the same time contains dyS+' and has the factor dyc A d ~ ' + ~ ,  also g is a function 
independent of yc. Since this holds for any exponential c in 1, . . . , s, therefore we can write 
'p as the following shape: 

= C x $ ' b l . . . b l r  
120 ( b )  

where every $'bl...br has the following shape (a; # bi): 

$ = dy3+b' A . . . A dys+bl A $ I ,  

$' = C g a  l...akdyal A dys+al A . . . A dyak A dys+ak A (02t)e-k, 
k>O 

here all g are functions depending only on P I , .  . . , pr+s, Ql, . . . , Qr, also symmetric for the 
lower index a, and the degree of 'p' is then an even number, let it be 2e. When k = 0, the 
relative coefficient g in the expression of 'p has denote as go. 

Now take a general X E ZT given by expression (lo), where H are all arbitrary functions 
of ys+a, and zA,  by computation we obtain: 

Zx$' = dys+bl A . . . A d2/s+b' A Tx$'', 

Zx$" = C ial. . .ak ,c ,~dyal  A dys+a' A . . . A dyak A dyS+"k A dyS+' A d z A  A (Oz)e-k-l + . . , 
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Since for any H we should have dpxp = 0, therefore we obtain (c, air bj are mutually not equal) 

e - k  gcal...ak = -- ' k + Sal-ak 

Hence 

By this we obtain 

= go . d y B  A (c dys+a A dy" + a,). 
a f b  

T 

= go . d y B  A (R - dpi A dqi)e. 
i=l 

In the above expression dyB  = dys+bl A . . . A dys+*l. 
From the above we know that any universal invariant form 0 of Gfv must be a sum 

formula, where each term is the outer product of some dp1, .  . . , dpr+s, d q l , .  . . , d g  and the 
quadratic form R, and with arbitrary functions depending only on p l ,  . . . rpT+s, Q1, .  . . , ijr as 
its coefficient, in other words, since p1,  . . . , pT+sr i j l ,  . . . , tjT is a function basis of 3, we have 
already proved the following 

Theorem T h e  universal invariant f o r m  of the infinite group Gf" f o r m s  a differential 
ring produced by funct ions in 9 and the form R 

Notice that the function in 3 can completely be determined through simple operations 
and integrations from 9? of the effect to  phase space (p i , q i ) ,  hence the conservative law 
corresponding to  a known symmetric group '3 can completely be determined through com- 
putations. 

References 

[l] R. Abraham-J. E. Marsden, Foundations of mechanics, 1967. 
[2] C. Caratheodony, Variationsrechnung und partielle differential Gleihungen erster Ordnung, Bd. 

[3] E. Cartan, LeGons sur les invariants intbgraux, 1958. 
141 S. S.  Chern, Pseudo-groups contimus infinis, Gbomktrie Diffbrentielle (Colloque CNRS 1953), 

[5] L.P. Eisenhart, Continuous groups of transformations, 1961. 
IS] H. C. Lee, The universal integral invariants of Hamiltonian systems and application to the 

theory of canonical transformations, Proc. Roy. SOC. Edinburgh, Sect. A, 72 (1947) 237-246. 

I, 1956. 

119-136. 

97 



This page intentionally left blankThis page intentionally left blank



9cp.. Oet. 1976 
- ___ 

Vol. XIX So. .5 S C l E N T l A  S l N l C A  
~- 

THEORY OF I*-FUNCTOR IN ALGEBRAIC 
TOPOLOGY 

EFFECTIVE CALCULATION AND AXIOMATIZATION OF 
]*-FUNCTOR ON COMPLEXES 

Wu WEN-TSUN (ax&) 
(Imtitute of Yuthematics, kndemia Sinica) 

Rceeivcd April 25, 1975. 

ABSTRACT 

Aceording to ii clwical definition due to Engels, the pure mathematics has spec forms and 
qtmititative rchtiona in the cxtcrior world N( its objoctv of study. Thm two fundamental notions 
of mathemati- are, however. not to tc considered as unrelated. but are often interconnected by 
ymeBsurea." Previously we have introducod the concept of I* which serves as a measure of space 
forms by means of quantitative relations. This m a m r c  is mild a "functor" to follow the current 
tcrminologg in  algpbraie topology. This I*-functor or I*-muwrc ha.? tht advantage over other 
known functor8 of being in goneral 'ealcuhble" to be understood roughly in the following aenae: 
I f  a new spec form is eonstructcd pmotriozlly from some given spec forms, the I*-functor of 
this  new spam form is complctcly dekrmincd by the I*-functors of the given spaee forms. We 
have given illustrations of this poiut in various papers. The aims of the prcsent paper are twofold. 
First, we not only show the alculab;iity of this functor in principle, but also give a mcthod of 
effective ealculations for practical purpovol in the OJC of finite complexes. Secondly, we have listed 
a wt of ropmntatlve properties of I* which are sufficient to chamterize it complctcly, forming 
thus a soallcd axiomatic system in the current terminology. The cac of infinite complexes is also 
considered. 

In  papers [ 5,6, 7 1, the author basing himself on Sullivan's theory of minimal 
has introduced the notion of I*-functor of spaces and has pointed out that  

in many cases the I*-functor is "calculable" while the usual H-  and x-functors are 
often "non-calculable," even restrictcd to the real fieId domain. The present paper makes 
further studies to explain this point. Moreover, we give for the category Xo of 
connected, siniply-connected finite coinplcxes methods to calculate effectively the 
I*-functor from the winbinatorid structurc of the complex and establish also nxio- 
matic system for this functor. 

The notations in the present paper as those in the preceding papers'5.6*7', are to 
be understmd here. 

1. I*-FUNCTOR 01: I i /L  AND Ii' U Ii" 

Let Ii E X ,  L E Xo, and f :  L c li. Let Ct be the cone over L. Denote the 
union K U CL by K / L  E N. Then we hare a commutative diagram of simplicia1 
maps: 
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c L - K / L  

se t  

c, = c c., 
" > O  

C, = { Z ~ " * ( ~ ) / Z  takes constant value E R  on the simplexes of L }  , 
C, = Ker [f:: A " ( K )  - A " ( L ) ] ,  n > 0 .  

It is easy to see that CI is a DGA-algebra e d  and there is a natural DGA-morphism 
i: C, - A*(If) with the following sequence exact for n > 0: 

0 --* G.  - A"(If) - A"(L) -+ 0. i f" 

Propsosition 1. 

Proof. 

Min Ct iz: I*( K / L )  . 
Let z E Ct and define zz = 2 E A * ( K / L )  as follows. If deg x = 0 with 

z taking on the constant value c E R by all simplexes in L, then set Z E A o ( K / L )  to 
take on the same constant value c on all simplexes in K / L .  If degz  > 0, then 
f"iz = 0. Clearly 
z -+ Z is a DCA-morphism 7 : C, - A * ( K / L )  and the diagram below is commutative: 

Hence we can take Z E A*(Zf/L) with f"Z = is and s"Z = 0. 

3" A*(X/L)  - A*(CL) 

i f" 
Ij* 

(7,- A * ( K )  - A*(L) 

We prove now 

r* : H(C, )  iz: H ( A * ( K / L ) )  = ZZ*(K/L), (1) 

from whieli the proposition follows immediately. 

In case deg 5 -= 0 with Z taking 
constant value c E R on all simplexes of K / L ,  let us set z E A o ( K )  to take the same 
constant value c on all simplexes of K .  Then z E C o ,  dz = 0 and zz = 2. If 
deg5  > 0, then in C L  we have d j A Z  = 0 so that there exists y E A*(CL) with dy = 

5":. Set i = 

f - dy', then >"i = 0. Hence f"f"i  = j A S A i  = 0 or fA i  6 C,. Now z f A i  = z = Z - 
d& - li and d fA& = 0. 

As dsA& = 0, CL 
is contractible and ?" is an epimorphism, there exists 5 E A * ( K / L )  with = d l A g .  
Then f A ( i i  - dz)  E C/ and z = df"( i i  - &) - 0. 

To see this, let Z E A * ( K / L )  with dZ = 0. 

As 5" is an  epimorphism, we can take E A * ( K / L )  with ;"& = y. 

From these we see that z* is an epimorphism. 

Next suppose z E C, with dz = 0 and zz = dii, ii E A * ( K / L ) .  

Hence z* is a monomorphism. 

The isomorphism (1) is thus proved. 

Theorem 1. 

Hence the Proposition 1. 

I * ( K / L )  is coinpletely determined by t lw natiiral DGA-morpkism 

g = f': I*(li) - I * ( L ) .  

100 



No. 5 EI'FECTIVE CALCULATION O F  I*-FUNCTOR 649 

Proof. Set Z*( I i )  = Y, Z*(L) = N. From § §  15-113 of [ Z ] ,  we see easily that 
there exist K'C X ,  I;'€ X0,  f': L' C li' with ill = Z*(Ii'), K ;rz Z*(L') and the 
following diagram is I~oinntnpi~i~lly cnminutitivr ( p  bring thc cnnonicnl liomoniorphinms): 

M N 

'1 ( A  

A*(Ii') - A*(L') 

Moreover, we haw li' Y_ li, L' 2: L, f '  2: f ,  Ii'/L' 2: I i / L  so that  Proposition 1 
gives 

Z*(Ii/L) = Z*(K'/L') = Min CI#. 

As 7i', L', f '  are constructed from (?), sn I*(li /L) is completely determined by ( Z ) ,  
as to be proved. 

The determination of l*(K/L) (to be denoted by J , )  and the natural DGA- 
morphisms Z*(K/L) -+ I * ( K )  (to be denoted -by j , )  from (2)  or 

s :  '31 -+ x ,  
will be called the d-construction. The above gives only : in  existence proof of such 
J-construction. In thc next section, we shall give some explicit constructions of J ,  
and j ,  in the special case L = 8" .  

Entirely analogous to Proposition 1 i Ind Theorem 1, the same method caii be 
applied to  the study of union of complcxes as in the Mayer-Vietoris sequrnee. Thus, 
let Ii, K' ,  Ii", L E X, Ii = K' U Ii", L = li' n Ii" ilnd f': L C I[ '?  f": L C li". 
Set ~ ~ 1 ,  = C D., where 

"a0 

D [I- - {(a', ~ ' ~ ) " ' ( ~ ' ~ ~ ~ " ~ ' ' ~ / a ' ,  a" take tlic s a n e  constant 

Dn ~ {(a ' ,  u " ) p A n ( K ' ) X A n ( K " )  /f'"a' = f""u"}, 
values B E  on simplexes of L}, 

n > 0. 

Then DI*.I)) forms iiaturally a DOA-algebra easily seen to be ~a'. \Vc have then 
(proof omitted): 

Proposition 2.  

Theorem 2. 

Min Dlf.l" = I*(Zf' U If"). 

I* (K '  U K " )  is contplctely dcterttiined by 

aiid 
f": Z*(I<') -+ Z*(L), 

f"': I * ( K " )  -+ Z*(L), 

II. J-CONSTRUCTION OF DCA-MORPHISM g: 111 --+ X IN CASE K =z Z*(S") 

Let Y, h: E A and N = Z*(S"), i i  2 2 .  The purposc of this section is to  0011- 

struct explicitly J ,  C ilnd thc DGri-n~orpl~ism 

j , :  J , + N  
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from a given DCil-morphism g: M - N .  
let 

This is the J-construction of I. For this, 

A ( s ) ,  n = odd. 
N = I*(S")  = 

in which 

and also 
degs = 71, CES = 0, 

deg t = 2n - 1, dt = s l ,  

for even n. Let fl E d be the DGA-algebra as follows: 

N = R @ R S ,  

the degrees, multiplications and differentiations in N being given by: 

degS = n, S1 = 0, dS = 0. 

Let 8 E A' be the DGA-algebra 

s' = R @ R.5, 

with degrees, multiplications arid differentiations as follows: 

d e g i = n + l ,  ? = O ,  & = O .  

Denote by y the natural DGA-morphism from N to N which maps s to S ,  and 
also t to 0 in case n is even. Set 

y g = g :  M - N .  

Define now ICi according as J € Im g or not: 

R CB C g;1(0), for J c ~m I ,  

M @ A?, for $ Im g. 

lii = { r > o  

Clearly h'i under operations in N, is a DGd-algebra of d. Define also a DGA- 
morphism 

k i :  K i + N  

as follows. In  case S E Im I ,  kj is the nntural inclusion, while in m e  3 f Im g, we 
set 

k j ( U  @ 1) = U ,  k i ( ~  @ 5 )  = 0 ( U  t M ) .  

In  whitt follows we shall construct J,- E M and DGA-morphism 11: J,- --+ 111 from 
Ifi and ki, and J i ,  j ,  will be taken to be the J,- and j ,  in the beginning of this 
section, which will be discused in two seperatc. cases. 

Case I .  

Define now 

3 E Im g .  
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and also 

j i  = kip , - :  J i  -+ M ,  

in which pi: Ji + K i  is any  canonical homomorphism. 

Case 11. s f Irn I. 

Take any set x, E Z ( M )  forming an additive homology basis of H ( M ) .  Then 
H( K g )  has an additive homology basis: 

z,, s, 5, €3 B. 

In  the set x, €3 S, let those of the lowest degree (say mi 2 n + 3) be denoted by yj, 
while the others with degree > mi be denoted by zk. Introduce qj and construct the 
DG A-algebra 

in which 
Kk = X i  63 n ( ~ j ) ,  

deg vj = mi - 1, 

d ~ j  = Yj. 

As kr(yj) - 0 (in fact = O), we niily Like aj E W with k j ( y j )  = daj (in fact at may 
be taken to bc 0). Define the DGA-rnorphism 

bY 

k B ( 7 , j )  = ~ j .  

It is easy to see that KZ has an additive homology basis: 

in which 

dcg z i  > mi, 
and under kk, 

kk(yj) - 0, kB(zh) - 0 .  

Now introduce and construct thc DGA-algebra 

in which 

Define also a DGA-morphisni 

by 

k)(?j)  = a:, 
in which 

nj  C X, dcg a: = nib - 1, daj = k:(yj). 
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In  IiB, there is additive homology btisis as before and the preceding constructions 

lip c fib C I<$ c . . . . 
can be continiircl to get 

In  this manner, we get a DGA-algebra 

If; = K i  @ A(qj, ?;, 4, . . .), 
and a DGA-morphism 

kJ: Iiz-M, 
with 

k i ( a )  = k i ( a ) ,  a E Iii, 

k j ( 9 j )  = uj , k j ( ~ / )  = o;, r = 1, 2, . . . . 
Moreover H(IiJ) = H ( M )  @ H(2) has an additive homology basis 

zj, s 
Define now the DGA-algebra 

J p  = Min l ip  E .A, 
and the DGA-niorphisni 

jp: d,- - III 
bY 

j - -  k! 
P - P P i ,  

p i :  J p  -+ l i p  
in which 

is any mnonical tiornomorphistn. Then we have 

and 

is an isomorphism on I I (M) ,  and is 0 on H(8). 

ID. PRIVILEGED MORPHISMS OF MINIMAL MODELS 

Let A, R E d, f: A -+ C br a DGA-inorphisin, M = Mitt il, K = Min B, and 
pA : Jf -+ 11, pa: N - 1; br cinoniciil Iiomoniorpliisms. The collection of all DGA- 
morphisms g :  dI + II’ induced from f will bc denoted by G(f). In  general, the 
diagram 

f A - I l  

4 p 
M - N  

is only honiot0pic;illy cominutiitive. It is rnsy to givr cxamples with f given for 
which no p A ,  ps and g a n  be cl~onrii to make (1) connnutativr. However, when f 
is an epimorphism, e. g. when in the c u e  rl = A * ( K ) ,  I3 - A * ( L )  and the DGA- 
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morpliism f = f " :  A + R induced from i i  simplicia1 map f :  L C K ,  then we have 
the following: 

_ _ _ _ _ _ _ _ _ . ~  
No. 5 __- 

Theorem 3. Let A ,  BC .d and f :  11 - - B  be a DGA-epimorphisni. Then  for 
M = Min A, N = Min R and a given canojiical honioniwphisni pB:  N + B, there are a 
canonical honiomorphisni p A :  M -+ A and a DGA-morphisni g :  M -+ N such that (1) 
is  cumni utotive. 

Definition and notation. The morphisms g :  M -+ N in the theorem will be called 
privileged ntwphisnu associated with f :  A + B whose collection will be denoted by 
G o ( f )  c G ( f ) .  In  ciise f :  L c Ii and f = f": A*(h')-+A*(L),  Go(f) and O ( f )  
will also be denoted by Go(R,  L )  and G ( K ,  L )  respectively. 

Proof of Theorcni 3.  We shall go into detail of the proof only in the case 
N - Z*(S") and R .  = 0 for rn > 71. The proof of the general case is similar, but 
more complicate. 

For this, let us takr s as the generator of degree ~t in N ,  and set pss = c.  As 
f is an  epimorphism, we have a E A with f n  = c.  The choice of such an  a mill be 
explained below. 

Denote by M'") the ininimal DGA-algebra generated by generators of M of degree 
< ni, with M(') - M(') = R . We shall extend i P )  successively as 

fip) = j$f(O( = R )  c ,~p c . . . c i M ( m )  c M ( m + l )  c . . . c M ,  

and define DGA-inorpliistns 

p$"": MCm) + A,  - N ,  g(m): M ( m '  

such that the following induction hypothesis is observed: 

ZI 1;. p $ m ) / M ( m - 1 )  = pLm-l), g ( r n ) / ~ f ( n r l )  = g(m-l). 

25 2:. The diagram below is coiiiniut;itive: 
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The construction of G") is easy. Suppose that G'") has been constructed with 
m < n - 2 .  

From the induction hypothesis Hlk - 2R, we have exact sequences 

such that the ej"'E Z,+,(A) form an additive homology basis of Coker,+,pL$, and the 
51") E Z , + I ( M ( m ) )  form one of Ker,+2p!,;). 

Since H ( B )  it: H ( N )  it: H ( S " )  and m < n - 2, we have felm) - 0. As f is an 
epimorphism, we have him) E A ,  with 

f e l m )  = d f h j m ) .  (41, 
From ~lt < n - 2 we have further 
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Hence pLm+') can be uniquely extended to a DCA-morphism from M'"+" to A which 
will still be denoted by p>"'+'). 

- 

If we define 

gh+:) = 0 (lo), 

then from (g),,,, (lo), we see that G('"+') so obtained'will satisfy H1%+, and H3L+,. 
Besides, H2L+, is also easily verified. 

Suppose now m = n - 1 and construct G'"' from G"-') as follows. 

Take as before el"-') E A n ,  c;"-I)€  M'"-') "+I , zj"-"E A. to satisfy (3)"-] such that 

As fej"-OE Z.(B) and H.(R) = R is generated by c ,  there are T ,  E R and 

el"-" form an additive homology basis of Coker.py;'), and {jn-l), one of Kero+lp%-'). 

Izj"--l) E such that 

f e l n - 1 )  = r,c + dfhjn-1). (4)o- i  

If some r j  # 0, then f * : H . ( A )  + H . ( H )  is an  epimorphism and a will be chosen 
with da = 0 .  Furthermore, as g'"-" = 0, we 
have as before fzi"-l)E Z.(R) 90 that there are y;"-"€ An-l and r; E R such that 

fsj"-') = y;c + clfyj"-". 

Otherwise a will be chosen arbitrarily. 

(6)a- i  

Now we define CI""' by (7)n-1 - where (9)fl-l and ( l O ) m - l  in view of 
(4)i-1 and (6)"+ are, however, replaced by formulas below: 

py' / jp- l )  = /$-I) 

ria, (9L-1 py)&;") = c p  - &;"-I' - 
p y ' p  = z;"-l) - dyj"-l', 

g'"'/flp-l' = g'"-l' = 0, 

g(*)E;*) = 0, (10)"-I 

, i 
1 g'"'cj"' r ; s .  

It is easy to see that p y '  ciln be extended to a DGA-morphism with the obtained C'") 
satisfying H10. - 3;. 

Let m > n .  
from G'") as before. 

Then (5). holds still since BmcZ = 0.  Hence we can construct G("'+') 

Set now 

such that 

M = u M("", 

p A :  M +  A ,  

g: M - N ,  

rn 

pA/M(m' = p y ,  

g/y(rn) = g ( m ) .  

Then { M ,  pA, g }  thus obtained, meets the requirement of the theorem. 
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Iv. J-CONSTRUCTION DETERMINED BY COhtBINATORIAL SPHERES I N  K 

Let K E X ,  f: L C Ii, and L be a cumbinatorid sphere of dimension II. 2 2, CL 
be a combinatorial cell with L as boundary, and l i / L  be the complex K U CLE X .  
Denote for simplicity 

A - A*(li), B = A*(L),  2 = A * ( K / L ) ,  

and let f = f " :  A - B ,  C = C , ,  i: C C A ,  c . C - 2 ,  f=f": 2 - A  as in I. 
Set also M = Min A - Z*(If), N = Min B = Z*(L) = I*(&'"), then by III there arc 
DGA-morphisnis g: M-AT, g E  GO(K, L )  with the diagram below commutative ( p  

being the canonical homomorphisms): 

f A - R  

g 1. 
M - N .  

Let I? = R @ 113, y: N + iV, and g = y g :  M + fl as in IT. i h  g.: M. -+ m,, is 
nothing but the homomorphism f*: r:('l<) - n.'(L) induced by f:  L + If, the 
morphism g is completely determined by L C K.  

Defiroition. The unique DGA-morphism 

g: M + R  

determined by the combinatpial sphere L C If(L, K E X) will be called the charac- 
teristic homomorphism of L w. 1'. t .  K. 

The present section then aims a t  proving the following: 

Theorem 4. Prom thc J-co&structim (ZZ) of the characteristic homomorphism 
g :  M - m ,  we get 

J,- = Min h = Z*(K/L), 
j , -E GO(K/L, If), 

which make the diagram bclow commutative ( p ,  p being canonical homomorphisms): 

f 2 - A  

df 1,- f p  
J,- - M .  

Prmf. 

Case 1. E Im g. 

Ln this case we have Ji = Min Ki, fir = R @ 

We shall distinguish two cases whether S E Im g or not. 

g;'(O), ki: & C M ,  j j  = kip,-: 

J i - M ,  and p i :  J i - K , -  is some canonical homomorphism. Consider now the follow- 
ing diagram 

.ZO 
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f 0 - c  A - B - 0  

in which the two rows are exact in each positive degree, while the morphism p :  m + B 
is determined by p ( S )  - ps. Since the degrees of elements of B = A*(L)  are all 
< It, p is naturally it DGA-morphism. Then 8 :  I f j -  C is the DGA-morphism 
uniquely determined to make the above diagram commutative. P'rom p.: H ( M )  = H ( A ) ,  
p,: r$(iV) = H ( R )  and the 5-Lemma we gct, 

8,: I ~ , ( K ~ )  = II ,(c),  1' > 0. 

Moreover, 8* is clearly an isomorphism also for r = 0. 

Define now 

by 

Then the following diagram is commutative: 

By Proposition 1 of I, r e :  H(C) = H ( 2 ) .  Hence we get 

A: H( J p )  - H( 2). 
It follows that J i  - M i n d  - Z*(K/L),  5 is a canonical homomorphism, and ji E 
G o ( K / L ,  K ) .  

Case IZ. f? Im g. 

This time p M  C C so that p: ;li + A determines a DGA-morphism pc: M + C 
with i p c  = p.  We have then 

H , ( C )  = pC*H,(M), q # n 4- 1, 

H.+, (C)  = P W " + I ( f i O  &, &H"(B),  

p:: U(N) c Zi(C), 

8,: H"(J3)  c H"+I(C). 

The generator of 8*Zfn(R) is given as follows. Take a E A with fa, = ps owing to the 
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epimorphisni f: A + B .  Then due C ,  and da c Z ( C )  forms an additive homology 
basis of 6,H.(B) C Hn+l(C). Take now any additive homology basis xi€ Z ( M )  of 
H(M), then H(C) has an additive homology baais, viz. 

p S ,  da. 

As f: h + A is an epimorphism, there exist ii E 8 with f G  = a. 
shall suppose that a, G have been so chosen and taken to be fixed. 

I n  what follows we 

Define now 

q: M @ f i - 8 ,  
such that 

d x )  = t p c ( x ) ,  x E M ,  
q ( 5 )  - t d a  - dii. 

As CL is a combinatorial cell of dimension n + 1, ( 7 d a  - d6)z is 0 on CL and a 
fortiori also 0 on K ,  so ( t d a  - dG)' = 0. Hence the above two expressions determine 
q~ to be a multiplicative homomorphism. It is easy to see that q is a DGA-morphism 
and the diagram below is commutative: 

7 8 - A  

'1 kj 5 .  
~ @ s "  - M .  

Since zda - dii - tda. (in 8) and t*: H ( C )  = H(h), H ( 8 )  has an additive homol- 
ogy baaii, viz. 

or 
7pcxi ,  7 d a  - dii, 

d";), cpm 
in which the x i  form an additive homology basin of H(M) as before. 

Starting from the additive homology basis 

x;, s, xi @ j: 

of H(M 8 fi), let us now construct successively according to 11 

M @ s" = K j  C h'k C K )  C . . * ,  

Ki = K i  €4 A(qj, qj, T:, . . * >, 
J j  = Min K;, 

and 
kk K$ -+ M, ki: li; 4 Y, 

p i :  J j - .  K;, j ,  = kjp;: J j + M .  

Prove now cp: K j  -* 8 can be successively extended to DGA-morphisms 

qi: Iii-8, 
with following diagram commutative 
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i 2-A 
P'f kf . 1. 
K ~ - M .  

To see ,this, suppose that qP: Zfi-I -+ A' has been already defined (cp" - cp, K t  = K i ) ,  
and define 'pi as follows. 

According to the construction of II, we have 

Kk = ri-1 @ ,l(,,;-I), 

d,,j-l = $1 E Ki-I, 

E M ,  ki( # q, i - I  ) - a;-' 

= pi-yy;-l). 

Then cp i :  Ti) -+ A' will be defined as the DBA-morphism determined by the following 
exprewions: 

cp'(z) = cpi-yz), z E rip, 
,py7;-1)  = spya;- ' ) .  

From 'pi  we get then a DGA-morphism 

'pm: IiZ-2, 

cp"/d = 
with 

Define now 
P :  J j - 2  

by 
P = Cp"Pi, 

then we have a commutative diagram: 

A "9 f A 

From the construction we know that p * :  H ( J i )  = H ( 2 ) .  Consequently J,- = M i n i  = 
Z*(K/L),  P is a canonical homomorphism, and ji E Go( K / L ,  K ) .  

The theorem is now completely proved. 

Remark. The construction of J j  depends on the choice of p :  M -+ A, the additive 
homology basis zit nnd a C '1, ii C 2, a; E M ,  etc: However, the theorem shows that 
J,- is independent of such choice and is coinpletely determined by the characteristic 
homomorphism g:  N + I?. 

From the J-construction, we get also easily the following: 
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Corollary. 

1'. Let L' E X be any conabinatorial sphere in K .  Denote the characteristic ho- 
momorphism of K w.r.t.  L' by 

then 
g': M -m), 

g ' j j :  J r - + Z * ( L ' )  
- 

is the characteristic hontomorphisni of K / L  w. r .  t. L'. 

2". Z f  in K / L  there ezists combiiuztorial sphere L' of dintension n + 1 which 
contains C,, then the characteristic homontorpltisnr of K w. r. t. I; 

i s  g - O(*). Denote the cumbinatorial ceU L' n K of dimension n + 1 in K by K',  or 
L' = K' U C ,  = K ' / L ,  and the characteristic homontorphism M' = I * ( K ' )  = R -+ N by 
g' = 0. Then the characteristic homomorphism h i :  J i  - J i i  i s  wnipletely determined by 
g which makes the following diayrant conintutatioe: 

- - 
N g M li? 

v. EFFECTIVE CALCULATIONS AND Axrouanc SYSTEM OP I-FUNCTOR O N  X o  

Any I i C  .Xo can be represented as 

K = K ,  3 Km-l 3 3 Kt 3 KO, (1) 

in which KO is the 2-dimensional squelette, and K, the union of I<,-l with an addi- 
tional simplex A,, the boundary of A, being 

so that 

Let 

and 

A, = L,+ c K,,, 

K. = K,+ U A, = K,-JLF1.  

f,-, : Lr-I c I[,-1, 

g,-1 = f f - 1 :  I*(Ii,-l) - Z*(L,-J 

(*) If M , N  € df, the11 h = 0: Y+N will dcnotc the UGA-morphitrm with ho: Mo -N,,(-R) and 
h, = 0: N, - N .  for r > 0 .  
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be any DGA-morphisni of G(K,-,, L,-,). By I, I * ( K , )  is determined from g,, by 
J-construction, and froin this i t  is easy to establish an  axiomiitic system of I*-functor 
on No by induction to. 1'. t .  (1). 

Hoa-ever, the J-construction of I is not explicit, while all L,-, are combinatorid 
spheres, so that we shall rather establish axiomatic system of I*-functor by means of 
II-IV which permits to furnish a t  the same time an effective method of calculations 
of Z*(I i )  for K E No. 

First of all, to any Z i E  X o  we have 

z*(li)  E A 

unique up  to DGA-isoniorphism, and to any pair of Z i E  So and combinatorial sub 
Pphere L E No of K, a char;icteristic DG.t-morphism 

We kiiow a h  that I* and g posresx the following properties: 

lo. I* is a homotopic functor, or niorc precisely, for K, K'E No with K E K ' ,  
we have Z*(K) = Z*(Zi'). 

2'. Let K € No and LE No be a conibinatorial subsphere of K ;  g: Z*(K) -+ - 
I*(L) be the characteristic morphism. Construct now by the J-construction of II 

J i C  A 

j i :  Ji + I * ( K ) ,  
and DGA-morphism 

then 
Ji zx I*(Ii /L).  

3". Let K, L, p be as in 2". If L'E X o  is any combinatorial subsphere of K 
and let p': Z * ( K ) T (  L') be the corrcsponding characteristic morphism, then 

g ' js :  I*(li/L) + I*(,!,') 

is the corresponding characteristic morphism. 

4". Let K E No and LE No be a combin:itorial subsphere of K. If L is the 
boundary of some combinatorial cell of li, then the characteristic morphism g: I*( K )  --* 
I*(L) is given by = 0. 

5". Let K ,  L ,  be as in 2'. 
K' of K, then the DGA-inorphisni 

It' L is the boundary of some combinatorid cell 

hi :  Z*(K/L) -+ 1- 

constructed by I V  from the characteristic morphism g = 0 :  I*(K) + Z*(L) of 4" is 
the corresponding cliaructcristic niorpliixm. 

G o .  For K', ' K " E  No we have 

I*(If' V Zi") - [ * ( I < ' )  V I* (K") .  
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7'. If K C Xo is an n-dimensional wmbinatorial sphere, then 

a x ) ,  n =a odd, 
E ( y ) @ E [ z ] ,  n = even, 

Z*(K) - [ 
in which 

and also 

for even n. 

degx = n, dx = 0, 

deg y = 2 n  - 1, d y  - X I ,  

Remark. Owing to 7O, Z*(L) and characteristic morphism g:Z*(K) 4 I*(LJ are 
both meaningful for any combinatorial subsphere LE So of K. 

It is now easy to prove that the above properties 1 O - 7 '  form an axiomatic 
system for the I*-functor over the category So. In other words, we have the 
following 

Theorem 5. Let 'Z* be any functor from So to AZ s w h  that to any  KC So 
we have a OZ*(K)E A and to any pair of KE Xo and a wmbinatorial subsphere 
L E So of K we have a characteristic morphisnt 

og: OZ*(K) -+ QZ*(L), 

which satisfies the axioms curresponding to lo-7'. Then to  any KC So we have 

OZ*(K) - Z*(K), (1) 

and to any  combinutorial subsphere L'E No of K ,  there exists a commutative diagram 
between the above isomorphisms and the various characteristic murphisms, viz. 

o p  - 
OZ*(K) - OZ*(L') 

Z*(K) - Z*(L') 
I P -  1 

Proof. Let K E  So and K be represented by (1)-(3). Denote the expression 
(I) by (I), in case K = I f , ,  and the expression (II) by (11), in case K = K , ,  and 
L' = L: E So being any combinatorial subsphere of Z i , .  As KO 1: S' V . . . V S, we 
know by lo, 6', 7 O  that (1)' and (a), hold true. Suppose that (I),-l and have 
been proved and proceed to prove (I), and (II), as follows. 

Let us first prove (I),. Consider the diagram below 
0-  1 'Z*(K.) - OZ*(K,-,) A uI*(L,-,) 

? t t 

By induction hypothesis (I),-l and (II),+, the two vertical arrows on the right are 
both DGA-isomorphisms, are both characteristic homomorphisms, and the 
right square is commutative. By Theorem 4 of IV we have Z*(K,) = Z*(KJL,-,) 4 
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Ji,-, and g, = ji,-,: Ji,-, -+ Z*(K,-l). 
oZ*(l~,-l/L,-l) - Jo,-,-, and 'g, = jo,-,-,: Joi,-, --* 'Z*(K,,). 
J and j ,  we see then OZ*(K,) - Z*(K,) ,  i. e., (Z),. 
phisms, the left-hand square in the above diagram is also commutative. 

By Axiom 2" we have also ' I * ( K , )  = 

From the construction of 
Moreover, under these isomor- 

Prove mzt (II),. For this, let 1,; t No be a combinatorial subphere of K ,  and 
consider two cases seprately. 

Case 1. A, 6 L:. 

This time L; C K?,. 

Case Z Z .  A, E L:.  

This time 
dim L: = dim A,, 

L; = K;-, U A,, 

K;-, = cornbinatoriirl cell in Zf,-,, with boundary L,-,. 

Consider first the Case I. We have then the diagram below: 

- R, 0 -  

'IUK,, " o I ' ( K , - , j  '1 'C L; ), 

By the induction hypothesis (11),-1, the two right vertical homomorphisms are both 
DGA-isomorphisms, og:-I, g;-, are characteristic homomorphisms, and the left square 
is aLso commutative (with the same symbols as before). Now by Corollary lo at the 
end of IV, g' = f,g;-, is the characteristic homomorphism, so is 'g' = 'g;g;-, by Axiom 
3'. It follows that the diagram is commutative or we have (n),. 

For the Case 11, we have also (II), by both Corollary 2' of IV and Axioms 4 O ,  

The theorem is now proved. 

Remark. The Axiom 7 O  can also be slightly weakened to '7". If KE SO is a 

5O. 

2-sphere, then 

in which 
Z * ( K )  - E(Y) 8 Rtzl ,  

degz - 2, ax = 0, 

degy = 3, dy = z2. 

VI. I*-PUNCTOR OF COUNTABLY INP~N~TE COMPLEXES 

Any countably infinite complex kC is the union of finite subcomplexes 
K , E  N o :  

K ,  C K I  C ... ( C  g). (1) 
Write for the inclusion f,: K ,  c K;+, ,  then we have a sequencc of DGA-morphisms: 

I;' ff A*(K, )  t- A*(K,) +--- * * .  t- A * ( K ; )  +-- A*(K;+,) + - . 
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Clearly A * ( K )  = limA*(Iii). As each ff' is an epimorphism, we can construct SUCWS- 

sively according to Theorem 3 of m { I * ( K ; ) ,  p i ,  g;-l} starting from {I*(Kl), P I } ,  
such that t?ic following diagram is commutative in which the pi are canonical homo- 
morphisms, and gi € Go( ff) are privileged homomorphisms: 

t 

A * ( K l ) L A * ( K 2 ) < -  ... -A*(Ii;)-A*(K;+I)-. . .  f A  

T 1 P ; /  Pi+# / (2) 
z*(K,)  Z- z*(Ic2) +-- . . . c- z*(li i)  Z- Z*(K;+~) c- . . . . 

We shall call ( g i )  a sequence of privileged morphisms. 

Theorem 6. Represent arbitrarily a wuntably infinite c m t p k x  2 €  X as (1) 
and construct a sequence of privileged morphisms 

I * ( K , )  _cI I * ( K , )  - . . ' - Z*(Ki)  2- Z*(&+,) - . . . . (3)  
Then 

Z*(f)  = Min lim I * ( K ; ) .  
t 

(4) 

Then we have the DGA-morphism 

6: lim Z*(Ii ,)  -+ .4*(8). 
c 

From this we get a mmmutative diagram: 

P; 
H(lim I * ( K , ) )  - H(lim A*(K,))  = H*(@ 
c c 

IF* 
( P  ) 

IF' 
lim H ( I * ( K , ) )  A lim H ( A * ( K , ) )  
c c 

I n  the diagram FI and F A  are both natural morphisms. Now I"' is an  isomorphism 
by [l] Chap. Vm and F A  is one by [31. Moreover p,*:  H(Z*(Zf,)) i= H ( A * ( K , ) )  = 
H * ( K , )  for all i so that 6* is also an  isomorphism. It follows that 6 is a canonical 
homomorphism and we have (4) as to be proved. 
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ON THE DECISION PROBLEM ANP 

THE MECHANIZATION OF THEOREM-PROVING ' 

IN ELJCMENTARY GEOPETRY~ 

2 Wu Wen-Tsiin 

Abstract 
The idea of proving theorems mechanically may be 
dated back to Leibniz in the 17th century and has  been 
formulated in precise mathematical forms in this cen- 
tury through the school of Rilbert as well a s  his fol- 
lowers on mathematical logic. The problem consists in 
essence in replacing qualitative difficulties inherited in 
usual mathematical proofs by quantitative complexities 
of calculations on standardizing the proof procedures 
in an algorithmic manner. Such quantitative complexi- 
ties of calculations, formerly far beyond the  reach of 
human abilities, have become more and more trivial 
owing to the occurrence and rapid development of 
computers. In spite of vigorous efforts, however, 
researches in this direction give rise quite often to  
negative results in the form of undecidable mathemati- 
cal theories. To cite a notable positive result, we may 
mention Tarski's method of proving theorems mechani- 
cally in elementary geometry and elementary algebra. 
The methods of Tarski as well as later ones are  largely 
based on a generalization of Sturm theorem and are 
still too complicated to be feasible, even with the use of 
computers. The present paper, restricted to theorems 
with betweenness out of consideration and based on an 
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entirely different principle, aims a t  giving a mechanical 
procedure which permits to prove quite non-trivial 
theorems in elementary geometry even by hands. 

I. Formulation of the problem 

A. Tarski in a classic paper [ 141 of 1948 has settled the deci- 

sion problem of real closed field with one of its main aims t o  give 

mechanical proofs of theorems in elementary geometry. Alterna- 

tive proofs of Tarski's result have later been given by Seidenberg, 

A. Robinson and P.J. Cohen, cf [12,9,2]. These authors have even 

suggested construction of certain decision machines t o  carry out 

such mechanical proofs. However, such a procedure seems to  be 

far from being realized. In fact ,  only proofs of very trivial 

theorems in elementary geometry have actually been carried out 

on computers, cf. e.g. [6,7]. The purpose of the present paper is, 

leaving aside questions involving betweenness of points, to  give an 

alternative solution of the decision problem of elementary 

geometry based on a principle entirely different from those 

employed by the authors above-mentioned. Our method permits 

to furnish mechanical proofs of quite difficult geometrical 

theorems which can be practiced even by hands, i.e., by means of 

papers and pencils only. The programming on a computer, based 

on such a method, though has not yet been done, will present no 

actual difficulties a t  all. 

We shall restrict our considerations wholly to plane elemen- 

tary geometry, though o u r  method may be applied to  the  con- 

sideration of various other kinds of geometry. The first step of 

our method consists in the algebraic formalization of the  geometr- 

ical problems involved. Points in the plane are  to be defined as 

ordered pairs of numbers in a fixed field, say the field of rational 

numbers R. A dictionary is then set  up turning geometrical rela- 

tions into algebraic expressions which may be considered as  either 
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definitions or axioms. For example, for  points A, = (zi, y,), dis- 

tinct o r  not, we shall say: 

A 1A2 is parallel to  A3A 

A l A 2  is orthogonal t o  A3A4 

the  length-square of A,A2 is r 2  = ( Z ~ - S ~ ) ~  + (y1-y2)2, etc. 

W e  may replace the basic field R by other fields, make 

correspondence the  points t o  other kinds of number-sets, o r  

modify the algebraic expfessions in the axioms, e.g., instead of the 

length-square function r 2  given above, we consider the function 

r4 = ( ~ ~ - 2 ~ ) ~  + ( ~ ~ - - y ~ ) ~ .  We then go to other realms of 

geometry, non-euclidean geometry, real or complex projective 

geometry, finite geometry, etc. We shall however stick ourselves in 

what follows to  plane elementary geometry only which has  some 

representative character.  

To illustrate our  method of treatmerlt, let us  cite first a simple 

example. Consider the following statement: 

(S,) Let AoA1A2 be a right-angled triangle with right angle a t  

A,. If x 1, 2 2  denote the lengths of sides A,Al, AoA2 and x3  is t h e  
length of the hypotenuse, then 

The problem is to  decide whether the statement (S,) is true or 

not and to give an  algorithmic procedure of proving or disproving 

(S,) which holds good for all statements alike in elementary 

geometry (with betweenness out of consideration). 
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To solve this problem, let us'remark first  tha t  the points, etc., 

occurring in the statement have a generic character subjected to  
the conditions implied in the hypothesis of the statement. Thus, if 

we represent the points in question in coordinates with 

A0 = (20 ,  v o ) ,  A 1  = ( 2 1 1 ,  v l ) ,  A 2  = (u2, v 2 ) ,  the  coordinates v o ,  u l ,  

2 r l ,  u2, v2 can be considered a s  indeterminates. On the other 

hand, the  other coordinates and geometric entities xo, x l ,  2 2 ,  z3 

are  then algebraically dependent on these indeterminates, being 

restricted by following algebraic equations according t o  

hypothesis of the statement (S,): 

1 3  = 2: - (u1-u2)2 - (v1-v2)2 = 0 

The conclusion in the statement (S,) is equivalent to 

gn = z?j - 2 p  --x? = o .  

Let us  now take once and for all the rational number field R a s  

the base field. Let A9 be the affine space on R with coordinates 

(vo,  u l ,  v l ,  u2, v2, zo, zl, 2 2 ,  23) arranged in that  definite order. 

Then the above equations f, = 0 define a n  algebraic variety V of 

dimension 5 ,  in the present case irreducible over R, with some 

generic point (vo, ul, vl, u2, v 2 ,  zo, zl, z2, z3) of which v o ,  ul, vl,  

u2,  v 2  are  indeterminates. The t ruth or untruth of the statement 

(5'') amounts to g, = O or g, f O on V respectively. 

- - _ _  

I t  turns  out that  the general decision problem can be forrnu- 

lated in the following manner. 
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~ 

f l ( U 1 t  ' ' ' , u d s  Z 1 )  = 0 ,  

f 2 ( u 1 s .  ' . rUd, Z 1 . 2 2 )  = 0,  
. . .  

fr(u1p . ' ' a u d ,  2 1 t Z 2 ,  . ' ' mxr) = 0. 

The variety V may eventually split into irreducible components, all 

of (real) dimension 5 d .  Those of dimension = (1, with generic 

points of the form (u l ,  . . . ,ud,  zl, . . . , z,) for which zj are  alge- 

braic over the field K = H ( u , ;  . . . ,ud) will have a union V' usually 

coincident with V .  Let a polynomial g (u l ,  . . . , u d ,  xl, . . . ,z,) (or a 

Set of such polynomials g k )  in R[U1, . . . , u d ,  Z 1 ,  . . . , xt] be given. 

I t  is to decide in an algorithmic manner whether 

- 

g = o  

(or  all g k - O )  on V' or  nat .  

In the above formulation the algebraic variety V ,  or preferably 

V' reflects the hypothesis of the geometric statement considered. 

Either V o r  V' will be called the  a s s o c i a t e d  v a r i e t y  of the state- 

ment in question. The variety V' considered as one defined on the 

field K = R ( u l ,  , . . ,ud)  is of dimension 0. The form of equations 

(I) shows that  the algebraically dependent variables xl, . . . ,zr are  

to be adjoined to  K s u c c e s s i v e l y  which reflects the geometrical 

fact  that ,  starting from some generic points on certain generic 

lines, circles, etc.,  new points are  to be s u c c e s s i v e l y  adjoined in an 

algebraic manner by various geometric operations of joining 

points, drawing parallels, perpendiculars or circles, forming inter- 
sections of lines and circles, etc.  These geometrical constriirtinnc 
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give rise to  algebraic equations involving x and u which can easily 
be turned into the form (I) be simple elimination procedure. In 

fact ,  the  starting equations in x and u are  rarely higher than 2. 

W e  shall call the variables u as the p a r a m e t e r s  and x a s  the 
d e p e n d e n t s .  It is also to be remarked tha t  the condition for all 

components of V to be of dimension I d  over R reflects just the 

d e t e r m i n a t e  character of the geometric statements to  be con- 

sidered, and the restriction t o  V' reflects the  depriving of degen- 

eracies in our consideration. Both of these are ,  in reality, impli- 

citly implied in the hypothesis of ordinary geometrical theorems. 

On the  other hand, the equation g =O on V' (or set  of gk=O on V')  
is the  algebraic equivalent of the conclusion of the statement to 

be proved or disproved. We shall call g or set  of gk in what follows 

the  dec id ing  p o l y n o m i a l ( s )  of the geometrical statement in ques- 

tion. 

Theoretically, the methods given by Herrnann in [4] permit 
already to solve the above decision problem in an  algorithmic 

manner. However, his methods are  s o  complicated to give rise to  

astronomical expansions tha t  even the simplest geometrical 

theorems can hardly be proved. On the contrary the decision pro- 

cedure given below takes advantage of the particular character of 

the  equations (1) and permits to prove mechanically quite non- 

trivial theorems even by hands, i.e. by means of pencil and paper 

only. 

Our method of decision procedure is based on the following 

three the or ems : 

Theorem 1. 'There is an a l g o r i t h m i c  p r o c e d u r e  p e r m i t t i n g  us t o  
split t h e  as soc ia t ed  v a r i e t y  V' of  a n y  d e t e r m i n a t i v e  geometr ic  

s t a t e m e n t  d e f i n e d  by (I) i n t o  s u b v a r i e t i e s  V '  i r r e d u c i b l e  over  R 
e a c h  of w h i c h ,  cons idered  as d e f i n e d  o v e r  t h e  field 
K = H ( u , ,  . . . ,ud) h a s  a r e p r e s e n t a t i v e  b a s i s  ( i .e.  basis of the 
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a s s o c i a t e d p r i m e  i d e a l )  of t h e  f o r m  

h a v i n g  the f o l l o w i n g  proper t i e s :  

( T l l l .  E a c h  pi iS a p o l y n o m i a l  in R[ul ,  . . . ,udD xl, . . . ,xi] of 
s o m e  degree m, > 0 in xi. 

(T1I2. The coe f f i c i en t s  of pi, considered as a p o l y n o m i a l  in xi, 
. . . , xi-,] h a v i n g  n o  c o m m o n  a r e  p o l y n o m i a l s  in R[u 

f a c t o r  and with degree in xj l e s s  than mj f o r  j = 1, . , . , i - 1 .  
. . . , U d  , x 

(T1I3. The l ead ing  c o e f f i c i e n t  of pi, considered as a p o l y n o -  

mial in xi, is a p o l y n o m i a l  $0 in R[u, ,  . . . ,ud] f r e e  of all x. 

(T1I4. p , ,  as a p o l y n o m i a l  in xl, is i r reduc ib le  in t h e  f i e l d  
K = R(ul, . . . , U d ) ,  a n d  f o r  e a c h  i>l, pi, a s  a p o l y n o m i a l  in xi, is 

i r reduc ib le  in t h e  f i e l d  obtained b y  ad jo in ing  x l l  . . . Ixi-l t o  K b y  

the algebraic  equa t ions  p = 0,  , . . ,pi-1 = 0. 

I t  is clear t h a t  the polynomials p 1 ,  . . . ,p ,  are  uniquely deter- 

mined by V '  up to multipliers in R and will be said t o  form a 

pr iv i l eged  bas i s  of V '  (more exactly, of the prime ideal associated 

to V '  over m, with respect t o  the given order xl, . . . ,xt of the 

dependents. Remark t h a t  the notion is in reality due to Grobner 

under the  name of prime basis, cf. e.g. [3] and cf. also [6] for the 

intimately related concept of characteristic sets introduced by 

R. F. R i t t .  

Theorem 2. Let (pl , .  . . ,p,) be a pr i v i l eged  basis of any 
i r reduc ib le  c o m p o n e n t  V '  of t h e  associated v a r i e t y  V ' .  R e r e  is an 
a lgor i thmic  procedure  w h i c h  p e r m i t s  u s  t o  d e t e r m i n e ,  f o r  any  

p o l y n o m i a l  h in R [ u l , .  , . ,ud, xl,. . . , x t ] ,  an e q u a t i o n  of t h e  
form 
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v e r i f y i n g  t h e  f o l l o w i n g  c o n d i t i o n s :  

(T2)I .  D ,  hi,. . . c  a r e  a l l  p o l y n o m i a l s  in R [ u l , .  . . , u d ]  and 

D # 0, 

(T2)z .  

The polynomials hi,, , , . 

4 are a l l  p o l y n o m i a l s  in R [ u , ,  . . . ,ud, x . . . , z,]. 

which a re  uniquely determined up to 

multipliers in R by the  algorithmic procedure, will be called the 

r e m a i n d e r  c o n s t i t u e n t s  of the  polynomial h with respect to the 

privileged basis (pl, . . . , p , )  of V ' ,  or, by abuse of language, simply 

t h e  remainder consti tuents of h with respect to V ' .  

meorem 3. For a g e o m e t r i c a l  s t a t e m e n t  with assoc ia t ed  

v a r i e t y  v* a n d  d e c i d i n g  p o l y n o m i a l  g (or a s e t  gk of dec id ing  

p o l y n o m i a l s )  t o  be t r u e ,  it i s  n e c e s s a r y  a n d  s u f f i c i e n t  that f o r  a n y  
i r r e d u c i b l e  c o m p o n e n t  V '  of  V* ,  a l l  r e m a i n d e r  c o n s t i t u e n t s  of  g 

(or o f  a l l  g k )  s h o u l d  be i d e n t i c a l l y  z e ro .  

11. Examples 

Before giving proofs of these theorems in IV, we shall illustrate 

their  use by-some examples below. 

EX. 1. For the  geometrical statement (S,) about right-angled 

triangles as  cited in the beginning of the present paper,  we see 

readily that  the associated variety V in parameters v o ,  u, ,  u l ,  u 2 ,  

u 2  and dependents x0, x l ,  x 2 ,  x3, is already irreducible over R and 

possesses a privileged basis (PI, p 2 ,  p 3 ,  p4) ,  where 

p z  = z f  + (u1-u2)zo - u ;  + U I U 2  - (v1-vo)(u1-u2),  

p ,  = 232 - (u1-u2)2 - (v1-u2)? 
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I t  is readily verified tha t  

Q2 =P4 -P, -P3t 

while for n > 2, we have 

Sn f 0 mod 0 3 i ~ ~ ~ t ~ p 3 t ~ 4 ) .  

I t  follows that  (Sn) is t rue  only for n=2  which corresponds to  the 

Keu-Kou Theorem. 

Ex. 2. Our decision procedure can also be applied to  give 

mechanical proofs of trigonometric identities. Consider, e.g. the 

following statements: 

(S) If A 1  t A 2  + A 3  = 180°, then 

sin 2 A  + sin 2A2 + sin 2A3 = 4 sin A sin A, sin A,. 

(C) If A ,  t A, t A3 = 180",  then 

cos 2Ai + cos 242 + cos 243 t 4 cos A1 cos A, cos A3 = 0. 

To decide whether (S) o r  (C) is true,  let us set  

sin Ai = s i ,  cos 4 = c i ,  (i = 1,2),  

sin 2A, = xi, cos 2 4  = yi, (i = 1,2,3), 

sin A3 = zl, cos A 3  = 2,. 

Take c and c 2  a s  parameters and 

BS dependents (in this order), then the associated variety of (S) or 

( C )  is already irreducible in R and possesses a privileged basis 

b I . . . ,P given by 

p ,  = sl" + C f  - 1, 
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p2 = s j  + c2" - 1, 

The deciding polynomials of the statements (S) and (C) are 

given respectively by  

g, = - 1 + 4 c , c z p , + P e + P , + P l o  

f 0 . . ,pl0). 

Hence (S) gives a t rue  identity while (C)  does not. 

Ex. 3. Let us  consider the Simson-Line Theorem which 

corresponds to the  following statement: 
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(&.I. From a point A 4  on the circumscribed circle of a triangle 

A 1 A 2 A 3 ,  perpendiculars a re  drawn to the  sides of the triangle. 

Then the feet of the  perpendiculars are  in a line. 

To prove this, let us take for simplicity the  center  of the cir- 

cumscribed circle as the point (O,O), while the  radius is r .  Let the 

points A, (i = 1,2,3,4) be (xi, u,) and the fee t  of perpendiculars Aj 

be ( x , .  yj), j = 5,6,7. Consider T ,  u l ,  u 2 ,  ~3~ u4 as parameters and 

as the dependents in the order indicated. 

A prime basis (pl, . . . ,pl,-,) of the associated Simson variety 

which is irreducible is readily given as follows: 

p l = x f  t u f  - r 2 ,  

pz = x2" + u$ -7.2,  

p3=x32 +uf - r2 ,  

p ,  = xf + uf - r 2 ,  

p 5  = 2r2y5 - h5, 

In the above equations we have set  for simplicity: 
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Similarly for h6 and h7. 

The deciding polynomial is given by 

Straightforward calculation shows again 

g = 0 mod(pl , .  . . , p l 0 ) ,  

which proves the t ruth of Simson statement (Ss). 

EX. 4. For a less trivial example, let  us consider the Feuerbach 

theorem which corresponds to  the following statement:  

(SF)  The 9-point circle of a triangle is tangent t o  the four 

inscribed and the escribed circles of the  triangle. 

Let US take the three vertices of the triangle a s  (2ui, 2v,) ,  the 

center  and radius of the 9-point circle a s  (z y 1) and T l ,  and the 

center  and radius of either the inscribed or  any of the escribed 

circles as  ( x 2 ,  y e )  and r 2 .  Introduce also variables zl, z 2 ,  2 3  

corresponding to lengths of the sides of the triangle. Then with 

u1, 211. u 2 ,  212, u 3 ,  213 as  the parameters and zl, 2 2 ,  2 3 ,  x l ,  y l S  x 2 ,  

3 2 ,  r1, ~2 as  dependents in this order,  the associated Feuerbach 

variety Vp splits into irreducible ones having privileged basis 

(p . . . , p  9) given by: 

p4  = 4Az1 - a l ,  
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p0 = 4 A r 1  - Z ~ Z ~ Z ~ ,  

p e  = 2 A r 2  + 7. 

In the above formulas we have put for simplicity 

Remark tha t  the choice of ti  = $1 or -1 corresponds to the 4 

inscribed or escribed Zircles and reflects the reducibility of the 

129 



226 WU WEN-TSUN 

Feuerbach variety. 

Now the deciding polynomial of statement (S,) is of the  form 

in which 7 = + 1  or  -1. By a straightforward calculation, however 

lengthy and tedious, we verify that  gr, will be a linear combination 

of p I ,  . . . ,PO for q = t ~ 1 ~ 2 ~ 3  but  not so f o r  71 = - ~ 1 ~ 2 ~ 3 .  Thus the 

Feuerbach statement is a t rue theorem and q = t ~ 1 ~ 2 ~ 3  reflects 

the manner of contact between the 0-point circle and the respec- 
tive in- or es-cribed circle. Remark that  in our formulation we 

have left aside the  question of betweenness and the manner of 

contact of circles is not  of interest t o  us. In this way we can take 

g = g+1 . g-l as the  deciding polynomial if we like. W e  may also 

take the  Feuerbach variety in the affine space of ui, vi, x j ,  yj only 

without the introduction of z1 ,  z 2 ,  z 3  so that  i t  is irreducible a t  

the outset. 

Ill. Some lemmas 

To make some preparations we shall consider a field 

R ( u l ,  . . . , u d ,  xl, . . . , x r )  in which u l ,  . . . ,ud are  transcendental 

while zl, . . . , z r  are  algebraic over the base field R.  The algebraic 

extensions to zl, . . . , z r  are  defined successively by the following 

equations 
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I t  is assumed tha t  for 1 5 i T ,  the  pij's are  polynomials in the 

ring Pi-l = Rlu1, . . . , u d ,  21, . . . ,xi-1], tha t  pi0 are  polynomials 

# 0 in Po = R [ u l , .  . . ,ud] ,  and t h a t  pi  considered as polynomials 

in xf are irreducible over the  field = R ( u l , .  . . ,ud, 
zl, . . . ,xi-1) defined by the  equations p l ( x l )  = 0, . . . , 
pi - l (x l ,  . . . ,xi-,) = 0. We put  here  

Let T be the  collection of sets of indices I = (il, . . . ,%) with 

0 s ij 5 mj - 1 .  For such an  I we shall write symbolically 

Any polynomial of the form.  
with coefficients a/ in a certain ring or field F will be called then a 

normalized one in F [ x  . . . , x,]. 

Lemma I. mere is a n  algorithmic procedure which permits t o  
d e t e r m i n e  uniquely for any polynomial A in P,, a set o f  i n t e g e r s  
s 1, . . . , s, 2 0 and a set o,fpolynomials A1 in Po f o r  I E T verifying 

the f o l l o w i n g  conditions: 

( L l ) , .  Modulo  some linear combinatioq of pi over PT8 we have 

( L I ) ~ .  AI are polynomials in Po with coefficients linear in 
those of A ,  considered as polynomial in P,. 

( L I ) ~ .  sl, . . . , s r  are the least i n t e g e m  2 0  t o  make (L1)l  and 
(L l )*  possible. 

Proof. Considering both A and p ,  as polynomials in x, with 

coefficient in pT- l*  we get by division for some integer s, 2 0 taken 

to be least possible 
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with Q,, polynomials in P, for which the  degree of R,-l in xr 
is < %. Considering nowp,-l and as polynomials in xTel with 

coefficients in R[ul,  . , . ,ud, zl, . . . ,zr-2,z,]. we get by division 

f o r  some integer s,-~ 2 0 taken to be least possible 

with Qr- l ,  polynomials in P, for which the degrees of 4 - 2  in 
xr and x , - ~  are  < m, and < +-, respectively. Proceeding in this 

manner, we get successively 

with Ro as a polynomial in P,, for which the  degree in xi is 

< mi, 1 <i s r .  We may then write Ro a s  AIx' and get the 

expression verifying all the conditions in the Lemma as required. 

Lemma 2. m e r e  is an  a l g o r i t h m i c  p r o c e d u r e  w h i c h  p e r m i t s  u s  

t o  d e t e r m i n e  f o r  a n y  p o l y n o m i a l  in s o m e  i n d e t e r m i n a t e  y of the 
f o r m  

with e a c h  A, in Pr a n d  A ,  # 0 in 4 e x p r e s s i o n s  of t h e  f o r m  

HA = B + C l p ,  + . . . + C,p,, 

with 

verifiii,n,n.cl th.e fnl1oilJi.n.o c o n d i t i o n s  
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(LZ) , .  A l l  Bi are normalized polynomials in P,. and B, is a 
polynomial # 0 in Po. 

(LZ)2. Ci are all polynomials in P 7 [ y ]  and H i s  one in P,. 

(LZ),. H f 0 mod (pl, . . . ,p,.). 

Any such polynomial B satisfying (L2Il will then be said to be 

a normalized polynomial over  P,. in the indeterminate y. 

R oof. By Lemma 1, we have for some integers ~ 1 ,  . . . ,s, 0 

an expression of the form 

with all A'$ normalized in P,. and A ' ,  # 0 in &. Suppose t h a t  A ' ,  is 

f ree  of x i + l , .  . . , z, but not  so for  xi. As A t 0  has  a degree < mi in 
Z$ while pi  is irreducible in &-, and of degree in xi, we find by 

the usual division algorithm polynomials h,k  in Pi a n d  A'oo in Pi-l 
such t h a t  

in which h is f 0 in K ,  and A t o o  # 0 in 
expression of the form 

We have then an  

Applying Lemma 1 again t o  hA', and A'oo,  we get then some expres- 

sion 

h"A = A",ym + A"lym-l + . . . -t A", mod (pl, 3 . . , p r ) ,  

for which all Aili are  normalized in P,. with A",  # 0 in & and not 

containing any xj for  jr i ,  and h" is some polynomial in P,. which 

is Z 0 in 4. If A",  is f ree  of all zl, . . . ,x,., we may take 
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as the polynomial B required or otherwise we proceed a s  before. 

Lemma 3. There is a n  algorithmic procedure which permits t o  
factorize in & anypolynomial in P,.[y] 

with A,  in P, and A, # 0 in 

f i n d  expression o f  the  form 
m t 2. More precisely, it permits t o  

with 

verifying t h e  following conditions: 

(L3) , .  Each Aj is a normalized polynanz$rtl in P,[y] a n d  ZS 
i r reduc ib le  in &. 

(L3I2. H is apolynomial in P, which is # 0 in &. 

(L3)3. Ci are polynomials in P,[y]. 

Proof. The method of Hermann in [4] permits us to give, in an 

algorithmic manner,  a factorization of A into irreducible ones in 

&, s o  that  af ter  clearing of fractions we have an expression of the 

form 

with B,, B ' ,  polynomials in P,[y], B, irreducible in & and D a 

polynomial in P, which is f 0 in &. Applying now Lemma 2 to each 

B,, we get then the expression required. Consider also the refer- 

ence [15], p. 130. 
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IV. Proofs of the theorems 

We are  now in a position to give proofs of Theorems 1-3 quite 

simply as follows: 

Proof of Theorem 1. For the defining system of equations (I) of 

the associated Variety v, let us consider f ,(?A*, . . . ,ud,  xl) as a 

polynomial in x 1  with coefficients in R[u. , ,  . . . ,ud] and factorize 

f l  into ones irreducible in K =  R ( u l , .  . . ,ud) by applying the 

algorithm in Lemma 3, with x1 a s  y and 0 as r there.  Take any 

such irreducible factor as p , ( x l ) .  Let K, be the field obtained 

from K by adjoining x E l  defined by the equation 

Now f 2 ,  considered a s  a polynomial in the indeterminate x 2 ,  can- 

not be identical with 0 in the  field K,, far otherwise t h e  variety V 
would be of dimension > d ,  contrary ta the determinancy 

hypothesis af our  geometric statemerit. Applying Lemma 3 to f 2 

with 2 2  a s  y and 1 a s  r there ,  we get a certain polynomial f I 2  in 

P,  = R[u 1, . . . , ud, z x 2 ]  with an expression of the form 

h 2 f  2 = 1 ' 2  + c 2 l P  1 8  

in which f ' 2 ,  a s  a polynomial in the indeterminate x 2 ,  is a product 

of normalized factors irreducible and f O  in the field K l .  Take any 

such factor a s  p 2 ( z  1, x 2 ) .  Let K, be the field obtained from K1 by 

adjoining x 2  defined by the equation 

Then j 3  is a polynomial in the indeterminate x 3  over P 2  which 

cannot be identical with 0. Applying Lemma 3, we get  a n  expres- 

sion of the form 
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in which the polynomial 4 ' 3  in 5 3  is a product of normalized fac- 

tors  irreducible and # 0 in K2. Take any factor as p 3 ( x t , z 2 , z 3 ) ,  
adjoin x 3  t o  K2 by the equation 

and proceed fur ther  as  before. In this manner,  we get  finally sys- 

tem of subvarieties V '  irreducible over R, each defined on K by 

systems of equations of the type 

verifying some obvious conditions as described in 111. 

I t  is easy to see tha t  the collection of all such subvarieties 

exhausts the given variety V' .  In fact ,  consider an irreducible 

component in R of V' with a generic point, say ( u l , .  . . ,ud, 

zl, . . . , S r ) ,  in which u l ,  . . . ,ud, a re  independent indeterminates 

while il, , . . ,gr  depend algebraically on them. A s  (u l ,  , . . ,ud,  zl) 

should satisfy the system of equations (I) ,  in particular the equa- 

tion f l = 0, they should annul some one of the irreducible factors 

of f 1, say p before. Now, (u l ,  . . . ,ud, z1,z2) should satisfy the 

other  equations in the system (I )  a s  well a s  the equation 

p l ( x l )  = 0. It follows from the expression about given above 

tha t  they should also satisfy the  equation f I 2  = 0 and hence 

should annul one of the irreducible factors of f I 2 ,  say p2(z1,x2) 

ahove. Proceeding in the same manner we see tha t  ( u ~ , .  . . ,ud,  

zl,. . . , G r )  should satisfy a system of equations of the type (111) 

and hence is a generic point of an irreducible subvariety among 

the collection found above. This completes the proof of the 

theorem. 

- 

- 

- -  

- 
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Proofs of meorems 2 and 3. 

Theorem 2 follows immediately from the  algorithm in Lemma 1. 

The t ruth of Theorem 3 is quite clear from Theorems 1 and 2. 

F’inal Remark. Our algorithm for the  mechanization of 

theorem-proving in elementary geometry involves mainly such 

polynomial manipulations as  arithmetic operations and simple 

eliminations, which were all originated and quite developed in 12- 

14c. Chinese mathematics, cf. e.g. the book of late Chien [ I ]  for 

the explanations. In fact, the  algebrization of geometrical prob- 

lems and systematic method of their solutions by algebraic tools 

were some of t h e  main achievements of Chinese mathematicians a t  

that time, much earlier than the  appearance of analytic geometry 

in 17c. 

Added in B o o $ .  (Dec. 1977). 

The same principle has been applied to  the  mechanization of 

theorem-proving in elementary diff erentjal geometry with the aid 

of R i t t ’ s  theory of differential algebra, of which the details will be 

given later. 
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M a t h e m a t i c a  S c i e n t i a  

TOWARD MECHANIZATION QF GEOMETRY 

“GRUNDLAGEN DER GEOMETRIE” 
----SOME COMMENTS ON HILBERT‘ S 

Insti tute of Systems-Science, Academia Sinica 

T h e  g r e a t  m e r i t  of Hi lber t ’  s c lass ic  “ G r u n d l a g e n  d e r  Geometrie’: 
of 1899 is  u n i v e r s a l l y  recognized  a s  being r e p r e s e n t a t i v e  f o r  a x i o m a t i -  
z a t i o n  o f  m a t h e m a t i c s ,  l ay ing  in  p a r t i c u l a r  a r i g o r o u s  f o u n d a t i o n  of 
t h e  e u c l i d e a n  georne t ry .However ,another  g r e a t  m e r i t  ( p e r h a p s  g r e a t e r  
i n  t h e  o p i n i o n  o f  t h e  p r e s e n t  a u t h o r ) o f  t h i s  c lass ic  seems h a r d l y  t o  be 
n o t i c e d  up t o  t h e  p r e s e n t . I n  f a c t ,  t h i s  c lass ic  i s  a l s o  r e p r e s e n t a t i v e  
f o r  t h e  m e c h a n i z a t i o n  of g e o m e t r y ,  s h o w i n g  c l e a r l y  a t  t h e  s a m e  t i m e  
t h e  w a y  t o  a c h i e v e  i t ,  T h e  p r e s e n t  p a p e r  h a s  t h e  o b j e c t  of t r y i n g  t o  
c l a r i f y  t h e s e  p o i n t s .  

F i r s t  o f  a l l  l e t  us  r e m a r k  t h a t  i n  t h e  s t a t e m e n t  of t h e o r e m s  ( o r  
e v e n  a x i o m s )  t h e r e  a r e  usua l ly  some i m p l i c i t  a s s u m p t i o n s  a b o u t  gene- 
r i c i t y  o r  non-degeneracy of f igures  involved  w i t h o u t  w h i c h  t h e  the-  
o r e m s  m a y  be meaningless  o r  even  f a l l  i n t o  f a l l a c i e s , T h e  f o l l o w i n g  sim- 
ple  e x a m p l e s  m a y  s e r v e  a s  i l l u s t r a t i o n s .  

Ex.1 T h e  t h r e e  a l t i t u d e s  of a t r iangle  a r e  c o n c u r r e n t .  
I t  i s  in ip l ic i te ly  assumed h e r e  t h a t  t h e  t r iangle  in  ques t ion  should 

be generic  in  t h e  sense  t h a t  i t  d o e s  n o t  degenera te  i n t o  o n e  w i t h  ver t i -  
c e s  c o l l i n e a r  o r  w i t h  t w o  v e r t i c e s  c o i n c i d e n t .  In  t h e  f i r s t  c a s e  t h e  
theorem is  no t  t rue  a n d  in  the  second c a s e  i t  i s  meaningless .  

Ex. 2 T h e  oppos i te  s ides  of a p a r a l l e l o g r a m  a r e  c o n g r u e n t .  

”Received - Nov. ,  1981 
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T h e  t h e o r e m  w i l l  not be  t r u e  if t h e  p a r a l l e l o g r a m  in  question dege- 
n e r a t e s  i n t o  o n e  w i t h  v e r t i c e s  ly ing  on  t h e  s a m e  l i n e .  

Ex . 3  Desargues  T h e o r e m .  I f  t h e  t h r e e  p a i r s  of c o r r e s p o n d i n g  
s i d e s  of t w o  t r iangle:  a r e  211 p a r a l l e l  t o  e a c h  o t h e r , t h e n  t h e  t h r e e  l i n e s  
j o i n i n g  t h e  c o r r e s p o n d i n g  v e r t i c e s  of t h e s e  t r i a n g l e s  a r e  e i t h e r  c o n c u r -  
r e n t  o r  a r e  p a r a l l e l  t o  e a c h  o t h e r ,  

T h e  t h e o r e m  w i l l  n o t  be  t r u e  if t h e  t w o  t r i a n g l e s  i n  q u e s t i o n  de-  
g e n e r a t e  i n t o  o n e s  w i t h  c o l l i n e a r  v e r t i c e s .  

Ex.4 D e s a r g u e s  T h e o r e m .  If t h e  t h r e e  l i n e s  j o i n i n g  t h e  c o r r e s -  
p o n d i n g  v e r t i c e s  of t w o  t r i a n g l e s  a r e  e i t h e r  c o n c u r r e n t  or  p a r a l l e l ,  
a n d  t w o  p a i r s  of c o r r e s p o n d i n g  s ides  of t h e s e  t r i a n g l e s  a r e  b o t h  para-  
l l e l  t o  e a c h  o t h e r ,  t h e n  t h e  s a m e  wi l l  b e  t r u e  f o r  t h e  t h i r d  p a i r  of 
c o r r e s p o n d i n g  sides. 

A g a i n  t h e  t h e o r e m  w i l l  n o t  be t r u e  if o n e  of t h e  p a i r s  of c o r r e s -  
p o n d i n g  s ides  p a r a l l e l  t o  e a c h  o t h e r  d e g e n e r a t e s  into  a p a i r  l y i n g  on  
t h e  s a m e  l ine.  

In  v i e w  of t h e s e  e x a m p l e s  w e  s e e  t h a t  t h e o r e m s  of e l e m e n t a r y  
g e o m e t r y  a r e  u s u a l l y  t r u e  o n l y  i n  t h e  g e n e r i c  o r  non-degenerate c a s e  
w h i c h  a r e  i m p l i c i t e l y  a s s u m e d  a s  h y p o t h e s i s  b u t  u s u a l l y  n o t  c l e a r l y  
e x p r e s s e d  i n  t h e  s t a t c l n e n t s  of t h e  t h e o r e n i s .  In  e a c h  d e g e n e r a t e  c a s e  
w e  h a v e  t o  i n v e s t i g z t e  s e p a r a t e l y  w h e t h e r  t h e  t h e o r e m  i s  m e a n i n g f u l  
or  no t  a n d  if i t  i s  so w h e t h e r  t h e  t h e o r e m  r e m a i n s  h o l d  t r u e  o r  n o t .  

Now to  p r o v e  theorenis  i n  t h e  usua l  e u c l i d e a n  f a s h i o n  o n e  should  
i n c e s s a n t l y  m a k e  r e s o r t  t o  p r e v i o u s l y  p r o v c d  t h e o r e m s  c o n s i d e r e d  t o  
be a l r e a d y  k n o w n .  As t h e s e  k n o v n  t h e o r e m s  a r e  o n l y  t r u e  u n d e r  
c e r t a i n  non-degeneracy  c o n d i t i o n s  o n e  shoulc1,each t i m e  w h e n  t h e s e  
t h e o r e m s  a r e  t o  be a p p l i e d , v e r i f y  w h e t h e r  t h e s e  non-degeneracy  con-  
d i t i o n s  a r e  o b s e r v e d  or n o t .  O n e  s h o u l d  c o n s i d e r  d i f f e r e n t  c a s e s  t o  
d e p r i v e  off o n e  hy o n e  e a c h  cf t h e s e  d e g e n e r a c y  s i t u a t i o n s .  T h i s  ren-  
d e r s  t h e  proof of a t h e o r e m  v e r y  c u m b e r s o m e , t h e  m o r e  so because  s u c h  
non-degeneracy  c o n d i t i o n s  of t h e o r e m s  t o  be a p p l i e d  a r e  u s u a l l y  not  
c l e a r l y  s t a t e d .  I n  f a c t , e v e n  for  a t h e o r e m  of m o d e r a t e  c o m p l e x i t y ,  i t  
w o u l d  be q u i t e  imposs ib le  t o  talce c a r e  of a l l  t h e s e  non-degenera te  
c a s e s  o c c u r e d  i n  t h e  k n o w n  t h e o r e m s  t o  be  a p p l i e d  i n  o r d e r  to  m a k e  
t h e  proof  m e e t i n g  t h e  usua l  s t a n d a r d  of r i g 0 r . A  s c r u t i n y  of t h e  p r o o f s  
of t h e o r e m s  concern i i ig  t h e  e s t a b l i s h m e n t  of r u l e s  of number  s y s t e m s  
i n  a D e s a r g u e s i a n  geoinc t ry ,  i n  w h i c h  D e s a r g u e s  t h e o r e m  s h o u l d  be 
a p p l i e d  o v e r  a n d  o v e r , a s  d e s c r i b e d  i n  t h e  c l a s s i c  of H i l b e r t ,  n iay w e l l  
i l l u s t r a t e  t h i s  p o i n t .  

On t h e  o t h e r  hanci. H i l b e r t , i n  h i s  c l a s s i c , a f t e r  l a y i n g  d o w n  t h e  fo-  
u n d a t i o n  f o r  t h e  a l g e b r a i z a t i o n  a n d  c o o r d i n a t i z a t i o n  of a g e o m e t r y  in-  
v o l v i n g  D e s a r g u c s  theoi-ern a n d  P a s c a l  t h e o r e m , h a s  s t a t e d  a t h e o r e m  
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( n u m b e r e d  Th .62 i n  t h e  l a t e r  e d i t i o n s ) , w h i c h  is i n  essence  e q u i v a l e n t  
t o  a m e c h a n i z e d  p r o c e d u r e  f o r  t h e  p r o o f s  of a c e r t s i n  k i n d  of theo-  
r e n i s . l e t  us c a l l  fo r  s h o r t  a p l a n e  g e o m e t r y  to  be  pusca2ia:r if t h e  pla-  
n a r  ax ionis  of i n c i d e n c e , t h e  a x i o m s  of o r d e r , t h e  a x i o m  of p a r a l l e l i s m  
i n  t h e  s t r e n g t h e n e d  f o r m ,  a s  w e l l  a s  t h e  so-cal led P a s c a l  t h e o r e m  a l l  
h o l d  t r u e . T h e n  t h e  o r i g i n a l  s t a t e m e n t  of t h e  t h e o r e m  i n  q u e s t i o n  r u n s  
s o m e w h a t  a s  f o l l o w s .  

T h  . 6 2  E a c h  pure intersection-point theorem,  i n  a P a s c a l i a n  geo- 
n ie t ry , i f  t r u e , c a n  a l w a y s  be prolred by t h e  a i d  of s u i t a b l y  c o n s t r u c t i n g  
a u x i l i a r y  p o i n t s  a n d  l i n e s ,  a s  consequence  of a c o m b i n a t i o n  of a f i n i t e  
n u m b e r  of P a s c a l  c o n f i g u r a t i o n s .  

F o r  t h e  m e a n i n g  of p u r e  in te rsec t ion-poin t  t h e o r e m  ( a b b . P I P - T h )  
H i l b e r t  h a s  g iven  t w o  e x p l a n a t i o n s  w h i c h  a r e  i n  f a c t  n o t  e q u i v a l e n t .  
F o r  t h e  f i r s t  o n e  H i l b e r t  def ined  a PIP-Th a s  o n e  i n  w h i c h  o n l y  inci-  
dence  of p o i n t s  a n d  l i n e s  a s  wel l  a s  p a r a l l e l i s m  of l i n e s  a r e  i n v o l v e d ,  
T h e n , h e  a r g u e d  t h a t  e v e r y  s u c h  PIP-Th. m a y  be descr ibed  i n  m o r e  
d e t a i l s  i n  t h e  f o l l o w i n g  f o r m :  

S e l e c t  f i r s t  a sys tem of f i n i t e  number  of p o i n t s  a n d  l i n e s  a r b i t r a -  
r i l y .  T h e n  success ive ly  i n  a d e f i n i t e  p r e s c r i b e d  m a n n e r  d r a w  some 
p a r a l l e l s  t o  s o m e  of t h e  l i n e s  g e t , c h o o s e  s o m e  p o i n t s  on  s o m e  of t h e  
l i n e s  g e t , a n d  d r a w  s o m e  l i n e s  t h r o u g h  s o m e  of t h e  p o i n t s  g e t .  I f ,  by 
c o n s t r u c t i n g  i n  t h i s  p r e s c r i b e d  m a n n e r  t h e  j o i n i n g  l i n e s ,  i n t e r s e c t i o n  
p o i n t s  a s  wel l  a s  p a r a l l e l s  t h r o u g h  p o i n t s  a l r e a d y  c o n s t r u c t e d ,  o n e  
a r r i v e s  f i n a l l y  t o  a f i n i t e  s e t  of l i n e s ,  t h e n  t h e  t h e o r e m  wi l l  a s s e r t  
t h a t  t h e s e  l i n e s  w i l l  be e i t h e r  c o n c u r r e n t  o r  p a r a l l e l  t o  e a c h  o t h e r .  

To d i s t i n g u i s h  b e t w e e n  t h e s e  t w o  c o n c e p t s  of P I P - T h , i n  f a c t  no t  
equiva . len t ,we  s h a l l  c a l l  t h e  l a t e r  o n e  t h e  P I P - T h  oJ consfrucfiue t y p e .  
N o w  t h e  e x p l a n a t i o n s  g i v e n  jus t  b e f o r e  t h e  s t a t e m e n t  o f  T h e o r e m  62 i n  
t h e  c l a s s i c  f u r n i s h  a n  i d e a  of a. proof of t h e  f o l l o w i n g  t h e o r e m ,  
w h i c h  m a y  be c o n s i d e r e d  a s  a n  a l t e r n a t i v e  v e r s i o n  of T h .  62  a n d  w i l l  
be c a l l e d  

Mechanizat ion Theorem o f  Hi lbe r t .  In  a p l a n a r  P a s c a l i a n  geo- 
m e t r y  t h e r e  i s  a m e c h a n i c a l  p r o c u d u r e  w h i c h  p e r m i t s  t o  p r o v e  o r  dis-  
p r o v e  i n  a f i n i t e  n u m b e r  of s t e p s  a n y  p u r e  i n t e r s e c t i o n - p o i n t  t h e o r e m  
of c o n s i r u c t i v e  t y p e  u n d e r  c e r t a i n  s u b s i d i a r y  non-degeneracy  condi -  
t i o n s  a l s o  g e n e r a t e d  m e c h a n i c a l l y  d u r i n g  t h e  p r o c e d u r e .  

As  t h e  i n t e n d e d  p r o o f  of T h e o r e m  62 o r  t h e  a b o v e  M e c h a n i z a t i o n  
T h e o r e m  a s  g iven  i n  H i l b e r t ’ s  c lass ic  i s  n o t  o n l y  v a g u e  b u t  a l s o  
s o m e w h a t  i n e x a c t  in  v a r i o u s  respec ts ,  w e  s h a l l  r e w r i t e  t h e  proof  i n  
w h a t  f o l l o w s  w h i c h  c o n s i s t s  i n  g iv ing  a m e c h a n i c a l  p r o c e d u r e  meet ing  
t h ?  p u r p o s e  a s  d e s c r i b e d  i n  t h e  M e c h a n i z a t i o n  T h e o r e m -  

i;irst of a l l  we s h a l l  t a k e  i n  t h e  p l a n e  a coord i .na te  s y s t e m  w h i c h  
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may be chosen  a r b i t r a r i l y , T o  save  t h e  l abor  of computa t ions  we  m a y  
choose,  i f  we  w a n t ,  t he  coord ina te  system i n  a convenient  m a n n e r  
wh ich  i s  however immate r i a l  t o  t h e  reasonings  to  fo l low,  T h e  po in t s  
a n d  l ines  involved  i n  a n y  pu re  in te rsec t ion-poin t  theorem wi l l  then  be 
represented  by number  pa i r s  o r  l inear  equat ions ,  T o  f i x  t h e  ideas ,  
we sha l l  avoid  the  use of l inear  equat ions  f o r  l ines  and  r e s t r i c t  our- 
selves to  cons idera t ions  of po in t s  o r  number  pa i r s  a lone  a s  descr ibed  
below, As a po in t  may be e i the r  chosen i n  a n  a r b i t r a r y  manner  o r  
constructed in  a def in i te  manner  f r o m  prescr ibed  geometric condi- 
t ions ,  w e  sha l l  d i s t inguish  t w o  types  of coord ina tes ,  pa rame t r i c  ones  
and  geometrically-bounded ones,  wh ich  w i l l  be denoted  by u r  and x I  
respectively. T h e y  wi l l  be denoted  by ak if no d is t inc t ion  f o r  u o r  x 
is necessary.  W e  sha l l  n o w  represent  t h e  po in t s  occur ing  successively 
i n  the  PIP-Th, of cons t ruc t ive  type  t o  be proved  by number  pa i r s  
( a ,  ,aj> one a f t e r  t he  o t h e r  a s  follows, 

F i r s t  let  us r emark  t h a t  t h e  cons t ruc t ion  of a po in t  occur ing  in  
t h e  theorem in  ques t ion  w i l l  be one  of t h e  fo l lowing  10 types: 

1 . A  poin t  i s  a r b i t r a r i l y  given o r  chosen, 
T h e  poin t  w i l l  then  be represented  a s  ( u ,  , u j )  w i t h  u l  , u j  as  para- 

2 .A line is  a r b i t r a r i l y  g iven  o r  chosen, 
Instead of represent ing  t h e  l ine  by a l inear  equat ion  of cu r ren t  

coord ina tes ,  we sha l l  t ake  a r b i t r a r i l y  t w o  poin ts  represented  by 
(ui , u j 1 9  ( u k , u I )  respec t ive ly  w i t h  the  l i ne  i n  question as the i r  join-  
i n g  line, 

3. Const ruc t  an  a r b i t r a r y  l i ne  th rough  a p o i n t ( a ,  , a j ) a l r e a d y  cons- 
t ruc ted ,  

As in 2 ,we sha l l  t ake  a n  a r b i t r a r y  poin t  ( u k , u l )  and represent  
t h e  l ine  as the  joining l ine  o f  t h i s  po in t  and  the  poin t  ( a ,  , a j ) ,  

4 .Cons t ruc t  t h e  joining l ine  o f  t w o  poin ts  a l r eady  cons t ruc t ed .  
As t h e  l ine  has  been de termined  by the  two  poin ts  t he reon ,  t h i s  

5 .Choose  a po in t  a r b i t r a r i l y  f r o m  a l ine  a l r eady  cons t ruc ted .  
I f  t he  l ine  i s  de te rmined  by t w o  poin ts  ( a ,  , a j ) ,  (ak,al) a l r eady  

cons t ruc ted ,  then the  a r b i t r a r y  po in t  chosen thereon  may be e i the r  
represented by ( u r , x , )  o r  ( x ,  , u r )  sa t i s fy ing  t h e  fo l lowing  equa t ion ,  

in e t e r s. 

cons t ruc t ion  is no  more  necessary,  

( a f - a i ) u , - ( a i - a k ) X ,  + a # a Z - - ( I Q k = O ,  

o r  
(Qj  - Q , ) X ,  - ( Q i  -Uk )21 ,  + U , Q ,  - - Q j U k  = 0. 

6 .Cons t ruc t  a r b i t r a r i l y  a pa ra l l e l  t o  a l i nc  a l r eady  cons t ruc t ed .  
As  t h e  l ine  i s  de te rmined  by t w o  poillts thereon  a l r eady  cons- 
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t r u c t e d  s a y  ( a ,  ,aj), ( Q ~  ,a ,  1, t h e  p a r a l l e l  t o  b e  c o n s t r u c t e d  w i l l  b e  
d e t e r m i n e d  a s  fol lows.  F i r s t  t a k e  a n  a r b i t r a r y  p o i n t  (um,u,,), a n d  
t h e n  a p o i n t  ( u 7 , x , )  o r  ( x ,  , u , )  such  t h a t  t h e  j o i n i n g  l i n e  of t h i s  p o i n t  
t o  t h e  p o i n t  (um,un) w i l l  be p a r a l l e l  t o  t h e  l i n e  d e t e r m i n e d  by 
(a,,ai) a n d  (ak,al),so t h a t  x ,  w i l l  s a t i s f y  t h e  f o l l o w i n g  e q u a t i o n ,  

or  
( a k  - a ,  ) ( x  I - u,)  - ( a  I - a j ) (u ,  - u,) = 0, 

( a ,  - a j )  ( x ,  -urn>  - (al ,  - a i  ) ( u r  - u,)  = 0 .  

7 . C o n s t r u c t  a l i n e  t h r o u g h  a p o i n t  (a,,a,,) a l r e a d y  c o n s t r u c t e d  
p a r a l l e l  t o  a l i n e  a l r e a d y  c o n s t r u c t e d ,  

L e t  t h e  l i n e  a l r e a d y  c o n s t r u c t e d  b e  d e t e r m i n e d  b y  t h e  p o i n t s  
(a,,aj) a n d  (ak,al), t h e n  t h e  l i n e  t o  be c o n s t r u c t e d  w i l l  b e  t a k e n  
t o  be  o n e  d e t e r m i n e d  b y  (a,,a,) a n d  a f u r t h e r  p o i n t  (ur ,x8)  o r  
( x , , ~ , )  s a t i s f y i n g  t h e  f o l l o w i n g  e q u a t i o n ,  

o r  
(ak - -a , ) ( x , - -a , , ) -  ( a ,  - a j ) ( U r - g , n )  = 0, 

( a ,  - a J ) ( x , - x X , ) - ( a k - a i ) ( u r - a a , )  = 0 ,  

8 . C o n s t r u c t  t h e  i n t e r s e c t i o n - p o i n t  of t w o  i n t e r s e c t i n g  l i n e s  
a l r e a d y  c o n s t r u c t e d ,  

L e t  t h e  t w o  l i n e s  be  d e t e r m i n e d  r e s p e c t i v e l y  b y  p a i r s  of p o i n t s  
( a ,  , a j ) , ( a k , a l )  a n d  ( a p , a q ) , ( a y , a s ) a l r e a d y  c o n s t u c t e d .  Then  the 
i n t e r s e c t i o n - p o i n t  w i l l  be t a k e n  t o  be ( x , , x , ) , s a t i s f y i n g  t h e  fo l low-  
i n g  s y s t e m  of e q u a t i o n s ,  

a n d  
( a j - a l  ) x g - ( a i - a k ) x h  +a,a,--ajak=O, 

( a q - a Q . s ) x g - ( a p - a C I ) X , + a p a ~ - a a p a r = O .  
9 . C o n s t r u c t  t h e  i n t e r s e c t i o n - p o i n t  of a l i n e  a l r e a d y  c o n s t r u c t e d  

a n d  a l i n e  t h r o u g h  a p o i n t  (a,,,,a,) a l r e a d y  c o n s t r u c t e d  a n d  p a r a l l e l  
t o  a s e c o n d  l i n e  a l r e a d y  c o n s t r u c t e d .  

L e t  t h e  t w o  l ines  a l r e a d y  c o n s t r u c t e d  be  d e t e r m i n e d  r e s p e c t i v e l y  
by  (a,,aj),(ak,a,) a n d  (ap,ap), ( a r , a S ) .  R e p r e s e n t  t h e  p o i n t  t o  
be  c o n s t r u c t e d  by  ( x g , x h ) ,  t h e n  x g , x h  w i l l  s a t i s f y  t h e  f o l l o w i n g  
s y s t e m  of e q u a t i o n s ,  

(a , - -Qp)  ( x h  - a ,  ) - ( a ,  -a,> ( x g  -a,,,) = 0, 

( a f - a , ) x , - ( a j - a k ) x h + a i a l - - a j a k = O ,  
1 0 . C o n s t r u c t  t h e  i n t e r s e c t i o n - p o i n t  of t w o  l i n e s  p a s s i n g  t h r o u g h  

e a c h  of t w o  p o i n t s  a l r e a d y  C o n s t r u c t e d  a n d  p a r a l l e l  r e s p e c t i v e l y  t o  
e a c h  of t w o  l i n e s  a l r e a d y  c o n s t r u c t e d .  

T h i s  i s  s i m i l a r  t o  8 a n d  9 a n d  m a y  be s i m i l a r l y  t r e a t e d .  
01 c o u r s e  we m a y  r e d u c e  t h e  c o n s t r u c t i o n s  9 a n d  10 t o  t h e  pre-  

v i o u s  o n e s  by  i n t r o d u c i n g  m o r e  c o o r d i n a t e s  u o r  x, 
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We a r e  n o w  i n  a p o s i t i o n  t o  d e s c r i b e  t h e  m e c h a n i c a l  p r o c e d u r e  
t o  be fo l lowed,  As t h e  i n t e r s e c t i o n - p o i n t  t h e o r e m  t o  b e  p r o v e d  i s  of 
c o n s t r u c t i v e  t y p e ,  t h e  p o i n t s  a n d  l i n e s  as d e s c r i b e d  i n  t h e  t h e o r e m  
w i l l  o c c u r  o n e  a f t e r  t h e  o t h e r  i n  a d e f i n i t e  o r d e r  of success ion .  I t  
f o l l o w s  t h a t  t h e  c o o r d i n a t e s  of t h e  p o i n t s  i n v o l v e d  ( w i t h  l i n e s  rep-  
l a c e d  by  t w o  p o i n t s  t h e r e o n ) ,  w h e t h e r  p a r a m e t r i c  o r  g e o m e t r i c a l l y -  
b o u n d e d , c a n  be  a r r a n g e d  i n  a d e f i n i t e  o r d e r  i n  a c c o r d a n c e  w i t h  t h e i r  
o r d e r i n g  of a p p e a r a n c e  i n  t h e  c o n s t r u c t i o n  as f o l l o w s ,  

u1 -(uz - ( a * *  a * .  <urn, 
X , < X , < . . - * . . < X , ,  

In p a r t i c u l a r ,  w h e n e v e r  a new p o i n t  i s  i n t r o d u c e d  b y  t h e  c o n s t r u c -  
t i o n  8 , g  o r  1 0 , i t s  c o o r d i n a t e s  a t t r i b u t e d  w i l l  be t w o  x ’ s  in succes-  
sion, s a y  ( x ,  , x g +  I ) . 

L e t  u s  i n t r o d u c e  now s o m e  s e t s  as follows, 
A s e t  of p a r a m e t r i c  c o o r d i n a t e s  

u = { f l 1 , * * * , U h g } .  

A s e t  of g e o m e t r i c a l l y - b o u n d e d  c o o r d i n a t e s  
x = 9 “’ ,xN). 

A s e t  of degeneracy-polynomials 

A = { D  1 , *.. ,a, 1. 
w i t h  e a c h  D a p o l y n o m i a l  

A s e t  of solutions 
in  u ~ , . . . ~  alone.  

w i t h  a l l  P i ’ s ,  Q i ’ s  p o l y n o m i a l s  i n  u 1  ,.-.,uM a l o n e  a n d  e a c h  P i  a non-  
z e r o  p o w e r  p r o d u c t  of t h e  D’s i n  A, 

T h e  m e a n i n g  of t h e  s e t s  u a n d  X a r e  a l r e a d y  c l e a r ,  T h e  mea-  
n i n g  of t h e  s e t s  A a n d  S is t h i s ,  

U n d e r  t h e  non-degeneracy  c o n d i t i o n s  

D ,  + c,  ... ,D, f 0 (D, i n . 4 )  
t h e  c o o r d i n a t e s  x i  a r e  g i v e n  by  

w i t h  x l  i n  X, Q,/P, i n  s. 
We begin  now by s e t t i n g  a l l  t h e  s e t s  X, d, a n d  S t o  b e  e m p t y  

o n e s ,  U t o  te  { z ~ ~ , ~ ~ ~ ~ z ~ ~ } ~ a n d  p r o c e e d  by  e n l a r g i n g  t h e s e  s e t s  i n  
f o l l o w i n g  i n  s t e p s  t h e  s u c c e s s i v e  c o n s t r u c t i o n s  a s  d e s c r i b e d  i n  t h e  
t h k o r e m  t o  be p r o v e d  i n  q u e s t i o n ,  

S u p p o s e  t h a t  w e  h a v e  proceeded  t o  a c e r t a i n  s t e p  o f  c o n s t r u c t i o n  
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b::t 3 o t  y e t  f i n i s h e d . W e  d i s t i n g u i s h  t w o  c a s e s  a c c o r d i n g  a s  t h e  n e x t  
s t e p  of c o n s t r u c t i o n  i s  o n e  of t h e  t y p e s  1-7 or  of t h e  t y p e s  8-10. I n  
t h e  f i r s t  c a s e  w e  g e t  a s i n g l e  e q u a t i c n  

A N +  x N - C I  + B N +  = o  
w i t h  a new b o u n d e d  c o o r d i n a t e  x N t ,  a n d  w i t h  A , ,  , ,B,+,  b o t h  poly-  
n o m i a l s  i n  u ,  , . . . ,uM a n d  x I , . - . , x N  a l r e a d y  o c c u r e d  i n  t h e  s e t s  u a n d  
X ,  R e p l a c e  n o w  x i ’ s  i n  A,,, a n d  B,+,  by Q,/P, g i v e n  a l r e a d y  i n  
S , w i t h  P i  + O  d u e  t o  t h e  a l r e a d y  i n t r o d u c e d  n3n-degeneracy-condi -  
t i o c s  D i  f O  w i t h  D i  i n  d a l r e a d y  d e t e r m i n e d .  L e t  t h e  n e w  f r a c -  
t i o n a l  e x p r e s s i o n s  t h u s  o b t a i n e d  i n  u , ,  +.. ,uN a l o n e  be d e n o t e d  by  A:, 
a n d  BZt, r e s p e c t i v e l y  so t h a t  t h e  e q u a t i o n  i n  x N t I  becomes  

A;+ I x N +  1 + B:t 1 = 0. 
S e v e r a l  p o s s i b i l i t i e s  m a y  t h e n  o c c u r .  
I fA$ , , fO  t h e n  w e  w r i t e  t h e  n u m e r a t o r  of AZtl a s  D,,, a n d  p u t  

D,,, i n t o  t h e  s e t  d t o  t u r n  i t  i n t o  a n e w  A ,  a n d  i n t r o d u c e  a s  a n e w  
n o n - d e g e n e r a c y  c o n d i t i o n D , + ,   next we so lve  f o r  x , + ~  i n  t h e  f o r m  

x N t i  =-B$ti/A$+~ = Q N t I / P N t i ,  

a n d  p u t  xN+, i n t o  X a n d  ON+ / P , + , . i n t o  S t o  t u r n  X a n d  S i n t o  n e w  
s e t  X a n d  new s o l u t i o n  s e t  S o  W e  n o t e  t h a t  P,,, i s  a g a i n  a p o w e r  
p r o d u c t  of t h e  p o l y n o m i a l s  D j ’ s  i n  t h e  n e w  s e t  A ,  

W e  p r o c e e d  t h e n  t o  t h e  n e x t  s t e p  of c o n s t r u c t i o n  if t h e r e  re- 
m a i n s  a n y .  

If i n s t e a d  A$, ,=o,  b u t  BZ,,+o, t h e n  w e  s e t  a g a i n  D,,, = n u -  
m e r a t o r  of ll:+, a n d  p u t  i t  i n t o  d . T h e  h y p o t h e s i s  of t h e  t h e o r e m  i n  
q u e s t i o n  is  now i t se l f  c o n t r a d i c t o r y  a t  l e a s t  u n d e r  t h e  s u b s i d i a r y  
c o n d i t i o n s  

D ~ # o  
f o r  D i  i n  t h e  new d. T h e  who!e p r o c e d u r e  w i l l  t h e n  be s t o p p e d .  

no r e s t r i c t i o n s  a n d  w e  m a y  i n t r o d u c e  a n e w  p a r a m e t e r  u M t l  a n d  s e t  
I f  f i n a l l y  b o t h  A:+, a n d  B Z + , = ~ , t h e n  x,,, u n d e r g o e s  i n  r e a l i t y  

x N t ;  =‘b l+I  = Q N +  I l P N  t I 

( w i t h  Q N + ,  = u k , + , ,  P , , ,  = I ,  t h e  s a m e  i n  w h a t  f o l l o w s ) .  
W e  p u t  t h e n  u M t ,  i n t o  U ,  xN+, i n t o  X, a n d  Q N t I / P N t l  in . to  s w i t h  
d u n c h a n g e d .  W i t h  t h i s  new s y s t e m  of s e t s  U , X , d  a n d  S we t h e n  
p r o c e e d  t o  t h e  n e x t  s t e p  of c o n s t r u c t i o n  if t h e r e  r e m a i n s  a n y ,  

T h i s  e n d s  t h e  t r e a t m e n t  i n  t h e  f i r s t  c a s e ,  
S u p p o s e  now w e  a r e  i n  t h e  s e c o n d  c a s e  of a c o n s t r u c t i o n  of t h e  

t y p e s  & , 9 , o r  10, F o r  a n y  s u c h  t y p e  w e  wi!! g e t  a s y s t e m  of t w o  
pquat ions  s a y  

A I I X N t :  - t A 1 2 X N t ,  + B , = O ,  
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A Z I ~ N + I  + A Z Z ~ N + Z  +Bz=O, 
wi th  two  new hounded coord ina tes  , x , + ~  i n t roduced  a t t h e  same 
t ime,  T h e  polynomia ls  A’s and B’s a r e  a l l  i n  t h e  va r i ab le s  u , , . . . , u ,  
of U and x , . . . , x N  i n  X, Replace  now these  x i ’ s  by Qi /Pi  in  S fo r  
i = 1,...,N we get f o r  t h e  A’s and  B’s some f r a c t i o n a l  express ions  in  
t h e  u ’ s  of 7.J a lone  t o  be denoted  by  A*‘s and  B*‘s, I n  t h i s  w a y  t h e  
equat ions  above  become t h e n  the  fo l lowing  ones I  

A ? I X N + I  + A ? Z X N + Z  = o ,  
A : I X N + I  + A ~ z X N + ~  +BY =O,  

Various  poss ib i l i t i es  may  now occur,  
F i r s t  suppose  t h a t  t he  de t e rminan t  of t h e  coef f ic ien ts  of t hese  

equat ions  in  xN+, , x , + ~  i s  no t  i den t i ca l ly  ze ro ,  ‘ k0* E =  I A t ,  A t ,  
In  t h i s  case  le t  u s  expres s  E in t he  form of a f r a c t i o n  of wh ich  the  
denominator  i s  necessar i ly  a power-product of Dj’s  a l r e a d y  present  
i n  d, W e  se t  now t h e  numera to r  of E t o  be a new D,+, and pu t  i t  
i n to  A t o  en large  i t  i n t o  a new one s t i l l  denoted  by A . S o l v e  t h e  two  
equat ions  above we get t hen  two  express ions  of t he  form 

X N + I  = Q N + I / ~ N + I ,  % N + Z  = Q N + z / ~ N + ~ ,  

in wh ich  both  P,+, and P,+, a r e  power-products of Dj’s  in t h e  new 

A W c  put  now xN+I y ~ , + ,  i n t o  X, and QE, QN+L i n t o  S ,  denote  

/ h e  se t s  t hus  en larged  s t i l l  by X and S ,  and then  proceed t o  t h e  next 
s t ep  of cons t ruc t ion  if t h e r e  remains  any ,  

Suppose  now E i s  i den t i ca l ly  0 but  no t  a l l  A*’s a r e  so-  I n  t h i s  
case  the rc  wi l l  ex is t  polynonii‘alsa,,a, no t  bo th  0 such  t h a t  

‘N+z 

a,A:, + u , A ~ , = o ,  
u1AY2 +a,A:,=o. 

a,BT + a ,@ = o .  

D,+, = n u m e r a t o r  u i  a,BP + a,B: 

F r o m  the  two  equa t ions  above  we get 

If a l B r  + a,Bf +:O,then we se t  

and put  i t  i n t o  A, I n  t h i s  case  t h e  hypo thes i s  of t he  theorem i n  
ques t ion  i s  con t r ad ic to ry  in i tself  under the  non-degeneracy condi- 
t ions  

w i t h  Dj in the  new A ,  W e  s top  then  and  proceed no  more. 
D,+o ,  

In case a l B y  + a,Bf i s = o ,  t he  two  equat ions  wi l l  reduce  to  a 
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s ingle  one, s ay  the  f i r s t  one to f ix  the  ideas. Not  both AT, and AT, 
c a n  beEO,  s a y  A ? , + O  t o  f i x  t h e  ideas,  
S e t  t hen  

and  put  i t  i n t o  A, In t roduce  a l so  a new uM+, t o  be put  in U , s e t  

and  solve fo r  x N + *  i n  t h e  fo rm 

w i t h  PN+,  a power-product of Dj’s  in t h e  new d . W e  put  now x N + ,  
x N + ?  i n to  X and Q N + I / P N + I ,  Q N + z / P N + Z  in to  s. All t h e  se t s  d , U ,  
X , S  t h u s  en larged  wi l l  aga in  be denoted  by the  same  l e t t e r s  and  
then  proceed to  the  next  s t e p  of cons t ruc t ion  if t he re  r ema ins  any. 

F ina l ly  l e t  u s  suppose  t h a t  a l l  t h e  A*’s a r e  iden t i ca l ly  0. If a t  
l eas t  one  of B* ,B: i s  no t  i den t i ca l ly  o t hen  we se t  t h e  numera to r s  
of these  non-zero B*‘s a s  new D,,, o r  D,+, and D,,,, pu t  t h i s  one  
o r  bo th  i n t o d  wi th  the  new d s t i l l  denoted  by the  same l e t t e r ,  W e  
s top  then  the  whole  procedure  w i t h  t h e  conclus ion  t h a t  t h e  hypo- 
thes i s  of t h e  theorem is  i n  con t r ad ic t ion  under  the  non-degeneracy 
cond i t ions  D j#o  w i t h  D, i n  t he  new A ,  

If f i na l ly  both  BY and BT a r e  iden t i ca l ly  zero ,  t hen  we in t roduce  
two  new uM+,, u M + L  t o  be put  i n to  u, put  X ~ + ~ , X * + *  i n to  X, and  se t  

D,+ , = N u m e r a t o r  of AT, 

xN+i = U M + ~  = Q ~ + i / p N + i  

X N +  2 = Q N  + 2 I P ~ +  z 

X N  + i = u M +  1 = Q + 1 /P, + i , 
X N + l = ‘ M + ~  = Q N + z / ’ N + z ,  

w i t h ~ Q , + , / ~ , + , ,  QN+2/PN+,  t o  be put  i n t o  s ,  T h e  new se t s  U , e t c .  
w i l l  ‘then aga in  be denoted  by t h e  same l e t t e r s ,  W e  proceed now t o  
the  nex t  s t e p  of cons t ruc t ion  if t he re  remains  any ,  

T h i s  procedure  wi l l  be s topped  wi th  a f i n a l  sys t em of se t s ,  
u = {u,,*..;%}, 
x= { X I , . ” , X N ) ,  

A =  {D,,-.,D,}, 
and 

Now two  cases may  occur ,  
Case 1 T h e  hypo thes i s  of theorem in  ques t ion  is c o n t r a d i c t o r y  

under t h e  subs id ia ry  non-degeneracy cond i t ions  
DjS.0, ( D j i n  d). 

In t h i s  case  we have  a l r e a d y  achieved  ou r  a im of proof,  
Case 2 In t h i s  c o n t r a r y  case  we have  t o  cons ider  t h e  conclusion 

of the  theorem in ques t ion  wh ich  amoun t s  t o  say  t h a t  
G = o ,  

where  G is  a ce r t a in  polynomia l  i n  t he  va r i ab le s  u l , . ” ,  u, and 
x , , .  . . , x , .  Now N i s  necessar i ly  = n  and M 2 r n  in t he  present  c a s e  
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a n d  w e  m a y  t h u s  p u t  
x i  = Q i / P , ,  i = l y - * . , n y  

a n d  s u b s t i t u t e  t h e s e  e x p r e s s i o n s  i n t o  G. T h e  p o l y n o m i a l  G b e c o m e s  
t h e n  a f r a c t i o n  w i t h  d e n o x i n a t o r  a p o w e r - p r o d u c t  i n  t h e  Dj’s  O C C U -  

r i n g  i n  d. U n d e r  t h e  non-degeneracy  c o n d i t i o n s  

DjZO (D, i n 4 ,  
w e  v e r i f y  by  u s u a l  c o m p u t a t i o n s  w h e t h e r  G is i d e n t i c a l l y  z e r o  or 
n o t  a n d  a r r i v e  a t  t h e  t w o  p o s s i b l e  c o n c l u s i o n s  be low,  

1 0  G becomes  i d e n t i c a l l y  z e r o  so t h a t  t h e  t h e o r e m  is t r u e  u n d e r  
t h e  a b o v e  non- d e g e n e r a c y  c o n d i t i o n s ,  T h e  w h o l e  p r o c e d u r e  cons-  
t i t u t e s  t h e n  a n  a c t u a l  p r o o f  of t h i s  t h e o r e m  w i t h  r e s t r i c t i o n s  cl- 
e a r l y  e x h i b i t e d  by  t h e  a b o v e  n o n - j e g e n e r a c y  c o n d i t i o n s ,  

2 0  G i s  n o t  i d e n t i c a l l y  z e r o  so t h a t  t h e  t h e o r e m  i s  n o t  t r u e  a t  
l e a s t  u n d e r  t h e  a b o v e  n o n - d e g e n e r a c y  c o n d i t i o n s ,  

T h i s  t e r m i n a t e s  t h e  w h o l e  m e c h a n i c a l  p r o c e d u r e  w i t h  p r e c i s e  
c o n c l u s i o n s  u n d e r  p r e c i s e  s u b s i d i a r y  c o n d i t i o n s  a l s o  m e c h a n i c a l l y  
g e n e r a t e d ,  

T h e  m e c h a n i z a t i o n  t h e o r e m  of H i l b e r t  i s  t h u s  c o m p l e t e l y  p r o v e d .  
As i l l u s t r a t i o n s  of t h e  a b o v e  m e c h a n i c a l  p r o v i n g  p r o c e d u r e  f o r  

i n t e r s e c t i o n - p o i n t  t h e o r e m s  l e t  u s  c o n s i d e r  s o m e  e x a m p l e s  s h o w n  
below.  

Ex.5 C o n s i d e r  t h e  D e s a r g u e s  t h e o r e m  of Ex. 3 s t a t e d  i n  t h e  
f o l l o w i n g  f o r m ,  L e t  ABC a n d  A’B’C’ be t w o  t r i a n g l e s  w i t h  t h r e e  
p a i r s  of c o r r e s p o n d i n g  s i d e s  m u t u a l l y  p a r a l l e l  t o  e a c h  o t h e r ,  L e t  
t h e  l i n e  I ,  =AA’ a n d  I ,  =BB’ m e e t  a t  a p o i n t  O.Then CC’  s h o u l d  
a l so  p a s s  t h r o u g h  0 .  

L e t  us  t u r n  t h e  s t a t e m e n t  -of t h e  t h e o r e m  i n t o  a c o n s t r u c t i v e  
f o r m  a s  fo l lows .  T o  s i m p l i f y  t h e  c a l c u l a t i o n s  w e  s h a l l  t a k e  I , , / ,  a s  
t h e  t w o  c o o r d i n a t e  a x e s ,  W e  s h a l l  t a k e  f i r s t  t w o  a r b i t r a r y  p o i n t s  
A,A’ on I ,  w i t h  c o o r d i n a t e s  

A =  ( ~ l l , O ) ,  A’ = ( ~ 2 9 0 )  

T h e n  t a k e  a n  a r b i t r a r y  p o i n t  B on I ,  a n d  a n  a r b i t r a r y  p o i n t  C 
on t h e  p l a n e  w i t h  c o o r d i n a t e s  

B =  ( o , u ~ ) ,  c = ( u q , u i ) .  
D r a w  now t h r o u g h  A’ a p a r a l l e l  of AB m e e t i n g  I ,  i n  B’ a n d  t h e n  
t h r o u g h  A’ a n d  B’ d r a w  p a r a l l e l s  t o  AC a n d  BC r e s p e c t i v e l y  t o  
m e e t  t o g e t h e r  a t  C’ . T h e  c o o r d i n a t e s  of t h e  new p o i n t s  w i l l  be  t a k e n  
t o  be 

B’ = (Oyxl), C’ = (x29x3). 

T h e n  t h e  t h e o r e m  a s s e r t s  t h a t  t h e  p o i n t s  o ,C,C’  a r e  c o l l i n e a r ,  
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N o w  t h e  h y p o t h e s i s  of t h e  t h e o r e m  c o n s i s t s  of t h e  f o l l o w i n g  
e q u a t i o n s  

A' B' // A B W U  1 x 1 - U, ~3 = 0, 

A' C' // AC' W (U 4 - u I ) x - u ( x 2 - u 2 ) = 0, 

B'C' / /BC-u,(x,-  x , ) -  (u,-u,>x, = 0. 

T h e  c o n c l u s i o n  of t h e  t h e o r e m  i s  g i v e n  b y ,  
O,C,C' a r e  c o l l i n e a r + + G  = 0, 

w i t h  
G = U ~ X ~ - U ~ X ~ .  

u = {~I,U2,UJYU,,~6), 

~ = { 3 C 1 , ~ 2 , X 3 ) ,  

F o l l o w i n g  t h e  m e c h a n i c a l  p r o c e d u r e  i n d i c a t e d  a b o v e  we  get 

{ u l  , u l u ~ - u l u 6 - u 3 u 4 ) )  

I t  f o l l o w s  t h a t  t h e  non-degeneracy  c o n d i t i o n s  t o  be  o b s e r v e d  a r e  

U I  + t o ,  
a n d  

f 4 1 U , - u , U , - - U 3 U r + 0 ,  

U n d e r  t h e s e  c o n d i t i o n s  w e  v e r i f y  t h a t  

so t h a t  t h e  D e s a r g u e s  t h e o r e m  i n  q u e s t i o n  i s  t r u e  i n  t h i s  non-dege- 
n e r a t e  case ,  

I t  i s  of n o  g e o m e t r i c a l  i n t e r e s t  a n d  m a y  be l e f t  o u t  of c o n s i d e r a t i o n  
a t  a l l ,  I f  w e  w a n t  w e  m a y  t a k e  A = 0 a s  o n e  of t h e  h y p o t h e s i s  of t h e  
t h e o r e m  a n d  p r o c e e d  i n  t h e  s a m e  m e c h a n i c a l  m a n n e r  a s  b e f o r e  w i t h  
t h e  r e s u l t  t h a t  t h e  t h e o r e m  w i l l  t h e n  be t r i v i a l l y  t r u e  u n d e r  h o w e v e r  
s o m e  f u r t h e r  n o n - d e g e n e r a c y  c o n d i t i o n s ,  

T h e  second d e g e n e r a c y  c o n d i t i o n  

T h e  f i r s t  d e g e n e r a c y  c a s e  u l  = o m e a n s  t h a t  A c o i n c i d e s  w i t h  0. 

u , u , - u , u , - - u , u 4 = o  
m e a n s  t h a t  t h e  p o i n t s  A , B , C  a r e  c o l l i n e a r ,  T a k e  t h i s  as  o n e  of t h e  
h y p o t h e s i s  w e  v e r i f y  a s  b e f o r e  t h a t  t h e  t h e o r e m  w i l l  t h e n  be  no  
m o r e  t r u e  a t  l e a s t  u n d e r  c e r t a i n  f u r t h e r  non-degeneracy  c o n d i t i o n s ,  
T h i s  a c c o u n t s  f o r  t h e  f a l l a c i e s  of t h e  D e s a r g u e s  t h e o r e m  a s  i n d i c a t e d  
i n  E x .  3. T h e  s a m e  m a y  be s a i d  a b o u t  t h e  o t h e r  e x a m p l e s  1, 2 a n d  
4. W h a t  i s  i m p o r t a n t  f o r  u s  i s  t h a t  t h e  d e g e n e r a c y  c o n d i t i o n s  w h i c h  
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may cause t h e  fa l lac ies  of theorems present  automatically dur ing  a 
mechanica l  procedure and  may be t r ea t ed  a l t e rna t ive ly  and  syste- 
mat ica l ly  a l so  in  a mechanica l  way which  i s  ac tua l ly  impossible fo r  
t h e  usua l  euc l idean  fash ion  p roof s ,  

To give a less t r i v i a l  example le t  us cons ider  t h e  genera l  
Pasca l  theorem in  pro jec t ive  geometry ,  L e t  u s  ca l l  fo r  s h o r t  a 
hexagon t o  be Pascalian if t he  th ree  p a i r s  of oppos i te  s ides  in te rsec t  
i n  co l l inear  po in ts  I Now t h e  necessary  and  suf f ic ien t  condi t ion  f o r  
a hexagon t o  be Pasca l i an  i s  t h a t  t h e  s ix  ver t ices  of t h e  hexagon 
should  l ie on t h e  same conic (or co-conic f o r  sho r t )  .It follows tha t  

i f a  hexagon A,A,A ,A4A,A , ,  i s  Pasca l i an ,  then ,  t h e  s i x  ve r t i ce s  
being co-conic, any  hexagon A i  , A ,  ,A i  B A ,  , A f  ,Af  a a r i s ing  f rom re- 
order ing  of t h e  ver t ices ,  is  a l so  P a s c a l i a n ,  In t h i s  w a y  we m a y  
announce theorems i n  t h e  form of pure  intersection-point 
theorems in  a Pasca l i an  geometry w i t h  t h e  ment ion  of t h e  not ion  of 
conics completely avoided .  T h e  intersection-point theorems thus  
a r r ived  may be d iv ided  in to  va r ious  types  and ,  t o  f ix  t h e  ideas ,  l e t  
us cons ider  fo r  example  t h e  following one .  

If t he  hexagon A,A2A,A ,A ,Aa  i s  Pasca l i an  then  so i s  A , A , A ,  
A,ALiA,. 

I n  more de t a i l s ,  t he  theorem s t a t e s  t ha t ,  
If t h e  poin ts  of in te rsec t ion  

Ex, 6 

P=AiAzAA4A,,  Q =AzA,AA,A, ,  R=A,AihAeAI 
a r e  co l l inear ,  then  so a r e  the  poin ts  of in te rsec t ion  

( H e r e  A s t ands  fo r  i n t e r sec t ion ) .  
F o r  t h e  proof le t  us  f i r s t  t u r n  t h e  above s t a t emen t  i n to  one of 

cons t ruc t ive  type  a s  fo l lows .  
T a k e  f i r s t  an  a r b i t r a r y  point A ,  and then  two  a r b i t r a r y  l ines 

1 , , I ,  th rough A , .  F o r  the  mere sake  of s impl i fy ing  t h e  ca lcu la t ions  
we sha l l  t a k e  A,, a s  t h e  or ig in  0 and  the  two  l ines  a s  t h e  coord ina te  
axes,  

T a k e  on I ,  a n  a r b i t r a r y  poin t  A ,  = ( u , , ~ )  
Through  A ,  cons t ruc t  an  a r b i t r a r y  l ine and  t a k e  thereon  an 

T h r o u g h  A ,  cons t ruc t  an  a r b i t r a r y  l ine and  t ake  thereon  a n  

Through  A ,  cons t ruc t  an a r b i t r a r y  l ine and  t a k e  thereon  a n  

Le t  t h e  l ine A , A ,  meet I ,  i n  t he  poin t  R =  ( x ,  , O ) .  
Let  t h e  l ine A , A ,  meet 1, i n  t he  point Q =  ( 0 , ~ ~ ) .  

a r b i t r a r y  poin t  A ,  = ( u , , ~ , ) .  

a r b i t r a r y  poin t  A ,  = (u4,u,). 

a r b i t r a r y  poin t  A ,  = ( u ,  , u 7 ) .  
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L e t  t h e  l ine  A,A, meet I i n  t h e  poin t  Q' = ( 0 , ~ ~ ) .  

Let  t h e  l ine A , A ,  meet I ,  i n  t he  point R' = ( x , , ~ ) .  

Join t h e  l ine QR and  le t  i t  meet A , A ,  i n  t h e  point P =  ( x , , x ~ ) .  
Join PA,  and le t  i t  meet I ,  i n  t he  poin t  A ,  = ( 0 , ~ ~ ) .  
Join A , A ,  a s  wel l  a s  A , A ,  meeting in  the  poin t  P' = ( x g Y  x ~ )  , 
W i t h  these  hypothes is  t h e  conclusion i s  now: P ' ,  Q' , R' a r e  

Now the  hypothes is  of t h e  theorem in ques t ion  r eads  as follows: 

R l i e s o n  A,A,+=+(u,-u,)x,  + u 4 u , - u , u ,  =o, 
Q l ies on A z k t 3 w ( u z - u 4 ) x z - u z u 5  + u , u 4  =o,  
Q' l ies on A , A , ~ ( u 4 - u , , ) x s - u r u 7  + u 5 u 0  =O, 

R' l ies on k t Z A 3 * ( U 3 - 2 1 5 ) % 4  + u z u s - u s u ~  = O ,  

P l ies on A , A , ~ u , x 5 + ( ~ , - u ~ ) x , - u 1 u U = 0 ,  
P l ies on Q R - x 2 x s  + x , x ,  - x 1 x Z  = 0, 

col l inear .  

A5 = P A ~ A ~ Z - ( U , - X ~ ) ~ ,  +u,x,-u,x, =O, 
P' l ies on A , A 4 f 3 u 7 x s  + ( u ,  - u e ) x 0 - u I u 7  =o, 
P' l ies on A z A , ~ ( u 3 - x 7 ) x 8 - u Z x O  +u,x, = 0. 

P' ,Q,R' a r e  c o l l i n e a r t - l . G r x 3 x a  + x , x , - x , ~ , = O .  

Fowllowing the  mechanica l  procedure  given in  t h e  Mechaniza- 
t ion  Theorem of Hi lbe r t  we see t h a t  t he  theorem is t rue  a f t e r  a 
long and  tedious but  easy  and  mecahnica l  computa t ions  under ce r t a in  
subs id ia ry  non-degeneracy condi t ions  unin te res t ing  to  be expl ic i te ly  
given. T h e  Computations cons t i tu te  then  au tomat ica l ly  a proof of 
t h e  theorem i n  the  generic or  non-degeneracy case .  

Le t  u s  consider t he  prev ious  example  aga in  w i t h  however 
t h e  theorem in  question not tu rned  in to  cons t ruc t ive  t y p e .  T h u s ,  
let  us t ake  A , A , , A , A ,  s t i l l  as the  coord ina te  axes  b u t  with coor- 
d ina t e s  of t h e  va r ious  poin ts  a s  follows. 

T h e  conclusion becomes, 

Ex.7 

A ,  = ( U 1 Y O ) Y  A ,  = (u2,us), 

A, = ( 1 1 4 Y U 6 ) ,  A ,  = (OYU, ) ,  

A4 = ( U 7 , % 1 ) ,  Q = ( O , X Z ) ,  

R = ( x 3 , 0 ) ,  R' = ( x d , O ) ,  

P =(xs,xo), Q' = ( o , x , ) ,  

P' = ( x ,  ,XB). 

T h e  hypothes is  of t he  theorem becomes then  
A, ,A , ,P  a r e  c o l l i n e a r ~ ( a , - u , ) ~ , - u U 7 x o  +u,u7 =o,  
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P,Q,R  a r e  co l l inear++x,x ,  + x 3 x B  - x , x ,  = 0, 

A,,A,,R a r e  c o l l i n e a r ~ ( x , - u , ) x , - u , x ,  + U , u ,  = O ,  
A,,A, ,P a r e  c o l l i n e a r ~ u , x ,  + ( u , - - u ~ ) ~ ~ - u 1 u 3  = o ,  
A,,A,,Q a r e  collinear*(u,- u,)x2-u2u6 + u , u ,  = 0 ,  

etc, 
F rom these  w e  get a n  equat ion  of t h e  form 

Ax:  + B x ,  +c=o, 
w i t h  A,B,C a l l  polynomials i n  t h e  u’s alone and  A not ident ica l ly  
ze ro .  I t  follows t h a t  under t h e  non-degeneracy condi t ion  A#O t h e  
previous mechanica l  procedure does not work .  

T h e  l a s t  example  shows c lear ly  t h a t  we should d is t inguish  
between two types  of pure  intersection-point theorems,  those of 
cons t ruc t ive  type  and  those not,  and  t h a t  t h e  idea  of t h e  mechanica l  
procedure a s  ind ica ted  by H i l b e r t  i n  h i s  c lass ic  works  only  for  theo- 
rems of cons t ruc t ive  type .  F o r  pu re  intersection-point theorems 
which  cannot  be turned  in to  cons t ruc t ive  form o r  fo r  theorems 
which  involve non-linear equat ions  a s  a r e  usua l  fo r  va r ious  k inds  
of geometries,  we have  t o  device o the r  mechanica l  procedures to  
give mechanica l  p roo f s .  Now such  mechanica l  procedures d o  ex is t  
fo r  a large class of theorems so  f a r  no order  re la t ions  a re  invol- 
ved and t h e  procedures a r e  even feasible i n  t h e  sense t h a t  qu i t e  
d i f f icu l t  theorems may be proved in th i s  manner  on a computer  of 
modera te  s ize  in  a reasonable  period of t ime .  T h e  same can  even be 
done for ( loca l )  d i f f e ren t i a l  geometry .  We sha l l  not en te r  i n to  t h i s  
more which  has  been ske tched  in some or ig ina l  papers  of t h e  present 
au tho r .  A book w i t h  de t a i l s  i s  now a lso  in  p repa ra t ion ,  
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The Out-In Complementary Principle 

Wu Wenchun 

Ancient Chinese geometry with its long history, rich content 
and many achievements forms a school of thought peculiar in style 
and systematically different from Euclidean geometry. Much of 
its history remains to be explored. However, the “out-in com- 
plementary principle” pervades it and is clearly defincd in the follow- 
ing major classics handed down to date: 

Zhou Bi Suan Jing (The Arithmetical Classic of the Gminon 
and the Circular Paths), or Zhou Bi for short ; 

Jiu Zhang Suan S h  (Nine Chapters on the Mathematical Art), 
or Jiu Zhang for short; 

Jiii Zhang Suan Shu Zhu (Arinotation on the Nine Chapters on 
the Mathematical Art)  by Liu Nui, or Liu Zhu for short; 

Hai Dao Suan Jiiig (Sea Island Mathematical Manual), or Hai 
Duo for short; 

Ri Gao Tu Shuo (Theory with Diagrams of the Sun’s Altitude), 
or Ri Gao Shuo for short; and Gou Gu Yuan Fang Tu Shuo (Theory 
with Diagrams of the Right Triangle Making Use of Circles or Squares), 
or Gou Gu Shuo for short, both by Zhao Shuang. 

As everywhere else, geometry in China arises from land mensura- 
tion and astronomical observation. These practices in ancient times 
gave rise to the calculation of planar areas and methods of surveying 
based on the properties of the right triangle. Later, solid figures 
were involved in earthwork, etc., leading to a thcory of volumes. 
One of the characteristics of ancient Chinesc geometry is its fairly 
high power of abstraction in formulating the seemingly most common- 
place out-in complementary principle which arose from diverse ex- 
periences. It has, however, been applied successfully to solving 

66 
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problem5 of cxlrcnic diversity. 

Simple Applications and 
the Theory of Proportion 

The essence of the so-called out-in complementary principle 
is the assumption of the following obvious facts: 1)  The area of a 
planar figure remains the same when the figure is rigidly shifted to 
another placc on the plane. 2) If a planar figure is cut into several 
sections, the sum of the areas of the sections is equal to the area of 
the original figure. It follows that the areas of the various sections 
involved before and after the out-in procedures possess simple arith- 
metic relations. The principle also applies to solid figures in space. 

It is easy to apply this principle to obtaining the ordinary for- 
mula that the area of any triangle is equal to half the product of one 
side and the associatcd altitude. From 
this thc arca of any polygon can be 
calculated. 

Aiiothcr simple application is dia- 
crammed a5 follows: 

If AACP, is considered as AACD 
shifted, and l’nnd 11’ as I and 11 shiftcd, 
then according to the out-in complementary principlc 111 must be 
qua1 to 111’ in area, too. 

From this ws  know 
01’ x 0s = OR x OQ, PQ x QC = RBXBC,. . . 
Thcrcforc AR:OQ = OR:CQ, AB:OQ = BC:QC,. . . 
That iq, the corresponding sidcs of the similar right triangles ARO 
and OQC and also of ABC and OQC are in proportion. From this 
wc know that certain other corresponding parts are also in propor- 
tion. 

Though these simple results arc not explicitly stated in Jiu 
Zlian?, thcy arc tiinc and again manifested in the solution of various 
practical prob!cmr (R4:C. Liu Z h ) .  

p .  

Likewisc, PC= RC, . . . 
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Gnomon, Shadow and Double Differences 

The method of using two gnomons to find the altitude of the 
sun is given in Zhou Bi. The formula appears below: 

height of distance between 
Altitude of - the gnomon' the gnomons 
the sun difference between the lengths + the gnomon 

height of - 
of shadows of the two gnomons 

As shown in the following diagram: 
A is the position of the sun, BI represents the ground level, 

ED and GF are the two gnomons, while DH and FI are the two shad- 
ows projected on the ground. 

In Hai Duo the same method is used to measure the height 
of an island from the shore. In the same diagram above, AB is 
the height of the island, H and I are the observer's positions where 
the observer's eye, the tops of the gnomons and the top of the island 
are in line. The formula them becomes: 

height of distance between 
Height of - the gnomon the two gnomons height of 
the island - difference between the 4- thegnomon 

distances of observer from 
the gnomons 

Liu Hui's original proof and diagram have been lost. But we have 
pieced these together drawing inspiration from other sources as well 
as extant fragments of diagrams in Ri Gao Shuo to be roughly as 
follows: 

According to the out-in complementary principle, we know 
J G = n  GB (1) 

0 K E = O  EB (2) 
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(1)-(2) J G - 0  KE=OGD, 
Therefore (FI-DH)xAC=EDxDF, 
That is 
difference between 
the distance of 
observer from the (island gnomon 
two gnomons 

>= 
height of - height of 

height of distance between 
gnomon the two gnomons 

From this we arrive at the formula for the sea island. 
In Hui Duo altogether nine practical problems are listed, all 

having to do with the measurement of heights and distances. In all 
the nine formulae given, differences occurring from two observations 
arc usually taken to be the denominator. Probably this is where 
the term “double differences” comes in. The other eight formulae 
can all be proved likewise on the out-in complementary principle. 

Some of the problems carried in Si Yuan Yu Jian (Precious 
Mirror of the Four Elements), written by Zhu Shijie of the Yuan 
Dynasty 1,100 years later than Hui Duo, are essentially the same as 
thc nine posed in Hui Duo. Zhu must have drawn heavily upon his 
predecessors’ work. Careful analysis of Zhu’s method as shown in 
the iianyuanshu brings us to the conclusion that Liu’s proof of the 

sea island formula is possibly somewhat more sophisticated than 
that given above. Accordingly, we suggest the following alternative 
proof to be considered as Liu’s “original”: 

By the out-in complementary principle we have besides (11, 
(2) also 

(3) 
From (1)’ (2) and (3) we get 

PG = GD in the diagram above. 

156 



70 

OJN = U E B  = O K E ,  

ANCIENT CHINA‘S TECHNOLOGY AND SCIENCE 

Therefore IIvl = DH, (4) 
FM = FI - IM z= FI -DH = diffcrence bctween thc distances 

from observer to the two gnomons 
From (3) we arrive at the formula for the sea island. 

If done in the usual manner according to Euclidean geomctry, 
an auxiliary Iinc GM’ should naturally be drawn pnrallel to AH 
to make the proving plain, as shown in the diagram on the rig!it. 
The re5t can then bc provcd by making use of the similar tria:iglei 
and the theory of proportion. In fact the proving of the forniula 

has been so traced by historians of mathematics in China and el=- 
where in recent times, including Li Huang of the Qing Dynasty 
(1644-1911). But this is surely not the original method of Liu 
Hui; it is in fact totally out of accord with the spirit of ancient Chinese 
geometry. Note GM’ parallcl to AH makes FM’ = DH. Thc con- 
structcd point M’ here and the M point taken for equation (4) are 
quite different, each being typical of an independent school of 
geomctry. 

The Italian priest Matteo Ricci who came to China near the 
end of thc M;ng Dynasty (1368-1644) took the teaching of Euclid- 
ean geornctty as onc of his academic missions. In the book 
Method and Theory of Surveying dictated by him there appears a 
problem almost identical with the sea island problem. However, 
instead of proving it according to the Euclidean method he takes with- 
out reason a point M on FI to meet thc requirement of (4) above, 
then goes on to provc thc formula by proportions. This runs counter 
to Euclidean geometry but coincides with the Chinese tradition. 
Why Matteo Ricci should have done so is quite puzzling. 
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C 

The Gbugu Theorem 

The Pythagorean theorem is called the goir,p thcorem in tradi- 
tional Chinese geometry, and in both Zhou Bi and Jiri Zliang it is 
clcarly prescribed in the written texts: Multiply the shorter and 
longer arms enclosing the right angle by their own values respectively 
and add up thc squares; the sum is equal to the hypotenuse niulti- 
plicd by its o w n  value; i.e., gou2 + gu2 = xuan2. Though the orig- 
inal proof has long been lost, we can still trace it from the texts of 
Goii Gu Slziio, Liu Zliu, and espccially from thc few diagrams lcft 
from Zhao Shuang. It is clearly stated that thc proof is based on  the 
out-in complementary principle ; thereforc it can be something like this: 

L A 

B 

D E I 

In the diagram on the left, ABC is the right triangle. BCDE 
is thc squarc on the gou (the shorter arm), whilc EFGH is cqual to 
the square on thc gu (thc longer arm). In the planar shape DBCFGH, 
cut off the triangle ABDI and shift it to the position of AABC; cut 
off GHI and move it to the position of A AFG. Wc thcn have 
ABIG cqual to the square of the hypotenusc AB, and hence the 
gougu thcorem. 

In Euclid's EZements of Geometry the Pythagorcan theorem 
is proved as illustrated in the diagram below: 

It is clcar that before the Pythagorean theorem is tackled, a 
lot of preparatory work must be done. First, a few theorems with 
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regard to identical trianglcs and triangular areas must be estab- 
lished. That is why the Pythagorean theorem does not appear in 
the fist volume of Elements of Geometry until near the end of the 
book. Euclid’s book gives practically no applications of the theo- 
rem, but in ancient China the gougu theorem was widely employed 

in diverse applications as early as in Jiu Zhang. It was a source 
of development over more than 2,000 years of Chinese mathematics 
(cf. the diagrams at the end of this article). The same theorem 
played quitc a different role in the Eastern and Western systems 
of ancient geometry. 

Gou, Gu, Xuan, Their Sums and Differences 
and Methods of Finding One from the Others 

Gou, gu and man,  the sum of and the difference between any 
two of the three, give out nine values. One can find the unknown 
from two knowns. Any one of the three sides can be found provid- 
ed the other two are given. This is mainly a problem of extracting 
a square root. But the sum of or the difference between two sides 
is more often employed in solving practical problems such as those 
listed in the gougu chapter of Jiu Zhang: 

1. Given the difference between xuan (the hypotenuse) and. 
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Top of 
bamboo 

~ 

gu (the longer arm), and gou (the shorter arm); find xuan and gou. 
Five problems are listed. 

2. Given the difference between gou and gu, and xuan; find 
gou and gu. One problem. 

3 .  Given the difference between xuan and gou, and gu respec- 
tively; find gou, gu and man.  

4 .  Given the sum of xuan and gu, and gou; find gu and man.  
One problem. 

I 

One problem. 
Formulae are given for the problems 

in Jiu Zhang. The propositions in Gou 
Gu Shuo are of the same nature. In Liu 
Zhu proofs of the formulae are worked 
out, making use of the out-in comple- 
mentary principle; sometimes also the 
theory of proportion. Take Problem No. 
13 in the gougu chapter, the problem of 
the “broken bamboo”, for example: 

The height of the bamboo (gu plus 
xuan) is known. When bent the top 
touches the ground at a known distance 
from the stcm (gou). Find the height of 
the break (gu). 

The formula is given as follows: 
L 

xuan -gu = gouL . 
xuan+gu ’ 

(sum of xuan and gu -t difference between xuan and gu) 
2- xuan, gu= 

(sum of xuan andgu)2 -gou2 Liu Zhu provides another formula: gu = - 2 x sum of &an and gu. 
To prove the former formula, see in the diagraii below: 

The side of the squares ABCD or AEFG is equal respectively 
to the xuan or gu of the right triangle. According to the gou gu 
theorem the area of EBCDGF is equal to go$. Shift 0 FD to the 
position of CH, then according to the out-in complementary prin- 
ciple, the area of 0 BH is equal to gou2, while the longer and shorter 
sides of this rectangle are equal to the sum of mian and gu and the 

_____- 
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difference between them respectively. 
formula. 

From this we get the former 

H :""1 
I t  : :  
a a  
* a  
a .  
I .  
# a  
! :  

Liu Hui's proof for the other formula is done likewise. In thc 
diagram below: 

The area of the reversed L-shaped figure in the lower right corner 
is equal to gou2 by the gougu theorem. The area bordered by the 
bold liiics is thus equal to (xuun +gu)2 - god. Shift 1 to the position 

of I1 and we see according to the out-in complementary principle 
that this area is two times the shaded area; i.e., 2 x gu x (xuan-t 
gu). The formula is therefore proved. 
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Qin Jiushao's Formula 1 

In Qin Jiushao's Shu Shu Jiu Zhang2 (Mathematical Treatise 
in Nine Sections) 1247, there is a problem of finding thc area of a 
scalene triangular plot. Givcn thc three uncqual sides of the triangle 
(la, zliong, xiao, (thc longest side, the medium side and the shortest 
side). Qin Jiushao's so!ution can be formulated as follows: 

Qin says nothing about the source of this formula. The proof 
of the formula has also been lost. Making use of the results and 
methods in Liu Zhu, we may infer the lost proof to be somewhat as 
fo! lo ws : 

T 

Xuon 

Draw a n  altitudc of the trianglc pcrpendicular to dn, dividing 
do into two parts. Let thc lotigcr and the shortcr parts bc the xuan 
and gu of a right triangle. From Jiir Zhang we know thc area of 
a triangle to be 1/2 x altitudc x da, thcreforc our problcin becomes 
onc of finding thc altitudc, thcn further boils down to finding thc gu 
of that right triangle. Since 

XllUtl + gu = cia, 
gou2 = xuan? - gu2 = zhong2 - xino?, 

our problem is the same as that of finding gu, given gori and the sum 

1 Qin Jiushao was one of the greatest Chinese mathematicians of the 
13th century. 

2 A very important mathematical classic written by Qin. !ci!own especially 
for its treatments of numerical equations of highcr desree and indeterminate 
analysis. 
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of xuan and gu. From Liu Hui’s formula we have: 
(xuan+gu)2 -goG - da2 - (zhong2 - xi&) - 

2 x  (xuan + gu) 2 x  da gu=- 

(da2 + xiao2 - zhong2)2 
2 x d a  Altitude2=xiao2-gu*=xiao2 - 

From this we get Qin’s formula. 
Qin’s formula looks rather odd. But the proof traced above 

is quite natural and perfectly in line with ancient Chinese mathemat- 
ical tradition. We may even regard it as the original proof. 

Heron’s formula in Western geometry, however, is neat in form 
and good-looking: 

Area of a triangle= 4 J(a + b +c) (b +c - a)(c +a  - b) (a + b -c), 
where a, b, c are the three sides of the triangle. 

Qin’s formula is not likely to have been derived from Heron’s, 
and we may conclude that it has its indigenous origin independent of 
Heron’s influence. 

Extracting the Square or Cubic Root 

To find the hypotenuse from the two arms enclosing the right 
angle in a right triangle, we add up the two squares on the arms and 
extract the square of the sum. Thus the application of the gougu 
theorem inevitably leads to the extraction of the square root. In 
fact, in the ancient mathematical classic Zhou Bi the square roots 
of many concrete numbers are provided. Detailed steps in extract- 
ing square roots are stated in Jiu Zhang. The method is geometric, 
based on the out-in complementary principle. Suppose the task 
is to find the square root of the number 55,225. In geometry this 
is to find the side of a square the area of which is 55,225. Note 
the decimal system has long been in use in China. First we must 
decide on how many digits the root is going to have. The square 
root of a five-digit number has three digits. So our task is to ascer- 
tain the first, second and third digits successively. Since our number 
55,225 lies between 40,000 and 90,000, its square root must lie 
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between 200 and 300. Our first digit is therefore a 2. (In Jiu 
Zhang this process of ascertainment is called yi,l or “to suggest”.) 
In the diagram let ABCD be the square the area of which is 55,225. 
On one side AB we take a point E and let AE be equal to 200. Draw 
the square AEFG. Cut off AEFG from ABCD. The area of the 

D - M  C 5 L  

remaining inverted L-shaped figure is therefore 55,225 - 2002 = 
15,225. We then suggest that the second digit be a 3. On EB we 
again take a point H making EH equal to 30. Draw the square 
AHIJ. Cut the inverted L-shaped figure into three parts: FH, 
0 FJ, FI. Their arcas are respectively 30 x EF, 30 x FG, 302. 
But EF=FG=200, so the area of the remaining inverted L-shaped 
figure is equal to 

Let us then suggest that the third digit be a 5, and on HB we take 
a point K making HK equal to 5.  Draw the square AKLM. The 
area of the remaining inverted L-shaped figure, if any, must be 

In that case K and B must coincide, and the square root of 55,225 is 
235. 

The same method is used in extracting the cubic root. It will 
of course be more complicated to dissect a cube but the principle 
is still geometric and still that of out-in complementation. The 
method is described in detail in Jiu Zhanp. 

These methods of extracting the square and cubic roots date 
back to very ancient times in China. They are clearly geometric 

15,225 -(2 x 30 x 200 + 302)=2,325. 

2,325 -(2 x 5 x 230+ 52)=0 

1 Some say the character means “to discuss”. 
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and display a superiority in the dximal place-value systcm of numcr- 
ation employed. 

By the middle of the 1 1  th century Chinese mathematicians had 
already improved the methods of extracting the squarc and cubic 
roots to the solution of equations of highcr degree. This is called 
zeng zheng kai fang fa (the mcthod of extracting equational roots by 
successive additions and mu1 tiplications). A diagram illustrating 
the different coefficients of the various terms in the expansion formulas 
of binomial powcrs of high degrees had also appcarcd and was called 
kui fang zuo f a  ben yuan fu (diagram illustrating the origin and 
mcthod of cxtracting equational roots). The geometric nature and 
thc high degree notion involvcd in zeng zlieng kaijbn‘y fa show thnt 
Chincsc mathcniaticians in ancient times might already have had 
primitive idcas about hypcrcubes and hypergeometry. 

Quadratic Equations 

In-extracting thc square root, we make use of the diagr ,am on 
p.74. 2 x EF in thc diagram is called the dingfa. Having obtaincd AE, 
we come to find EB from the known area of the inverted L-shaped 
figure EBCDGF. Shift 0 DF to the position of CH, the area 
of c] BH is the same as that of the inverted L-shaped figure according 
to thc out-in complementary principle. Note that the differcnce 
between the longer and shorter sides of 0 BH is equal to 2 x E F  
(dingfa), which is also known. The problcm of finding EB is there- 
fore a problem of 

(A) finding thc longer and shorter sides of a rcctangle, given its 
area and the differencc between the two sidzs. 

Converscly, the solution of problcm (A) can be reduccd to one 
as from the sccond step onwards in the method of squarc-raot 
extraction, which in Jiu Zhang is cailcd ku’ dui cony ping furis f a .  
The solution of (A) in Jiu Zhang is stated in the following words: 

(B) “Take [the area of the rectangle] as shi and [the difference 
between the length and width] as corgfa, then kul fang cliu zhi 
(literally “to extract the square root” which means here kai dui 
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cong ping fang) and thc root is the [width]." 
Thc term corigfa comes from dingfu in extracting the square 

root. The term kaifung (root extraction) shows its origin. 
The following problem is taken from Jiu Zlmg. In the diagram 

on the right, ABCD is a square walled city. At point G there is a 
big trzc of known distance in tcrms of human stcps northward from 
thc north gate (north steps for short). A man takes a definite num- 
ber of stcps southward out of the south gate (south steps for short), 
then turns wcst and also counts his stcps till he is just able to sce 
the trcc (west steps for short). Find the length of each side of the 
square city. The answer given in  Liu Zliu is obtairicd on the out-in 
complcmcntary principle as foliowb: 0 El = 2 0 EG = 2 KG 
-- 2 x north stcps x west stcps. In 0 EJ tlic dil€ercncc bctwzcn thz 
length and the width is equal to the sum of north steps and south 
steps. The problcm is thus rcduccd to onc in the form of (A) above. 
According to Jiu Zhnng its solution is as follows: Take 2 x north 
stcps x wcst steps as dii ,  and the sum of north stcps and south steps 
as con.sfrr, kni ping fang chri zhi and wc find thc length of one side 
of thc city as rcprcscntcd by EI in the diagram. 

Not only the numerical value of problem (A) can be found by 
means of thc kai dui cong ping fang fa method, but also a precise 
expression of thc solution of (A) may be obtained on, the out-in com- 
plcmentary principle. In fact, if in the rectanglc we take the width 
as the gou and the length as the gu of a right triangle, then problem 
(A) becomes the following: 

166 



80 ANCIENT CHINA’S TECHNOLOGY AND SCIENCE 

(C) Given the product of gou and gu, and the difference between 
them in a right triangle, find gou and gu. 

Let us examine a diagram left by Zhao Shuang in which there 
are two squares the sides of which are equal to the sum of, and the 

difference between, gou and gu of the right triangle respectively. 
We therefore have 

(gou +guy  = 4 (gou x gu) - (gu -gou)2. 
From this we get the sum of gou and gu, and gou and gu conse- 

quently. Similarly, gou and gu can be found given their sum and 
their product. Reference can be madc to the last proposition in 
Gou Gu Shuo. 

In the Song and Yuan dynasties (10th to 14th century) the no- 
tion of the unknown was explicitly and clearly introduced into tradi- 
tional Chinese mathematics. If x (called tiunyuanyi1 then; while 
the tianyuan notation is one used by thc Song algebraists for the 
expression of numerical equations of high degree. It is a way of 
arraying counting rods on counting boards. The array is of a 
“matrix” character. Different terms are used for distinguishing 
figures on different “storeys”, with the constant term on the lowest, 
and the coeflicient of the highest degree term on the highest storey 
above;) stands for the width of the rectangle, our problem (A) is 
equivalent to solving a quadratic equation of the form 

x2+ bx 2: c, with b as congfa and c as shi. 
Ancient Chinese mathematicians furnished both numerical and ac- 
curate solutions to quadratic equations of the above type (with b 

1 Tianyuanyi has different meanings in the works of Song and Yuan 
dynasty mathematicians. 
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and c positive). During the Song and Yuan dynasties the kaifangshu 
(method of root extraction) was extended to solving numerical equa- 
tions of high degree. As for the method of accurate solution of 
equations of higher degree, historical traces have long been lost. 
Judging from what Wang Xiaotong wrote in the early years of the 
Tang Dynasty (618-907) and from historical comments on Zu 
Chongzhi (429-500), we cannot totally rule out the possibility that 
geometrical approaches have been attempted with some success in 
accurate solution of cubic equations. 

In other countries, the Arab mathematician Al-KhowBrizmi 
in his well-known classic on algebra (A.D. 829) gives accurate solu- 
tions for quadratic equations of various types. His method was 
geometrical in spirit, similar to ours on the out-in complementary 
principle. Later, Italian mathematicians in the 16th century worked 
out solutions for cubic equations. Their methods were also geo- 
metrical. 

Theory of Volumes and Liu Hui’s Principle 

Since the area of a rectangle is the product of its length and width, 
it is easy to infer on the out-in complementary principle that 

(1) the area of a triangle = 1/2 x its height x its base. 
I t  is also easy to derive further the formulae for areas of 

polygons. All these fall within the category of plane geometry. 
In solid geometry, however, although we know that the volume 

of a rectangular parallelepiped must be equal to its length x its 
width x its height, it is by no means definite whether we can on the 
out-in complementary principle reason that 

(2) the volume of a tetrahedron = 1/3 x its altitude x the area 
of its base surface, and hence form a theory for volumes of polyhedra. 
In fact this constitutes a most difficult problem in geometry which 
was presented as one of the 23 unsolved problems at the International 
Congress of Mathematicians in 1900 by the celebrated David Hilbert. 
This problem has been solved by Max Dehn who proved that be- 
sides being of equal volumcs certain conditions must further be satis- 
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fied before two polyhedra can be cut into a number of mutually 
congruent smaller ones. These conditions have since been called 
Dehn’s conditions. In 1965 the Swiss mathematician Sydler proved 
that Dehn’s conditions are also sufficient. Even so, it appears that 
the problem may still be regarded as not yet satisfactorily settled. 
Dehn’s conditions are too complicated to be accepted as final. 

A probe into how the problem was dealt with by ancient Chinese 
mathematicians would probably provide us with some food for 
thought. 

In both Jiu Z h n g  and Liu Zhu the starting point from which 
problems of polyhedra volumes are solved is to cut some rcgular 

polyhedra into several basic solid figurcs which will be helpful in 
analysis. A rectangular parallelepiped can be cut diagonally (passing 
through two diagonally opposite edges) into two qiondu (right trian- 
gular prisms), as shown in diagrams (1) and (2). A qiandu in turn can 
be cut into a yangma (pyramid) and a bienao (tetrahedral wedge) 
as shown in (3) and (4). The basic features of a bienao are that it 
has AB perpendicular to the plane BFG, and FG perpendicular to thc 

A 

I F  
I 

G 
E F 

(3 1 (4) 
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plane ABF as shown in the diagram. Since any polyhedron can be 
cut into tetrahedra and any tetrahedron can be cut into six bienao 
as shown in thc diagram below, the whole problem boils down to 
finding the volumes of the bienuo (and the yangma) so produced. 

0 

In Liu Hui’s own words yangma and bienao are the “basic figures 
for thc whole theory and practice involving volumes of polyhedra”. 

Wc then come to the problem of finding the volumes of yangrna 
and birnno. If our parallelepiped is simplified into a cube, it will be 
easy to see that thc volume of the pyramid cut from the prism is 
twice that of the tetrahedral wedge. Liu Hui provcd in a long dis- 
sertation that this is the case not only in the qiandu from a cube, but 
in all yinndu alike. In Liu Hui’s words, “In a qinndu the volume of 
the yangrnn is always twice that of the bienuo.” We may well call 
this statcment Liu Hui’s principlc. In modcrn language, “If any 
rectangular parallelepiped is cut diagonally into two prisms, and 
the prisms are further cut into pyramids and tetrahedra, the ratio 
between the volumes of the pyramid and tetrahedron so produced 
is always 2: 1 .” 

From this principle it will be easy to arrive at the formulae for 
volumes of yangrna and bienao. It is then no problem to prove for- 
mula (2) abovc. The whole theory for volumes of polyhcdra may 
then be based on the principles of Liu Hui and of out-in complemcnta- 
tion. 

Liu Hui’s long and detailed dissertation is proof of his principle, 
proof based on some limit considcrations. What has been made 
clear by Hilbert and his followers can be construed as that volumes 
are diffcrcnt from planar areas in that the mere out-in complementary 
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principle is insufficient for a satisfactory theory. In fact, it must 
be supplemented by some axiom or principle of continuity. Though 
in 1903 Shatunovsky argued that the principle of continuity could 
beomitted and that the foundation of the theory of polyhedra vol- 
umes could be built on formula (2), it nevertheless requires a proof of 
the independence of the choice of altitude and base which is neither 
plain nor trivial at all. In comparison with the method of exhaustion 
of the ancient Greeks and the method employed in Legendre’s El& 
rnents, Liu Hui’s treatment of polyhedra volumes based on his prin- 
ciple and the out-in complementary principle can be safely regarded 
as the most natural one surpassing all others in simplicity and ele- 
gance. 

It seems that much yet remains to be proved in the field of the 
polyhedra. It might be an aid if the conceptions and methods in 
ancient Chinese geometrical approaches were duly taken into account. 

The Xianchu Theorem 

The term xiunchu (a wedge with trapezoid base and both sides 
sloping, see the diagram below) as well as other strange terms for 
polyhedra have come down from ancient Chinese architecture and 
earthwork. 

In Jiu Zhung, volumes of polyhedra are calculated on the out-in 
complementary principle and by the yungma and bienuo formulae. 
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Take the xianchu in the diagram for instance. ABCD form a trape- 
zoid on the ground surface. CDEF is another trapezoid in a plane 
perpendicular to the ground. ABEF is a slope. The whole solid 
ABCDEF in the form of a tunnel is xiunchu. Plane IJK is perpen- 
dicular both to the ground and plane CDEF. It bisects xianchu 
into two symmetrical parts. EG, FH and KI show the depth of 
xianchu. CD, EF and 
AB are called the upper width, the lower width, and the hind width 
of xianchu. The formula for the volume of xiunchu given in Jiu 
Zhung is as follows: 

IJ is the length of xiunchu on the ground. 

To prove this, Liu Hui in his book Liu Zhu cuts xiunchu into several 
parts, and supposes CD> AB> EF as in the diagram above. Xiun- 
chu is therefore regarded as composed of a qiundu EFGHLM, two 
small bienuo AGEL and BFHM, and two big irregular bienuo ACEG 
and BDFH. From formula (2) above and the formulae for qiandu 
and bienuo, the formula for the volume of xiunchu is therefore ob- 
tained. The same method is employed in Jiu Zhung in calculating 
the volumes of chumeng (wedge with rectangular base and both sides 
sloping), chutong, punchi, minggu (three variations of a frustum of 
pyramid with rectangular base of unequal sides), and other polyhedra. 

The formula of the xianchu volume is of special importance in 
that half of the xianchu standing erect on the right triangular base 
IJK will be equal to a right-angled prism cut slantwise at the upper 
end. Its volume will simply be the product of the average height 
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and the right triangular (gougu form) base. Now a pillar bounded 
at the top by any curved surface can bz regarded as composed of 
such slant-topped prisms approximately. Therefore the integral 
approximate formula of a function f(x, y) can be obtained analogous 
to Simpson’s integral approximate formula in the case of an area 
under a curve. This shows the particular significance of the xiunchu 
formula. 

In Western mathematics, the earliest formula for the volume of 
a pillar cut slantwise at the top appeared in 1794 in Legendre’s 
Elcments de g6on-tktrie, and has since been called Legendrz’s formula. 
Legendre’s book i5 the earliest work to take thc place of Euclid’s 
Elements. Legendre’s proof of his own formula is also based on  thc 
volume of the tetrahedron but with different method of dissection 
from that in Liu Zhu. Reference can be made to both for comparison. 

Volume of the Sphere and 
the Principle of Zu Geng 

Within the 300 years or so between the writing of Jiu Zhang 
and that of Liu Zhu n fairly complete theoretical system with regard 
to volumes of polyhedra had arisen. Yet ancient Chinese mathema- 
ticians at that time stopped short at bodies bounded by curvcd sur- 
faces, especially spheres, the volume of which remaincd unsolvcd 
till Zu Geng of the 5th-6th centuries put forward a famous principle 
named aftcr him. In Zu Geng’s own words the principle is as follows: 

“If the mi (cross-sections, areas) are the same on the same shi 
(level), the .ji (whole volumes) cannot be different.” 

The same principle appeared in  Europe in the 16th ccntary 
by the nainc of Cavalieri’s principle, which was an imporlant step 
towards thc invention of calculus. 

Zu Geng’s proof for his formula of spherical volumes is describ- 
ed in detail in an annotation by Li Chunfeng (in about 656) to Jill 

Zhang. The arguments are very clear in three successive steps: 
1. Within a cube draw two inscribed cylinders at  cross direc- 
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tions. That part in common of the two cylinders is called mou he 
fung gui (literally “thc common square cover”). Cut a small cube 
1/g of the original cube. According to Zu Geng’s principle, the fol- 
lowing proportion is obtained: 

1/g volume of sphere : 1/8 funggai = n:4. 
2. That part of funggai within the 1/8 cube is the inner qi, 

and those three parts within the small cube but left out of funggui 
are the outer qi. 

From the small cube cut an inverted yungrna. Prove by the 
gougu theorem that if we cut the yungmu horizontally at a certain 
lcvel from the base, the cross-section of the yungnza is equal to the 
total cross-sections of the outer qi cut at the same lcvel in area. 

3. Prove by Zu Gcng’s principle that thc total volume of the 
outer qi is equal to that of the yungrnn. 

From these the formula for the volume of the sphere is immediate. 
The idea of mou he fung gai was first introduced by Liu 

Hui. The first step of Zu Geng had actually been worked out by 
Liu also. In fact, in Liu Z/iu he had time and again made use of 
what was later called Zu Geng’s principle to find the volumes of 
solid bodies bounded by curved surfaces, such as the volumes of the 
cylinder from the polygonal pillar, of the cone from the pyramid, 
of the frustum of cone from the frustum of pyramid, etc. Zu Geng’s 
mcrits riot only consist in actual solution of volumes of mou he fung 
gui and the sphere, but also in his summing up of practical experi- 
cnccs and objective facts in the form of a general principle. 
Whether the principle should be called the Liu-Zu principle to give 
L i ~ i  Hui his due is a matter that deserves discussion. 

Other Applications 

Jiu Z h g  is so comprehensive that, leaving other topics aside, 
the out-in complementary principle is by no means applied merely 
to the various problems above. The problem of the inscribed circle 
ill a risht triangle in Jiu Zhung treated on this principle has since 
bczn further developed. It is fully trcated in Ce Yrran Hai Jing 
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(Sea Mirror of Circle Measurement, 1248) by Li Ye. In the works 
of Qin Jiushao and Li Ye, the problem of the “square city” above 
has been replaced by a problem of “circular walled city” which was 
beyond the masters of older times. The invention of such methods 
as tiunyuunshu in the Song and Yuan dynasties not only solves 
heretofore unsolvable problems but also largely simplifies old 
problems. Compared with the older methods, the new methods 
give results with far less effort. The essence of the new methods 
and new theories lies in the algebraization of geometry, which 
blazed the trail for both analytical geometry and modern algebra. 

Conclusion 

The out-in complementary principle together with the prin- 
ciples of Liu Hui and Zu Geng demonstrated the considerable abilities 
of ancient Chinese masters in scientific abstraction. Drawing intrin- 
sic conclusions from objective facts, they summed up the conclusions 
into succinct principles. These principles, plain in reasoning and 
extensive in application, form a unique character of ancient Chinese 
mathematics. The emphasis has always been on the tackling of 
concrete problems and on simple, seemingly plausible principles 
and general methods. The same spirit permeates even such out- 
standing achievements as the algebraization of geometry and the 
place-value decimal system of numbers. Western mathematics, in 
contrast, lays emphasis on conceptions and the logical relationships 
between them. 

The majority of the ancient Chinese mathematical classics have 
sunk into oblivion because of feudal obscurantism - a most deplor- 
able loss in human society. Zu Geng’s contributions would also 
have been lost had it not been for the rather casual entry by Li Chun- 
feng in his annotation to Jiu Zhung. However, judging from what 
is still available, the historical facts that ancient Chinese mathematics 
had its origin in human productive activities and had thrived in 
its own, independent way before the 15th century are still clear, as 
pithily shown in the following two diagrams: 
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Diagram I 

Astronomy -+ height and distance mensuration 
-theory of right triangle and double differences- 
Land mensuration -- area theory 
Earthwork -+ volume theory 

out-in 
+ complementary I principle 

-3Liu Hui’s principle 
t 
I 
I 

I-+Zu Geng’s principle 

Diagram II 

Gougu theory - square root + cubic root + roots extraction of 
extraction extraction higher equations 

by successive 
additions and 
multiplica- - 
tions 1- square root cubic root 

extraction --c extraction 
with cong with cong 

+numerical solution of higher equations with zheng (positive) 
and fu (negative) coefficients 

(single unknown, (four unknowns, system 
higher equation) of higher equations) 

--+the tianyuan method - the siyuan method 

, 
I 

+ 
algebraization of geometry 

+ 
modern algebra 
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A CONSTRUCTIVE THEORY OF DIFFERENTIAL ALGEBRAIC GEOMETRY 
BASED ON WORKS OF J.F.RITT WITH PARTICULAR PSPLICATIONS 
TO MECHANICAL THEOREM-PROVING OF DIFFERENTIAL GEOMETRIES 

wu Wen-tsun ( WAB) 
Institute of Systems-Science, Academia Sinica 

The nowadays algebraic geometry is mainly of an EXISTENTIAL 

character. For example, it is proved that any algebraic variety 

is the union of a finite number of irrecucible ones but with no 

indications at all how such a decomposition can actually be 

carried out. There are even no indications how a given variety, 

defined by a set of equations, is known to be irreducible or not. 

The criteria for the irreducibility of a variety is non-CONSTRUCTIVE 

and cannot be applied to arrive at final result except rare cases 

by means of special devices. On the contrary, J. I?. Ritt has already 

established a theory of algebraic varieties which is in the main 

CONSTRUCTIVE. He has even established such a theory for the more 

general case of a variety defined over a field possessing a further 

operation of differentiation. We shall call such a variety a 

DIFFERENTIAL-ALGEBRAIC VARIETY and the geometry thus founded the 

DIFFERENTIAL-ALGEBRAIC GEOMETRY. The present note is the simplified 

version of a paper bearing the same title to be published elsewhere 

which has the aim of giving an exposition of this theory of Ritt 

with emphasis on its CONSTXUCTIVE cliaracter. The concepts, and 

most of the results too, are all due to Ritt as may be found in the 

two books [Rl,RZ] of Ritt. We remark only that, while the original 

aim of Ritt is to establish a theory of differential equations from 

Reprinted from Difereerentiul Geometry and Di@immtiul Equations, Lecture Notes in Mathematics, 
No. 1255 (Springer, 1984). pp. 173-189. With kind permission of Springer Science and Business 
Media. 
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an algebraic standpoint, our interest lies rather in its applications 

to mechanical theorem proving of differential geometries in 

particular. For this purpose we have suppressed all notions of IDEAL 

and its alike, being not appropriate for mechanical theorem proving. 

For the sake of simplicity we shall restrict ourselves to the 

case of functions of only one independent variable. Let us recall 

first some definitions of Ritt, naturally with due modifications. 

A DIFFERENTIAL FIELD [abbr. d.-FIELD], say F, is a field of 

characteristic 0 which has, besides the usual arithmetic operations, 

a further operation of DIFFERENTIATION such that any element A of F 

has a DERIVATIVE DiA verifying the usual rules. We write for 

simplicity 

DiA = Dl...DlA 

with D1 i times and call DiA the i-th DERIVATIVE of A .  The element 

A itself is also considered as 0-th DERIVATIVE of A: A=DOA. 

In what follows the d-FIELD F will be fixed in advance. An 

INDETERMINATE Y is just a symbol having an infinity of DERIVATIVES 

DiY none of which is zero. A DIFFERENTIAL POLYNOMIAL (abbr. d-POL), 

say P, in INDETERMINATES Y1, Y2, ..., Yn over F is a polynomial 
inDiYj(i>=O,l<=j<=n) with coefficients in F. For P we can then 

form its successive DERIVATIVES DiP as well as various PARTIAL 

DERIVATIVES dP/d(DiYj) in the usual formal manner. 

To any d-POL P<>O is associated three characteristic nunbers, 

viz., 

(a) The CLASS cls(P) which is the greatest p such that some 

DjYp is actually present in P. If no such Dj?p is present in P 

for any p>O so that P is itself an element of F ,  then the CLASS 

cls(P) will be set to be 0. 

(b) The ORDER ord(P) which is the greatest m such that the 

m-th DERIVATIVE DmYp with p=cls(P) is actually present in P. In 

case cls(P)=O we define the ORDER ord(P) to be 0. 
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(c) The DEGREE deg(p) which is the highest degree in DmYp 

present in T where p=cls(p) and m=ord(p) . In case cls(P)=O we 
define the DEGREE deg(P1 to be 0. 

More generally, for any i with l<=i<=n we shall denote by 

ord(i,P) the greatest m such that the m-th DERIVATIVE DmYi is 

actually present in P and then by deg(i,P) the highest degree 

in DmYi actually present in P. If neither Yi nor any of its 

DERIVATIVES is present in P, then we just set ord(i,P)=-1.In 

particular, ord(p,Q)=ord(p,P), deg(P)=deg(p,P) if p=cls(P)>O. A 

d-POLQis then said to be REDUCED with respect to a d-POL P of CLASS 

p>O if either ord(p,Q)<ord(P), or ord(p,Q)=dor(P), but deg(p,Q)<deg(P). 

Any d-POL P of CLASS p>O, ORDER m, and DEGREE d can now be 

written in the form 

P = CO*DmYp*d + Cl*DmYp^(d-i) + . . .  + Cd, 
with cls(Ci)<p, or cls.(Ci)=p and ord (p,Ci)<m for i=O,l, . . . ,  d. The 
leading coefficient CO, which is itself a d-POL, is then called the 

INITIAL of P and dP/dDmYp is called the SEPARANT of P. 

A finite sequence of non-zero d-POLS 

P1, P2, . . .  , Pr 
is called an ASCENDING SET (abbr. ASC-SET) if either 

(a) r=l, or 

(b) r>l, cls(Pl)>O, and for any j>i, cls(Pj)>cls(Pi) and Pj 

is REDUCED with respect to Pi. 

For the AX-SET (ASC) as above let Si and Ii be respectively 

the SEPARANT and INITIAL of Pi, i=1,2, . . .  r. A d-POL G will be said to 
be REDUCED with respect to (ASC) if it is REDUCED with respect 

to each Pi in (ASC). In particular all SEPAWJTs Si and INITIALS Ii 

are REDUCED with respect to (ASC). 

For an;. system (DP) of d-POLS and any two d-POLS Ql, Q2 we 

shall write for simplicity 

01 :=: Q2 d-mod (DP) 
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if Q1-Q2 is a linear combination of a finite number of d-POLS of 

(DP) or their DERIVATIVES with coefficients themselves d-Pols. 

The following lemma is then fundamental in the theory of Ritt: 

LEMNA. Let (ASC) be an ASCENDING SET as given above. For any 

d-POL G there exist then unique non-negative integers Ki, Li such 

that, setting J the power product of SEPARANTs Si and INITIALS 

Ii of Pi in (ASC) as given below 

Si^Ki*.. . *  Sn^Kn*Ii^Li* ...* InXn = J, 

we shall have an equation of the form 

J*G :=: R d-mod (ASC) (REPI) 

in which the d-POL R is REDUCED with respect to (ASC). 

The d-POL R uniquely determined is called the REMAINDER of G 

with respect to (ASC). The procedure in passing from G to R as 

described. in the LEMMA is then called the REDUCTION of G with 

respect to (ASC). The corresponding formula (REM) will then be 

called the REMAINDER FORMULA of G with respect to (ASC). The 

REMAINDER R will also be denoted as Rem(G/ASC). 

Let a d-FIELD F be given. A d-FIELD F1 will be said to be an 

EXTENSION of F if, as an algebraic field, it is an extension 

field of F in the ordinary sense, and moreover any element A 

of F1 which is also in F will have the same p-th DERIVATIVE for 

any p>O whether it is considered as an element of F or of F1. 

Let the d-FIELD F and INDETERMINATES Y1, Y2,. .., Yn be now fixed 
in advance. Consider any finite or infinite system (DP) of d-POLS in 

Y1, ..., Yn over F .  The system of equations P=O for all P in 

(DP) will be represented symbolically by (DP)=O. 

Suppose that there exists a certain EXTENSION F1 of F and a 

set of n elements Z1, . . . ,  Zn in F1, such that when each Yi is 
replaced by Zi in the d-POLS of (DP), these d-POLS all reduce 

to 0. Then we call the set (Z1, . .  . ,Zn) a ZERO of (DP) or 
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alternatively a SOLUTION of (DP)=O. The totality of all ZEROS 

of (DP), for all possible extensions F1 of F, will be called 

the DIFFERENTIAL-ALGEBRAIC VARIETY (abbr. DIFF-ALG VARIETY) of 

(DP) or (DP)=O, to be denoted in what follows by Zero(DP). A 

ZERO Of (DP) will also be called a POINT of the DIFF-ALG VARIETY 

Zero(DP). If Zero(DP) is an empty set, then we shall say that 

(DP) is aCONTRADICTORY system. Furthermore, if a certain d-POL 

G is given, then the totality of ZEROS of (DP) which are not ZEROs 

of G will be denoted by Zero(DP/G). 

Consider now a finite system (DP) of non-zero d-POLS in the 

INDETERMINATEs Y1, ..., Yn over F. The following theorem plays an 
important role in the theory of Ritt which we shall call the Ritt 

Well Ordering Principle or simply the 

RITT PRINCIPLE. There is a mechanical procedure which permits 

to decide in a finite number of steps for a given finite system 

(DP) or non-zero d-POLS, either (DP) is CONTRADICTORY and possesses 

no ZEROS at all or there is some enlarged system (DP)'of (DP) and 

a particular ASC-SET (CS) 

C1, C2, . . .  , Cr (CS) 

consisting of d-POLS Ci in (DP) ' having the following properties: 

(1) cls (C1) >o .  

( 2 )  (DP)' has the same DIFF-ALG VARIETY of ZEROs as that of 

(DP). 

( 3 )  Any d-POL in (DP)' has its REMAINDER 0 with respect to (CS). 

More precisely, we have in fact the following explicit 

formula for the structure of the DIFF-ALG VARIETY Zero(DP): 

Zero(DP) = Zero(CS/J) + SUMi Zero(DP1') 
(RITT) 

+ SUMi Zero(DPi"). 
In the formula (RITT) the d-POL J is the product of all INITIALS Ii 

and SEPARANTs Si of Ci in (CS). Each DPi' is the enlarged system 

of (DP) with i-th INITIAL Ii adjoined to it and each DPi" is the 
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one with i-th SEPARANT Si adjoined to it. The ASC-SET (CS) occuring 

in the formula (RITT) is of particular importance and is called a 

CHAMCTERISTIC SET (abbr. CHAR-SET) of the given system (DP) of d- 

POLS. Remark that this terminology of CHAR-SET used here is a little 

different from that one used by Ritt. 

The formula (RITT) above gives a decomposition of set of 

ZEROS of a system (DP) of d-POLS into several parts. It will 

be decomposed further to an ultimate form which will lead to 

some fundamental facts about DIFF-ALG VARIETYs. For this purpose, 

let us consider an ASC-SET (ASC) 

P1, P2, ... , Pr (ASC) 

with steadily increasing CLASSes 

(0 < )  cls(P1) < cls(P2) < ... < cls(Pr). 

For any k with l<=k<=r let (ASCk) be the ASCENDING SET formed by 

the first k d-POLS in the sequence (ASC)=(ASCr). Then we lay 

down the following 

DEFINITION. The ASC-SET (ASC) is said to be d-IRREDUCIBLE if 

the following holds: 

For each k>=l and <=r let h=k-1. Then for any d-POL H REDUCED 

with respect to (ASCh), which is of CLASS either < cls(Pk), or of 

cLAss=cls(Pk) but of ORDER < ord(Pk), there can exist no relations 

of the form 

H*Pk :=: p'*p" d-mod (ASCh) , 

in which P' and P" are both of the same CLASS and ORDER as Pk. 

According to Ritt we can reduce the problem of deciding whether 

an ASC-SET of d-POLS is d-IRREDUCIBLE or not to a problem involving 

ordinary polynomials over ordinary fields which we shall not enter. 

Consider now a system (DP) consistinrJ of a finite number of 

non-zero d-POLS and also a d-POL G. For the structure of the 

set of ZEROS Zero(DP/G) we have then the following 

ZERO DECOMPOSITION THEORCM. There is a mechanical procedure 
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which permits to decide in a finite number of steps whether 

Zero(DP/G) is an empty set and in the non-empty case to furnish 

a decomposition of the following form: 

Zero (DP/G) = SUMi Zero (ASCi/Ri) . (Z-DEC) 

In this decomposition formula each ASCi is a d-IRREDUCIBLE ASC-SET 

and Xi is the non-zero REMAINDER of Ji*Gi with respect to (ASCi), 

where Ji is the product of INITIALS and SEPARANTs of d-POLS in 

(ASCi), and Gi is certain non-zero d-POL. 

The proof consists of giving such a mechanical procedure as 

described below. 

Step 1. Form, as in the RITT PRINCIPLE, a CHAR-SET (CS) of 

(DP). If (CS) is consisting of a single d-POL which is a non-zero 

element of the basic d-FIELD F ,  then Zero(DP), a fortiori Zero(DP/G), 

is empty and the procedure stops. In the contrary case let the INI- 

TIALS and SEPARANTs of the d-POLS in (CS) be respectively Ii and Si. 

Then the RITT PRINCIPLEwillgive rise to a decomposition of the form 

Zero (DP/G) = Zero (CS/J*G) + SUMi Zero (DPi '/GI 

+ SUMi Zero(DPi"/G) , 

in which J is the product of all INITIALS Ii and SEPARANTs Si of 

(CS) , while each (DPi') resp. (DPi") is the enlarged system of (DP) 

with Ii resp. Si adjoined to it. 

Step 2 .  Consider the set Zero(CS/J*G). 

Suppose first that (CS) is d-IRREDUCIBLE. Form the REMAINDER 

R of J*G with respect to (CS). By the REMAINDER FORMULA we have 

clearly 

Zero (CS/J*G) = Zero (CS/G)'. 

If R=O then Zero(CS/J*G) is empty and should be removed in the 

above decomposition. Otherwise we j u s t  replace Zero(CS/J*G) in 

the decomposition by Zero(CS/R). In any case we proceed to the next 

step. 

Suppose now (CS)  is d REDUCIBLE. Let (CS) consist of d-POLS 
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c1, 

of CLASSes 

( O <  

There will 

such that 

C 2 ,  ... , Cr (CS) 

cls(C1) < ClS(C2) < . . . < cls(Cr). 

then be some k < = r ,  h=k-1, and somed-POLsH and P', pit 

H*Ck :=: p'*p" d-mod (CSh) 

with corresponding properties observed. Let (CS') and (CS") be 

now the system of d-POLS obtained from (CS) in replacing Ck by P ' ,  

P" respectively, and (CSO) the enlarged one obtained from (Cs) by 

adjoining H to it. Then it is clear that 

Zero (CS/J*G) = Zero (CSO/J*G) + Zero (CS '/H*J*G) 

+ Zero (CS"/H*J*G) . 
Replace now Zero(CS/J*G) in the decomposition of Step 1 by the 

above union of sets of ZEROs and proceed tothenext step. 

Step 3 .  Treat now in turn each set of ZEROs occuring in the 

decomposition of Step 1 or Step 2 in returning to Step 1, to be 

considered as the new (DP), removing an:? empty set of ZEROS if it 

appears, and proceeding as before. 

It can be proved that we have to sto? after a finite number of 

steps. Wehave thus finally arrived at either an empty set or a 

decomposition in the form as described in the theorem. 

The ZERO DECOMPOSITION THEOREM furnishes us with a com?>lete 

description of the structure of the set of ZEROs of a finite system 

of d-POLS. It can be applied to give a CONSRUCTIVE proof of 

HILBCRT ZERO THEOREM which, even in the case of ordinary polynomials, 

is usually proved in a mere EXISTENTIAL manner. It can also be 

applied to give a CONSTRUCTIVE proof of the decomposition of a 

DIFF-ALG VARIETY into IRREDUCIBLE ones in the following way. 

Let a d-IRREDUCIBLE ASC-SET (ASC) be given as above with INITIALS 

Ii and SEPARANTs Si. Construct now a ZERO of (ASC) as follows. 

For any two d-POLS P, Q the relation that P-Q has its REMAINDER 0 
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with respect to (ASC) is easily seen to be an equivalence relation 

and we shall say accordingly that P, Q belong to the same REMAINDER 

CLASS with respct to (ASC). It is also easy to see that the 

original algebraic operations pass naturally to these REMAINDER 

CLASSes so that these CLASSes form a ring. The d-IRREDUCIBILITY of 

(ASC) shows that this is an integral domain so that we may form its 

quotient field. Furthermore, differentiation in the given d-FIELD 

F will alsoinduceone in the above quotient field to turn it into 

a d-FIELD, to be denoted as d-FIELD(ASC). Let us identify the 

INDETERMINATEs Yi to its CLASS, denoted however by Zi. then the 

above d-FIELD becomes an EXTENSION d-FIELD of the d-rIELD F. It 

is clear that Z=(Zl, ..., Zj) is a ZERO of (ASC). 
DEFINITION. The ZERO Z = ( Z l ,  ..., Zn) Of the d-IRREDUCIBLE ASC-SET 

(ASC) with Zi the CLASS of Yi in the d-FIELD(ASC) is called the 

GENERIC ZERO of (ASC) . 
The importanceof this notion lies in the following 

THEOREM G. A d-POL P has its REMAINDER 0 with respect to the 

d-IRREDUCIBLE ASC-SET (ASC) if and only if P has the GENERIC ZERO 

2 of (ASC) as a ZERO. 

The system of all d-POLS P which has the above GENERIC ZERO as 

a ZERO, or what is the same, those having REMAINDER 0 with respect 

to (ASC), forms thus a prime ideal closed under a further operation 

of DIFFERENTIATION and will be denoted by d-IDEAL(ASC). The ZEROs 

of this system form then a DIFF-ALG VARIETY which will be denoted 

by d VAR(ASC). Remark that d-VAR(ASC) is in general different 

from Zero (ASC) . 
From the ZERO-DECOMPOSITION FORMULA (2-DEC) of (01,) given above 

we see that Zero(DP) is non-empty if and only if terms actually 

present in the right hand side since each (ASCi/Ri) has non-empty 

ZEROs, say the GENERIC ZERO of (ASCi) which cannot be ZERO of the 

non-zero d-POL Ri, known to be REDUCED with respect to (ASCi). 
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It is also clear that each d-VAR(ASCi) is a non-empty DIFF-ALG 

VARIETY which is d-IRREDUCIBLE. We deduce easily the following 

VARIETY DECOMPOSITION THEOREM. There is a mechanical procedure which 

permits to decompose any DIFF-ALG VARIETY, when non-empty, into a 

finite sum of d-IRREDUCIBLE DIFF-ALG VARIETYs, viz., 

Zero(DP) = SUMi d-VAR(ASCi) (V-DEC) 

We shall now apply the above ZERO DECOMPOSITION THEOREM to the 

mechanical proving of theorems in differential geometries. For 

this purpose we shall restrict ourselves in this note to the case 

of differential geometry of curves which involves functions of only 

one independent variable. We shall also restrict ourselves to 

such theorems for which both hypothesis and conclusion are expressed 

in the form of P=O with P certain d-POL in a number of INDETERMINATES 

Y1, ..., Yn over a certain d-FIELD F (e.9. the field of all reals with 
trivial differentiation). Thus the hypothesis is, say, (HYP) = 0 where 

(HYP) is a finite system of such d-POLS and the conclusion is, say, 

CONC=O with CONC another d-POL. A ZERO of (HYP) is then just a 

geometrical confiquration (over possibly certain extended field, 

e.g. complex field extension of the real field) verifying the hypo- 

thesis of the given theorem. To prove a theorem to be true seems 

thus equivalent to the following problem 

(A) To decide whether CONC=O follows from (HYP)=O or not, i.e. 

to decide whether 

Zero(HYP/CONC) = empty (2-CONC) 

or not. 

Mathematically we can give a complete answer to the above problem 

(A). In fact, so far the hypothesis are not CONTRADICTORY in 

themselves or Zero(HYP) is non-empty, we shall get by some mechanical 

procedure the decomposition below: 

Zero (HYP) = SUMi Zero (ASCi/Ri) (H-DEC) 

In the formula (H-DEC) each (ASCi) is a d-IRRECUCIBLE ASC-SET and 
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Ri = Rem(Ji*Gi/ASCi) < >  0 

for some d-POL Gi with Ji the product of all INITIALS and SEPARANTs 

of (ASCi). The answer of the above-mentioned problem (A) is then 

implied by the following 

PROPOSITION. For (2-CONC) to be true it is necessary and 

sufficient that for each i we have 

Rem(CONC/ASCi) = 0 ( R-CONCi ) 

which can be verified by direct computations. 

This PROPOSITION, which in appearance completely settles the 

problem (A). does not however meet the REALITY of geometrical 

situations, and in this sense it cannot be accepted as a CORRECT 

solution to the problem of mechanical proving of geometrical 

theorems. In fact, if we define a THEOREM to be TRUE by (Z-CONC), 

then actually no THEOREM will be TRUE by this definition. The 

reason is this: The THEOREMS which one encounters in all kinds 

of geometries are usually TRUE only in a certain GENERIC sense, 

i.e., TRUE only if certain subsidiary NON-DEGENERACY conditions 

are observed. Examples are too many to be cited here. One may 

just take any one in the elementary plane geometry to see the 

point. 

To lay down a CORRECT formulation of how a THEOREM is TRUE is 

to be defined,we shall first introduce the concept of DIMENSION 

as follows. 

DEFINITION. For a non-CONTRADICTORY d-IRREDUCIBLE ASC-SET (AX) 

consisting ofrd-POLS we define the integer n-r as the DIMENSION 

of (ASC) and will denote it by dim(ASC). This integer is also 

defined as the DIMENSION of the DIFF-ALG VARIETY d-VAR(ASC) ASSO- 

CIATED to (ASC) , to be denoted as dim(d-VAR(ASC)) . If for a 

system (DP) of d-POLS the set,Zero(DP) is decomposed as the union 

of Zero(ASCi/Ri) as in the formula (2-DEC) before, we shall define 

the DIMENSION of the DIFF-ALG VARIETY Zero(DP) by 
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dim Zero(DP) = MAXi (dim(ASCi)) 

= MAXi (dim (d-VAR (ASCi) ) ) . 
We shall leave aside the legitimacy of the definition. Admitting 

this, we shall lay down the following 

DEFINITION. A THEOREM with hypotheses system (HYP) and conclusion 

CONC is said to be GENERICALLY TRUE if for the decomposition formula 

(H-DEC), (ASCi/Ri*CONC)=empty is true for all indices i for which 

dim (ASCi) =dim Zero (HYP) . 
As Zero(ASCi/Ri*CONC)=empty is equivalent to (R-CONCi) which can 

by verified by direct computations, we have the following theorem 

which meets the REALITY of geometrical situations and forms the 

underlying principle of our method of mechanical theorem proving of 

differential geometries. 

THEOREM T. There is a mechanical procedure which permits to de- 

cide in a finite number of steps whether the hypothesis system of a 

THEOREM is CONTRADICTORY or not, and if not s o ,  whether the THEOREM 

is GENERICALLY TRUE or not. In case that the THEOREM is GENERICALLY 

TRUE, then the procedure itself gives a PROOF of the THEOREM. 

As the procedure in getting a formula of the form (H-DEC) 

requires factorization which is usually quite complicate and is 

thus not so convenient to use in practice, we shall adopt an 

alternative definition for a THEOREM to be TRUE, viz., 

DEFINITION. Let (HYP) and CONC be as before. Let N be a d-POL 

such that 

Zero (HYP/N*CONC) = empty. 

Then we say that the THEOREM is TRUE GENERICALLY under the sub- 

sidiary NON-DEGENERACY CONDITION 

N < >  0. 

The CONDITION is said to be REASONABLE if 

dim Zero(HYP-N) < dim Zero(HYP) 
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in which (HYP-N) is the enlarged system of (HYP) with N adjoined 

to it. 

The difficulty of applying the above definition to mechanical 

theorem proving lies clearly in the finding of such a d-POL N. 

However, we have discovered a method to meet this difficulty 

in the following way. 

Let us form a CHAR-SET (CS) of the system (HYP) by the RITT 

PRINCIPLE so that we get the formula 

Zero(HYP) = Zero(CS/J) + SUMi Zero(HYPi') 

+ SUMi Zero (HYPi") . 
In the formula J is the product of all INITIALS Ii and SEPARANTs 

Si of (CS)  , and (HYPi'), (HYPi") are respectively the enlarged 

systems of (HYP) with Ii and Si adjoined to it. Form now the 

REMAINDER R of CONC with respect to (CS) to get a formula of 

the form 

J' * CONC :=: R d-mod (CS)  

in which J' is some power product of the INITIALS Ii and the 

SEPARANTs Si of (CS). Now if R=O, then we see that 

CONC = 0 

will follow from (HYP)=O so far J<>O. On the other hand if 

(CS) is d-IRREDUCIBLE, and if CONC=O follows from (HYP)=O s o  

far J<>O, then CONC will have the GENERIC ZERO of (CS)  as a ZERO 

and by THEOREM G we would have R=O. We have thus the following 

THEOREM N. If the REMAINDER R of CONC with respect to the CHAR 

SET (CS) of (HYP) is 0, then the THEOREM in question is TRUE 

GENERICALLY under the subsidiary NON-DEGENERACY CONDITION J < > O .  

If (CS) is d-IRREDUCIBLE then the converse is also true. 

This THEOREM N is at the basis'of our method of mechanical theoem 

proving and has been accordingly programed. It turns out that it will 

meet our purposes in general and has been proved to be quite efficient 

in practice. In fact, based on the last THEOREM we have programed 
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on some small computers like HP9835A and HP1000. Several differential- 

geometrical theorems have accordingly be proved on the computers in 

this way. The following is one of such examples. 

Let C, C '  be a pair of curves in the ordinary 3-space which 

are in 1-1 correspondece. Suppose that the lines joining pairs 

of corresponding points p, p' be common principal normals to the 

curves. Let k, t be the curvature and torsion of C, similarly 

let k', t' be those of C'. Then the following conclusions are 

known to be true: 

(a) The distance r between the corresponding points p, p' is 

constant. 

(b) The angle alpha between the tangents to the curves at 

corresponding points is constant. 

(c) The curvature k and torsion t of C satisfy some linear 

relation with constant coefficients, i.e., there are constants 

a, b, c not all 0 such that a*k+b*t=c. The same is true for C'. 

Less well-known are the following conclusions: 

(d) The product t*t' of torsions of the curves C, C' at corres- 

ponding points is constant. 

(e) Let z ,  z'be the centers of curvature of C, c '  on the common 

principal normal at corresponding points p, p', then the cross 

ratio (p,z,p',z') is constant. 

To prove these theorems let us choose the arc lengths s ,  s '  on 

the curves as parameters. Then s ' ,  r, alpha, k, t, etc. are all 

functions of s .  Remark that a computer can treat only rational 

entities so we have to replace the transcendental functions of alpha 

by rational ones, viz. 

il = cos alpha, v = sin alpha, 

connected by the rational relation 

u - 2  + v^2 = 1. 

Let us take now the usual moving frames (el,e2,e3) and (el',eZ',e3') 
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at the corresponding points p andp' with el, el' t'he tangent vectors, 

e2 and e2'=+ or -e2 the principal normal vectors, and e3, e3' the 

binormal vectors. To fix the ideas, let u s  suppose e.9. e2'=+e2. 

Then we have: 

p '  = p + r*e2, 

el' = u*el + + v*e3, 

e2' = + e2, 

e3' = -v*el + + u*e3, 

(FRAME) 

Treat now the functions 

r, u, v, ds'/ds, k, t, k', t' 

as indeterminates and replace them by symbols Y1, Y2,.. ., Y8 in the 
above order. Then the hypothesis system (HYP), by comparing the 

FRENET-DARBOUX EQUATIONS of the two curves, will be found to be 

consisting of d-POLS P1, ..., P10 listed below: 
P1 = DlY1, 

P2 = DlY2, 

P3 = DlY3, 

P4 = Y2-2 + Y3-2 - 1, 

P5 = Y1*Y5 + Y2*Y4 - 1, 
P6 = Y1*Y6 - Y3*Y4, 
Pl = Y4*Y7 + Y3*Y6 - Y2*Y5, 
P8 = Y3*Y4*Y8 + Y2*Y4*Yl - Y5, 
P9 = Y2*Y4*Y8 - Y3*Y4*Yl - Y6, 
P10 = Y4*Y8 - Y2*Y6 - Y3*Y5. 

It follows that the conclusions (a) and (b) are already seen to 

be true from the equations P 1 = 0 ,  P2=0, and P3=0. The other conclu- 

sions are however not so evident and we have to resort to our 

program based on the last THEOREM N. We find thus a CHAR-SET ( C S )  

of the hypothesis system (HYP) after the removal of some simple 

factors of Y1, Y2, Y 3 ,  to be consisting of d-POLS C1, . . . ,  C J  as given 

below: 
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C1 = D1Y1, 

C2 = DlY2, 

C3 = Y3A2 + Y2h2 - 1, 
C4 = Y1*Y5 + Y2*Y4 - 1, 
C5 = Y1*Y6 - Y3*Y4, 
C6 = Yl*Y4*Y7 + Y4 - Y2, 
c7 = Yl*Y4*Y8 - Y3. 

The NON-DEGENERACY CONDITION is then seen to be given automatically 

as some power product of the INITIALLs and SEPARANTs of (CS), viz. 

for certain Ki>O, 

N = YlAKl*Y2^K2*Y3^K3*Y4^K4 < >  0. 

Alternatively we may replace the NON-DEGENERACY CONDITION N<>O by a 

set of CONDITIONS 

Y1 < >  0, Y2 < >  0, Y3 < >  0, Y4 < >  0, (COND) 

of which the geometrical meanings are quite clear. 

The conclusions (c) , (d) , (e) may now be replaced by CONCi=O, 
i=1,2,3 with the d-POLS CONCi as given below, 

CONCl = DlYS*D2Y6 - D2YS*DlY6, 
CONC2 = DlY6*Y8 + Y6*DlY8, 

CONC3 = Yl*YS*DlY7 + Yl*DlY5*Y7 + D1Y5 - DlY7. 

We find on the computer that all the d-POLS CONCi have their 

REMAINDER 0 with respect to (CS). It follows that the conclusions 

(a), . . . ,  (e) are all GENERICALLY TRUE and are proved under the NON- 
DEGENERACY CONDITION N < > O .  If we like we can proceed in the same 

way as before to test in turn whether the conclusions remain true 

in the respective degenerate case afforded by adjoining each of 

the conditions in (COND) in turn to (HYP). 

We add a final remark to our method. As our method of proving 

is purely algebraic in character which has nothing to do with the 

real nature of the curves of being analytic or not, we come to 

the following 
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PRINCIPLE. If a THEOREM is TRUE for all geometrical entities 

which are analytic, then the THEOREM will remain TRUE for all geo- 

metrical entities merely differentiable up to certain degree suffi- 

ciently high. 

This PRINCIPLE was already anounced by the author in some of the 

previous works. It shows that the analyticity or high differentia- 

bility plays actually no role in the truth of a THEOREM. 
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BASIC PRINCIPLES OF MECHANICAL THEOREM 
PROVING IN ELEMENTARY GEOMETRIES 

Wu WENJUN (Mu MEN-TSUN) 
(Insritute of Systems Science, Academia Sinica, Beijing) 

Dedicatcd to Professor Kwan Chao-chih, the laic Director of the Institute of Systrrns Scicncc 

5 1. INTKODUC~ON. 

By elcn~entar-y gcomLfr.y we shall mean the one described in Hilbcrt’s Grundl~zgeri der 

Geometric in which no notion of differentiation is involved, as a contrast to diffetential geome- 
t ry .  It is well known by the theorem of Tarski that the ordinary Euclidean geometry, as  
one of such elementary geometries, is dccida&, or in our terminology, mechanizable in the 
following sense: There exists an algorithmic method by which any 7heorem’’ or a geometrical 
statement meaningful in the geometry in question can be shown, in a f i t& number of steps, 
to be either true as  a real theorem, or false so that it is not a theorem at all.  Any elementary 
geometry possessing such an algorithmic method will be said to be mechanizable, and the the- 
orem in asserting that the geometry in question does possess such an algorithmic method will be 
called a Mechanization Theorcm. In the mechanizable case we may program according to the 
algorithm shown to exist and practise on a computer so that the proof (or disproof) of a the- 
orem in that geometry may be carried out on the computer.. This method will be called nzecha- 
nical theorem proving for  short. It will lead to what may be called mechanical theorem dis- 
covering of new theorems. W r  remark that all these notions can be naturally extended to the 
case of a given class of theorems or meaningful staicments in the geometry in question, not 
~iecessarily to the geometry as a whole. In this sense the Theorem of Tarski mentioned may 
he called the Mechanization Theorem of ordinary Euclidean geometry. However, the algorithmic 
procedure given by Tarski, even with the great simplifications due to Seidenberg, is too com- 
plicated to be feasible. In fact, no theorems of any geometrical interest seem to have been 
proved in this way up  to the present day. On the other hand, the author discovered in 1977 
an algorithmic method which leads to Mechanization Theorems of many kinds of elementary 
geometries including the ordinary Euclidean geometry, as long as we restrict ourselves to the 
class of theorems involving no order relations. What is important to us is that our method is 
very efficient. In Fact, in the past years we have programed on some small computers and ar- 
rived a t  the proof and discovery of quite nontrivial theorems. Mr. S. c. Chou, now at Uni- 
versity of Texas a t  Austin, USA, has also practised on some computer there, OP the basis of 
our algorithm, and proved some interesting new theorems. The present paper is aimed a t  ex- 
plaining the basic principles underlying our merhod with some illustrative cxamples about the 
theorems proved or discovered in this way. 

Consider a certain kind of geometry in the sense of Hilbert. As shown in the classical 

Rcceived Mnrcli 12, 1984, 
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Grundlugrn of Hilbert, in starting from the defining axiomatic system of the geometry we 
may introduce some number system intrinsically associated to that geometry and then to coor- 
dinote systems which will turn any geometrical entities and relations into algebraic ones. Let 
us restrict ourselves to the case that the geometry admits some axiom of infinity as well as 
some Pascalian axiom so that the number system is a commutative field oE characteristic 0.  
The algebraic relations cdrresponding to the geometrical relations occuring in a theorem will 
then be polynomial equations, polynomial inequations, or polynomial inequalities, with coeffi- 
cients in  the associated field, or even with rational or integer coefficients, as is usually the case. 
Now let us restrict ourselves further to the case that no order relations and axioms are in- 
volved in the geometry in question or to a restricted class of theorems in which no order rela- 
tions are involved. appear only polynomial equa- 
tions and inequations but not any polynomial inequalities. Remark further that all theorems in 
geometries are actually only generically true, or true only under some non-degeneracy condi- 
tions which are usually not easy to be made explicit and thus only implicitly assumed in the 
statement of theorems. It turns out that the problem of mechanical theorem proving in the 
restricted cases mentioned above is algebraically equivalent to the following one: 

In the algebraic relations above there will 

Problem. Given a system 8 of polynomial equations (or equivalently, system of polyno- 
mials) as well as another polynomial g, all in the same finite set of variables x , $ ,  . . . , de- 
cide in a finite number of steps either of the two cases below: 

Case 1. A finite set of polynomials D, is determined such that g = 0 is a consequ- 
ence of the system H under the non-degeneracy conditions D, # 0 such that D,=O are them- 
selves not consequences of the system 8. 

Case 2. 

In the above formulated problem in the algebraic form the polynomials in H correspond 
to the hypotheses and g the conclusion of the theorem in question whose truth is to be deci- 
ded. The theorem is seen to be generically true in Case 1 under the non-degeneracy con- 
ditions D, # 0 found during the procedure but not SO in Case 2.  The polynomials naturally 
have their coefficients in the field intrinsically associated to the geometry considered. A solu- 
tion oE the above problem constitutes the Mechanization Theorem of geometries in  the algebraic 
form. The algorithm in furnishing such a solution as well as the proof will be given in Sec- 
tion 4 .  Jn Sections 2 and 3 we shall make some preparations. All these depend heavily on 
the works of J. F. Ritt as exhibited in his two books [ 2 ,  31, which seem to be however 
undeservedly little known in the present days. 

No such set S = { D a }  can exist so that Case 1 holds. 

5 2. WELL-ORDERING OF A POLYNOMIAL SET. 

In what follows K will be a fixed basic field of characteristic 0. Consider two sets of 
variables 

uI, . . a ,  u, and x , , . . .  7 X V )  

arranged in a fixed order 

ur<. . * <Ue<X1'(* * * < X N .  

We shall consider a linear space K C f N  of dimension e + N over the field K ,  with 3 basis 
In what follows by a polynomial we shall always corresponding to u, ,  . * * , u,, xl, * . * , x N .  
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mean one in the variables uI ,  1 .  a ,  u,, xI, . . . , x N  with coefficients in K ,  i.e., an element 
in the ring K [ u , , . * . ,  u,, x , ,  - . - ,  x N ] .  

A monomial 

p = a ~ i t .  . . ~ 2 x 7 ~ .  . . x $ N  (0 E K ) ,  
will sometimes be written in the simple form 

p = aU‘XMy I = (il, ..., i<), M - ( m l ,  .- . ,  mN) 
or 

p = az5, a = ( I ,  M )  = (i,, . * . ,  i,, ml,..-, mN>. 
If a # 0, and the last one # 0 in the N-tuple (m,, * .  * ,  mN) is mp,  then we say that 
the monomial is of class p; otherwise we say that the class of the monomial p # 0 is 0 .In 
that case in p there occurs at most u but not x .  

For two sets of non-negative integers 

. a = ( a I y . . . , a , ) ,  8 - ( b l ,  . . . 7 b , )  

we say that a prccedes p ,  or p follows a, which is denoted as 

a.(p or p>a, 

if there is some 4 such that 

a%+, = bk+l ,  . . ., a, = b, 
while a4 < bk. For two non-zero monomials 

,I. = suit. * .ufexft..  . x ~ . N ,  

p = buil- * u!ex?i. . . x Z N ,  

a f 0, 

b # 0, 
we say that I prcrcdes p or p follows I ,  which is denoted as 

a+ or p > I  

if 

(il, - . - ,  i,, I , ,  ..-, I N ) . ( ( j l ,  i,, MI7 -.., m“. 
Any non-zero polynomial F can be written in the form 

F = alz”l + a,zaz -t . . . + ujza3 

in which 

a , E K , a , # O ,  ..., a , # O ,  

a1>a2>. . .>.a,. 

In that case we say that u,zSl is the leading term of F ,  
the class of F .  

and the class of znl will be called 

If a non-zero polynomial F has its class = p > O ,  
its degree in x p  = m ,  then F can be written in the form 

and the leading term a,zal of F has 

F = c,xp” + C,Xpm-‘ + . . . + c m ,  
in which the C’s are a l l  polynomials in u and x I ,  * . a ,  x ~ - ~ ,  containing none of x p ,  x P + , ,  
... x N ,  with C, f 0 in particular. The polynomial C ,  will then be called the inrtial of F .  
If the leading term of C ,  is c,, then the leading term of F is clearly r , x r .  

Consider two non-zero polynomials F and G and any variable x p .  If the highest degree 
of xp appearing in F is less than that in G ,  then we say that F has a lower  raxk than G 
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or G has a higher rank than F wi th  respect to x p .  

rank ruith respect to x p  when neither is of higher rank than the other. 
We  say that F and G have the same 

For two non-zero polynomials F and G we say that F has a lower rank than G or G 
a higher rank than F ,  which i s  denoted as 

F < G  or G Z F ,  
if one of the following two cases occurs: 

1 .  class F < class G ;  

2. class F = class G ,  say, - p > 0, while the degree of x p  in F is less than that of 
x p  in G ,  or in other words, F has lower rank than G with respect to x p .  

In the case neither of F and G is of higher or lower rank than the other, F and G 
will be said to be of the same rank, denoted as 

F - G .  

For example, two non-zero polynomials are of the same rank if both are of class = 0. 
Let F be a polynomial of class p > 0. Any polynomial G of rank lower than F with res- 

pect to x p  will be said to be reduced with respect to F .  Clearly the initial of F is of class < 
p and is already reduced with respect to F .  

Let F be of class p > 0 written in the form 

F = fox; + f , x ; - '  + . . of,,, 
in which 

f, E K [ u , ,  .'., u,, XI, . . * ?  xp-11, f n  # 0. 

Any non-zero polynomial G which has not been reduced with respect to F can then always 
be written in the form 

G = go.$ + g , x y  + . . . + gnr7 

g i E K [ u , ,  . . * , U , , X , ,  ... Y X P - l Y X p + l Y  -.., X N I ,  

g n f O ,  M > m .  

in which 

and 

By the division algorithm of polynomials, we would get, in dividing G by F ,  an expres- 
sion of the Corm 

fiG = _OF + R ,  

where Q,  R are both polynomials with, in the case R # 0, the degree of x p  in R < m so 
that R is alrehdy reduced with respect to F .  The  integer s will be determined as the small- 
est to make possible such an expression that s is unique and is < M - m. If G is already 
reduced with respect to F ,  then we can simply take s = 0, Q = 0, R = G so that the 
above expression holds true still. In any way, the polynomial R will be called the remaitdm 
of G wi:h respect to F .  The  procedure to get the remainder R from G will then be called 
the rcductiorr of G with respect to F .  

In what follows we shall consider sequences formed by a finite number of polynomials 
A ,  like the one below. 
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&:A17 A23 ‘ “ 7  A, .  
Such a sequence will be called an ascending set if either ( a )  or (b) below holds true: 

(a) r = 1 and A ,  # 0; 

(b) r > 1,  0 < class ( A , )  < class ( A , )  < . . . < class ( A , ) ,  and moreover A ,  i, 
reduced with respect to A ;  for each pair i > i .  

It is clear that for an ascending set one always has r < N .  

An ascending set will be said to be contradictory if r - 1, A ,  # 0 with class ( A , )  = 

0 .  

Given a second ascending set 

.%:Bi7 B i ,  ‘ ‘ ’ 7  B , ,  

we say that .,d has a higher rank than 99 or B a lower rank than d,  which is denoted 
as 

&>B or B < d ,  
if either (a)’ or (b)’ below holds true: 

(a)‘ There is some j < min(r ,s)  such that 

A ,  - B , ,  . . * ,  A;- ,  - Bj- , ,  while AjY B ; ;  
(b)’ s > r and 

A ,  - B17 . . ’ 5  2 4 ,  - B, .  

If neither of the ascending sets & and S 3  is of higher rank than the other, then we 
say that I_d, %? are of the same rank, denoted as d - .%3 . In that case we have 

r - s, and A ,  - B , ,  ..., A ,  - B,.  

It is clear that the collection of all ascending sets i s  partially oidered by the rank. Hence 
for any set of ascending sets we can speak of the notion of minimal ascending set, if it exists. 
T h e  following lemma, simple as it is, will play an important role in the whole theory. 

Lemma 1. Let 

0,, 0 2 7  . ‘ . 7  0,, -. .  
be a sequence of ascending sets 0 ,  for which the rank never increases, or for any  q rue have 
either Oq+,<@q or 04+, - 0,. Then there is an index q’ such that for any q > q’ uJe 
have 

0, - Qq*. 
I n  other words,  there is some q’ such that any 0‘, for tuhich q > q’ is a minimal ascending 
set of :he above sequence. 

Proof. For the ascending set 0, let us denote by r q  its number of polynomials and by 
A ,  the first polynomial in the set. Then 

A , ,  A , ,  . . -  7 Aq,  ... 
is a sequence of polynomials for which the rank never increases, or for any q we have either 
A,,+,<A,  or A,+ ,  - A, .  Consequently for any q we have class ( A 4 + , )  <class ( A 4 )  and 
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in the case class (A,+ , )  = class ( A , ) ,  say. == p > 0 the degree in x p  of A,,, should 
<the corresponding degree in x p  of A, .  
there should be some index q, such that all A ,  are of the same rank for q 2 q,. 

be 
As both class and degree are non-negative integers, 

If there is some q; 2 q, such that all r q  = 1 for any q 2 q: ,  then the lemma is clear- 
ly  true. Suppose the contrary. Then there should be some q; > q, such that all Y, > 2 for 
any q > 4;. Denote the second polynomial in such 0, by A!).  Then 

will be a sequence of polynomials with non-increasing ranks. As before there will then be 
some q2 > q; such that all A$' are of the same rank for any q 2 q2 2 q;  2 q,. 

If all r ,  < 2 ,  then the lemma is proved already. Suppose the contrary. Then there wi l l  
be some q; 2 q2 such that all 7 ,  2 3 for any q 2 q; and we may take the third polynomial 
A:' in such @,'s to form a sequence of polynomials with non-increasing ranks. As for all q 
we have r q  < n ,  so proceeding in this way we should stop a t  some r and some q' such 
that for all q 2 q' we have r ,  - r and the r-th polynomials taken from such @, will all 
have the same rank. It follows that all such @,'s will have the same rank and the lemma is 
proved. 

From this lemma we get the following 

Lemma 1'. If i n  a sequence of ascending sets the rants  arc steadily decreasing, then 
such a sequence can only be composed of a finite number of ascending sets. 

Supposc now we have a non-empty collection 8 - { F - }  of non-zero polynomials F , .  An 
ascending sct & oi polynomials will be said to belong to X if each polynomial in JZ' be- 
longs to X. Since each single F ,  # 0 forms by itself an ascending set, such ascending sets 
belonging to X exit naturally. Any minimal ascending set of the collection of all ascend- 
ing sets belonging to X will then be called a basic l e t  of H. 

The following lemma points out not only the existence of such basic sets but also some 
constructive method of arriving 'at such basic sets. 

Lemma 2. Let X be a finite set of non-zero polynomials. Then  B has necessarily 
basic sets and there is a mechanical method an getting such a basic sct i n  a finite number of 
sfeps.  

Proof. As X is finite, the existence of basic sets is qbite evident. So the problem redu- 
ces to the mechanical generation of such a basic set. 

To show this let us find at the'outset a polynomial, say A , ,  of lowest rank from X = 

I,. This can clearly be done in a mechanical manner. If class ( A , ) = O ,  then A, alone will 
form already a basic set. Suppose therefore class ( A , )  > 0. Check whether each polynomial 
except A, in 8, is already reduced with respect to A,. If no such polynomial exists in Z,, then 
A ,  by itself forms already a basic set of I,. Otherwise let 2, be the subset of I, formed by 
all such polynomials except A ,  already reduced with respect to A , .  From the choice of A ,  all 
polynomials in X I  will have a rank higher than that of A,. Now let A, be a polynomial 
in .X2 of lowest rank. If X, has not any polynomial which is different from A, and is already 
reduced with respect to A , ,  then A, ,  A ,  will form a basic set of 8. Otherwise let 8, be 
the subset of X, consisting of all polynomials except A ,  which have already been reduced with 
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respect to A, .  Choose from X, a polynomial A ,  of lowest rank and proceed as before. As the 
classes of the polynomials A , ,  A,, A , ,  . . . are steatlily increasing and unlikely to become > 
N ,  we have to stop in a finite number of steps and get finally a basic set in a mechanical 
manner, Q. E. D. 

Lemma 3. Let .X be a finite set of  non-zero polynomials with a basic set 

d: A , ,  A , ,  " ' 3  A ,  

of which class ( A , )  > 0 .  Let B be a non-zero polynomial reduced with respect to all A'S. 
Then the set X' obtained from X by adjunction of B will have a basic set of rank lower 
than that of d. 

Proof. If class ( B )  = 0,  then B alone will form a basic set of X' of rank lower than 
that of J,z'. Suppose therefore class ( B )  = p > 0 .  AS B is already reduced with respect to 
all A's,  there should be some i 2 0 and < r such that p > class (Aj - , )  and p < class 
( A ; ) .  Moreover, in the case p = class ( A ; ) ,  the degree of xP in B will he less than that 
of xp in A , .  Hence 

A , ,  A,,  " ' 7  Ai-1, B 

will he an ascending set of 2' with a rank lower than that of d. The basic set of X' will 
have therefore 2 fortiori a rank lower than that of &d, Q. E. D. 

Remark. The above lemmas are clearly also true for any infinite set of polynomials and 
the proofs remain essentially the same as long as the axiom of choice is applied. As the use 
of axiom of choice will be in opposition to the mechanical thought, the main theme of the 
whole theory, we have deliberately restrict ourselves to the case of finite sets of polynomials. 

Consider now an ascending set 

d A, ,  . . ' 9  A ,  

as before with class ( A , )  > 0. Let class ( A ; )  = p ,  and let the initial of Ai  he I;. Then 

o < p , < p 2 < . * .  < p ,  
and for each i we have 

class ( I ; )  < p i ,  

2; reduced with respect to A , ,  . . . , Ai-,. 
Let B be an arbitrary polynomial, Set B = R,.  With respect to the polynomials in J 

starting from A ,  to A ,  we can form successively the remainders R,-,, . . . , R ,  of R, so that 
we get (sj 2 0 ) :  

I?R, = Q,A, + R,- ,  , 
1z~'Rr-I  = Qr-1Ar-i + Rr-2, 

... 
I;nR, = Q,A, + R , .  

Set R,  = R .  Then we get an expression of the form 

I$.--I?B = Qi.4, -I- * * .  + Q:A, + R ,  

in which Q' are a l l  polynomials. The polynomial R is determined from B and the ascending 
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set d. We shall call R the remainder of B with respect to sp. 
formula the Remainder Formula. 

We call also the above 

It is clear that any term of R will have the degree in xpi  less than the corresponding 
degree in xpi of A i .  In other words, R is reduced with respect to all polynomials Ai in d .  
We shall say briefly that R is reduced with respect to d and call the above procedure of 
getting R from B and d the reduction of B with respect to d .  As the determination of 
one polynomial with respect to the other is done mechanically by the division algorithm, we 
may state the result in the form of the following 

Lemma 4. Given a non-zero polynomial B and an mcending set J of which the 
first polynomial is of class > 0, there is an algorithm which permits to determine the 
remainder of B with respect to J in a finite number O f  steps. Denote the i-th polynomial 
i n  & by Ai and its clajs by p i .  Then any ierm in the remainder R u d l  have its dcgree 
of xpi in Ai  less than the degree of xpi  in Ai for each i .  

Come now to the rucll-ordering of a polynomial set as follows. For this purpose let us re- 
view briefly the notion zero of such a set. 

Consider any polynomial F .  Suppose that there is a set of numbers 

247, * * * ,  u:, d, . * .  , x i  

in K which will turn F into 0 when these numbers are substituted for the variables u , , .  . . , 
u,,x,,.  . * , x N  in F .  Then this set of numbers, which may be considered as the coordinates 
of a point in the linear space K c + N ,  is called a zero of the polynomial F or alternatively a 
solution of the equation F = 0. If the various uO, xo are not .numbers of K ,  but of some 
extension field 2 of K ,  then, the set of 
numbers, considered as a point of the linear space %tN on x, will be called an ewtecded 

zero of F or an extended solution of F = 0. In order to make the involved field 2 expli- 
cit, it will also be called a X-zero of F or a 2-solution of F = 0. 

which still turn F into 0 when substituted into it, 

Given a set of polynomials E, if a set of numbers as given above is a zero (or extended 
zero, or 2-zero) of every polynomial in S, then it will be called simply a zero (resp. an 
extended zero or a 2-zero)  of 2 or a solutirm (resp. an extended solution or a 2-solution) 
of x = 0 .  

Consider now a set B = PI of non-zero polynomials, supposed to be finite in number. 
By Lemma 2 ,  1, will have some basic set, say CPl. If CPI is a contradictory set, then @, 
consists of a single polynomial A ,  belonging to XI for which class ( A , )  = 0. Suppose on the 
contrary that CPI is not contradictory so that the first polynomial in @, has its class > 0. For 
polynomials B ,  which belong to XI but not to CP,, let us form the remainders Rs of B 
with respect to supposed not all 0. Adjoin all such remainders R B ,  whenever non-zero, 
to the set 8, to get an enlarged set of non-zero polynomials S2. From the formula about re- 
mainders each R B ,  when non-zero, will be a linear sum of polynomials in @, as well as the 
polynomial B ,  with polynomials as coefficients. It follows that the set P2 will have the same 
set of zeros (or extended zeros, or k-zeros for any extended field 2) as the original- set El. 
Form now the basic set CP2 of S2. By Lemma 3 O2 will have a rank lower than that of Q1. 

If CP, is not a contradictory ascending set then we can proceed as before. In this way we shall 
get either a contradictory ascending set after a finite number of steps or a sequence of finite 
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sets of polynomials 

. z r C X ' a C ~ ~ * C X 4 C ~ ~ - ,  

where all 2; have same set of zeros (or extended zeros or 2-zeros for any  extended field 2) 
with the corresponding non-contradictory basic sets @; having steadily decreasing ranks: 

@,, 0 2 ,  . .- ,  O q ,  -... 
Now by Lemma 1, such a sequence can have only a finite number of terms. In other words, 
if the last one of such a sequence of finite sets of polynomials is 8,, with @, as the corres- 
ponding basic set, then the remainder of any polynomial of C, not in 0, with respect to Oq 
will be equal to 0. 

Let @,, be 

Q i q : F i ,  Fa, . . * ?  Fr, 

in which each F ;  is either belonging originally to @ q - l ,  or is the non-zero remainder of some 
polynomial in with respect to By the remainder formula each F ;  is thus a linear 
sum of polynomials in with polynomials as coefficients. It follows that any zero of Zq-, 
and thus any zero of C is also a zero of Qq. 

On the other hand let the initials of polynomials in 0, be I , ,  I , ,  . . * ,  I , .  From the 
construction we know that for any polynomial G in 8,, there should be non-negative inte- 
gers s; 2 0 such that 

I ~ I .  * * I p C  = QIFl + . * - + Q,F,. 

It follows that any zero of Qq,  if not a zero of any one of the initials I , ,  . . * ,  I , ,  is nece- 
ssarily also a zero of X 4  and thus a zero of X = 8,. The same is clearly true for extended 
zeros or X-zeros for any extended field g. 

Denote Dq by @. Then what we have proved may be reformulated as the theorem be- 
low: 

Theorem (Ritt). There is an algorithm which permits to get,  after mechanically a 
finite number of steps, either a polynomial A of class 0, i. e. on- i n  uariables u l , .  ' . , u ,  so 

that any zero of X is also a zero of A ,  or a non-contradictory nscending set 

@:Fi, " $ 3  Fr, 

with initials I , ,  - 1 . )  I ,  such that any zero of X is also a zero of @, 
which is not zero of any of the initials I ; ,  will also be a zero of 8. 
extended zeros and X-zeros. 

and any zero o f  @ 

T h e  same is ture for 

We shall call the mechanical procedure which permits to determine @ from 2 a well- 
ordering of B and the above theorem will be called the Well-Ordering Thcorem. The theorem 

We shall call the theorem Ritt Principle 
accordingly. The polynomial set @ in the theorem is called a characteristic set of z'. 

is due to Ritt and forms the basis of our method. 

5 3.  A CONSTRUCTIVE THEORY OF ALGEBRAIC VARIETIES 

As before, let K be the basic field of characteristic 0 and 

X , i X , < . ' .  < X N  
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be a set of variables arranged in a definite order with ul ,  . * . , u, neglected. 
will always be understood as one in K [ x , ,  . . * , xN1, 

A polynomial 

A finite set of non-zero polynomials will simply be called a polynomial set. The polyno- 
mial set X obtained from putting together the polynomials in two polynomial sets 2, and 2, 
will be denoted as XI + 2,. For polynomials F ,  G ,  etc., B + { F }  will also be denoted as 
P + F ,  and P + {F,G} as H + F + G ,  etc. 

We say that a polynomial set X defines an algebraic variety or simply a variety, to be 
denoted as 1x1, with X as its defining set. For two polynomial sets 8, and X,, if any ex- 
tended zero of ,Z1 is also an extended zero Df H,, then we say that the algebraic variety de- 
fined by XI is a subvariety of that defined by X2, to be denoted as 

X2=OI&,  or l ~ l l ~ l & l .  
If, further, we have lXzl C (8,I so that XI, 8, have the same set of extended zeros, then 
we say that XI,  XI are equivalent, denoted as 

HI X,, or lX1l = IX21. 

If I XLl C 1X11 but lXll  f I HI(, 
El is a true subvariety of that defined by 2,. 

or I XI]  5 I & / ,  then we say that the variety defined by 

Given a polynomial F ,  if any extended zero of X is also one of F ,  i.e. 

{ F }  = 0 1 2  or i X l c l { F } I ,  
then we say that F = 0 on X, denoted as F - O ( X .  Otherwise we denote this as 

F f 012,  

Given 4 + 1 polynomial sets X, XI, a . 0 ,  X k ( 4  > 1) having the following property: 
Any extended zero of X is also an extended zero of at least one of the sets XI,  . . . , Xk, 
and conversely, any extended zero of any Hi is also one of X, then we say that EL, . . . , Zt 
are a decomposition of X, or the corresponding algebraic varieties I XI I , . . * , I X4 1 are a decom- 
position of 1x1 , denoted as 

I X I  = IXII u.-* u 1x41 ( 4  > 1). 

If for any i, I X i /  cannot be omitted in the above decomposition, then the decoinpositioii is 
said to be uncontructible. In this case the variety defined by each 2; is a true subvariety of the 
variety defined by X, but not a subvariety defined by the union of other $s. 

We say that the polynomial set X is reducible if it has some oncontractible decomposition 
and the variety defined by it is also said to be reducible. In the contrary case we say that X 
as well as the variety defind by it is irreducibie If in a certain decomposition of X each Xi 
is irreducible, then we say that this decomposition is an irreducible deconiposition of X; the 
same for the variety defined by X. In this case each Xi or the variety defined by it is called 
an irreducible component of X or the variety defined by it. 

We consider now the problem of reduribi'ity of a polynomial set or its defining algebraic 
variety. The following two lemmas give some well-known criteria for their iwrducibility. 

Lemma 1. A necessary and sufficient condition for a polynomial set I: to be irreducible 
is thn! there c m m t  exist t w o  non-zero polynomials G and N such t h a t  
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while 

GM = OIC, 

G f 012, ff + OIX. 
For the second criterion let us first introduce the important notion of the so-called generic 

point of a variety. Consider two extension fields 2 and K' of K and two points [ = (x",, 
- . * , x",v), w"; E 2 ,  and 5' = ( x i ,  . . . , x ; ) ,  x ;  € K ' ,  in the N-dimensional linear spaces 2" 
and K" on 2 and K' respectively. pro- 
perty: 

Suppose that these two points possess the followhg 

For any polynomLa1 F ( x , ,  . . . , X N )  in K [ x , ,  . . . , x N 1 ,  that g is an extended zero of 
F would imply that 6' is also an extended zero of F ;  in other words, F ( x ; ,  . . a, x i )  = 0 
as long as ~ ( w " , ,  . * .  , x"N) = 0. 

In this case 6' will be called a specialization of E with respect to K ,  or simply a spe- 
cialization of if no misunderstanding can occur. 

Suppose the polynomial set X has a certain extended zero 5 such that any extended zero 
of X is a specialization of with respect to K,  then we say that E is a generic point of the 
polynomial set C or one of the algebraic variety 1x1 defined by it. The  following lemma 
gives the second irreducibility criteridn of polynomial sets or algebraic varieties: 

Lemma 2. A necessary and sufficient condition for a polynomial set C or its uariety 
to be irrcducible is that X has generic points. 

The  two lemmas above give some necessary and sufficient conditions which are however 
merely existential in character and not constructive at all. Given a polynomial set I;, there is no 
means to ascertain in a finite number of steps whether the conditions in the lemmas can be 
satisfied or not. For the purpose of mechanical theorem proving, we have to devise some me- 
chanical procedure which permits to decide in a finite number of steps whether a given poly- 
nomial set is irreducible or not, and in the case it is reducible, to give in a finite number of 
steps the various irreducible components of the decomposition. Such a mechanization may be 
considered as constituting a constructive theory oE algebraic geometry. It was given in details 
in the two books of J. F. Ritt['*" and we shall give some outlines in somewhat revised form 
of this theory below. 

Consider an ascending set 

@ : A , ,  A , ,  ' ' - 9  A* 
in which the class of A ;  is p i  with 

0 < P I  < p2 < - * *  < p . .  
W e  shall change the notations in setting 

xp, = y , ,  . * , xp. - y .  

and denote the other x's in the original order as u, , .  . . ,ud .  W e  call 

d - N - n  

the dinzcnsion of the ascending set 0 ,  denoted as 

d = dim @. 
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Write now the polynomials A; in # in the following form: 

A ,  = c,,y,"1 i- c,,yyi-1 + . . . + CIrnt,  
A2 = Cay?' + c21y?a-1 + . . . + Czm2, 

A ,  = C&" 4- c,,y:"-I + . . . + c,,,,. 
0: [ ... 

In the expressions C;, + 0 are initials of A;,  and each C;j is a polynomial in u , ,  . . * ,  u d ,  

y,, . . * , Y ; - ~  with coefficients in K .  Furthermore each A; has already been reduced wit11 res- 
pect to A , ,  . . * , A ; - ,  so that the degrees of y,,.  . . , y;-, in C;i are less than m,, . . . , mZ-* 
respectively. The first problem to be considered is to give conditions for CP to be the basic set 
of a certain irreducible polynomial set. 

For this problem let us suppose that the ascending set # possesses the following proper- 
ty: 

Let the transcendental extension field K ( u , ,  . . . , u,,) of k' got by adjoining u I ,  . . . , ud 

be denoted by Kn;  then A , ,  as a polynomial in K,[yll with coefficients in K,, is irreducible 
in K,[Yll. 

* 
Let the algebraic extension field of KO got ,by adjoining a n  extended zero 9 ,  of A ,  = 0 

then the polynomial A", in Kl[yz! obtained by substituting 7, be denoted by Kn(qi) = K , ;  
for yI  in A ,  is irreducible in KI[yZ1. 

Let the algebraic extension field of K ,  got by adjoining a n  extended zero q2  of 22 = 0 
K J y , ]  obtained by substituting q, be denoted by KI(q2) = K,; then the polynomial 2, in  

for y ,  and q2 for y, in A ,  is irreducible in K J y , ] .  

Suppose that proceeding in the same manner we get successively algebraic extensions K;= 
K;- l (q ; ) ,  polynomials A; obtained by substituting q, , .  . . for y,, 1 * * ,  Y ; - ~  in A ; ,  and 
some extended zeros qi  of A ;  = 0, where each A"i is irreducible in K;-,[y;] for i = 1, 2, 
* 9 * ,  n .  Under these conditions we say that the ascending set # is irreducible. By known 
methods there exist some mechanical procedures which permit to decide in a finite number of 
steps whether Q is irreducible or not. 

- - 

Let # be irreducible and satisfy the conditions above. Then u;, 9 ,  are all elements in 
2 - K. and +j = (u~,. . . , ud, q,, . . . , 7.) can be considered as a point of the linear space 
Xd'. - XN. W e  shall call ij a generic point of # and 2 a generating field of #. 

The followidg lemma is quite important for the theory. 

Lemma 3. If the ascending set 0 is irreducible wi th  

'8= ('17 * * ' 7  ud7 71, ' " 7  70) 

a generic point as above, then for  a polynomial F E K[rcl, * . - ,  U d ,  yI ,  ..., y.1 to hnoc 
the remainder R = 0 with respect to #, it is necessary and sufficient that 4 is an cxter,ded 
zero of F .  

Proof .  Denote the ascending set formed by the first 4 terms in CP by 

@kzA17A2, * ' - , A k  ( 1 < 4 < n ) .  

Denote by Kk the ( d  + k)-dimensional linear space over K with basis u, ,  . . . , u d ,  y r , .  . . , 
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y4. Similarly for the others. Then 04 is clearly irreducible, and 

l ? k = ( u l , " ' , U d , q l ,  . ' . , q k ) ,  

when consitleied as a point i n  K:+k, is a generic point of CPk while A'k is the generating field 
of 04. 

We shall prove by induction on 4 the following two assertions: 

1 4 .  ?q-, is not an extended zero of Ck,,. 

2r.. If Rk E K [ u , ,  . . . , t l d ,  y , ,  * .  * ,  y k ]  is already reduced with respect to 44 and ijq 
is a n  extended zero of R k ,  then K k  is identically 0. 

AS CqIl . i lCh'1uI ,  *.. ,  u d ,  y l ,  ..-, y k l  is known to be reduced with respect t o 4 4  and 
is + 0 ,  so 1 k + ,  is a consequence of 2 k .  

Suppos: 2 4 _ [  has already been proved. Consider any R,+ satisfying the conditions in 24. 
Write Re as  a polynomial in yk, 

Rk = S"))i  + S,yi- '  + . . . + S,, 
in which Sj E K [ u , ,  .. ., ud, y,, . .  ., yk- , ]  with r < mk. Substitute yl, . . - ,  y t - ,  in S; 
by q,, .. ., q k - 1  with the resulting Si as g j E  K4-,. Set 

K"k = $y;  + s',yi-' + . . . + g, E KL,[  y k ] .  
M 

Ry hypothesis $ 4  is an extended zero of Kk = 0. As r < mk and 94 is an extended zero of 
the irreducible polynomial A4 in Kk-lr  gk should be identically 0 and so .!& = 0, - .  * , 8, = 

0. As Rh is reduced with respect to c P ~  so that each S j  is reduced with respect to CPk~.,, 
by induction hypothesis 2 4 - 1  we have necessarily S; = 0 so that R4 == 0; i .  e., 24 holds true. 
I t  follows that l h + ,  is also true. The above proof is clearly valid for 2, while 1, is quite 
evident. Consequently 1 4  and 24 are true for i( - 1, 2,. . . , n. 

- 

It is now easy to complete the proof of Lemma 3 as follows. 

Let the remainder of I: with respect to Dn - CP be R ;  then we have the following re- 
mainder formula 

Cib. . .C>;F = Q I A ,  + . . * + ,On,,! + R .  

Suppose R = 0. Since f j  is an extended zero of all A:s while by I t  it is not an extended 
zero of any Cko, so by the formula above it should be an extended zero of F .  Conversely, 
if ij is an extended zero of F ,  then by the same formula f l  'should also be an extended zero of 
R.  By 2. we have necessarily R = 0. 

Lemma 4. 

This completes the proof. 

Lct the ascending set 

@ : A , ,  A , ,  ' .  ' 2 Am 

be irreducible w i f h  a generic point 

? = ( u l ?  " ' , u d ,  $1, ' * * 3  7.1 
a$ brforc. I f  the  polynomial F E K [ u , ,  .. ., u d ,  y , ,  * *  ., y.1 has its remainder # 0 with 
respcct to  @, thcn in K [ u , ,  . . . , t i d ,  y , ,  . . . , y.] there are polynomials G and Q j ,  i = 1, 
. . ' . ? I  such that  
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ond thai 

C ( f >  f 0 .  

Proof. Omitted. 

Given an irreducible set Q as above, let 9 be the set of all polynomials in K [ u , ,  - - - ,  
ud,  y,, y . ]  for which the remainder with respect to Q is 0. By Lemma 3 ,  this set will 
form clearly a module. By the Hilbert basis theorem, there will be a finite number of polyno- 
mials in Q, such that any polynomial of P is a linear combination of these polynomials with 
polynomial coefficients. We may add the Ajs of Q into this finite set and denote the enlarged 
finite set by Do. By Lemma 3 this polynomial set will have clearly Q as its basic set and 
ij as an extended zero. 

Let G be any polynomial with ij as an extended zero; then by Lemma 3 G has its re- 
mainder = 0 with respect to @. By the construction of Qo, G is a linear sum of polynomials 
in Do so that G = O/Qo. It follows that any extended zero of Qo is a specialization of or 
that Qo is an irreducible polynomial set with ij as a generic point. We thus get the following 

Any irreducible ascending set Q is the basic set o f  some irrrducible poly- Theorem 1. 
nomial set Do, 

The above proof showing how to get an irreducible polynomial set Qo from a given ir- 
reducible ascending set Q is based on the use of the finite basis theorem of Hilbert. As 9 is 
transfinite, and the existence of a finite basis depends on the axiom of choice, only the exis- 
tence of such an irreducible polynomial set Qe has been actually proved. However, there does 
exist some mechanical procedure to produce iii a finite number of steps such an irreducible 
polynomial set Qo consisting of a finite number of polynomials. In other words, we may 
strengthen the above theorem to the following form: 

Theorem 1‘. There exists some mechanical procedure for any irreducible ascending set 
Q which will  prrmit to determine in a finite number of steps a finite number of polynomials 
including those of Q that form an irreducible polynomial set Qo with any generic point of Q 
as its generic point. 

The proof of the constructive Theorem 1’ is not a simple one. As in applications the 
mere existence of such an irreducible polynomia! set Qo will already be sufficient, as guaran- 
teed by the Hilbert basis theorem, we shall satisfy ourselves in merely stating the theorem while 
putting aside the proof. 

The next problem to be studied is the decomposition of a polynomial set or the correspon- 
ding algebraic variety into irreducible components. For this purpose let Q, ij and Qo be as 
before. we have shown that the irreduciblity of Q is a sufficient condition for Q to be the 
basic set of some irreducible polynomial set Q, with the same generic point as Q which 
can even be determined in a mechanical manner in a finite number of steps. To this we now 
give the following supplement: 

Lemma 5. Let the basic set Q of a polynomial set A be irreducible with the class of 
each polynomial A ;  in Q being > 0 .  Denote the initial of A ;  by I ; ,  i 5 1 ,  . . ’, n .  I f  
any polynomial in A has its remainder 0 with respect to 0, then A has a decomposition 
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I A I  = I Q o / U / A + Z , I U . . . U I A + Z . I ,  

i n  which Qo or the  corresponding algebraic variety IQ,/ is irreducible. 

Proof. For such a polynomial G in A or not with its remainder 0 with respect to @ we 
would have, for some J, 2 0 and 0, E KLu,, . .- ,  ud, y , ,  . .., y.1, 

I ; I - . . I ~ G  - Q,A,  + - . *  + QA..  

By the construction of Om, G should be a linear sum of polynomials in ffo so that any ex- 
tended zero of Qo should be an extended zero of G and hence an extended zero of A .  Con- 
versely, any exLended zero of A may be considered an exrended zero of Ais. Hence by the 
above formula it should be an extended zero of either any such G or some I;. In other 
words, it should be an extended zero of Qo or some A + I;. Thus we have the decomposi- 
tion as shown in the lemma. 

Lemma 6. Let  A ,  0 be as in L e m m a  5 with  A being irreducible. T h e n  

A =Qo or IAl  - IQ,/. 
Proof.  

by definition that 
Let the initials of the polynomials in  4 be I ; ,  i = 1, . . . , n .  Then it is c!ear 

IA + Ill U. . .U lA  + Z.1 
The decomposition given in Lemma 5 can therefore be written in  the form 

[ A  + I , - * - Z . I .  

I A I  = IQoI U In + f , * . . I . / .  

As the generic point of @ is also a generic point of S o  but cannot be any extended ‘zero of 
I , .  * .I,, so I Qgl C I A + I,. * - I ,  1 .  If A has some extended zero which is not an extended 
zero of .SO, it should be an extended zero of A + Z,. - -Z .  so that we shall have \ A  + I ,  
* . * I .  1 C 1 Qo I . In  this way I A I would have an uncontractible decomposition contrary to the 
irreducibility hypothesis of A .  Hence we should have I A I C I .S, 1 . As conversely we should 
have / Q o / C / A / , s o  \ A ]  = IQol, Q.E.D.  

Consider now an ascending set 4 as before but with @ not necessarily irreducib!e. Then 
there will be some such that 

@k-I:Al> A , ,  ” * >  Ak-1 

is irreducible, with 

?a-1 = ( U l ?  ’ ’ ‘ 7 ud, 7 1 9  ’ ’ . q k - I )  - 
as a generic point, and that the polynomial A4 got from A4 by substituting q,, . . . , q4-, 

for y , , ‘ .  . ,y4-,  is reducible in  K k - , l y k ] ,  where Kk-, - KO(?,, .. ., qk-,). Le: the ir- 
reducible factorization of 24 in  K k - , [ y 4 ]  be given by 

28 - g l * . ’ g h ,  

in  wh‘ch each g ,  € K k _ , [ y a ]  is irreducible, and h 2 2.  As in gj the coefficients of powers 
of yk are all elements of Kk-, and can thus be expressed as the quotients of two polynomials 
in u,, * .  . ,ud, q,,. - . , qk-,, multiplying by a ccrnrnon multiple of the denominators we would 
get an expression of the form 
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* 
in which D € K [ u , ,  ..., z i d ,  y l ,  *.. ,  y k - l l ,  G , E K L U I ,  - . - ,  ud, yI ,  . * * ,  y k ] ,  while U ,  
Gi are got from D, Gi by substituting qI, . . . , qk-l for y , ,  . . a ,  yk-1  and are polynomials 
in  K q - , [ y k I .  We may also consider D as  already reduced with respect to @&I. Similarly we 
may consider Gj as  already reduced with respect to @Q. 

Y 

Write the polynomial G I - .  *Gh - D A ,  in  a form according to pawers of y k ,  say, 

in  which B j E  KLu,,  . - . ,  u d ,  y l ,  - . - ,  yk-']. Denote by bj the element in  Kk-, = K O  
(ql, . - 0 ,  qk-?_got from Bj by substituting q,, .. ., qk-l for y I ,  . * * ,  ~ k - ~ .  Then we have 
bj = 0 since DAk = G,...Gq . In  other words, each B j  will have as an extended zero. 
It follows from the proof of Lemma 5 that each B ;  will have i t s  remainder 0 with respect to 

the irreducible ascending set @ k - , ,  so that there are non-negative integers s j , ,  . . * , s;,kw1 and 
polynomials Q j ;  E K l u , ,  . . * , u d ,  y l ,  . . * , y - , ]  verifying the relation ( C j o  = I;) 

W Y  

k - I  

I;;l. . . Isl*k-1B.  k-1 I = C Piin;. 
ir I 

Set s; = tnax(sj;); we then get 
i 

6 - 1  

I;~-**r~%'(Gl-..Gh - D A k )  = p,,?; 
; = I  

or 

in which Qi are polynomials in u,, . . * , u p ,  y, ,  . . . , yk.  

From the above it is easy to ger the following 

Lemma 7. Let the polynomial set A have @ as basic set, and let the class of term 
Ai be > 0 and the initial of .4i be li, i = 1 , . . . , n .  Suppose that @ is reducible, so thar 
there is some 4 for which the ascending set #&-, formcd by the first trrnts of @ is 
irreducible with while ihe polynomial got from Ak by substi- 
tuting i f k - ,  for the corresponding variables is reducible wiih an irreducible factorixation in fo  
polynomials G,, . ' . , Gh. Then there is a decomposiiion of the fotm 

k - 1 
E Kk-l as a generic point, 

/ A /  - \ A +  I , I ' J - . - U \ A +  I q - I \ U \ A + G , \  

U - . .  U IA + G h I .  

Proof. Any extended zero of either a A+], or a A + Gj on the right-hand side of the 
above expression is clearly also an extended ze:o of A. Conversely, any extehded zero of A is 
also an extended zero of all A,'s. From the expression just &fore the lemma it is also an 
extended zero of some l i  or some Gj, i. e. one of some A + l i  or A + Cj .  This proves 
the decomposition formula. 

Lemma 8. Let A be a polynomial sei with 0 as basic set as an Lemma 5 or k m m a  
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7 .  Then the basic srt of any polynomial set A + I i  or A + Gj appearing in  the right-hand 
side of thc dccomposiiions of these letnr-as will have its ran t  lower than that of 0. 

Proof. As each 1; is already recluced with respect to 9 and each Gj is assumed to be 
reducetl with respect to 0 8  snd hence also reduced with respect to 0, the present lemma 
is an immediate consequence of Lemma 3 of Section 2 .  

Lemma 9. Let the polynomial set A bc irreducible with an irreducible ascending set 

@ 0 s  its basic set. Suppose olso that any polynomial in a polynomial set A‘ or A has its re- 
moindLr 0 w i t h  wspcct to 9. Then 

I A I  U I A ’ I  = IA’I, 

or the dccornpositioti i A 1 I I 1 A 1 ’ is rontrncrible. 

Proof. By Lenma 6 we have lQo \  = 1 A l .  By hypothesis any polynomial G’ in A’ has 
i ts  remainder 0 with respect to @. It follows therefole that the generic point of 0, or t h  

generic point of Qo, is an  extended zero of G’, whence G’ = O/Qe. Consequently A’ = O/Qo, 

or I Q o l C I A ’ l ,  or ( A l c l A ’ I .  This proves the lemma. 

From the above lemmas and also the preceding section we get the following mechanical 
procedure for getting the uncnntractible irreducible decomposition of a polynomial set. 

Let the given polynomial set be 1. By the well-ordering theorem given in the prece- 
ding section, we can, in following some mechanical procedure, successively enlarge the given 
set 2’ to get a sequence of polynomial sets steadily increasing as shown below: 

x = H , C X , C . . * C X ,  - A .  

These polynomial sets are actually mutually equivalent, viz. 

C = X , Z S : C , %  - * .  % C q = A .  

Two cases may appear. In the first case A turns out, in a certain step, to be a contradictory 
set consisting of a single term which is a non-zero element in K .  In  this case 2’ itself is a 
contradictory set with no extended zeros. Hence it is only necessary to consider the second 
case. In that case A has a basic set 

@:A17 A27 * . * , A n 7  

with I , ,  . . . , I ,  as initials and class of A, > 0. Moreover, A will possess the following pro- 
perties: Any polynomial in A will have its remainder 0 with respect to @, any extended zero 
of X is also one of 0, and any extended zero of @, if not one of any initial l i ,  is also an 
extended zero of 8. 

Now according to the beginning part of this section, there is some mechanical procedure 
to verify whether @ is reducible, or whether Aj‘s are reducible in the succcssively extended 
fields K i - , .  We have two subcases again. 

In the first subcase @ is irretlucible. By Lemma 5 there is a decomposition 

= I Q , l U ~ ~ + l , I U . . . U ~ ~ + l . ( ,  
in which QQ is irreducible while al l  A + l i  have some basic sets of ranks lower than that of 
A .  We may then consider each A + 1; as a new polynomial set I: and proceed again as in 
the beginning. 
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In the second subcase @ i s  reducible. Then we have by Lenima 7 some decomposition 

= I A + I , 1 U . . . U i A + Z ,  - , I U I A + G , I U . . . U / A + G , l ,  

in which each A + I ,  or A + Gj has some basic set of a rank lower than that of A .  We 
may then consider eacb A + Z; or A + Gj as a new polynomial set and proceed again as 
before. 

Whatever the subcase may be, we may take each A + Zi or A + Gj as a new polyno- 
mial set Z’ in succession and proceed as before t o  get a sequence 

z‘ = z= .Pi z= 1 .  .xi, E A’.  

In the case that A’ has a basic set consisting of a single term which is a non-zero element 
of the field K ,  we may remove IA’l or the original IA + Gjl or \ A  + I ; [  from the de- 
composition. In the contrary case I A’ I will be decomposed further into several algebraic varie- 
ties with basic sets of rank lower than the preceding ones for the corresponding polynomial 
set, plus possibly one with corresponding irreducible polynomial set Q ~ P  having an irreducible 
ascending set @’ as a basic set. In this way we will get a further decomposition of or 
I HI itself. In the decomposition there will appear irreducible polynomial sets of the form Qe, 

ffog as well as those of the form A’ + I’ or A‘ -4- G ’ .  For the latter ones we may deconi- 
pose them further as before. 

As in each step for further decomposition the polynomial sets A’ + 2 ’  or A’ + G’ in- 
volved have their basic sets of ranks lower than the preceding ones, the decomposition should 
stop in a finite number of steps owing to the well-ordering theorem of Section 2 .  Conse- 
quently, in a finite number of steps we shall arrive a t  a decomposition of the following form: 

in which each 0, is an irreducible ascending set, and QQ; is the irreducible polynomial set got 
from 0, as described in Theorem 1. 

According to the above construction, each 1 Q,, 1 cannot be a subvariety of any 1 So, 1 , 
i > i, but we cannot say that some JQe, I cannot he a subvariety of any i < i .  
This is because we apply only Theorem 1 which asserts the mere existence of D O i  from CP,. 
If we take into account Theorem 1’ which asserts a mechanical procedure for the concrete 
determination of 4; from @ j ,  then we may use Lemma 9 to prove if any /Qqi l  is a sub- 
variety of a preceding l Q o j l ,  j < i ,  or not. It Eollows that, on the basis of Theorem l’, we 
can get a noncontractible irreducible decomposition of 1 P 1 in a mechanical manner. 

IQa, 1 , 

In a word, we get finally the following 

Theorem 2. There is a mechanical procedure which permits to determine for a poly- 
nomial set X, in a finite number of steps, a noncontractiblc irreduciblc decomposition of the 
fo rm 

IPI = IQv , / i i * . -U IQu , , I ,  
in which each ‘Y; is on irreducible ascending set of Qv,. 

For the application to mechanical theorem proving, it is however actually not necessary 
to carry out the decomposition up to the end to arrive at a noncontractible one. In fact, it 
is usually sufficient to have an irreducible deccrnposition which may be a contractible one. 
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Hence for the applications the existential Theorem 1, but not necessarily the constructive The- 
orem l', will he quite sufficient to meet the purpose. 

$4 .  PROOF OF THE ALGEBRAIC MECHANIZATION THEOREM 

W e  give below tge proof of the Mechanization Theorem in the algebraic form as descri- 
bed in Section 1. For this we first make some preparations. 

Given a set of variables xl, . . . , XN arranged in a definite order: 

XI-+,+. . . + X N ,  

and given a basic field K of characteristic 0 and an ascending set of polynomials in K [ x , ,  - . . , X N I  9 

Q:Al, A , ,  ' e . 9  An, 

for which the classes satisfy the relations 

0 < PI < P2 < ... < P., 
we rewrite each x p i  as y, and the other x's as u,, . . * , u d  with d = N - n .  Then A i s  can 
he put in the form 

ni = c,,y:l + cilyyl-'  + . . . + C i m , ,  

in which 

C , j E K [ u , ,  ~ ~ ~ , u ~ , y I ,  . . - , ~ ; - ~ l ,  i =  l , . . - , n ; i = o ,  1 , . . * , m , .  

The initials I ;  of A ;  are then just the polynomials I ,  = C;, E K [ u , ,  3 . . , ud, y l ,  * .  . , ~ ; - ~ 1 .  
W e  call each inequation 

I ,  f 0 

a non-degmcracy condition. 

Let a polynomial G E K [ u l ,  . * . , ud, y,, . . *, y.1 be given. Construct the remainder R 
of G with re5pect to @. Then by the remainder formula we have 

I ; l . . . I ? : G  = Q,A,  + . . .  + Q.A. + R ,  

for certain non-negative integers 5 ;  2 0 ,  with each Q; E K [ u l ,  . . -, ud, y, ,  . . . , y.1. 

Wc sh;lll investigate the necessary and Sufficient conditions such that 

G = I 1  

may he deduced a s  a consequence of the equations A ;  - 0, i - 1, . . . , N. We shall prove 
that, under the subsidiary non-degeneracy conditions I ;  # 0 and under the hypothesis that Q, 
is irreducible, the necessary and sufficient condition is just R = 0. Whether the set @ is irre- 
ducible or not, the sufficiency of the condition is quite evident from the above remainder for- 
mula. So we have the following 

Theorem 1. Let Q, A i ,  I ; ,  G be as above and R=O; ihen under the non-degeneracy 
condiiions 

I ,  # 0 ,  i = I ,  . - a ,  n ,  

G 5 0 is a consequence of A ,  = 0,  i = I ,  . . ., n ,  wheiher Q is reducible or nor. 
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If (D is irreducible, under the non-degeneracy conditions for G - 0 to be a consequence 
of A ;  - 0, i = 1, . . *,  #,the condition R - 0 is not only necessary but also sufficient, as 
in the following theorem which follows directly from Lemma 3 in Section 3 .  

Theorem 2. Zet  @ , A ; ,  I ; ,  G be as above and @ be irreducible. I f  under the 11on- 

degeneracy conditions I ;  f 0 the equation G - 0 is a consequeiice 01 the equations A ;  = 0 ,  
i = 1, 1 . .  , n ( for  a certain extension field of K ) ,  then the remainder R of G with respect 
to (D is 0 .  

Remark. The proofs of these theorems depend very much on the theory developed in 
Section 3 and are rather involved. If we restrict ourselves to real field as i s  the case ot ordi- 
nary Euclidean geometry and pay no attention to the constructive aspects, then the proofs will 
he much simpler. 

We now give the proof of the Mechanization Theorem of unordered geometries in its al- 
gebr:tic iorm. 

(;iven a geometrical statement (S) in a certain unordered geometry, our object is to give 
a mechnnical method to decide whether (S) is true or not. For this purpose we choose first 
amcoordinate system, express the points involved by coordinates, denote tliece coordinates by x i ,  
and arrange them in a certain definite ortier: 

Xl+X2+ * . . +X” 

Next we translate the various geonietrical rel:it;ons in the statement (S) into algebraic relations 
of these coordinates. Then the hypothesis in the statement (S) will be trnnslnted into a system 
of equations 

F ,  = 0 ,  . . .  , I : ,  = 0 ,  

in which F i  ure polynomials in K [ x , ,  . . ., X N ] ,  with k’ the basic field of characteristic 
0 associated to the geometry in question. Actually all these polynominlc are with rational or 
even integer coef[icients. The conclusions of the statement (S) will then be turned into ail-  

other system 01 equations 

GI = 0 ,  .-., G, = 0 ,  

with all Gj being polynoniials in K [ x , ,  . . . , Z N ]  , also with coefficients. 
Without loss of generality we may suppose that there is only one such polynomial G j ,  denoted 
simply by G henceforward. The polynomials Fj are then cnlled hypothesis polynornids of the 
statement (S), and the Gj‘s or G the coiirlusion polynomiul(5) of ( S ) .  

rational or integer 

The proof of the Mechanization Theorem consists in exhibiting a niechanical procedure 
which permits to determine first in a finite number of steps a set of polynomials D,, . . * ,  D ,  
for nowdegeneracy conditions, with all Dk in K [ x , ,  * *  ., XN], which will actually be all 
with rational or even integer coefficients. Secondly the same mechanical procedure will also 
permit to decide in a finite number of steps whether under the non-degeneracy conditions 

D, # 0, - . * ,  D,# 0, 

the equation G = 0 will be a consequence of F ,  = 0 ,  . . . , F ,  = 0. 

With the language of algebraic geometry, the pronf of hlecli:~nization Theorem cnn alto 
be reqtated in an alternative form in the following milnner: 
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Denote the set of hypothesis polynomials F i  by L: = { F i } .  The set C defines an 
algebraic variety I 21 with dimension d ,  viz., the dimension of any characteristic set of C. 
The proof of the Mechanization Theorem consists then in exhibiting a mechanical procedure 
which permits to determihe a set of polynomials D,,  . . ., D, such that in adjoining each 
Di to C ,  the resulting polynomial set L: + D; will define an algebraic variety I L: + Dil of 
dimension < d. Furthermore, the same procedure will permit to decide, under the non- 
degeneracy conditions D, # 0,.  . - D, # 0, whether G = 0 or not; in other words, whether 
G will be 0 or not on the remaining part of the algebraic variety 121 after removal of the 
true subwrieties I H + Di 1 . 

As briefly indicated in Section 3 ,  we can decompose the a1gebr:iic variety into irreducible 
components, each of which h:ls a n  irreducible basic set @, which determines in  turn that irre- 
ducible component in question, denoted by I. Furthermore, in the case the dimension 
di ol [Qo, 1 is less than the dimension d of 1 XI , then this true subvariety is got from a 
certain previous IQ,;I by adjoining to 9; some polynomial Di which is either an initial Z k  
o r  some GI in the previous notations and IQo, I is a subvariety of I@, + Dil .  We take each 
such D, as a non-degeneracy polynomial. Suppose after removal of a l l  these true subvarieties, 
the remaining irreducible components of dimension d are 

lQe,l, * . . Y  IQ0,l. 
Denote the initials of each @ j  by Z j , , .  . * , Z;, and consider them also as non-degeneracy poly- 
nomials D,b. Now whether G = 0 is a consequence of F ,  = 0, . * .  , F ,  = 0 under the 
‘non-degeneracy conditions D; + 0 ,  Di,, f. 0, is just the same as whether G = 0 on the re- 
maining parts of 1 Qex 1 , . . * 1 &, I after removal of the components I @ j  + D; I and those 
defined by D,:= 0. By Theorems 1 ,  2 above this can be decided by whether the remainders 
of G with respect to @; are all 0. It furnishes the mechanical procedure required and thus 
gives the proof of the Mechanization Theorem in question. 

The above mechanical procedure of theorern-proving is theoretically quite simple in appe- 
arance. However it would be quite difficult to apply this method to the proof of concrete the- 
orems. The reason is that the irreducible decomposition of algebraic varieties depends on fac- 
torization of po!ynomials which, though theoretically almost self-evident, is a rather difficult 
problem i n  practice for which no method of high efficiency is available even up to now. 
Consequcntly, the above method is entirely non-feasible in practice. Fortunately, for the theorem- 
proving i n  geometries, we usually hope that the theorem in question is really a true theorein 
and we hope to prove i t  true in an affirmative manner. For this purpose it is enough to 
prove, by Theorem 1, that the remainder of the conclusion polynomial G is 0 with respect to 
some ascending set,whether irreducible or not. Therefore, to each concrete theorem whose 
truth is to be tested and to be proved in the case it is really true, we may apply Theorem 1 
directly. If by computation we know that G has its remainder 0 with respect to the ascending 
5et, then the theorem in question is true and the computation furnishes actually a proof of this 
theorein. In this case everything is done. Only in the case that the remainder is not 0 should 
we ask further whether the corresponding ascending set is irreducible or not. For this reason 
we shall modify the above mechanical procedure of proof to ‘the following form which has 
been proved to be very efficient in practice (some examples will be given in the next section). 

The modified mechanical procedure runs somewhat as follows. 
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Consider a set 9 of polynomial sets and a set A of polynomials, where A is called the 
the set of hypo- dcgcnerocy set. In the outset, 9 will consist of a single polynomial set, viz. 

thesis polynomials 

c = {.F,, . . . , F , } ,  

and the degeneracy set will be an enipty one, viz. 

A =  Pi. 
During the procedure we shall increase or decrease the number of polynomial sets in 9 and 
also adjoin non-degeneracy polynoniials into A to get the f ind  

A = { D , ,  a * * ,  D,} 
as required. 

Step 1. Let 9’ be non-empty. Then take arbitrarily a polynomial set 2 from 9, and 
remove it from 9 to get a new 9. Using the well-ordering theorem in Section 2 to en- 
large X to successive polynomial sets as shown below: 

X = X I C X 2 C . .  . c X q  = A .  

If A has an element which is a non-zero number in k’, then A is a contradictory set. In 
this case the hypothesis in the statement ( S )  is contradictory in itself nnd the procedure will be 
stopped. In the contrary case let the basic set of A be 

@ : A , ?  A , ,  ‘ 0 . 3  An. 

The initials of A ;  will be denoted by I ; .  By construction, any polynomial in A except i l i  
wlll have its remainder 0 with respect to @. In that case we have also 

dimIZ1 = dim@ = N - n = d. 

If Step 1 is just the first step from the very beginning of the whole procedure, then the 
dimension d will be recorded for future reference. 

If Step 1 is the successive step from the other ones during the procedure, then we rom- 
pare the new dimension d with the previous d recorded in the beginning. 

If this new d =  the previously recorded d ,  then we adjoin the initials Z j  to A to get 
some enlarged new degeneracy set A, and proceed to Step 2. 

If this new d < the previously recorded d ,  and the present X is obtained as some A + 
Z i  or A + Gj during Step 3 below, then we adjoin this Z; or Gj to A to get a new A. We 
then return to Step 1 and proceed as before. 

Step 2. Find the remainder R of G with respect to 0. 

Suppose R = 0. If in 9 there is not any more polynomial set, then the statement (S) 
is true under the non-degeneracy conditions 

D q f O  ( D a C A ) ,  

and the procedure will be stopped. In this case the theorem is true and is proved under the 
non-degeneracy conditions. Otherwise we return to Step I and proceed again a $  before. 

Suppose R + 0. Then we proceed to Step 3. 
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Step 3.  Check the irrec!ucibility of the basic set @. 

Suppose that @ is irreducible. Thh as G has its remainder + 0 with respect to @, by 
Theorem 2 under the non-degeneracy conditions 

D k + O  ( D k E A )  

statement (S) is not true; the procedure will then be stopped. In this case the theorem is not 
true under the above non-degeneracy conditions. 

Suppose that @ is reducible. Then there will be some decomposition 

In/ = in + [,I U... U I A  + Ir-11 u In + GI( U..* U / A  -f- Ghl. 

Consider such A + Z j  and A + G, as new polynomial sets 8, 
get a new enlarged set 9’. Then return to Step 1 and proceed again as before. 

and adjoin al l  these to 9 to 

According to the previous sections, the above procedure should stop in a finite number of 
steps. In this way we get a final degeneracy set 

A = tDk) 

and one of the following three conclusions should be true: 

1)  Under the non-degeneracy conditions 

D k + O  ( D 4 E A )  

the hypotheses in the statement (S) are contradictory in themselves. 

0 ,  the statement (S) is true, or, what is the same, the theorem in question is true. 
2) Under the above non-degencracy conditions, or under the additional hypothesis Dk + 

3 )  Under the above non-degeneracy conditions, or under the additional hypolhesis Dk + 
0 ,  the statement (S) is not true, or, what is the same, the theorem is not true. 

Generally speaking, the degeneracy conditions 

D4 = 0 

are not worth any more consideration. If there is some necessity to consider such a degener- 
acy condition Dk = 0, we may simply take it as a new hypothesis to be adjunct to the sti- 
tement (S), i.e., we consider { F , ,  . .., F, ,  0 4 )  instead of { F , ,  * * a ,  F , }  and then pro- 
ceed as above. 

The above mechanical procedure is very feasible. W e  have implemented it on small com- 
puters, proving and thus also discovering quite non-trivial theorems in this way. The next 
section will describe a few illustrative examples. 

95. PROGRAMMING AND EXAMPLES. 

l t  is clear how to program according to the procedure described in the preceding sections. 
In fact, programming has been done and various theorems have been proved on rather small 
computers. Before we explain certain theorems proved in this way, let US first add some re- 
marks. 

First, we may lessen the labour of computation by modifying slightly the definition of the 
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basic set and characterisric set. Thus, we shall define an .  ascending set 

& : A , ,  A , ,  * * . , A ,  

to be one in loose sense or in cumt sense i n  requiring only that each A ;  in the set be 
reduced merely with respect to the variables occuring in the leading term of A i  alone. ’The 
notions of basic set, etc. derived in this way are then also said to be in loose sense or u m t  
sense. This will not affect the final conclusions but will greatly simplify the programming and 
the computation Thus. the polynomial set corresponding to the hypothesis of a theorem in the 
ordinary geometry’ is usunlly already in the form of an ascending set and hence also a basic 
set in the above loose or weak sense. In the worse case a few strokes of simple hand compu- 
tations may be required. The procedure of well-ordering is not necessary in general because it 
is quite laboursome. 

Secondly, we are only interested in  arriving a t  t r m  theorems so that only the sufficiency 
part of our criterion will be considered in the programming. Thus, if the remainder of the 
conclusion polynomial with respect to the hypothesis polynomial set, supposed already a basic 
set in loose sense, is zero, then the theorem is true generically under the non-degeneracy con- 
ditions furnished by the initials of the hypothesis polynomials and we have achieved our aim. 
Only in the case of non-zero remainders is the truth of theorem doubtful, and further investi- 
gations about the reducibility of the polynomials may then be required. 

Finally, we remark that though the hypotheses as well as the conclusion polynomials usual- 
ly have only a few terms, the polynomials got successively during the reduction in the deter- 
mination of the remainder may rise up quickly to hundreds and thousands of terms. To avoid 
the appearance of this phen?nienon the following branching device has been adopted in our pro- 
gramming. Thus, let some polynomial g of the form (mp = dcgrec in yp  of A i  of class p 
in a?) 

g = g,ypmp-1 + g,y;P-’ + * * * + g m p - l ,  

in which each gi is of class < p, appear during the successive reduction of the conclusion 
polynomial. Then, instead of verifying further whether the remainder of g with respect to & 
is zero, we may verify this for each gi in turn. Furthermore, we shall use an index set 
[TCDI  to indicate the complexity of a polynomial, where T is the number of terms, C the 
class, and D the degree in the leading variable yc of the polynomial. The successive reduction 
of the conclusion polynomial up to the final remainder which constitutes in fact a proof of the 
theorem in the case of zero remainder may then be clearly shown by a flowing chart of the 
index sets. As a simple example, with suitable coordinates the well-known Pappus Theorem will 
have 6 hypothesis polynomials already in the form of a basic set in the loose sense whose 
index sets are-: 

[ 4  7 11, [ 3  8 I ] ,  [ 4  9 11, [3  10 11,  [ 4  11 I ] ,  [ 4  1 2  1 1 .  

The conclusion polynomial has an index set [ 6  12 11 and the flowing chart of the reductions, 
as done on a computer, runs as follows: 

[ 6  1 2  11 - [8 11 11 -112 1 0  11 -[16 9 11 - 
The final zero means that the theorem is true (of course generically only) and is proved with 
the above running chart as a proof. Remark that different choices of coordinates will give rise 

118 8 I 1  -116 7 11-0. 
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to different running charts which correspond to different proofs. 

We have applied our progrnm to the proof of various famous theorems in the ordinary 
geometry: theorems of Keukou, Pnppus, Pascal, Simson, Feuerbach, Morley, etc. Perhaps the 
proof of the theorem of Morley is the most difficult and is quite instructive in itself. So let 
us state the theorem in full below. 

Theorem of Morley. For a triangle AlAZA3 the neighbouring trisectors of the three 
angles of the triangle will intersect to form 27 triangles in all ,  of which 18 are equilateral. 

In appearance this theorem is out of the reach of our method which works only for unor- 
dered geometries without notion of order or only for theorems not involving order relations 
in nn ordered geometry. Thus, in an unordered geometry, there is no notion of rays and an 
angle cannot be defined in the usual way as two rays emanating from a common point. 
However, we can define an angle L(l,, 1,) simply as an ordered pair of lines I,, I , ,  and 
attribute a magnitude T ( l l ,  1,) to it corresponding to the tangent function of the angle in 
the case of ordinary geometry. 

We may now define a bisector of the angle L(Z,, I , )  in the unordered geometry as a 

line such that the reflection (well-defined 'in the geometry) of I, with respect to t is just 1,. 
If I,, I, intersect, then t is a line through the intersecting point such that T ( t ,  1,) = 

T(12, t )  corresponding to the ordinary formula L(t, 1,) L(12, t )  or 2 L ( t ,  l,) = 
L(12, 1,)modr. However, in the unordered geometry there may exist two such bisectors for 
an angle and there is no means to distinguish these two bisectors. 

Similar ambiguity occurs for trisectors of an angle. T o  fix the ideas, let us call a line t 
a primary trisector of an angle l ( l , ,  Za) if a formula in T holds which correspnds to the 
ordinary formula 3 L ( t ,  1,) = ,L(12, I , )  mod z. There are 3 such primary trisectors which 
there is no means to distinguish from each other. To each such primary trisector t however is 
uniquely associated a secondary trisector t' such that Z ' ( 1 2 ,  r ' )  - T ( r ,  1,). 

Consider now a triangle A,AzA, .  Let I, be any one of the prirnar) trisectors of the angle 
I ( A , A , ,  A , A 3 )  at vertex A ,  with associated secondary trisector t:. Similarly let t2 ,  ti be a 
primary and an associated secondary trisector of the angle L(AaA3,  A z A , )  and t 3 ,  t ;  be those 
of the angle L ( A , A , ,  A , A z ) .  Let t , ,  t; intersect at  a point A , ,  in notation A 4  - t ,A  t i ,  
Similarly let A ,  = t 2 A  t i ,  A ,  = t 3 A  ti. The triangles A4A5Aa are clearly 27 in all. The  
Morley theorem asserts that 1 8  among them are equilateral. 

First of all we have to settle the problem how the 18 triangles should be chosen. For 
this let us denote by 6 an angle for which the T-value has square - 3. In ordinary geo- 

metry this means6 = 2- mod 2 z. Remark in passing that in an unordered geometry it is 
3 

not legitimate to speak about + 2/ or - d3, Now we choose the primary trisectors 
t,, t2 ,  f 3  such that some relation in the T-values corresponding to the ordinary formula 

.lr 

L(tl, A , A z )  + L(h, A2A3) i- L ( r 3 ,  A 3 A , )  = 8 mod 2% 

holds true. Under this condition the number of triangles AJ15A6 is then reduced to 18 which 
will be proved to be all equilaternl. 

Adopting now a certain coordinate system with coordinates of various points and the T -  
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values of various angles involved in the theorem as x i s  arranged in a certain definite order, 
we shall get 3 set of hypothesis polynomials Hi, 18 in number, and a certain conclusion 
polynomial g. Without eitering the details we merely list the index sets of various polyno- 
mials below: 

For hypothesis-polynomials: 

[2 3 11,  [ 3  4 11,  [4  5 11,  [ 3  7 11,  [ 3  8 11, [4  9 11,  [ 3  10 11 ,  
[2 11  1 ] , [ 2  12 21, [8 13  11, [ 4  14 11,  [4 15 1 ] , [ 4  16 11,  

[2 1 7  11 ,  [S 1 8  1 1 ,  13 19 1 1 ,  [4  20 11 ,  [4 21 11. 
For conclusion-polynomial : [ 4 2 1 1 1. 
To verify the theorem by means of our program we remark that separation will occiir 

when we come to the point after the reductions with respect to H9 and H,. The following 
is a rough scheme about the successive reductions with index set of successive polynomials indi- 
cated. 

(1') C,[4 21 11 - [1208 12 11 -[592 11 21 -[376 6 151 - i19 5 31 -0 

I I 
I+ C,[616 11 21 - [375 6 151 --- [20 5 31 + O  

I I=! 6 14]+[26 5 31-0 
L C 3 [ 3 5 5  6 14]-[23 5 31 -0 I 

I 
I 

L C ,  ... I+ C' . . . 

I, CZ5[54 6 31--+"29 5 

I-+ Cn[25 6 21-0 

I 
31 -0 I C,,[53 6 31-[28 5 3 1 - + O  

I 
L C , [ 2 S  6 21 -0 

Remark that each arrow in the above scheme consists of a number of successive reduc- 
tions. For example, the arrow marked (1) is detailed as follows. 

C0[4 21 11 - 1 8  20 11 - 14 19 11 - [18 18 13 --f 136 1 7  11 - [36 16 11 "66 15 11 -1132 1 4  11-1236 1 3  21  -[832 13  11 
-------+ [1960 12 31 -+ [1208 12 11. 

Thus a certain polynomial of 1960 terms occurlr in the whole procedure of reductions. If me 
do not adopt separation devices at convenient places in selecting suitable coordinate systems and 
coordinates of pints ,  the polynomials during the procedure may quickly grow too large to 
be admitted even by a big computer. For the present case as all remainders (28 in all) are 
zero, the. Morley theorem is true and the above scheme furnishes such a proof of the theorem. 

We add finally that the above scheme shows that we have indeed proved a theorem a little 
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more general ,than the original one. For the same proof holds also in the ca9e of certain unor- 
dered geometries like complex geometries, for example. In such geometries isotropic lines inay 
exist. However, if we restrict our theorem so that no isotropic lines are involved in the stnte- 
ment, then the mechanical proof applies still. 

AS a further example let us consider the problem of determining all triangles A B C  with 
two equal bisectors t A  and t g  of angles A and B. It is well-known, but is quite non-trivial 
to prove, that the triangle A B C  should be isoceles ( A C  = B C )  if the two equal bisectors in 
question are both internal ones. Mr. S. C. Chou has raised the question of proving this fact 
by the mechanical theorem-proving method. Now it is easy to see that A C  - B C  would not 
be true (generically) if one of the bisectors i A ,  ts is an internal and the other is an external 
one. Chou and I have tried on the computer and found the rather unexpected result that A C  
= B C  is still not true if the equal bisectors are both external ones. 

In  principle the above problem is again out of reach of our' method. However, in view 
of thc nature of the problem that the order relations only enter the hypothesis but not the con- 
clusion at 311, our method in combination with that of Seidenberg in reducing inequalities to 
equalities by introducing new auxiliary variables will lead to some information about the final 
results to be found. Thus, Ict us denote by A E  and B D  the two equal bisectors in question 
and by 1 their point of intersection. Take coordinates with 

A = (-1, 0 ) ,  B = ( + 1 ,  O ) ,  I = ( x 2 ,  x , ) ,  C = ( x I 1 ,  x , ) ,  etc. 
Denote a190 the slopes of A E ,  B D  by X I ,  x 5 ,  etc. Introduce a further auxiliary variable 

xi by setting 

x,x5 = - -x i ,  (1 1 

x,x5 = + x i .  ( 2 )  

or 

Equation (1) means that A E ,  B D  are either both internal or both esternnl bisectors which 
will be distinguished by either 

X3XI3 > 0 ,  
or 

x3x13 < 0. 
On the other hand equation (2 )  means that one of A E ,  B D  is an internal while the other 
is an external bisector. 

Consider e.g. the case of equation (1). From the hypothesis including the equality of 
bisectors we get on running the program a set nf equations, with extraneous factors correspon- 
ding to degenerate cases already removed, as follows: 

x,f(.) = 0, ( 3 )  

(4)  

(5) 

( 6 )  

with 
f ( i )  = (1 - X : ) ( x :  - 1 ) y X ;  - 2) - 4 ,  

.xi = x i (  I -- x i ) ,  

( 1  - x: )X3x I3  = 2 4 ,  
etc. 

Equation (5) shows that in the non-degenerate case we have 
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x f <  1. (7) 
Equation (6) shows that we have 

x i <  1 or > 1 

according as the two bisectors A E ,  B D  are both internal ones or both external ones. 

Suppose first xi < 1. Then from ( 4 )  we see that f ( x )  < 0. From ( 3 )  it follows 
that we have necessarily 

X )  = 0. 

This just proves the classical theorem that a triangle with two equal internal bisectors is kos- 
celes. 

Supposc next x:  > 1 so that the two bisectors are both e x t e n d  ones. Then f ( z )  = 0 
will have positive roots of x i  for x i  < 1 so that there are an infinity of non-ismcelcs triangles 
A B C  with equal e x t ~ i d  bisectors A E ,  B D  for which the corresponding point I ( x 2 ,  x 3 )  

will lie on a certain oval defined by the following equation together with ( 7 ) :  

x;  - 4x:(1 - x : )  + 5x;(1 - x i ) )  - 2(1 - x i ) ’  - 4(1 - x i ) 2  = 0. 

The case OE equation (2)  or the case of one internal and one external l!isector can be 
treated in entirely the same manner. We find thus infinities of non-isosceles triailgles with equal 
bisectors one internal and one external for which the corresponding points I will lie on two 
ovals defined by the same equation above with the restriction xf > 1 .  The problem raised 
above is thus completely settled. 

We have also applied our method to the mechanical theorem discovering of ‘‘new” the- 
orems in ordinary geometry. Several theorems have been discovered in this way. We shall illus- 
trate below. 

Ex. Pascal-Conic Theorem 

Suppose we are given 6 points A , ,  . * a ,  A s  on the same conic. Let us call any point of 
intersection A i A j n  AkA! (for i ,  1 ,  4 ,  1 mutually unequal) a Pascal point. Such Pascal points 
are 45 in al! which lie three by three on 60 so-called Pascal lines. These points and lines consti- 
tute a configuration which has been much studied by numerous geometers including Steiner, 
Staudt, Cayley, Ki‘kmaun. However, most of the interesting theorems found by them are of a 
linear character: collinenrity of certain p i n t s  and concurrency of certain lines. Now we put 
the following problem: What theorems of n quadratic character can be found about this confi- 
guration:? In particular, we ask what combinations of 6 among the 45  Pascal points will lie 
on the Snme conic (co-conic for short). Of course we are only interested in such combinations 
of 6 Pascal points lying on some conic not degenerated into two Pascal lines. 

The problem will be studied with further specialization. Consider for example it permuta- 
tion s = (123456)  which will act on the 45 Pascal points. We now ask for what Pascai 
poiiits P the six points P ,  rP, r2P , - .  . , s5P will lie on some non-degenerate conic. By triais 
we see that the only possible points are A , A j A A 2 A 5  or the equivalent ones. Assuming that 
the usual Pascal theorem is known, then this amounts to whcther the hexagons formed of the 
six points sip, i - 0, 1 , - - * ,5 ,  are Pascnlian or not, i.e., whether the three points of inter- 
section of the opposite sides of the hexagons zre collinear or not. Formulating the theorem to be 

222 



proved in this way we verified again on the computer that this is really the case. So we get 
a number.of non-degenerate conics on each OE which lie 6 Pascal points. We call these conics 
the Pascal conics and the theorem thus discovered the Pascal-Conic Theorem. It was first dis- 
covered in 1980 and verified on an HP9835A. 

Of course it is very likely that the theorem is known already in the last century. Moreover, 
simple and elegant proof may also be easily found for this theorem. However, these are nei- 
ther of any interest nor of any importance to US from the point of view of mechanical theorem 
proving. The example shown may well indicate the powerfulness in discovering really non- 
trivial new theorems in various kinds of geometries besides the ordinary geometry, e.g. the 
non-Euclidean geometries, the circle geometries, or geometries of even more modern nature, in 
which known interesting theorems are rare. Even in the case of Pascal configurations we may 
put forward some problems to which our method may give some answer: Are there other conics 
through at least 6 of the Pascal points or touching at least 6 Pascal lines besides those found 
above? Are there any interesting geometrical reiations between these conics and the various 
Pascal points, Pascal lines and other known points and lines of significance ? Are there also 
cubic rclations Letwcen the 45 Pascal points, i.e., are there non-degenerate cubics passing 
through at least 9 out of the 45 Pascal points, etc. Of course innumerable problems can be 
set forth in this way. 
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Let K be a basic field of characteristic 0, and f , , i  = 1, - . . , r ,  be polynomials 
in K [ sl, - . - s,] . Consider the system of algebraic equations 

f ,  = 0 ,  i = l , - . . , r  
which defines an algebraic variety V consisting of zeros of the system in an arbi- 
trary extension field of Ii. The study of the structure of V or that of the set of 
zeros satisfying these equations is one of the main themes of algebraic geometry. 
Moreover the actual determination of the zeros in the complex field when they are 
finite in number for K = &, R, or C is of great importance in applications. The 
present paper aims at  giving a rather complete answer t o  these questions Trith a 
decomposition of V into parts quite different from the usual one in  algebraic geom- 
etry but is more adapted t o  applications. The method is based on  the so-called 
Ritt principle as described in a previous paper"' of the author. Various notations 
and terminologies are also t o  be referred to that paper. 

Consider thus a polynomial system S consisting of a finite number of polyno- 
mials and a polynomial G all in  K [ z , , - .  . , z,]. We shall denote the set of zeros 
of equations X = 0 in an arbitrary extension field of K for  which G is not 0 by 
Zero (X/G). If the extension field is prescribed to be g, then the set of g-zeros 
for lvhich G # 0 is denoted by g-Zero(S/G). Our main result is then the following 

T h e r e  is  a n  algorithmic procediire whiclz permits  to  decide 
in a f ini te  number of steps whether  Zero (S/G) is empty  and in the  co9atrary case 
t o  furnash a decomposition of the following form: 

Structure Theorem. 

Zero ( S / G )  = Union Zero ( A z / E l ) .  

In this decomposition formula each A, is an irreducible ascending set and l?, is the 
lion-zero reminder of J,G, with respect to A , ,  where J ,  is the product of initials 
of polynomials in A , ,  and G, is certain non-zero polynomial. 

The proof consists in  giT4ing such an algoritlimic procedure as described belon-. 

S t e p  1. Form, as in [5], the characteristic set C of S .  If C is contradictory, 
in other words C is composed of a single polynomial mliich is a non-zero constant 
of the basic field K ,  then Zero ( S ) ,  in particular Zero (S/G), is empty and the 
procedure stops. In the contrary case let the initials of the polynomials in C be 
I, vi th  product J .  Then the Ritt principle as described in [5] d l  give a decom- 
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position of the form 

Zero ( S / G )  = Zero ( C / J G )  + Union Zero ( S i / G ) ,  

in which each Si is the enlarged system of S with I; adjoined to it. Of course 
only non-constant Zi is to be considered. 

Step  2. Consider the set Zero ( C I J G ) .  Suppose first that C is irreducible 
which may be determined by various known methods. Form now the remainder R 
of J G  with respect to C. By the remainder formula we have clearly 

Zero ( C I J G )  = Zero ( C / R ) .  

If R=O, then Zero ( C I J G )  is empty and should be removed in  the above decom- 
position. Otherwise we just replace Zero, ( C / J G )  in the decomposition by Zero 
( C I R ) .  In any case we proceed t o  the next step. 

Suppose now that C is reducible. Let C be consisting of polynomials 

QI,  ga, * .  .> g, 

of classes (0 <) pI < . . . < pr. Then there will be some s < T enjoying the fol- 
lowing properties: First, for each i < s, gi E Z<[zl,. . * ,‘zpi] is irreducible as a pol- 
ynomial of Ki_,[zpi], where Ki-l is the field K ( G , .  - ;, zpi-l) which is obtained 
from K successively by either simple transcendental extension by zj, j # p,, . . * ,  

pi-$, or a simple algebraic extension of zp , , -*  -, zpi-, by means of the polynomials 
gL,. . . ,gi-l as minimal polynomials. Secondly, gs,  as a polynomial in K.-l[zp,l, 
with K,-l likewisely defined, is a reducible one. By the known methods of factor- 
ization, we get then, after clearing of fractions, an expression in Ki-, of the form 

hg, = g:g:’, 

in which g:,  g;‘ are polynomials in K[zl, . . . ,  zp,] both of degree > 0 in zp,, and 
h is one in K [ z , , . .  ~,zp,-l]  reduced with respect t o  the irreducible ascending set 
consisting of gl,. . . , gr-l. Let C’, C” be the polynomial systems obtained from C 
in replacing g, by g;, g;’ respectively, and C+  be one obtained from C by adjoining 
h to it. Then i t  is clear that 

Zero ( C / J G )  =Zero ( C + / J G )  +Zero (C’ IAJG)  t Zero ( C ” / A J G ) .  

Replace now Zero ( C I J G )  in  the decomposition of Step 1 by the above union of 
3 sets of zeros and proceed to the next step. 

S t e p  3. Let us say that one polynomial system is of higher or lower rank 
than or equal rank to another according as their basic sets are so related. Then we 
see that each polynomial system Si occurring in the decomposition of Step 1 is of 
lower rank than S. Moreover, each of the polynomial systems C+ ,  C’, or C”, 
eventually occurring in Step 2, is clearly of lower rank than C, and hence of lower 
rank than S too. 

Treat now in turn each set of zeros occurring in the decomposition of Step 2 
in returning to Step 1, removing any empty set of zeros if i t  appears, and pro- 
ceeding further as before. 

As the polynomial systems occurring in the sets of zeros of the successive de- 
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compositions are of steadily decreasing ranks so we have to stop after a finite num- 
ber of steps. Thus finally we arrive at  either an empty set or a decomposition as 
described in the structure theorem. 

As immediate applications of the above structure theorem we may cite the fol- 
lowing ones: 

(a) The usual unique decomposition of an algebraic variety into irreducible com- 
ponents can be deduced from our decomposition into sets of zeros with G=1. More- 
over, this can be done in a constructive manner instead of a mere existential one. 

(b) The Nul1,stellen-Satz of Hilbert can be deduced in a quite simple manner 
by our methods and again in  a constructive manner, contrary to the usual mere 
existential proofs. 

(c) Let the basic field K be either Q , R ,  or C, and only zeros in the exten- 
sion field ,? = C are to be considered. It is clear from the decomposition formula 
that the set of zeros (i.e. C-zeros) is finite iff each of the irreducible ascending 
sets Ai occurring in  the decomposition formula is composed of n polynomials where 
n is the number of variables 2 , .  These zeros may be then found by the usual meth- 
od in solving successively the polynomial equations of each set A , .  The following 
example is taken from a paper of Buchbergerr2’ and may be used as an illustration 
of our method in comparison with several known methods as given in [2]  and [3]. 

Example. Problem. Solve the following system of equations: 

f o  = 2s: - 2: - x: = 0, 
f l  = 21x3 - 22, 4- x,x2 = 0, 
f 2  = x: - 2 2  = 0. 

For the method of Lazard one has to  consider a matrix of 35 rows and 50 
columns, with elements involving 4 auxiliary variables U,, . .  . , U,. One has then 
to decide whether the rank of this matrix is < 35 or = 35. In the latter case 
one has to decompose a certain polynomial, which is the determinant of a sub-matrix 
of the highest rank 35, into linear factors of U t .  The coefficients of U i  in these 
factors give then the solutions, including those at  infinity, of the given system of 
equations. 

The method of Buchberger consists of first determining for the ideal a = ( f o ,  
f l , f 2 )  a Grobner basis of 6 polynomials i n  all in the present example. Next a 
basis of the algebra R[z, ,  x2, x J / a  together with a multiplication table of the basis 
are determined. In  case the t a s k  of the algebra is finite as in the present example 
one proceeds then t o  determine successively a system of polynomials 

PI(Xl), P*(X1 ,52)1  P 3 ( X I , X 2 ,  4. 
It is proved that all zeros, now finite in  number, of the given system of equations 
are to be found among the system of equations p ,  = 0 by the usual methods. 

Our method runs briefly as follows. 

First find the characteristic set C of the system S = ( fo , f l ,  f2) which consists 
of the 3 polynomials g, below: 
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go = x: + 42: - sx: + 4x; - 4x:, 

g1 = - x2 -I- xi, 
g2 = (XI - a)$, + XIX,. 

The non-constant initial is J = x1 - 2. Denote the systeln with ,7 adjoined to S 
by s', then we have 

Zero (S) = Zero ( C / J )  + Zero (8') .  

Remark that in the case for which the number of polynomials in C is the same as 
that of variables x as in the present example, it is not necessary to factorize as in 
the general procedure indicated in the structure theorem. We just solve the equa- 
tions C = 0 directly and successively t o  get all the solutions for which J # 0. The 
solutions are found by usual methods to be 6 in number: (O,O,O)  counted twice, 
(l,l,l), and 3 others. 

To determine the set Zero (s'), me find first the characteristic set C' of s' to 
be consisting of a non-zero constant or s' is contradictory. The set Zero (S') is thus 
empty and the totality of solutions is formed by the 6 zeros of the set Zero ( S / J )  
as indicated above. 

To find the solutions at infinity we have only to replace each of the polyno- 
Thus we have to inkls f z  by f p  in keeping only the terms of the highest degree. 

consider the system SA = (ft,f$,f$) given by 

fC = 2x: - 2: - x:, 

f^ =x2 I '  

gk = x:, 
g: = X l d ,  

y: = XlX3 + ax,. 

Zero (8") = Zero ( C " / J )  + Zero (8:) + Zero (iY$), 

in which 8: and 8: are enlarged systems of 8" adjoined by I, and I, respectively. 
The set Zero ( C A / J )  is clearly empty. Treating as  before the sets Zero (8;) we 
find an infinity of solutions given by 

f$ = xlx3 + xIx29 

The characteristic set  C A  of S" is seen t o  be consisting of 3 forms, viz 

The non-constant initials are I, = xl, l ,  = xl, with product J = x:. Hence we have 

21 = 0, 2x: = x;, 
which represent two points at infinity 

- 
(xl:x,:s,) = ( O : l : l / h  ) 

and (0:1: -l/Z/Z>. 
Remark. In practice the equations t o  be solved usually have coefficients com- 

plicate real numbers, which, being arisen from measurements, are only approxi- 
mate ones. We may thus assume that multivariate polynomials occurring in the 
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procedure are irreducible ones so that the most difficult step of reducibility consid- 
erations may be entirely avoided. This will make the method particularly ef- 
ficient for practical applications. 
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ON THE PLANAR IMBEDDING OF 
LINEAR GRAPHS 

Wu WEN-JUN (Wu WEN-TSUN) 
(lnstirutc of Systems Sn'cnce, Academia Sinica, Bcijing) 

1. INTRODUC~ON 

The prcseirt papcr is a reproduction of the results already published in Chinese from 
1973 onwards. It is concerned with the problan of planar imbcdding of linear graphs (sup- 
posed to be connected and possessing no loops henceforth). Thc problem may be scparntcd 
into four pans: 

P1. Decide whether a conncctcd linear graph (or graph for short) G is imbeddablc in 
the planc (or imbeddablc for short). 

P2. Decide, in thc casc of a non-imbrddablc graph G,  a minimal sct of edges the re- 
moval of which will render the remaining part of G imbeddablc. 

P3. Give a method of imbedding G in the planc in thc case G is imbcddable. 

P4. Give a description of thc totality of possiblc imbeddings of G in the plane in the 
case G is imbcddable. 

The problem P 1  was alrcady rolvcd in thc carly thirties. Thus, Kuratowski has given the 
following simple and elegant critcrion [KUl]:  Lct K 1  bc the graph with five vcrticcs and 
all cdgcs connecting any two of them. Let K2 be the graph with two triads of vcrtices and 
all cdges connecting pairs of vertices onu from each triad. Then we have the following 

Theorem of Kuratowski. A graph G is imbeddablc if and only if it does nor 

Similar criteria have been given by Whitncy and MacLane. also in the thirties. Howcvcr, 
all thcse criteria arc only cxistcntial in charactcr, although they settle the problan PI quite 
satisfactorily at least in a thcoretical scnse. In fact, thesc critcria give no m a n s  of a construe- 

live manner for  deciding whether a graph concretely given is planar or not. For cxarnple, 
for the Kuratowski criterion we have no means of dctccting subgraphs of typc K 1  or K2 
well hidden in a concrerely given graph. This fact thus has deprived these criteria of any 
practical value. 

conrain uny subgruph of typr K1 or K2. 

After more than twcnty years of silence the interest in the problem revived in the early 
sixties owing seemingly to practical needs. This time however, the intercst lay no more on 
theoretical imbcddability of a linear graph, but rather, on practical decision of the irnbeddability 
of any given graph in giving algorithmic procedures. Beginning from a papcr by Auslandcr 
and Parter [API], the study culminated in a papcr of Hopcroft and Tarjan [HTl] in 
giving an efficient planarity algorithm for a linear graph. Nevertheless their mahod gives 

Rcccivcd January 16. 1985. 
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merely an answer to problem P I  from the practical side and leaves problems P2-4 completely 
untouched. As mentioned by the authors themselves in their joint paper, their “planarity 
algorithm- * - tests a graph G for planarity, but it does not actually construct a planar repre- 
sentation of G.” We remark that it is just the latter part corresponding to problems P2-3 
above that renders the study of planarity of graphs so important in applications. 

On the other hand the present author discovered in 1967 a solution to problem P1 which 
is both of theoretical intcrat and of practical value in being algorithmic. The method was 
based on a theory of imbedding and immersion of cornplcxes in a Euclidean space [ W U I ]  
and was applied this time to linear graphs, i. e. complexes of dimension 1. It leads to the 
criterion that a graph is imbeddable if and only if a certain system of linear equations on mod 
2 coefficients is solvable in integers mod 2. These results, owing to circumstances, were not 
published until late 1973, cf. [WUZ]. Now each equation in the linear system of our crite- 
rion has either two or four variables. In 1978 Liu Yan-pei made an important complement 
to our mcthd in reducing cach such equation to one with only two variables [Ll]. This 
enables the decision of planarity to be carried out actually without any computation and is 
extremely feasible. However, in either [HTl] or [Ll] or [ T U l ]  only critaia of imbed&- 
bility wcre given, with thc important problem of actual imbedding in the  case the. graph & 
imbeddable entirely untouched. In the meantime the present author arrived at a complete solu- 
tion of all problans P1-4 listed above and the proofs were purely algcbraic with no more 
use of algebraic topology. T h s e  results were published as an appendix to the Chinese version 
of the book [ W U l ] ,  cf. [WU4]. 

The present paper has the aim of giving an English version of all thesc results, so far 
published only in Chinese, with due modifications. 

T o  fix the ideas, throughout the paper the following notations will bc adopted: 

W e  will always work over integers mod 2 and the field of mod 2 integers will be denoted 
as usual by 22. 

The plane in which graphs arc to be imbedded is denoted by R2.  

The graph (connected without loops) is denotcd by G ,  with numbers of vcrtics Nu 
and number of edges N e .  

The vertices of G arc V i ,  with i running over some index sct 1 .  The collection of all 
such vertices will be dcnoted by V(G), or simply V. 

The edges of G arc Eq, with q running over some index set Q. The collcction of all 
such edges will be denoted by E(G), or simply E. 

The letters i, i, k, I ,  - - will be used for indices in I ,  and the letters q, r ,  s, 1 , .  - - 
for those in E. 

The set of all unordered pairs of edges (Er, Es), with Er, Es disjoint from cach other, 
will be d e n o d  by D2(G), or  simply 0 2 .  

The set of all pairs (Vi, Eq), with Vi not an end of Eq, will be denoted by D l ( G ) ,  
o r  simply D1. 

The collection of all functions. 
A: D l + Z 2  
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forms naturally an additive group and will be denoted by CI(G) ,  or simply C1. 

The collection of all functions 

F :  0 2 - 2 2  

forms naturally an additive group and will be denoted by C 2 ( G ) ,  or simply C 2 .  

For any pair ( V i ,  E q )  in D1, the function A in C 1  which takes the valuc 1 on 
(Vi, E q )  but 0 on any other pair in D1 will be denoted by (Vi, E q ) .  

Similarly. for any pair ( E q ,  E r )  in 0 2 ,  the function F in C 2  which takes the value 
1 on (Eq, E r )  but 0 on any other pair in 0 2  will bc denoted by ( E q ,  E r ) .  

The morphism 

d :  C l ( G )  + C 2 ( G )  

defined by 

d A / ( E q ,  E r )  = A / ( V i ,  E r )  + A / ( V j ,  E r )  + A / ( V k ,  E q )  + A / ( V I ,  E q )  

for  

A in C 1 ,  E q  = V i V i ,  E r  = V k V l ,  ( E q ,  E r )  in 0 2 ,  

will be called the differential in G. 

For any two broken lines L 1 , L 2  in R 2  not both closed to become polygons for which 
the cnds of L 1  (resp. L 2 ) ,  which exist if not closed, arc disjoint from L 2  ( r a p .  L l ) ,  
there is a well-defined intersection number in 2 2  which will be denoted by Int (151, L 2 ) .  

For any closed polygon P with possibly self-intcrsections and a point A not on P there 
is the well defined order of A with respcct to P in 2 2  which will be denoted by Ord ( A ,  P). 

If B is another point in R 2  not on P and L is a broken line joining A and B y  wc 
would have the following relation in 22: 

Ord( A ,  P) + Ord( B , P) = Int( L , P). 

If A , B , P are as above with P a simple closed polygon and 

Ord(A, P> = Ord(B, P) 

in 2 2 ,  then by the theorem of Jordan A,  B can be joined by a simple broken line in R 2  
disjoint from P. 

2.  A CRITERION FOR IMBEDDABILIN 

Without loss of generality we shall restrict maps of G in the plane R 2  to piecewise 
linear o n s  which will always be so assumcd in what follows. A (piecewise linear) map 

f:  G-+ R 2  

is called an imbedding if it  is topological or 1-1. 

Let H bc any subgraph of G. Then a map f will be called an H-immersion of G if 
the following conditions ( a ) - ( e )  arc observed: 
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(a) The images of vertices are all different. 

(b) The image of each edge is a simple broken line. 

(c) The image of any vertex is not on the image of any edge except at  the possible 

(d) f is an imbedding when restricted on H, while for any edge Eq not in H, f ( E q )  
end. 

will not meet f ( H )  except possibly at vertices common to H and Eq. 

( c )  The images of any two edges will meet a t  most at  a finite number of points besides 
the possible common ends. 

The H-immersion will simply be called an immersion of G if H is the empty sub-graph. 
Consider now any immersion 

f :  C + R 2 .  

Definition. T h e  element c(f( in C2(G) = C2 defined by 

c ( f ) / ( E q ,  E r )  = Int ( f E q ,  f E r ) ,  for ( E q ,  Er) in 0 2 ,  

will bc called the immern'on element defined by f. 

Theorem 1. For any two immersions f and g of G in the Plane 

f, g :  G+ R2,  

d e  elements c ( f ) , c ( g )  belong to the same class of the quotient group C2/dCI. 

Proof. Consider first the case f and g coincide on all vertices of G and all edges of G 
except a single one, say the edge Es. 

Now f E s ,  gEs  form a polygon P (with possibly self-intersections). For  any vcrtcx Y, 
of G disjoint from Es let us set 

04 = Ord(fV4, P ) ,  for V k  disjoint from Es. 

Defiinc now an elanent c in C1 by 

c = SUM O k . ( V k ,  E s ) ,  

t h e  summation being over all vertices V k  disjoint from Es. 

Now for any edgc E q  disjoint from Er we have f E q  = g E q .  Thcrcforc, with V k ,  
VI as the two ends of Eq, we would have 

c ( f ) / ( E q ,  E s )  + c ( g ) / ( E q ,  E s )  = I d f E q ,  f E s )  + I d g E q ,  g E s )  
Int(fEq, P )  = Ord(fV4, P )  + Ord(fVI, P ) .  

On the other hand if thc ends of Es  are V i  and V i ,  then we would have 

d c / ( E q ,  E s )  = c / ( V ; ,  E q )  + c / ( V i ,  E q )  
+ c / ( V k ,  E s )  + c / ( V l ,  E s )  = 04 + 01. 

Comparing, we have 

4) + .(g> = d c / ( E q ,  Es ) .  

For any pair ( E q , E r )  in 0 2  with E q , E r  both different f rom Er, it is clear. that 
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So the assertion is proved in the above case. 

Consider now the case that f and g coincide on all vertices of G and are arbitrary 
otherwise. We may always define a sequence of immersions h O ,  h l , . . . ,  hs such that hO 
coincides with f ,  1s with g ,  and each hr coincides with the preceding one with the exception 
of a single edge. By the preceding case each element c(hr) will belong to the same class 
of C 2 / d C 1  as the element c of the preceding immersion h in the sequence. I t  follows that 
the assertion still holds true in the present case. 

Consider now the general case with f ,  g arbitrary, with however the images of all ver- 
tices under both f and g different from each other. 

For any vertex Bi let us draw a simple broken line L i  in the plane with ends jV i  and 
g.Vi such that, what is clearly possible, these broken lines are mutually disjoint. 

For cach edge E q  let us join now the ends of f E q  by a broken line Lq disjoint from 
all Li exccpt possibly at the images of their common ends. 

Define now an immersion h and an immersion h' of G by 

where V i ,  V i  are the two ends of E q .  

From the construction we see that the elements c ( h )  and c(h') belong to the same 
class of C Z / d C l .  On the other hand by the preceding cases already proved c ( b )  and c(h' )  
are in the same classes of C Z / d C l  as c(f) and c(g) respectively. Hence c(f) and c(g) 

belong to the same class of C 2 / d C 1  in this case too. 

Finally, €or two arbitrary immersions f and g let us take an immersion b such that both 
f, h and g ,  h are pairs of immersions as in the preceding case. Then both c(f) and c ( h ) ,  
as well as both c(g) and c ( h ) ,  will belong to the same class of C Z / d C l .  Hence c(f) and 
c(g) belong to the samc class too. 

The  theorem is thus proved in  all respects. 

From the above theorem the following definition is legitimate: 

Definition. The class in C Z / d C l  of the elements c(f) for any immcrsion f of G 
in the plane will be called the imbedding cfass of G and will be denoted by I ( G )  in what 
follows. 

From thc very definition of imbedding it is clear that for G to be imbeddable in the 
plane it is necessary that 

l ( G )  - 0. 

We shall prove that this condition is not only necessary but also sufficient. For  this purpose 
we shall provc first some preliminary lemmas as follows. 

hmma 1. Lcr G' be a subgraph of G .  Tbcn rbe nalural res:ricnon will induce 
morphisms rl and r2 SO rhai the diagram below i s  commuiaiive: 
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C 1 (G')-;;'C2( G') 

4 1.2 
C i ( G)TCZ'( G) 

Moreover, for the morphism thus induced 

r': C Z ( G ) / d C I ( G )  + C Z ( G ' ) / d C l ( G ' )  

rue have 

r ' ( l (G) )  - I ( G ' ) .  

The proof is evident and will be omitted. 

Lemma 2. Let G' be a subdivision of G .  Then 
s2 so that the diagram below is commutative: 

there are natural mwphisms s l  and 

C l ( G ) 7 C 2 (  G) 

C l ( G ' ) 7  C Z( G') 

Moreover, for the morphism thus induced 

5': CZ(G')/dCl(G') + C2( G ) / d C  1(  G) 

we have 

s'(I(G')) = Z(G). 

Proof. Suppose G' is oblained from G by introducing a single new vertex V' on some 
edge Eq of G with ends V i  and Vi. Let 
us denote the edges ViV' and ViV' in G' derived from E q  of G by Eq' and Eq" rcspec- 
tively. and c2 in C2(G') we define s l c l  in C1 
(G) and s2c2 in C2(G) by 

Define now sl and s2 in the following way. 

Then for any elements c l  in Cl(G') 

s l c l / ( V k ,  Er)  - c l / ( V k ,  Er),  for Er (  ) E q ,  

s l c i / ( V k ,  E q )  - c l / ( V k y  Eq')  + c l / ( V k ,  Eq"),  
sZcZ/(Er, E s )  = cZ/(Er, E s ) ,  for E r ,  Es( ) E q ,  

s 2 c 2 / ( E q Y  Er) - cZ/(Eq' ,  Er) + c Z / ( E q " ,  Er). 

tt is easy to verify that dslc l  = s2dcl and s'(I(G')) - I(G).  The lemma is thus true 
for this simple case. Since any subdivision of G is formed of a sequence of such elementary 
subdivisions of the above type, the lemma is proved. 

Lemma 3. For Kuratowski's graphs K = K1 or K 2  toe have 

I ( K ) (  >o. 
Proof. Let us consider e. g.  the first Kuratowski's graph K - K1. Denote the 5 

vertices of K by V1 ,. * - , V5 and immerse K in the plane in the usual way with images 
Wi of V i  forming a regular pentagon and images of the cdga the respective sides and 
diagonals of the pentagon. The element c ( f )  of the corresponding immersion is then given by 

c( f ) / (VlV3,  V2V4) - 1 ,  
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c ( f ) / ( V l V 3 ,  V2V5) = 1 ,  

c(f)/(V2V4, V3V5) = 1, 
c(f)/(VlV4, VZV5)  = 1, 

c(f)/(VlV4, V3V5) = 1, 

c ( f ) / ( V i V i ,  V k V l )  = 0, 
for any other pair (ViVi, V k V l )  in 02(4).  In  other words, we have 

c ( f )  - (VlV3,  V2V4) + (VlV3,  V21T.5) + ( V 2 V 4 ,  V3V5) 
+ (VlV4,  V2V5) + (VlV4,  V3V5). 

The  differential d is defined by 

d ( V 1 ,  V2V3) - (VlV4,  V2V3) + (VlV5, V2V3), etc. 

Consider any dement 

r l  - SUMXijk - { V i ,  VjVk) 

in  Cl (K) ,  in which Xijk - Xi& are all mod 2 integers in 2 2  and thc summation is over 
all triples i , j , 4 chosen from 1 , 2 , - * * , 5 which arc mutually distinct. If c(f) is thc 
d-image of c l ,  then t h e  following set of equations should be true: 

X124 + X324 + X213 + X413 - 1, 

X125 + X325 + X213 + X513 - 1 ,  
X235 + X435 + X324 + X524 - 1, 

X125 + X425 + X214 + X514 - 1 , 
X135 + X435 + X314 + X514 - 1. 
X134 + X234 + X312 + X412 - 0, 

X135 + X235 + X312 + X512 - 0 ,  ctc., 

XI45 + X245 + X412 + X512 - 0. 

In  all there are 15 such quations. By adding all thcsc equations wc get 0 - 1 sincc wc 
are working in the domain 22 .  This provu that c ( f )  cannot be the d-image of any clement 
in C1(K) or Z(K)()O for K - K1. The proof of thc case K - K2 is similar and will bc 
omitted. 

Fundamental Theorem I. For a graph G to be imbeddable in the plane it i s  ne- 
cessary and sufficient that 

Z(G) = 0. 

Proof. It is enough to prove only its sufficiency. Suppose G is not imbeddablc. By 
Theorem of Kuratowski G should contain a certain subgraph G' whicb is some subdivision 
OE either K1 or K2. By Lemmas 2 and 3 wc should have I (G') (  )O. By Lemma 1 we 
have then a fortiori I ( G ) (  )O. Hence Z(G) = 0 would imply that G is imbeddable. This 
proves the theorem. 

As a complemcnt we have also the following 

Theorem 2. For any element c2 in C2(G) belonging to the imbedding class Z(G) 
i n  CZ(G)/dCl(G) there is an immersion f of G such that 
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c2 = c(l>. 
Proof. 

Lemma 4. Let c2 be any immersion element of G in the imbedding class Z(G). 

This is clearly a direct consequence of the following 

T h e n  for any  functon ( V k , E q )  of C l ( G )  the clemenr 

r2' - c2 + d ( V 4 ,  E q )  

is also an immersion elenlent of some immersion of G .  

Proof. Let g be any immersion of G defining the element c 2 .  On the interior of the 
image under g of Eq let us take a small segment L with ends V i ' ,  Vj '  which contains no 
image points of any other edges of G. Replace now L with a simple broken line L' joining 
V i ' ,  Vi' such that L + L' will form a loop with only image of V k  and with no image of 
any other vertices in its interior. Let g' be the map of G in the plane which coincides with 
g everywhere except that L i s  replaced now by L'. W e  may also clearly choose L' in such 
a way that g' is a well-defined immersion. It is now easy to verify that c(g') - c2' and 
the lemma is thus proved. 

Remark. All the theorems and proofs here are of an algebraico-topological character, 
but we have avoided the use of any such terminology as done in the original paper [WU2]. 
It is also clear that the concepts and resulu in thii section may be naturally extended with 
no essential changes to graphs G not necessarily connected. 

3. REDUCTION OP CRITERION M) SoLVABrvrY OP LINEAR EQuAnONs 

Consider the graph G and an arbitrary immersion f as before which will determine an 
immersion element 

c ( f )  - SUM Iqr - ( E q , E r )  in CZ, (1) 

Iqr - f E r ) .  (2) 

in which the summation is to be extended over all pairs (Eq, E r )  of 0 2  and 

According to the fundamental theorem in Sect. 2, the planar imbeddability of G depends 
then on the existence of a function cl  in CI such that 

d c l  - ctf). (3) 
As C1 has a basis consisting of functions ( V i , E r )  with ( V i , E r )  running over all pairs in 
D1, we may set such a c l  of C 1  in the form 

c l  = SUMXir  - ( V i ,  Er),  (4 ) 

with summation extended over all pairs ( V i ,  Er) in D1 and X i r  unknowns in 22 to be 
sought for. We then get a system of linear 
equations 

Form d c l  and compare both sides of (3). 

(EQNf): X i r  + X j r  + X k q  + X l q  - Iqr 

with one equation corresponding to each pair (Eg, E r )  in 0 2 ,  the ends of E q  being sup- 
posed to be V i ,  Vi, and the ends of Er to be Vk, V l .  Fundamental Theorem I in Sect. 
2 can thus be reformulated in the following form: 
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Fundamental Theorem 11. For a graph G to be inileddable,  it is necessary and 
sufficient thai for an arbitrary immersion f o f  G in  the plane, the system of linear equaiiorrs 
(EQNf)  possess solutions of rhs X's in mod 2 integers. 

We remark that the theorem remains true men if G is not connected. 

Now the number of equations in (EQNf) is about Ne A2 and that of the unknowns X 
is about Nu * Ne where Nu and N e  are the numbers of vertices and edges in G respectively. 
The determination of solvability of this system seems to be thus untractable in appearence. 
However this is not the case. In fact, owing to the -particular form of these equations we can 
treat the system in a quite feasible algorithmic manner which will lead to a complete solution 
of both problems P1 and P2. 

T o  see this let us arrange the edges of G in a definite order, say E l ,  E2, . * , E q ,  - *, E n ,  in which n = N e .  For each edge Er of G with r > 1 let us denote the set of 
equations in (EQNf) corresponding to pairs ( E q ,  E r )  with q = 1, 2 ,  . * a ,  r - 1 by 
(EQNr) which may cvcntually be non-existent. We denote also the subgraph (not necessarily 
connected) formed of E l ,  ---, Er by Gr. Beginning from r = 2, let us arrange the sets 
of equations (EQNr) successively in an cchdon form by the so-called Gaussian elimination 
with certain sets of equations, to be cvcntually forsaken. We remark in passing that the me- 
thod of Gaussian elimination occured in fact already in the early Chinese dassic Nine Chapters 
of Arithmetic together with introduction of negative numbers which appeared more than 2000 
years ago. Now the set (EQN2) may be Either empty or consisting of a single equation SO 

that it is already in the echelon form. T o  start with we shall put (EQN2') to be the same 
set as (EQNZ), empty or not, and introduce a further empty set to be denoted by (DEL2). 
We set also G2' 5 G2. 

Consider now r > 2 and put s = r - 1. Suppose that the sets of equations (EQNq) 
with q = 1, 2 , * - . , s have already been treated with the resuh of a set of equations (EQNJ') 
in echelon form as well as a set (DEL) of edges chosen from Gs such that the subgraph 
Gs' formed by edges in Gs but not in (DEL) is imbeddable in the plane. Remove now 
from the set, if non-empty, of equations (EQNr) those corresponding to the pairs ( E q ,  E r )  
with E q  in (DELr) and denote the set of remaining equations by (EQNr").. If the set 
(EQN.") is non-empty, then adjoin this set to (EQNs') and arrange these in echelon form 
by Gaussian dimination. Two cases may then occur. In the first case the quations newly 
adjoined will render the whole set a contradictory one. The system of equations is then unsol- 
vable so that the graph Gs' with Er adjoined will become non-imbeddable. We delete thus 
E r  from G and adjoin Er to (DEL) to form (DELr). The subgraph Gr' will be set to 
be identical to Gs', and the system (EQNr') to (EQNs'). In the second case the reduction 
to echelon form can be caried out without arriving at contradiction. The system of equations 
arrived at consisting of (EQNs') and the newly adjoined (EQN~") in reduced echelon form 
will then be denoted by (EQNr'). The set (DELr) will remain the same as (DEL) and 
Gr' will be Gs' adjoined by Er. We remark that as the set (EQNr") is at most r - 1 in 
number and each equation in it has at most 4 unknowns with coefficients in 2 2 ,  the reduc- 
tion to echelon form requires actually at most 8 * ( r  - 1) additions of mod 2 integers. 

Finally, if the set (EQNr) or (EQNr") is empty, then we shall proceed to the next 
step with (EQNr'), (DELr) the same as (EQNs'), (DEL), and Gr' as Gr' with Er 
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adjoined. 

From the above we get thus the following 

Theorem 3. There is an algorithmic procedure which permits to determine in  a finite 
number of steps whether a giuen graph G is imbeddable or n o f ,  and in  the care it is not 
i,,&ddable, a set of edges should be deleted from the +;Yen giaph so that the remaining 
graph is imbeddable, 

The above method settles thus both the problems P1 and P2 and can be easily prog- 
rammed. T o  apply it we have to choose first an arbitrary immersion of the graph G, form 
successively the set of equarions (EQNr) and proceed as indicated above, AS already re- 
marked, the whole procedure requires at most 

N u  =SUM 4 * ( N e  - l ) * N e  < 4 * N e / \ 2  

mod 2 additions and is thus quite feasible. The only defect is that a large amount of memory 
space may be required. W e  shall discuss this matter in later sections. 

4. A N  ALTERNATIVE REDUCTION OF CRITERION TO SOLVABILITY OF LINEAR EQUATIONS 

In the original paper (WUI) the author has described a method of reducing the criterion 
of imbeddability to the solvability of a system of linear equations on 2 2 ,  which is a little 
different from that given in Sect. 3. Though the proof of this reduction is rather involved, 
it has however the advantage of being able to greatly reduce the number of unknowns in the 
equations. What is more important is that this method will lead to a complete solution of 
problems P1-4, in comparison with the one in Sect. 3 which permits to solve only problems 
P1-2. We repeat the remark already made in the introduction that it is problem P3 that is 
the decisive part in view of applications. 

In order to explain this method we shall first introduce some notions as well as nota- 
tions. Henceforth G will be supposed to be connected. 

By a tree of the graph G supposed connected we shall mean a maximal one belonging 
to G, i.e. one passing through all vertices of G. Let a tree T be taken and fixed in what 
follows. 

With respect to tree T of G the vertices will be divided into two classes: internal ones 
and terminal ones. The  edges of G will also be divided into two classes: those belonging to 
the tree and those not. W e  shall call these free-edges and external edges and denote them by 
E u ,  Ev, E w , . . .  and E a ,  E b ,  E r , - . -  respectively. 

Among the terminal vertices of T we shall choose one as the root of T which will b e  
denoted by 0 henceforth, 

14’1thout loss of generality we shall make the assumption that no external edges issue f rom 
0. In  fact, in the contrary case we may adjoin an extra edge to the graph G with one end 
at 0 and the other free. W e  may then take that free end as thc new root of the new graph. 
The problems are actually the same for the new graph and the original one so far as imbed- 
dability is conccmed. Hence we shall suppose that the above device hai been adopted in what 
follows so that the above assumption is always verified.. 

For any vertex Vi of G different from 0 there is a unique path belonging to T which 
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leads from V i  to 0 and will be denoted by Pi .  For any external edge En there is also a 
unique path belonging to T which joins the two ends of En and will be denoted by Pa. The 
cycle of G formed by Ea and Pa will then be denoted by C a .  

For any two vertices V i ,  V i ( ( ) O )  the two paths P i ,  P i  will begin to meet first at some 
vertcx in running toward 0 which will then be called the V-meei of V i ,  V i  or of P i , P j .  

For any tree-edge Eu with ends V i ,  V j ,  one of them, say V i ,  will have the path Pi con- 
taining the other end V i .  W e  shall then call Vi the head and Vi and the tail of E u .  

Each tree-edge E u  will divide the tree T into two disconnected parts, say T'u and 
T"u. One, 3ay T'u, will contain the head of E u  and the subtree formed by T'u and E u  
will be denoted by Tu. The set consisting of E u  as well as all edges with two ends one in 
T'u and the other in T"u will be denoted by CSu. In the network theory a set of edges is 
called a cui-set of G if in removing it G will split into two or more disconnected parts. 
T h e  set CSu is such a cut-set and in the network theory it is proved that the collcction of 
sets CSu corresponding to all the tree-edges E u  form a basis of all cut-sets in an evident 
sense, cf. e. g. [SBl]. 

For any two sets of edges S1, S2 of G the function in C2 taking the value 1 on all 
pairs ( E q ,  E r )  of 0 2  with E q  in S1 and E r  in S2 and the value 0 otherwise will be 
denoted by [SI, S21. In other words 

(Sly S2)  = SUM ( E q ,  E r ) ,  

in  which the summation is to be extended over all pairs ( E q ,  E r )  as above. The following 
k m m a  is now readily proved (cf. [ W U l ] ) :  

Lemma 5. 
consisting of elements 

The subgroup d C 1  of C 2  has a set of generators (not necessan'ly a basis) 

( C S z r ,  C S v )  and (CSu,  E a ) ,  

rorrespondmg to all pairs ( E u ,  E v )  and ( E u ,  E a ) ,  disjoint or not, respeciively. 

lntroduce now sets of variables or unknowns on 2 2  as follows. T o  each unordered pair 
(CEu, E v )  of tree-edges disjoint or not is associated an unknown X u v ( =  X v u ) .  

To each pair ( E u ,  E a )  of a t re tedge  E u  and an external edge Ea disjoint or not is 
associated an unknown Y u a .  

By t h e  lemma above and Fundamental Theorem I in Sect. 2 it follows that for G to bc 
imbeddable i t  is necessary and sufficient that for an arbitrary T-immersion f of G the follow- 
ing  system of linear equations in 2 2  be solvable in the unknowns X and Y :  

SUM X u v  . ( C S u ,  CSv)+SUM Y u a  * ( C S u ,  E a )  =SUM Zqr . ( E q ,  E r ) ,  

in  which the various summations are to be extended over respective ranges. Compare the 
terms of both sides and note that by the very definition of a T-immersion I q r  = 0 when 
Eq or E r  OT both are tree edges, we get: 

X u v  = 0,  for ( E u ,  E v )  in 0 2 ,  

Y u a  = SUM1 X u w ,  for ( E u ,  E a )  in 0 2 ,  
l a b  = SUM2 l'ua + SUM3 Y u b  + SUM4 X u v ,  
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The various summations are respectively zxtended over the ranges as follows: 

SUMl over Ev  in P a ,  
SUM2 over Eu in Pb, 
SUM3 over Eu in P a ,  

SUM4 over pairs ( E u ,  E v ) ,  disjoint or not, with E u  in Pa and Ev  in Pb, 

Corresponding to each pair ( E u ,  E a )  of a tree-edge Eu and an external edge Ea with 
E u ,  Ea disjoint or not let us introduce a new unknown Xua in 2 2  by setting 

Xua = SUMl Xuv + E'ua, 

so that by equations about Yua above, 

Xua = 0 ,  for ( E u ,  E a )  in 0 2 ,  

T h e  equation about l ab  will then become 

Zab = SUM2 (SUM1 XUV + X u a )  + SUM3 (SUM 5 XUV + X u b )  + SUM 4 Xuv,  

with SUM5 givcn by 

SUM5 over E v  in Pb. 

As the terms SUM2 SUMl Xuv and SUM3 SUM5 Xuv are actually the same they cancel 
each other in 2 2 .  Taking into account the equation Xua = 0 for ( E u ,  E u )  in 0 2 ,  wc 
get thcn 

SUMO Xuv + SUM' Xua + SUM" Xub = Zub, (If) 

i n  which the various summations are to be extended over ranges as follows: 

SUMO over pairs ( E u ,  E v )  non-disjoint with Eu in Pa and E v  in Pb, 
SUM' over pairs E u ,  Ea with E u  in Pb and ( E u ,  E a )  non-disjoint, 

SUM' over pairs E u ,  E b  with E u  in Pa and ( E u ,  E b )  non-disjoint. 

This leads to the following 

Theorem 4. For u graph G to be imbeddable if is necessary and suffin'en; that for 
an arbitrary tree T and an arbitrary T-immersion f of G the system of equations (If) 
corresponding to pars ( E a ,  E b )  in 0 2  be solvable in the unknowns X in Z2. 

(To be continued) 
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5. FURTHER REDUCTION OF FUNDAMENTAL SYSTEM OF LINEAR EQUATIONS 

The fundammental system of linear equations ( I f )  in ,preceding Sect 4 can actually 
he put in a much simpler form. For  this purpose let us denote by NT a certain neigh- 
borhood of T in G sufficiently small so that the T-immersions considered will he some 
imbeddings when restricted on N T  and that all possible intersections of images of dis- 
joint external edges are not in NT. We shall call these T-immersions also NT-immer- 
sions. 

Lemma 6. Por NT-immersions of G the immersion elements are already com- 
pletely determined by the restricted imbeddings of the neighborhood NT of the ~ e s p e c -  
tive immersions. 

Proof .  For any external edge E a  with ends Vi, V j  let us take two points on Ea 
lying in the nei,gh;bchrhood NT and ilenete them by Via, Vja. These points will he ta- 
ken so near to  the tree that the edge Ea will split into three parts from Vi to  Via, from 
Via to  V j a ,  and from V j a  to V j ,  disjoint from each other except a t  possible common 
ends. 

Consider now any two NT-immersions f and g which coincide on XT as imbed- 
dings. For any pair of edges (Ea,  E b )  in 0 2  with Vi, V j  the ends of Ea and V k ,  Vl 
the ends of Eb le t  us denote the intersection number In t  ( f E a ,  fEb)  still by lab  while 
Iiit(gEa, g E b )  by Jab .  

These parts will be denoted by Eia, Ea' ,  E,ja respectively. 

We have then 

l a b  = Int(fEa, fEb ' )  = O r d ( f V k b ,  fca) + Ord(fVlb, f C a ) ,  
J a b  = Int(gEn, g E b ' )  = Ord(gVkb, g C a )  + Ord(gVZb, gCa) .  

As f a l J d  g coincide on NT, so on 22, 

f C a  + gCa = f E a '  + gEa ' , say  = C a ' ,  

a n d  we have therefore 

In6  + J a b  = O r d ( f l i k b ,  C a ' )  + 0 d ( f i 7 i b ,  C a ' ) .  

l a b  = J a b ,  
since fl 'kb and f V l b  a.re the ends of the brolien line f E k b  + f P b  + fElb disjoiiit. f rom 
t h e  poJygol1 Cn'. The immersion eleincnts c ( f ,  ;inti c ( g )  of f a n d  g a rc  thercforc the 
s;ime. The proof is completed. 

111 order to avoid tedious vei-~ific;itions in the ,CRSC that a n  external edge ends at  
soiiie internal vertex of t h e  tree, we shall adopt the following devices : If the external 

l t  follows that 
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edge E a  has some internal end(s) of the tree as an eiid V i  ( o r  both ends Vi and V j ) ,  
then we shall replace, with notations as in the proof of the above lemma, the edge Eh 
with two (or three )edges VaVia, and V i a V j  (or VaVia, ViaVja ,  and VjaTrj) .  By 
t,he lemma above as well as Lemma 2 of Sect. 2 we see that it is immaterial to replace 
the original graph by this new one. We shall suppose in what follows that such a mo- 
dification of the graph has already been done so that we may assume the following con- 
ventions for the graph G haiJe been observed: 

Convention 1. The root 0 of the tree T is a terminal vertex. 
Convention 2. 
Let us call an unordered pair of tree-edges (Eu, Ev) a redundant one if the tail 

of say Eu is the head of Ev. The corresponding unknown X u v  is then also said t o  be 
redundant. Consider now any set of mod 2 integers (Aqrs) corresponding t o  all 
unordered triples of tree-edges (Eq,  Er,  Es)  with one end in  common for  which each 
Aqrs is independent of the order of indices(q, r, s). Let us also put  for each such 
triple 

The ends of any external edge are both terminal vertices. 

X q r s  = X y r  + X q s  + X r s ,  

which is also independent of the order of the indices ( q ,  r, s).  We have then 

Lemma 7. I f  the set of equations 

X q r s  = Aqrs 

corresponding to all nnordered triples of edges (Eq, Er, Es)  with a ’common end i s  
solvable for  X u v = X v u  in 22,  then the same set of equations is also solvable with all 
reduizdant nnlcnowns Xuv=O. 

Proof. Let ( X n v )  = (Auv) with Auo=Avz~  corresponding to each unordered palr 
of edges (Ezr, Ev) with common end be a solution of the above system of equations. 
F o r  each such ,pair (EzL,  Ev) with common end V m  let E y  be the edge on the path 
P m  with Vm as head. Then we see easily that 

X I ~ V  = 0 for (h, Ev) redundant and 

Xuii = Auq + Avq + Auv otherwise 

is also a. solution of the above system of equatioas and the leinma is thus proved, 
W e  a.re now in a position t o  simplify the system of equations ( I f )  of Theorem 4 

in Sect,. 4. \\Tc s11;ill clenote the equation i n ( I f )  ccirresponding to  the pair ( E n ,  Eh j in 
I X ~ J L ! ;  (13Q;i.b) >ind  tllic ,ends of En, Eb by Vi, lij and V k ,  VZ respectively. 

First  let, us rrmarlr that owing t o  conventions 1 and 2 the tefrms in SUM’ X u a  
and 81JRI” S u b  in the equation (EQab) are no more existent. For the terms in 
SUMO XXV we distinguish three cases. 

Pa, 7% are  disjoint. C;ise 1. 
W e  see that SUMO is nonexistent and f E a ,  fEEb do not meet. So the equation 

~ a s b  2. 
Jlet t h e  trce-edges with end Vm on the 11at.h~ from V i ,  V j ,  S’k, V l  to VJJZ be res- 

(EQah) bcconics 0=0 and  is redundant. 
Pa,, ~b meet at a single vertex .PVZ. 

pectively Ep, EQ, Er: and Es. Then we see that SUMO reduces t o  four ternis 

X p r  + Y p s  + x p r  + s q s .  
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The equation (EQab) can thus be written in  the form 
X p q r  + X p q s  = Iab .  

Case 3. 

We may suppose that Vm is on the tree-path ViVk and Vn on VjVl. 

Pa, Pb have a tree-path in common with end vertices Vm, Vn. 

Let the 
edges with end Vm on the tree-paths ViVm, VkVm and VmVn be respectively E p ,  Er 
and Ew. Similarly, let the edges with end Vn on the treepaths VjVn, Vll’n and VnVna 
be respectively Eq, Es antd Ez. T.hm we see that the equation (EQab) may be written 
in the form 

X p r w  + X q s z  = l a b .  

Suppose now G is imbeddable so that ( I f )  is solvable in the unknowns Xuv=Xvu.  
I n  view of the above analysis of the form of the equations (EQab) in  (If) it follows 
from Lemma 7 that the L, *ulviable in  unknowns Xuv=Xvu with 
all redundant ones =O. k,,eover, for any different terminal vertices Ti, Vj, both dif- 
ferent from root  0 with Vm the V-meet of the paths Pi and Pj, different from 0 
owing to our conventions, let Er, Es be the edges on Pi, P j  with tail V m  and set 

m ( I f )  will , I 

X i j  = Xrs( = X j i ) .  

Then, with all redundant Xuv=O i t  is easily verified that the left-hand side of the 
equations (EQab) either in Case 2 or in Case 3 can always be written in the form 

X i k  3. Xjlc + Xi1  + X j l  

which may eventually be reduced t o  only two terms. 
It follows that the system of equations (If) may be replaced by a system (Xf )  

below which is much simpler in  form and the Fundamental Theorem I1 may also be 
re-stated as : 

A graph G i s  imbeddable if and only if, given a 
tree T ,  a root 0,  and a T-immersion f, the system of Gquatio-s 

Fundamental TheoremII’. 

X i k  + Xi1  + X j k  + X j l  = l ab ,  (Xf) 
corresponding t o  pairs (Ea? E b )  in 0 2  with Vi, V j  ends of En and V k ,  V l  ends of Eb, 
is solvable in  22. 

We remark that. under the conventions above, each X i j  occuring in equations ( S f )  
is some X r s  fo r  a pair of non-disjoint tree-edges ( E r ,  Es) having a common tail. We 
shall call all such pairs ( E r ,  E s )  adnaissibk pairs in what follows. 

We see that each equal.ion of ( X f )  jnvolves actually a t  most 2 or  4 unknowns of 
X and eventually has the trivial form O=O. Morever, the number of unlrriowns of X 
are readily estimated as in the following 

Theorem 5. I f  the m n x ~ i i t z ~ m  order of vertices an the Graph G is m, then the 
numbev o f  unknowns of S occicwin,g ilz the fundamestad s y s t m  of eqziations (Xf) i s  
at most 

N z  = ( m  - 3)  *ATe + Nv, 
i n  which N v  and N e  are respectively the original wwaber of vertices nnd edges of  G 
before modification. 
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Proof. Let Ok be the number of vertices of order k in G.  Then we have 

SUM k * O k  = 2 + N e ,  

the summation being over k> = 1. Now t o  each vertex of order k the associated 
number of unknbwns of X that may occur in the equations ( X f )  is clearly at  most 
(k-1) * (k-2)/2. Hence we have. 

Ns<=SUM((k  - 1) W (k - 2 ) / 2 )  M Ok 

= SUMk W ( k  - 2)  ++ Ok/2 - 1 / 2  M (SUM(k - 2)  * O k )  
< = ( m  - 2) * N e  - N e  + SUM Ok 

= ( m  - 3) S N e  + Nv. 
That Nv, N e  may be taken to be the original numbers of the unmodified graph is 

To determine the imbeddability of G we can now proceed as in Sect. 3 with the 
result of getting a set of edges that is t o  be deleted and a set of solutions of remaining 
equations in mod 2 integers of the unknowns X .  The operations require only mod 2 
zdditians at most 4 * N e  A 2 in number as before. The number of unknowns has how- 
ever been reduced so that much lies memory space will be required. In  particular, 
if the graph G has only vertices of order < =3, then the number of unknowns will 
be < =Nv, the number of vertices of G .  

aiso clear. 

The great advantage of this method lies in reality in the fact that actual imbecl- 
ding of an imbeddable graph G ,  or more generally the imbedding of the inibeddable 
gnaph which remains after removal of a certain set of edges, can be constructed from 
the set of solutions obtained from the fundamental system of equations. This will form 
the object of sbudy in the next sections. 

6. GEOMETRICAL INTERPRETATION O F  UNKOWNS x AND ROTATIOX 
NUMBERS ASSOCIATED TO A ?'-IMMERSION 

As stated a t  the end of last section, thc aolu'innr 01 111% funciameritnl sq-stem of 
equatiotiis (Xi ;  fo r  a graph G supposed to be imbeddable or become im,beddable after 
removal of certain edges will lead t o  a method of actual imbedding of such a graph. To 
see this we sha.ll first give in this sectiton sonit gcoinetrical interpretation of the a n -  
Itnowiis X involycd in these eqnatians. I n  fact, by Lemma. F of Sect. 5 the nature of the 
LI'-immersion f will actually be dcterniined byf on IVT and this in turn will be dctei~~niiicd 
by how the edges at a common end a r e  m u t u a l l g  situated when immersed by f. This 
suggests thus the introduction of the following notions. 

Let L1, L2, L3 be three simgle broken h i e s  in the plane disjoint from each utl icr 
except t,hat, they have one end in com~iion. TVe shall attach then to this ordrred triple 
of h i e s  a rdat ion  nzimber (in 2 2 ) .  

R(L1 ,  L 2 , L 3 )  = 0 or 1 

according as in passing from L1 to L3 througll L2 x e  have to turn around thcir c o n -  
mon end in a counter-clockwise or in a cloclrwisc srnse. 
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Consider now an A’!!’-immersion f of G with conventions 1, 2 observed. 
admissible pair of eages ( E r ,  E s )  with common tail V m  we set then by definition 

For any 

R r s ( f )  = R ( f P m ,  f E r ,  f E s ) .  

For  each pair of vertices Oi, V j  different from 0 which lead to the admissible pair 
(Er,  Es)  with Er on Pi and Es on P j  having a common tail we shall set by definition 

R i j ( f )  = R r s ( f ) .  

Remark that the order of the indices are important in that 

R r s ( f )  = R s r ( f )  + 1, 

Let  j be a T-imnaersion of G with  conventions 1, 2 observed. T h e n  
for any pair of edges (Ea, E b )  in 0 2  with  Vi, V j  ends of Ea and V k ,  V l  ends of Eb, 
we laave 

R i j ( f )  = R j i ( f )  + I 
Theorem 6. 

I a b ( f )  = R i k ( f )  + R j k ( f )  + Ri l ( f )  + RjZ(f). 

Remark. The equation i s  of the same form as the correspondirq one in the fun- 
Howsver the nunabers R i k ( f )  d o  not fo rm a s o h -  

> R l c i ( f )  while we are seeking f o r  solutions 
damentac system of equations (Xf). 
i ion of the system ( X j )  since R i k ( f ) <  
witla Xik=Xlci. 

Proof. Let Tim be the V-meet of the paths Pi, P j .  Consider first the vertex V k .  
According as f0 and f V k  are interior or exterior to ‘the cycle fCa, and according as 
the path Pk does not meet Ca or first meets Ca on P,i or Pj ,  there are in all 12 cases 
t o  consider. We verify easily that in all cases we shall have 

Rilc( f )  + R j k ( f )  = Ord( fVk , fCa)  + Ord(f0,fCa) .  

Similarly we have 

R i l ( j )  + R j l ( f )  = Orcl ( fVl , fCa)  + Ord( f0 ,  f C a )  

Hence we get 

R i k ( f )  + I i j l c ( f )  + I Z i Z ( f )  + I Z , j l ( f )  

= O r d ( f V k ,  f C n )  + Ord(j’T’!,, f c a )  
= l a b .  

Consider now two A’Tiinmer-iions f and g of 8. For any admissible pair of edges 
(Er;  Es)  let us set by definition 

rn’rs(f,g) = I Z r s ( f )  -k R r s ( g ) .  

For any pair of vertices l’i, ‘ V j  different, f1,1;11i 0 niid le;diii,g I,o t.he ndiniiissible pair 
(Er, Es)  we set t h ~ n  by t le f jn j t joq  

lVi , j ( f ,g )  = R i j ( f )  + Rl i j (g) ,  

or ,  what is the same, 

T V i j ( f ,  g )  = \\Jr.s(,f,g) 

R,einarlr that unlilte the R‘s t h e  numbers TV are n o  more dependent on the order of the 
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indices : 

W r s ( f , g )  = W s r ( f , g ) ,  T V i j ( f , g )  = W j i ( f , g ) .  

If the common tail of the admissible pair Er, Es is at Vm, then 

Wrs( f ,  g )  = 0 or 1 

according as the configurations ( f P m ,  fEr,  fEs )  and ( g P m ,  gEr, gEs) have the same 
sense of rotations o r  not. Hence the set of numbers W r s ( f ,  g ) = W s r ( f ,  g) correspon- 
ding to all admissible pairs (Er; Es) serves to compare the configurations of the two 
imbeddings f / N T  and g/NT. More precisely we have the following 

Theorem 7. L e t  f ,  g be two NT-immersions of G .  .Suppose the fundamental  
system of equations ( X g )  corresponding to g i s  solvable and has a solution 

( X r s )  = ( B T s ) ,  

in which Bvs=Bsr are numbers  in 22 corresponding to all admissible pairs o f  edges 
((Er, Es).  T h e n  the fundamental  system of equations ( X f )  corresponding to f is also 
solva,ble and has a solution 

( X r s )  = (Ars) ,  

in which 

Ars = Brs + W r s ,  

wILers we itowe p u t  for  simplicity 

Wrs = W r s (  f ,  g ) .  

Proof. Let us set by definit,ion 

Ars  = Brs + W r s (  =r l s r  ). 

Set also by definition 

B i j  = Rr , .lij = Ars ,  

if the pair of vertices Vi, V j  differeiit from 0 will lead to the admissible pair o f  edges 
( E r ,  23s) .  Then we shall have also 

A i j  = Bij + Wij(=.4jij. 

Consider now any pair of edges ( E a ,  E b )  in 0 2  with T”, l’j cnrls of Err and V k ,  
Write lo,b, Jab  for their respective int,ersr.ction index u n d c r  f and g a s  VZ ends of Eb. 

before. As ( 8 ~ s )  is a solution of the system (Xg),  so we have 

J a b  = B i k  + Bjlc + Bil + SjZ. 

By Theorem F we have also 

J a b  = Sik (g )  + E j k ( g )  + SiZ(g) + I Z j Z ( g ) ,  

l a b  = Rik(f )  + S j k ( f )  + Ri l ( f )  + XjZ( f ) .  

Adding :111 thcsr three equations together and taking into accoullt the clefillition of il 

and W ,  we get 

250 



No. 1 ON THE PLANAR IMBEDDING OF LINEAR GRAPHS (CONTINUED) 29 

Iab = Aik  + A j k  +Ail + A j l .  

This shows that the set of numbem ( A r s )  in 2 2  with drs=Asr forms a solution of 
(Xf )  and the theorem is proved. 

Suppose now in particular tha t  G is imbeddable with g an imbedding not only of 
NT but also of G as a whole. Then we have J d = O  for all pairs in 0 2  so that Xrs=O 
for all admissible pairs (Er,  E s )  forms a trivial solution of the system (Xg). By the 
above theorem 

( X r s )  = (IVrs) 

will form then a solution of the system ( X f ) .  From the meaning of Wrs  we have 
therefore the following 

Geometrical Interpretation of the unknowns Xrs : 

The set Xrs=Xsr will serve as a set of indicators whether for each admissible pair 
of edges (Er,  E s )  with common tail Vm their images under f should be modified to  
change the sense of rotations of the triple ( f P m ,  fE+, fEs) so that the modified im- 
mersion of T may be extendable to an actual imbedding of the whole graph G .  See 
however the next sect,ion. 

7. QUADRATIC RELATIONS AMONG THE UNKNOWNS X 

By Fundamental Theorem I1 we know that for an arbitrary NT-immersion f of 
G, if the fundamental sys'tem of equations (Xf)  possesses a solution 

(X rs )  = (Ars ) ,  

with Aj"s=Asr corresponding to all admissible pairs of edges ( E r ,  Es) in 0 2 ,  then G 
is imbeddable. From the preceding section i t  seems further that from this solution we 
mould get an actual imbedding of G by modifying the A'T-immersion f to  another one 
g in changing the mutual rotational relaticnsl~ips of edges a t  the same vertices kwmrd- 
ing to the formulae 

Wrs( f ,  g )  = Ars. 

I-Iowever, this is entirely not the case. I n  fact, though G is imbeddnble if the system 
of  equations ( X f )  is solvable, not every solution of (Xf )  will lead to an actual imbed- 
ding of G in the above manner. The reason may be seen as follows. 

Let us consider any triple of edges Er,Es, Et with same t a i l  Vnz. F o r  any im- 
mersioii 9 we have then a set of 3 rotation numbers in 22 ,  viz. 

(Rg) E v s ( g ) ,  f i s t ( ( / ) ,  R t r ( g ) .  

AS ei~eh may take a value of 0 o r  1, so ap,pnren'tly there would be 8 such sets of 
values to bc taken for (Rg) .  However there aye only 6 different types of orientational 
relationships of the edges Er,  E s ,  Et and Pnz under g. This shows that among the 8 
sets of valars of (Rg)  only G will actnally be gcometrically realizable. 111 fact, (Rg)  
can newr take up the sets of values (0, 0, 0 )  and (1, 1, 1). The problem thus arising 
is to ])ieli ont these G sets of values among the 8 sets. The solution of this problem will 
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be furnished by the following device introduced in  the original paper [WU4]. 

tion 
For an immersion g and 3 edges Er,  Es,  E t  with same tail Vm let us set by defini- 

& r s t ( g )  = Rrs(g)  xRr t (g )  + R s t ( g )  -xRsr(g) + Rtr(g)  * R t s ( g ) .  

Remark that though the numbers R r s ( g ) ,  el(.. depend on :$he order 0.f tadices ( T ,  s) 
etc., &rsl(g) is independent of the order of the indices (T, s, t ) .  We have now the 
following 

Lemma 8. The rotation numbers  ( R g )  sat is fy  always the relation 

Q r s t ( g )  = 1. 

Proof .  Let us first remark that if g is such that in turning around the common 
end g V m ,  we shall get successively g P m ,  g E r ,  gEs,  g E t  in the counter-clockwise order, 
then we have Ers (g )=O,  Rs t (g )=O,  R t r ( g ) = l  so that Q r s t ( g ) = l .  

Suppose next that  & r s t ( g ) = l  for a certain configuration of g P m ,  gEr, gEs, gEt 
in the plane with e.g. g E r ,  gEs neighboring to  each other in the arrangement. he t  us 
interchange the orientational relationship between gEr, g E s  but leave the others un- 
changed to  get a new immersion 9‘. Then we have 

R r s ( g ’ )  = R r s ( g )  + 1, 

Rs t (g ‘ )  = R s t ( g ) ,  R t r ( g ’ )  = E t r ( g ) .  

It follows that 

&rs t (g ’ )  = & r s t ( g )  + R r t ( g )  + Rst(g) = Q r s t ( g ) ,  

since, with gEr, g E s  neighboring to each other in the plane, R r t ( g )  = R s t ( g ) .  This 
proves the lemma since any other configuration of Pm, Er,  Es, E t  under any  immer- 
sion may be got from the one under g by a number of such interchanges of immersed 
neighoring edges. 

For any immersion f of G. let us now introduce by clefinition a system of quad- 
ratic forms 

&rs t ( f ,  X) = ( X r s  + X r s (  f)) ii. ( X r t  + Rrt (  ,)) 

+ (Xst + R s t ( f ) )  + ( X s r  + R s r ( f ) )  

+ ( S t r  + E t r ( f ) ) *  ( X t s  + I i t s ( f ) )  

corres,ponding to  each triple ( E r ,  Es, E t )  wit.h a common tail. 
tem of quadratic equations 

Iiit,rocliice also the sys- 

Qrst( f ,  X) = 1 (Qf )  

corresponding to  all snch triples. 
B s r ( f ) + l ,  ctc. 
have noy  the following 

Note that in the equations Xrs=Xsr  while R ~ s ( f ) =  
However Q r s t ( f ,  2) is independpiit of the ordcr of indices ( T ,  s, t ) .  We 

Fundamental Theorem PII. lf co1.7.rspo~acZi~ig t o  a [ r - i namers ion  of G t h e  
fundam.erita1 system of equations (If) is sdeable, tlam the systems of eqa~atioizs (Xf) 
m7,d ( Q f )  t aken  together are ulso solvuble. 
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Proof. As the system (Xf) is solvable, by Fundamental Theorem 11' G is imbed- 
dable with a certain g as an imbedding of G as a whole. Corresponding t o  each ad-' 
missible pair of edges (Er ,  E s )  let us pu t  

Wrs = Wrs( f ,  g) 

for simplicity. Then as in the proof of Theorem 7 oB the h t  section, the system 
(Xf)  will have a solution 

( X r s )  = (Wrs ) .  

Gy Lemma 8 above the set of numbers ( R r s ( g ) )  will satisfy the relations 

Q r s t ( g )  = 1 

corresponding to all triples of edges (Er, Es, E t )  with common tails. As 

W r s  = R r s ( f )  + E r s ( g ) ,  

we see that & r s t ( f ,  X )  will become Q r s t ( g )  when Xrs,  etc. are substituted by WVs, etc. 
This shows that (Xrs)=(TYrs)  will satisfy both systems of (Xf) and (Qf) .  

8. ACTUAL IMBEDDING OF IMBEDDABLE GRAPHS 

We w e  now ready to se'ttle problem P3 of actually imbedding an inibeddable graph 
G in the plane, assuming that certain edges have already been removed to make G the 
remaining imbeddable part  if necessary. For this purpose we shall fir& Drove a con- 
verse of Lemma 8 of the preceding section, wiz. 

Lemma 9. Let ( N r s )  be a set of numbws in 2 2  witla Nrs=ATsrI+l corresponding 
to  all adnaissible pairs of edges (Er,  Es)  wiik same tail which satisfies the relations 

N r s  $ A7rt + Nst +t. Nsr  + N t r  ic Nts  = 1 (Nrst) 

correspondwag to all triplrs of edges (Er ,  Es, E t )  wilh common tails. Then there i s  a n  
ininaeision .r/ of  G siich that  the rotatioia numbers tinder g coincide wi th  the correspoiad- 
ing nimabcis N ,  i . e .  

E r s ( g )  = N r s  
f w  all adniissiblc p n i i s  of edges ( E r ,  E s )  of G .  

Proof .  
nite sct of edges 

Let us consider the simple case that G consists of an edge OVwa and a fi- 

E r , E s ,  . . . , E t ,  . . ., (El  
all having V ~ L  as corninon end. Thc t,rec T is then the same, as G and 0 will be chos,eii 
as the roo't. If the  nuinber n of the edges in (E )  is n=3, then it is clear by the prece- 
diiig section that such immersion (in fact an imbedding) g of G=T in the plane exists. 
W c  shall ~ J O I V  proceed to prove this in grneral by induction on n. 

mcmion ? of C=7' such that for  all pairs of edges ( E p ,  E q )  chosen from the set 
Su]?pos~ thus the  nnmber of edges in (E)  is n>3.  By induction there i s  an in:- 

Es,  . . ' , E t ;  . . ' (E') 
we have  
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R p d g ’ )  = N p q .  

Suppose that in turning around the common end g’Vm in a counter-clockwise sense 
on starting from g‘Pm (Pm=OVm) we shall pass in succession 

. . * , g‘Es, . . ., g ’ E p ,  g‘Eg,  . . ., g‘Et ,  ’ 

Suppose that among the numbers 

. . . , N s r ,  . . ., N p r ,  N q r ,  . . . , N t r ,  , .  
in this order the first non-zero number is N q r  so that 

. . .  = N s r =  . . .  = N p r  = 0 ,  while Nqr<>O. 

The equation in N corresponding t o  a triple of indices (v, q, t )  with E t  in the partial 
set oif edges after Eq in  the above order is given by 

N r q  -X N r t  t N q t  * Nqr f N t r  ?t N t q  = 1. 

As 

Nqt = Eqt(g’ )  = 0, Nrq = A‘qr + 1 = 0 ,  A7tq = R t q ( y ’ )  = 1 

we get 

N t r  = 1,  or N r t  = 0 .  

Modify now the immersion g’ to  an immersion g such that g will be the same as g’ on 
Pnz and on all edges in (E’) while gEr will be brought to  a position between yEp= 
g’Ep and gEq=g‘Eq. Then we see that far any edge E s  in the partial set of edges he- 
fore E p  in the above order and any edge E t  in the partial set of edges after Eq in 
that  order, 

E r s ( g )  = 1 = Nrs, R r t ( g )  = 0 = N r t ,  

E T p ( g )  = 1 = N r p ,  E r q ( g )  = O = N r q .  

F o r  the other number R’s me have say E s t ( g ) = R s t ( g ‘ ) = N s t .  Hence y will have its 
rota.tion numbers all equal to  the corresponding numbers N .  The induction is thus 
conqp~leted a,nd the lemina is proved for  t,he above ~pe~cin.1 graph G .  

For the general graph we shall proceed in just the same niannpr with the modifi- 
cation that each time we bring n certain edge E r  to a new posit,ion, we shnll bring the 
whole suh-trre Tr to such new position at  the same time. Arrange now the vertices 
different from 0 in a definite orde,r :ind t i ~ ; r t .  cjnch vertrx in tun1 as for the special 
graph above, with t h c  above inodification t;ilrc.ii into d u e  account. The rotation num- 
bers of the new immijrsion for nilni~issjble pairs of edges wit11 co~nnion tail a t  that  vertex 
will be identical with the cori~esponding numbers A7. R.emnrli that the interchanges at  
one vertex will not affect t h c  results of intercbnnges at  other vertices. Ilciice in pro- 
cwdidg successively we sliall !inally i i i  F ;it. it T-immersion with the desired propei’ty. 
The lemma. is thus completely proved. 

W e  ha.ve now tlic: folloiving 

Fundamental Theorem IV. If co~~espoi~di i7 .g  t o  (I, 2’-iiniiiwsioia f of Cr the  
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fitndamental systems of equation (Xf) and (Qf) taken together possess in 2 2  a solu- 
tion 

(Xrs )  = ( A m )  

with Ars=Asr corresponding t o  all admissible pairs of edges (Er,  Es) with common 
tails, then there is an imbedding g of G as a whole in the plane with 

Rrs(g)  = Ars + Rrs( f )  

for all such pairs (Er ,  Es).  

Proof. Set for each admissible pair of edges (Er,  Es) 

Nrs = Ars + Rrs(f)  ( = N s r  + 1). 
Then by the hypothesis of the theorem the set of numbers Nrs will satisfy all relations 
of the form (Nrst) corresponding to triple of edges (Er,  Es, E t )  with common tails. 
By Lemma 9 above there will be some T-immersion g of G with 

Rrs(g)  = Nrs 

for all admissible pairs (Er,  Es). 
By Theorem 7 of Sect, 6, the fundamental system of equations (Xg)  corresponding 

to g will have now a solution given by 

X r s  = Ars f Wrs,  

where 

Wrs = W r s ( f , g )  = R r s ( f )  + Rrs(g).  

Consequently (Xg)  will have a solution identical to 0 : 

X r s  = 0 

for all admissible pairs of edges (Er,  E s ) .  It follows from Fundamental Theorem 11’ 
in Sect. 5 that for any pair of external edges (Ea,  E b )  in 0 2  we should have 

Ia6 = 0 

or 

Int(gEa,gEb) = 0. 

Arrange now all the external edges of G in a definite order, say 

Ea,  ..., Eb,  ..., E c , E d ,  .. .. 
OUP aim IS to extend the part  of the T-immersion g ,restricted to  T successively to  the 
extcrnal edges of (E)  t o  get each time an imbedding of T with successively adjoined 
edges as a whole. The final imbedding achieved in this way will then be n required 
imbedding of G in the plane as a whole. 

(W 

Such an extension to Ea is trivial. Suppose that 

Ea, . - 1 ,  Eb,  . . ., E c  (E’> 

in the ordered set (E)  have been extended so that we have an imbedding g’ of G’= 
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T f ( E ’ j  in the p lme  with g’/T identical to 9. Le t  us txy ia extend g’ t o  an inibeddingt 
including the next new edge Ed in the set (E) .  Consider any exte,rnal edge disjoint 
from Ed in (E“), say Eb. By Lemmma 6 of Sect. 5, we have for  the pair (Eb, E d )  in 
0 2  

I n t  (g’Eb, g’Ed) = Int (gEb, gEd) = 0. 

This means that if the ends of Ed are Vi and V j ,  then we should have 

Ord(g’Vi, g’Cb) = Ord(g’Vj, g’Gb). 

(’onseqiiently g’Vi and g ’ V j  mill lie in  the smie region in the plane separated by g‘T, 
g’za ,  . , , g’Ec of g’G’. We may thus join g’Vi and g’Vj by a simple broken line not 
mzeting g’G’ exc.ept at the two ends. We egtend than g” to Ed by tak.ing t h k  broken 
line to  be the i,miage g”Ed. This achieves the induction an’d proves the thiorem. 

9. PROCEDURE OF SOLVING PROBLEMS Pl---3 FOR A GRAPH 

From the devel’opments of the hst sections it is now clear how to solve problems 
P1-3 for a given graph G.  The procedure will be as follows. 

Step 1. (’hoose an  arbitrary tree T o f  G as well as a voot 0. Modifications may 
be made according t o  Sect. 5 i f  required. 

Step 2 .  Take an arbitrary T-immersion f of G .  

Step. 3. Form tho fiindnmenta,l system of equations ( X f )  succes,sively and solve in 
the way as shown in  Sect. 5. W e  get then a set DEL of edges to be removed f f o m  G 
to render the remaining graph C’ inzbeddable. Denote the restriction of f , to  G‘ by 
f‘. The set of 
solutions of corresponding fundamentaz equations ( I f )  will be denoted by (S). 

As no ambiguity can occur we shall denote G’ and f’ again by G and f .  

Step 4. Form the systewi of quadratic equations (Qf) for G ( i .e.  (Qf’) for G ’ )  
and verify whether each solution in  the set ( 8 )  i s  also a solution of ( Q f )  o r  not. B y  l h i r -  
dnmental Theorem I I I  of Sect. G ,  such solutims necessarily exist. 

Step 5. For any solution of ( X f )  aiad (Qf) taken together, modify f / T  to a T- 
iiiamersion g of G as in Sect. 8. Such a T-itittriersion g m a y  then be extended t o  get nit 
iiizbedding of G in  the plane as a whole as shown in  the Pundanzental Theorem I T 7  of 
Sect. 6. 

IZeiirark. By introducing new unknouns and new system of equntions it can be 
shown t,liat the totality of all possible imbeddings of tbhe imbeddabble graph cmentially 
different from each other will be obtained i n  correspondence with t.he solutions of t.he 
three systems of equations taken altogether. This gives the solution of problem 1’4 a s  
stated in Sect. 1. We shall not however enter into this and will leave the details to  the 
original paper [WU4]. 
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A MECHANIZATION METHOD OF GEOMETRY AND ITS 
APPLICATIONS 

I. DISTANCES, AREAS AND VOLUMES 

W U  W E N - J U N  ( W U  W E N - T s U N )  

(Inst i lute  of Systems Science,  Academia  Sinica, Be i j ing)  

1. INTRODUCTION 

T h e  present paper is the first of 3 series of papers dealing with a mechanization method 
I t  bears the same 

details 
It is mainly the content of part  of lectures given by the author for 

Sinica during 

of geometry and related domains, with emphasis on its application aspects. 
title as a short paper [ W U 6 ]  presented to Kuxur  Tongbao last year but with more 
and also more materials. 
a course on mechanical theorem proving in the Graduate School of Academia 
the September-December semester, 1 9 8 4 .  

T o  begin wi th ,  let us first recall briefly some fundamental notions and facts that origi- 
nated f r o m  works  of J .  F. Ilitt, cf. [ R l ,  21. Let a finite set of polynomials (abbr .  pols 
and polset) PS in variables X 1  , . . . , X n  with coefficients in a basic field K of characteristic 
0 be given. T h e  method of Rift then permits to deduce f r o m  it by rational operations alone 
a polset CHS of special type, called the C H A R A C T E R I S T I C  S E T  (abbr .  C H A R - S E T )  of 
PS. I n  the case that PS is not C O N T R A D I C T O R Y  or C H S  does not consist of a single 
pol which is a 0011-zero constant of K ,  then w e  can divide the  variables Xi into t w o  parts 

U l , . . . , U d , Y l ; . . , Y r  with d + e = n  such that CFIS will b e o f  t h e f o r m s  

C1 = I 1  * Y 1  A M 1  + lower degree terms in Y 1 ,  

C2  = I 2  * Y 2 /I A4 2 + lower degree terms in Y 2 ,  
. . .  

Cc = I e % Y c A M e  + lower degree terms in Y e .  

In  tht. expr~ssions :he coefficients of powers of Y j  in C I  are a l l  pols in  U 1 ,  . . . , l l d ,  
Y 1 ,  . . . , Y 1’ alone with 1’ = 1 - 1. Moreover,  all the coefficients are R E D U C E D  with 
respect to the suhset of preceding C 1 ,  . . . , CI‘  i n  the sense that for each Y z  with i < j 
there are only terms of degree < Mi. In particular the coefficients l i  of the leading terms 
of the Ci‘s are ca!!ctl INITIALS and play a particularly important role i u  the theory of Ritt .  
For any polset PS a n d  pol G let us denote the totality of zeros of PS in 3ny arbitrary CY- 

tension field of K for  which G ( ) 0 by Zero ( P S / G ) .  For G = 1 we write simply Zci-o 
( P S )  for Zero ( P S / I  ). Then the following two formulae constitute rvh:rt w e  hove i:nllcd 
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the Ritt Well-Ordering Principle: 

Zero ( C H S /  J )  -< Zero (PS)<Zero ( C H S ) ,  

Zero (PS) = Zero ( C H S I J )  + S U M i  Zero  (Psi). 

(1 )  

( 2 )  

In  the formulae C H S  is the char-set of PS, J is the product of all initials Z i  of pols in  
C H S  and Psi is the enlarged set of PS with Z i  adjoined to it for each i. We use here 
and here after the notations -< and 2- to mean “is contained in” and “contains”’ respectively. 
W e  remark in passing that for practical purposes w e  may udderstand C H S  to some 
broader sense with R E D U C E D  in less stringent conditions asdefined above. T h e  formulae 
( l ) ,  ( 2 )  will, however,  remain to be true.  Furthermore,  w e  have a more general formula 
describing the structure of Zero ( P S / G )  which we have called the Z E R O  D E C O M P O S I T I O N  
T H E O R E M  and can be put i n  the following form: 

be in 

Z e r o ( P S / G )  = SUM; Zero ( Z R R j l G j ) .  (3)  

Note that the right-hand side may eventually be empty, which means in this crse that G 
vanishes for all zeros of PS or Zero(PS) -<Zero  (C). In the formula each ZRRj  is a 
polset of similar fo ims  as C H S  (the U’s are naturally different for  different j ’s) and is mo- 
reover I R R E D U C I B L E  in some sense which we shall not enter. Each Gj is also some pol 
with non-zero R E M A I N D E R  with respect to I R R j  which w e  shall not enter either. W h a t  is 
important to us is that PS (and G )  being given, the right-hand side of ( 1 ) - ( 3 )  will be 
completely determined in a mechanical manner so that it can be accordingly programmed on  
computers. For  more details we  refer to [ W U 3 ,  4 ,  5 ,  71. 

T h e  formulae (1  )-( 3 )  and their natural generalizations to the differential case consti- 
tute the basis of our mechanization method of (elementary and differential) geometry and  
related domains. T h e  merhod has diverse applications in a variety of directions, besides solu- 
tion of arbitrary systems of algebraic equations and mechanical theorem-proving and  theorem- 
discovering of geometries as We have explained in Various occasions. AS one of further ap- 
plications, our method permits to determine automatically unknown relations between variobs 
geometry entities in a quite simple manner .  T o  serve as examples of illustration, the pre- 
sent paper will deal with relations involving distances, areas a n d  volumes in  either euclidean 
or non-euclidean spaces. T h e  mrthod is however a general one and may be rxplained a s  fol- 
lows. 

T o  f i x  the ideas, let 0 ,  b ,  c be, say three known magnitudes and  x be a magnitude a ] -  
ready known to be cornpletrly determihed by n ,  b ,  c without kno\bing however the exact 
relation \vhich is to bt. found.  Suppose that by given hypothesis x is connected by polyno- 
mial relations with a ?  b ,  c through certain other magnitudes d ,  c ,  etc. Denote now the 
kno\vii inagnitudes n , b , c  by X I  , X 2 , X 3  and the unknown ifiagnitude x by X 4 .  Denote the 
othrr magnitudes d ,  e ,  etc. h y  Xi: , X G ,  etc. T h e  given rehtious will then form a pOlSKt 
I’S consistin:: of pols in the \zsriahles X i .  By ( 1 )  
any zero of PS is necessarily a zero of C H S .  T h e  first pol C1 of the pols C H S  is therefore 
one in X1 , . . . , X-l  alone whose vanishing will give the exact relation to he sought f o r .  

2 .  THE QIN-HERON FORMULA OF AREA OF A TRIANGLE 

Let US form the char-set C N S  of PS. 

T h e  simplest example is perhaps the dctermination cf the area of a triangle in tcrlns of 
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the lengths of its three sides a ,  6 ,  c, Let I = ( a  + b + c ) / 2 .  Then it is well-known 
that the area will be given by 

A r e a A 2  = s * ( s  - a ) *  (s - b ) * ( s  - c ) .  ( 4 )  
I n  present-day geometry this formula ( 4 )  is usually attributed to Heron, whose life ranged, 
according to historians of mathematics, f rom 2c B. C, to 1Oc A .  D. In  the famous books 
of Heath there is a proof of this Heron’s formula, see [ H I ,  pp. 87-88. The  proof is how- 
ever so intricate and unnatural that the present author cannot refrain from suspecting that it 
was only supplemented, in following the euclidean pattern of proofs, by someone much later 
rhan the actual discovery of the formula in whatever manner and in whatever time. 

On the other hand, in the Chinese classic Shu Shu Jiu Zhang, or Mathematical Treatise 
in Nine Sections, 1247,  of Qin Jiusheo in the Sung Dynasty, there appeared a formula 
which may be described as follows. 

Let the three sides of a triangle be given by gr(=great) ,  mid(=middle) and sm (= 
small), then the area of the triangle will be given by 

A r e a A 2 =  [ s m A 2 * g r A 2 -  ( g r A 2 + s m A 2 - m i d ~ 2 ) A 2 ] ] / 4 .  ( 5 )  

Clearly this is equivalent to ( 4 ) ,  but is expressed in a form quite involved and is somewhat 
mysterious a t  first appearance. T h e  author of the above classic gave no indication of its sour- 
ce or any idea of proof. However,  based on the tradition of Chinese geometry entirely 
different from the tradition of Euclid, the author has constructed a proof of (5)  which 
has the peculier character of arriving quite naturally a t  this peculier formula. It is therefore 
not unreasonable to guess that this is just the same proof which was known to our ancestors. 
Now it is a simple matter to transform ( 5 )  into the neat elegant form ( 4 ) .  But once ( 4 )  
is  known, it would be completely insensible to turn it into a form so ugly in looking like 
( 5 ) .  For this reason the present author has drawn the conclusion that Qin (or someone in 
earlier dates) discovered formula ( 5 )  at least independently of Heron. For more details cf. 
I \VU 8 1. 

Return now to our mechanization method in dealing with the above. 

PROB 1. 
For the determination let us choose for the sake of simplicity of computations 

dinate system so that the three vertices of the triangle will be given by 

Drtermine the area of a triangle in terms of its three sides. 
the coor 

nO = ( 0 ,  0), a1 = ( x 5 ,  0 ) ,  a 2  = ( x 6 ,  x7) .  

Lct the lcngths of the three sides be 

aOal = X I ,  nOa2  = x2,, a l a 2  = x 3 ,  

and the 3rca be 

area = x4. 

Note that t %  ordrr of the variables Xi is chosen in accordance with the principle stated in 
Sect. 1,  T h r  hypothesis polset PS consists of then 4 pols given by 

P I  = +24:x4  - 1 * x 5 * x 7 ,  

p Z ~ + l * x 5 - l * s i : x l ,  

26 1 
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P 3 = + 1 * ~ 2 A 2 -  1 * ~ 6 / \ 2 - 1 * ~ 7 / \ 2 ,  

P4 = + l * x 3 A 2  - 1 * ~ 6 A 2  - 1 * ~ 5 A 2  + 2 * ~ 6 * ~ 5  - 1 * ~ 7 A 2 .  

The char-set CHS is readily found to consist of 4 pols of which the €irst one is given by 

c l =  + 2 * x l A 2 * ~ 2 A 2  - l * x 3 A 4  + 2 * ~ 2 A 2 * ~ 3 / \ 2  

+ 2 * x l A 2 * ~ 3 A 2  - l * x Z A 4 - - 1 * x l A 4  - 1 6 * ~ 4 A 2 .  

The  relation c l  = 0 is just the Qin-Heron formula to be sought for. 

3. FURTHER PROBLEMS I N  EUCLIDEAN SPACE 

We give some further examples about distances, areas, volumes, ect. in a euclidean plane 
or space in what follows. First of all, the problem about the area of a triangle as given in 
Sect. 2 can be naturally extended to the case of the volume of a tetrahedron in a euclidean 
space. W e  lay down thus the following 

PROB 2. Determine the volume of a tetrahedron T in a euclidean space in terms of 
its 6 edges. 

T o  solve this problem let us take coordinates so that the 4 vertices of the tetrahedron 
T are given by 

a0 = ( 0 ,  0 ,  0 ) ,  a1 = ( x 8 ,  0 ,  0 ) ,  

a2 = ( x 9 ,  x10 ,  O),a3 = ( x l l ,  x 1 2 ,  ~ 1 3 ) .  ( 6 )  
Set the lengths of the edges to be 

aOal = x l ,  aOa2 = x 2 ,  aOa3 = x 3 ,  a l a 2  = x 4 ,  a l a 3  = 2-5, a2a3 = = x 6 .  ( 7 )  

Then the problem is equivalent to finding a relation be- Denote the volume of T by x 7 .  
tween x 7  and x l ,  ..., x6.  

W e  remark in passing that, following the- general principle as described in Sect, 1 ,  we 
havc chosen the first 6 variables x to be those supposed known and the next one x7 the volume 
to be determined. This is indred the crucial point in applying our mechanization method. 

The conditions implied by the problem are now p l  = 0 ,  . . -, p7 = 0 with the p’s 
given below: 
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T h e  corresponding char-set is readily found by our program to be consisting of pols c l  , . . -, , 
c 7  as shown below: 

~ 1 = - 1 * ~ 4 A 2 * ~ 3 A 4  + 1 * ~ 2 / \ 2 * ~ 4 / \ 2 * ~ 5 / \ 2 -  1 * ~ 2 / \ 4 * ~ 5 r \ 2  

+ 1 * x l  A 2 * x2  /I 2 * x5  A 2-1 * x 2  A 2 * x5 A 4 

- l * ~ l / \ 2 * ~ 2 / \ 2 * ~ 4 / \ 2  + 1 * ~ 2 / \ 2 * ~ 3 / \ 2 * ~ 5 r \ 2  

+ 1 * xl I\ 2 * x4 A 2 * x 3  A2-1*  x4 / \ 4  * x 3  A 2  

+ 1 * x2  A 2 * x4 A 2 * ~3 A 2 - 1 * x l  A 2 * x3 /\ 2 * x5  A 2 

- l * x l ~ 4 * x 6 / \ 2 - 1 * ~ 1 / \ 2 * x 6 r \ 4  

+ l * x l A 2 * ~ 3 / \ 2 * x 6 A 2  + l * x l A 2 * ~ 2 / \ 2 * x 6 / \ 2  

- l * x 4 / \ 2 * x 5 / l 2 * ~ 6 A 2  + 1 * ~ 2 / \ 2 * ~ 5 / \ 2 * ~ 6 1 \ 2  

+ 1 * x l / \ 2 * ~ 5 A 2 * ~ 6 A 2  + l ~ x 4 / \ 2 * ~ 3 / \ 2 * ~ 6 A 2  
- 1 * x 2  A 2  * x 3  A 2  * x6 A 2  + 1 * x l  I\ 2 * x4 A 2  * x6  A 2  

+ 1 * x 4 A  2 * x 3 A 2  * x5  A2-144 * x 7 / \  2 ,  

c 2  = + l  * x 8  - 1 * x i ,  

c 3  = -1 * x 4 / \ 2  + 1 * x 2 / \ 2  + 1 * X I  A 2  - 2 * x l  * x 9 ,  

c 4  E + 1 * ~ 2 1 \ 2  - I * x 9 r \ 2  - 1 * ~ 1 0 A 2 ,  

c 5 - - 1 * x 5 / \ 2 +  1 * x 3 / \ 2 +  1 ~ ~ 1 ~ 2 - - 2 ~ ~ 1 * ~ 1 1 ,  

c 6 ~ - 1 * ~ 6 A 2 +  1 * x 3 1 \ 2 +  1 * . ~ 9 A 2 - 2 * ~ 1 1 * ~ 9 -  2 * ~ 1 2 % ~ 1 0  

+ 1 * x 1 0 / \ 2 ,  

c 7  = t 6  * x 7  + 1 * xl * xlOa* 13. 

Remark that the char-set given here is in  some broader sense as indicated in Sect. 1.  
T h e  equation c l  = 0 may now be put in the form 

1 4 4 * ~ 7 / \ 2  = - S U M l ( x l / \ 2 * ~ 6 / \ 4  + ~ 6 / \ 2 * x l A 4 )  

+ S U M ~ ( X ~ A ~ * X ~ A ~ * X ~ A ~ )  

- S U M 3 ( x l 1 \ 2 *  x 2 A 2  * ~ 4  A 2 ) .  (8 )  

I n  the formula the SUM’S are summations to be extended over respective ranges as below: 

SUM1 over 3 pairs of opposite edges ( x 1  , x 6 ) ,  ( x 2 ,  x 5 ) ,  ( x 3 ,  x 4 ) ,  

SUM2 over 1 2  triples of non-closed edges like ( x 2 ,  x l ,  x 5 ) ,  

SUM3 over 4 triples of edges forming a triangle like ( X I ,  x 2 ,  ~ 4 ) .  

Equation (8)  gives now the expression of the volume x7 in  terms of the edges xl , . . . , x 6  
a s  required.  

PROB 3. Find  the relation between the 6 distances aOnl , . . . , a 2 n 3  of the 4 points 

R O ,  0 1 ,  0 2 ,  a 3  in a euclidean plane. 

I n  fact if the three distances 
% 

aOnl ,  aOa2, a l a 2  are known, then the triangle nOa la2  
is already rigid in form. IVith know distances aOa3 and a l a 3  there 3re then just two po- 
sitions for a 3  to take and then the distance 0203  will be determined. Form this we see that 

t h t  relation to be sought for should be quadratic in a 2 a 3 A  2 or quartic in a 2 0 3  and hence 
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also quartic in each of the 6 distances involved. 
ter a5 before. 

This can be readily verified by the compu-, 

Let us take thus coordinates so that 

a0 = (0, 0 ) ,  a1 = ( x 8 ,  0 ) ,  a2 = ( x 9 ,  xlO),  a 3  = ( x l l ,  x12). 

Set the 6 distances as in (7). Then the hypothesis polset will be the same as P2 , * . . , P7 in 
PROB 2 in setting x13 = 0. The  first pol c l  of the char-set should be a pol in xl,..., 
x6 alone which is readily seen to be 

c l  = -SUM1 $- SUM2 - SUM3, 

in which the SUM’S are just the same expressions as occured on the right-hand side of (8) .  
The  rrlation to be found is then given by cl = 0 which corresponds to the fact that the 
volume of the tetrahedron aOa la2a3  is this time 0. 

( 9 )  

W e  may ask the same question as PROBs 2 ,  3 about the volumes of a 4-simplex in a 

4-dimensional euclidean space R 4 ,  of a 5-simplex in R 5 ,  and the relation between the dis- 
tances of any 5 points in R 3 ,  or that of any 6 points in R 4 ,  and even those for a eucli- 
dean space of arbitrary but fixed dimension. One can solve these problems in just the same 
manner as above so far the dimension of the euclidean space is fixed in advance and so far 
the limitations of the memory space and running time of a computer permit tocarry out such 
a computation. On the other hand, the determination of such a formula for a general di- 
inension n is entirely out of the reach of our mechanization method. Remark that such for- 
mulae have already been discovered by Cayley et a1 by ingenious manipulations of determi- 
nants. This shows that, although the use of computers furnishes a powerful tool in mathe- 
matical studies, we cannot solely rely upon it without resort to usual methods of mathematics. 

As a further example let us consider the following interesting problem raised hy Gauss 
i n  a short paper (cf. [ G I ) ,  viz. 

PROB 4. Determine the area of a planar pentagon a O a l ~ 2 a 3 a 4  in tcrms of the areas 
of 5 triangles with vertices taken from aO-, .. . , a4.  

Gauss pre-supposed in fact that the pentagon is a convex one and the 5 triangles conside- 
red are 

aOaln2,  n l a 2 a 3 ,  a2a3a4, a3a4a0, a4aOa1, (10)  

T o  deal with this problem by means of our method let US choose oblique coordinates such 
that 

a0 = ( 0 ,  0), a1 = ( x 2 1 ,  0), a2 = ( x 2 2 ,  x23), a3  - ( x 2 4 ,  x 2 5 ) ,  

a4 = ( 0 ,  x26). 

There are 10 triangles in all which can he formed form the 5 vertices of the pentagon. Denote 
the areas$of the above 5 triangles by x l ,  ... , x5 i n  that order. Denote the areas of the 
other 5 ,  viz. 

a O a 2 a 3 ,  ala3a4, a2a4a0, a3aOa1, 0 4 0 1 0 2  

by xll ,. . . ,x15  i n  that order. W e  remark that by the area of il triangle the order of the 

264 



210 wu WEN-JUN (wu WEN-TSUN) '1 I Val. 6 

vertices or the orientation of the triapgle has been taken into account here. Similarly th: 
area of the oriented pentagon a O a l a 2 a 3 a 4  with vertices given in  that order will be denoted 
by x10. For the various areas we have then relations PI - 0 ,  . * a ,  P I 5  = 0 with the pols 
p given below. 

P 1 = + 2 * ~ 1 - 1 * ~ 2 1 * ~ 2 3  ( a rea (aoa la2 )  - X I ) ,  

P 2 ~ + 2 ~ ~ 2 - 1 ~ ~ 2 1 ~ ~ 2 3 - 1 ~ ~ 2 2 ~ ~ 2 5 + 1 ~ ~ 1 3 ~ 1 : 2 4  
+ l * x 2 1 * x 2 5  ( a rea (a l a2a3)  = x Z ) ' ,  

P 3 = + 2 * ~ 3 -  1 * ~ 2 2 * ~ 2 5  - 1 * ~ 2 4 * ~ 2 6 +  1 * ~ 2 2 * ~ 2 6  

+ 1 * x 2 3 * x 2 4  

p 4 = + 2 * ~ 4  - 1 * ~ 2 4 * ~ 2 6  (a rea(a3a4a0)  = x 4 ) ,  
p 5 = + 2 * ~ 5 - 1 * ~ 2 1 * ~ 2 6  (a rea(a4aOal )  5 x 5 ) ,  

p 6  = + I  * x10 - 1 * x l  - 1 * x l l  - 1 * ~4 

(a rea (a2a3a4)  = x3),  

(area( a O a l a 2 a 3 a 4 )  
= x10 - a r e a ( a o a l a 2 )  + area(aOa2a3) + area(nOa3a4)) ,  

p 7 = + 1 * x 1 0 - 1 * x 2 - 1 * ~ 1 2 - 1 * ~ 5  ( a r e a ( a 0 a l a 2 a 3 a 4 )  

= a r e a ( a l a 2 a 3 )  + a r e a ( a l a 3 a 4 )  + a rea (a l a4aO) ) ,  

P E = + l * x l O - 1 * ~ 3 -  1 * ~ 1 3 - 1 * ~ 1  ( a r e a ( a 0 a l a 2 a 3 a 4 )  

= area(aLa3a4)  + a r e a ( a 2 a 4 ~ 0 )  + a r e a ( a 2 a o n l ) ) ,  

p 9 = + l * ~ 1 0 - 1 1 * ~ 4 - 1 1 * ~ 1 4 - 1 1 * ~ 2  ( a r e a ( a 0 a l a 2 a 3 a 4 )  

= a r e a ( a 3 a 0 a l )  + a rea (a3a4a0)  + a r e a ( a 3 a l a 2 ) ) ,  

P 1 0 =  + l * x 1 0 -  1 * ~ 5  - I * x 1 5 - 1 * ~ 3  ( a r e a ( a 0 a f a 2 ~ 3 a 4 )  
= a r e a ( a 4 a o a l )  + a r e a ( a 4 a l a 2 )  + a r e a ( a 4 a 2 a 3 ) ) ,  

= x l l ) ,  

P i l e  + 2 * r l l  - 1 * ~ 2 2 * ~ 2 5  + 1 * ~ 2 3 * ~ 2 4  (area( aOa2a3)  

p l 2 = + 2 * x 1 2  -1*:21*x5 - l * x 2 4 * ~ 2 6  

+ l * x 2 1 * x 2 6  ( a r e a ( a l a 3 a 4 )  = x 1 2 ) ,  

P I 3  = + 2 * x 1 3  - 1 * ~ 2 2 * ~ 2 6  
P14 = + 2 * x 1 4  - l * x 2 1 * ~ 2 5  

(a rea(nZa4a0)  = x 1 3 ) ,  
( a r ea (n3aOa l )  = x 1 4 ) ,  

P 1 5 = + 2 * x 1 5  - l * x Z l * x 2 3  - 1 * x 2 2 * ~ 2 6  

+ l * x 2 1 * x 2 6  ( a r c a ( a 4 a l a 2 )  = x15).  

Suppose that we a re  interested as in the original work of Gauss, in the determination 
of the a r e a  x10  of the pentagon in terins of the areas of the 5 triangles in ( 1 0 ) .  
T h r n  we may takr  our polset PS to be consisting of the 7 pols P l ,  . . . , P 5 ,  P6 and P I  1 .  
W e  readily find that the first pol c l  of the char-set is given by 

the srt 

- l * x l 0 * ~ 1 * ~ 4 * ~ 3 +  l * x l * x 4 * ~ 2 * x l +  l * ~ l * x 4 A 2 * x 3  
!7 

- 1 * x 1 0 * X 5 * X 2 * X 3 - 1 * x 1 * x 5 * X 2 * X 3  

+ l * . r 4 * r j * x ? * x 3 +  l * x 5 * x 2 r \ 2 * x 3 +  l X x l O * x l ~ x 5 * ~ 3  
- - 1 * r l * x l * x 5 * x 3 +  l * x l 0 ~ 2 ~ ~ 5 * ~ 2  

- l * x l O * x i * x ? A 2  -- I * ~ l O ~ t : 4 * x ~ * x 2 - - 1 * x 1 ~ 2 h x 5 ~ x 2  
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+ l * x l * x 5 * 2 A 2 +  1 * ~ 1 0 / \ 2 * ~ 1 * ~ 4  - l * ~ l O * ~ l l \ 2 * x 4  

- 1 * x l O * x 1 * ~ 4 A 2 +  1 * ~ 1 * ~ 4 A 2 * ~ 5  + 1 * ~ 1 / \ 2 * x 4 * ~ 2  

+ 1 ~ x 1 / \ 2 ~ x 4 ~ ~ 5 - 1 ~ ~ 1 0 ~ ~ 1 ~ ~ 4 ~ ~ 2  - l * x 1 0 / \ 2 * ~ 1 * ~ 5  

+ l * x l O * x l / \ 2 * ~ 5  - 1 * ~ 1 0 * ~ 5 A \ * x 2 +  l * x l * x 5 / \ 2 * x 2  

+ l * x 4 * x 5 / \ 2 * x 2  + l * a l O * x l * x 5 / \ 2  - l * x l A 2 * x 5 / \ 2  

-1  * x l *  x4 * ~5 A 2 .  

Now this pol c l ,  considered as one in x 1 0 ,  has its initial 

I 1 = + 1 * ~ 2 * ~ 5 +  1 * ~ l * x 4 - 1 * x l * x 5  

as non-trivial content. 
ding certain degeneracy cases, we get the required relation 

Removing this content from c l  - 0 which is equivalent to disregar- 

x l O A 2  - (XI + ~2 + ~3 + ~4 + ~ 5 ) * * . ~ 1 0  

+ ( x l * x 2 + x 2 * x 3 + X x 3 x 4 + x 4 * x 5 + x 5 * x l ) = o .  ( 1 1 )  

This is just the formula found by Gauss by an ingenious method. W e  remark however that, 
while Gauss had to suppose the pentagon to be a convex one, our method has no such restric- 
tions and works for all cases, even for degenerate pentagons for which some of the vertices 
may be collinear. Moreover, if we are interested in the expression of the area of the penta- 
gon in terms of the areas of any other 5 of the 10 triangles, we may just choose the due 
polset from the 15 pols given above and treat in the same manner as above. 

Let us consider now a problem of slightly different character, viz. 

PROB 5 .  
terms of its 6 edges. 

Determine the ex-radius of the circumscribing sphere S of a tetrahedron in 

Let us take the coordinates so that the 4 vertices and the 6 edges of the tetrahedron will 
be given as in ( 6 ) ,  (7). Let the ex-center of S be ( x 1 4 ,  x 1 5 ,  x16)  and the ex-radius 
be x7. Then we have to consider the polset PS consisting of the following 10 pols with the 
first 6 ones the same as P 2 ,  are 
given by 

* .  , P7 in the polset of PROB 2 ,  while the remaining 4 

p 7 =  + 1 * x 7 / \ 2  - 1 1 ~ 1 4 A 2  - 1 * ~ 1 5 / \ 2  - l * x 1 6 A 2 ,  

p 8 = + 1 * x 7 r \ 2 -  1 * ~ 1 4 / \ 2 - 1 1 ~ 8 r \ 2 + 2 * ~ 1 4 * ~ 8 -  1 * x 1 5 / \ 2  

- 1 * x 1 6 / \ Z 2 ,  
p 9 =  + 1 * x 7 / \ 2 - 1 * ~ 1 4 r \ 2 -  1 * ~ 9 / \ 2 + 2 * ~ 1 4 * ~ 9 -  1 * x 1 5 / \ 2  

- 1 * x l O r \ 2 +  2 * ~ 1 5 * . ~ 1 0 - 1 * ~ 1 6 r \ 2 ,  

~ 1 0 = + 1 * x 7 1 \ 2 - 1 ~ ~ 1 4 ~ 2 ~ 1 * ~ 1 1 / \ 2 +  2 * ~ 1 4 * ~ 1 1 - - 1 * ~ 1 5 1 \ 2  
- l * x 1 2 / \ 2 +  2 * ~ 1 5 * ~ 1 2 - 1 * ~ 1 6 / \ 2 -  1 * x 1 3 / \ 2  

+ 2 * x l 6 * x 1 3 .  
The first pol c l  of the char-set which furnishes the solution is found to be given by 

-4  * x4 A 2 * x 3 A 4  * x 7 A 2  + 4 * x2 A 2 * x4 A 2  * x 5  r\ 2 * x 7 A  2 
- 4 %: x 2  / \ 4  * x 5 A  2 * x 7 / \  2 + 4 * x l  /\ 2 * x2 /\ 2 :K w 5  /\ 2 * x71\ 2 

- 4 * x 2 / \  2 * ~5 A 4 * x ~ A  2 - 4 * x l  2 * ~ 2 / \ 2  * ~ 4 / \  2 * x7 / \  2 
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+ 4 * x 2  A 2 * x 3  A 2 * x 5  A 2  * x 7 A 2  

+ 4 * x l  A 2  * x 4  A 2  * x 3 A  2 * x 7 A 2  

- 4 * x4 A 4  * ~3 

- 4 -X xl A 2 * x 3 A  2 * x 5  A 2 * x 7 A  2 

- 4 * x l A 4  * x 6 A  2 * x 7 A  2-4 * x l  

+ 4 * x l  A 2 * x 3 A  2 * x 6 A  2 * x 7 A  2 

+ 4 * x l  A 2 * x 2 A  2 * x 6 A  2 h x 7 A  2 

2 4  x ~ A  2 + 4 * x 2  A 2 * x 4 A  2 * ~3 A 2 * x 7 A  2 

2 Y x 6 A 4  * x 7 A  2 

-4 * x4 A 2 * x 5 A 2  * ~ 6 A 2 *  x 7 A 2  

+ 4 * x 2  A 2 * x5 A 2 * x 6 A  2 * x 7 A 2  

+ 4 X x l  A 2  * x 5  A 2  * x 6  / \ 2 *  x 7 A 2  

+ 4 * x4 A 2  * x3 A 2  * x 6 A 2  * x 7 A  2 

- 4 * x 2  A 2  * x 3 A 2  * x 6 A 2  * x 7 A 2  

+ 4 * x l  A 2  * x4 A 2  * x 6  A 2  * x 7 A  2 

+ 4 * x4 A 2  * x 3  A 2  * x 5  A 2  * x 7 A 2  

- 2 * x l  A 2 * x2 A 2 * x 5  

+ 1 * x l  A 4  * x 6 A  4 - 2 * x 2  

- 2 *XI A 2  * x4 A 2  * x 3 A 2  * x 6 A 2  + 1 * x 2  A 4  * x 5 A 4 .  

2 * x 6 A 2  + 1 * x4 A 4  * x3 A 4  
2 * x4 A 2 * x 3  A 2 * x5 A 2  

In  comparison with the pol r l  of PROB 2 ,  we see readily that the coefficient of x 7 A 2  in 
the present c l  is equal to 4 * 144 * VOLA 2 ,  where VOL is the volume of the tetrahedron. 
Denote the diameter of the circumscribing sphere by DIAM and let us set 

S - ( A  + B + C) /2 ,  

with 

A == x l S x 6 ,  8 = x 2 * x 5 ,  C = x 3 S x 4  (12) 

corrcsponding to the 3 pairs of opposite edges x l ,  x 6 ;  x 2 ,  x 5 ;  and x3, x4. 

sent relation can he put in the following neat form, viz. 

Then the pre- 

9 * V O L A 2 * D I A M A 2  = S* (S - A )  * (S - B )  * (S - C). (13) 

The author is a t  a loss where to find this formula in the literature of pasttimes. 
connection of the right-hand side of (13) with the Ptolemy formula about 4 points 
same circle. 

Note the 
on the 

4 .  PROBLEMS IN  HYPERUOL~C PLANE ox SPACE 

Our mechanization method may also be applied to same problems in other kinds of geo- 
metries. which 
Beltrarpi coordinates will br used in what follows. W e  remark that in studies of non-euc- 
lidean geometries transcendental functions are intensively used. On the other hand our rne- 

thod has to deal solcly with polynomials of pure ALGEBRAIC character. This is however not 
an unsurinountable barrier to the applications of our method since we are dealing actually 
with ALGEBRAIC relations between the T R A N S C E N D E N T A L  functions. I t  has been ex- 

To f i x  the ideas, let us consider the case of plane hyperbolic geometry for 
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plained in the book [ W U 3 1 ,  Chap 6 and in the earliest paper about mechanical theorem pro- 
ving [ W U l ]  that there are already some examples illustrating how we can deal with suth 
problems involving transcendental functions. In  what follows one can see again how this is 
done. 

PROB 6. Find the relation between the 6 distances of 4 points a O , - .  - , a 3  in a hy- 
perbolic plane. 

Let us take the coodinate system such that the 4 points are given in Beltrami coordinates 

by 
a0 = ( 0 ,  O ) ,  a 1  = ( x 7 ,  O ) ,  a 2  = ( x 8 ,  x 9 > ,  a 3  = ( x 1 0 ,  x l l ) .  

Set also for the 6 distances: 

x l  = cosh a O a l ,  x 2  = cosh ~ 0 ~ 2 ,  x 3  = cosh aOa3,  

x4  = cosh a l a 2 ,  x 5  = cosh a l a 3 ,  x 6  = cosh a2a3 .  

W e  have then a polset as given below: 

p l = + 1 * x l r \ 2 - l * x l r \ 2 * x 7 ~ 2 - l ,  

P 2 = + 1 * ~ 2 / \ 2  - 1 * ~ . Z r \ 2 * ~ 8 A 2  - 1 * ~ 2 A Z * x 9 r \ ? -  1 ,  

P 3 =  + 1 * ~ 3 r \ 2  - 1 * ~ 3 r \ 2 * ~ 1 0 / \ 2  - 1 * ~ 3 / \ 2 * ~ 1 1 / \ 2  -- 1 ,  

P4 = + l  * x 4  - 1 * x l  * x 2  + 1 * x l  * x 2 * x 7 *  x 8 ,  

P 5 = + 1 * ~ 5  - 1 * ~ l * x 3 +  l * x l * ~ 3 * ~ 7 : k x l O ,  

p 6 =  + 1 * x 6  - l * x 2 * x 3 +  1 * ~ 2 ~ x X 3 * x 8 * x 1 0  

+ 1 * x 2 *  * 3  * x 9 *  x l l .  

The  first pol c l  of the char-set is given by 

+ 2 * x l * x 4 * x 3 * x 6  + l * x 6 r \ 2  - l * x 4 A 2 * x 3 A 2  - 1 * ~ 2 A \ * x j A 2  

+ 2 * x l * x 2 * ~ 5 * x 6 +  l * x 3 A 2  + l * x 5 A 2  + 2 * x 4 * x 2 * x 5 * x 3  

- 2 * X I  * ~5 * ~3 - 2 * ~4 * ~5 * ~ 6 - - 1 *  ~l A 2 * ~6 2 - 2 * ~2 * x 3  * x6  

- 2 * x l * x 4 * x 2 +  1 * ~ 2 r \ 2 +  1 * x 4 r \ 2 + l * x l r \ 2 - l l .  ( 1 4 )  

The  equation c l  = 0 is then the relation to he sought for. 

PROB 7. Determine the area of a triangle in the hyperbolic plane in terms of its 3 
sides. 

To solve the problem let us take a coordinate system with the 3 vertices of the trian- 
sle given in Beltrami coordinates as 

a0  = ( 0 ,  0 ) ,  a1  = (x15, 0 ) ,  a2  = ( x 1 6 ,  x17) .  

Lct A be the area of the triangle so that we have 

Pi - A  = a0  + a1  + a 2 ,  

in which the a’s denote also the 3 internal angles of the trianglc. Set im\v 

x l z c o s h  a O ~ l ,  x 2 = c o s h  ~ 0 ~ 2 ,  x 3 = c o s h  aid, x l =  c o s A ,  

x21 = c o s a 0 ,  x22 = s inno ,  x 2 3  = c o s a l ,  x24 = s i n a l ,  

268 



214 wu WEN-JUN (wu WEN-TSUN) Val. 6 

x 2 5  =c cosa2 ,  x26 - sina2.  

Then we have a polset p l y  ..., p12 below: 

P l  = + l  * X I  A 2  - 1 * 21 / \ 2 *  x 1 5 / \ 2  - 1 ,  

P 2 = + 1 * ~ 2 / \ 2 - 1 * ~ 2 / \ 2 * ~ 1 6 / \ 2 - 1 ~ ~ 2 / \ 2 * ~ 1 7 / \ 2 - 1 ,  
P 3 =  + l * ~ l * ~ 2 ~ 1 * ~ 1 * ~ 2 * ~ 1 5 * ~ 1 6  - 1 * x 3 ,  

P 4 = + 1 * ~ 1 8 ~ 2 - 1 ~ ~ 1 6 / \ 2 - 1 ~ ~ 1 7 / \ 2 ,  

P5 = + 1 * x 1 9 A  2 - 1 * ~ 1 7 A  2 - 1 * x l  /\ 2 * x15 /\ 2 - 1 * x1 /\ 2 * x 1 6 A  2 

+ 2 * x 1 / \ 2 * ~ 1 5 * ~ 1 6 ,  

P 6 =  + 1 * ~ 1 8 * ~ 2 1  - 1 * x 1 6 ,  

P 7 = + 1 * ~ 1 9 * ~ 2 3 - 1 ~ ~ 1 * ~ 1 5 +  l * x l * x 1 6 ,  

P 8 = + 1 * ~ 1 8 * ~ 2 2 - 1 * ~ 1 7 ,  

P 9 = + 1 * ~ 1 9 * ~ 2 4  - l * x 1 7 ,  

P 1 0 =  + 1 * . ~ 1 8 * ~ 1 9 * ~ 2 5 - 1 * ~ 1 * ~ 1 7 / \ 2  + l * x l ~ x 1 5 * x 1 6 - - 1 * ~ l * x 1 6 / \ 2 ,  

P l l =  + 1 * ~ 2 * ~ 1 8 * ~ 2 6  - 1 * ~ l * x 1 5 * x 2 4 ,  

P 1 2 =  + 1 * ~ 2 1 * ~ 2 4 * x 2 6  + l * x 2 2 * ~ 2 3 * x 2 6 +  l * x 2 2 * x 2 4 * x 2 5  

- 1 * x21 * x23X 25-1 * ~ 4 .  

The  first pol c l  of the char-set is found to be one of 43  terms which may be considered 
as a pol in x4 of degree 1 with coefficients themselves pols in  x l  , x2 , x3,  as shown below: 

-1 * x2 / \ 2  * ~3 + 1 * x l *  x 2 / \  3-2 * x l  I\ 2 %  x2 /\ 2 * x 3 + 3  * x l *  x2 * x3  /\ 2 + 
- 1 * x 3 / \ 3  + l * d / \ 3 * ~ 2  - 1 * ~ 1 * ~ 2 - 1 ~ ~ 1 / \ 2 * ~ 3 + 1 * ~ 3 - 1 ~ ~ 2 / \ 3  + ... 
- 1 * x l l \ 2 * ~ 2 +  1 * x 2 +  3 * x l * x 2 / \ 2 * x 3  - 2 * x 1 / \ 2 * x 2 * ~ 3 / \ 2  

- l * x 2 * ~ 3 / \ 2  + 1 * ~ 1 * ~ 3 / \ 3  + l * w l A 3 * x 3  - l * x l * x 3  - l * x l / \ 3  

+ l * x l  + I * x 2 / \ 3 * x 3  + . . .  
- 2 * x l * x 2 / \ 2 * ~ 3 / \ 2 - l l ; k x 2 X ~ 3  - 1 ~ ~ 1 ~ ~ 2 / \ 2 + 3 ~ ~ l / \ 2 ~ ~ 2 * ~ 3 3 -  ..., 
- - l * x l * x 3 / \ 2  + 1 * ~ 2 * ~ 3 / \ 3  + l * x l / \ 2 * ~ 2 / \ 2 * ~ 3 A 2  + 1 * ~ 1 / \ 2 * ~ 2 A 2  

+ . . . - 1 * ~ 1 / \ 3 * ~ 2 * ~ 3  - 1 * ~ 1 * ~ 2 * ~ 3  - 1 * ~ 1 * ~ 2 * ~ 3 / \ 3  

+ I * x 2 / \ 2 * x 3 / \ 2 +  

- 1 * x l / \ 2 * x 3 / \ 2 * x 4  + - . .  
-1 * x l *  x 2 / \ 3 *  x3 + 1 * x l / \ 2 *  x 3 / \ 2  + 1 * ~l / \ 2 *  ~4 

- - 1 * x 2 / \ 2 * ~ 3 / \ 2 * ~ 4  - 1 * ~ 1 / \ 2 * ~ 2 / \ 2 * ~ 4  + 1 * ~ 2 / \ 2 - X ~ 4  - 1 * ~ 4  

+ l * x 3 A 2 * x 4  + l % x 1 / \ 2 * ~ 2 / \ 2 * ~ 3 / \ 2 * ~ 4 .  

After the removal of the content (x1  - 1 )  * (x2  - 1);F ( u 3  - 1 )  we get a pol c l  of 18  
terms only, viz. 

r l ' =  + 3 * x 2 * x l - X x 4 +  3 * x 2 * x 4 +  3 * x l * x 4  + 3 % x 4 +  2 * x l * x 4  

+ 2 * x 4 +  1 * x 4 + 4 - 1 * x 3 / \ 2 + 3 ~ ~ 2 * x 1 - - 1 * x 3 * x 2  

- 1 * x 3 * x l -  l X x 3  - 1 * ~ 2 / \ 2 -  1 * x 2 * ~ 1  - 1 * x 2  - 1 * x l A 2  

- l * x l .  
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We remark that this equation can be put in the form 

( x l  + 1 ) * ( x 2  + l ) * ( ~ 3  + l ) * ( ~ 4  - 1 )  

= - 2 * x l * x 2 * x 3  + x 1 A 2  + x 2 A 2  + x 3 A 2  - 1.  (16 )  
Replacing xl , x 2 ,  2-3, x4 by cosh aOal, cosh aOa2, cosh a l a 2  and cos A respectively we 
see that this equation is also equivalent to a form as given in Ex. 27 of [ G R ] ,  p. 361. 

PROB 8. Determine the volume V of a .tetrahedron in the hyperbolic space in terms 
of its 6 edges. 

This is a difficult problem which seems to be not yet completley settled. In  fact, par- 
tial results known involve already such transcendental functions called Lobachevsky functions 
whose properties are yet not quite clear, cf. e. g .  [MIL].  Moreover, Dehn has pointed out 
that no expressions like (15)  involving dihedral angles, etc. of the tetrahedron can exist, cf. 

e. g .  [ K L ] ,  p. 203. Now a comparison of (8)  and (9)  shows that i t  would be legitimate, 
taking into account PROB 6 ,  to conjecture that the final relation to be found is of the form 

A * T r ( V )  = B ,  

i n  which Tr ia a certain transcendental function, A and B are certain pols in x l  , . . . , x6,  
with x l  = coshaoal ,  etc. (the a’s being the vertices of the tetrahedron), and B is given 
by the pol in (14) .  W e  hope that some day we may return to this problem again. 
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Recent Studies of the 
History of Chinese Mathematics 

WU WEN-TSUN 

1. Introduction. We shall restrict ourselves to  the study of Chinese math- 
ematics in ancient times, viz., from remote ancient times up  to the fourteenth 
century. In recent years such studies were vigorously pursued both in China and 
in foreign countries. Much deeper understandings have since been gained about 
what Chinese ancient mathematics really was. The author will freely use their 
results but will be solely responsible for all points of view expressed in what 
follows. 

Two basic principles of such studies will be strictly observed, viz.: 
P1. All conclusions drawn should be based on original texts fortunately pre- 

served up to  the present time. 
P2. All conclusions drawn should be based on reasonings in the manner of 

our ancestors in making use of knowledge and in utilizing auxiliary tools and 
methods available only a t  that  ancient time. 

For P1 we shall mention only [AR, AN, SI, MA], which will be referred to 
repeatedly in what follows. 

For P2 we shall emphasize that  the use of algebraic symbolic manipulations or 
parallel-line drawings should be strictly forbidden in any deductions of algebra 
or geometry since they were seemingly nonexistent in ancient Chinese classics. 
In fact, Chinese ancient mathematics had its own line of development, its own 
method of thinking, and even its own style of presentation. I t  is not only inde- 
pendent of, but even quite different from the western mathematics as descendents 
of Greeks. Before going into more details of concrete achievements, we shall first 
point out some peculiarities of Chinese ancient mathematics. 

First, instead of calculations of pencil-paper type, the ancient Chinese made 
all computations in manipulating rods on counting boards. This was possible 
because the Chinese already possessed, in very remote times, the most per- 
fect place-valued decimal system; it allowed them to represent the integers by 
properly arranged rods placed in due positions on the board. In particular, the 
number 0 in, or as, a decimal integer was just represented by leaving some empty 
place in the right position. In fact the word “arithmetic,” the usual terminology 

0 1987 International Congress of Mathematicians 1986 
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for “mathematics,” was just a literal translation of Chinese characters “Suan 
Shui” meaning “counting methods.” 

Secondly, results were usually presented in the form of separate problems, 
each of which was divided into several items, as follows. 1. Statement of the 
problem with numerical data. 2. Numerical answer to the problem. 3. “Shui,” 
or the method of arriving at the result. It was most often just what we call 
today the “algorithm,” sometimes also just a formula or a theorem. Note that 
the numerical values in Item 1 play no role a t  all in the method, which was 
so general that any other numerical values could be substituted equally well. 
Item 1 thus served just as an illustrative example. 4. Sometimes “Zhu,” or 
demonstrations which explained the reason underlying the method in Item 3. 
In Song Dynasty and later, there was often added a further item: 5. “Cao,” or 
drafts which contained details of the calculations for arriving at the final result. 

2. Theoretical studies involving integers. In this section, by an integer 
we shall always mean a positive one. 

In ancient Chinese mathematics there were no notions of prime number and 
factorization or its likeness. However, there was a Mutual-Subtractton Algorithm, 
for finding the GCD of two integers; its name literally meant equal. The algo- 
rithm ran as follows: 

“Subract the less from the more, mutually subtract to diminue, in order to 
get the equal.” 

As a trivial example, the equal (:= GCD) of 24 and 15 is found to be 3 in the 
following manner: 

(24,15) - +  (9 ,15)  -+ (9 ,6)  -+ (3 ,6 )  -+  (3 ,3) .  (2.1) 
The underlying principle is, as pointed out by Liu Hui in [AN], that during 
the procedure the integers are steadily diminished in magnitudes while the equal 
duplicates remain the same. 

In spite of the fact that the prime number concept was never introduced in 
our ancient times, there were some theoretical studies involving integers which 
were not at all trivial. We shall cite two of these mainly based on works of S. K. 
Mo at Nanking University and J. M. Li at Northwestern University, China. 

The GouGu form (:= right-angled triangle) was a favorite object of study 
throughout the lengthy period of development of mathematics in ancient China. 
In particular, the triples of integers which can be attributed to 3 sides Gou, 
Gu, and Xuan (:= shorter arm, longer arm, and hypothenuse) of a GouGu form 
had been completely determined early in the classic (AR]. Thus, in the GouGu 
Chapter 9 of [AR] there appeared eight such triples, viz., 

( 3 , 4 , 5 ) ,  (5 ,12 ,13 ) ,  (7 ,24,25) ,  (8 ,15,17) ,  
(20,21,29) ,  (20,99,101),  (48,55,73) ,  (60,91,109).  

The occurence of such triples was not merely an accidental one. In fact, in 
P r o b l h  14 of that chapter a method of general formation of such integer triples 
was implied. We record this problem. 
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“Two persons start from same position. A has a speed-rate 7 while B rate 
3. B goes eastward while A goes first southward 10 units and then meets B in 
going northeasternwise. Find the units traversed by A and B.” 

The Shui (:= method or algorithm) for the solution was: 
“Squaring 7 ,  also 3, taking half of the sum, this will be the slantwise unit-ratio 

of A.  Subtract this unit-ratio from square of 7, rest is the southern unit-ratio. 
Multiply 7 by 3 is eastern unit-ratio of B.” 

As already mentioned in $1, the particular numbers 7 and 3 in the problem 
serve merely as illustrations and we may equally well substitute these numbers 
by any pair of integers say m, n with m > n > 0. The Shui then says that  the 3 
sides are in the ratio 

Gou: Gu:  Xuan = [m2 - (m2 + n 2 ) / 2 ] :  m * n :  (m2 + n 2 ) / 2 .  

The eight triples given above may then be determined by the pairs 

(m, .) = ( 2 , 1 ) ,  (3,211 (4,319 (4711, (5,219 (10, I ) ,  (8931, (10,3).  

In Liu Hui’s [ A N ]  a demonstration or a proof of geometrical character was 
given which was based on some general Out-In Complementary Principle, and 
it will be explained in more detail in $3. We note here that  Liu’s proof showed 
also that  m : n is in reality the ratio of Gou+ Xuan to Gu which will be a ratio 
in integers if and only if the three magnitudes Gou, Gu, Xuan are in ratio of 
integers. The Shui had thus given an exhaustive list of integer triples for the 
three sides of the GouGu form. 

As a second example let us cite the Seeking-1 Algorithm which is now well 
known as the Chinese Remainder Theorem. Recent studies have shown that  
the algorithm originated in calendar-making since Hans Dynasty, and there 
was a sufficiently clear line of development until the appearance of the clas- 
sic [ M A ]  of &in in 1247 A . D .  In &in’s preface to his work he stated that 
the method was not contained in [AR] and no one knows how it was deduced, 
but it was widely applied by calendarists. The method was well-explained for 
the first time in the first part of [ M A ]  and contained nine problems, rang- 
ing from calendar-making, dyke-erection, treasure-computing, tax-distribution, 
rice-selling, military-expedition, brick-architecture, up to even a case of stealing. 
All the problems were reduced to  one which, in modern writings, would be of 
the form (:=: stands for “congruent to”) 

U :=: U j  mod M j ,  1 5 j 5 r ,  ( 2 . 2 )  
with integers U j , M j  known and U to be found. The integers M j  were called 
by &in Ting-Mu (:= moduli), literally meaning fixed-denominators which were 
not necessarily prime to each other. &in first gave an algorithm for reducing 
the problem to one with the moduli prime to  each other two by two in apply- 
ing successively the Mutual-Subtraction Algorithm. We shall therefore restrict 
ourselves, in what follows, to the case of U j  pairwise prime. 

To a modern mathematician a solution to ( 2 . 2 )  would be found in the following 
manner (cf., e.g., [ A P ,  p. 2501). 
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Let $ ( N )  be the Euler function of the integer N which can be  determined 
from a factorization of N into prime numbers. Set 

M = M l * . . . * M r ,  
(2.3) ~j = ( M / M j ) $ ( M J ) ,  

Then the solution of (2.2) will be given by 

1 5 j 5 r .  

U :=: U j  * N j  mod M .  
j 

Both the method and the result are really simple and elegant. However, in view 
of the difficulty of factorization and the amount of computation involved in (2.3), 
it would be rather difficult to  get final answers to  the nine problems in Qin's 
classic, even with the aid of modern computers. 

On the other hand, the method of &in ran as follows. 
As a preliminary step let us take the remainder R j  of M / M j  mod M j  which 

was called Qi-Shu, literally meaning odd-number, but just some technical term. 
Now determine numbers K j  such that  

K j  * R j  :=: 1 mod M j .  (2.4) 

The final answer to  be found is then given by 

U :=: U j  * K j  * ( M / M j )  mod M .  (2.5) 
3 

The integers K j  were called, by &in Cheng-Lui, also a technical term literally 
meaning multiplication-rate (multiplier below). The algorithm for determining 
K j  to satisfy (2.4) was called, by Qin, da-yan 9iu-yi shui, for which 9iu-yiliterally 
means seekinpl,  while da-yan  is some philosophical term of little interest to  us. 
The first step of the Seeking-1 Algorithm consisted then in placing four known 
numbers 1, 0 (i.e., empty), Rj ,  M j  in the left-upper (LU), left-lower (LL), right- 
upper (RU), and right-lower (RL) 

'-----I r--- l  
ILU R U I  11 R j  ; 
ILL R L ; = I  M j l  
1 _ _ _ _ _  J L _ _ _ _  J 

corners of a square: 

We remark that these four numbers verify the trivial congruences 

LU * R j  :=: RU mod Mj, LL * Rj  :=: -RL mod M j .  (2.6) 

The next steps of the algorithm consisted then of manipulating the four numbers 
in the square by steadily reducing their magnitudes while keeping the validity 
of congruences (2.6). After a finite number of steps the number, say RU, will be 
reduced to 1, and according to (2.6) the number LU is then the multiplier X j  to 
bti found. The underlying principle of this Seeking-1 Algorithm, as listed below 
in details, is thus essentially the same as the Mutual-Subtraction Algorithm in 
finding the e9ual (:= GCD) of two integers, only much more complicated. The 
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algorithm was: 
“Put  Qi at RU, and Ting at RL, and put Tian-Yuan-1 at LU. First divide RL 

by RU. Multiply quotient with 1 of LU and put it to  LL. Next take the numbers 
RU and RL, mutually divide the more by the less. Then mutually multiply 
quotients to  numbers in LU and LL. Stop until odd-1 in RU. Verify then the 
number in LU and take it as multiplier.” 

As a concrete example let us consider Problem 9 of Chin’s classic which dealt 
with a stealing case. The judge in charge of the case was able to  determine the 
amount of rice stolen by each of the three thiefs by means of the algorithm. For 
one of the thiefs the determination of the corresponding multiplier ran as follows: 

t - - - - 1  [i - 14: 11 4 I 2  5-41 rI--141 r----1 

I l g I - + I  5 I I - -+  ‘1 5 I - - +  11 5 I ---) 11 s l - ’  
1 1  141 

L _ _ _ -  J L _ _ _ _  J L - - - - J  L - - - J  L---  J 

One may compare this sequence of computations with the trivial one (2.1). 
The numerical data in the above example is the simplest one among the nine 

problems of Chin’s classic, but already not an easy one in using the mentioned 
method with Euler functions. The other eight problems will eventually involve 
astronomically large numbers which may be eventually out of reach of the Euler- 
function method, but were still done with ease by &in in using the Seeking-1 
Algorithm. 

3. Geometry. In contrast to  what one usually believes, geometry was in- 
tensely studied, in addition to  being well-developed, in ancient China. The mis- 
understanding is likely due to  the fact that Chinese ancient geometry was of a 
type quite different from that of Euclid, both in content and presentation. Thus, 
there were no deductive systems of euclidean fashion in the form of definition- 
axiom-theorem-proof. On the contrary, the ancient Chinese formulated, instead 
of a lot of axioms, a few general plausible principles on which various geometrical 
results were then discovered and proved in a deductive manner, as shown by Liu 
Hui [AN]. 

The points of emphasis in Chinese ancient geometry and in the geometry of 
Euclid were also quite different. Thus, the Chinese ancestors paid no attention at. 
all to the parallelism but ,  on the contrary, showed great interest in orthogonality 
of lines. In fact, the GouGu form, or the right-angled triangle, had incessantly 
occupied a central position among the geometrical objects to be studied through- 
out thousands of years of development. Secondly, the Chinese ancestors showed 
little interest in angles but heavily emphasized distances. Thirdly, geometrical 
studies were always closely connected with applications so that  measurements, 
determination of areas and volumes were among the central themes of study. 
Finally, geometry was always developed in step with algebra, which culminated 

k 
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in the algebrization of geometry in Song-Yuan Dynasties. This later discovery 
was rightly pointed out, e.g., by Needham to be the first important step (and 
indeed, the decisive step) toward the creation of analytical geometry. 

We shall illustrate these points with a few examples. 
EXAMPLE 1. The Sun-Height Formula. On the earth-level plane erect two 

gnomons G1, G2 of equal height with a certain distance apart. The sun-shadows 
of the gnomons are then measured and the sun’s height over the level plane is 
given by 

Sun-hgt = Gnomon-hgt * Gnomon-dist/Shadow-difference + Gnomon-hgt. 

This formula, already depicted in some classic of early Hans Dynasty and 
cited very often in later calendarical works, was clearly too rough an estimate 
to rely on. Liu Hui had, however, translated the formula into earth measure- 
ments by replacing the sun by some sea-mountain, thus turning the Sun-Height 
Formula into a realistic Sea-Island Formula. His classic [SI] contained all nine 
such formulae beginning with the above one as the simplest. There were proofs 
as well as diagrams accompanying this classic; they are still mentioned in some 
classics of Song Dynasty but have since been lost. Based on fragments and 
incomplete colored diagrams of some classic by Zhao Shuang in 3c A.D. ,  the 
author has reconstructed a proof of the above Sun-Height or Sea-Island Formula 
by rearranging the arguments in that classic as follows (Y =yellow, B =blue): 

“ Y l  and Y2 are equal in areas. Y 1  connected with B3 and Y 2  with B6 are 
also equal in areas. B3 and B6 are also equal in area. Multiply gnomon-distance 
by gnomon-height to be the area of Y 1 .  Take shadow-difference as breadth of 
Y 2  and divide, one gets height of Y 2 .  The height rises up to same level as sun. 
From diagram gnomon-height is to be added.” 

With the accompanying diagram the proof of the formula is evident. 
EXAMPLE 2 .  The Out-In Complementary Principle (OICP). In Example 1, 

various area-equalities were all consequences of a certain general Out-In Com- 
plementary Principle which was clearly formulated in the classic [AN] in very 
concise terms. I t  means simply that whenever a figure, planar or solid, is cut into 
pieces and moved to other places, then the sum of areas or volumes will remain 
unchanged. This seemingly most common-place principle had been applied suc- 
ces&ully to problems of extreme diversity, sometimes unexpected, besides that 
of Example 1. As further examples consider the GouGu form with three sides: 
Gou, Gu, and Xuan. One may form various sums and differences from them 
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B: Gu = n = 3 Gou Hsieh r - - - - - - - - - -, 7 

I , Hsieh I a I Y I 
I 0 I 1  I 

I ,’ Hsieh I 1L-I- R b  - - - I J  Gou 

A :  Gou + Hsieh = m = 7 

E r - r - - - T F  , , 
, I I  I 

4 r - GI- -1- - - - C H  

1 C I ~ I  e I 
L - K L  -1- - - - L 

Gou I ,’ Hsieh 

I I  I I/’ 

L 

FIGURE I 

c +  d = Hsieh2 - Gou2 = d +  e = Gu2 = n2, 
2 * EFGH = E F K L  = m2 + n2 = (Gou+Hsieh)2 + Gu2, 
a + Y = Hsieh * m = Hsieh * (Gou+Hsieh), 
b + R = E F I J  - EFGH = Gou * m = Gou * (Gou+Hsieh) = m2 - (m2 + n2)/2. 

like Gou-Gu sum, Gou-Xuan difference, etc. In the GouGu Chapter 9 of [AR], 
there were a number of problems for determining Gou, Gu, and Xuan from two 
of these nine entities, and all were solved by means of this principle. In par- 
ticular, the general formula of Gou-Gu integers as described in $ 2  was obtained 
by applying the principle to Problem 14 by considering as known the ratio of 
Gou-Xuan sum to Gu. Liu Hui then demonstrated the result by OICP as shown 
in Figure 1 ( R  =red, Y =yellow). 

In [MA] there was formula for determining the AREA of a triangle with three 
sides: the GReatest one, the SMallest one, and the MIDdle one in the form 

4 * AREA2 = SM2 * GR2 - [(GR2 + SM2 - MID2)/2I2. 

This formula is clearly equivalent to the Heron one. It cannot be deduced from 
the latter since it is so ugly, in form, in comparison to the elegant latter formula. 
By applying some formula given in [AN] about Problem 14, based on OICP, the 
author has reconstructed a proof which’is in accordance with Chinese tradition 
and leads naturally to Qin’s formula. 

We note that the Chinese ancient methods of (square and cubic) root-extrac- 
tion and quadratic-equation solving were in fact all based on OICP geometrical 
in character. We also note that all the formulae in [SI], in quite intricate form, 
will be arrived at in a natural manner by applying OICP. On the other hand it 
seems difficult, or at least a roundabout, unnatural manner, to get these formulae 
if the euclidean method is to be used. 

EXAMPLE 3.  Volume of solids. With the OICP alone the areas of any polyg- 
onal form can be determined. This will not be the case for volumes of polyhedral 
solids, and Liu Hui was well aware of it. Liu Hui had, however, completely solved 
the problem in reasoning as follows. Let us cut a rectangular parallelopiped 
slantwise into two equal parts called Qiandu, and then cut the Qiandu slantwise 
into two parts called Yangma (a pyramid) and Bienao (a tetrahedron on special 
type). Using an ingenious reasoning corresponding to a certain limiting process, 
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QIANDU YANGMA BIENAO 

+ 
FIGURE 2 

he made some assertion which the author has baptized as the Liu Hui Principle, 
viz., 

“Yangma occupies two and Bienao one, that’s an invariable ratio.” 
Together with the OICP the volume of any polyhedral solid can then be de- 

termined, and a lot of beautiful formulae for various kinds of solids were deter- 
mined in this way in the Sang-Gong Chapter 5 of (AR]. Liu Hui’s demonstration 
of his principle, which was both elegant and rigorous, consisted of cutting a big 
QIANDU into smaller yangma’s, etc., as in Figure 2. 

From Figure 2 it is now clear that 

1 YANGMA - 2 BIENAO = 2(1 yangma - 2 bienao). 

Continuing, the right-hand side will become smaller and smaller and can be 
ultimately neglected, as argued by Liu Hui: 

“The more they are cut into smaller halves, the smaller will be the remains. 
The ultimate smallness is infinitesimal, and infinitesimal is formless. Accordingly 
it is no need to take into account the remain.” 

For more details see [WA], a remarkable paper by Wagner. 
Liu Hui had also considered the determination of curvilinear solids, notably 

that of a sphere. He showed that  the solution will depend on the determination of 
the volume of a curious solid defined as the intersection of two inscribed cylinders 
ip a cube. Liu Hui himself cannot solve this problem and left it, being rigorous 
in thinking and strirt in attitude, to later generations. saying that  

“Fearing loss of rightness, I dare to leave the doubts to gifted ones.” 
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The keen observation of Liu Hui had been closely followed and ripened finally 
to a complete solution of the problem in 5c A.D.  by Zu Geng, son of great 
mathematician, astronomer, and engineer Zu Congtze. In fact, Zu Geng had 
formulated a general principle which was equivalent to the later rediscovered 
Cavalieri Principle, viz., 

“Since areas in equal height are equal the volumes cannot be unequal.” 
We shall leave Zu Geng’s beautiful proof about the formula of volume of 

sphere to other known works. On the other hand, this principle was, in reality, 
already used by Liu Hui himself in deriving formulae of volumes of various simple 
curvilinear solids treated in [AR], though without an explicit statement. For this 
reason the author has proposed to use the name Liu-Zu Principle instead of the 
name Zu-Geng Principle which is usually used by our Chinese colleagues. 

In a word, the OICP, the Liu Hui Principle, and the Liu-Zu Principle were 
sufficient to edify the whole theory of solids, curvilinear or not, in a satisfactory 
manner as done by the Chinese ancestors. 

4. Algebra. Algebra was no doubt the most developed part of mathematics 
in ancient China. It should be pointed out that algebra at that time was actu- 
ally a synonym for method of equation-solving. The problems of equation-solving 
seem to come from two different sources. One of the sources was rudimentary 
commerce or goods-exchange which led to the Ezcess-Deficiency Shui in very 
remote times up to Fang-Cheng Shui as depicted in Chapter 8 of [AR]. This 
Chapter 8 dealt with methods of solving simultaneous linear equations along 
with the introduction of negative numbers. The title “Fang Cheng,” the same 
terminology for “equations” used in Chinese texts nowadays, could be better 
interpreted as “square matrices.” In fact, “Fang” literally means square or rect- 
angle while “Cheng,” as explained in Liu Hui’s [AN], was just data arranged on 
the counting board in the form of a matrix, viz. 

“Arranged as arrays in rows, so it is called. Fang Cheng.” 
Furthermore, the method of solution was just manipulations of rows and 

columns as in elimination nowadays. Details of such stepwise reduction of arrays 
to normal forms in some examples can also be found in [AN]. 

A second source of equations was from measurements or geometrical prob- 
lems. Thus, in the study of sun-heights there were formulae for both sun-height 
and sun’s level distance from the observer. The sun-observer distance was then 
determined by means of the Gou-Gu Theorem, well known in quite remote times; 
which then required extraction of square roots. Both the proof of the Gou-Gu 
Theorem and the method of square root extraction were seemingly based on 
the OICP-so, also, for the cubic root extraction. Now in Gou-Gu Chapter 9 
of [AR] there was also a problem which led naturally. by OICP, to a quadratic 
equation. There was some technical terminology for solving such an equation lit- 
erally meanihg “square-root extraction with an extra term Cong,” which clearly 
implied the origin as well as the method of solving such equations. 
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The second line was developed further to solving cubic equations in early Tang 
Dynasty, at the latest, and culminated in the method of numerical 
solution of higher degree equations in Song Dynasty, identical, actually, to the 
later rediscovered Horner’s method in 1819. 

A discovery of utmost importance during Song-Yuan Dynasties (10-14c) was 
the introduction of the notion “Tian-Yuan,” literally meaning “Heaven-Element,’’ 
which was nothing but what we call an unknown nowadays. Though equation- 
solving occupied a central position in the development of mathematics for thou- 
sands of years already, this was perhaps the first time that precise notion and 
systematic use of unknowns were thereby introduced. The Chinese mathemati- 
cians at that time recognized very well the power of this method of Tian-Yuan 
as expressed in some classic of Zhu Szejze: 

“To solve by Tian-Yuan not only is clear the underlying reasons and is versatile 
the method but also saved large amounts of efforts.” 

The method of Tian-Yuan was further developed in Song-Yuan Dynasties up 
to the solving of simultaneous high-degree equations involving four unknowns. 
Along with it, algebrization of geometry, manipulations of polynomials, and 
the method of elimination were also developed. The two lines of development 
of equation-solving thus merged into one which was closer to algebra in the 
modern sense. The limitation to four unknowns was largely due to the fact that 
all manipulations had to be carried out on counting boards with coefficients of 
different-type terms of a polynomial to be arranged in definite positions on the 
board. If one was to get rid of the counting board in adapting another system, 
as was fairly probable since communications with the outside arabic world were 
more influential than ever, then mathematics would face an exceedingly fertile 
era of flourishment. However, all further developments stopped and mathematics 
actually came to death since the end of Yuan Dynasty. When Matteo Ricci came 
to China at the end of Ming Dynasty, almost no Chinese high intellectuals knew 
about “Nine Chapters”! 

5 .  Conclusion. We shall leave other achievements about limit concept, high- 
difference formulae, series summation, etc. owing to space limitation. In short, 
Chinese ancient mathematics was mainly constructive, algorithmic, and mechan- 
ical in character so that most of the Shuis can be readily turned into computerized 
programs. Moreover, it used to draw intrinsic conclusions from objective facts, 
then sum up the conclusions into succinct principles. These principles, plain in 
reasoning and extensive in application, form a unique character of ancient Chi- 
nese mathematics. The emphasis has always been on the tackling of concrete 
problems and on simple, seemingly plausible principles and general methods. 
The same spirit permeates even such outstanding achievements as the algebriza- 
tion and the place-value decimal system of numbers. In a word, Chinese ancient 
mathematics had its own merits, and, of course, also its inherited deficiencies. 
It is surely inadmissible to neglect the brilliant achievements of our ancest,ors, 
as was the case in the Ming Dynasty. It would also be absurd not to absorb the 
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superior techniques of the foreign world, as was the case of early Tang Dynasty. 
At that time the writing system of Indian numerals was imported, but its use as 
an alternative for the counting board system was rejected. In fully recognizing 
the powerfulness of our traditional method of thinking, and in absorbing at the 
same time the highly developed foreign techniques, we foresee a novel new era 
of achievements in Chinese mathematics. 
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Abma. In 1965 the avthor intmduud the notion of Charn eksses for an algebraic variety with 
arbitrary einphitiea. Based on thin definition the well-known bfiyaoka-Yao inerpditi~ have been proved 

and extended by quite simple direct computations. 

In 1977 Miyaoka and Yau (see m] and M) have proved independently a remarkable 
inequality about Chern numbers of a SMOOTH algebraic surface S, viz. 

c:(q < = 3 * c*(s). (MY) 
Some results and conjectures of similar nature have also been anounced for high dimensional 
algebraic varieties (see e.g. [TI, M). Their considerations are all restricted to algebraic varieties 
without any singularities since tools for complex manifolds were used throughout. Now in 1977 
MacPherson mP] has introduced the notion of Chern classes for any algebraic variety with 
arbitrary singularities. It is natural to ask whether the above inequality remains true for this 
general case for which the present author is quite ignorant of the present status. On the other hand 
early in 1965 the present author has already generalized the notion of Chern classes to arbitrary 
algebraic varieties in an entirely different way from that of MacPherson et al, cf. mU1-31. It 
turns out that the formula (MY) and its alike can be easily dealt with by our treatment for varieties 
with singularities. This will be the main theme of the present paper. Other applications of our 
method will be dealt with later. 

We use in this paper notations which, being readily done by computer-printing, are 
somewhat different from the usually adopted ones. For the convenience of the reader a comparison 
between these two types of some of these notations used are tabulated below: 

new notations usual notations explanations 
~ 

- <  c, E “is contained in” or “belongs to” 

>- 3 “contains” 

<= s “less then or equal to” 
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> =  t “greater than or equal to” 

~~ 

< >  # “not equal to” 

I “multiply by” 

*‘to the power of‘ or “intersects with” 

seet 1. The Composite Grasemann Variety 

Let us recall first some fundamental facts about composite Grassmann variety due to 
Ehresmann et al (see e.g. IJW, [HP], [CHOW, and W Z ] ) ,  which is at the basis of our 
treatment. Note that we are working in the complex domain so the modifier “complex” will often 
be omitted. 

Consider thus a projective space CPn of dimension n. The linear subspaces of dimension k 
will be denoted by [k] ,  [k]’, Sk, S k ,  etc. For fixed integersp,q with 0 < p < q < n the totality of 
pairs (6.1, [ q ] )  with 6.1 - < [q] - < [n]  = CPn will be denoted henceforth as GR(n;p, q). It is a 
special kind of composite Grassmann variety and is an irreducible algebraic variety without 
singularities so that intersection can be well defined in it, see e.g. [HP] ,  Chap.XI. 

Following Ehresmann let us consider a fmed sequence of linear subspaces 

So - <  Sl - <  ,.. - <  S n = C P n .  

Let A i ,  Bj be integers verifying 

0 <=  A0 < A1 < ... < Ap < =  n, 

0 < =  BO < B1 < ... < Bq <=  n. 

With respect to ( 1 . 1 )  we shall denote by the Ehresmann symbol of the form 

[AO, A l ,  ..., Ap/BO,Bl, ... Bq] 

the totality of pairs (6.1, [q] )  such that 

(1.4) 

(El) dim ( b ] A  [SAi] )  > = i, for 0 < = i < = p; 

(E?) dim ( [ q ]  A [SBiJ) > = j ,  for 0 < = j < = q;  

(E3) each Ai is some Bj. 

The variety (1.4), usually called a Schubert variety, has a dimension 

dim [AO, A l ,  ..., Ap/BO,Bl, ..., Bq] = SUMi (Ai - i) + SUM’j (Bj  - j ) .  (1.5) 

In (1.5) SUMi is to be extended over i from 0 top while SUMj is over only such j from 0 to q 
for which Bj is not equal to any Ai. In particular, GR(n;p, q)  is itself such a Schubert variety with 
symbol and dimension given by 
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GR(n;p, q) = [ (n  - p ,  . . . I  n)/(n - q, ..., 41, 
dim GR(n;p,q) = ( n  - p ) * ( p  + 1) + (n  - q)*(q - p ) .  

(1.6) 

(1.7) 

We remark that the bracket ( ) in (1.6) means that the integers therein are consecutive ones. 
Take now a second fixed sequence of linear subspaces 

S 0 - < S1- < ... - < S n  = CPn 

for which all Si in (1.1)' and Sj in (1.1) are in general position. Denote the Schubert variety 
corresponding to (1.4) defined however with respect to (1.1)' by 

(1.1)' 

[AO, A l ,  ..., Ap/BO,Bl, .... Bq]'. (1.4)' 

We shall set 
[A>, ..., A'l, A'OIB'q, ..., El, BO]' = Dual [AO, Al, -..,Ap/BO,Bl, .-., Bq] ,  in which A'z = 
n - Ai and B'j = n - Bj. We see that any Schuhrt  variety will intersect its dual in a single point. 

According to Chow (see [CHOW), the variety GR(n;p, q) has a rational dissection formed of 
all the above Schubert varieties defined with respect to (1.1) with boundaries removed and the 
totality of such Schubert varieties will represent a basis of the group of rational equivalence classes 
of GR(n;,p,  q ) .  The rational dissection defined with respect to (1.1)' is then said to be DUAL to 
the rational dissection above defined with respect to (1.1) in the sense of m 2 ] .  It easily follows 
that the totality of Schubert varieties (1.4) (or (1.4)') form also a basis of the group of algebraic 
equivalence classes of GR(n;p, q). For an algebraic variety with arbitrary singularities V let us 
denote by RATr( V) respectively ALGr( V )  the group of rational respectively algebraic 
equivalence classes in dimension r of V. Denote also for any subvariety W of dimension r of V,  its 
rational respectively algebraic equivalence class, by R-Cls( W) respectively A-Cls( W). If V is 
devoid of any singularity, then the sum of ALGr(V) for all r will possess an intersection 

ALGr(F')*ALGs(V) - < ALGt(V) 

with t = r + s - dim V which turns the sum into an intersection ring or CHOW RING of the 
nonsingular variety V. In particular for the nonsingular GR(n;p, q )  we have for any Schubert 
varieties E, E the formulae of intersection 

A-Cls(h') o A-Ckl Dual E = 1, while A-CZs(E) * A-Cls (A") = 0, for 

E < > Dual E, and dim B + dim E = dim GR(n;p,q). 

Furthermore, the association of any Schubert variety to its dual will induce a natural morphism 

Dual: ALGs(GR(n;p, q ) ) e  ALGt(GR(n;p, q)). 

in which t = dim GR(n;p,q)  - s. 

Sect 2. The Intersection Ring of CR(n;O,d) 

For the purpose of the present paper we shall restrict ourselves henceforth to the particular 
case of the composite grassmann GR(n;p,q) with p = 0, q = d. The dimension of our 
grassmannian is then given by 

dim GR(n; 0, d) = (n - d) * (d + 1) + d. 
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For reasons to be explained later we are particularly interested in algebraic equivalence classes 
below: 

GAMst = A-Cls [s-t/(O, ..., d - t),  (d - t + 2, ..., d + l)] - < ALGs GR(n;  0, d) 

for O < = t < = s < = d ,  and 

CHs = SUMt (sgn(t) * (d - t + l / / d  - s + 1) * GAMst) - < ALGs GR(n;O,d) 

for 0 < = s < = d, in which SUMt means summation extended over t from 0 to s. 

Remark. In wU1-31 there are some misprints in sign in the binomial coefficients. 
For s = 1,2 or 3 we have in particular 

CKI = (d + 1) * GAM10 - G A M l l  

= (d + 1) * A-Cls [l/(O, ... d)] - A-Cls [O/(O, ..-, d - l), d + 11, (2.1) 

CH2 = d * ( d  + 1)/2* G A m  - d * GAM21+ GAM22 

= d * ( d  + 1) /2*A-Ck [2/(0 ,...,d)] - d *  A-Ckl [l/(O,...,d- 1),d + 13 

+ A-Cls [O/(O, ..., d - 2), d,  d + 11. (2.2) 

CH3 = (d + 1/ /3)  * A-Cls [3/(0 ,..., d)] - (d//2)*A-Cls [2/(0 ,..., d - l), d + 11 

+ (d - l)*A-ClS [ l / ( O ,  ..., d - 2), d,  d + 11 

- A-Cls [O/(O, ..., d - 3), d - 1, d, d + 13. 

The intersection structure or Chow ring of GR(n; 0, d )  will only be partially determined but 

Lemma 1. For the Schubert variety 
A = [n-Ai/n-Ad, -.., n-Ai, ..., n-AO] = Dual [Ai/AO, ..., Ai ,  ..., A d  to have a dimension 

> = dim GR(n;O,d) - d it is necessary that 

will t e  sufficient for our purposes. For this we shall f b t  prove the following lemmas. 

A O = O , A l = l , . . . , A i = i  

so that 

A = [n - i/n-Ad, ..., n-Aj,(n - i ,  ..., n)] 

in which we have put i + 1 = j ,  

Proof. The hypothesis implies that 

dim [AiIAO, ..., Ai, . . I ,  A d  = SUMk (Ak - k )  + i < = d .  

Now the integers A k  should verify the conditions 

0 < = A 0  < A1 < ... <Ad < = n, or 

0 < =AO<= A 1  - 1 < =  ... < =  A i - i  < = Aj -  j < =  ... <=  A d - d .  

It follows that Ai  > i would imply Ak > k for all k > = i so that SUMk (Ak  - k) + i > d 
contractory to the inequality given above. Consequently Ai = i and whence A0 = 0, A1 = 1, etc. 
u p  to Ai = i as t o  be proved. 

Lemma 2. Let j = i + 1. Then 
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A-Cls [n - i/n-Ad, ..., n-A;, (n-i, ..., n)] 

= A-Cls [n/n-Ad;..,n-Aj,(n-i ,..., n)] * A-Cls [n - i /(n - d;..,n)]. (2.4) 

Denote the Schubert varieties involved in the above equality by A ,  B, C respectively Proof. 
defined with respect to sequences of linear subspaces like (1.1) as follows. 

For B: [O] - < [ l ]  - < ... - < [n] = CPn, 
For C: [O]’ - < [l]’ - < ... - < [n]’ = CPn 

with [ n  - i - 13 - < [n - i]’ but otherwise the [r] and [s]’ are in general position. The variety A 
is then defined with respect to the sequence 

[O] - < [ I ]  -<  1 . .  - < [n- i-  13 - <  [n- i]’-< [n- i + 1]’--< ... - < [n] = CPn. 

Clearly an element (So, Sd) of GR(n;, 0, d )  will belong to the intersection of B and C if and only if 

dim (Sd A [n-Ak]) > = d-k, 

for k = i + 1, ..., d and So - < [n-i]’, i.e. 

Now 
(s0,Sd) -<  A. 

dim B = dim GR(n;O,d) - SUMk(Ak - k) ,  

dim C = dim GR(n;O,d) - i, and dim A = dim GR(n;O,d) - SUMk (Ak - k )  - z ,  

in which SUMk is to be extended over k from i + 1 to d. Now by Ehresmann the variety A is an 
irreducible one. It follows then from dimensionality considerations that the right-hand side should 
be equal to an integral multiple of the class of A. This integer is the intersection multiplicity of B 
and C and is easily seen to be 1. This proves the formula (2.4) of the Lemma. 

It is clear that 

A-Cls [n-i/(n-d, ..., n)] * A-Cls [n-j/(n-d, ...,.)I = A-Cls [n-i-j/(n-d, ..., n)]. (2.5) 

Furthermore we have also in the right dimensions 

A-Cls [n,/n-Ad, ..., n-AO] * A-Cls [n/n-Bd, ..., n-BO] 

= SUMC A-CLS [n/n-Cd, ..., n-cO], 
in which 

A-Cls [n-Ad, ..., n-AO] * A-Cls [n-Bd, ..., n-BO] 

= SUMC A-Cls [n-Cd, ..., n - 0 1  (2.7) 

is the intersection formula in the ordinary grassmannian as shown in [HP], Chap. XIV, which can 
in turn be explicitely determined by means of the we!l-known formulae of Pieri and Giambelli. 

Let us now introduce some classes as follows: 

P = A-Cls [ l / ( O ,  ..., d)]  (2.8) 

(2.9) Qh = A-Cls [O/(O, ..., d - 1). d + h] 

Q’h = Dual Qh = A-Cls [n/n - d - h,(n - d + 1, .... n)] 

P‘ = Dual P = A - cls [n - l/(n - d, ..., n)] (2.8)’ 

(2.9)’ 
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for 0 < = h < = n - d. From the above we get easily the following. 
The Chow ring of algebraic equivalence classes of the composite grassmunniun 

GR(n; 0, d )  is generated by the classes P' and Q h in the dimension > = dim GR(n; 0, d)  - d. 
The multiplicative structure in that range is completely detgrmined by the formulae (2.4)-(2.9)'. 

Theorem. 

By the theorem we deduce from (2.1)-(2.3): 

Dual CH1 = (d + 1) * P' - Q'l, 

Dual CH2 = d * ( d  + 1)/2 * P' A 2 - d * P' * Q 1 +  (Q'l A 2 - Q'2), 

(2.10) 

(2.11) 

(2.12) 
Dual CH3=(d+ l ) * d * ( d -  1 ) / 6 * P ' A 3 - d d * ( d - 1 ) / 2 * P ' A 2 * Q ' 1  

+(d -l)tP'*(QlA2-Q'2)-(Q'lA3-2*Q'l*Q'2+Q'3). 

Seet 3. Ehresmann Claeses of M Algebraic Variety with Arbitrary Siaritica 

Let Vd be an irreducible algebraic variety of dimension d and V' a subvariety containing all 
singularities of Vd. By considering subvarieties of a fixed dimension s, the author has introduced 
in ml] the notion of group of UNNEGLIGIBLE algebraic equivalence classes modulo V' for 
each dimension s, with methods as described in Chap. XI of [HP], which will be denoted by 
ALGs(Vd/V') in what follows. There is also a natural morphism for each dimension s, viz. 

Js: ALGs( Vd/ V') + ALGs( V). 

Let Wd be also some irreducible algebraic variety of same dimension d with w' a subvariety 
containing all singularities of Wd. Let T be a birational transformation of Wd to Vd verifying the 
following properties: 

P1. T is everywhere defined on Wd. 
P2. T ( z )  - < V' if and only if x - < W'. 
P3. T is biunivoque on Wd - W .  

It is proved in [WUl] that under these conditions the birational transformation Twill induce in 
each dimension s a natural morphism 

Ts: ALGs(Wd/W') d ALGs(Vd/V'). 

Note that for these groups of unnegligible algebraic equivalence classes no mulplicative structure 
will be introduced in their sum. 

Let Ge be now an irreducible algebraic variety of dimension e in a complex projective space 
with no singularities so that intersection may be defined in Ge in the usual manner. Let Wd be an 
irreducible subvariety of dimension d in Ge and W' a subvariety o f w d  containing all singularities 
of W d  if exist. As Ge is in a complex projective space any subvariety of Ge is algebraically 
equivalent to some one which will intersect simply with both Wd and W .  From this we easily 
deduce that, by considering intersections with Wd in Ge, there will be natural morphisms 

Is: ALGs(Ge) + ALGt(Wd/W'),  

in which t = s + d - c. 

Consider now an irreducible algebraic variety Vd of dimension d in a projective space CPn of 
dimension n. Take an arbitrary generic point PO of Vd and let Pd be the tangent space of Vd at 
P O .  With the pair (PO, Pd) as a generic point there will be a determined irreducible subvariety Wd 
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of dimension d in the composite grassmannian GR(n;O,d) which may be considered as a 
subvariety of a projective space of sufficiently high dimension. Now any pair (PO. Pd') of Wd IS a 
specialization of (PO, Pd) which implies that P 0' is a specialization of PO and is thus a well-defined 
point of Vd. Clearly, if the singular subvariety of Vd is V', then the subvariety W of Wd consisting 
of all points (PO, Pd') with P 0' in F" will contain all the singular points of Wd if there are any. The 
correspondence 

T: (PO,Pd) d PO' 

is thus a birational one verifying the properties P1-3 with V' = T ( W ) .  For the pair G 
= GR(n;O,d) and Vd we have then a sequence of morphisms 

ALGs(GR(n;O,d)) ALGt(Wd/lP')& ALGt(Vd/V')& ALGt(Vd), 

in which t = s + d - e, with e = dim GR(w0.d). Besides we have also the dual morphism 

Dual: ALGs(GR(n;O,d)) --+ ALGd(GR(n;O,d)) 

s' = dimGR(n;O,d)) - s. 
in whieh 

Consider now any Ehresmann symbol 

EH = [AO/BO, B1, ..., B6J with s = SUM'k (Bk -- k )  + A0 
and 

r=s '+d-dimGR(n;O,d)  = d - s ,  

in which SUM'k is to be extended over k from 0 to d for which Bk < > AO. We shall lay down the 
following 

Definition. The algebraic equivalence class 

Jr T Is' Dllal EH - < ALGr(Vd) 

will be called the EHRESMANN CLASS of Vd corresponding to the symbol EH and will be 
denoted by 

EH(Vd) = [AO/BO, B1, .... BdI (Vd). 

More generally, for any algebraic equivalence class ACLS - < ALGs(GR(n; 0, d)), we shall set by 
definition 

ACLS(Vd) = Jr T Is' Dual ACLS - < ALGtfi'd). 

As particular Ehresmann classes we have also CAMKRELIDZE CLASSES and CHERY 
CLASSES defined respectively by ( r  = d - s) 

GAMst(Vd) = [S - t / ( O ,  ..., d - t),(d - L + 2 , . . . , d  + i)j(ld) - < ALGr(P'd1. 

CHs( Vd) =SUMt (sgn(t) * (d - t + l)//(d - s + 1) t GAMst( Vd)) - < ALGr(Vd). 
We note that in case that Vd is devoid of any singularities so that Vd may be cmsiderd a3 a 

complex manifold in a complex projective space, then according to Gamkrehdze the homolog? 
classes defined by the algebraic equivalence classes CHs( Vd) are just the dual of the usual Chern 
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classes. This justifies the terminologies introduced above, cf. [GI. 
Remark that in the notations EH(Vd), CHS(Vd), etc., integer n, the dimension of the ambiant 

projective space in which lies the variety Vd, does not enter into play, as is natural and easy to see. 

Sect 4. Chern Numbers of an Algebraic Variety with Arbitrary S i lar i t i e s  

Let Vd be an irreducible algebraic variety of dimension d with arbitrary singularities. 
Consider any Ehresmann symbol 

EH = [AO/BO, B1, ..*, Bdl with SUM'k (Bk - k)  + A0 = d,  

in which SUMk is to be extended over k from 0 to d for which Bk < > AO. The Ehresmann class 
EH( Vd) of ALm( Vd) is in the image of ALGO( Vd/V') under the morphism JO and can thus be 
identified to an integer, to be called the EHRESMANN CHARACTER of Vd corresponding to the 
symbol EH in what follows. From the definition it is clear that all such characters are of projective 
nature and were known zs PROJECTIVE CHARACTER8 of the varietp. in the sense of Seven, cf. 
e.g. [SR]. Among these Ehresmann characters we have in particular CHERN CHARACTERS to 
be defined as follows. 

A sequence of integers p = (u, b, ..., c) w i l l  be said to be a partition of d if 

O 4 a < =  b < =  .-. < = c ,  and a + b + . . . + c = d  . 
Define now CHp - < ALGd(GR(n;O,d)) by 

Dual CHp = Dual CHa * Cual CHb * ... * Dual CHc. 

The integer identified to the algebraic equivalence class CHp( Vd) - < ALmIVd) will then be 
called the CHERN CHARACTES of Vd corresponding to the partition p. By the intersection 
formulae in GR(n; 0, d) as developed irr the preceding sections it is clear that any such CHp can be 
expressed by means of algebraic equivalence classes P and Qh. 

Let us consider as an example the case d = 2, i.e. the case of an algebraic surface V2 with 
arbitrary singularities. For such a V2 we have 4 Ehresmann characters and 2 Chem classes besides 
the trivial one CHO, viz. 

[2/0,1,2]( V2) = Classical MuO( V2) = Order of V2, 

[l/O, 1,3](V2) = Classical Mul(  V2) = Rank of V2, 

[O/O, 2,3]( V2) = Classical Mu2( v2) = Class of V2, 

[O/O, 1,4]( VZ) = Classical Nu2( V2) = Type of V2. 

The last terminology is for VZ in CPn with n > 3 alone, but we shall keep this term for V2 in CP3 
too. Cf. [SR], Chap. IX. 

CHl(V2)  = 3 * [ l /O,  1,2] (V2) - [O/O, 1,3](V2) = (Dual(3* P' - Q'l))(V2), 

CH2( V2) = 3*[2/0, 1, 21 (rZ) - 2* [1/0, 1, 31 (m) + [O/O, 2, 31 (n) 
= (Dual(S*P'A 2 - 2 * P * Q'1 + Q'1 A 2 - Q'2))(y2). 

There are 2 Chern characters CHIl(VZ) and CH2(V2) for which we have for the former 
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CHll(VZ)=(Dual(9*P'A2-6*P'*Q'l + Q'lA2))(V2). 

It follows that 

3 * cH2( V2) - CHll(  V2) = 2 *(Dual Q'1 A 2)( v2) - 3 *(Dual Q'2)( VZ). 

Now in the grassmannian GR(n;O,d) we have the multiplication formula 

A-Cls[n/n - 3, n-2, n] = A-Cls [n/n - 3, n - 1, n] A 2 - A-Cls [n/n - 4, n - 1, n]. 

Taking the dual of both sides we get 

[O/O, 2, a@?) = (Dual Q'1 A 2)( V2) - (Dual Q'2)(V2). 

As the left side is Md(V2)  and the last term is Nu2(V2) we get 

2 (Dual Q'1 A 2)( V2) - 3 *(Dual Q'2)(VZ) = 2 *hfU2( V2) - N&!( y2). 
If y2 is in CP3 then Nu2(V2) is clearly 0 and hence we get the follawing 

Tbcoraa For a surjkce V2 in CP3 with arbitrary singularities we have for the Chern 
characters the inequality 

3*CH2(y2) > = cHll(n). 

Suppose that the surface V2 has no singularities so that it is a SMOOTH complex surfece. 
Then CH2( n) is just the usual Chem number c2( V2) and CH11( V2) the Chern number c:( V2). 
The above inequality becomes then the Miyaoka-Yau inequality stated in the beginning of the 
paper. The above theorem can therefore be considered as a generalization of the Miyaoka-Yau 
inequality to the case of algebraic surfaces with arbitrary singularities lying in CP3. 

On the other hand suppose that the variety V2 is not in CP3. Then there are known examples 
for which 

2 * Mu2( vz) < NU2( V2). 

Cf. formulae (10) and (11) on [SR], p.221. It follows that the Miyaoka-Yau inequality is not true in 
general for surfaces in CPn with singularities present. We leave open the question of the truth of 
the inequality in case of NON-SINGULAR V2 in CPn with n > 3. 

Consider now any hypersurface Vd of dimension d in CPn with n = d + 1. We have then 
from the very delinition 

Q'h = 0 for h > = 2. 

For d = 3 in particular we would have then from (2.10)+2.12): 

Dual CHI = 4; P' - (71, 

Dual CH2 = 6 * P A 2 - 3 * P * Q'1 -k Q'1 A 2, 

Dual CH3 = 4 * P A  3 - 3* P 'A2*Q'1+ 2 * P * Q ' l  A2 - Q ' l A 3 .  

There are 3 partitions (1,1, l ) ,  (1,2) and (3) of the integer d = 3 for which we have 

Dual CHll l=(4*P'-  Q ' l ) A 3  =64.*P' A3--48*P'A2*Q'l+ 12*P'*Q'11\2- Q'lh3, 

Dual CHl2 = (4 * P' - Q'l) * (6 * P A 2 - 3 * P' * Q'1 + Q'1 A 2) 
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= 2,1+* P' ?\3 - 18 * P A  2 * Q1 + 7 *  P'* Q1 A 2  - Q1 A 3. 
wtLcn<~.': 

4*CH12[1'3)-8*CH3(V3) - CHllI(v3)= 5*(Dual Q'lA3)(V3).  

As (Dual Q'1 A 3)( 1'3) is necessarily non-negative we get the following generalization of a theorem 
duc: to 7'ai (cf. [TI). viz. 

For a hypersurface V3 of dimension 3 in CF4 with arbitrary singularities we 
have f o r  the Ch,ern charucters the inequality 

Theorem. 

4 * CH12( v3) - 8 * CH3( V3) - CHIlI( v3) > = 0. 

Clearly the method is entirely general which will permit us to get generalizations of other 
theorems of Tai to case of algebraic hypersurfaces with arbitrary singularities. We can also 
investigate possible generalizations of inequalities of Miyaoka-Yau type in the case of higher 
dimensions. We shall however not enter into these problems since the method of treatment is quite 
clear. 
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Gravitational Laws from Kepler’s Laws 
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It is an important historical event that Newton derived his laws from Kepler’s laws. 
However, how the former ones can be deduced from latter ones is rarely touched upon in 
current texts on calculus or mechanics, though the deduction of the latter ones from the 
former ones is treated rather often in such texts, e.g. [l]. The present preliminary report 
aims at such a deduction, and, what is perhaps more important for our purposes, a deduction 
in a MECHANICAL manner. The author owes for this report much to  Professor Gabriel of 
Argonne National Laboratory. In fact, during a visit to Argonne in 1986 Prof. Gabriel told 
the author such a problem for which he was already quite successful in applying his own 
automated reasoning method based on works of Ritt can be applied as well to  deal with such 
kind of problems. 

To begin with, let us first recall some fundamental notions and the basic principles 
underlying such method for which we refer for more details to [3,4] and [ 5 , 6 ] .  

Let F be a DIFFERENTIAL FIELD (abbr. d-FIELD) which for the present paper may be 
understood to  be simply the d-field of all rational functions of some parameter t considered 
as the time. To any DIFFERENTIAL POLYNOMIAL (abbr. d-POL) P (f 0) in some 
indeterminates X I ,  . . . , X ,  over the basic d-field F we shall associate a 4-tuple of integers 
[ t c r d ] ,  called the INDEX-SET of P, in notation ind ( P ) ,  as follows. 

t = number of actual terms in P ,  
c = the greatest subscript c for which X ,  occurs actually in P ,  to  be called the CLASS 

of P,  and be denoted as cls(P). 
r = the highest order r for which the r-th derivative D,X, of the above X ,  occurs actually 

in P, to  be called the ORDER of P and to  be denoted as w d ( P ) .  
d = the highest degree d of the above D,X, which occurs actually in P ,  to be called the 

DEGREE of P and to  be denoted by deg(P).  
For a d-pol P with cls(P) = c, ord(P) = r ,  and deg(P)  = d, we shall calI the derivative 

D,X, the LEAD of P ,  to be denoted by lead(P). Let L be this lead. Then the coefficient 
of Ld,  which is itself a d-pol, is called the INITIAL of P ,  to be denoted as init(P). The 
formal partial derivative of P w.r.t. L is then called the SEPARANT of P ,  to  be denoted 
by sep(P) .  Naturally, all these terminologies come from works of Ritt. 

For d-pols in indeterminates X I , .  . . , X ,  over the d-field F we shall consider a partial 
ordering (< defined in the following way. Let Pi, Pz be d-pols with index sets [ti  ci r1 d1 ] 
and [ t z  c2 r2 dz ] resp. We say then Pi << Pz if one of the following cases occurs: 

(4 c1 < cz, 
(b) c1 = CZ, but 7-1 < 7-2, 
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(c) c1 = CZ, T I  = rz, but d l  < dp. 

With respect to such a partial ordering of d-pols we can then introduce the notions of DIF- 
FERENTIAL ASCENDING SET, DIFFERENTIAL BASIC SET, and DIFFERENTIAL 
CHARACTERISTIC SET ( abbr. d-ASC-SET, d-BAS-SET, and d-CHAR-SET resp. )just 
as in the case of ordinary polynomial. We define also the notion of d-REDUCED as that of 
REDUCED in the ordinary case. 

Consider now a d-asc-set d-ASC consisting of d-pols 

(d-ASC) 

with 

0 < cls(P1) < cZs(P2) < ’ ’ ’ < ClS(P,). 

For any d-pol G we have then the following REMAINDER FORMULA: 

n(I,”.) n ( s T ) G  = 
z 3 k 

Q k p k  + R. 

in which I,,  S, are the respective initials and separants of d-pols in d-ASC, L, and M3 are 
certain non-negative integers which will be taken to be as small as possible, and Qk, R d- 
pols with R d-reduced w.r.t. d-ASC. The d-pol R is accordingly called the d-REMAINDER 
(abbr.  d- REMDER) of G w.r.t. d-ASC, to  be denoted as d-remdr(G/d-ASC). 

A finite set of non-zero d-pols is called a DIFFERENTIAL POLSET ( abbr. d-POLSET ) .  
Let such a d-polset DPS be given. A d-pol in the same indeterminates X ,  but over an 
arbitrary DIFFERENTIAL EXTENSION FIELD (abbr. d-EXT-FIELD), F’ of F will be 
said to be a SOLUTION (abbr. SOL) or d-ZERO of the set DPS if it satisfies all the 
equations P = 0 for P in DPS. The totality of all such solutions or d-zeros will be denoted 
by d-zero ( DPS ) and the totality of only those which are not d-zero of a given d-pol G will 
be denoted by d-zero (DPS/G).  

Given a d-polset DPS we can deduce, just as in the ordinary case, a d-char-set DCHR in 
a mechanical way. We have then, also as in the ordinary case, the formulas below: 

d-zero (DPS) C d-zero (DCHR), 

d-zero (DCHRIK) C d-zero (DPS), 

(1) 

(11) 

d-zero (DPS) = d-zero (DCHRIK) + d-zero (DPSk). (111) 
k 

in which K is the product of all initials and separants of d-pols in DCHR, and DPSk are 
d-polsets which are the enlarged DPS with one of the initials or the separants adjoined to  it. 

The formulas (I) ~ (111) are at  the basis of all our considerations about mechanization of 
mathematics in the case involving differentiation. 

Come now to the problem proper as cited in the title of the present paper. Let us first 
formulate the Kepler’s laws ( K )  and the Newton’s laws (N) in the manner as given below: 

(K1) The planets move in elliptic orbits around the sun as focus. 
(Kz)  The vector from the sun to  the planet sweeps equal areas in equal times. 
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(K3) The squares of periods of planet is motions are proportional to  the tube, of t h  semi 

( N I )  The acceleration of a planet is inversely proportional to  the square of the distance 

( N z )  The acceleration vectors of planets are directed toward the sun. 

In order to deduce mechanically the Newton’s laws (Nl), (Nz) from Kepler’s laws (K1) - 
(K3) (actually only (K i )  - (Kz) will be sufficient) let us take first coordinates and transform 
the various laws into equation forms as follows. 

Take polar coordinates with the sun at the pole and the major axis of the elliptic orbit 
as the polar axis. Then the orbit will have an equation of the form 

riiiiji)r mis of tlie elliptic: orl)it,s. 

from the sun to the planet. 

T = p / ( l  - e * cosw) (1) 

in which w is the angle between the polar axis and the vector from the sun to the planet. The 
Kepler’s law (K1) corresponds to the equation (1) and also (2)-(3) below taken together: 

p = const , or p’ = 0,  

e = const , or e‘ = 0, 

(2) 

(3) 
in which the prime means derivative w. r . t .  the time t. Similarly Kepler’s law (Kz) will 
correspond to the equations (4), ( 5 )  below: 

T2W’ = h, (4) 

h’ = 0. ( 5 )  
Let us take also rectangular coordinates (x,y) associated to the above polar coordinates 
(T, w). Then the Newton’s laws N l ,  Nz will correspond to the following set of equations: 

T~[(x”)’ + (y”)’] = k ,  (6) 

k’ = 0, (Nil  7) 

xy” = yx”. ( N z ,  8 )  

Now between the polar and the rectangular coordinates we have also the equations (9) - (13) 
below: 

X = T C O S W ,  (9) 
y = T sin w, (10) 

cos’w + sin’w = 1, (11) 

(cosw)’ = -(sinw)w’, (12) 

(sinw)’ = +(cosw)w‘. (13) 

To proceed further let us first remark that it is immaterial whether the equations (9) - (13) 
are dependent or not. What is important for us is that the computer can not recognize 
any irrational or transcendental entities like sin w or cos w. This can however be remedied 
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simply by treating cos w and sinw just like indeterminates connected by relations (11) - (13). 
To apply our implemented programs let us now introduce indeterminates in replacing the 
various functions by x’s as given below: 

(P, e ,  T ,  2 ,  Y ,  w ,  cosw, s inw,  h ,  k) = ( ~ 2 1 r 2 2 2 ~ ~ 3 1 r 2 3 2 , 2 3 3 r 5 q 1 , 2 4 2 , 2 4 3 , 2 ~ 1 , 2 5 2 ) .  

With this change of notations the equations (1) - (13) will turn to be the equations P, = 0 
with Pi given by (1’)-(13’) as shown below: 

+1* 2 3 1  - 1 * 2 3 1  * 2 2 2  * 2 4 2  - 1 * 2 2 1 ,  (1’) 

+1 * x i , ,  (20  

+1 * 2‘22, (39 

+1 * *.&I - 1 * 251, (40 

+1* 2151, (5’)  

( 6 9  

+1 * 2152, (7’) 

(87 

+1 * 2 3 1  * 242 - 1 * 2 3 2 ,  (90 

+1 * 2 3 1  * 2 4 3  - 1 * 2 3 3 ,  (lo/) 

+1* + 1 * 2f - 1, (11’) 

+1 * xi2 + 1 * 2 4 3  * .&I, (129 
+I * zk3 - 1 * 2 4 2  * xil .  (13’) 

+I * 2431 * ( 2 g 2 ) 2  + 1 * * (2y3)’ - 1 * 252, 

+1 * 2 3 2  * 2 6 3  - 1 * 2 3 3  * zgz, 

Take now the d-polset DPS to consisting of the 11 d-pols (1’)-(6’), (9’)-(13’) of the 
above set. Remark that the planets move in true non-degenerate elliptic orbits so that we 
have 

221  = p # 0 ,  2 2 2  = e # 0, 
2 3 1  = r # 0 ,  2 3 3  = y # 0 .  

In applying our algorithm for the finding of d-char-set DCHR of DPS we can then remove 
any factors 2 2 1 ,  2 2 2 , 2 3 1  and 2 3 3  during the procedure. The DCHR is found to be the 3-th 
d-bas-set consisting of the 10 d-pols C, given below: 

+1* 2’21, 

+1 * 2’22, 

-1 * 2& * ( 2 b 1 ) 2  + 2 * 2z1 * 2 2 1  * 2g1 + ’ ’ ’ 
+1* 2z1 * xg2 * 2g1 - 1 * 2 3 1  3 * 2g1, 

-1 * 2 3 1  * 2;1 * 2 5 1  + 1 * 2 3 1  * 2 2 1  * ( 2 b 1 ) 2  f ‘ ’ ‘ 
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The CPU-time for bringing up this d-char-set is 146 sec.. The non-trivial initials are: 

1 3  = -1 * 5 3 1  * 2;1 + 2 * * 5 2 1  + 1 * 221 * 2& - 1 * 2:1 = +1 * 2 3 1  * 2& * x i 3 ,  
I4 = +1 * 2 2 2 ,  ect.. 

The separants are essentially the same as the initials, with at most a further factor of 
2 3 3 .  

The proof of the Newton’s laws is now readily done. In fact, we find the d-remdrs of the 
d-pols (7‘) and (8’) to be both 0 w.r.t. the above dpolset DCHR. By the equation (I) and 
the remainder formula we see then the Newton’s laws are true at least in the non-degenerate 
case (14). The degenerate case for which one of ~ 2 1 , ~ 2 2 , ~ 3 1 , ~ 3 3  is zero can be dealt with in 
a similar but much easier way. 

The Newton’s laws have thus been derived in a mechanical way from the Kepler’s laws as 
required. However, in proving that the remainders are zero it requires, somewhat unexpected, 
a quite long time, viz, a CPU-time of 10875.6 sec.. This defect comes seemingly from 
two sources. One is due to inadequacy of programming in the procedure of reductions 
so that improvement of the implementation of program is needed. A second one is due 
to inadequate choice of coordinate systems. Thus, instead of a mixed use of polar and 
rectangular coordinate systems we have tried to use the rectangular system alone. In this 
way the Kepler’s law ( K 1 )  will correspond to following equations 

together with equations (2) and (3). Similarly, the Kepler’s law (Kz) becomes the equation 

zy’ - y2’ = h (17) 

with h satisfying (5). Replacing now the various functions by the x’s as before we have then 
to consider a d-polset DPS’ consisting of 7 d-pols (2’), (3’), (5 ’ ) ,  (6’) and those corresponding 
to (15)-(17), viz. 

+1 * 2 3 1  - 1 * 2 2 2  * 2 3 2  - 1 * 221 ,  

+1*  2’21, 
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+1* 2‘22, 

+1* 2& + 1 * 2z3 - 1 * 2z1, 

+1 * x;1, 

+1 * xi1 * ( 2 g  + 1 * xi1 * (4,)3 + ’ ’ ’ 

+I * 532 * x i 3  - 1 * 2 3 3  * x i 2  - 1 * 551 ,  

-1 * 252 .  

The d-char-set DCHR’ is readily found in a CPU-time of 106.2 sec to be consisting of 
the following 7 d-pols C: as the 2-th d- bas-set, viz. 

+1 * 2‘21, 

$1 * 2‘22, 

+1 * xi1 * (2h1)2  + 1 * 2;l * 2g1 + ’ ’ ’ 
-2 * 5321 * 5 2 1  * Z ~ I  + 1 * 231  * z ;~  * 21311 + . . 
-1 * 2i1 * & * & - 1 * 2 3 1  * 221  * (2’31)2, 

+1* 2g2 + 1 * & - 1 * &, 

+1 * 2,$ * (&)2 + 1 * 2t1 * (2;3)2 + ’ ’ ‘ , 

+1 * 231 - 1 * 222 * 2 3 2  - 1 * 221 ,  

+I * 232 * x i 3  - 1 * 2 3 3  * x i z  - 1 * 251 ,  

-1 * 2 5 2 .  

The remainders of the d-pols (7’) and (8’) w. r. t .  DCHR’ are again found to  be zero in a 
shorter CPU-time of 5949.7 sec. The Newton’s laws are thus again deduced from the Kepler’s 
laws in a mechanical way a little simpler than the way before. It seems that improvement 
of the programming will further simplify the proofs in shortening the CPU-time to probably 
less than half an hour. We remark that times are naturally all referred to the computer 
which we are in use. 

The proof presuppose that the Newton’s Laws are already known and require merely a 
verification. Now suppose that we are in the stage of knowing the Kepler’s experimental 
Laws alone, but entirely ignorant of what will be the form of the underlying Laws of Motion. 
The Principle in the form of (I) - (111) now furnishes us a method of automatically discover 
such unknown governing Laws. For this purpose let us introduce the acceleration a by 
a2 = ( x ” ) ~  + ( Y ” ) ~  arranging the order of the various entities involved in setting 

( p ,  e ,  2 ,  y ,  r ,  h ,  a’) = ( 2 2 1 , ~ 2 2 , 5 3 1 ,  2 3 2 , 2 1 2 , 2 5 1 , 2 1 1 ) .  

Remark that we have deliberately arranged a and T to  be the first two indeterminates in 
expecting to find some relation between them BS few first d-pols in the d-char-set which 
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would give us the  Laws of Motion to be found. The  hypothesis d-polset is now consisting of 
7 pols below: 

H i  = +1 * 212 - 1 * 222  * 231 - 1 * Z Z ~ ,  

Hz = +l * 2‘21, 

H3 = +1 * x ~ Z ,  

H4 = + 1 *  x : ~  + 11; 2322 - 11; x T Z ,  

H5 = +1 * 2 3 1  * 
Hs = +1 * X L ~ ,  
H7 = +1 * (ZS~) ’  + 1 * ( ~ $ 2 ) ~  - 1 * 211. 

- 1 * 232 * 2 5 1  - 1 * 251, 

2 

In a CPU-time of about 21 min., we find the  final d-char-set to  be  consisting of 7 d-pols of 
which the  first two d-pols are one in 2 1 1  = a’ alone and the  other in 2 1 2  = T and 211 = a’. 
The first one gives us thus a differential equation observed by the acceleration. This equation 
and the second one between a and T are  both too complicate t o  be of any interest. However, 
during the  process there appears a d-pol in the  4-th d-polset given by: 

B = +4 * x;Z * 211 + 1 * 5 1 2  * 
B y  our general principle of MTD B = 0 should be a consequence of the  original d-polset, 
i.e., a consequence of Kepler’s Laws. The  equation B = 0 is however nothing else but  the 
Newton’s inverse square law ?*a  = const.. We have thus discovered in a n  automatic manner 
the  Newton’s Law (N1) from the  Kepler’s Laws by means of our general Principle. Moreover, 
the d-pol 

H8 = H5 + He = +l * 2 3 1  * z;Z - 1 * 2 3 2  * ~ $ 1  

has its d-remainder already 0 w.r.t. the  first d-bas-set BS1 consisting of the  successive d-pols 
H z ,  H3, H I ,  H4, H5. Hence we have also automatically discovered during the  procedure the 
theorem H8 = 0, i.e.,  Newton’s Law (Nz). 
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A MECHANIZATION METHOD OF GEOMETRY 
AND ITS APPLICATIONS 

-11. CURVE PAIRS OF BERTRAND TYPE 

WIJ WENJIJN (WIJ WEN-TSUN g*&) 
(Znrritrrrc of Systems Science, Acndcrnia Sinicn, Bci j ing)  

Rcccivcd November 2 5 ,  1 9 8 5 .  

Let K be a differential field (abbr. d-field) of characteristic 0 and DPS be a set of 
differential polynomials (abbr. d-pols) in indeterminates X1, X 2 ,  - * , Xn with coefficients 
in K .  Then we shall denote 
by Zero (DPSIG) the collection of all zeros of DPS (or solutions of equations DPS = 0) 
in any extension d-field of K which are, however, pet zeros of C (or solutions of G = 0). 
According to theory of Ritt, one determines from DPS a set of d-pols C H S  to be called 
the characteristic set (abbr. char-set) of DPS. Any such char-set (not unique) will enjoy 
the following properties: (i) C H S  is an ascending set (abbr. asc-set) in the sense of Ritt. 
(ii) Each zero of DPS is also a zero of C H S .  (iii) Let the initials of the d-pols C1, 
C 2 , - . - ,  Cs in CHS, say s in number, be 1 1 , 1 2 , * - . l s ,  then each zero of C H S ,  which 
i s  not a zero of the product 1 = I1 * 12 * - * * * Is, is also a zero of DPS. 

More precisely, we have the following Ritt Well-Ordering Principle: 

Let G ‘be any other d-pol in the same indeterminates Xi .  

Zero(DPS) = Zero( C H S / ] )  + SUMiZero(DPSi), (1) 
in  which each DPSi is the set of d-pols DPS with Ii adjoined to it. 
have also the following Zero Decomposition Theorem: 

Furthermore, we 

Zero(DPS/C) - S U M j  Zero(ASCj/Rj) ,  ( 2 1  
in which each ASCj  is some irreducible asc-set and R j  some d-pol with non-zero remain- 
der with respect to A S C j .  The A S C j  and R j  can all be determined in a mechanical 
manner from the given DPS and the d-pol G. The  determination of C H S  from DPS is 
also a mechanical one and we have accordingly programmed on some small computer. In  
fact, it is on the formulae ( 1 )  and ( 2 )  that relies our method of mechanical theorem prov- 
ing and discovering of differential geometries. For more details, See [ 11. W e  remark 
that as usual all theorems are to be understood in some generic sense. 

In this note, we shall consider curve pairs of Bertrand type in metric or affine space 
a s  an illustration of how our method can be applied to discovering theorems connected with 
such curve pairs. 

Consider thus a pair of curves C and C’ in one-to-one correspondence with arc lengths 
s, s’ as parameters in the ordinary metric space. Let US attach moving frames (P, E l ,  
E 2 ,  E 3 )  and ( P ,  E ’ l ,  E’2,  E’3) to C and C’ at corresponding points P and P. The  
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curvature and torsion of C ,  C' will be denoted by K ,  T ,  a.id K ' ,  T' respectively. Let 

P = P + S U M i A i  - E i ,  
E' i  = SUMh.iiUii - E l ,  i - 1,  2 ,  3, 

Introduce now indeterminates X1,  X2,  etc. and change the notations as follows: 

ds'/ds A1 A2 A3 U11 U12 U13 U21 U22 U23 U31 U32 U33 K T K' T' 
- X 5  X6 X7 X8 X9 X10 X11 X12 X13 X14 X I 5  X16 X 1 7 X 2 5  X30 X35 X40. 

From the Frenet formulae of C,  C' we easily deduce the following set of d-pols i n  
which d l X i ,  d2Xi, * . . mean successive derivatives of indeterminate X i  with respect to s: 

P1 = + 1 * X 5 * X 9  - 1 - 1 * d l X 6  + I * X 2 5 * X 7 ,  
P2 = + l * X 5 * X I O - - ' l * d l X 7 -  1 * X 2 5 * X 6  + 1 * X 3 0 * X 8 ,  
P3 = + 1 * X 5 * X 1 1  - 1 * d l X 8  - 1 * X 3 0 * X 7 ,  
P4 = + l * X 3 5 * X 5 * X 1 2  - 1 * d l X 9  + 1*X25*X10,  
P5 = + l * X 3 5 * X 5 * X 1 3  - l * d l X 1 0  - 1 * X 2 5 * X 9  + 1*X30*X11,  
P6 = + l * X 3 5 * X 5 * X 1 4  - l * d l X 1 1  - 1*X30*X1OY 
P7= + l * X 3 5 * X 5 * X 9 -  1*X4O*X5*X15 f 1 * d l X 1 2 -  l * X 2 5 * X 1 3 ,  
P 8 =  + l * X 3 5 * X 5 * X l O -  l * X 4 0 * X 5 * X 1 6  + 1 * d l X 1 3  

+ l * X 2 5 * X 1 2  - 1*X30*X14,  
P 9 =  + l * X 3 5 * X 5 * X f l  - l * X 4 0 * X 5 * X 1 7  + 1 * d l X 1 4  

+ l*X3O*X13,  

2'10 = - l*X4U*X5*X12 - 1 * d l X 1 5  + 1*X25*X16,  
P11 = - 1*X4O*X5*X13 - 1 * d l X 1 6  - 1*X25*X15 + l*X3O*X17,  
P12 = - l * X 4 O * X 5 * X 1 4 -  l * d l X I 7 -  1*X30*X16,  
P13 = + l*X9*2 + 1*X10"2 + 1 * X l l A 2  - 1,  
P14 = + 1*X12*2 + 1*X13"2 + 1*X14"2 - 1, 
P15 == + l*X15*2 + 1*X16*2 + 1*X17"-2- 1 ,  
P16= + 1*X9*X12 + l * X l O * X 1 3  + 1 * X l l * X 1 4 ,  
P17 = + 1 * X 9 * X 1 5  4- l * X l O * X 1 6  f 1 * X l l * X 1 7 ,  
PI8 = + 1*X12*X15 + 1*X13*X16 + 1*X14*X17.  

Consider now the cases (ij) for which the line of Ei coincides with that of E'j  a t  

corresponding points. For example, the case ( 2 2 )  is the classical one of Bertrand curve 
pairs for  which the principal normals of C, C' at corresponding points coincide. For this case 
we should add to (DPS) some further d-pols Q1, .  . Q8 as shown below to form an 
enlargedset (DPS22) such that the 26 equations DPS22 = 0 will coxt i tute  the hypothesis 
set for such curve pairs: 

Q1 = + 1 * X 6 ,  
Q2 = + 1 * X 8 ,  

Q3 = + 1 + X 1 2 ,  

Q4 - + 1 * X14, 
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9 5  = + 1 * X10,  

Q6 = + 1 * X 1 6 ,  

Q7 = + 1 * X 9  - 1 * X 1 7 ,  

QS = + l * X 1 1  + 1*X15.  

Suppose that we are i.iterested in finding the yet unknown relations between the curva- 
ture K and torsion T of C.  For this purpose let us change the notations further in re- 
placing X25  by X 1  and X30 by X 2  and denote the set of d-pols thus got from (DPS22) 
by ( K T 2 2 ) .  T h e  char-set of ( K T 2 2 )  is readily found to consist of 16 d-pols, of which 
the first one is 

C 1 = +  l * d l X l * d 2 X 2 -  l * d l X 2 * d 2 X l .  

W e  have thus discovered the theorem C 1  = 0 which is equivalent to the classical theorem 
of Bertrand saying that the curvature X1  = K and the torsion X2  = T of C are connected 
by a linear relation. Moreover, during the procedure we encounter various d-pols whose 
vanishing shows that the distance between corresponding points and the angle between the  
corresponding tangents are both constants. These classical theorcms are thus rediscovered 
in an  automatic manner, too. 

The  above example can be extended in  various manners as shown below: 

(A) Instead of relation between K and T for the case (22)  we may also ask e. g. 
For this purpose we may first change X30,  

It turns out that the first d-pol of the char-set of the corre- 
relations between T ,  T' of the curves C, C'. 
X40 in  ( D P S )  to X 2 ,  X4.  
sponding set of d-pols is 

C1 = + 1 * X 2 * d l X 4  + 1 * X 4 * d l X 2 .  

We rediscover thus automatically the theorem due to Schell that the product of torsions 
at  corresponding points of a Bertrand curve pair is a constant. We may try also other pairs 
of geometrical entities to see whether they are connected by any interesting geometrical re- 
latims. 

(B)  We may also treat the cases (23) ,  (32), and (33)  in the same manner. 
are the cases for which at corresponding points of C and C' we have respectively: 

These 

principal normal of C = biiormal of C', 
binormal of C - binormal of C'. 

We find the first d-pol C 1  of the respective char-set with X, = K ,  X 2  = T ,  X 4  = T' 
to be as follows: 

( K T 2 3 ) :  C1  

( T T ' 2 3 ) : C I  +1  *X2"2*X4A2*dlX4A2 + 2 * X 2 * X 4 " 3 * d l X 2 * d l X 4  

-1 * Xl"2 * d l X l  + 1 * X2"2* d l X l  - 2 * X 1  * X 2  * d l X 2 .  

+ 1 * X4"4 * dlX2*2 - 4 * XZ"4 * dlX4"Z. 

( K T 3 2 )  or (K'T'23): C 1  

= + 1 * Xl*2* d2X2"2 * X2 - 2 * x 1 *  d l X 2 *  d2X2*  d l X l *  X 2  

+ 1*dlX2"2*dlXl"2*X2 - 2*Xln2*dlX2"2*d2X2 

+ 2 * X l * d l X 2 " 3 * d l X l  + 4*XlA4*d1X2"2*X2.  
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( K T 3 3 ) : C l  = + 1 * X 2 .  

T h e  formulae ( K T 2 3 )  and ( T T ’ 2 3 )  show that for a Bertrand curve pair of type (23) 
we should have K A 2 + T A 2 - const * K ,  a theorem due to Mannheim, and also T * T’ A 
2 - const* ( T k T ’ ) .  On the other hand, the formula ( K T 3 3 )  shows that only planar 
curves can form Bertrand pairs of type ( 3 3 ) .  All these theorems are discovered in an 
automatic manner. 

(C) W e  may also consider curve pairs C, C’ of Bertrand type in an affine space. In 
then we may attach Freiet-Darboux frames fact, let ds be the affine arc element of C, 

( P ,  E l ,  E 2 ,  E 3 )  to C such that 

d P / d s  - E l ,  
d E l / d s  = E 2 ,  
d E 2 / d s  = E 3 ,  
d E S / d s  - T . E 1  - K . E 2 ,  

in which K , T  are the affine curvature and affine winding of C. Similarly for C’. If the 
affine principal normals of C coincide with those of C’ at corresponding points of C, C’, 
then treating the pairs as before in the case ( 2 3 ) ,  we rediscover various theorems due to 
Ogiwara, cf. [ 2 ] .  For the relation between K and T of such a pair we get, however, a 
d-pol of 30 terms involving d 3 T  and d 2 K  both to the power 2 which seems to be too com- 
plicated to have any geometrical interest. Other cases can be treated in the same manner. 

(D) W e  may consider also curve pairs connected by some relations of geometrical 
interest, e. g. with tangents, principal normals, or binormals parallel to each other at cor- 
responding points, etc. W e  may also consider curve pairs in a projective space, a confor- 
mal space, etc., with certain significant lines of these curves at corresponding points con- 
nected by certain geometrical relations, etc. Clearly our method applies eqdally well to 
dealing with all these cases to discover possible new theorems of geometrical interest what- 
soever. 
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A MECHANIZATION METHOD OF GEOMETRY 
AND I T S  APPLICATIONS 

111. MECHANICAL PROVING OF POLYNOMIAL 
INEQUALITIES AND EQUATION -SOLVING* 

Wu Wenjun (Wu Wen-tsun K%@) 
(Insfitufe of Srstem Science, Academia Sinzca, Beijing, China) 

Abstract 
This is the third paper of the series entitled “A mechanization method of geometry 

and its applications”, cf. [WU3--51. In the present paper it is shown how inequalitie 
can be proved by means of the author’s Zero Decomposition Theorem of equations solving. 
Numerous examples are  given which deal with definiteness of polynomials, inequalities hetween 
symmetric polynomials, trigonometrical inequalities, and geometric inequalities. 

1. Some Generalities 
Let PS be a polset in variables X1, X 2 ,  ..., X n  on the basic coefficient field 

K of characteristic 0 .  Let us form the charset CS of PS with initials Ii of pols in 
CS. During the procedure we may remove certain factors Fj for the sake of 
lessening the computational work. Let us denote by J the product of all such 
initials and removed factors. Then we have the following formulas for the sets 
of zeros (+ stands for “ is  contained in”): 

Zero (CS/J) --< Zero (PS) --< Zero (CS), 
Zero (PS)=Zero (CS/J)+SUM k Zero (PSX-), 

( 1 )  
( U )  

in which each PSk is the polset PS enlarged by djoining to it either an initial 
Ii or a removed factor Fj. By treating each of PSk in the same manner and 
proceeding onwards, we shall finally arrive at  the following ZERO UECOMPOSI- 
TION FORMUIA (in the weak form): 

in which each ASCk is an ascending set with J/i the product of all the initials in 
ASCk and the zeros will be understood to  be in a definite extension field of K 
and in a certain pre-determined open domain 0 of the Rl;.., Xn)-space s. 
Formulas (I)-(111) offer us a general method of solving an arbitrary system of 
polynomial equations. Moreover, these formulas and their extensions to the 
differential case are  also on the basis of m r  genei-a1 mechanization method of 
geometry. Some applications of this method 11ai.c been described in the previous 
onesones of ths series, cf. [WU3-5]. As a further application we shall take fi to be the 
field and show in the present paper how to apply the method to the mechanical proving 
and hence also mechanical discovering, of polynomial inequa!ities. In fact, for the proving 
of inequalities a general method is already fLrnished by elemenfary calculus. We have only 
to proceed a little further in solving the respective equations by applying formulas (I)-(III). 

Zero (PS)=SUMk Zero (ASCkIJk) ,  (m) 

4 Received December 21. 1987. 
This work is supported by NSFC Grant J I  S5312. 
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In more betails it may bedescribed a s  follows. 

some constant a, 

in which G is a pol on real (actually rational or even integral) coefficients and X 
stands for (Xl, ..., X n )  restricted to the given open domain 0. (1.1) is equivalent to 
saying that the greatest lower bound glb of G(X)for  X in 0 is %a (or>a). In 
problems like linear programming 0 will be the interior of a convex polyhedron 
and the glb will be attained as the least value of G ( X )  a t  some vertex on the 
boundary of this polyhedron. On the other hand, for a large number of inequalities 
(1.1) which one encounters in mathematics it could be verifified by direct 
computations, geometrical considerations, or any other means, that the following 
condition would hold true for R = closure of 0 :  

(C) T h e  values of pol C(X)  for X in R will attain its least value in the interior 
of R. 

We shall now restrict ourselves only t o  inequalities verifying (C). For such 
inequalities the problem is now reduced to  proving that 

for (X) in 0. Now the points ( X )  in 0 which render G to be extremal, i.e. either a 
local minimum or a local maximum, should satisfy the following equations as 
NECESSARY conditions: 

Di G=O, i=l, ..‘, n, (1.3) 
in which Di means derivative w. r. t. Xi. The proving of inequalities (1.1) is thus 
reduced as a first step, under condition (C), to  solving equations(l.3), which can be 
done by means of (1)-(111). Among the solutions found we shall choose those whic 
will render the value of G to be the smallest, say GO. We have then to verify that GO > = 
a(or>a) and to test whether this is really a local minimum. The last test can be done 
by forming the second variation, viz. 

V= G(Z+ E)- G(Z), ( 1 . 4 )  
in which Z=(Z1, ..., Zn)  is the zero of G in question and E=(El, ..., En) is some 
small variation of 2. It is then enough for the proof of inequalities (1,.1) if we can 
prove, as  a SUFFICIENT condition, that the form V is positive definite for Ei 
sufficiently small. The positive definiteness of such a form V is again a problem 
of the same type a s  above and may be reduced to equations-solving. Moreover, 
let Q be the quadratic part of the second variation V ,  viz. the quadratic form 

Q = SUMij DijG * Ei * Ej, (1.5) 
in  which Dj means the second derivative w.r.t. Xi, xj with values taken a t  the 
corresponding point. Then it will be sufficient to show the definiteness of Q which 
is easily done. 

More generally we have to  prove an inequality of the form (1.1) under some 
restrkted conditions (Hi again real pols) 

Hi(X)=O, i=l, 2, ”‘, WL. ( I  .6)  
We shall restrict ourselves again only for the case with condition (C) verified, 

In the simplest case a polynomial inequality may be put into the form fbr 

G ( X ) > = a ( o r  G ( X ) > a )  (1.1) 

min G(X)>=a (or min G(X)>a) (1.2) 
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with however R to  be understood as the closure of the intersection of 0 and the 
algebraic variety defined by (1.6). In this case, again a s  in the elementary 
calculus we may form the IAGRANGIAN pol 

L= G + SUM i M i * H i ,  (1.7) 
iiz which Mi are  the lagrangian multipliers. Then the points rendering G minimum 
with (1.6) satisfied can usually he sought among the solutions of the system of 
equations (1.6) and (1.8) below: 

Di L=O. (1.8) 
With zeros found by means of (I)-(111) we may then proceed as before. In general 
equations (1.6) may however be dependent. In such cases the method of lagran- 
gian multipliers is usually non-applicable and some preliminary treatment, e. g. 
formation of char-sets, may be necessary. Let us suppose that this has already 
been done in case of necessity. Our general procedure of proving inequalities under 
condition (C) can thus be described as  follows. 

Step 1. Denote the system of pols Hi in (1.6) by PS and decompose Zero 
( P S )  as in (111). 

Step 2. For each ascending set A X k  with successive pols A k j  and 
corresponding initials Zkj let us form the lagrangian pol 

with lagrangian multipliers Mkj. 
Lk=C+SUMj  Mkj * A k j  (1.9) 

Step 3. Form for Lk the equations 
Di Lk=O, i = l ,  ..., n. (1.10) 

Solve 5- the system (1.6) and (1,lO) together byour general method of equations- 
solving a d  determine all such zeros lying in the open domain 0 and rendering 
/k< > O .  

Test whether each such zero in Step 3 is a real minimal point by 
forming the second variation e r  its quadratic part as in (1.4) or (1.5). Note that 
not only the zero Z, hut also the variation Z + E ,  should be so chosen to verify 
equations (1.6). Suppose that this has been done. Choose then among the minimal 
values the smallest G' with corresponding zero 2 = ( 21, ..., 2%). 

Test the validity of the lagrangian multiplier method in verifying that 
the rank of the matrix [Di H i ]  at  the corresponding zero Z is equal to m. We 
suppose that this is really the case. 

Step 6.  Detennine the zei-o at which rank of the matrices [ D ;  Hj]isless than m 
and verify whether they do not furnish the smallest value of G . 

If the tests in Steps 4-6 are  all done in the affirmative, thentheprocedurehas 
succeeded and (1.1) is proved as required under the restricted conditions (1.6) ,  
5 0  far (C) is assumed to be true. 

The  above procedure may be modified in various manners. We may, for 
exampl?, either omit Step 1 or, instead of using the complete decomposition (111) 
in Step 1, use only (11) and proceed further with Zero ( P S k )  if it is necessary. We 
may also omit Step 4 or 5 in case the definiteness of the quadratic part Q can be 

Step 4. 

Step 5. 
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ascertained by direct geometrical or other considerations. 
The  above method of proving inequalities is a mechanical one but not a t  all a 

complete one. In fact, even in such a simple case of a polynomial G there are no 
existant conditions, which are  both necessary and sufficient, for G to be a local 
m a x i l x m  or minimum a t  a certain point. We have therefore to satisfy ourselves 
with methods which are sufficiently efficient to prove nan-trivial inequalities, 
leaving aside the question of completeness. We remark also that the procedure 
described above is just the same as in any textbook on elementary calculus. The 
only difference is perhaps the use of the method of polynomial equations solving, 
a s  embodied in the formulas (I)-(III), which has greatly enlarged the field of 
inequalities proving. Moreover, the method described, though far from being 
complete, can however be programmed and worked out on a computer and is 
.already found to be quite efficient as  may be seen from examples in the following 
sections. It furnishes us with a means of discovering "new" inequalities without 
knowing a priori their possible forms as seen from these examples too. These 
examples are somewhat of a typical character and hundreds of quite non-trivial 
inequalities can be in fact proved according to their pattern. 

2. Definiteness of Polynomials 
Let 0 be an open domain in the (XI, ... Xn)-space S. Then a real pol G in 

X =  (Xl,  ..., X n )  is said to be POSITIVE DEFINITE or SEMI-DEFINITE in 0 
if for all X in 0, we have G(X) >O or G(X) > = O .  Similarly for NEGATIVE 
DEFINITENESS or SEMI-DEFINITENESS. The determination of the defutneeiss 
of such a real pol can be reduced to a problem of equations-solving which, quite 
often, can be achieved in the manner described in Sect. 1, if G ( X )  attains its least 
value>O or > = 0  a t  points in the interior of 0. The following is a concrete 
example which serves a s  a simple illustration of our general method. 

Example 1. The Motzkin pojynomial 
G'-l+X1'*X2"tX1"X2"-3.X12*X22 (2.1) 

is semi-definite positive in the whole (Xl, X.2-plane. 
Let X move along a line through the origin to the infinity. The values 

of G will clearly become plus infinity I f  the h e  is different from the . r -o r  .x'i-axis 
on which G has the constant value $- 1 . It follows that G will attain its least value 
in some finite part of the'plane or that condition (C) is observed in this case. We 
may thus apply the procedure as  described in Sect. 1. 

Probfi 

Form thus the derivatives 
D1G-Z * X1 * X2z t ( X z 2 + 2  * 2y1"-3' 4 1 .  

112G-2 * X12 * X2 * ( 2  * Xl2+X2'-3). 
The set Zero ( D ]  G, 0 2  C) consists of 3 parts, viz. 

We have G = l  for (0, X2) or ( X I ,  0 ) ,  but G=O fot (1, l ) ,  etc. Consider e. g. the 
point (1, 1). Set 

((0, X2)), { ( X I ,  O ) ) ,  { ( I ,  11, (1, -11, (-1, 11, (-1, -1) ) .  
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X1=1+El, X2=1+E2 
with El, E2 small. The  corresponding quadratic part Q of the second variation is 
found to  be 

with Q=O only for El=E2=0. It follows that G takes its minimums a t  the point 
(1, I ) ,  and also a t  (1, 

It may happen that a real pol is definite or semidefinite positive in some smal 
domains but not so in a certain larger open domain 0. For example, let a ,  b ,  c be 
the three sides of a triangle so that besides 

a>O, b>O, c>O ( 2 . 2 )  
we have also 

b+c-a>0,  c+a-b>0,  a+b-c>0.  ( 2 . 3 )  
Now the area A of the triangle is given by the formula 

Q=4 * E12+4 * EZ2-4 * El * E2>=0 

-l), etc. with value 0 .  Hence G>=O as asserted. 

16 A2= - a4- b4- c 4 +2 * b2 * c2+2 * c2 * a2+2 * a2 * b2 
= ( b + c - a )  * ( c + c - b )  * ( a + b - c )  * ( a + b + c ) .  

The pol in the right side of the first line is thus a positive definite one in the open 
domain 0 defined by inequalities ( 2 . 2 )  and (2.3).  It is clearly not so in the larger 
open domain defined by ( 2 . 2 )  alone. The following is another example. 

Example 2. The pol 
G=- a z -  b2-c2+2 * b * c+2 * c * a+2 * a b (2 .4 )  

is definite positive in the open domain 0 defined by ( 2 . 2 )  and (2.3). 
Proof: In view of (2.3) we can set 

b+c-a=2 * x 2 ,  
c+a-b=2 * y', (2.5) 
a f b - c - 2  * z2 

with x>O, y>O, z>O so that 
a=y2+z2,  

b=z2+ x2, 
c=x2+ y2. 

By direct compution we find G of ( 2 . 4 )  is given by 
G=4 * (y' * z2+z2 * x2+x2 * y2) > O  

(2 .6 )  

as to be proved. 

defined by ( 2 . 2 )  alone. 

in proving inequalities involving sides of a triangle. 

Remark that G of ( 2 . 4 )  is again non-definite positive in the larger domain 

The  method of proof here in introducing (2 .5)  and (2 .6 )  may be quite useful 

3. Inequalities Involving Symmetric Polynomials 
There are numerous inequalities involving symmetric pols. We shall prove a 
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few below to illustrate our general method. 
.Example 3. For a, b,  c > O  we have 

and the equality occurs only for a=b=c. 

x 21, x 22, x 23 according to Seidenberg in setting 

( b + c )  * ( c+a )  * (a+h)>=8 * a * b * c,  (3.1) 

prooi In order to  take into account a, 6 ,  c > 0, let us introduce new variables 

xll=a>O, ~ 1 2 = b > 0 ,  x 1 3 = ~ > 0 ,  (3.2) 
(3.3) x21’ * x l l = l ,  x22’* xl2=1, x23’* ~ 1 3 ~ 1 .  

We have then to show that 

under conditions (3.3) in which 

Form thus the lagrangian pol 

minG=8 

G=(x12+x13) * (s13+s11.) * (x l l fx12)  * x21‘ * x22‘ * x23‘. (3.4) 

L=G+xlOl * ( ~ 2 1 ’ *  ~ l l - 1 ) + ~ 1 0 2  * ( ~ 2 2 ’ * ~ 1 2 - 1 )  
+ ~ 1 0 3  * ( ~ 2 3 ’  * ~ 1 3 - 1 ) ,  (3.5) 

in which ~ 1 0 1 ,  x102, and x103 are the respective lagrangian multipliers. We shall 
denote also by x10 the extremal value of G to  be found. 

Denote by PS the polset consisting of the pols corresponding to (3.3), the 6 
derivatives DiL with i = l l ,  12, 13, 21, 22, 23 and the pol G-x1O2. Then we have 
t o  find extremal values of G by determining the set Zero( PS).  Now the char-set 
CS (in the weak sense) of PS is readily found to  be consisting of 9 pols with the 
first three given by 

C 1 = X  10’- 8, 
C2=3 * ~ 1 2 - x l 1  * (x10’-5), 
C3=-6 * 1 1 3 + ~ 1 1  * (~10’-2). 

During the procedure we have however removed the following factors 
x l l ,  x12, x13, xl0, x11+x12, 

which are  all necessarily non-zero. The only non-trivial initials of CS is 211 ar?d 
is also non-zero. It follows that (11) applied to PS becomes simply 

Zero(PS) =Zero( CS). 
We find thus the only possible solutions of our problem: 

x102=8, 
xll=x12=.~13>0, 
x21= x22 = x23 = +or - sqr ( x 11). 

To see whether these values furnish the true maximum or minimum, let us conside 
e. g. the point for which xll ,  x12, x13, x21, x22, x23 are all equal to 1. Take a nearby 
point by setting 

~ l l = l + x l l ’ ,  .~12=1+x12‘, ~13=1+x13’ ,  

x i o 2 + i ,  4 * ; t i o 2 + i ,  x104+1, 
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x 21 = 1 +x 21’, x 22=1 +x 22‘, x 23=1+ x 23’ 
with small I’ such that ( x l l ,  x23) satisfy all the above equations too. It is 
readily verified that for the second variation the quadratic part of [ G ( l + s ’ )  
- G( l ) ]  /2 is given by 

which is >O for x ll‘, 12’, x 13‘ not all equal and =O otherwise. In the latter 
case we have however always G ( l + x ’ ) = G ( l ) .  It follows that 110>0 with 
x1O2=8 is a true minimum and (3. 1) is proved. 

In the above proof we have introduced new variables x 21, x 22, x 23 t o  take 
into account conditions (3.2). This would cause unnecessary complications in 
computations. In fact, we can avoid this in removing simply any Such factors x 11, 
I 12, I 13 > 0 during the procedure. Instead of treating Ex. 3 in this way let us 
consider another example below as an illustration. 

I 1 1 ’ 2 + ~  1 2 ” + ~  1 3 ” - ~  12’ * I 1 3 ’ - ~  13‘ * I 11’ -X 11’ * L 12’ 

Example 4. For a, b, c>O we have 
3 *  ( b + c )  * ( c + u )  * ( u + b ) < = 8 *  ( a 3 + b 3 + c 3 ) .  

Proof: Let us introduce I 11, I 12, x 13 a s  in (3.2) and set also 
121=1 12+x 13, 122=1 l l + x  13, x 2 3 = x  l l + t  12, 13.7) 
130=111~+112~+x13~,  (3.8) 
121 * 122 * 123=x10 * x30. (3.9) 

(3.6) 

The  polynomial to be extremized is then 
G=I 10 

under the above conditions (3.7)-(3.9). Denote the pols corresponding to equa- 
tions in (3.7) - (3.9) by P 1, ..., P 5  and form the lagrangian pol 

L=t lO+1101 * Pl+. . .+1105* P 5 .  
We have to  find the set Zero(PS) where PS consists of the 5 pols Pi and the 8 
pols DiL with i=30, 23, 22, 21, 13, 12, 11 and 10. The char-set of PS is readily 
found to be consisting of 12 pols of which the first three are  

C 1 = 3  * xIO-8, 
c2=x 12-32 11, 
C3=-18 * ~ 1 3 +  15 * I 11 * x 10-22 * I 11. 

The factors removed during the procedure a r e  ~ 1 0 1 ,  xIU, xL.21, xll .  
The non-trivial initial occuring in the final char-set is I 11. It is readily seen that 
there is no necessity to proceed further to study Zero(PS‘) where PS’ is PS 
enlarged by adjoining any one of the above factors or initials. Hence the only 
solutions to our problem are given by 

r10=8/3,  ~ 1 1 = 1 1 2 = ~ 1 3  or a=b=c.  
We o h i t  the verification that they furnish actually maximums and (3.6) is thus 
proved. 

Let us write any pol symmetric in n variables V1, ..., V n  with a typical term 
T =  li ... t I / n E > f  
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as SYM n T. Between the various typical terms of fixed total degree there may be 
introduced a partial ordering by majoration, in notation: T 1 <T 2 or T 2> T 1 if 
T 1 is majorized by T 2. For exact definition we refer to [HLP], p. 45. A theorem 
of Muirhead says that between two symmetric pols SYM n T1 and SYM n T2 in 
the same variables Vi > O  and of the same total degree there is some inequality 
connecting them if and only if T 1, T 2 are  comparable in the above partial 
ordering. More precisely, for T 1< T 2 we have 

N 2 * S Y M n  T l < = N l * S Y M n  T2,  
in which N l , N  2 are the number of terms in the two symmetric po1s.h particular, 
for n = 3  we have 

By the Muirhead theorem we have therefore 
~ 1 3 ~ v 1 2 *  v z B v i *  vz. v 3 .  

2 * SYM3 V 1 3 > = S Y M 3  V 1 2 *  V2, 
SYM3 V12 * V 2 > = 6  * SYM3 V 1 *  V 2  * V3. 

Examples 3 and 4 follow immediately from these two formulas and are  thus only 
very special cases of the general Muirhead theorem. In view of this it is therefore 
of interest to consider the following example which is not covered by theMuirhead 
theorem. 

Example 5. For a triangle with sides a ,  b, c and perimeter 
a + b + c = Z * s  (3.10) 

we have the following inequality due to Santalo: 

B o o t  Let us set, besides (3 .2) ,  
sqr (s -  a )  + sqr (s - b )  + sqr (s- c )  < =sqr (3 * s).  (3.11) 

t 1O=s, t 15=sqr(s) ,  (3.12) 
t 21 =sqr (s  - a ) ,  x 22 =sqr ( s  - b ) ,  t 23=sqr (s ~ c ) .  (3.13) 

Then the pol to be extremized is 122 give by 
115 * 12O=x21+t22+x23. (3.14) 

Let Pi, i= l ,  ..., 6, be the pols in I corresponding to equations in (3.12)-(3.14) 
in taking account of (3 .10) .  Form the lagrangian pol 

L=tZO+t 101 * P l + . . . + x  106 * P6. 
Let PS be the polset consisting of Pi and DjL for j = l O ,  11, 12, 13, 15, 20, 21, 22 
and 23. The char-set is readily found to be consisting of 1 4  pols of which the first 
five are 

C 1 = 3  * I 11-2 * I 10, 
c2=2 * t l 2 - 2  * . x I I ) + r  11, 
C3=x13-2  * t l O + t l 1 + 1 1 2 ,  (3.15) 
C4=x 15’-1 10, 
C 5 = t 2 0 2  * .% 10-3 * t 15’. 

The factors removed during the procedure and non-trivial initials in the char-set 
are 
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~ 1 0 1 ,  ~ 2 3 ,  120, ~ 1 5 ,  ~ 1 1 ,  210,  1 1 1 - ~ 1 0 .  
All these are  > O  except possibly x101 and xl1-110 which occur both a s  removed 
factors The  latter one causes collapse of the triangle and may be discarded. We 
have therefore 

Zero( P S )  =Zero( C S )  +Zero(PS I ) ,  (3.16) 
in which PS 1 is PS enlarged by adjoining the pol x 101. It is readily seen that PS 1 
is contradictory so that (3.16) reduces to 

Zero (PS  ) =Zero( CS). (3.17) 
From the expressions of Ciin CSas given by (3.15) we see that the only solutions 
are given by 

x l l = x  12=x 13=2 * I 10/3, etc. 
with the corresponding extremized value given by 

x ZO=sqr(3). 
It may be verified as  usual that this value of x 20 is a maximum. Now the open 
domain 0 of the problem is defined by (3.2) and 

x 12+x 1 3 > x  11, x 11+ x 1 3 > x  12, I 11+ x 12>x 13. 
For a point on the boundary of 0 with I 12+ x 13=x 11,we haves= b+ c,s-u=O, 
s -b=c,  s - c = b  so that 

20= (sqr( b )  + sqr (c ) ) / sqr  ( b + c )  < =sqr (2) < sqr (3). 
Similarly for a point on the boundary of 0 with I l l = O  we have u=O, s=b=c, 
s-u=s, s-b=O, s-c=O, so that 

I 20= 1 < sqr (3). 
Condition (C) is thus seen t6 be observed and the inequality (3.11) is proved. 

4. Trigonometrical Inequalities 
Inequalities involving trigonometrical functions occur quite often in examinations 

or problems-solving of elementary mathematics, as  may be seen from the columns on 
Problems and Solutions of Amer. Math. Monthly. We shall show that our method 
works also for such kind of problems, in spite of the fact transcendental functions 
are involved in the inequalities. The point is to replace such transcendental 
functions by their interrelated algebraic relations which, but not the functions 
themselves, are the only factors playing the essential role in the inequalities. We 
remark that this principle was already pointed out in the first paper on mechanical 
theorem proving of the author ([WU 11) and has been applied to various kinds of 
problems. The following example is now one of the simplest to apply the principle 
this time to inequalities. 

Example 6. For a triangle ABC with angles 
AS Bi- C=pi ,  ( 4 . 1 )  

s i n A $ s i n B t s i n C < = 3  * sqr(3)/2, ( 4 . 2 )  
we have 
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s i n A  * s i n B  * s i n C < = 3  * sqr(3)/8, (4.3) 
COSA+COS B+COS C<=3/2 ,  (4.4) 
cosA * c o s B  * cosC<=1/8. (4.5) 

Moreover, in each of the inequalities the equality occurs only if the triangle is an 
equilateral one. 

Remark. Let us form as in elementary calculus, for  e.g. (4 .2) ,  the 
lagrangian pol 

with M the lagrangian multiplier. From 

we find 

L = s i n A + s i n B + s i n C + M  * ( A + B + C - p i )  

DL /DA = DL /DB = DL/DC = o 

c o s A = c o s B = c o s C  
and (4 .2)  is readily proved. This is the same for (4.3)-(4.5) and many other 
trigonometrical inequalities of similar type. However, such a method may lead in 
more general cases to transcendental equations which it is almost impossible to 
deal with. For this reason we prefer to apply our general method as indicated 
above in the beginning of this section. 

Pro05 Let us-set 
s i n A = t  11, s i n B = t  12, s i n C = x  13, (4.6) 

(4.7) 
Then we have between the x’s the following algebraic relations: 

111’ t t21’=1,  ~ 1 2 ~ $ ~ 2 2 ~ = 1 ,  ~ 1 3 ~ + ~ 2 3 ’ = 1 .  (4 .8)  
Moreover, from ( 4 . 1 )  we have‘ s i n A = s i n ( B + C ) ,  c o s A = - c o s ( B + C ) ,  etc. 
Hence we have also 

COSA=X 21, cos B==I 22, cos C = t  23. 

t l l = ~  12 * 123+1 13 * t 2 2 ,  t 2 1 = - t 2 2  * 1 2 3 t  I 13 * t 12, (4 .9)  
t 1 2 = ~ 1 3 * ~ 2 1 + t 1 1  *123, ~ 2 2 = - t 2 3 * 1 2 1 + t l l  * t 1 3 ,  (4.10) 
s 1 3 ~ 1  11 * t 2 2 + t  12 * 121, ~ 2 3 = - t 2 1  * 1 2 2 + t 1 2  * t l l .  (4.11) 

For the case (4 .2)  the pol to be extremized under the restricted conditions 
(4 .6) -  (4 .11)  is t 11 + I 12 t t 13. The open domain 0 in which the extremal 
points are to be found is defined by 

O < t l l < l ,  O < t 1 2 < 1 ,  O < t 1 3 < 1 ,  (4 .12)  
O < t 2 1 < 1 ,  O < t 2 2 < 1 ,  O < t 2 3 < 1 .  (4.13) 

In the present case the lagrangian multiplier method is inapplicable since equations 
(4 .8) - (4 .11)  are  not independent. We have first to  find an independent set of 
conditions equivalent to (4 .8) - (4 .11)  by determining the char-set 0; the polset 
corresponding to these equations. This char-set is readily found to be consisting 
of 4 pols’of,which the first one is given by 

P 1 = ~ 1 3 ~ t t 1 2 ~ + t l 1 ~ + 4  * s 1 1 2 * z 1 2 2 * ~ 1 3 2  
-2  * t 12’ * t 13’-2 * s 11’ * I 13’-2 * I 11’ * t 12‘. (4 .14)  
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We remark that P1=0 corresponds to the equality of two different expressions 
for the area of the triangle. We remark also that the derivation of P1 follows our 
general method of determining unknown relations, in the present time betweelr 
sinA, s i n B  and sin C of a triangle, as described in [ W 4 , 5 ] .  It follows that we 
may replace the polset corresponding to (4.8)-(4.11) by the pol P 1  alone with 
the corresponding open domain 0 defined by (4.12) .  

We are thus in a position to form the lagrangian pol 
L=x11+x12+x13+3:101* P1. 

Let pS be the polset consisting of pol P1, the derivatives DiL with i=13, 12, 11 
and also the pol 

with J: 10 as the extremal value to be found. By our general method we find that 
the char-set of PS is a contradictory one if we remove during the procedure the 
factors 

As x 12 >O and x 11 >O we have by our general formulas 
Zero ( P S )  =Zero (PS 1) +Zero (PS 2) ,  (4.15) 

in which PS 1 and PS2 are the polsets PS enlarged by adjoining to it I 13-t 12 
and x 1 2 - r  11 respectively. 

Consider first Zero (PS 1). The char-set of PS 1 is readily found with first pol 

The factors removed during the procedure are x 11, x 10 and 4 * x lo2+ 9 which are 
all > O .  Hence we may separate Zero (PS 1) into two parts with PS 1 enlarged by 
adjoining 4 * x 102-27 and 102-4 respectively. For the first part the char-set is 
given by 

x l l + x  1 2 + ~  13-2 10 

.X 12, I 11, I 13-x 12, I 12-x 11. 

C1=(4 * x 102-27) * (X 102-4)*. 

C1=4 * I 102-27, 
C2=-3 * xll+t lO,  
C3=2 * 2 12Sx 11-.X 10, 
C4=x 13-3: 12, etc. 

No factors have been removed and no non-trivial initials appear. The only zeros 
for this part are thus given by 

t 10=3 * sqr (3)/2,  x l l = x  12=x 13=3: 10/3. (4.16) 
For the second part we find that the char-set is contradictory with t 11 > O  as the 
only factor removed. Herice it contributes no new zeros and the set Zero (PS  I )  is 
thus solely given by (4.16). 

Consider next the set Zero (PS  2). The first poi of the char-set is found to be 
- ( 4  * L 102-27) * (x 102-4)3 with the following factors removed during the 
procedure: 

The set Zero ( P S 2 )  is thus formed by 4 parts: the zero-sets of PS2 enlarged by 
t 10, 2 * L 11-.X 10, IC 102-54, 5 * J: 102+216. 
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4 * x 102-27, x 102-4, 2 * t 11-x 10 and I 102-54 respectively. For the first part 
the char-set is given by 

C1=4 * I 10‘-27, 
C 2 = 3 * ~ 1 1 - ~ 1 0 ,  
C 3 = x  1 2 % ~  11, 
C 4 = - s 1 3 - t 1 2 - x l l $ x l O ,  etc. 

The  zeros are  thus again given by (4.16). On the other hand the other 3 parts 
are all contradictory and furnish no zeros a t  all. 

In summary we see therefore from (4.15) that Zero ( P S )  is composed of the 
set given by (4.16). 

It remains to verify that the value of x 10 taken on the boundary of 0 is < = 

the one given in (4.16), which is easily done. It remains also to verify that t 10 in 
(4.15) is really a maximum, which is also easily done by direct computation. This 
completes the proof of ( 4 . 2 ) .  

We have carried out the proofs of (4.3)-(4.5) in the same manner. We 
remark only that in the case of (4 .4)  or (4.5) we have set, in order to simplify 
the computations, instead of (4 .6) ,  

s i n A = t 3 1 ,  s i n B = t 3 2 ,  s i n C = x 3 3 .  (4 .6)‘  
With relations a s  in (4.8)-(4.11) the char-aet of corresponding pols is then 
given by 

P 1 ’ = ~ 2 3 ~ $ t 2 2 ~ + x 2 1 ~ + 2 : ~ 2 1  : t 2 2 * x 2 3 - 1 ,  etc. 
Remark that P 1’ = O  gives the relation between cosA,  c o s B  and cosC under condi- 
tion (4.1) .  The remaining proofs are  similar to the one above for (4.2) and are a 
little involved. We can however apply a much simpler method of proof as  described 
below. 

Example 7. An alternative method of proving (4.2)-  (4 .5) .  
We remark that both sin A and cosA can be expressed rationally in terms of 

( 4 . 1 7 )  
s i n A = x 2 1 ,  s i n B = t 2 2 ,  s inC=;c23,  (4 .18)  
cosA=x31,  cosB=;c32, c o s C = t 3 3 .  (4.19) 

tanAI2, and similarly for the others. Let us set therefore 
tan A/2=x 11, tan B/2 = t 12, tan C/2 =I 13, 

We have then 
~ 3 3 3 .  ( l + t 1 3 2 ) = 2 * t 1 3 ,  12.3. ( 1 + ~ 1 3 ~ ) = 1 - ~ 1 3 ’ ,  (4.20) 
~ 3 2  * ( l+x12’)=2 * t 1 2 ,  x22 * ( l + x 1 2 ’ ) = 1 - . ~ 1 2 ~ ,  (4.21) 
x31 * ( 1 + t 1 l 2 ) = 2  * t l l ,  x21 * ( l + x l 1 2 ) = l - ~ l 1 2 ,  ( 4 . 2 2 )  
I 11 * x 12+1 11 * I 1 3 + t  12 * t 13=1. (4.23) 

Remark that (4.23) is the 1-elation between tanA/2, tanB/2,  tan C/2 because of 
condition ( 4 ,  1 ). 

Let u s  cbnsider e. g. the case ( 4 . 2 ) .  Let P I ,  ..., 1’4 be the pols corresponding 
to the equations in  (4.23) ar?d those in x21, ~ 2 2 ,  ~223 of (4.20)- ( 4 . 2 2 ) .  Form 
IIO‘J~ :!:e lagrangian pol 
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x21+x22+x23+s101 * Pl+...+x104 * P4 
and its derivatives w. r. t. I 11, I 12, s 13, x 21, x 22, x 23. Consider now the pol-set 
pS consisting of these derivatives, the pols Pi, and the pol 

with t 10 the extremal value to  be found. The  char-set CS is readily found to  be 
consisting of the following pols: 

~ 2 1 + ~ 2 2 + ~ 2 3 - ~ 1 0  

C1=4 * ~ 1 0 ~ - 2 7 ,  
C2=-9 * x l l f 2  * ~ 1 0 ,  
c 3 =  --I 12+x 11, 
C4=s13* x12+s13+s12 * xll -1 ,  etc. 

The  factors removed during the procedure as well as the non-trivial initials of 
the char-set are  

which are all>O. We thus find again Zero ( P S )  =Zero ( C S )  is composed of 
x 13, x 12+x 11, x ll*+l, s 12’+1, IC 132+1 

x 10=3 * sqr(3)/2, 
x 11=x 12=x 13=sqr (3)/3, 
xZl=x22=x23=sqr(3)/2. 

hequality ( 4 . 2 )  is thus again proved in a manner much simpler than the one given 
in Example 5. Similarly for ($.3)-(4.5).  

The inequalities (4.2)-(4.5) are  symmetric in the angles A, B, C and the 
final result is easy to guess. For a non-symmetric inequality of which the final 
answer is not easy to  foresee let us consider the following 

Example 8. For x 1, x 2 ,  x3>0 we have for a triangle A B C  

< =(I 2 * x 3/x l + x  3 * I l/x 2+x 1 * x 2/x 3)/2. ( 4 . 2 4 )  
Proof: Let PS be the polset consisting of pols Pi corresponding to equations 

in ( 4 . 2 0 )  - (4 .23)  not involving x 21, x 22, x 23 and the derivatives of the 
lagrangian pol 

L = x l  * ; c 3 1 + x 2 * ~ 3 2 + ~ 3 * . ~ 3 3 + ~ 1 0 1  * P l + . . . + x l 0 4  * P4 
w. r. t. x 11, x 12, x 13, x 31, x 32, x 33 as  well as  the pol 

where x 10 is the extremal value to be found.The char-set of PS is readily found 
with the first pol given by 

The factors removed during the procedure and the non-trivial initials of the 
char-set are a11>0. (4 .25)  gives thus the extremal value x 10 and ( 4 . 2 4 )  follows 
now easily. 

The inequalities in Examples 6-8 can all be proved ir. a quite simple manner 
as indicated in  the Remark. The fol!owing example is. however, one which cannot 
be Created in this way while GIX general methGd will furnish equally well the 
required solution. 

x 1  * c o s A + x 2  * c o s B + x 3  * c o s C  

~ 1 * ~ 3 1 + ~ 2 * ~ 3 2 + ~ 3 * ~ 3 3 - ~ 1 0  

C1=-2 * I 10 * ~3 * X Z  * x 1 + ~ 3 ’  * ~ 2 ’ + ~ 3 ’ *  I 1 ’ + ~ 2 ’  * ~ 1 ’ .  ( 4 . 2 5 )  
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Example 9. For a triangle ABC we have 

Proof. Let us set t a n A / Z = x l l ,  etc. as in (4.17>-(4.19> and set also 
cosA * c o s B + c o s A  * COSC+COSB * cosC<=3/4. 

s31  * s32+s31 * ~ 3 3 + s 3 2  * s33=s20. (4.26) 
with z 2 0  the extremal value to  be determined. We have now 5 pols Pi corres- 
ponding to the equations in (4.20) - (4.23) not involving I 21, x 22, 3: 23 and 
(4.26). Form the lagrangian pol 

The  chay-set of the polset pS formed by the 5 pols Pi and the derivatives of L 
w. r. t. I 33, I 32, I 31, t 20, I 13, s 12, s 11 is given by 

~ 2 0 + ~ 1 0 1  * P l + . . . - t ~ 1 0 5  * P5. 

C l = s  112-2, 
C 2 = x 1 2 - s 1 1 *  (XllZ-I), 
C3=x13  * ( s l 2 + ; t . l l ) + s l l  * x l Z - l ,  etc. 

The factors removed during the procedure are  
.X 13-1 12, x 13-1 11, 
s l 2 + s 1 1 ,  s!12+1, s122+1 

which are all>O except the first two. Now froms 
C 2 = C 2 = C 3 = 0  

with s l l = t a n A / 2 > 0  we get successively 
z 11 = + sqr (2), 
I 12=s 11 * (t 112-1)= +sqr (Z),  
I 13= ( 1 - x 11 * I 12 )/(x 11 + s 12)  = - sqr (2) /4  < 0. 

The last equation shows that the char-set is a contradictory set in the open 
domain defined by I 11 > O ,  I 12>0, I 13 > O ,  etc. It follows from our general 
formula (11) that 

Zero ( P S )  =Zero ( P S  1) +Zero LPS Z ) ,  
in which the polsets PS 1 and PS 2 are both PS enlarged by adjoining to it the 
removed factors s 13-2 12 and s 13-1 11 respectively. We may now treat each 
Psi in the same manner as  before and arrive finally a t  the conclusion as to be 
proved. 

5. Geometrical Inequalities 
We shall give in this section only a few examples of inequalities arising in 

geometry as  mere illustrations of our general method. 
Example 10. A triangle with given perimeter has a greatest area when it is 

an equilateral one. 
Proof: Let the sides of the triangle be a,,b,  c with perimeter p and the area 

be A. Set 
(5.1) U = I  11, b = s  12, C = I  13, p = x O ,  4 * H = 1 ~ 2 0 .  
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Then we have 
x20*=-Xi i4 -~124-~134+2  * z 1 2 2 t  x i ~ +  

+ 2  * ~ 1 3 ~  * s112+2 * x112 * ~ 1 2 ' .  (5.2) 
The problem is to find the maximum of x20 under the restricted condition (5.2). 
We may proceed by our general method which is actually the same as in the 
ordinary elementary calculus. For a problem of the same type but not a trivial 
one let us consider the following. 

Example 11. For a triangle of given perimeter in a hyperbolic plane the area 
is the greatest when it is an equilateral one. 

Proof: This problem seemingly similar to Example 10, is clearly much less 
simple to settle. First, we have to find an expression of the area A of the triangle 
in question in ternis of the three side-lengths, say a, b and c. Such an expression 
has already been found in an automatic manner by our general mechanization 
method of geometry, cf. [WU4,5]. In fact, let 

cash U = X  21, C O S ~  b = ~  22, cash C = S  23, (5.3a) 
cosA-l=x 20. (5.3b) 

Then we have 
x20 * ( t21+1)  * (x22+1) * ( t 2 3 + 1 )  

1 - 2  * ~ 2 1  * ~ 2 2  * t 2 3 + 1 - ; ~ 2 1 ~ - ~ 2 2 2 ~ - ~ 2 3 ~ .  (5.4) 
Next, because the perimeter 2 * s of the triangle is given, cosh a,  cosh b and cosh c 
are  no more independent. Therefore we have to determine the relations between 
them, which can also be done by our general mechanization method. To  this end 
let us set as  in preceding Examples 7-9 

(5.5) 
tanh s= t 0. (5.6) 
tanha/2=x 11, tanh b / Z = t  12, t a n h c / 2 = t  13, 

Then from t a n h ( a + b + c ) / 2 = t a n h s  we get 
t l l  * t 1 2 * t l 3 + z 1 1 + x 1 2 + x l 3  

= (z 12 * t 1 3 + t  11 * z 13+x 11 * t 12+1) * z0. (5.7) 

z 2 3  * ( 1 - ~ 1 3 ~ ) = 1 + ~ 1 3 ~ ,  (5.8) 
(5 .9)  

x21 * (1- xl12)=1+x11' .  (5.10) 
The problem is now to determine tlle extremal value uf area A, or rather I 20, 
under the restricted conditions (5.4),  (5.7) -~ (5.10) with corresponding pols 
P1 ,  ..., P5. The lagrangiai! pol will be thus 

The char-set C.5' of the polset PS consisting of !he pols Pi and the various 
derivatives of L, is found to be contradictory if we remove during the procedure 
the following factors: 

(5.11) 

For cosha, etc. we have also 

x 22 * ( I  - x  ! F ) = l + x  122, 

L - x 2 0 + ~ 1 0 1  * P 1 + . ' . + ~ 1 0 5  * P5.  

1' 1:3 ^c i 2 ,  z 13-.r 11, x 12-x 11, 
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~ 1 3 - 1 ,  ~ 1 2 - 1 ,  ~ 1 1 - I ,  x O - 1 ,  (5.12) 
~ 1 3 + 1 ,  1.12+1, ~ l l f l ,  10+1, (5.13) 
X l l *  Xl2-1, x20+2, (5.14) 
X 1 1 2  * I 0- 2 * I 11 +I 0, (5.15) 
In2  * I O-2 * X 1 2 + X  0. (5.16) 

It is clear that x20+2=cosA+l>O and all the other factors in (5.12)-(5.14) 
are non-zero since O <  t anhx  < 1 for  any x > O .  Moreover, for the triangle we have 
b + c > a s o t h a t s > a .  Whence t a n h s >  tanha or x l 1 2 * ~ O - 2 * ~ l l + ~ O > 0 .  
Similarly the factor in (5.16) is also>O. It follows therefore from our general 
formula (11) that 

Zero ( P S )  =Zero (PS  1) +Zero (PS2) +Zero (PS  3), 
in which the polsets Psi are  PS enlarged by adjoining to  it the three factors in 
(5.11) respectively. We may treat each of the Zero(PSi)  in turn and proceed in 
the same way as  in the preceding examples to  arrive a t  the final conclusion. 

Example 12 (Pedoe Inequality, cf. [PI). Let ABC andA‘B’C’ be twotriangles 
in the same plane with sides a, b,  c; a’,  b’, c’; and areas A, A’ respectively. Then 
we have always 

a ” *  (b’+C“’)”’‘’ (c2+a’-b2)+c12* (a2+b2-c’) 
>=16 * A’ * A.  (5.17) 

Moreover, the equality occurs only when the two triangles are similar. 
Proof: Let us set 

U = I  11, b = x  12, C = I  13, (5.18) 
a‘=x21, h’=x22, c’=123. (5.18)’ 

We are naturally restricted to  the open domain defined by I 11 > O ,  etc. Set 

Then we have 
4 * A‘=x30. (5.19) 

~ 3 0 ’ = - - . ~ 2 1 4 - - ~ 2 2 ’ - - s 2 3 4 + 2  * 121’: 122’ 
+ 2  * ~ 2 1 ‘  * x23‘+2 * ~ 2 2 ‘ :  ~ 2 3 ~ .  (5.20) 

Introduce also s 25 by setting 
~ 2 5  * ~ 3 0 = ~ 2 1 ~  * ( 1 1 2 ’ + ~ 1 3 ~ - ~  11’) 

+122* * ( x 1 3 2 + ~ 1 1 2 - ~ 1 2 2 )  
+~-23’*  ( ~ 1 1 ’ + . ~ 1 2 ~ - ~ 1 3 ’ ) .  (5.21) 

Let us  consider the triangle ABC as  already given while A’B’ C‘ is a variable one. 
Then the problem reduces to the determination of the iniiiimum value of s 2 5  in 
terms of known values a, b,  c under the restricted conditions (5.20) and (5.21). 
Lei PS bc the‘pol-set consisting of pols corresponding to (5.20) and (5.21) as  well 
as  the clerivatives of the lagrangian pol 

x25+s101 * Pl+1102 * P2 
w. r. t. I 30, s 25, s 23, .-z 22 and 5 21. Then we have to determine Zero ( 1 5 )  for 
the extremal value of ~ 2 5 .  Now the char-sei of PS is readily found to be consis- 
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ting of the pols below: 
Cl=-x22 * x l l + x 2 1 *  x12, 
C 2 = - ~ 2 3 ' *  ~ 1 1 ' + ~ 2 2 '  * ~ 1 1 ~ + ~ 2 1 '  * ~ 1 3 ' - ~ 2 1 '  * ~ 1 2 ' ,  
C3=-x252-xl14-x124-x134 

+2 * x 11' * x 12'+2 * x 11' * x 13'+2 x 12' * x 13', 
C 4 = ~ 3 0  * ( ~ 1 3 2 - ~ 1 2 2 - ~ 1 1 2 )  

- ~ 2 5  * (.~23'-~22'-t21'). 
The factors removed during the procedure and the nono-trivials of the char-set 
are 

x 101, .x 25, x 11, x 21, x 11 * x 22+x 12 * x 21, 
x l l * x 2 3 + x 1 3 * x 2 1  and x112+x122-x132. 

All these pols are non-zero except perhaps the last one which means that the 
given triangle is a right-angled one. Leaving this case aside we see from the 
expressions of the char-set that x25 will reach its extreme value 4 * A in case 
x 21, x 22, x 23 are proportional to L 11, x 12, I 13, or that the triangles ABC, 
A'B' C' are similar to each other, as asserted. The case of ABC being right- 
angled can also be treated in the same manner by adding at  the outset the 
restricted condition I 112+x 122=x 13'. 
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ON THE FOUNDATION OF ALGEBRAIC 
DIFFERENTIAL GEOMETRY 

Wu Wen-tsun 

(Institute of Systems Science, Academia Sinica, Beijing 100080, China) 

1. Introduction 

By algebraic differential geometry we shall mean one which is so related to the ordinary algebraic 
geometry just as what the metric, the affine, or the projective differential geometry is related to the 
metric, the affine, or the projective geometry. As in the ordinary case, the first step in laying down 
a foundation of algebraic differential geometry is to define the notion of algebraic differential variety 
and to prove an irreducible decomposition of such varieties. Such a foundation may be traced back 
to  the works of Riquier, Janet, Cartan, Thomas, and particularly Ritt, cf. the references at the end 
of the paper. We remark that, while the exposition of Ritt et a1 was highly analytical in character, 
we have removed all traces of analytical reasonings to render the theory a purely algebraic one. 
Furthermore, while Ritt et al were aimed at a study of differential equations, we are also interested 
in its geometrical aspects as well as its applications, particularly for the mechanical or automatic 
theorem proving of differential geometries, cf. e.g. [WVS-81. 

The main topic consists in the study of the structure of an algebraic differential variety defined 
as the zero set of a finite set differential polynomials. Various structure or decomposition formulas 
are given for such zero sets which correspond to the ordinary ones for ordinary polynomials and 
can be carried out by mere computations, cf.e.g.(WUl, 21. Such decompositions can then be 
applied to differential geometries and other related subjects which render the proving of differential 
geometrical theorems to mere computations. The applications are however not limited to  theorem 
proving as seen from [WU7] and the example given in the last section of the paper. 

2. Ordering Tuples 

Let m be a positive integer fixed throughout the present paper. 
DEF. An ordered sequence of m non-negative integers 

t = ( I l , h ~ ~ ~ , I r n )  

is called an ORDERING m-TUPLE or simply a TUPLE. I, is then called the i-th COORDINATE 
of t ,  to be denoted by COOR,(t) = I,. The sum of all these coordinates is called the ORDER of 
t ,  to be denoted by 

Ord(t)  = SCIM,COOR,(t). 

DEF. For any two tuples u and u,  we say u is a MULTIPLE of 21 or 21 is a DIVISOR of 

COOR,(u) 2 COOR,(u), a = 1 , 2 , . . . , m  . 

We write then u >> u or u << u. 

tuples T-  < Tot, we shall set Tot(T) = Totality of multiples of some t in T .  
Notation. The totality of ordering m-tuples will be denoted by Tot. For any finite set of 

1 
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DEF. For any two tuples u and u,  their PRODUCT uu = wu is the tuple with 

COORi(uv) = COORi(u) + COORi(v), i = 1,2;.. ,m. 

We introduce now an ordering among all the tuples according to the following 
DEF. For any two tuples u and u we say that u is HIGHER THAN w or w is LOWER THAN 

u if either (1) or (2) below holds true: 
(1) Ord(u) > Ord(u) .  
(2) Ord(u) = Ord(u) and there is some k > 0 and 5 m such that 

COORi(u) = COOR,(U), i > k ,  COORk(u) > C O O R ~ ( U ) .  

We write then: u > w or u > u. 
DEF. A finite set of tuples T is said to be PRIME if no t in T is a multiple of another t' in T .  
DEF. For any finite set of tuples T ,  the MAXIM of T ,  to be denoted by M a z ( T ) ,  is the tuple 

defined by 
M a z ( T )  = n-tuple(MAX1(T),...,MAXnr(T)), with 

M A X i ( T )  = Maz{COORi(t)/ t  in T}. 

DEF. For any finite set of tuples T ,  the COMPLETION of T ,  to be denoted by Comp(T), is 
the set of tuples defined by 

Comp(T) = {u /u << Maz(T)u  >> t for some t in T}. 

DEF. For any finite set of tuples T and any tuple t << M a z ( T ) ,  the integer i (1 5 i 5 m) is 
called a MULTIPLIER o f t  w.r.t T if 

COORi(t) = M A X i ( T ) .  

Otherwise it is called NON-MULTIPLIER of t w.r.t T .  In that case we have 

COORi(t) < M A X i ( T ) .  

Notation. For any finite set of tuples T and any tuple t ,  we shall set 

Mult ( t /T)  = set of all multipliers of t w.r.t T,  

Nult(t/T) = set of all non -multipliers of t w.r.t T. 

DEF. For t << M a z ( T ) ,  the set of all multiples tu o f t  with COO&(u) = 0 for i in 
Nult( t /T)  is called the TOTAL MULTIPLE SET o f t  w.r.t. T ,  to be denoted by 

T M U ( t / T )  = {tu/COORi(u) = 0 for i in Nul t ( t /T)} .  

THEOREM. Let T be a finite set of tuples. For any tuple u there is a unique tuple t << 
M a z ( T )  such that w = tu for some tuple u with 

u- < T M U ( t / T )  or COO&(u) = 0 for i- < Nult(t /T).  

Moreover, if u is in Tot(T),  then t is in Comp(T). 
Proof. t is determined as COORi(t) = Min(COORi(v),  M A X i ( T ) ) .  
TUPLE-DECOMPOSITION THEOREM. 

Tot(T) = S U M t T M U ( t / T ) ,  Tot = SUM,'TMU(t/T),  

in which SUM, runs over t in Comp(T), while SUM,' runs over t << Maz(T) .  Moreover, the sets 
T M U ( t / T )  in the sums are disjoint from each other. 

Proof. This follows directly from the preceding theorem. 
2 
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3. Differential Field and Derivatives 

DEF. An ordinary field of characteristic 0 will be called an ELEMENTARY FIELD (abbr. 
e-field). An ordinary integral domain containing the ring of integers as subring will be called an 
ELEMENTARY RING(abbr. e-ring). 

DEF. A DIFFERENTIAFIEL (abbr. d-field) DF resp. a DIFFERENTIAL RING (abbr. 
d-ring) D R  in INDEPENDENTS XI, .  . . , X ,  is an e-field resp. an e-ring with m further DIFFER- 
ENTIAL OPERATIONS Di, i = 1,2, .  ' ' ,  m verifying the following relations: 

DiX,  = 1 ,  DiXj = 0 for j <> a ,  
D i ( A l +  A2) = D,Al + DiA2, 
D i ( A l *  A2) = DiAl*  A2 + A1 * DiA2, 
Di(DjA) = Dj(DiA) ,  

for A ,  A l ,  A2 in DF resp. DR.  
Notation. DiDjA = D,(DjA),  DoA = A ,  for A in DF on DR. 
DEF. DERIVATIVES of A in a d-field DF are elements in DF of the form 

D E R t A  = D,... D m ,  ' .  D1, ' .  DlA,  

in which t = (11, ' .  , Im) is an ordering m-tuple, and each Di occurs 1, times, i = 1,2,. . . , m. 
DEF. A d-field DF' is called a d-SUB-FIELD of another d-field DF if DF' is a sub-field of DF 

in the ordinary sense and for any element A of DF', all derivatives of A are the same whether they 
are considered as elements of DF' or DF.  The d-field DF is then called a d-EXTENSION-FIELD 
(abbr. d-ext-field) of DF.  

DEF. The e-field resp. the e-ring consisting of same elements as a d-field D F  resp. a d-ring 
D R  with relations of differentiation neglected is said to ASSOCIATED to the d-field DF resp. the 
d-ring D R  and will be denoted by Elem(DF)  resp. Elem(DR).  

With a d-field DF given let Yl, Yz, . . , Y, be in some d-ext-field of DF which will be called 
INDETERMINATEs and will be fixed throughout the whole paper. 

DEF. For any derivative DERuY,  with u a tuple we call O ~ d ( u )  the ORDER of DERuY,. 
We now introduce among certain derivatives in two different types as follows. 
DEF. For any tuples u and u we say that DERuYi is HIGHER THAN DERuY,  or DERuY, 

is LOWER THAN DERuY,  if the following holds true: 
For type 1: Either u > u,  or u = u,  and i > j. 
For type 2: Either i > j ,  or i = j, and u > u. 

We write in either type 1 or type 2 

DERuY,  > DERuY, or DERuEj < DERuY,. 

4. Differential Polynomials and Their Ordering 

Throughout the whole paper we shall suppose fixed a d-field d - B F  which will be referred to  
as the d-BASIC FIELD. 

DEF. An ordinary polynomial (abbr. pol) in certain indeterminate with coefficient is an e-field 
will be called a ELEMENTAR POL (abbr. e-pol). 

DEF. d-pol) is an ordinary pol is Xi (i = 
1,2,  ' .  . , m),  Y ,  ( j  = 1,2, .  . , n) and their derivatives with coefficients in d - B F .  The DERIVA- 
TIVES DERiDP and DERtDP of D P  for any i = 1,2, ' .  . , m or tuple t are then defined in the 
usual manner. 

A DIFFERENTIAL POLYNOMIAL(abbr. 

DEF. A X-POL is a d-pol in which no Y,  and their derivatives occur. 
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DEF. Given a d-pol D P  let us consider it as an e-pol in all Xi(i = 1,2, .  . . , m),  % ( j  = 
1,2, ' .  , n)  and derivatives DERtY,  appearing in D P  as independent indeterminates, then this 
e-pol will be said to be ASSOCIATED to D P  and will be denoted by Elem(DP).  

DEF. Let D P  be d-pol which is not a X-pol. Then the highest derivative occuring in D P  is 
called the LEADING DERIVATIVE or simply the LEAD of DP.  The order of the lead is called the 
ORDER of D P  and the subscript of Y in the lead of D P  is called the CLASS of DP.  Consider D P  
as an ordinary pol in this lead the highest degree is called the DEGREE of D P .  The coefficient, 
as a d-pol, of the highest degree term in the lead of D P  is called the INITIAL of D P  and the form 
a partial derivative of D w.r.t. the lead of D P  the SEPARANT of DP.  

Notation. For a d-pol D P  which is not a X-pol we write 

Ld(DP)  = Lead ofDP, Ord(DP) = Order ofDP, 

C l s ( D P )  = Class ofDP, Deg(DP) = Degree ofDP, 

In i t (DP)  =Initial ofDP, Sep(DP) = Separant ofDP. 

Thus, for such a D P  with LD = Ld(DP) ,  d = Deg(DP),  I = Init(DP),  we may write D P  in the 
form 

D P  = I * L D  A d + lower degree terms inLD, 

with coefficient of each term a d-pol, which, if not a constant or a X-pol, will have its lead lower 
than LD.  

We now introduce a partial ordering among the d-pols in the following way. 
DEF. Let DP, DQ be non-zero d-pols. Then we say that DQ is HIGHER THAN DQ or DQ 

is LOWER THAN D P  and we write DP > DQ or DQ < D P  if one of the following cases (1)-(2) 
takes place: 

(1) DQ is a X-pol while D P  is not. 
(2) Both DP, DQ are not X-pols and either 

Ld(DP)  > Ld(DQ) or Ld(DP)  = Ld(DQ) & Deg(DP) > Deg(DQ). 

DEF. If DP, DQ are non-zero d-pols for which neither one is higher than the other, then we 
say that DP, DQ are INCOMPARABLE in ORDER and we write in this case 

D P  <=> DQ. 

DEF. A non-zero d-pol DQ is daid to be REDUCED w.r.t. a non-zero d-pol D P  if D P  is not 
a X-pol and no proper derivative of lead D L  of D P  occurs in DQ. Furthermore, either D L  does 
not occur in DQ, or D L  occurs in DQ with a degree < Deg(DP). 

The following proposition is clear from the very definitions: 
PROP. Any sequence of d-pls steadily decreasing in order 

DP1 > DP2 > ' ' 

is necessarily finite. 

sections may be either of type 1 or type 2. 
Remark. As in the case of derivatives, the partial ordering of d-pols and others in later 

5. d-Polset, d-Zero, and Algebraic Differential Variety 

DEF. A finite collection of non-zero e-pols resp. d-pols is called a e-POLSET resp. a d- 
POLSET. 

DEF. For a d-polset DPS the e-polset E P S  consisting of epols associated to  d-pols in DPS 
is said to  be ASSOCIATED to DPS and we write then E P S  = Elem(DPS) .  

4 

328 



DEF. For any e-polset E P S  we say that two e-pols EFl and EFz are e-CONGRUENT w.r.t. 
e - mod(EPS),  if there exist a finite number of e-pols EAi EPS and we write then EFl = EFz, 

such that 
EFl - EF2 = SUMtEA,  * EP,, 

in which EP, are e-pols in E P S .  

DPS and we write then DFl = DFz, 
such that 

DEF. For any d-polset D P S  we say that two e-pols DFI and DFz are d-CONGRUENT w.r.t. 
d - mod(DPS),  if there are a finite number of d-pols DAt, 

DFi - DFz = SUM,[SUMt,DAti * DERtDP,], 
in which SUM, runs over a finite set of indices i, SUMti  runs over a finite number of tuples t 
corresponding to rach i and DP, are all d-pols in DPS.  

Notat ion.  We write for simplicity OF1 = DFz e - mod(DPS) if 

EZem(DF1) = Elem(DF2) e - mod(Elem(DPS)).  

Below d - BF' ,  d - BF" will denote some d-ext-fields of d - B F .  
DEF. Z ' =  ( Z i , . . ' , Z A )  in (d-BF')Anisad-BF'-ZEROofad-polDPifDP(2') = O  

DEF. Z' = ( Z i  ' '  ' ,  ZA) in ( d  - BF')  A n  is a d - BF' - ZERO of a d-polset DPS if Z' is a 

Notat ion.  Let I D P S  be any set of d-pols which may be either finite or infinite, and DG be 

d-BF'-Zero(IDPS/DG) = Totality of d-BF'-zeros of I D P S  which are not d-BF'-zeros 

d - Zero(IDPS/DG) = Totality of d - BF' - zeros of I D P S  which are not d - BF' - zeros 

or DP = 0 for (Yl, . . . , Yn) = (Zi, . . . , ZA), 

d - BF' - zero of all d-pols in DPS.  

any d-pol, we shall write 

of DG. 

of DG for all d-ext-fields d - BF' of d - B F .  
d - BF' - Zero(IDPS) = d - BF' - Zero(IDPS/ l ) ,  
d - Zero(IDPS) = d - Zero(IDPS/ l ) ,  
d - Zero(DP) = d - Zero({DP})  for a d-polset{DP} consisting of a single non-zero pol 

Remark .  When d - BF' is evident from the context or unnecessary to specify, we write also 
DP.  

simply, if no confusion can arise, 
d - BF' - Zero(IDPS/DG) = d - Zero(IDPS/DG),  
d - BF' - Zero(IDPS) = d - Zero(IDPS).  

DEF. An ALGEBRAIC DIFFERENTIAL VARIETY (abbr. alg-d-var) over d - B F  as d- 
BASIC FIELD is the set d - Zero(DPS) for some d-polset DPS.  

DEF. An alg-d-var is said to  be d-IRREDUCIBLE if it is not the union of two different 
alg-d-vars different both from the given one. 

DEF. For 2' in ( d -  BF')  An and Z" in (d-BF")  An, we say that Z" is a SPECIALIZATION 
of 2' iffor any d-pol DP with Z' in d-Zero(DP) or DP(Z' )  = 0 ,  one has also 2'' in d-Zero(DP) 
or DP(2")  = 0. Notation: The totality of all specializations of 2' will be denoted by Spec(Z'). 

DEF. For any infinite set I D P S  of d-pols we say that a d-polset F B S  is a FINITE BASIS of 
I D P S  if for any d-pol D P  in I D P S ,  there is some positive integer p such that 

D P  A p  = 0 ,  d - mod(FBS). 

FINITE BASIS THEOREM. For any infinite set of d-pols I D P S  there is a d-polset F B S  
such that 

d - Zero(FBS) = d - Zero(IDPS).  

Proof. By the theorem of Ritt and Raudenbush (cf. [Rl ,  21) there is a finite F B S  of I D P S  

DEF. Any F B S  in the theorem is called a FINITE BASIS of the set IDPS.  
which may be served as the F B S  in the assertion. 

5 
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THEOREM. For any 2’ in ( d  - BF’) A n, Spec(2’) is a d-irreducible alg-d-var with 

Spec(2’) = d - Zero(FBS), 

in which F B S  is a finite hasis of the infinite set I D P S  of d-pols having Z’ as a d-zero. 
Proof. That Spec(Z’) is an alg-d-var follows from the evident equalities 

Spec(2’) = d - Zero(1DPS) and d - Zero(1DPS) = d - Zero(FBS) 

If d - Zero(DPS) is some alg-d-var contained in Sepc(2’) and contains the point Z‘, then any 
point 2“ in Sepc(Z’) will be a d-Zero of any d-pol in D P S  so that Spec(2’) coincides with 
d - Zero(DPS). 

This proves the d-irreducibility of Spec(2’). 
In later sections we shall prove the converse of the above theorem, viz. 
THEOREM. For any d-irreducible alg-d-var d - Zero(DPS) there is a 2’ in d - BF‘ A TZ for 

some d-ext-field d - BF‘ of d - B F  such that 

d - Zero(DPS) = Spec(2‘) 

and any alg-d-var is a finite union of such d-irreducible ones. 

6. d-Ascending-Set and d-Remainder 

DEF. A d-ASCENDING-SET (ahbr. d-asc-set) is either a single non-zero X-pol and is then 
said to be TRIVIAL or a finite sequence of non-zero d-pols none of which are X-pols 

( d  - ASC)DPi, DP,, ..., DP, 

such that 
DPl < 0% < ’ ’  < DP, 

with each DP, reduced w.r.t. any preceding D P j , j  < i. 
DEF. An IS-POWER-PRODUCT of a non-trivial d-asc-set (d  - ASC) is any power product 

of all these initials and separants of d-pols in (d - ASC). In particular, the product of all these 
initials and separants is called simply the IS-PRODUCT of ( d  - ASC). The IS-PRODUCT of a 
trivial d-asc-set is defined to be 1. 

DEF. A d-pol DR is said to he REDUCED w.r.t. a d-asc-set ( d  - ASC) if ( d  - ASC) is 
non-trivial and D R  is reduced w.r.t. each d-pol in ( d  - ASC). 

d-REMAINDER THEOREM. For any d-pol G and a non-trivial d asc-set ( d  - ASC), 
there is a unique IS-power-product J of ( d  - ASC) such that 

( R) J * DG = D R  d - mod(d - ASC) 

with D R  reduced w.r.t. ( d  - ASC). 
Proof. Cf. [Rl, 21. 
DEF. D R  in the above theorem is called the d-REMAINDER of DG w.r.t. ( d  - ASC) and 

the formula (R) is called the d-REMAINDER FORMULA of DG w.r.t. ( d  - ASC). 
Notation. 
We now introduce a partial ordering of d-ascending-sets in the following way. 
Given two non-trivial d-asc-sets 

D R  = d - R e m d r ( D G / ( d  - ASC)). 

(d-ASC-P)DP,,DPz,...DP,, (d-ASC-Q)DQl,DQz,...,DQ,, 

we shall say that ( d  - ASC - P )  is HIGHER THAN ( d  - ASC - Q) or (d - ASC - Q) is LOWER 
THAN (d  - ASC - P )  if either (a) or (b) below olds true: 2 
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(a) There is some k such that DP, <=> DQ2 for i < k while DPk > DQk. 
(b) T < s and DP, <=> DQt for all i 5 T .  

DEF. A trivial d-asc-set is said to be LOWER THAN any non-trivial one or a non-trivial 

DEF. Two d-asc-sets are said to be INCOMPARABLE in ORDER if neither one is higher 

Notation given two d-asc-sets ( d  - ASCl) and ( d  - ASCz), trivial or not, we shall write 

( d  - ASCl) > ( d  - ASCz), ( d  - ASCl) < ( d  - ASCz) or ( d  - ASCl) <=> ( d  - ASCz), 

according as whether ( d  - ASC1) is higher than, lower than, or incomparable to ( d  - ASCz). 

d-asc-set is HIGHER THAN any trivial one. 

thaan the other. 

LEMMA 1. Any sequence of d-asc-sets steadily decreasing in order 

( d  - ASCl) > ( d  - ASCz) > 

is necessarily finite. 
Proof. Similar to the ordinary case in [WUl]. 
DEF. A d-BASIC-SET (abbr. d-bas-set) of a d-polset DPS is any lowest d-asc-set contained 

From the very definition we have the following 
PROP. 
Rom this proposition we see that the following definition is legitimate: 
DEF. For two d-polsets DPSl and DPSz we say that LIPS1 is HIGHER THAN, LOWER 

THAN, or INCOMPARABLE in ORDER to DPSl accor-to a d-bas-set of DPSl is higher than, 
lower than, or incomparable in order to a d-bas-set DPSz or not. 

Notation. We write DPSl > DPSz or DPSz < DPSl, DPSl < DPSz or DPSz > DPSl,  
and DPSl <=> DPSz resp. according as DPSl is higher than, lower than, and incomparable to 
DPS2 resp. 

in DPS. 

Any two d-bas-sets of a d-polset are incomparable in order. 

From Lemma 1 we have also 
LEMMA 2. Any sequence of d-polsets steadily decreasing in order 

DPSi > DPSz > * ' .  

is necessarily finite. 

the order if a d-polset, viz. 

DBS. Then the d-polset enlarged by adjoining DR to DPS is lower than DPS. 

The condition (b) in the definition of ordering of d-asc-sets furnishes us a means of lowering 

LEMMA 3. Let DBS be a d-bas-set of a d-polset DPS and DR be a d-pol reduced w.r.t. 

7. Completion of a d-Asc-Set 

Given a non-trivial d-asc-set 

( d -  ASC)  DF1,. . . ,DFr, 

we shall separate derivatives of Yp for each p in various classes and then define the COMPLETION 
of ( d  - ASC)  in the following way. 

DEF. Derivatives of leads of DFi in (d  - ASC)  are called the PRINCIPAL DERIVATIVES 
of ( d  - ASC). 

DEF. Leads of DF, in (d  - ASC)  are called LEADING DERIVATIVES or PROPER PRIN- 
CIPAL DERIVATIVES-of (h - ASC) ,  while other principal derivatives are called IMPROPER 
PRINCIPAL DERIVATIVES of ( d  - ASC). 

DEF. Derivatives not principal ones are called PARAMETRIC DERIVATIVES of ( d  - ASC). 
Notation. For 1 5 p 5 n, 7 
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LTUP,(d - ASC)=Totality of tuples t such that DERtY, is the leading derivative of some 
DF, in (d - ASC). 

MAX,(d - ASC) = Maz(LTUP,(d - ASC), i.e. the tuple(Mp1, Mpz,. . . , Mp,) 

with Mp, = Maz{COOD,(t)/t in LTUP,(d - ASC)}.  
CTUP,(d - ASC) = CompLTUP,(d - ASC), i.e. totality of tuples u which are divisors of 

MAX,(d - ASC) and at the same time mulltiples of some tuples t in CTUP,(d - ASC). 
DEF. A principal derivative of the form DERtY,  with tuple t in CTUP,(d - ASC) is called 

a C-PRINCIPAL DERIVATIVE or C-DERIVATIVE of (d - ASC). 
The condition that each d-pol in (d-  ASC) reduced is w.r.t. any preceding ones implies readily 

the following 
PROP. The tuple set LTUP,(ASC) of a d-asc-set is a prime set. 
DEF. 

d - Remdr(DERvY,)/(d - ASC)) = DRv, w.r.t. (d - ASC) so that 
For tuple v in CTUP,(d - ASC)\LTUP,(d - ASC), let us form the d-remainder 

J * DERvY, = DRv, d - mod(d - ASC) 

in which J is an IS-power-product of (d - ASC). Then: 

P. 
DEF. The d-pol J * DERvY,  - DRv, is called a DERIVED d-POL of (d - ASC) rel. v and 

Let the set of all derived d-pols of (d - ASC) be arranged in increasing orders: 

DG1,DGz,...,DG, 

DEF. The sequence consisting of all DF, and DG, arranged in increasing orders (g = T + s): 
PROP. 

(d - ASC+)DHl, .  . ' ,  DH, is called the COMPLETION of (d - ASC). 
For the derived d-pol DHk = J * DERvY,  - DRv, rel. v, p as above we have 

~ ~ ( D H I , )  = DERVY,,I?Ut(Dffk) = Sep(DHk) = J,andDeg(DHk) = 1 

Remark. The initials and separants of DHk in (d - ASCf) are all IS-power-products of 
(d - ASC). 

8 .  Integrability Pols of a d-Asc-Set 

Let a non-trivial d-asc-set (d - ASC)DFl, DFz,. . . , DF, he given with its completion (d - 
ASC+)DHl, DHz,. " ,  DH,. to simplify the notation, we shall write simply LTUP, = LTUP,(d- 
ASC), etc. with d - ASC omitted. 

DEF. An M-DERIVATIVE D M  of (d - ASC) is a d-pol of the form D M  = DERuDHh, 
with Ld(DHh) = DERtY,, t- < CTUP,, COOR,(u) = 0 for i- < Nult(t/LTUP,) or u- < 
TMU(t/LTUP,). 

DEF. An M-PRODUCT of (d - ASC) is a product of at least one M-derivatives. 
DEF. An M-POL of (d- ASC) is a linear sum of M-products with coefficients d-pols in leading 

and parametric derivatives alone. 
Consider any d-pol D P  in some M-derivatives D M h  and other derivatives, parametric or 

principal, of (d - ASC). Suppose that among these principal derivatives there are improper ones 
of which the highest one is DERvY,. By tuple decomposition theorem we have then a unique 
product representation 

v = utwitht- < CTUP,\LTUP,,andCOOR,(u) = Ofori- < Nult(t/LTUP,), 

or 
u- < T M U  t LTUP,). $ /  
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Let DERtY,  be the lead of DHk. Then we have 

J1* DERuY, = DERuDHk + DU, 

in which Ji is an IS-power-product of (d  - ASC), and DU a d-pol in parametric derivatives and 
principal derivatives lower than DERuY,. Replacing DER.uYp in D P  by (DERuDHk + DU)/J1 
and clearing of fractions, we get a d-pol DPI = J1' * DP,  J i  being a power of J1, in such a form 
which involves besides the M-derivatives D M h  and the new one DM = DERuDHk,  eventually 
also parametric and principal derivatives. The latter ones are however all lower than DERuY,. 

DEF. The above procedure 

D P  DP1 = J i  * DPi. 

is called an M-REDUCTION of DP. 
In the d-pol D P  as before suppose that there is, besides the parametric derivatives, some 

leading derivatives not in the M-derivatives D M h  already present. Suppose that the highest 
such leading derivatives DERtY, for which the corresponding d-pol in (d  - ASC) is DF, has a 
degree d > Deg(DF,). In multiplying DP by some power Jz of the initial of D F  we can replace 
52 * (DERtY,  A d  in D P  by some linear sum of d-pols DF, in (d  - ASC) preceding DF, and some 
d-pol DPz in which DERtY, will appear with a degree < Deg(DF,). 

DEF. The above procedure 

D P  --t DPz = Jz * D P  

is called an I-REDUCTION of the d-pol DP.  

such that we can put it in the form 
It is clear that in applying successive M-and I-reductions we will arrive finally a t  a d-pol J *  D P  

J * DP = M ( D P )  + N ( D P )  

possessing the following properties: 
(1) J is a certain IS-power-product of (d  - ASC). 
(2) M ( D P )  is an M-pol. 
(3) N ( D P )  is a d-pol containing parametric and leading derivatives alone. 
(4) The leading derivatives in M ( D P )  and N ( D P )  not appearing already in M-derivatives have 

each a degree less than the degree of that derivative in the corresponding d-pol DF, of (d  - ASC). 
DEF. In the above formula the d-pols M ( D P )  and N ( D P )  are called resp. the M-PART and 

the N-PART or the NULL-PART of DP.  
Consider now any DHh of ( d  - ASC+) with lead DERtY, such that the tuple t has a non- 

multiplier a w.r.t. LTUP,, or i- < Nult(t/LTUP,). We have then DHh = I * (DERtY,) Ad+ 
lower degree terms, in which I = Jnit(DHh). Hence we get 

DE&DHh = S * DERuY, + DU, 

in which S = Sep(DHh), D E R u  = D E R J I E R t ,  and DU is a d-pol lower than DER,DH and its 
lead DERuY,. As LTUP, is a prime set we have 

u- < CTUP,\LTUP, 

and DERuY,  is the lead of some DHk in ( d  - ASC+). We have then 

DHk = I' * DERuY, i- DV, 

in which I' = Ini t (DHk) and DV is a d-pol lower than DHk and its lea 
that we have an identity of the form 

J1* DER,DHh 3 Jz * DHk + OW, 

DERuY,. llows 
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in which J1, Jz are IS-power-products of (d-ASC)  and DW is a d-pol lower than the lead DERuY, 
of both DHk and DER,DHh. 

DEF. The null-part of the above d-pol D W  = J1* DER,DHh - Jz*DHk, or what is the same, 
the null-part of J1* DER,DHh, is called the INTEGRABILITY POL of ( d -  A S C )  corresponding 
to DHh and the non-multiplier i .  

DEF. A non-trivial d-asc-set is said to  be PASSIVE if all its integrability pols are zero. 

9. Passivity Theorem 

Let a non-trivial d-asc-set 

( d  - ASC)DFl ,  DFz, . . .  , DF, 

be given as in Section 8. 
Below we shall denote by J1, J z ,  etc. any IS-power-product of d-pols in ( d  - A S C ) ,  by 

DM1, DMz,  etc. any M-derivative, and by M P l , M P z ,  etc. any M-pol. 
PASSIVITY THEOREM. If (d-ASC)  is passive, then all derivatives of d-pol in (d-ASC+) 

when multiplied be some IS-power-product of ( d  - A S C ) ,  have their null-parts zero. Moreover, 
any such derivative D E  can be written in the form 

J *  D E  = J ' *  D M + M P ,  

in which DM is an M-derivative having same lead as that of the given derivative D E ,  while M P  
is an M-pol in which all M-derivative are lower than D E .  

Proof. Consider any DHh of ( d  - ASC+) with lead DERtY,: 

Ld(DHh) = DERtY,,t- < CTUP,, 

and any derivative DER,DHh where 1 5 i 5 m. If 

i- < Nult(t/LTUP,), 

then the null-part of DER,DHh is an integrability-pol corresponding to DHh and i so that it is 
zero by passivity of ( d  - A S C ) .  If 

i- < Mult(t/LTUP,), 

then DER,DHh is itself an M-derivative so that its null-part is trivially zero. Hence the theorem 
is true for DHh and any DER,DHh with 1 5 i 5 m. 

Consider now any derivative DERwDHh with Ord(w) > 1 and suppose that the theorem has 
been proved for all derivatives of d-pols in ( d  - ASC+) which are lower than DERwDHh. 

Let us write the lead of DHh as in (1). If w- < TMU(t/LTUP,) ,  then DERwDHh is itself 
an M-derivative and there is nothing to prove. Suppose therefore the contrary. Then we can write 
DERw as DERvDER,  with 1 5 i < m, and i- < Nult(t/LTUP,). As ( d  - A S C )  is passive, we 
will have an identity of the form 

J1* DERiDHh = J ;  * DHk + MP1, ( 2 )  

in which DHk has the same lead as DBRiDHh, while MP1 is an M-pol with all its M-derivatives 
lower than D E R ,  DHh. 

Form now DERv of both sides of ( 2 ) ,  we get then an identity of the form 

J1* DERwDHh = J i  * DERvDHk + DERVMPl 

-SUMU(DAU * DERUDHh) - S U M X ( D B X  * DERXDHk),  (3) 10 
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in which 
Ord(u) < Ord(w) ,  Ord(z) < Ord(w) < O ~ d ( w )  

By induction hypothesis we have then 

J2 t DERvDHk = J i  * DM2 + MP2, 

JU t DERuDHh = Ju' t D M u  + M P u ,  

J X  t D E R x D H ~  = Jx' t D M x  + M P x .  

(4) 

(5) 

(6) 
Now each term in DERuMP,  has at least one factors of the form DERzDH, with 0 5 Ord(z) 5 
Ord(v) < Ord(w). Again by induction hypothesis we may write for Ord(z)  > 0 

J z  * D E R z D H j  = Jz' * D M z  + M P z ,  (7) 

in which D M z  has the same lead as DERzDH3,  while all M-derivatives in MP, are lower than 
D E R ,  D H3 

Substituting (4)-(7) into (3), we get an identity of the form 

J t DERwDHh = J' * DM i- M P ,  

in which DM has same lead as DERwDHh while all M-derivatives in M P  are lower than DERwDHh 
This proves the theorem for DERwDHh. 

theorem is proved by induction. 
As the theorem is already seen to be true for DHh and any DER,DHh for 1 5 i 5 m, the 

10. Irreducibility of d-Asc-Set 

Let it be given a non-trivial d-asc-set 

( d  - ASC)DFi,DFZ, . . . ,DF,  

and an e-asc-set or an ordinary asc-set (e - A S C ) E F i ,  EF2,. . . , EF,. 

first i d-pols in ( d  - A S C ) ,  viz. 
DEF. A PARTIAL d-ASC-SET of ( d  - A S C )  at STAGE i is the d-asc-set consisting of the 

( d  - ASCi)DFi,  DFz, . . ,  ,DFi. 

DEF. A PARTIAL e-ASC-SET if ( e  - A S C )  at STAGE i is the e-asc-set consisting of the 
first i e-pols in (e - A S C ) ,  viz. 

(e -ASC,)EF1,EFz , . . . ,EF,  

DEF. ( d  - A S C )  resp. (e - ASC) is d-IRREDUCIBLE resp. e-IRREDUCIBLE if for any 
1 5 i 5 T resp. 5 s there cannot exist any relation of the form 

DH, * DFt = DF,' * DF; d - mod(d - ASCj)  (Id) 

resp. 
EF, t EF, = EF; * EF," e - mod(e - ASCj) ,  (14  

in which j = z - 1, and for each z, DF; and DF:, resp. EF;, EF: are d-pols resp. e-pols having 
same lead as DF, resp. EF,, while DH, resp. EW, is some d-pol resp. e-pol with lower lead and 
reduced w.r.t. the partial d-asc-set d - ASC, resp. the partial e-asc-set e - ASC,. In the contrary 
case we say that ( d  - A S C )  resp. ( e  - A S C )  is d-REDUCIBLE resp. e-REDUCIBLE. 

11 
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To a d-asc-set ( d -  A S C )  over a d-basic field d - B F  let us associate an e-asc-set ( e  - A S C )  over 
the e-field e - B F  = Elem(d - B F )  with s = T and EF, = Elem(DF,) considered as e-pols in the 
indeterminates Et ,  = Elem(DERtY,) corresponding to  all derivatives DERtY,  for which those 
corresponding to the parametric derivatives of (d- A S C )  are to be considered as independent ones. 
Furthermore, the indeterminates are to be arranged in such an order that those corresponding the 
parametric derivatives come before those corresponding to the principal ones in arbitrary way, 
while the latter ones are in the same order as the original derivatives. 

DEF. The e-asc-set determine in the above manner is said to be ASSOCIATED to the d-asc-set 
(d - ASC) and will be denoted by Elem(d - A S C ) .  

IRREDUCIBILITY THEOREM. For a d-asc-set (d - ASC) over some d-field d - B F  to 
be d-irreducible over d - B F ,  it is necessary and sufficient that its associated e-asc-set (e - A S C )  
be e-irreducible over the associated e-field e - B F  = Elem(d - B F ) .  

Proof. (+) Suppose that ( e  - A S C )  is e-reducible so that for some i there is an identity of 
the form ( le)  or more explicitely, 

EH,  * EF, = EF: * EF," + SUMkEQk * EFk, Pe) '  

in which the summation is over k = 1 , 2 ,  ' .  , j where j = i - 1. This is a pure algebraic identity in 
the indeterminates X and all E t ,  = Elem(DERtY,) considered as independent ones. A fortiori 
we have therefore necessarily an identity of the form 

DHi * DF, = DF; * DF," + SUMkDQk * DFk, (Id)' 

in which DH,, DF,', DF,", and DQi are the d-pols with Elem ( D a )  = EH,,  etc., by recovering 
the various Et ,  to the original derivatives DERtY,. This proves that (d - A S C )  is d-reducible 
if the associated (e - A S C )  is e-reducible, or what is the same, ( e  - ASC) is e-irrecducible if 
(d - ASC) is d-irreducible. 

(+=) Suppose that (d -  ASC) is d-reducible is that for some i we have an identity of the form 
(Id) as described above. We may rewrite this identity in a more explicit form: 

DH, * DF, = DF;* DF," + SUMkSUMtk(DQtk * DERtDFk),  (2d) 

in which SUMtk is to be taken over some tuple-set T k  and SUMk over k = 1,2, ' .  , j  with j = i-1. 
Taking Elem at  both sides we get then an identity of the form 

EH,  * EF, = EF: * EF," + SUMkSUMtk(EQtk * EFtk) ,  (2e) 

in which E H ,  = Elem(DH,) ,  etc., while EFtk = Elem(DERtDFk).  

highest such one with lead DERuYe.  There is then some identity of the form 
Suppose that in the sums of (2d) there are DERtDFk with Ord(t)  > 0. Let DERuDFh be the 

DS * DERuYe = D A  t DERvDFh. ( 3 4  

Here D S  = Sep(DFh) and D A  is some d - p l  lower than DERuYe.  As (2e) is a pure algebraic 
identity in all X and Eue = Elem(DERuYe) ,  etc. which are to  be considered as independent inde- 
terminates, we can substitute in it Eue by E A I E S  with E A  = Elem(DA) and ES = Elem(DS) .  
Clearing of fractions and recovering to original form in derivatives we get then an identity still of 
the form (2d) but the term in the sum involving DERuDFh has been removed. Proceeding in 
the same manner we will finally remove all such terms and arrive at  an identity of the form (ld)'. 
Taking Elem at both sides we get then an identity of the form (le) with E H ,  = Elem(DH,), 
etc. which shows that ( e  - A S C )  is e-reducible. Hence ( e  - A S C )  is e-reducible if (d - ASC) is 
d-reducible or (d - ASC) is d-irreducible if ( e  - ASC) is e-irreducible. 

11. Formal Taylor Series and Generic Zero Theorem 
12 
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DEF.  A CONSTANT w.r.t. the d-basic field d - B F  is an element in a d-ext-field of d - B F  
for which all derivatives are zero. 

P R O P  1. The totality of constants w.r.t. d - B F  form an elementary ring under the natural 
arithmetical operations. 

Let 01, ' ' ,Om be a set of constants taken in some d-ext-field of d - BF which are independent 
altogether. 

Notation. For a tuple t = ( I 1 , . . . , I m ) ,  we write ( X  - 0) A t  = PRODi((X2 - 0i) A I z ) .  
t !  = PROD,(I,!). 

DEF.  A FORMAL TAYLOR SERIES at ORIGIN 0 = (01,  . . ,Om) is a formal power series 
of the form 

FTS = SUMt[(Ct / t ! )  * (X - 0) A t ] ,  

in which S U M t  is taken over all tuples t and Ct are all constants in some d-ext-field of d - B F .  

a tor ig inO= (01,...,0,) . 
DEF.  The constant CO corresponding to the tuple 0 = (0, ' ' ,0)  is called the VALUE of FTS 

Notation. CO = V a l ( F T S / O )  or simply Val(FTS) .  
P R O P  2. Under natural arithmetical operations and differentiations the totality of formal 

P R O P  3. Val is an oridinary ring morphism of the elementary ring Elern(RFTS) into the 

P R O P  4. The value of D E R t ( F T S )  at the origin 0 is Ct. 
Suppose now we are given a passive d-irreducible d-as-set 

taylor series at given origin 0 form a d-ring E F T S .  

elementary ring of constants. 

( d  - ASC)DFi ,  DFz, . . .  , DF, 

with its completion 
(d-ASC+)DH1,DHz, . . . ,DHg . 

Below we shall construct for each Y, a formal taylor series 

FTS,  = SUMt((Ct,/t!) * (X - 0)  A t ) ]  

such that F T S  = (FTS1, .  . ' ,  FTS,,) is a d-zero of (d  - ASC). For this purpose let us introduce 
first for simplifications the following 

Notation. For any d-pol D P  we shall denote by DP' the d-pol get from DP by substituting 
0, for X,, and Ct, for DERtY, whenever Ct, has already been determined. 

Construction of FTS,,p = 1, ". , n: 
Step 1. Take 0, and all Ct, corresponding to parametric derivatives DERtY, as INDEPEN- 

Step 2. For leading derivatives Ld(DF,) = DERuYh. 
Let KO be the e-ext-field of e - BF = Elem(d - B F )  get by adjoining to it all the constants 

in Step 1 as independent transcendental elements. 
Determine now inductively on i the constant Cuh as a zero of the e-pol DF,' in some e-ext-field 

of the e-field K,,j  = i - 1. By the irreducibility theorem DF,' is e-irreducible as an ordinary pol 
in the had of DF, on coefficients in K,. The e-ext-field of K j  which is an algebraic extension by 
adjoining Cuh by means of the equation 

DENT constants. 

DF,' = 0 (1) 

is defined inductively as K,. 
A consequence of this determination is the following 
P R O P  5.  For any non-zero d-pol D R  reduced w.r.t. ( d  - A S C )  we have (DR) '  <> 0. In 

Step 3. For C-derivative DERvY, not any leading derivative. 
We have in this case a derived d-pol DHk in ( d  - A%+) such that 

particular, for any IS-power-product J ,  we have J' <> 0. 

DHk = J * D 9 . Y .  - D R u ~ ,  
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in which J is an IS-power-product of (d  - ASC) and DRu, is the d-remainder of DERuY, w.r.t. 
( d  - ASC). In DRv, there appear only either parametric or leading derivatives so that (DRv,)' 
is well-defined by Step 1 and Step 2. Since J' <> 0 by PROP 5 we can determine Cv, by 

J' * Cup = (DRv,)', or (DHk)' = 0. (2) 

Step 4. Consider now"any improper principal derivative DERuY, which is not a C-derivative. 
By tuple-decomposition theorem there is a unique C-derivative DERtY,  such that u = ut with 
t -  < CTUP, and v- < TMU(t/LTUP,) .  

Let DERtY,  be the lead of DHk. Then we have an identity of the form 

J1* DERvY, = D E R u D H ~  + DU 

In the identity J1 is an IS-power-product of (d - ASC) and DU a d-pol in which all derivatives 
are either parametric ones or principal ones lower than DERuY,. 

Suppose that values have already been attributed to such principal derivative lower than 
DERvY,  so that DU' and J ;  have already been well-determined. As the value J i  cannot be 
zero in view of the PROP 5, we can determine a value Cv, by 

J: * Cup = DU' or (DERuDHk)' = 0. (3) 

This gives an inductive procedure of determining the values of improper principal derivatives 
which are not C-derivatives in terms of those of lower ones. The induction has to end at C- 
derivatives whose values have already been determined in Steps 1, 2 and 3. Consequently the 
values of any improper principal derivatives which are not C-derivatives will be determined. 

Notation. For any d-pol DP,  the formal taylor series get from D P  by substituting F T S ,  for 
Yp will be denoted by DP". 

Now for any derivative DERtY, we have from PROP 4 

Val(DERtY,)" = Val(DERtFTS,)  = Ct, = (DERtY,)'. 

From PROP 3 we get therefore 
PROP 6. For any d-pol we have Val(DP")  = DP'. 
DEF. A point GZ = (21,' ' ,  2,) with Z, in some d-ext-field of d - B F  is called a GENERIC 

d-ZERO of (d  - ASC)  if it is a d-Zero of all DHk in (d - A X + )  while it is not a d-zero af any 
non-zero d-pol reduced w.r.t. (d  - ASC). 

GENERIC ZERO THEOREM. If (d  - ASC) is passive and d-irreducible then the point 
GZ = (FTS1,.  . ' ,  FTS,) with FTS, constructed as above is generic d-zero of ( d  - ASC). 

Proof. That GZ is not d-zero of any non-zero d-pol reduced w.r.t. (d -  ASC) is shown already 
by PROP 5.  It is sufficient therefore to prove for any DHh of ( d  - ASC+) 

DH; = 0. (4) 

In turn we have to prove for any tuple u ,  

Val (DERu(DHh)")  or Val(DERuDHh)" = 0. 

By PROP 6, this is equivalent to 

Now according to the construction FTS, we see from (1)-(3) that (5) is true for any DERuDHh 
which is an M-derivative D M  : 

(DERuDHh)' = 0. (5) 

(DM) '  = 0. (6) 
It follows that for any M-pol M P  we should have 

(MP& = 0. (7) 
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By the passivity theorem we see that for any derivative DE of some DHh in ( d  - ASC+), we 
have an identity of the form 

in which J1, J z ,  are IS-power-products of ( d  - ASC), DM is an M-derivative, and M P  an M-pas. 
As ( J i )  <> 0 by PROP 5 we get from (6)-(8) (DE)' = 0,  or (5) for any derivative of DHh a 
theorem is thus proved. 

The following theorem shows the significance of generic. zero and will play an important role in 
the whole theory. 

GENERIC-ZERO-REMAINDER T H E O R E M .  Let ( d  - ASC) be a d-asc-set which is 
passive and d-irreducible and GZ be a generic d-zero. Then a d-pol DP will have GZ as its d-zero 
or DP(G2)  = 0 if and only if 

J i * D E = J z * D M + M P ,  (8) 

d - Remdr(DP/(d - ASC))  = 0 

Proof By the d-remainder theorem we have 

J * DP = d - Remdr(DP/(d - ASC))  d - mod(d - ASC) 

in which J is some IS-power-product. As the d-remainder, if nonzero, is reduced w.r.t.(d - ASC), 
the theorem follows directly from PROPS 5 and 6. 

12. d-Char-Set of a d-Polset 

For any d-polset DPS we form a certain particular d-asc-set DCS according to the following 
scheme: 

DPS = DPSo- < DPSl- < . . . -  < DPS, 
DBSo > D B S l >  I . .  DBS, = DCS (S) 

RISo RISl ' .  . RIS, = Empty 
In the above scheme (S) each DBS; is a d-bas-set of DPS,, each RISi is the d-polset consisting 

of all non-zero integrability pols of DBSi as well as all non-zero d-remainders of d-pols in DPSi - 
DBS, w.r.t. DBS,. Furthermore, each d-polset DPS, is the union of DPSj and RISj with 
j = i - 1. It is clear that the d-bas-sets DBSo > DBSl z . . . are steadily decreasing in order so 
that the construction should end in a finite number of steps and in certain stage s we should have 
RIS, =Empty.  

DEF. The corresponding d-bas-set DBS, = DCS in the above scheme is called a d- 
CHARACTERISTIC SET (abbr. d-char-set) of the given d-polset DPS. 

THEOREM(Wel1-Ordering Principle). Let I ,  and S; be the initials and separants of d-pols 
in DCS and J be the IS-product of DCS. Then 

d - Zero(DCS/J)- < d - Zero(DPS)- < d - Zero(DCS) (1) 

+SUM,d - Zero(DPS;). (11) 
d - Zero(DPS) = d - Zero(DCS/J) + SUM,d - Zero(DPS,') 

In these formulas each DPS; resp. DPS," is the enlarged d-polset obtained from DPS by adjoining 
to it I ,  resp. S,. 

Proof. From the construction we see that 

d - Zero(DPS) = d - Zero(DPSo) = . . . = d - Zero(DPS,). (1) 

R o m  the d-remainder formula and the emptiness of RIS, we have readily 

d - Zero(DPS,) = d - Zero(DBS,/J) + SUM,d - Zero(DPSs:) 
+SUMtd - ~ ~ ~ ~ ( D P S S Y ) ,  
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in which each DPSs: resp. DPSs: is the enlarged d-polset get from DPS,  by adjoining to it I, 
resp. S,. It is also clear from (1) that for each i we have 

d - ZeTO(DPSS:) = d - ZeTO(DPS:), 

d - ZeTO(DPSSy) = d - ZeTO(DPS:). 

(3)' 

(3)" 

From (l), (Z), (3)' and (3)" we get then (11). The formula (I) is also immediate from the construc- 
tion. 

PROP. Each d-polset DPS: or DPS," in (11) is lower than the given d-polset D P S  in the 
partial ordering of d-polsets. 

Proof. DBS, we see that DBSs: and DBSsr are 
both lower than DBS,. As DBSo > DBS, we have DBSo > DBSs: and DBSsY. The implie 
D P S  > DPS,  and > DPSF as to be proved. 

As both I ,  and S, are reduced w.r.t. 

13. Zero Decomposition or Zero-Structure Theorems 

Given a d-polset D P S  let us form a d-char-set DCS according to  the scheme (S). In the formula 
(11) the d-polset DCS is a certain passive d-asc-set. For the other d-polsets DPS: or DPS," we 
may treat in the same manner as for DPS so that each d - ZeTO(DPS:) or d - ZeTO(DPS:') will 
be further splitted into a sum of d-zero-set a (11). The same procedure can be carried on further 
so far some d-polset not already in the form of passive d-asc-set still appear in the sum. Since all 
DPS: and DPS; are lower than DPS the procedure has to end in a finite number of steps and 
so we get finally the following 

ZERO DECOMPOSITION THEOREM (Weak Form). There is an algorithmic procedure 
which permits to give for any d-polset DPS a decomposition of the following form: 

d - ZeTO(DPS) = sUMkd - ZeTO(DCSk/Jk). (111) 

In the formula each Desk is a passive d-asc-set and Jk is the IS-product of DCSk. 
Suppose that a d-asc-set 

( A S C F )  D F I , ' . . , D F ,  

is d-reducible a t  a certain stage i so that we have a relation of the form 

DHi * DF, = DF,' * DF," d - mod(ASCF) ,  

in which DF,', DF," are d-pols having same lead as DFi while DHi is a d-pol with lower lead and 
is reduced w.r.t. the partial d-asc-set ( j  = i - 1) 

(ASCFj)  DFi , . . . ,DF,  . 

Let DFS' and DFS" be the d-polsets obtained from ( A S C F )  in replacing DF, by DF; and 
DF," respectively and D F S  the enlarged d-pols obtained from ( A S C F )  by adjoining to it the d-pol 
DH,. Then have for any d-pol G 

d - Zero(ASCF/G) = d - Zero(DFS'/DH, * G )  
+d - Zero(DFS"/DH, * G )  + d - Zero(DFS/G) 

We remark that the d-polsets DFS' ,DFS",  and DFS are all lower than the original d-polset 
( A S C F ) .  

Applying now to each of DFS', DFS", and DFS the Zero Decomposition Theorem we would 
get then a decomposition of the form 

d - Zero(ASCF/G) = SUM,d - Zero(ASC,/G, * J 3 )  
16 
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In the formula each ASC, is a passive d-asc-set lower than ASCF, each 5, is the IS-product of 
ASC,, and each G, is some d-pol determined in the procedure. 

Consider now any DCSk in (111). If it is d-reducible then we can decompose d-Zero(DCSk/Jk) 
into the sum of d-zero-sets for which the d-asc-sets are lower than DCSk. We can continue this 
procedure so far there are still d-zero-sets of d-reducible d-asc-sets appearing in the sum. The 
procedure has to end in a finite number of steps so that we get the following 

ZERO DECOMPOSITION THEOREM (Strong Form). There is an algorithmic proce- 
dure which permits to give for any d-polset DPS a decomposition of the form 

d - ZeTO(DPS) = SUM& - Zero(IRRk/Jk f Gk), (IV) 

in which each IRRk is a d-irreducible passive d-asc-set and J k  is the ID-product of IRRk. 

turn determined by IRRk, we shall denote it by Var(1RRk): 

Spec(GZk) = Var(1RRk). 

Remark that in (IV) we may suppose without loss of generality that GZk is not a d-zero of Gk, 
since otherwise the set d - Zero(IRRk/Gk * J k )  will be empty and can be removed from the sum. 
With this understood we have then the further 

VARIETY DECOMPOSITION THEOREM. For any d-polset DPS we have a decom- 
position of the form 

in which Var(1RRk) is the alg-d-var determined as Spec(GZk) of certain d-irreducible passive 
d-asc-set IRRk. 

Proof. Let us consider the decomposition (IV). As each d-zero of IRRk for which J k  <> 0 is 
in Var(1RRk) it is clear that 

Let the generic d-zero of IRRk be Gzk. As Spec(GZk) is a d-irreducible alg-d-var which is in 

d - Zero(DPS) = SUkfkVar(IRRk), (V) 

d - Zero(DPS)- < SUMkVar(IRRk). 

Consider now any d-zero Z in some Var(IRRk) so that Z is a specialization of GZk. As GZk 
is not a d-zero of Gk and Jk we see from (IV) that Gzk is a d-zero of DPS,  or a d-zero of all 
d-pols in DPS. The point Z ,  being a specialization of GZk, is then also a d-zero of all d-pols in 
D P S ,  or a d-zero of DPS. It follows that 

SUMkVaT(IRRk)- < d - Zero(DPS) 

too and hence (V) is proved. 
Combining the last two theorems we see that (IV) can be improved to the following form: 

d - ZeTO(DPS) = SUMkd - ZeTO(lRRk/Jk). W' 
Remark. For each k let FBSk be a finite basis of the d-polset IDPSk consisting of d-pols 

having GZk as a d-zero. Then VaT(lRRh)- < VaT(IRRk) if and Only if GZh iS in Var(1RRk) 
or Remdr(DF/IRRh) = 0 for any d-pol DF in FBSk. This permits to remove any redundant 
components in (V) to make the decomposition uncontractable and hence also unique. In particular, 
this implies as a colorrary the theorem stated in the end of Section 5. 

14. Basic Principles of Mechanical Theorem Proving 

DEF. A THEOREM is consisting of a d-polset called HYPOTHESIS SET (abbr. hyp-set) 

DEF. Let the hyp-set and the conc-pol of a theorem T be resp. H Y P  and CONC. Then we 
and a d-pol called CONCLUSION d-pol (abbr. conc-pol). 

say: 17 
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(1) T is TRUE if d - Zero(HYP)- < d - Zero(C0NC). 
(2) T is GENERICALLY TRUE under NON-DEGENERACY CONDITIONS DEGi <> 0 for 

DEGENERACY d-POLS (abbr. deg-pol) DEG, if 

d - Zero(HYP/PRODiDEG,)- < d - Zero(C0NC). 

(3) T is TRUE on a part PADV of an alg-d-var d - Zero(HYP) if 

PADV- < d - Zero(C0NC). 

Remark. A d-zero in d - Zero(HYP) is nothing but a geometrical configuration verifying 
the hypothesis of the theorem T and d - Zero(HYP) is just the alg-d-var of all such geometrical 
configurations. 

For the hyp-set H Y P  of a theorem T let us form a d-char-set D C S  according to scheme (S). 
Let the initials and separants of d-pols in D C S  be I ,  and Si resp. and J the IS-product of DCS. 
Let HYP,' and HYPY be the enlarged d-polsets obtained from H Y P  by adjoining to it I, and S, 
resp. Then by the Well-ordering Principle we have: 

d - Zero(HYP) = d - Zero(DCS/J) + SUM,d - Zero(HYP:) 
+SUMid - Zero(HYP,"). 

From now the d-remainder DR of the conc-pol CONC of theorem T w.r.t. D C S  : DR = d - 
Remdr(CONC/DCS). The d-remainder formula gives then 

J' * CONC = DR d - mod(DCS), (1) 

in which J' is an IS-power-product of DCS. Moreover, we have 

d - Zero(DCS/J)- < d - Zero(HYP)- < d - Zero(DCS). (2) 

Suppose that DR = 0 as a d-pol. Then we see from (1-2) that H Y P  = 0 would imply that 
CONC = 0 so far J' <> 0 or no I ,  or S, is 0 i.e. 

d - Zero(HYP/PROD,(Ii * S{)- < d - Zero(C0NC). (3) 

The theorem T is thus seen to be generically true under the non-degeneracy conditions 

I, <> 0, s, <> 0. (4) 

If the passive d-asc-set D C S  is furthermore d-irreducible, then the d-generic zero GZ of D C S  is a 
d-zero of DCS for which no I, or S, is 0 and so by (2) it is also a d-zero of H Y P .  If the theorem 
T is generically true under the non-degeneracy condition (4) so that in particular GZ is a d-zero 
of CONC by (3),  then it follows from (1) that we have necessarily DR = 0 as a d-pol. Hence we 
have: 

PRINCIPLE of MECHANICAL THEOREM PROVING or MTP-PRINCIPLE I 
(Weak Form). If the d-remainder DR of CONC w.r.t. d-char-set D C S  of H Y P  is 0, then the 
theorem T with hyp-set H Y P  and conc-pol CONC is generically true under the non-degeneracy 
conditions (4) for which I, and S, are the initials and separants of d-pols in D C S  respectively. 
Moreover, if the d-char-set DCS is d-irreducible the above condition DR = i also necessary one 
for the theorem T to be generically true under the above non-degeneracy conditions. 

Let us now apply the zero-decomposition theorem (weak form) (111) to the hyp-set H Y P  so 
that 

d - Zero(HYP) = sUMkd - zeTo(DCsk/Jk), 

in which Desk are passive d-asc-sets and J k  is the IS-product of Desk. Let DRk be the d- 
remainder of C O N C  w.r.t. Desk. Then we have the following 

18 
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M T P - P R I N C I P L E  I'(Genera1 Weak Form). If DRk = 0, then the theorem T is true on the 
part d - Zero(DCSk/Jk) of the whole variety of geometrical configurations verifying the hyp-set 
H Y P .  The condition DRk = 0 is also necessary if DCSk is d-irreducible. 

More generally, let us apply the variety-decomposition theorem to H Y P  so that we have 

d - Zero(HYP)  = SUMkVar(IR&), 

in which IRRk are all d-irreducible passive d-asc-sets. Then we have the following: 
For a theorem T with hypset H Y P  and conc-pol 

CONC to be true on the d-irreducible component Var(IRRk) of the variety d - Zero(HYP) ,  it 
is necessary and sufficient that the d-remainder of CONC w.r.t. IRRk is 0: 

d - Remdr(CONC/IRRk) = 0. 

M T P - P R I N C I P L E  II(Strong Form). 

15. An Example 

The following example is taken from the works of Pommaret (cf. [Pl, 21) which will serve as 
an illustration of our general method. For simplicity of notations we shall denote e.g. by D,Y the 
derivative DERt for the tuple t = (qj) with m = 2 .  

Ex. Let Y, 2 be functions of independent variables X I ,  XZ connectes by the relations DPl = 
0, DP2 = 0 where 

D P 1 = 2 * Y + D l O Z + Z A 2 ,  
DPz = 2 * D20Y f 4  * Y * Z A  2 + 8 * Y A 2 - 4 * Z * DlOY - DOlZ. 

Then we have DQ1 = 0 and DQ2 = 0 where 

DQi = D30Y i- DOlY + 12 * Y * DlOY, 
DQ2 = 0 3 0 2  + DO12 - 6 * Z A 2 * DlOZ 

These two equations correspond to the usual as well as a modified KdV equation respectively. 

{DPl ,  DPz} with 
In order to prove DQI = 0 let us set Y = Y1,Z = YZ so that we have a d-polset D P S  = 

DPi = D10Y2 + 2 * Y1 + Y2 A 2 ,  
DPz = -DOlYz + 4 * Yi * Y2 A 2 - 4 * DlOY1 * Yz + 2 * D20Y1 i- 8 * Y1 A 2. 

Let us take the second type of ordering so that 

Ld(DP1) = DlOY2, Ld(DP2) = DOlY2. 

The d-bas-set DBSo of DPSo = DPS is then {DB1,DBz} with DB1 = LIP1 and DB2 = DPz. 
The completion of DBSo is consisting of 3 d-pols, viz. DH1 = DB1, DHz = DBz and a further 
one which one readily finds to be 

DH3 = DllY2 + 8 * Yi * Y2 A 3 - 8 * DlOYl* Yz A 2 + 16 * YI A 2 * Yz 
+4 * D20Y1 * Yz - 24 * Y1 * DlOY1 - 2 * D3oY1. 

The integrability d-pol corresponding to DH1 and non-multiplier X2 is found to be 

IPi = DOlYi + D3oYi + 12 * Yi * DlOYi. 

On the other hand the integrability d-pol corresponding to DH2 and non-multiplier X I  is readily 
found to be 0. The d-polset DPSl is thus consisting of the three d-pols DP1, DPz and 1 4 .  The d- 
bas-set DBSl is clearly the sequence IPi ,DPl ,  48 which is both passive and d-irreducible and is 
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thus the final d-char-set. As the initials and separants are all non-zero, the alg-d-var d-Zero(DPS) 
is d-irreducible, being consisting of a single component of which a generic d-zero may be found from 
DBSl by computations. In particular 1P1 is the same as DQ1 so that  DQ1 = 0 is automatically 
proved. 

In order t o  prove DQz = 0 let us set Y = Yz, Z = Yl so that 

DPi = 2 * Yz + DlOYi + Yi A 2, 
DPz = 2 * D20Yz - 4 * Yi* DlOYz + 8 *  Yz A 2 + 4 *  Y1 A 2 * Yz - DOlY1 

The d-bas-set DSSo of DPSo = DPS = { D P I , D P z }  is then consisting of the single d-pol DB1 = 
DP1 with lead Y2, the ordering being still of type 2. The d-remainder of DPz is readily found 
to  be D R  = D - Remdr(DPz/DBSo) = -D30Y1 - DOIYl + 6 * Yl A 2 * DlOY1 which coincides 
with -DQz. This proves DQz = 0. Morover, the final d-char-set is consisting of the two d-pols 
D R  and DP1 which shows again that  the alg-d-var d - Zero(DPS) is d-irreducible with a single 
component whose generic d-zero may be computed by means of the above d-char-set. 
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On the Generic Zero and Chow Basis of an 
Irreducible Ascending Set 

W u  WEN-TSUN 
(Institute of Systems Science, Academia Sinica) 

In t roduct ion .  

For both equations-solving and theorem-proving, the two main topics of study 
of our mptheniatics mechanization, there are two methods of approach to  follow, 
viz. the zero-srt approach and the ideal-theoretical approach. While the latter one 
dominates the present-day mathematics, we have proposed instead the former one 
and has sliown it!: advantages in certain instances. One of such instances is fur- 
nishrd by the theory of elimination, as shown in [WUG] 2nd some other papers in 
this Preyihts.  More evident is its role in mechanical geoimtry theorem procing, to  
be abbreviated a5 MTP in what fo!loc.s. Along with the zero-set approach and the 
ideal-theoretical approach (mainly through the use of Groebner Basis, cf. e.g. [BU!, 
[KP], and [K-S]), Chou in [CHI has given a comparison through a large scale expel- 
iment. In the last section of this paper we show that even in the intricate reducible 
case of MTP, the zero-set approach is still very effective while other approaches may 
become dificult to deal with. 

We remark that, for the algebraic geonietry as an example, the more intuitive 
and more direct zero-set approach occured much earlier than the ideal-theoretical 
one. In fact, the classical treatise of Van der Waerden on algebraic geometry, viz. 
[VdW], w s  written in a m.anncr with no mention of ideals a t  all. The whole theorj. 
was b a e d  on t,hc two central concepts: GENERIC POINT and SPECIALIZATION. 
011ly in 1a.ter times algebraic geom.etry becomes morn and more ideal-thcoretical in 
ChSTXtCi. The notions of generic points and specialization gradually disappeared. 
The only trace of zero-set approach which remains seen= to bc the very definition 
of an algebraic variety a5 the zero-set of a sct of polynomials. It goes without saying 
that the ideal.-theoret.ical approach is a method which has been proved to  be vcry 
powcrfd and very fruitful. However, there are st.ill interests in renewing the rather 
old-fashioned zero-set approacli of algebraic geometry. For example, the author has 
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introduced a simple and computational definition of Chern Classes of an irreducible 
algebraic variety with arbitrary singularities via its generic point, cf. [WU8,9]. As a 
consequence one may prove and even discover in a simple computational way a lot of 
inequalities of such varieties, including the Miyaoka-Yau inequalities in particular. 
Cf. [WUS] and a series of papers of Shi beginning with [SHl]. 

In the present paper we shall base our method of mathematics mechanization 
on the rather naive notion of zero-set. We gather thereby results which have been 
scattered in the diverse papers of the author. Briefly, an irreducible algebraic va- 
riety (afine or projective) is completely determined by its generic point and such 
a generic point may be describled in the explicit form of what we have called an 
IRREDUCIBLE ASC-SET. From such an explicit form we can form, by means of 
the so-called Chow Form, a basis of the prime ideal associated to the corresponding 
algebraic variety in question. Such a basis will then be called a CHOW BASIS of 
the irreducible asc-set. The f i s t  3 sections of this paper give a summary of the 
interrelations of the concepts involved. The 4 t h  section gathers together the vari- 
ous Decomposition Theorems on which are based our methods of equations-solving 
and also the thereby deduced various Principles on which are based our methods of 
MTP. The last two sections give some examples of MTP to illustrate our methods 
in view of jetting some lights on our zero-set approach in comparison with other 
ideal-theoretical approaches. Cf. in particular [WU4,7]. 

8 1. Generic Poin t  of a n  I r reducib le  Ascending Set. 

Let K be a basic field of characteristic 0 and X I ,  ..., X, be a set of indetermi- 
nates fixed throughout the whole paper. Moreover, E K ,  K', and K" will denote 
throughout some extension fields of I(. Let us introduce a further indeterminate 
Xo. For any point X' = ( X i ,  ..., XL) in the aEne n-space E K ( n )  with Xi' in some 
extension field E K  of K the point (1 : X i  : ... : XA) in the corresponding projective 
n-space P E K ( n )  of homqgmeous coordinates (Xo : X I  : ... : X,) will be denoted 
by P r ( X ' ) .  Conversely, a point X' = (XA : X i  : ... : X k )  in P E K ( n )  will be said to 
be AT INFINITY if Xk = 0, and if X; # 0, then the point in E K ( n )  represented 
by (Xi/XA ,...,X;/Xk) will be denoted by A f ( X ' ) .  

By a POL we shall mean a polynomial in K [ X 1 ,  ..., X,] unless otherwise stated. 
Then a homogeneous polynomial in K [ X o , X 1 ,  ..., X,] will be simply called an H- 
POL. The If-pol in XOIX1, ... ,Xn obtained from a pol F in making it a homo- 
geneous one by means of adjoining Xo in a natural way will then be denoted by 
P r ( F ) .  Conversely, the pol obtained from an If-pol F by setting xo to 0 will be 
denoted by A f ( F ) .  
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Consider now the case for which EK is a F I N I T E  extension field of K. For 
the point X' of EK(n)  as above let U1, ..., Ud be those Xi' which are altogether 
transcendental over K and arranged in the same order as in (Xl, ..., X n ) .  Denote 
the extension field of K in adjoining U = (U1, ..., Ud)  to K by KO. The Xi other 
than Uj are all algebraic over KO, which, in the same order as in ( X i  ..., XL), will 
be renamed as (Yi, ..., YL), with e + d = n. 

The element Y:, being algebraic over KO,  will satisfy an equation of the form 
F1 = 0, where 

FI = I1 t Ypl  + lower degree terms in Y1, 

is a polynomial in K[U, Y,], irreducible over KO. Let K1 be the algebraic extension 
field of KO by adjoining Yi. Then Yl is algebraic over K1 and satisfies an equation 
of the form Fi = 0, where Fi is obtained from a polynomial 

Fz = Iz * YFa + lower degree terms in Yz 

of K[U,Yl,Yz] in replacing Y1 by Y{ and Fi is irreducible over K1. We adjoin now 
Yi to K L  to  get a field Kz. The procedure can be continued and finally we get an 
equation F: = 0 where F: is obtained from a polynomial 

Fe = I ,  * Yp' + lower degree terms in Ye 

of K[U,Y:, ..., Yi- l ]  in replacing Y1, ..., Ye-l by Y{ ,..., YiPl resp., and F: is irre- 
ducible over Ke-l  = Ko(Y{, ..., YL-J. The final algebraic extension field obtained 
from K,-l by adjoining Y i  will be denoted by K,. It is a finite extension field of K 
and is intrinsically determined by X' up to a field isomorphism preserving KO. 

Now the sequence of pols 

forms what we have called an IRREDUCIBLE ASCENDING SET or IRREDU- 
CIBLE ASC-SET of pols in X I ,  ..., X,, over K. The above thus shows how an ir- 
reducible asc-set can be deduced from a point in an a f f ie  n-space over a finite 
extension field of K. 

Conversely, let an irreducible asc-set of the form ( IPR)  as above be given. 
Rename the principal variables of the pols Pi by Yi and the other X as U1, ..., Ud 
in the same order as in XI, ..., X n .  Then F1 is a polynomial of K[U, Y1I which is 
irreducible in KO = K ( U ) .  Let Y: be a zero of PI in a certain extension field of KO 
and set K1 = Ko(Y[) as the algebraic extension field by adjoining Y: to KO. Then 
Fz is a polynomial of K[U,YI,Yz] for which Fi obtained from Fz in replacing Y1 

by Y: is irreducible in K1. Take any root Yl of Fi=O in a certain extension field 
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of K1. Adjoin Y; to K1 we get then a field K2. The procedure can be continued 
and we get a point X’ = Perm(U1, ..., r r d ,  Y;, ..., YJ) with yi’ in some extension field 
E K  of K where Perm denotes the permutation which brings (U1, ..., ud, Yl, ..., Ye) 
back to ( X I ,  ..., X,,). It is clear that the irreducible asc-set which one would get 
from XI is no other but the given (IRR) except some unimportant factors for each 
Fi. The relation between an irreducible asc-set ( IRR)  and the point X’ as above 
is a reciprocal one and we shall call the point X’ thus determined from ( IRR)  a 
GENERIC POINT of ( IRR) .  

Let (TRR) be now an irreducible sscending set as given above and 

GZ = (Z i ,Z ; ,  ..., 2;) 

be a generic point of ( IRR) .  The importance of the notion of a generic point may 
then be seen from the following theoienls. 

Theorem 1.1. The generic zero CZ of an irreducible asc-set (IRR) is not a 
zero of any pol P reduced w.r.t. (IRR). 

Tbeoi-em 1.2. The generic zero GZ of an irreducible asc-set ( IRR) will be a 
zero of a pol P if and only if the remainder R of P w.r.t. ( IRR)  is 0. 

The Theorem 1.1 follows directly from the construction of GZ.  The Theorem 
1.2 follows then from the remainder formula of P, viz. 

I P  * P = SUMi Ai * Fi i- R ,  

in which R is the remainder and 11’ is a certain power product of initials of po!s Fi 
in (IRR). In fact, as all such initials are reduced wi.t .  (fRR), GZ is not a zero of 
IP. As GZ is a zero of all Fi, so from the remainder formula we see that GZ will 
be a zero of P if and only if it is a zero of R ,  as to be proved. 

The set of all pols having GZ as a zero forms clearly a prime ideal in {,he 
ring K [ X 1 ,  ..., X,,]. This ideal will englobe all the pols Fi and hence all the I k a r  
combinations of Fi with arbitrary pols as coeficlentu. Rowever, in gencral this ideal 
will englobe much more pols than these mere combinat.Ions, :.s we shall see in later 
sections. To avoid confusion with the ideal generated by II;. which is ilsiially deno?.ed 
as ( F l ,  ..., Fe) we shall denate the ideal of pcls hwing CZ ES zero Ej I?eai[!>Z] 
or I,.lcrrl[T??R]. On the ct,lier hand the u s d  ideal ( E ; ,  ..., F,) will be d<:noti>.l ‘;y 
Ideal(I.???Z). 

The ideal I d e d [ I f L ? ]  is crjn. Lie of ail infiliiby of ~ O ! S  wXch h ; : ~ ,  hi>x,j;r: r x ,  
by tlie finite-basis theorem of :lilbert, necessarily a fin.ite Ii?sis. Siinple axan~plzs 
show that in general such n firllte basis >,-Jill i:cceexrily colitain pols ilot any linear 
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combination of F;, i.e. pols not in Ideal(1RR). To determine explicitely such a finite 
basis of Ideal[lRR] is however not an easy matter. One of such determinations is 
furnished .by the notion of Chow Forms which will be explained in the latter sections. 

Y 2. Generic Poin t  of an Algebraic Variety. 

Let H P S  be a finite set of H-pols in XorX1, ..., X, over K. A zero X‘ = ( X ;  : 
Xi : ... : XL) of all H-pols in H P S  with X: not all zero and all X: in some ex- 
tension field of K will be celled an U - Z E R O  of i l P S .  The set of all such H-zeros 
wiH be denoted by R Z e r o ( 1 f P S ) .  A PROJECTIVE ALGEBRAIC VARIETY in 
the projective space PK(n)  in the ordinary sense is just the set HZero(I1PS) for 
some finite set of 11-pols IIPS. Any zero in H Z e r o ( H P S ) ,  considered as a point 
in P&K(n) for some extension field E K  of K, will’also be called a POJNT of 
the variety HZero(HPS) .  Such a projective aleeljraic variety is said to be IRRE- 
DUCIBLE if it is not the union of two distinct projective algebraic varieties both 
distinct from the given one. 

Let 2’ = (ZA : ... : 2;) be a point in the projective n-space PK‘(n) with 2;’ not 
all 0 and all Z,! in some extension 5eld K’ of K. Similarly let 2” = (20” : ... : Z,”) 
be a point in P K ” ( n )  for some extension field K” of K. Then the point 2” is 
called an H-SPECIALIZA’J’TON of 2’ if any H-pol having 2’ as a zero will have 
Z” as an H-zero too. A point Z in a projective space P E K ( n )  for some extension 
field EK of K is said to be an H-GENERIC POINT of the projective algebraic 
variety H Z e r o ( H P S )  if any point of H Z e r o ( H P S )  is an H-specialization of 2. In 
particular the generic point Z itself is then a point of that variety. A fundamental 
theorem of algebraic geometry says now: 

Theorem 2.PP. A projective algebraic variety is irreducible if and only if it 
has an  H-generic point. 

Let 2 = (& : ... : 2,) be a point in the projective n-space PEK(n)  for some 
extension field EX of K. The set of all H-specializations of 2 will be denoi,ed by 
HSpt-c(2). On the other hand the set of all 11-pols with 2 as a zero forms a prime 
homogeneous ideal which will be denoted by Hldenl (Z) .  It is clear that 

H S p e c ( 2 )  = HZero(Hldeal (2) ) .  

Now by EIi!berl Finite Bxis  ‘Thzorem the ideal l i I d e u f ( 2 )  has a finite set of H-pols, 
say F U ,  as its basis so that 
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The last one is by definition a projective algebraic variety in PK(n)  and is irre- 
ducible since the ideal HIdeal(Z) is prime. Moreover it is easily seen from the very 
definitions that 2 is an H-generic point of this variety. Hence we have 

Theorem 2.2P. For any point 2 in a projective n-space PEK(n)  with EK 
some extension field of K the set HSpec(2) is a projective irreducible algebraic 
variety in PK(n)  with Z as an H-generic point. 

The above notions can be naturally extended to the affine case. Thus, for 
extension fields K', K" of K,  a point X" in the affine n-space K" (n) will be called 
a SPECIALIZATION of a point X' in the affine n-space K'(n) if any pol having 
X' as a zero will have X" as a zero too. The set of all specializations of X' will be 
denoted by Spec(X'). For any polset, i.e. a finite set of pols over K ,  say PS, the set 
Zero(PS) will be called an AFFINE ALGEBRAIC VARIETY in the a f i e  space 
K(n)  and any zero in Zero(PS) is called a POINT of this variety. The variety 
is said to be IRREDUCIBLE if it is not the union of two distinct affine algebraic 
varieties both distinct from the given one. Furthermore, a point in K'(n) for some 
extension field K' of K is called a G E N E R I C  P O I N T  of an affine algebraic variety 
if any point of that variety is a specialization of that point. Given any point 2' of 
K'(n) the set of all pols having 2' as zero which f o r m  a prime ideal will be denoted 
by Idea l (2 ' ) .  Analogous to the previous theorems we have then the following ones. 

Theorem 2. lA.  An affine algebraic variety is irreducible if and only if it has 
a generic point. 

Theorem 2.2A. For any point 2 in an affinc n-space EK(n)  with EK some 
extension field of K the set Spec(2) is an affine irreducible algebraic variety in K(n)  
with 2 as a generic point. 

Now the notions of projective resp. affine algebraic varieties have some close 
relations as described below. 

Let V = HZero(HPS)  be a projective irreducible algebraic variety in PK(n)  
with H P S  a finite set of H-pols. Let G Z  = (2; : 2; : ... : 2;) be an H-generic 
point of V. Suppose that V is not wholly at infinity. Then 2; is unequal to 0 so 
that Af(GZ) is well-defined. The affine irreducible algebraic variety with Af(G2)  
as generic point will then be denoted by Af(V). It is clear that Af(V) = Zero(PS)  
where P S  is the polset consisting of pols A f ( F )  with F an li-pol in EIPS and any 
point in A f ( V )  is of the form A f ( X )  with X a point of V. Conversely, given an 
affine irreducible algebraic variety V' = Zero(PS)  with P S  some polset let GZ' be a 
generic point of V'. Then there will be determined a projective irreducible algebraic 
variety V = HZero(1IllPS) with Pr(G2' )  as H-generic point and HPS the set of 
H-pols of the form P r ( F )  for F in PS.  The points of V which are not at infinity are 
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just 
and 
and 

those 
Pr(V 
V’an 

of the form Pr(X’) with X’ points of V‘. The relations between Af(V) 
“) for V a projective irreducible algebraic variety not wholly at infinity 
affine irreducible algebraic variety are clearly a reciprocal one in the sense 

that 

Pr(Af(V)) = V, and Af(Pr(V’)) = v’. 
In conclusion, we see that the notions of (H-)generic point, irreducible as- 

cending set, and irreducible algebraic variety (projective or affine) are in essence 
equivalent ones in that one may be determined from the other. 

Z 3, Chow Form of an Irreducible Algebraic 
Variety or an Irreducible Ascending Set. 

In [C-VdW] Chow introduced the notion of ZUGEORDNETE FORM of a 
projective irreducible algebraic variety and then extended to that of an arbitrary 
projective algebraic variety via its irreducible components. This notion was later 
called the CAYLEY FORM by Hodge in [H-P] and was called CHOW FORM by 
the French school of algebraic geometers. We shall adopt the terminology of CHOW 
FORM owing to its originator which is quite current in the literature. 

The Chow form of a projective irreducible algebraic variety is in fact determined 
by its generic point as follows. Let V = HZero(HPS) be a projective irreducible 
algebraic variety with I f P S  a finite set of If-pols. Suppose that V is not wholly at 
infinity. Then V will have a n  H-geileric point of the form 

GZ = (1 : 2; : ... : 2;). 
Let the degree of transcendency of Z over K be d which is in fact tde DIMENSION 
of the variety V. Introduce now a set of independent indeterminates U;j with ( i j )  
running over the range 

R :  i = 0,1, .  . . , d ;  j = 1,. . . ,n. 

Adjoin these U;j to K to form the transcendental extension field U K  over K. Set 
now 2; = 1 and introduce d + 1 elements U;, by 

SlJMj Uij * 2; = 0, i = 0,1, ..., d 

in which SUMj runs over j from 0 to n. As the d + 1 elements 

Uio = -SUM,# U;j * 2 j 1  
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in which S U M ~ I  runs over j from 1 to n are all algebraic over K , m d  altogether 
have clearly a transcendence degree d over UK, there will be an algebraic relation 
among these Uio. This relation, after clearing of fractions, will be of a form CF = 
0, with CF a polynomial in K[U;j ] ,  in which ( i j )  is over the range 

U R :  i = O , 1 ,  ..., d; j = O , l ,  ..., n. 

This polynomial CF, which is determined up to  certain non-zero constant in K, 
is then called the CHOW FORM of the projective irreducible algebraic variety in 
question. 

In [C-VdW] it was described how a finite basis of H-FO~S CB can be determined 
from the Chow Form of a projective (irreducible) algebraic variety V such tha t  
V = .FIZero(CB). In [H-PI a simpler method of such a determination is also given. 
This method depends on the following two propositions. 

Prop.Ml. ([H-P] X7,Th.W) For any ( d  + 1)-tuple of distinct integers t = 
(lo, 1 1 ,  ..., I d )  chosen from (OJ, ..., n) let Pt be the determinant of a (d  + 1) * ( d  + 1) 
matrix of which the element in i-th row and j-th column is Uik with k = Ij, i, j 
being both from 0 to d. Then the Chow form of a projective irreducible algcbraic 
variety of dimension d is a polynomial G in Pt with t running over all (d-1- 1)-tuples 
t. 

Let G be liow the Chow Form of a projective irreducible algebraic variety V of 
dimension d expressed in terms of Pt as in Prop. 131. Tdce a set of indeteridnates 
Aij  with (i j)  running wer  the range 

R’: i = O , I  ,..., n - d - 2 ;  j = O , l ,  ..., n. 

Set n - ~ - 2  = c. For any (c+l)-tupleof distinct intcgers s = (Jo ,J1 ,  ... , J c )  chosen 
from (OJ,  ..., n) !et QS be the determinant of a ( c  + 1) * ( c  -I- I) matrix of which the 
element in the i-th row and j-th column is Ail, with k =I J j ,  i ,  j being both from 
0 to c. In G let us replace each Pt by 

Pt  = Et * su~/f\ * X+k * g,k. 
In the formula: 

(1) SUMk runs over k from 0 to  c l ;  

(2) T is the (n  - +tuple which one obtains from (0,1,. . . , n) in deleting the 
integers appearing in t ;  

(3) Et means +1 or -1 according as the permutation from the ordered con- 
catenated set of t and then r to  the ordered set (0,1, .  . . , n)  is an even or an odd 
one; 
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(4) Qrk is Q. with s the (c  + 1)-tuple in deleting the (k + 1)-th integer in the 
(n - d)-tuple r ,  k being from 0 to c; 

(5) X r k  is the variable x h  with h the k-th integer in r, k being from 0 to c. 

Denote J ~ O W  by G' the polynomial in terms of Qd obtained from G as above 
and write it in the form 

G' = SUM, H ,  * K,, 
in which SUM, runs over p indexing all distinct power products H ,  of Aij ,  and K p  
are the corrcsponding coefficients which are H-pols in X = (Xo,  XI,...,^,,). Then 
we have ([H-P] X7,p45-46): 

Prop.132. The H-pols K, form a finite basis CB, to be called a CHOW BASIS, 
such that 

V = flZs.ro(CB). 

The above introduction of Chow f o r m  and Chow basis and their determination 
for a projective algebraic variety can be naturally extended to  affine irreducible 
algebraic varieties or irreducible asc-sets in the following way. 

Considcr nn affine irreducible algebraic variaty V = Zero(PS) with a generic 
point GZ. Let V' = Pr(V)  be the projective irreducible algebraic variety with 
Pr(GZ) as If-genPiic point. Let us form the Chow FGrlil C F  of this variety from 
Pr(GZ)  as aboie described. Then C P  will be defined aL~o .2s the CBOW FOXM 
of the affine vxiety V.  

Consider m x t  m y  irreducible .zsc-set 

(IRR) F1, F2, ..., F,. 

Let GZ be the generic point of (IRR) which is also a generic point of the a f i e  
irreducible algebraic variety Spec (G2)  = Var[lRR]. The Chow Form of Var[IR,R] 
which may be determined from GZ will then be defined as the CHOW FORM of 
the irreducible asc-set (1B.R). 

The method described above for a projective irreducible algebraic variety gii-as 
also the inems of determining the ChGw Form of an  affine irreducib!e algebr7ic 
variety or an iiiedwih!e asc-sel In the same way the propositions 111 and 1% i i d l  
give 3 Chew E x i s  C13 such that the coircsponding afine irreducible algebraic 
vzxiety V or t,he vrriety V(zr[1111'2] of a.n irreducible m ~ n d i n g  set ( IRR)  will be 
deki-mined 1s %eio(CB). Siich a hasis will a!so be called a CHOW BASIS of the 
i 3 d  I d e u l [ I Z R ]  c)r simply a CIiO-W BASIS of'thr irreducible asc-set ( IRR) .  As 
sliown by exarrqlcs in later sictims, this basis may contzin pcls which differ.from 
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each by mere signs. The basis obtained by deleting the redundant ones will then 
be called a CONDENSED CHOW BASIS of the corresponding ideal Ideal[IRR] or 
the irreducible asc-set (IRR). For such a basis CB we have then 

Var[IRR] = S p e c ( G 2 )  = Zero(CB). 

From the above and the last sections we see that the notions of an irreducible 
ascending set, an affine irreducible algebraic variety, the generic point, the Chow 
Form or Chow Basis, etc. are intimately interrelated and in essence they are equiv- 
alent to each other In that they may be determined one from the other. Among 
these concepts the irreducible asc-set may be considered as the central one since 
it is more explicit and from it others are relatively easier to be determined. The 
following diagram illustrates such interrelations with the irreducible asc-set IRR 
enjoying the central role. Cf. also the Sect 5 of the paper [WU7]. 

-- 
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3 4. Decomposition Theorems a n d  Principles 
of Mechanical Geometry  Theorem-Provhg.  

We recapitulate in this secticn the fundamental theorems in the form of DE- 
COMPOSITION THEOREMS of zero-sets which are at the basis of our mechaniza- 
tion method of equations-solving and theorem-proving. For more details we refer 
to  the relavant papers of the author. 

DECOMPOSITION THEOREM D1. For any polset P S  we have 

Zero(CS/J)  c Z e r o ( P S )  c Z e r o ( C S ) ,  (4 
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Zero(PS)  = Zero(CS/J )  + SUMiZero(PSi), (W 
in which CS is a char-set of P S ,  Psi  is the polset PS enlarged by adjoining to it 
the initial Xi of the i-th pol in CS, and J is the product of all these initials. 

DECOMPOSITION TKEOREM D2. For any polset P S  we have a 
decomposition of the form 

Zero(PS) = SUMj Zero(ASCj/Jj) ,  ( I I I )  

in which each ASCj is an asc-set and each Jj is the product of all initials of pols 
in ASCj .  

DECOMPOSITION THEOREM D3. For any polset PS we have a 
decomposition of the form 

Zero(PS) = SUMk Zero(IRRk/Jk), ( I V )  

in which each IRRk is an irreducible asc-set and Jk is the product of all initials of 
pols in IRRk. 

DECOMPOSITION THEOREM D4. For any polset PS we have a 
decomposition into irreducible components of the algebraic variety Zero(PS)  in 
the form 

Zero(PS)  = SUMk Vor[IRRk].  ( V )  
In the decomposition ( V )  it may happen that one irreducible component is 

contained in the other. Whether thm is so for two such components may be verified 
by mere computations via Chow Basis based on the following 

Theorem 4.1. For any two irreducible asc-sets IRR and IRR' let CB be a 
Chow Basis of IRR.  Then 

Var[IRR']  c Var[IRR]  

if and only if for any pol B in CB we have 

Remdr(B/IRR')  = 0 .  

Proof. By Sect.3, we have 

V a r [ l R R ]  = Zero(CB). 

Let GZ' be a generic point of IRR'. By Theorem 2.2A we have 

Var[IRR']  c Zero(CB) 
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if and only if GZ' is in Zero(B) for all B of CB. By Theorem 1.2, the latter is true 
if and only if Rerndr(B/IRR') = 0. This proves the theorem. 

It follows from this theorem that we c2n remove in (1') m y  redundant conipo- 
nent Var[IRRi] by mere computations of remainders to ren.der the decomposition 
uncontractible. That such an uncontractible decomposition is unique is clear. So 
we can strengthen the DEC.TH. D4 to  the following 

DECOIvIPOSITIQN THEOREM D5. The decor!?posit.ion of Zeto(PS)  
in irreducible components as in ( V )  can be mzde uncontract.ible and unique by 
mere computations. Moreover, if CBI, is a Chow Basis of IRRk in the above 
decomposition, then we may also write ( V )  in the form 

ZerO(PS) = SUMk ZerO(CBk).  (V') 
The applications of the above decomposition theorem to equations-solving are 

self-evident. Consider now the problem of theorem-pro;ring. The basic field K will 
then be understood to be the rational field Q. 

Consider thus a theorem T = {EIYP, CONC} with HYP the hypot,hesis polsct 
and CONC the conclusion pol in same variables Xl,...,Xn. Use M T P  to stand 
for MECHANICAL THEOREM-PROVING. Then by DEC.TH.Dl. we deduce the 
following 

MTP PRIh'CIPLE: PI.. For a theorem T = { M Y P ,  CON C} lct 

Zero(f1YP) = Zero(CS/J)  + SUMi Zero(EIYPi), 

be thc decomposition of Zero(HYP) by means ofDEC.TH.Dl, in which CS is the 
char-set of H Y P ,  J is the product of all init.ials I; of pols in CS and HYPi is the 
polset H Y P  enlarged by adjoining to  it the i-th initial Ii of CS. Suppose that the 
remainder of CONC v.7.r.t. the char-set C S  of H Y P  is 0, i.e. 

Remdr(C0NCICS) = 0, ( V I )  

then the theorem T is GENERICALLY TK.UE under the NON-DEGENERACY 
CONDITION 

J $; 0 ,  

or the NON-DEGENERACY CONDITIOIVIc's (Y  = nur.ibsr of pols in C S )  

I; # 0, i = 1, ..., 7 .  

Moreover, if the char-set CS is an irreducible one, than the condii.iai? (1'1) is a,!so 
a necessary one fur T to be generically truc uilcler ths. z b o ~  no:i-dcgencracy con- 
ditions. 
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By the various decomposition theorems about Zero(E1YP) we deduce also: 

MTP PRINCIPLE P2. For a theorem T = { I IYP,CONC} let us form 
the decomposition 

Zero(1 fYP)  = S U M ,  Zei-o(ASC,/Jj) 

in which e x h  ASCj  is an asc-set and Jj is the product of all initials of pols in 
ASC,.  Then Twill be generically true on the part Zero(ASCj/Jj)  if 

Remdr(CONC/ASCJ)  = 0. ( V I 4  

Conversely, if the asc-set ASCj  is an irreducible one, then the condition ( V I I )  is 
also nccessary for T to be generically true on the part Zero(ASCj/Jj) .  

MTP PRINCIPLE P3. For a theorem T = { H Y P , C O N C }  let us form 
the decomposition 

in which each IRRk is an irreducible asc-set. Then T will be true on the whole 
irreducible component Var[ lRRk]  if and only if 

Ze to (1 fYP)  = SUMk Var[ lRRk]  

Remdr(CONC/IRRk)  = 0. ( V I I I )  

We shall give in next sections some examples to illustiate how the above Prin- 
ciples are applied in concrete cases. The method used here will also throw some 
lighl on our zero-set approach vis-a-vis the usual ideal-theoretical approach at least 
in the case of mechanical theorem proving. 

It 5 .  Example: The Desargues Theorem. 

We take again, as in [WU6,7], the Desargues Theorem as example to illustrate 
our general theory and method explained in previous sections. 

Example 1. Desargues Theorem. Let ARC,  A'B'C' be triangles with corre- 
sponding sides parallel to each other. If two joining lines of pails of corresponding 
vertices, say AA' and BB', meet in a point 0, then the joining line of tlie third pair 
CC' will pass through 0 too. 

To prove this let us take An', BB' as coordinate axis. Let the points in 
question have resp. the coordinates: 

A =  B = ( o ~ X 3 ) ,  o = ( x 4 1 x 5 ) l  

A'=  (Xz,O),B'= (O,Xc) lC '= (X,,XB), 
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Then the hypothesis-set will be H Y P  = {Hl ,Hz ,  H3) with 

= * x6 - xz * x3, [AB 11 A’B’] 
H2 = x, * (xs - x6) - x7 * (x5 - X3) ,  
H3 X8 * (X4 - Xi) - X, * (X7 - Xz). 

[BCIIB’C’] 
[CAIIC‘A’] 

The conclusion pol is given by 

CONC = X4 * X8 - X5 * X7. [0 on CC’] 

As pointed out in [WU6,7], no power of CONC can be contained in the ideal 
(El, H z ,  H3) so that CONC = 0 is not a consequence of the equations Hi = 0, i = 
1,2,3. This will be true only under certain non-degeneracy conditions in the form of 
inequalities which are not easily foreseen from the very hypothesis set H Y P .  This 
will cause ,inherent difficulties in the ideal-theoretical approach to the mechanical 
geometry theorem proving. However, in our zero-set approach the difficulties will 
be automatically resolved as explained in what follows. 

Method I. 

Based on Decomposition Theorem D1 we form first the char-set CS of H Y P  
with 

Zero(HYP) = Zero(CS/J) + SUMi Zero(HYPi).  

In the formula CS = C1,Cz, C3 with 

C1 = H I ,  C3 = H2, while 
cz = (X, * x3 - XI* x5 - x3 * X4) *x, + (X4 -XI) * x4 * x, +x2 * x4 * x5 

11 = X I ,  12 =x1 * x 3  -x1 *x, -x, *X4, 13 = x4, 

The initials are 

and J is the product Il * I2 * 13. Each polset I iYP i  is H Y P  enlarged by adjoining 
to it the initial Ii. 

It is readily verified that 

Remdr(C0NCICS) = 0,  

It follows t hc t 
Zero(HYP1J) c Zero(CONC),  

or the Desargucs Theorem is true so far 

J f O ,  Of 

11 # 0, 12 # 0,  13 $; 0. 
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Each of the conditions I ,  # 0 has sgme eiident geometrical meaning. The :nore 
troublesome one is the condition 1 2  + 0 which says that  the  triangle ARC (and 
hence also the triangle A’R’C‘) shoii!d not be degwerate into a line. If wr  are in 
dnubt  whethe: Iz $- 0 is really an unzvoidable c o n d i t b ~  for the truth of Desargues 
Theorem we may just  add I2 to H Y P  to form a nwi hypothesis set HYP2 and 
apply our method to  H Y P 2  as before. 

Method IX. 

In order not to  unneccssarilly complicate the computations let us consider 
XI: X z ,  .Yz to  be constants assurned to be non-zero and X1 # X z .  We will thus 
be ivorki2g in an amne 5-space of coordinates (Xd, X s ,  X e ,  X7, X,) .  A geometrical 
configuration verifying the  hypothesis H Y P  = 0 is just a point on the  algebraic 
variety Zero( f iYP)  in t h a t  affne space. 

Based on Decomposition Theorem D2 we find now 

Zero(HYP)  = SVhf ,  Zero(ASC,/J,), 

in which S U M ,  runs over i = 1,2,3 and each J, is the product of initials of pols in 
corresponding ascset  ASC,. T h e  a\c-sets ASC, are resp. consisting of pols C,, as 
follows. 

For  ASCl 1 C1, = C,, J = 1,2,3. 
For ASCZ : C21 = I2, Cz2  = h-I. c 2 3  = H z .  
For  ASC3 : C?] = I;,C32 = HirC33 = XT, 

(23.4 = XI * x, + xs * (X7 - X 2 ) .  

It turns  out that  all these ax-se ts  ASC, are irreducible ones so we shall rename 
them as IRR, .  The DEC.TH.D4 gives then: 

Zero(EiYP) = SUMi Var[IRRi].  

It is readily folind that  

Rerndr(CONC/I RR1)  = 0 ,  Remdi (COh’C/IRR3) = 0, while 
R e m d r ( C O N C / I R R ~ )  f 0. 

11 f~flcws that  the Desaigues Thcorern is true on the whole irreduciblc compo- 
]rents V a r j i R H l ]  aiid Var[ lRRs i ,  but not so on t’ic componept Var[ IR&] .  T h e  
reason may be seen directly from geometriczl considriations. In fact, A ,  A’, B be- 
:ng h x d  as X ; ,  .T?, .Y3 arc given constmts, B’ or Xa is a!ready uell-dctermined. 
The variety Var j lRR1]  is therefGrt consist ill:, of the coiifieuration of triangle pairs 
AHC, A’B’C‘ with C in GEkFRIC position and of all othcr configurations ohtained 
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therefrom by specializations. The variety V a r [ I R R z ]  is consisting of configurations 
of such triangle pairs with C and C' taken arbitrarily on the lines A B  and A'B' 
resp. The variety VarjlRR31 is consisting of such configurations with C arbitrarily 
chosen on the axis OBB' and thereby C' is well-determined. We see also that these 
three components will have their dimensiom equal to 2,2,1 resp., being the degrees 
of freepom of the configurations in question. Directly from geometrical considera- 
tions it is also readily seen that on the component V a r [ l R R 2 !  the theorem can not 
be true. The above computations by means of remainder-formation serve to give 
systematic verifications of such geometrical evidences. Furthermore, we see from 
mere geometrical considerations that all configurations in Var[ IRR3]  are in fact 
specifications of the generic configuration in V a r [ I R R l ]  with C generically chosen. 
This means that VariIRR31 should be contained entirely in V a r [ I R R l ] .  By The- 
orem 4.1 this may also be verified by computations via the Chow Form or Chow 
Basis as follows. 

In the affine 5-space 4 5  the generic points GZ; of IRRi and hence also of 
V a r [ l R R ; ]  are readily seen to be: 

GZ1 = (x4,x5,xZ * x 3 / X l , x 2  * x4/x1,xZ * x5/x1), 

GZz = (X4,-X3 * (X4 - X l ) / X l , X Z  * X3/X, ,X7 ,X3 * ( X ,  - X , ) / X l ) ,  
GZ3 = (o,x5,xz * x 3 / x i , o , X z  * x5/xi). 

The condensed Chow Basis are found to be consisting of pols Bi, for IRR; ,  i = 
1,2, as follows. 

B11 = x1 * x6 - x~ * X3, 
Bzl = - X i z  * X,j + X i  * Xz * X5 + Xz * X3 * X4, 

= x1 * X-I - xz * x4, B13 = x1 * xs - x, * xg; 

B z z  = X I Z  * x, - x i *  x3 * x, - x i *  x, * x s  - xz * x3 * x4, 

B23 = - X i  * Xe - X ,  * X7 + X i  * X s ,  
B24 = X1 * Xs + X3 * X7 - X z  * X3, 
b 2 5  = XI * x5 $- x3 * x4 - x1 * x3, 

Bz,j = -x'1 * x6 t x2 * x3. 

It is readily verified that 

Remdr(S l , / IR I1~)  = 0,  j = 1 , 2 , 3  

It follows therefore from Theorcrn 4.1 that Vur[IRR3]  is contained in V a r ( l R R l ] ,  
as already signified. We get in particular the uniquc decomposition into irreducible 
components of the afine algebraic variety Z e r o ( I i Y P ) ,  viz. 

Zero(HI'P) = Va, r [ IRRl]  + V a r [ l R R 2 ] .  
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The Desargues Theorem is now proved to be true on the whole first component but 
not so on the second one. 

We make now some comparisons betv;een the two methods as exhibited above. 
The Method IT gives a complete answer to the problem of theorem-proving a t  the 
cos? of much more computations being needed. It seems that the Method I, in- 
complete as it is in appearence, is often to be preferred in general. The reason is 
this. Actually all theorem in elementary geometry are only true in the GENERIC 
sense and are stated in a form with implicit GENERICITY hypothesis utterly un- 
mentioned. Our Method I furnishes, disregarding at  all any possible degeneracies, 
just such a GENERICITY proof in case it is TRUE, which should mean GENER- 
ICALLY TRUE and is in agreement with the real character what one means by a 
geometrical theorem. It avoids thus the labyrinth of degeneracy conditions unless 
some geometrical interest or practical ncid urges one to do so. It is owing to this 
reason that in our mechanical geometry theorem proving the Method I alone has 
proved already a great success. See however the next section for further comments. 
Finally, we would like to point out that the knowledge of Chow Basis of an  irre- 
ducible component, though of importance from a theoretical point of view, may 
serve as little use for the proving of t.he theorem in question on this component. 
This may be seen clearly from the Chow Basis of IRR:! as explicitely given above. 
Of course one can deal with IRRl easily from its Chow Basis. But this is just 
because the Chow Bzsis happens to be already in the form of an asc-set which is a 
quite rare case. 

i$ 6. Mechanica l  Theorem-Proving i n  the Reducib le  Case .  

In the last section we have pointed out that in applying the various decompo- 
sition theorems to MTP, the method based on Dec.Th. D1 is preferred in general. 
We have to make however the supplemen-tary remark that there may arise some 
difficulties in applying D 1  in e.g. the so-called REDUCIBLE case. In fact, for a 
theorem T = ( H Y F ,  C O N C }  let 

Z e r o ( H Y P )  = Zero(CS/J) + SUM,Zero(HYPi) 

as before. It may happen that 

Remdr(C0NCIC.S) f 0. 

If the char-set CS is irreducible then by the decomposition theorcms the theorem 
T in question is not true generically and not true on the irreducible component 
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VarICS]. If CS is however reducible then nothing can be concluded. The reducibil- 
ity may however arise owing to an inadequate choice of the coordinate system and 
may be avoided by adopting other coordinate systems. Such a choice may be furni- 
shed by the method of separation of variables X, into two parts to  be denoted by 
U; and Y, resp. as in Sect 1. This is in fact the earliest method adopted by the 
author, as exhibited in [WU1,2]. It amounts to choose among the X‘s those as 
independent ones and the others as bounded or dependent ones. In many cases 
with a suitab!e choice the corresponding char-set will become irreducible and Dec. 
Th.D1 may well be applied. There are however no general guiding rules of such 
choice to  follow whicl: depends heavily on the mathematical understanding of the 
theorem in questjon. There are also cases for which no such choice is possible at all. 
The only way seems then to apply the other decomposition theorems other than 
D1. The following is a concrete example for such cases. 

Example 2. Center of Similitude Theorem. The three centers of similitude of 
the three pairs of circles taken from three circles in the plane will lie on the same 
line. 

Let us take the coordinates such that the centers of the three circles Ci are 
resp. 

0 1  = (XIYO), 0 2  = (xz ,O) ,  O3 = (OiX3)* 

Let the radius of the circles be X4, Xg, and x&3 resp. We assume here the three 
circles to be in generic position so that in pzrticular XI, ..., Xe are all # 0, XI # Xz, 
and X4,X5,X6 mutually unequal. Denotc the three centers of similitude for the 
pairs (Cl,Cz), (C1,C3), and (Cz,C3) to  be resp. 

s1 = (x7,O)y SZ = (xE,x9)1 s3 = (xlOiX11). 

Then the hypothesis set HI’P =; { H l ,  ..., H 5 )  with 

H1 = x42 * (X7 - XZ) 2 - XS2 * (X7 - X1)2, 

H4 == xoz * ( ( X I 0  - X Z ) 2  + X?:) - XS2 * (&Z -c (XI1 - X 3 ) 2 ) ,  

Hz = X&3’ * ((XS - XI)’ + X9‘) -- X42 * ( x s z  4 (x9 - x3)’)), 

fl, = Y1 * XCJ + X 3  * X8 * XS, 

I-15 = x z  * XI1 + x3 * XI0  - 2 - 2  f xj. 
The conclusion pol is given by 

CONC = XI1 * (X, - X7) - XI0 * Xg + xs * x7 
Let us consider XI,. . . , Xs as constants and X7,. . . , X11 as variables. It is easy 

to see that no matter how we rename X7,. . . , X11 by a permutation which amounts 
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to a separation of these X into U and Y, the corresponding char-sat will always be 
a reducible one, even if  we replace H I  by one of its factors. For tht, char-set C S  of 
H Y P  as above it is ccnsisting cf 5 pols C; of whic!i 

C, = H,  for i -= '3,s. 

On the other hand 

c1 = c; * el", Cl = c; * CZ'l, c4 = c: * cqn 

with 

el" = x4 * (X, - X?) + x5 * ( X ,  - XI), 

c[ = * (xg - X I )  - xa * x g ,  
Cz" = X6 * (Xa - X i )  + X4 * Xa, 
ci =z -y6 * (XI0 - xz) - x5 * x10, 
c4" = x6 * (XI0  - xz) -1 x5 * XlO. 

App!ying Dec.Ths 2-4 we get then 

Z e r o ( f I Y P )  = Svi%fk Zero(ZRRiJ = suh!tk Var( IRRi] ,  

with k running from 1 to 8. The IRR; are irredccible asc-sets each consisting of 
5 pois Cil to Ci5 with Ci3 = Cp, Ci5 = C5 as above while each C;j is either Cij 
or C;," for j = 1, 2, or 4. It is readily verife; that Retndr(CONC/IRR,) = 0 for 
four of these IRRi a:id + 0 for the 6ther fow. The tlLcorem in question can thus 
be more prccisely expressed in the following form: 

The 6 centers of similitude of pairs of cicles taken from 3 circles in generic 
position lie 3 by 3 on 4 lines. 

There are many methods in dealing with the reducible case due t o  various 
authors like Chou, Gao, Wang, and the author himself. Cf. also an interesting 
paper [SH2] in this MM-Preprints. Besides the one in wing Dec.Ths. D2-D4, the 
author has proposed, specially for theorems in elementary geometries, the method 
of oriented lines and oriented circles. For the Exa,mple 2 above we see that the 3 
centers of similitude will be uniquely determined and lie on the same line once the 3 
circles are each definitcly oriented. There are in all 8 different ways of orienting the 
circles which may be divided into 4 pairs with same triple of centers of similitude 
for each pair. This accounts for the 4 lines of cerders of simiiitude in the theorem. 

For more examples we refer to [WU9]. Much haider theorems than the Example 
2 above have been proved in this way with re!ative ease, including a difficult theorem 
of Thebau:t-Taylor-Chou. 
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Abstract. Based on a well-ordering principle for differential polynomial sets, principles 
of mechanical theorem proving (MTP) and mechanical theorem discovering (MTD) are 
formulated and discussed. Examples are given to show how these principles may be 
applied to problems in differential geometries and mechanics. 
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set, Well-Ordering Principle. 

1. Introduction 
In 1977/8 the author has introduced a method of mechanical theorem proving of elemen- 

tary geometries which has been proved to be a very efficient one. The method was later 
extended to mechanical theorem proving of differential geometries and the present paper is 
devoted to such an exposition. As the caSe of two or more independent variables is much 
more complicate than that of a single independent variable, we have separated the treatments 
into two parts. In Section 2 we explain with proofs omitted the basic principles underly- 
ing mechanical theorem proving of differential geometries involving only one independent 
variable. In Section 3 some examples in differential geometry of curves and in Sections 4 
and 5 examples in mechanics are given for the sake of illustrating these general principles of 
mechanical theorem proving as well as mechanical theorem discovering. In particular, it is 
shown how Newton’s Gravitational Laws can be mechanically proved and even automatically 
discovered from Kepler’s Laws. In Section 6, the case of two or more independent variables 
is briefly described and some examples from theory of surfaces are also given to serve as 
illustrations. 

2. Case of one Independent Variable 
For a basis of the present section, we refer to [4,5] and [6]. 
A DIFFERENTIAL FIELD (abbr.d-FIELD), say F ,  is a field of characteristic 0 which 

has, besides the usual arithmetic operations, a further operation of DIFFERENTIATION 

The present paper to be published elsewhere is a summary of partial results of the author before 1988. 
I t  is partially supported by NSFC Grant JI85312 
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2 Wu Wen-tsun 

such that any element A of F has a DERIVATIVE D1A verifying the usual rules. We write 
for simplicity D,A = D1 ' ' D1A with D1 i times and call D,A the i-th DERIVATIVE of A. 
The element A itself is also considered as 0-TH DERIVATIVE of A : A = DoA. 

An INDETERMINATE X is just a symbol having an infinity of DERIVATIVES D,X 
none of which is zero. A DIFFERENTIAL POLYNOMIAL (abbr. d-POL) say P in INDE- 
TERMINATES X I ,  Xz, . . . , X, over F is a polynomial in DaXJ with coefficients in F .  For 
P we can then form successive DERIVATIVES D,P as well as various PARTIAL DERIVA- 
TIVES dP/d(D,X,) in the usual formal manner. 

To any non-constant d-POL P will be associated a 4-tuple [ t c T d ]  of integers, to be 
called the INDEX-SET of P,  in notation znd(P), as follows. 

t = number of actual terms in P ,  
c = the greatest subscript c for which X ,  occurs actually in P ,  to be called the CLASS 

T = the highest order r for which the r-th derivative DTXc of the above X, occurs actually 

d = the highest degree d of the above DTXc which occurs actually in P ,  to be called the 

In case P is a non-zero constant, then we define c = 0, r = 0, and d = 0. 
A d-pol Q will be said to be d-REDUCED w.r.t. a d-pol P of class c > 0, if either the 

highest order m of derivative D,X, appearing in Q is < ord(P),  or, if DTX, appears in Q 
where T = ord(P),then the highest degree of DTXc in Q is < deg(P). On the other hand Q 
is not d-reduced w.r.t. any d-pol P of class 0. 

For a d-pol P with cls(P) = c > O,ord(P) = r, and deg(P) = d ,  we shall call the 
derivative DTXc the LEAD of P ,  to be denoted by lead(P). Let L be this lead. Then the 
coefficient of Ld,  which is itself a d-pol, is called the INITIAL of P,  to be denoted as init(P). 
The formal partial derivative of P w.r.t L is then called the SEPARANT of P ,  to be denoted 

For non-zero d-pols in indeterminates X1, . . .  ,X, over the d-field F partial orderings 
<< may be defined in various ways. To fix the ideas only the following ordering will be 
considered in this paper. Let PI ,  Pz be non-zero d-pols with index sets [tl c1 TI dl] and 
[tz c~ r2 dz] resp. We say then PI << Pz or PZ >> PI if one of the following cases occurs: 

of P ,  and to be denoted as cls(P),  

in P ,  to be called the ORDER of P and to be denoted as ord(P),  

DEGREE of P and to be denoted by deg(P). 

by sep(P) .  

(4 c1 < cz , 
(b) CI = CZ, but T I  < ~2 , 
(c) c1 = C Z , T I  = rz ,  but d l  < dz . 
If neither PI << Pz nor PI >> Pz so that PI and PZ are incomparable in this ordering, 

then we write PI <> Pz . 
With respect to such a partial ordering of d-pols we can then introduce the notions 

of DIFFERENTIAL ASCENDING SET, DIFFERENTIAL BASIC SET, and DIFFEREN- 
TIAL CHARACTERISTIC SET just as in the case of ordinary polynomials as follows. 

DEFINITION. A finite sequence of non-zero d-pols 

(ASC) P1,pZ,... ,PT 

is called a d-ASCENDING SET (abbr. d-ASC-SET) if either 
(a) r = 1 and cls(P1) = 0, or 
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(b) cls(P1) > 0, and for any j > i,cls(Pj) > cls(Pi) and the initial of P3 is d-REDUCED 

In case of (a) the d-asc-set is then said to be TRIVIAL. 
For a non-trivial d-asc-set (ASC)  as above let Si and 1, be respectively the separant and 

initial of Pi, i = 1,2 ,  . . , r .  A d-pol G will be said to be d-REDUCED w.r.t. (ASC) if it is 
d-reduced w.r.t each Pi in ( A S C ) .  In particular all separants Si and initials Ii are d-reduced 
w.r.t. (ASC). For any d-pol G we have then the following REMAINDER FORMULA: 

w.r.t. Pi. 

(n (If. * SF)) * G = ( Q j k  * DjPk) + R, (1) 
a j k  

in which 1, and mi are certain non-negative integers which will be taken to be as small 
as possible, and Q3k, R d-pols with R d-reduced w.r.t. (ASC) .  The product fl is to be 
extended over 1 5 i 5 r ,  and the summation C is extended over only a finite number of 
terms. The d-pol R in (I) is accordingly called the d-REMAINDER (abbr. d-REMDR) of 
G w.r.t. (ASC), to be denoted as d-Remdr(G/ASC). 

The d-asc-sets will also be arranged in a partial ordering << according to the following 
DEFINITION. Let a second d-asc-set 

(ASC)’ Q l 1 Q 2 , . . .  ,Qs  

be given. Then (ASC) << (ASC)‘ or (ASC)‘ >> (ASC)  if one of the following cases occurs: 
(a) There is some k 5 T and 5 s such that for j < k ,  P3 <> Q3, while 
(b) T > s and PJ <> Q3 for j 5 s. 
If neither ( A S C )  << (ASC)’ nor (ASC)  >> (ASC)’ so that ( A S C )  and (ASC)’ are 

incomparable in this ordering, then we write (ASC)  <> (ASC)’. 
DEFINITION. For any system ( D P S )  of d-pols any d-asc-set ASC of lowest order for 

which each d-pol belongs to ( D P S )  is called a d-BASIC-SET (abbr. d-BAS-SET) of (DPS) .  
Let a d- FIELD F be given. A d-FIELD F’ will be said to be a d-EXTENSION-FIELD 

(abbr. d-EXT-FIELD) of F if, as an algebraic field, it is an extension field of F in the 
ordinary sense, and moreover any element A of F’ which is also in F will have the same p t h  
derivative for any p > 0 whether it is considered as an element of F or of F’. 

Let the d-FIELD F and INDETERMINATEs X I ,  X z ,  . . . , X, be now fixed in advance. 
Consider any finite set (DPS)  of d-pols in X l , . . .  ,X, over F .  The system of equations 
P = 0 for all P in ( D P S )  will be represented symbolically by ( D P S )  = 0. 

A finite set of non-zero d-pols is called a DIFFERENTIAL POLSET (abbr. d-POLSET). 
Let such a d-polset DPS be given. A set (2,) of elements 2, in an arbitrary d-ext-field F’ of 
F will be called a d-ZERO of the set ( D P S )  if it makes ( D P S )  = 0 when 2, are substituted 
for X,. The totality of all such d-zeros will be denoted by d-Zero(DPS) and the totality of 
those which are not d-zero of a given d-pol G will be denoted by d-Zero(DPS/G). 

Given a d-polset DPS we can deduce a certain d-asc-set of particular interest in a 
mechanical way according to the following scheme: 

<< Qk . 

DPS =DPSo DPSl . . .  D PS,  
DBSo >> DBSl>> . . .  >> DBS, (11) 
DRSo DRSl . ‘ .  DRS, = empty. 
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In (11) each DBS, is a d-bas-set of DPS,, each DRS, is the set of non-empty d-remainders, if 
there are any, of d-pols in DPS, w.r.t. DBS,. Finally, each DPS, is the preceding DPS,-l, 
enlarged by adjoining to it all the d-pols in DRS,-1, i.e. 

DPS, = DPS,-i + DRS,-i, (111) 

in which + means set union. It is easy to prove that the procedure will ultimately terminate 
with some DRS, = empty. 

called a d-CHARACTERISTIC-SET (abbr. d-CHAR-SET) of the d-polset (DPS) .  
DEFINITION. The final d-bas-set DBS, in the scheme (11) is 

The importance of this d-char-set, say DCS, lies in the following 
WELL-ORDERING PRINCIPLE. For the d-zeros of ( D P S )  we have 

d-Zero(DPS) = d-Zero(DCS/K) + d-Zero(DQSk), (IV) 
k 

in which K is the product of all initials and separants of d-pols in the d-char-set DCS, and 
DQS, are the enlarged DPS with one of the initials or the separants adjoined to it. We 
have besides 

d-Zero(DPS) C d-Zero(DCS) 

d-Zero(DCS/K) = d-Zero(DPS/K) C d-Zero(DPS), 

d-Zero(DPS) = d-Zero(DPSk) C d-Zero(DB&) 

(VI) 

(V’) 

More general than (V), we have also 

for any d-polset (DPsk)  and d-bas-set (DBSk)  appearing in scheme (11). 
REMARK. During the procedure it is convenient to remove certain factors to make d- 

pols occurring in the reduction not too high in term numbers. In such case the Ck in (IV) 
should run over also all factors removed besides initials and separants and the product K 
should include all such factors too. 

Consider now a differential-geometrical statement (S) with hypothesis ( H Y P )  = 0 and 
conclusion CONC = 0 both expressed in terms of d-pols. Any d-zero of ( H Y P )  is then just a 
geometrical configuration, eventually in some imaginative extended space, which verifies the 
hypothesis of (S). Let us form now a d-char-set DCS of ( H Y P )  and form the d-remainder 

R = d-Remdr(CONC/DCS). 

Suppose that R = 0. From the remainder formula (I) and the relation (V) we see that 
CONC = 0 for any d-zero of ( H Y P )  for which 

NDk # 0,  (W 
with NDk the totality of (non-trivial) initials, separants of d-pols in (DCS)  and eventually 
also factors removed during the procedure. Accordingly we lay down now the following 
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MECHANICAL THEOREM PROVING (abbr. MTP) PRINCIPLE. A geometrical the- 
orem with hypothesis d-polset ( H Y P )  and conclusion d-pol CONC is GENERICALLY 
TRUE under certain NON-DEGENERACY CONDITIONS (VII) if 

d-Remdr(C0NCIDCS) = 0. (VIII) 

The above MTP Principle furnishes us not only a mechanical method of proving KNOWN 
geometrical theorems, but also one of DISCOVERING in a certain sense yet UNKNOWN 
theorems. For example, we may make guess about certain probable conclusions and then 
just verify its truth by simply computing the corresponding d-remainders to see its generic 
truth. What is more important is the following: The formula (V') shows that, if ( D P S )  
is the hypothesis set ( H Y P ) ,  then any d-pol P in any d-polset (DPsk)  or any d-bas-set 
(DBSk)  appearing in the scheme (11) during the procedure, will furnish us a geometrical 
theorem P = 0 whenever it has a geometrical meaning. Moreover, by deliberately arranging 
the indeterminates in an order at the outset, we are able to get certain not previously 
known geometrical relations between the first few indeterminates. This will furnish us thus 
a general method of discovering unknown relations or new theorems. We may thus formulate 
the following 

MECHANICAL THEOREM DISCOVERING (abbr. MTD) PRINCIPLE. For a hypoth- 
esis set ( D P S )  = ( H Y P )  any d-pol P occurring in (DPsk)  or (DBSk)  of scheme (11) will 
furnish us a geometrical theorem P = 0, whenever it can be endowed an intrinsic geometric 
meaning. 

Illustrative examples for the applications of the above MTP and MTD Principles will 
be given in successive sections. We remark that there are various refinements of the Well- 
Ordering Principle in the form of Structure Theorems of a d-zero-set of a d-polset. Corre- 
spondingly there are also refined MTP Principles which would comprise the most general 
and also complete one about mechanical theorem proving of geometries. However, in view 
of the high complexity in applying such refined principles it seems that the partial MTP 
Principles would often be preferred which are already both efficient and fruitful in bringing 
about non-trivial concrete results, as may be seen from the examples to follow. For this 
reason we shall satisfy ourselves in this paper to the above special forms of Principles and 
leave the more general studies to the relevant papers of the author. 

3. Some Examples 
Let a differential-geometry theorem be expressed in the form of T = {HYP,CONC} 

with H Y P  the hypothesis d-polset and CONC the conclusion d-pol. Let DCS be a d-char- 
set of H Y P  in accordance with the scheme (11) in Section 2. Denote the initials, separants, 
and also eventually factors removed during the procedure by NDk and K be the product 
of all of them. Denote also by HYpk the enlarged d-polset of H Y P  in adjoining to it the 
d-pol NDk. Then the Well-Ordering Principle (IV) of Section 2 applied on H Y P  will be of 
the form 

d-Zero(HYP) = d-Zero(DCS/K) + d-Zero(HYPk). 
k 

Let the d-remainder of the conclusion d-pol CONC w.r.t. DCS be 
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R = d-Remdr(C0NCfDCS) .  

Suppose that R # 0. Then nothing can be concluded. It may be due to the fact 
that the theorem T in question is utterly untrue at  all or that the d-char-set DCS is R E  
DUCIBLE in certain sense which we shall not enter. Suppose however R = 0. Then the 
MTP-Principle based on the above Well-Ordering Principle says that the theorem T in ques- 
tion is generically true under the non-degeneracy conditions NDk # 0, or T is true on the 
part d-Zero(DCS/K) = d-Zero (HYP/K)  of the totality d-Zero(HYP) of geometrical con- 
figurations verifying hypothesis ( H Y P )  = 0. If we are interested in knowing whether the 
theorem will remain true in one of the degeneracy case NDk = 0, we may just add NDk 
to H Y P  to form the enlarged hypothesis set HYpk  and proceed with HYPk just as H Y P  
before. We remark that though nothing can be concluded in case R # 0 and R = 0 gives 
only a sufficient condition of proving a differential-geometry theorem, the method is already 
of some consequence as may be seen from the illustrative examples below. 

Ex. 1. Parallel Planar Curves. 
Two planar curves C,C' are said to be PARALLEL if there is a (1-1)-correspondence 

P H P' such that the joining lines PP' are common normals to the curves. Prove that for 
such pairs the distance r between the corresponding points is a constant. 

To prove it let the coordinates of P = ( X I ,  X z )  and P' = (X3,  X,) be expressed in terms 
of same parameter t for which the values are same for points P, P' in correspondence. Denote 
the distance of PP' by X5. The hypothesis set is then consisting of 3 d-pols 

while the conclusion d-pol is given by 

C O N C  = D1X5, 

in which D1, D z ,  etc. means derivatives w.r.t. t .  The d-char-set D C S  is easily found to be 
consisting of the 3 d-pols below: 

C1= ((01x1)' -t ( D I X Z ) ~ )  * D1Xz * 01x3 + (X3  - X I )  * D l X l  

* ( & X I *  DlXz  - D l X l *  Dzxz) - & X I *  D1Xz * ( ( D i X i ) 2  t ( D ~ X Z ) ' ) ,  

CZ = DlXz  * X4 + (X3 - X i )  * DlXl  - Xz * DlXz ,  

c3 = x,2 - (X3 - X1)2 - (Xq - X2)Z. 

The leads are DiX3,X4, and Xg while the initials, separants, and removed factors, which 
are all eventually split into factors, are 4 in number: 
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The d-remainder of CONC is readily found to be 0 as shown by 

2 * ND; * ND4 * C O N C  = A1 * D1C3 +Az  *DiCz f A3 * Cz + A4 * Ci,  

in which A; are all d-pols. It follows that the theorem in question is true under the non- 
degeneracy conditions NDk # 0. 

The condition ND1 = 0 means that the curve C degenerates into a line parallel to the 
X-axis or eventually a single point. If we want to know whether the theorem remains true 
in this degenerate case we just add ND1 to ( H Y P )  to form a new hypothesis set (HYP1) 
consisting of the 4 d-pols H,  and ND1. Let us consider the case NDz # 0 so that we may 
remove the factor ND2 = X3 - X1 during the procedure in forming the d-char-set. Then 
the d-char-set DCSl will be found to be consisting of 4 d-pols 

Cii = DiXi ,  

C13 = Hz, 

Ciz = DiX2, 

C14 = H3. 

The new non-degeneracy conditions are now ND1k # 0 with 

NDll = NDz, NDl2 = X4 - Xz,  ND13 = ND4. 

We find readily the d-remainder to be 0 again so that the theorem is still true under the 
conditions 

ND1 = 0, NDii  * NDiz * NDi3 # 0. 

We remark that in the present case C degenerates into a single point P while C’ becomes 
a circle with P as center and radius non-zero. The correspondence is no more (1-1) and the 
theorem is to be interpreted as to be true in some degenerate sense. By proceeding further 
in the same way, we may verify the truth of the theorem under all possible degeneracy cases, 
if we wish to do so. 

Ex. 2. Curve pairs of Bertrand type. 
For a space curve there is associated to any regular point X on it a triple of significant 

lines L,  viz. the tangent T, the principal normal P ,  and the binormal B. Suppose to C there 
is associated some other curve C’ in (1-1)-correspondence to it such that at corresponding 
regular points X ,  X’ one of the significant lines L of C coincides with some other significant 
line L’ of C’. There are in all 9 such possibilities for which ( L ,  L‘) = (P,  P’) is the case of 
classical Bertrand curve pairs. 

For the study of such curve pairs of Bertrand type we shall use the Cartan method of 
moving trihedrals for which only entities of intrinsic geometrical interest will be involved. In 
fact, in contrast to the case of elementary geometries no coordinates having no geometrical 
significance will enter which saves thus the memory storage as well as computational labor. 

Let us take arc lengths S, S’ of the curves C ,  C’ as parameters so that S’ is a function of 
S under the correspondence. The derivatives w.r.t. S will be denoted by D1, Dz, etc. and 
we put also D1S’ = R. 

Attach now to points of C the trihedrals (X ,E1,  Ez,E3) with lines of Ei = T , P , B  
respectively. The F’renet equations will be: 
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(1) 
D1X = El,  DlEl = K ,  E2, 

D l E z = - K . E l + T . E 3 ,  D1E3=-T.Ezr  

in which K and T are respectively the curvature and torsion of C.  For C' we have also 
similar trihedals ( X ' ,  E; ,  E;, E;) and equations. 

Consider the general case in which the trihedrals at  corresponding points are related by 
equations (with matrix (Uij) an orthogonal one): 

X'  = X + A1 , El + A2. E2 + A3. E3, (2) 

E,' = C u ~ ~ . E ~ ,  i = 1 , 2 , 3 .  (3) 
3 

Differentiating now both sides of (2), utilizing the F'renet equations of both C, C', and com- 
paring coefficients of Bi, we get readily equations Hi = 0, i = 1,2,3,  with 

H I  = R * Ul1-  1 - D1 A1 i- A2 * K ,  

H2 = R *  Ul2 - DlA2 - A1 * K +  A3 * T ,  

H3 = R * U13 - D1 A3 - A2 * T.  

%eating in the same manner the other equations (3) we get 9 further equations Hi = 
0, i = 4, . ' 1 2 .  Let K' and T' be the curvature and torsion of the curve C', then these d-pols 
H,  are given by: 

H4 = R * K' * U21 - DiUii - K * U12, 

H5 z= R * K' * U22 - DlUlz - K * 9 1  + T * U13! 

H6 = R * K' * U23 - D1U13 - T * U12, 

H7 = -R * K' * Uii + R * T' * u31 - DiUzi + K * U22, 

Ha = -R * K' * U12 + R * T' * U32 - DlU22 - K * U21 + T * u23, 
Hg = -R * K' * U13 + R * T' * U33 - D1U23 - T * UZZ,  

H ~ Q  = -R * T' * U21- DiU31i- K * U32, 

Hi1 = -R * T' * U22 - DlU32 - K * U31+ T * U33, 

Hi2 = -R * T' * u23 - D1U33 - T * u32. 
Change now the notations as given by 

(R ,  Ai ,  A2, A3, UH, ui2, Ui3, u21, u22, u 2 3 ,  u31, U32u33, K ,  T ,  K ' ,  T ' )  

(x5, x6, x7, X 8 ,  x9, XlO? x11, xl2, x13, XI43 x15, X16, XI71 x a ,  xb, xc, xd) 

Consider first the classical Bertrand case (P,  P') so that E& = + or -E2. To fix the ideas 
let us take the + sign and similarly for the orthogonality relations between the Uij 's so that 
we have: 
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Suppose we are interested in finding the possible relations between the torsions T,  T' of 
c, c'. we may then choose X,, . , Xd to be e.g. 

K = X ,  = X25, T = Xb = X2,  

K' = Xc = x 3 0 ,  T' = xd = X,. 

The hypothesis system ( H Y P )  is then consisting of the 14 d-pols in the X ' s  below besides 
the trivial ones of (4), viz. 

Hi = X5 * Xg - 1 + Xz5 * X7,  

H; = -D1X7, 

H i  = X5 * Xi1 - X2 * X7,  

H i  = -D1Xg, 

HA = x30 * X5 - x25 * Xg + X Z  * X11, 

HA = -D1X11, 

Hs = X3o * X5 * Xg - X4 * X5 * X i 5  - Xz5,  

HA = x30 * X5 * X11 - X4 * X5 * x17 + X Z ,  
H i  = -D1x15, 

Hi0 = -X4 * X5 - X Z S  * x15 + X Z  * X17j 

Hi1 = -D1X1Ir 

Hi2 = X9 - x17, 

Hi3 = X11 + X15r 

Hi4 = X i  + X l l  - 1. 

We remark that the derivation of these equations H,' = 0 are entirely of a mechanical 
character. Now 

H;=O,  Hi=O,  HL=O, HA=O, H i ,  = 0 ,  

means that the distance A2 = X7 between corresponding points and cos A = Xg,  sin A = Xi1 
and so the angle A between the corresponding tangents or binormals are all constants. Hence 
we have already discovered these classical theorems in an automatic manner. 

The d-char-set of ( H Y P )  is found to be a set of 10 d-pols Ci-C;, with 
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C; = X, * DlXz + X2 * DlX4,etc. 
The equation Ci = 0 means that XZ * X4 = const. Thus we have discovered automatically 
the following 

Bertrand pair of curves is a constant. 

C to have a Bertrand companion C’. For this purpose we may take e.g. 

THEOREM of SCHELL. The product of torsions at  corresponding points of a 

Suppose we are now interested in the probable restrictions in K and T about the curve 

K = X, = X i ,  T = Xb = Xz, 
K‘ = X, = X30, T’ = Xd = x40. 

The d-char-set of the hypothesis system is again readily found with the first one given by 

C; = F1* ( D l X l *  DzX2 - D1X2 *&Xi) ,  

where 

Under the non-degeneracy conditions F1 # 0, DlXl # 0, etc. we see that 
F’1 = (XI * DlXz - Xz * D1X1) * (XI * D l X l f  Xz * D1Xz). 

D l X l *  DzXz - DlXz * D2X1 = 0,  

or X1 = K ,  Xz = T verify some linear relation. We have thus discovered automatically the 
following classical 

THEOREM of BERTRAND. If a curve C has another curve C’ to form a Bertrand pair, 
then generically the curvature and torsion of C are in some linear relation with constant 
coefficients. 

As before we may study the degeneracy cases F1 = 0, etc. if we are interested in doing 

Let 2, Z’ be now the centers of curvature of C, C’ at corresponding points X, X’, and let 
so I 

CR be the cross ratio of (X, Z, X’, Z’) .  Then 

1 ICR = -(1+ A2 * K’) * (A2 * K - 1) = G, say. 

W.r.t. any one of the above d-char-set D C S  we find readily 

d-Rerndr(D1GIDCS) = 0. 

We have therefore proved the following 

THEOREM of MANNHEIM. The cross ratio of any two corresponding points and the 
centers of curvature of a Bertrand pair of curves is a constant under the non-degeneracy 
conditions K * K’ # 0 among others. 

We have also treated in the same manner the other cases ( L ,  L‘) = (P, B ) ,  ( B ,  P ) ,  ( B ,  B )  
and re-discovered such theorems of Mannheim, etc. in an automatic manner. Moreover, 
for curves in affine space there are notions of affine principal normal, affine binormal, affine 
winding coefficients, and affine torsion. There are also Winternitz equations and Darboux 
equations connecting these affine invariants alike to  the F’renet equations for curves in the 
ordinary space. However, it seems that there are no analogues of theorems so interesting as 
those of Schell or Mannheim as given above. Cf. [15]. 
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4. Example  3. Kepler’s Equa t ion  in  Celestial  Mechanics 

Kepler’s equation in celestial mechanics plays an important role in astronomical compu- 
tations. As a further example of illustrating our general method we shall show how to solve 
Kepler’s equation in a manner entirely different from the usual known ones. 

For this purpose let us consider a planet P moving in an elliptic orbit with eccentricity 
e and period T .  Let t be the time elapsed in starting from the perihelion. The angle to be 
determined E, is the angle spanned by the major axis toward the perihelion, and the radius 
vector from the center of the elliptical orbit to that point on the circumscribing circle which 
projects to the same point on the major axis as does the planet. The Kepler’s equation 
which permits to determine E is then of the form 

E - e * s inE  = M ,  (1) 

with 
M = 2 * . i r * t l T .  

The equation (1) is usually solved by numerical or graphical methods. A solution is also 
furnished by the Lagrange series of E in e with coefficients in terms of derivatives of powers 
of sin M w.r.t. M .  The derivation of Lagrange series is somewhat intricate and the series 
converges only for e(< 1) sufficiently small. We shall now give a simple device turning the 
equation into a form which permits to, again by our general method, determine E, as well 
as other simple functions of E like sin E, etc. in the form of convergent series of M .  

Let us consider s i n E  as a 
separate indeterminate function by setting 

The underlying principle of this method is quite simple. 

F = sin E. (2) 

The sine function, as also most of transcendental functions occurring in mathematics, will 
satisfy some differential equation. This differential equation, together with the original 
Kepler equation ( l ) ,  will furnish us a d-polset consisting of two d-pols in E and F on the 
independent variable M .  Applying our general method we get then equations in E or F 
alone which may then be solved in the form of series in M. 

The computation is quite simple and runs as follows. Considering E and F as functions 
of M with primes denoting derivatives w.r.t. M ,  we get from ( 2 )  

F‘ = cos E * E’, (2’) 

F“= - s i n E * E ’ 2 + c o s E * E ” .  (2? 

E’ * F“ - F’ * E” + F * El3 = 0. (3) 

Multiplying (2“) by E’ and removing sin E ,  cos E by means of ( 2 )  and (2’),we get 

In order to solve for E we may now set 

E = X 1 , F  = X z .  (4) 

Let us use again D, to denote the i-th derivative w.r.t. M ,  then(1) and (3) will become 

X I -  e * Xz  - M = 0,  (1’) 
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D l X l *  DzXz - DiX2 * DzXi + X2 * ( D ~ X I ) ~  = 0. (3’) 
The d-pols Pi and Pi in the left sides of (1’) and (3’) form now a d-polset DPS‘. To form 
the d-char-set of DPS‘ we just form the d-remainder of Pi w.r.t. Pi, getting thus a d-pol 

R’ = D z X l +  ( X I  - M )  * ( D I X ~ ) ~ ,  

which, together with (l’), will form a d-char-set of the d-polset DPS’. The equation R’ = 0, 
or 

E” + ( E  - M )  * E‘3 = 0 (5) 
is then the equation of E in terms of M as required. The initial values of E and E’ at M = 0 
are obviously 

We get therefore a series of the form 

E(0)  = 0, E’(0) = 1/(1 - e) .  

E = (1/(1 - e ) )  * M - ( e / ( l  - e ) 4 )  * M 3 / 3 !  + . . .  (6) 

which is convergent in some neighborhood of M = 0 by the general theory of differential 
equations. It can in fact be proved that the series (6) is convergent for all values of M .  

If we are interested in the determination of F = sin E we may set instead of (4) 

E = X 2 ,  F = X 1 .  

The equations (1) and (3) become then 

X z - e * X l - M = O ,  (1”) 

(3’0 DlX2 * DzX1 + X I  * ( D ~ X Z ) ~  - D l X l *  D2X2 = 0. 

We get then a d-polset DPS“ consisting of the left-side d-pols Pi’ and P! of (1”) and (3”). 
Forming the d-remainder of P[ w.r.t. P;’, we get a d-pol 

R” = D2Xl + X I  * (e * D l X l  + l)3.  

The equation R” = 0, or 

gives then F = sin E in terms of M .  With obvious initial values 

F” + F * (e * F’ + 1)3 = o 

F ( 0 )  = 0,  P ( O )  = 1/(1 - e ) ,  

we get then the series of sin E as required: 

sin E = (1/(1 - e ) )  * M - (1/(1 - e)4)  * M 3 / 3 !  + . . . (7) 

The series (7) can again be proved to be convergent for all values of M .  
The above method is quite general and may be used to determine e.g. CosE, the sun- 

planet radius vector, the anomaly, etc. in terms of M .  It can also be applied to the case of 
parabolic or hyperbolic orbits. 
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5. Example 4. Automatic Derivation of Newton’s Gravitational Laws from Ke- 

It is an important historical event that Newton derived his gravitational laws from Ke- 
pler’s laws. During a visit to Argonne National Laboratory in 1986 the author was told by 
Prof. Gabriel there about the significance of deducing Newton’s Gravitational Laws from 
Kepler’s Laws in a mechanical way for which Prof. Gabriel was already quite successful in 
applying his own automated reasoning method, cf. [3]. As a 4-th example of illustrating our 
general method we shall show below how our method can be applied to deal with such kind 
of problems. 

For this purpose let us first formulate the Kepler’s laws (K) and the Newton’s laws (N) 
in the manner as given below: 

(K1) The planets move in elliptic orbits around the sun as focus. 
(Kz) The vector from the sun to the planet sweeps equal areas in equal times. 
(K3) The squares of periods of planet motions are proportional to the cube of the major 

(N1) The acceleration of a planet is inversely proportional to the square of the distance 

(Nz) The acceleration vectors of planets are directed toward the sun. 
(N3) The proportinality factor of the inverse square law (Nl) is independent of the 

different planets. 
In order to deduce mechanically, or even discover automatically the Newton’s laws from 

Kepler’s laws let us take first coordinates and transform the various laws into equation forms 
as follows. 

Let us take e.g. rectangular coordinates (2 ,  y) with the sun at the origin and the major 
axis of the elliptic orbit as the X-axis. Let r be the radius vector from the sun to the planet. 
Then the orbit will have an equation of the form 

pler’s Observational Laws 

axis of the elliptic orbits. 

from the sun to the planet. 

r = p + e * x .  (1) 

The Kepler’s law (K1) will correspond then to the equation (1) and also (2)-(4) below taken 
together: 

r2  = x2  + y2, 

p = const, or p’ = 0,  

e = const, or e’ = 0,  

(2) 

(3) 

(4) 

in which the prime means derivation w.r.t. the time t .  Similarly Kepler’s law (Kz) will 
correspond to the equations (5) ,  (6) below: 

5 * y’ - y * 2‘ = h, ( 5 )  

h’ = 0. (6) 

For (K3) let T be the period for a planet t o  turn once around the Sun on its elliptical orbit 
and 2 * a, 2 * b be the major and minor axis of this orbit. Then Kepler’s Law (K3) means 
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that TZ/a3 is a universal constant independent of the planets, though possibly dependent 
on the sun. Now according to the meaning of h we have 

h * T = 2 * 7 r * a * b ,  

Since b2 /a  = p ,  we have 
T 2  l a3  = 4 * 7r2 * p / h 2 .  

It follows that 
c = p / h 2  (7) 

is also a universal constant independent on the planets with c’ = 0. On the other hand the 
Newton’s laws ( N l ) ,  (Nz ) ,  with A as the acceleration, will correspond to  the following set of 
equations (8)-(10): 

(8) 

(9) 

(10) 

A2 = x/’2 + y”2, 

r2 * A = const, or since r # 0 , 2  * T’ * A + r * A’ = 0, 

x * y” = y * 2”. 

For the Newton’s Law (N3) the constant r2  * A as asserted by ( N l )  is a universal one and 
there may exist thus some relations connecting this constant with c which we have to  try to 
find out. 

As Newton’s Law (Nz) corresponding to  (10) follows directly from Kepler’s Law (Kz)  
corresponding to (5),(6) we shall consider below only the Laws (N1) and (N3) .  

For this purpose let us now introduce indeterminates in replacing the various functions 
by X’s as given below: 

(T ,  A ,  c , p , e , x , y , h )  

(XI17 XlZ, x15, X21r x22, x31, x32j x51). 

The various functions are so arranged that r ,A,  and c come as first few ones in order to 
discover possible relations between them which we suppose to be entirely ignorant. With 
this change of notations the equations (1)-(10) will turn to be the equations P, = 0 with Pi 
given by (1’)-(10’) as shown below: (Di means i-th derivative w.r.t. t ) :  

pl = x11 - x31 * XZZ - x21, (1’) 
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PIO = X31 * D2X32 - x32 * D2X31. 
Take now the d-polset DPS to be consisting of the d-pols (1’)-(8’) of the above set 

corresponding to the Kepler’s Laws. Remark that the planets move in true non-degenerate 
elliptic and non-circular orbits so that we have 

(107 

X21 = P # 0, XZZ = e # 0, 
DlXll = rf  # 0, X11 = r # 0,  

and also 
x15 = c # 0, XIZ = A # 0. 

In applying our algorithm for the finding of d-char-set DCS of DPS we can then remove 
any such factors during the procedure. The DCS is found to be the 7-th d-bas-set consisting 
of the 8 d-pols C, with index sets given below: 

[7 11 4 11, [4 12 0 21, [3 15 0 11, [3 21 0 11, 

[7 22 0 21, [3 31 0 11, [3 32 0 21, [3 51 0 11 

Of the 8 d-pols C, the first two are one in Xi1 = r alone and the other in X11 = T and 
X l z  = A. The first one gives us thus a differential equation of derivative order 4 observed 
by the radius vector r .  This equation and the second one between A and T are both too 
complicate and are of little interest. However, during the process the 4-th d-bas-set DBS4 
appears to be consisting of 6 d-pols B4, of which the first one B4l is given by: 

I341 = 2 * Xlz * DlXll+ DlXlz * XI1 = 2 *r’* A + r 1; A’. 

By our general MTD-Principle, B41 = 0 should be a consequence of the original d-polset, 
i.e. a consequence of Kepler’s Laws. The equation B41 = 0 is however nothing else but 
the Newton’s inverse square law r2 * A = const. We have thus discovered in an automatic 
manner the Newton’s Law ( N l )  from the Kepler’s Laws by means of our general principle. 
Furthermore, the 3-th d-bas-set during the process is consisting of 6 d-pols B3% of which the 
first one is given by: 

B31 = X,2, *Xf2 *Xfl - 1 = c2 *r4  * A 2  - 1 

The equation B31 = 0 is a consequence of the Kepler’s Laws too, which implies 

c = + or - 1/ ( r2  * A ) .  (13) 

It follows that the proportionality constant r2 * A  as already asserted by Newton’s Law (N1) 
is equal to the reciprocal of the universal constant c up to a sign and is thus itself a universal 
constant. The Newton’s Law (N3) is thus also discovered in an automatic manner. 

The ambiguity of the sign in (13) comes from our introduction of acceleration A by means 
of (8) which gives only its magnitude but not its direction. If we take the positive value of 
Sqrt(A2) as A with corresponding acceleration vector pointing to the sun, then in (13) the 
+ sign is to be taken so that 
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r2 * A = +l / c  = f h 2 / p  

is the universal constant independent of the planets, though eventually dependent on the 
sun. 

Let us assume now the attractive force between two masses M and m be proportional 
to both M and m. Let us assume also that the mass m under the action of a force F will 
undergo a motion with an acceleration A given by the general Law F = m * A also due 
to Newton. Then we deduce immediately from the above Newton's Laws (N1)-(N3) the 
following general GRAVITATIONAL LAW of Newton: 

F = G + M * m/r2 ,  

in which r is the distance between the sun and the planet while G is a universal constant 
independent of the planet. The universal constant G is in fact connected with the above c 
by the relation G = +l/(M * c) which should be independent of the sun if the roles of sun 
and planet are to be considered as symmetric. 

REMARK. In the above formulation we have supposed that Newton's Gravitational Laws 
are not known a priori and it turns out they will be discovered in an automatic manner by 
our general method. The computations are carried out on a SUN31140 with running time = 
15'58'' and maxt = 342, where maxt means the maximum number of terms of d-pols occur- 
ring during the procedure. In the previous drafts [16][17] different sets of coordinates and 
equations have been tried. Comparing the various trials it shows that the mere mechanical 
proving of Newton's Laws supposed known already would be somewhat simpler than the 
automatic discovering of these Laws supposed yet unknown. 

The gravitational force between the sun of mass M and a planet of mass m is given by 

6. Case of Two or More Independent Variables 
Consider now the case of m independent variables with m 2 2. Most of the notions in 

the case of one independent variable as described in Section 2, e.g. d-field, d-bas-set, etc. 
extend naturally to the present case and we shall keep the same terminologies and notations. 
However, the notion of d-CHAR-SET requires some modifications because of presence of 
integrability conditions.The general case is quite involved for which we refer to [18]. For the 
sake of simplicity of exposition let us restrict ourselves therefore to  the case m = 2. The 
independent variables will be say tl and t z  and the partial derivation i times w.r.t. tz and 
j times w.r.t. tl will be denoted by Dij. The set of partial derivatives in indeterminates 
X I ,  ' ' , X ,  will be ordered in some natural way. W.r.t. this order we shall define the LEAD 
of a d-pol, etc. in the usual way. Let a d-asc-set ASC be given. Suppose in ASC there 
are two d-pols 4, Fz with leads DijX,  and DhkX, in same X ,  for which i > h , j  < k .  
Differentiate a = k - j times F1 w.r.t. tl and b = i - h times FZ w.r.t. t z  we get then 
equations of the form 

s1 * Do,DijX, = G I ,  5'2 * DbODhkXc = Gz, 

in which S1, Sz are separants of F1, Fz respectively and G I ,  Gz are d-pols with all derivatives 
of lower order than Dikxc  = Do,DijX, = DboDhkXc. The equality SZ * G1 = S1* Gz follows 
as a consequence of the equations (ASC) = 0 and we shall lay down the following 
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DEFINITION. The d-pol 

IC(F1, Fz) = Sz * G1 - S1 * Gz 

is called the INTEGRABILITY-POL (abbr.INTEG-POL) of the d-pols F1, Fz. We now 
modify the schemes (11) and (111) in Section 2 in the following way. For any i let DRSi-1 be 
the set of all non-zero d-remainders not only of d-pols in LIPS,-1 but also of all integ-pols 
of pairs of d-pols in DBSi-1, if there are any. With this DRS,-1 we form the schemes (11) 
and (111) as before. The ultimate d-bas-set DBS, with corresponding DRS, = empty  will 
then be called a d-CHAR-SET of the original d-polset DPS. 

We have implemented the procedure of finding d-char-set of a d-polset on our computer. 
Experiments are not yet much done. It turns out that the formation of integ-pols requires 
often a large amount of memory storage. However, it seems that such formation may be 
avoided in some ways as shown by the example below. 

Ex. 5.  Surface pairs in 3-space. 
For any pair of surfaces S, S’ in ordinary 3-space in (1-1)- correspondence we may ask 

similar questions as in Ex.2. Thus, we may ask the geometrical conditions or interrelations 
of S,  S’ with corresponding points X ++ X’ for the following cases: 

( N N )  X X ’  are normals to both S and S’ (case of parallel surfaces). 
( N T )  X X ’  are normal to S at X and tangent to S’ at X‘ ( e g  case of surfaces of centers). 
(TT)  X X ’  are both tangents to S and S’ at X and X‘. 
Let us consider e.g. more in details the case (TT).  For this purpose let us attach moving 

trihedrals M T  = ( X ,  El,  Ez, E3) and MT‘ = (X’ ,  E;, Ei,  E i )  to S and S’ in such a way that 
E3, Ei are normals to S,  S’ and El,  E; are along the common tangent line X X ’ .  Denote the 
distance between X ,  X’ by R and the angle between E3, Ei by A. Then we have 

X‘ = X + R .  El,  (1) 

Ei = E l ,  (2) 

in which we have set U = cos A, V = sin A so that 

u2 + v2 = 1. (5) 

With Wi, Wij (2 ,  j = 1,2,3) the Cartan exterior differential forms in parameters t l ,  tz on 
S corresponding to the above moving trihedrals M T  we have the following set of Cartan’s 
structure equations ( A means here exterior multiplication and d means exterior derivation): 

dX = Wi.Ei + Wz . Ez, (6) 
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W3 = 0,  (E3 being normal to S) (9) 

(10) dW1 = c Wj A Wji = -wz A Wiz, 
i 

In the above equations all C’s are to be extended over 1,2,3 and K is the Gaussian curvature 
of S at X .  Refer the corresponding points on S’ to  the same parameters t l ,  t 2  we have also 
forms Wl, W$ for MT’ and Cartan equations (6’)-(16’) similar to (6)-(16). 

The first step toward the establishment of hypothesis d-pol-sets is consisting of deriving 
relations between various exterior forms W’ and W .  For this purpose let us consider e.g. 
the equation (1). Forming exterior derivatives of both sides, using equations (2)-(9), (6‘)-(9’) 
and then comparing coefficients of Ei we find: 

W; = Wl + dR, 

U .  Wi = Wz + R .  W12, 

(17) 

(184 

Treating in the same way equations (2)-(4) in turn we find further equations equivalent to: 

w;z = u ’ w12 + v ‘ w13, 

w;3 = -v ‘ wl2 + u ’ w13, 

W;3 = W23 + U . dV - V .dU. 

(20) 

(21) 

(22) 
The relation (19) shows that there should be some geometrical conditions to  be imposed on 
the surface S to have a companion S’ in such a correspondence (TT)  if A and R are given. 
In this respect let us consider the simplest case for which both A and R are constants. Then: 

DoiU = 0,  D ~ Q U  = 0, (23) 

DoiV = 0, DioV = 0 ,  (24) 
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Do1R = 0,  DloR = 0. (25) 
The correspondence X - X' under these assumptions is then called a BAECKLUND 
TRANSFORMATION. To study its geometrical properties let us express Wi and Wij in 
terms of the parameters t1,tz with WI = 0, Wz = 0 as the parametric curves as follows (dtl 
and dtz are considered as exterior differential forms as in Cartan's formulation): 

Wi = X31 , dtl ,  Wz = X37 . dtz, (26) 

(27) W1z = X5z ' dtl + X42 , dtz, 

w; = x6l . dtl + X66 . dtz, wi = xtjz . dtl + x67 . dtz, (26') 

W;z = X72 . dtl + X82 dtz, (27') 
Wi3 = X73 . dt1 + X83 . dtz, (280 

wi3 = X76 . dti + X86 . dtz, (29') 

U = Xz l ,  V = Xzz,  R = X23, K = X25, K' = X30. (30) 
Set also 

The equations ( 5 ) ,  (10)-(30), and (10')-(16'), (26')-(29') will give rise to  a hypothesis system 
( H Y P )  consisting in all 34 d-pols in the X's. In determining the corresponding d-char-set it 
is rather complicate to  carry out the computations up to  the length owing to the complexity 
of the integ-pols involved. However, it is unnecessary to do so. In fact, there appears already 
in the 3-th d-bas-set (DBS3) a d-pol of the form 

The vanishing of B6 gives us a condition for X30 = K' to  be satisfied by above surface 
pair under some non-degeneracy conditions such as R = X23 # 0 among the others. As 
the relation between S and S' is a symmetric one the same is true for K .  We have thus 
discovered automatically the following 

Theorem of Baecklund. Two surfaces in correspondence of Baecklund have equal constant 
negative curvature given by: 

K = K' = - sin2 AIR'. 

We remark that the method last described is also a mechanical as well as a general one. 
For example, we may ask the same questions for pairs of surfaces in similar relations as 
(NN), (NT), (TT)  in affine space since notions of affine normals, affine curvatures, etc. are 
also well-defined in the affine case. Experiments on such kind of problems are yet in progress. 
cf. [l] 
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On a Finiteness Theorem about Optimization 
Problems 

Wu Wen-tsun 
Institute of Systems Science, Academia Sinica 

1. Introduction 
The present paper is devoted to the study of the following optimization problem: 
Optimization Problem P. Let R " ( X )  be the real euclidean space of dimension n in 

coordinates X = (XI, . . ,x,) and D a domain in R", R being the real field. Let f, hi, (i E 
I = {l,... , r } ) , g j , j  = l;.. , s  and g be all pols in R [ X ] .  To determine the least or the 
greatest value, if it exists, of the pol f in the domain D under the equality constraints 

the inequality constraints 

g j  2 0 ,  (or 5 0, > 0,  < 0 )  (1.2) 
and the non-zero condition 

9 # 0. (1.3) 
Clearly, if D is closed and bounded and (1.2),(1.3) do not present, then such least and 

greatest values will necessarily exist. We shall restrict ourselves to such domains D which 
are closed and bounded with boundaries on a finite number of real algebraic surfaces. By 
introducing eventually new variables and new equations we may turn all the inequality 
constraints (1.2) into equality ones and turn the closed bounded domain D into a closed 
domain of rectangular form in the due euclidean space. So in what follows we shall suppose 
for the Problem P that the inequalities (1.2) are non-existant and that the domain D is of 
the rectangular form 

D : ai 5 xi 5 bi, i E I .  (1.4) 
Let us write as H S  the polset of all pols hi, i E I .  Let D' be an arbitrary domain in R", 

not necessarily closed or bounded. Denote now the set of all zeros of H S  in D' for which 
g # 0 by D'Zero(HS/g) and set by definition 

D'VaZf(HS/g) = { f ( X ) l X  E D'Zero(HS/g)} (1.5) 

%he present paper is partially supported by NSFC Grant 3185312 and TWAS Grant 86-93. 
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With D' the domain D in (1.4) our Problem P becomes the problem of determining Least D V a l f ( H S / g )  
and/or Greatest D V a l f ( H S / g ) ,  if exist, where Least resp. Greatest means the least resp. 
the greatest value of the set of values in question. We shall now give a solution of such a 
Problem P as expressed in the following theorem for which the proof will be given in the 
next section. 

Finite Kernel Theorem. There is an algorithm which gives for any Problem P of 
above type a finite set 

K c D V a l f ( H S / g )  (1.6) 

such that if the least or greatest value in question does exist, then K is non-empty and 

Least K =Least D V a l f ( H S / g ) ,  
Greatest K = Greatest D V a l f ( H S / g ) .  

Definition. The finite set of real values K eventually empty whose existence is asserted 
by the Finiteness Theorem will be called a kernel set of the Problem P or one of the set 
DValr(HS/g)  to be denoted by 

(1.7) 

K = D K e r f ( H S / g ) .  (1.8) 

In Sect 2 we shall describe the proof of the Finiteness Theorem and in Sect 3 we shall 
give illusrative examples for the applications of our method to some concrete problems. 

2. Proof of Finiteness Theorem 
Let f, h,, and g be a s  in Sect 1 but the domain D be an open one, say 0. Let X o  be a point 

in 0 verifying the conditions (l.l), (1.3) such that f attains its local minimum or maximum 
under conditions (l.l), (1.3). We shall say that X o  is an extremal zero (abbr. E-zero ) and 
f ( X o )  an eztremal value (abbr. E-value ) of the corresponding problem. Henceforth the set 
of all such E-zeros and E-values will be denoted respectively by 

E*OZero(HS/g) and E fOVal (HS/g ) .  (2.1) 

Let us consider first the particular case for which the polset H S  is an asc-set of either 
type 0 or type 1 with the pols hi in the form below: 

h, = I ,  * y,". + lower degree terms in yt. 

In (2.2) we have rearranged the variables so that 

( X I , .  ' , x,) = Perm(u1,.  . . , u d ,  y1,. . . , y r ) ,  ( r  + d = n) ,  (2.3) 

for some permutation Perm for which the ordering of u l , .  . . , U d  and the ordering of y1, ' ' , yr 
are same as in that of 5 1 , .  . . , 5,. Besides the initials 1, of pols hi in H S  we are also interested 
in the so-called separants Si of hi defined by 
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Remark that Si coincides with the initial I ,  of hi in case di = 1. Set 

I P  = PRODi Ii, S P  = PRODi S,, and I S P  = PROD, ( I ,  * Si), (2.5) 

to be called the initial-product (abbr. I-product), the separant-product (abbr. S-product), 
and the initial-separant-product (abbr. IS-product) respectively. 

The solving of Problem P in the present case will now be done via the classical Lagrange 
method of multipliers as follows. Introduce multzpliers M = (ml , . . .  ,mr) and form the 
Lagranye pol 

L = f + SUM, (mi * hi). (2.6) 

Set N = (1, . . , n) and form now the following Lagrange polset 

Let Proj be the natural projection of the euclidean space R"+'(X, M )  to R n ( X ) .  Then we 
have the following 

Lemma 1. Suppose that the polset H S  is an asc-set as in (2.2) and the pol g is divisible 
by each of the initials I ,  and also by each of the separants S,. Then we have 

EfOZero(HS/g )  c P r o j  OZero(LAG/g) 

Proof. Let 

(2.9) 0 0  0 X O  = (xy, ' . , x:) = Perm(uy,.  . , u d ,  y l ,  . . , y,) 
be an E-zero of f in EfOZero(HS/g) .  As each 1, and Si is non-zero at X o  we may apply 
the implicit function theorem to hl = 0 , .  . . , h, = 0 in succession at X o .  There will be thus 
some neighborhood V about X o  contained in 0 and continuously differentiable functions 
~ i ( u ~ ; . . , u d ) i n V s u c h t h a t f o r i = l , . . .  , rwehave  

(2.10) 

(2.11) 

(2.12) 

Let us set 

(2.14) 

Now f attains its extremal value at X o  in V implies that F(u1, . . . , U d )  attains its extremal 
value at (uy, . . . , u;).  So we have also 
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3F 
- = 0 at X o ,  j = 1, . . . , d .  
dUj 

Differentiating now (2.12) we get for each pair of i = 1,. , . , r and j = 1 

Differentiating (2.6) we get 

. .  , 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

at X o  to get M = M o  = (my,. . . , m:). For a fixed j = 1, . . , d let us multiply the equations 
in (2.17) successively by $, i = 1,. . . , r and adding, then by (2.14)-(2.16) we get 

= 0 at (XO, MO). (2.19) 
8% 

From (2.18),(2.19) we see that (X ' ,  M o )  is in OZero(LAG/g) and hence X o  is in Proj OZero(LAG/g). 
This proves (2 .8 ) .  

Lemma 2. Let H S  and g be as in Lemma 1. Suppose that 

f ( X )  = 2 1 .  (2.20) 

Let P r o j l  be the projection of P * ( X )  to R defined by 

Projl ( X ,  M )  = 2 1 .  (2.21) 

Then there is a finite set of real values 

OKer,, ( H S l g )  = Projl OZero(LAG/g), (2.22) 

which may eventually be empty, such that 

E,,OZero(HS/g) C OKer,,(HS/g) c OVal,, (HSIg) .  (2.23) 

Proof. Owing to the chosen ordering of variables 2 1  can only be either u1 or y1. Consider 
first the case 21 = u1. Then by (2.20) we have 
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8.f - af __ - a f  - . _ . =  - 
dY1 dY2 8Yr - O1 - au1 = 

- - 8.f 

For any ( X o ,  M o )  E OZero(LAG/g) we have a = 0 at  (Xo, M o )  and S, # 0 at Xo so that 
(2.17) gives M o  = 0 or m! = 0 , i  = 1,". , r .  As & = 0 at ( X o , M o )  too this will be in 
contradiction to the equation 

&I. 

Hence OZero(LAG/g) = empty in this case and (2.23) follows trivially from (2.8) and (2.22). 
Consider next the case z1 = y1. Then by (2.20) we have 

Let ( X o ,  M o )  be again any zero in OZero(LAG/g). Then as before (2.17) will give us 

1 m! = . . . = m,O = 0, my 1 -o # 0, 
s1 

where Sy is the value of 5'1 at  Xo. Now h, = 0 at X o  for any i = 1;'. ,r. Owing to our 
chosen ordering of variables hl will have no variables U ,  involved and is a pol in y1 = z1 
alone with constant coefficients. The possible values of zy for which hl = 0 is to  be satisfied 
are thus finite in number. Then by Lemma 1 the set OKerZ,(HS/g) defined by (2.22) is a 
finite set of real values verifying (2.22). The Lemma 2 is now completely proved. 

Consider now the case for which H S  is a general polset in variables 2 1 , .  . . ,z,. Our 
char-set method with slight modifications (cf. e.g. [WUl-31) will give rise to the following 
lemmas 3,4. 

Lemma 3. For an arbitrary polset PS c R[X] let CS be a char-set of PS. Let I, and 
S, be the initials and separants of pols in CS and ISP be the corresponding IS-product. 
Then we have 

OZero(PS) = OZero(PS/ISP) + UNION, OZero(PS + I,) 
(2.24) 

Lemma 4. There is an algorithm such that for an arbitrary real polset PS we shall 

+ UNION, OZero(PS + S,). 

arrive in a finite number of steps at a set of asc-sets AS, such that 

OZero(PS) = UNION, OZero(AS,/ISP,), (2.25) 

in which for each j ,  ISP' is the IS-product of AS,. 
From (2.25) for PS - H S  we have now for any f E R[X], 

OValj(HS) = UNION, OValf(AS,/ISPj). 

It is clear that 

EjOVul(HS) c UNION, EfOVal(AS,/ISP,) 

(2.26) 

(2.27) 
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Lemma 5 .  Let HS be an arbitary polset and f be given by (2.20). Then there is a 
finite set of real values K such that 

E,,OVal(HS) c K c OVal,,(HS). (2.28) 

Proof. Let us decompose OZero(HS) as in (2.25). By Lemmas 1,2 we have then a finite 
set of real values K given by 

K = UNION, OKer,,(AS3/ISPJ), 

By (2.27) we have then (2.28) as to  be proved. 
We are now in a position to prove our main theorem as follows 
Proof of Finite Kernel Theorem. 
Let us introduce a new variable xo and a new pol 

(2.29) 

ho = f(X) - xo. (2.30) 

For any domain D' c R"(X) we shall write D'+ for the domain in Rnfl(xo, X) defined by 
X E Rn while xo is arbitrary. Set also 

HS+ = H S  + {ho} 

Then it is clear that for D' open, 

(2.31) 

D'Va l f (HS /g )  = D'+Val,, (HS+/g) ,  and (2.32) 

EfD 'Va l (HS /g )  = E,,D'+Val(HS+/g). (2.33) 

Let s be now any set (sl, ' ' , sn)  with each si a sign +, -, or 0. For any such set s let 0, 
be the open domain in R" defined by the set of equations 

xi = b,, or x, = a,, or a, < x, < b,, 

according as s, = +, or -, or 0, i being from 1 to n. Consider any sign set s. By Lemma 5 
we have a finite set of real values K,, to be called the kernel set for the open domain 0, or 
Osf, such that 

E, ,O~Val (HS+/g)  c K ,  c O,'Val,,(HS+/g). (2.34) 

Now it is clear that 

E,,D'Val(HS+/g) C UNION, E x , O ~ V a l ( H S f / g ) ,  and 
D+Val,, (HS+/g)  = UNIONs O:Val,, ( H S + / g ) ,  

in the U N I O N S  is runing over all the possible 3" sign sets. Set now 

(2.35) 

K = UNION,K,. (2..36) 

Then by (2.33)-(2.36) we get 
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EfDVal(HS/g) c K c DValf(HS/g).  (2.37) 

As the least or greatest value of f in question, supposed to exist, is necessarily one of the 
E-values in EfDVal(HS/g),  we get readily (1.7) from (2.37). As the algorithm for arriving 
at the kernel set K is clear from the above context, the theorem is completely proved. 

3. Some Examples 
Problems in non-linear programming are typical optimization problems which have been 

dealt with by our methods in e.g. [ W U ~ ]  and [WTJ1,2]. Problems involving inequalities can 
also usually be reduced to optimization problems. A general method of inequalities-proving 
is furnished by the CAD method of Collins, cf. e.g. [Col] and [A]. On the other hand in 
the book [Wul] has been described a method of proving geometrical inequalities of some 
special type which has been further exploited and extended by S.C.Chou and X.S.Gao, cf. 
e.g. [C-GI. The author has also exhibited a general method based on a classical theorem 
of elementary calculus (cf. [Cou], p.198) which has been applied to the proving of various 
algebraic and geometric inequalities, cf. [Wu4,G]. The method described in the preceding 
sections is a refinement and also a complement of the preceding method. The examples given 
below may give some idea about the efficiency of the present method. Compare the papers 
[WuG] and [C-GI. 

Example 1. The Pasch Theorem. Given a triangle ABC and a line 1 passing none 
of the vertices and intersecting the 3 sides BC, AC, AB in the points D ,  E ,  F. Then either 
none or just two of D ,  E ,  F are inside the segments BC, AC, AB. 

Proof. Let us suppose that D is inside the segment BC and E is outside the segment 
AC in the order of ACE. We have to prove that F is inside the segment AB. The other 
cases of the theorem may be deduced from this case by reductio abszlrdo. 

For this purpose let us take oblique coordinates so that 

A = (O,O) ,  B = (a ,  0 ) ,  C = ( O , b ) ,  E = (O,rb),F = (z, O), and 

D = ( l - y ) . B + y . C =  ( ( l - y ) * a , y t b ) ,  

in which 

a > 0 , b  > 0 , r  > 1, and 

O < y < l .  

Now instead of considering D as a fixed point in the open segment BC, let us take D to 
be a point varying on the closed segment BC including the two end points B ,  C .  Instead of 
(3.1) with y fixed we shall have y a variable in the closed domain 

D :  0 5 y 5 1. (3.1') 
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From collinearity of D, E ,  F we have h = 0 where 

h = y *  ( T  * a -  X) - T * ( a -  X). 

We shall take the ordering of variables to be 

(3.2) 

The problem is now to determine the least and greatest values of x clearly exist for y varying 
in the closed domain D under the constraint equation h = 0. The variable x plays thus the 
role of xo in the proof of the proof of the Finite Kernel Theorem in Sect 2. For the above 
purpose let us split now the domain D into 3 open ones 0 1 , 0 2 , 0 3  with 01 defined by (3.1) 
and 0 2 ,  O3 defined by y = 0 and y = 1 respectively. For 0 2  we have x = a and for O3 we 
have x = 0, being the projections on x of the points (2, y) = (a ,  0) and (0, l )  respectively. 
The kernel sets for 0 2  and O3 are thus 

Kz = {a), K3 = (0 ) .  (3.3) 

Consider now the open domain 01 : 0 < y < 1. We have here H S  = {h}  and the initial or 
separant is given by 

I = S = T * a -  x. 

As T > 1 we see that OIZero(HS + 4) = empty so that 

OlZero(HS) = 01Zero(HS/&) 

Now H S  is its own asc-set with the leading variable y but not x, the variable to be optimized, 
By the general method it follows that the corresponding kernel set for 01 is 

K1 = empty. 

(3.3) and (3.4) give now the kernel set of our problem as 
(3.4) 

K = Ki + K 2 t  K3 = ( 0 , a )  c R 

It follows that the least and greatest values of x are 0 and a corresponding to the positions 
F = A, D = C and F = B ,  D = B respectively. For other positions of D ,  i.e. for D inside 
the segment B C ,  we have then necessarily 0 < x < a or F inside the segment AB, which 
proves the theorem. 

Example 2. Quadrilateral Convexity Theorem. Let ABCD be a convex quadri- 
lateral with points 0, P, Q, R on the inside of the sides AD, AB, BC, and C D  respectively. 
Then OPQR is also a convex quadrilateral. 

Proof. Owing to convexity of ABCD oblique coordinates can be so taken that 
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P = r0.B + ( 1  - ro).A = (ro * bl, -ro * b y  - (1 - T O )  * a ) ,  0 < TO < 1, 

R = r.C+ (1 -T) .D = (T * c1,r*c2 + (1 - T )  * d ) ,  0 < r < 1. 

The constants a, b l ,  bz, c1, c2, d will all be positive so that q is also positive. Let us set 

Oriented Area(A0QR) 
Oriented Area (AOQP) 

k =  

so that h = 0 where 

h = k * (TO * b2 + (1 - T O )  * a )  + ( r  * c2 + (1 - r )  * d ) .  

We shall prove that k < OorR,PareonoppositesidesofthelineOQ. To do this we shall, as 
in the case of Example 1, instead of considering R as a fixed point inside the open segment 
CD with T constant and 0 < r < 1, take R as a point varying on the closed segment CD 
with T varying in the domain 

D : O < r < l  

Let us take ordering of variables to be 

k < r. 

We come then to the problem of optimizing k for the domain D under the constraint equation 
h = 0. Here k will play again the role of 20 in Sect 2 .  Split now the domain D into open 
ones 0 1 , 0 2 , 0 3  corresponding to the cases 0 < r < 1, r = 0, and r = 1 respectively. Suppose 
first that c2 # d or C D  is not parallel to OQ. It is then readily found that the kernel sets 
for the open domains Oi and for D are respectively ( P ~ o j k  means projection on coordinate 
k )  

K1 = empty, 
K2 = { k z }  = Projk { ( k , r )  = ( b , O ) } ,  
K3 = {k3}  = PTojk { ( k , r )  = ( k 3 , 1 ) ) ,  

K = K  1 + K2 + K3 = Ikz, k3}, 

in which 

< 0 ,  and 

< 0. 

d 
TO * bz + (1 - T O )  * a  

C2 

TO * b2 + (1 - T O )  * u 

k2 = - 

k3 = - 

We see therefore both the least and the greatest value of k are negative. If c2 = d then the 
least and greatest value of k are both equal to the same negative value k2 = k3. In any way 
we have k < 0 so that R, P are on opposite sides of the line OQ. In the similar way we prove 
that 0, Q are on the opposite sides of the line PR.  It follows that the quadrilateral O P Q R  
is convex and the theorem is proved. 

Example 3. The Median-Bisector Theorem. For a non-isosceles triangle ABC the 
median over the side AB is always greater than the interior bisector on the same side 
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This theorem has been proved in the previous paper [ W U ~ ]  by means of the method given 
in that paper. We shall re-prove it by means of the method in the present paper to make a 
comparison of the two methods. 

Let us take coordinates as in [ W U ~ ]  such that A = (-a,0), B = (a,O),C = (xo,yo), (a > 
0, yo > 0) and center of circumcircle at  (0, h) .  Let the radius of the circumcircle be c > 0 so 
that c2 = a2 + h2. Let U = (0, c + h ) ,  V = (0 ,  h - c)  be the two extremities of the diameter 
of the circumcircle through the mid-point M = (0,O) of the side AB. Let CV meets AB in 
X = (x, 0). Then CM is the median and C X  is the interior bisector both on the side AB. 
Introduce uniformizing parameters u, t such that 

1 f t 2  1 - t2 
2 * t  ’ 

c = u * -  2 * t ,  b = a * -  

Set d = ICM1’ - /CXI2.  Then we have H S  = {h l ,  hz} = 0, where 

h1= x - a * t * u, 

hz = X’ * t  * (u’ + 1) - 2 * z * a  * u * ( t 2  + 1) + d  * t * (u’ + 1). 

(3.7) 

(3.8) 

Now consider C not as a fixed point but as a point varying on the closed arc B U .  Here 
we admit the degenerate triangle ABC for which C coincides with B,  the side AC coincides 
with AB and the side BC degenerates into the tangent line at B of the circumcircle. We are 
then led to the consideration of the problem of optimizing d for the above varying positions 
of C. Here d will play the role of zo in Sect 2 and the ordering of variables will be 

d + u + x .  (3.9) 
The domain D in question is defined by 

(3.10) 

Split now the domain D into 3 open ones 0 1 , 0 2 ,  O3 corresponding to the ranges 0 < u < 
%, u = 0, and u = respectively. Geometrically these ranges correspond to the cases 
for which C varies on the open arc between B and U ,  C takes the single position U ,  and C 
takes the single position B. The kernel sets for 0 2 ,  O3 are readily seen to be 

K~ = { d =  o } , K ~  = { d =  a’) 

Consider now the case of 01. We find 

(3.11) 

OIZero(HS) = 01Zero(AS1/&) + OlZero(AS2). (3.12) 

Here AS1 = {Ai l ,  A n } ,  AS2 = { A n ,  Azz, A23} are asc-sets with 
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(3.13) 

A23 = hi 

For 01Zero(A&/&) it gives no contribution to the kernel set. For 01Zero(A&) we see 
that there are two zeros d = d l ,  d z  of A21 = 0 which are both positive. Consequently for the 
kernel set K1 for 0 1  we have 

Ki c {di, dz )  

From (3.11) and (3.14) we have therefore 

(3.14) 

(0, a’} c K = Ki + Kz + K3 C (0, a’, d i ,  dz }  

It follows that the least possible value of d is 0 which occurs when C = U or when the 
triangle ABC is an isosceles one. This proves the theorem. 

Example 4. The Equi-bisector Theorem. A triangle with two equal interior bisec- 
tors is an isosceles one. 

This theorem is not at all trivial and has intrigued geometers of last century. Clearly the 
theorem follows from the following a little stronger theorem: 

A trzangle of unequal sades wzll have greater zntenor bzsector for smaller angle. 
The theorem in this strengthened from was in the first time proved by our general method 

of mechanical geometry theorem proving as a joint work of S.C.Chou and the present author 
(unpublished). The proof is again quite non-trivial. Cf. in this respect a popular pamphlet 
[W-L] in Chinese. Below we shall give a different proof based on the method of the present 
paper. 

Proof. Consider a triangle ABC with lACl > IBCJ. Let the bisectors of the angles A, B 
be respectively AE, BF with E on BC and F on AC. We have to prove that IAE( > IBFI. 

For this purpose let us construct an ellipse passing through C and having A and B a5 its 
two foci. Let the lengths of the sides AC, BC be respectively S b ,  s,, the lengths of AE, BF 
be respectively da,db  and do = d: - d z .  Let us take coordinates such that the equation of 
the ellipse is 

x2 Y2 
- + - = 1 ,  while 
u2 b2 
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The points E,  F will be so determined that and 
set of equations H S  = {h l , .  . . , hlo} = 0 with hi given below: 

= #. Then we have a 

hl = y2  * a2 + x2 * (a2 - c2) - a2 * (a2 - c2), 
h2 = a * s, - ( a 2  - c * x), 
h3 = a * Sb - (a2  + c * x), 

h5 = y ,  * (s* + 2 * c) - 2 * c *  y ,  
h4 = -5, * Sb - 2 * X, * C t  Sb * C +  2 * 2 * C,  

h~ = d i  - (x, + c)' - y:, 
h7 = - 5 b  * Sa - 2 * X b  * C - S, * C +  2 * 2 * C, 

ha = yb * (S, + 2 * C) - 2 * C * '7J, 
hg = dz - (zb - C)' - yz ,  

hlo = dg - dz - do. 

Let U and V be the points (a,O) and (0 ,b)  on the ellipse. As before let us consider C 
not as a fixed point but a point varying on the closed arc UV on the ellipse. Then we come 
to the problem of optimizing do in the domain D defined by 

0 5 x 5 a,O 5 y 5 b, 

for which optimal values of do should exist. Again as before let us split the domain D into 
3 open ones 0 1 , 0 2 , 0 3  corresponding to 

0 < x < a ,  0 < y < b; (5, y )  = (0, b);  and (2, y )  = (a ,  0 ) ,  

respectively. For 02 and 0 3  the kernel sets are readily seen to be 

For the kernel set corresponding to 01 let us take the ordering of variables to be 

do 4 X < y 4 S, 4 Sb 4 2 ,  4 y,  4 da 4 xb + Yb 4 db. 

Then the char-set of H S  is found to be CS = { C l , .  . , Clo} with 

Ci = hi-1 f o r  i = 2 , .  . '10,  while 
Cl = x4 * do * c4 

+ 48 * x3 * cG * a  + 64 * x3 * c5 *a2 + 16 * x3 * c4 * a3 

- 8 * x2 * d o  * c4 * a 2  - 8 * x2 * d o  * c3 * a3 - 2 * x2 * d o  * c2 * a4 

- 64 * x * c6 * a3 - 128 * x * c5 * a4 - 112 * x * c4 * a5 

- 64 * x * c3 * a6 - 16 * z * c2 * a7 

+ 16 * do * c4 * a4 + 32 * do * c3 * a5 + 24 * do * c2 * a6 

+ 8 * d o  * c* a7 + do * a 8 .  
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The only initials and separants worthy of consideration are 

dC1 
i 3X  

I1 = do * c4,S1 = -, Sz = 2 * y * u2,S7 = 2 * d,, S ~ O  = 2 * db. 

Denote the IS-product of CS by ISP, then we have 

OIZero(HS) = O1Zero(CS/ISP) + O,Zero(HS + {do}) 
+ 01Zero(HS + {Sl}/do) + 01Zero(HS + {y}) 
+ 01Zero(HS + { d a } )  + O1Zero(HS + {db}). 

The set 01Zero(CS/ISP) has no contribution to the kernel set K1 for 01. It is clear that 
01Zero(HS+{y}) = empty. &om d, = 0 it would follow from c 7 ,  (36, C2 that y, = 0, y = 0, 
and x = u so that 01Zero(HS + {d,}) = empty. Similarly we have 01Zero(HS + {db}) = 
empty too. So it remains only to consider O1Zero(HS+ {do}) and OlZero(HS+ {Sl}/dO). 

Consider first the case do = 0. In the char-set of H S  + {do} the first pol is given by 

c,, = 3 * 5 2  * c3 +x2 * c2 * a  - 4 * c3 * a2 - 4 * c2 * u3 - 3 * c *  u4 - u5 

From C11 = 0 it would follow x < 0 or x > a. Hence we have again 

01Zero(HS + {do} )  = empty. 

Consider now the case of S1 = 0. In the char-set of H S  + {Sl} the first two pols are given 
by 

(22, = 32 * di  * c5 + 80 * di  * c4 * u + 80 * dt  * c3 * 
+ 40 * dt  * c2 * u3 + 10 * dt * c * u4 + dt * u5 
+ 2304 * di  * cg + 9600 * d i  * c8 * u + 16480 * d i  * c7 * u2 

+ 15376 * di  * c6 * u3 + 8462 * d i  * c5 * u4 + 2695 * d; * c4 * u5 
+ 408 * d i  * c3 * u6 - 14 * di  * c2 * u' - 14 * d? * c * u8 - dg * u9 

- 13824 * c13 - 62208 * c12 * u - 139392 * c l l *  u2 - 208448 * c10 * u3 

- 227584 * cg * u4 - 188672 * c8 * u5 - 120832 * c7 * u6 - 59264 * c6 * u7 

- 21760 * c5 * u8 - 5632 * c4 * u9 - 896 * c3 * u'O - 64 * c2 * a l l ,  

C22 = 48 * x * d i  * c6 + 88 * x * di  * c5 * u + 82 * x * di  * c4 * u2 

+ 53 * x * di  * c3 * u3 + 16 * x * d i  * c2 * u4 + x * d i  * c * a5 

+ 5184 * x * c10 + 18144 * x * cg * u + 27648 * x * c8 * u2 + 25248 * x * c7 * u3 

+ 15168 * x * c6 * u4 + 5664 * x * c5 * u5 + 1152 * x * c4 * u6 + 96 * x * c3 * u7 

- 16 * d i  * c4 * u - 32 * d i  * c3 * u2 - 24 * di  * c2 * u3 - 8 * d i  * c * u4 

- di  * u5 - 1728 * do * c8 * u - 6144 * do * c7 * - 8936 * do * c6 * u3 

- 6908 * do * c5 * u4 - 3064 * do * c4 * u5 - 768 * do * c3 * a6 

- 96 * do * c2 * u7 - 4 *do * c * u8. 

399 



14 Wu Wen-tsun 

From Czz = 0 we see tha t  do < 0 would imply x < 0. Hence in 01 any zero of 01Zero(HS+ 
{Sl} /do)  have i ts  do positive. In  particular K1, if not empty, is consisting of only positive 
values. It follows t h a t  the  final kernel set K = K1 + Kz + K3 is consisting of do = 0 and 
utmost other positive values and consequently 

Least K = 0 

which corresponds to the  isosceles triangle ABC with C a t  V .  For all other positions of C 
in arc U V  we should have IAEI > lBFl and the  theorem is thus proved. 
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1. The Problem. 

In the present paper we shall give a general method of solving the following 
surface-fitting problem in computer-aided geometry design (CAGD): 

Problem SF. Given in real 3-space R3 three sets of irreducible algebraic 
curves C;, C,, Ck with z' E 1,~' E J ,  k E K respectively, I ,  J ,  h' being all finite sets of 
indices. Given also two sets of irreducible algebraic surfaces S,, sk, ( j  E J ,  k E K) 
containing C,, Ck respectively. To determine an irreducible algebraic surface S of 
given degree m verifying the following conditions: 

(a) s contains all the curves c;, cj, Ck, for i E 1, j  E J ,  k E K .  

(b) s touches smoothly each of s,,sk along the curves C j , c k  respectively, 
for j E J ,  k E K .  More precisely, for each point on C, or Ck which is regular for 
c,, s, sj or for ck, s, s k ,  s and s, or s and sk have same tangent planes at  that 
point. 

(c) S possesses same curvature as sk along the curves Ck, for each k E K .  
Msre precisely, for each point on ck which is regular for ck, s and s k ,  s and sk 
will have the same (Gaussian) curvature at  that point. 

We may also replace (c) by other more stringent conditions, e.g. on conditions 
about normal curvatures, etc. which we shall not enter. 

The problem for the requirements (a), (b) and some further smooth require- 
ments have already been solved by Bajaj et a1 by the method of interpolation based 
on the theorem of Bezout and its extensions, cf. [B] and [B-I1,2]. We shali solve 
the above problem in all its generality based on some entirely different principle 
and method to be described in next sections. 
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We remark that in practice only real pieces of curves and surfaces C;, S,, etc. 
are actually given and only piece of real surface S is required. Our method bears 
however no influence on this restriction. 

2. Basic  Pr inc ip les  from Algebraic Geometry .  

We recall first some fundamental concepts and facts of algebraic geometry. 
Cf. e.g. [H-PI, [VdW], (WU1,2] as well as various papers of the author In MM- 
Res.Preprints, e.g. [WU3,4]. 

Let K be the basic field of characteristic 0, K“ the affine space of dimension 
n over K,  and X = ( ~ 1 , .  . . ,zn) with z; independent indeterminates. 

K. 

polynomials 

Def. Extended  p o i n t  in K” := point in K’n with K’ some extension field of 

Any extended point E = ((I,..., 6”) in K” may be represented by a set of 

P;=Ic,,o*z:; + I c ; , l  *z:;-1+... + I c ; , & ,  i =  l , ” ’ , r ,  (2.1) 

such that ( e l ) ,  (ez), ( e 3 )  below hold true: 

(e l )  O < c1 < ... < c,. 

( e 2 )  Ic;,j E K[zi;**,zc;-l]. 
( e 3 )  Let P,! be the polynomial get from P; by substituting ( j  for zj,j = 

1 , .  . I ,  ci - 1, then P;’ is an irreducible polynomial in the field K (  E l , .  . . , &;-I), 
and tCj is a root of the equation P;’ = 0 so that each equation Pi’ = 0 is the 
defining equation of Ecj. 

Def. The set of polynomials Pi in (2.1) forms an irreducible ax-set in K[X] 
and is called the def in ing  asc-set  of the extended point B = ( ( 1 , .  . . , En). 

Def. n - T := D i m e n s i o n  over K of the extended point with defining asc-set 
(2.1). 

Remark that different extended points may have same defining asc-set. 

Def. An extended point 2’ in K” is a special izat ion over K of an extended 
point Z in K” if for any polynomial P E K[X] with P(E) = 0, we have also 
P(So)  = 0. In notation: 

(2 .2 )  
c -‘K So. 

Notation. Set of all specializations over K of an extended point F in K” := 
S p e c ( B ) .  
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Ex. Let z l ,  x2 be independent indeterminates Then 

Remark. There is analogous conceFt of specialisaticn fcri piojcctitre sna.ces 
and products of affine and projective spaces. 

Zero(PS) of some Yolset P S  c K[Xj. 
Theorem 2.1. An algebraic mriety Zero(r"S) in K" is irreducible over K if 

and only if i t  possesses an extended poim C in TC" such that  nl! points 3f  ZsroiPSj 
are specicializations over K of that point E, in other words, if and cslv if for mizr 
extendeti point 2 in K*, 

Def. An a f i n e  algebraic uariety or simply a uarkty in I<" := zero-set 

Zero(?S) = S p e c ( 2 ) .  (2.3) 

Def. The extended point 5 in M" verifying [2.3) := a generic point of ;hc 

The abcve thecrern can then be re-phrxed as 

iheorern 3.2 ' .  An algebraic variety in X" is iireducibie aver X if znc! >n? 

irreducible variety Zero( PSI. 

m 

if it has a generic point over X. 
DeI. For an irreducibie asc-set I R R  let 5 be any extended ?oini with 1912 

3s defining asc-set. Then the algebraic variety SpectE) depends on!y on I Z R  2nd 
will be called the a l g e b x i c  var ie ty  associated ;o I i lR .  In notation: Vur[ l , ' lR]  : 

V a r [ I R . R ]  = S.>ec(Z). {:.Lij 

Remark. We have 
VUTiIiZR] c Zero(IRn"), 

but in general 
V a r [ l R R ]  # Zero(.i)ZRj. 

For this reason we use square bracket, [ j for the associated variety but not the 
?arenthesis ( 1 to avoid confusion. 

Def. Dimension of an irieducible aigebraic variety := dimensior. of its generic 
Toint. 

From the above we see that an irreducible algebraic variety is ccm>!eteiy 
iietermiaeC by anj7 one of its generic points which in turn is in correspondence 
to its dekning irreducible asc-set Sence irreducible algebiaic varieties, generic 
points, and irreducible asc-sets may be considered as equivalent concepts which 
are different, reyqesentationz of same geometry entity. 
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Theorem 2.2. For K the real field R a generic point of an irreducible 
algebraic variety is a simple point of that variety, i.e. a point at which the variety 
will have a well-defined tangent space of same dimension as that of the variety. 

In accordance to the terminologies of differential geometry, such a simple point 
is a regular point of the real algebraic variety. 

Theorem 2.3. Let E in K" be a generic point of an irreducible algebraic 
variety Zero(PS)  over K with defining irreducible asc-set IRR.  Then for any pol 
P we have 

P ( 3 )  = 0 <===> Remdr(P/IRR) = 0.  (3.5) 

Moreover, if a pol P in K[X] is reduced w.r.t. the irreducible ax-eet IRR.  then 
P(E)  # 0. 

3. The Methods. 

Let K = R be the real field and let n = 3 so that we are considering real 
curves and real surfaces with real traces in the ordinary real space R3.  Let us 
replace 3 1 ,  z2, z3 by the usual z, y, z with the ordering 

z < y < 2 .  

Then an irreducible algebraic surface in R3 will be defined by an equation P = 0 
irreducible in R where P is a real polynomial with leading variable either z or y or 
x. If the leading variable of P is z, then P is necessarilly linear in x and the surface 
is a plane z = const. On the other hand an irreducible algebraic curve in R3 will 
be defined by an irreducible asc-set IRR  = { Pl,P,}. The leading variables of 
PI, Pz will be either z, y or z, z or y, z. In case the leading variable of P1 is z, then 
P1 is necessarily linear in z so that the curve lies wholly in some plane z = const.  
Remark that the irreducible curve C determined by the irreducible asc-set I R R ,  
is in general different from the curve Zero(IRR),  which is in general reducible. 

In what follows let C be an irreducible algebraic curve with generic point de- 
fined by the irreducible asc-set IRR  = { P I ,  P2) and S ,  S' be irreducible algebraic 
surfaces defined by P = 0 and P' = 0 respectively all in R3. 

From theorems in Sect 2 we have now the following 

Theorem 3.1. The surface S will contain wholly of C if and only if 

Remdr(P/IRR) = 0. (3.1) 

Proof. Let E be a generic point of C. Then by Theorem 2.3 (3.1) is equivalent 
to P(E) = 0. For any point Eo of C we would have then P(Eo) = 0 so that C c S .  
This proves the theorem. 
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Theorem 3.2. Suppose that C is contained wholly in S and also in S‘ but is 
not contained wholly in the singularity part of S or S‘. Set P, = E, Pi = e, a, etc. 
and form the pols 

D1 = P, * Pi - Py * PL, 

0 2  = P, * Pi - P, * PL, ( 3 4  
0 3  = Py * PL - P, * Pi.  

Then S and S’ will touch smoothly along C .  

Remdr(D;/IRR) = 0 ,  f o r  i = 1 , 2 , 3 .  (3.3) 

Proof. Consider a generic point Z = ((,o,c) of C .  Then E is a simple or 
regular point of C. As C is not wholly contained in the singularity part of S ,  B 
is a simple or regular point of S ,  or P,, P y ,  P, are not all equal to 0 at  the point 
2. Similarly PL, P i ,  P; are not all equal to 0 at the point 5 .  The normal of S 
at E is then well-defined and has its direction cosines proportional to the values 
of P z ,  Py, P, at 5 not all 0. Similarly the normal of S’ at E is also well-defined 
and has its direction cosines proportional to the values of PL, P i ,  PL at E not all 0. 
The surfaces S ,  S‘ will have same tangent plane at 2 if and only if (P,, Py ,  P,) at 
B is proportional to (PL, P i ,  P i )  at E or if and only if Di = 0,i = 1 , 2 , 3 ,  at E, or 
(3.3) by Theorem 2.3. This will imply then Di = 0 at  all points E o  of C which are 
regular for all of C ,  S ,  S’. This implies in turn that S ,  S’ will have same tangent 
planes at  all such points Bo.  Hence S will touch smoothly S‘ along C and the 
theorem is thus proved. 

Lemma. For the irreducible algebraic surface S given by P = 0 the curvature 
K at a regular point is given by 

V 
H2 

K =  -, where (3.4) 

H = Pz + Py’ + p,”, 

- 2 * P, * Py * PZY * P,, - 2 * P, * P, * PZE * Pyy - 2 * Py * P, * Pyz * P,, 
+ 2 * P, * Py * P,, * Pyz 4 2 * P, * P, * Pzy * Pyz + 2 * Py * p, * Pzy * P,, 
- P,2 * Pi,  - P,” * P,2, - P,” * Pz”y. 

(3.5) 

v =P,, * Pyy  5 P,’ + P,, * P,, * Py‘ + Pyy * Pzz * P,” 

(3.6) 
In H and V all the partial derivatives P,, Pzz = s, e tc .  take values at  that 
regular point. 

Let C,S,S’  be w before which satisfy the conditions in 
Theorem 3.2. Then S ,  S’ will have same curvatures at  points regular to  C, S, S’ if 
and only if 

Theorem 3.3. 

( 3 . 7 )  Rerndr(H2 * V‘ - * I‘lIRR) = 0. 
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in (3.7; B' 2nd V'  arz p d s  lor -PI similar to -:I and V Tor P 

Proof. FrGm (2.7) we have by Tiieozem 2.3 

at a generic point af S .  ( 3 2 )  wi!l then h2id [or m y  point regiriar to C, S ,  S'. Now 
a t  such a 2oint i-I # 0, *4' # 0. Hence from (3.9) w e  have .c = ,d at a!l such points 
where x. and n' are the corresponding cxivatures or' S and S'. The converse is 
clearly true and the theorem is tnus proved. 

Our method of solving the Problem SF may now be described as fo:lows. 

For the irreducibile s!geDraic surface S of degree m defined by P = 0 let us 
write xow P in the form 

in which C, is to be extended over tripks (i,j, k )  verifyiag 

Wc snal! denote by C, the set of a!: u,,* verifying (3.1~1). 

Zcr,sider the conditions that S contains a a whole the irreducible aigebraic 
Let X = c u ~ v e  5' with generic point defined by the irreducible asc-set i R R .  

;z,y,z) be such a generic point. By Theorem 3.1 the conditions become 

R = flen;dr(?/IRR) = 3. (3.ii) 

Let the polset forrntd of the coeficiems 3f varicus power-ljroducts of z.y,z in R 
be LrSa C R\Um].  Then the condition (3.:?) is identical to ;he conditions 

us, = 3. (3.12) 

T. $or h e  requirement (aj in Probien: SF let us forin, in accordance to  US, 
of (3 .121 ,  the polsets liS,;,US,j,US,k for each of the I:.iiiYes C;:Cj :Ck.  Sim- 
i!arly h c  the requirernent (6) in ?roblem SF Theorem 3.2  will give us polsets 
L'Sbj, USbk and far the requirement (c) Theorein 3 .3  give us po!sets US,k whose 
vszishinng are the corresponding con.iYitions 'so be veriged. Xen-ark that  all pols 
in Ers,i, 3saj, vsak, usbj, us5!: are linear in the u ' s ,  while those in cs,i, are in 
general non-!inear in the d s .  Cclinbiaiiig m 5 v  sii t h e  above po!sets into a single one 
U S  C: 'R[U,i, then all possibie solutions S verifyir,g b; le  reqxiremxits 31' PTob!rm 
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SF are furnished by the real zeros of Zero( US). In next section we shall give some 
examples to  illustrate the above method. 

4. Examples. 

A general cubic surface S in R3 is of the form 

3 2  f ( z , y l  a) EU300 * % + z * (u210 * y f u20l * Z + u200) 

+ .% * (11120 * y2 + u111 * y * z + Ul02 * ZZ + UllO * Y + u101 * + %OO) 

+ UO20 * y2 + uo11 * y * z + uoo2 * 5 

+ ~ 0 1 0  * y + UOOl * z + uooo = 0’ 

+ uO3Q * y3 f uO21 * y2 * Z + uOL2 * y * Z2 + 11003 * z3 
2 

( 4 4  
in which the u’s are all in the real field R. We give below some examples illustrating 
our method of determining such cubic surfaces S meeting some requirements as 
described in Sect 1. 

Ex.1. In R3 consider two circular cylinders CYLl,CYL? with z-axis and 
y-axis as their axis and two circular sections C1, Cz by planes orthogonal to these 
axis respectively. Then these circular sections will have generic points with defining 
asc-sets AS1 = {C1l,C1~},ASz = {C21,Czz} given by 

C11 = z - dl, C12 = z2 + y2 - r f ,  ( 4 4  

(4.3) 
2 C21 = y - dzl C22 = z + z2 - r;. 

The two circular cylinders are given by equations Cl2 = 0, C22 = 0 respectively. 
Naturally we shall assume that dl dz, rl, rz are all non-zero. We now ask for the 
determination of such cubic surfaces (4.1) which will contain the circles C1, C2 and 
touch the cylinders CY L1, CY L2 smoothly along these circles. 

Our method gives now a set of 28 equations in U3 for the solution. It is readily 
found by the package wsolue of D.K.Wang of MMRC implemented in the MAPLE 
system of some SPARCS that such solution will exist only if 

r: + df = r: + d;. (4-4) 

In that case the only possible cubic surface is then given by 

z2 * (y * d2 + z * d l  - d i  - d:) + (y3 * d2 + z3 * d l )  

+ y * z * (y * d i  + z * d2 - 2 * d 2  * di) - (y2 + z*) * (d; + d:) 

+ y * d2 * (df - r:) + z * dl * (d; - r i )  
+ (r: + d:) * ( r ;  + d i )  - 2 * d: * d i  = 0. 

(4.5) 
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Compare for this example [B-111 Ex.5.2. 

Ex.2. Consider besides circles C1, C2 as in Ex.1 a third circle C3 with center 
on z-axis and orthogonal to that axis. Let the defining asc-set of a generic point 
of C3 be {C31,C32} with 

C31 = y2 + z2 - tz, C32 = z - d3. (4.6) 

As before we assume that all di, t i  are non-zero. Suppose first that these d i ,  t i  are 
otherwise arbitrary. Then our method shows that the only cubic surface containing 
all the 3 circles is the trivial one which degenerates into 3 planes containing the 3 
circles respectively. If the d; ,  r; satisfy the relation (4.4) but otherwise arbitrary, 
then besides the trivial surface of 3 planes, there are the only surfaces which 
degenerate into the plane e = d3 containing the circle C3 and one in a family 
of quadrics through the circles C1, C2 given by the equation below, u being a 
parameter, 

Suppose now there exists the relation 

between d i ,  t i  but otherwise arbitrary. Then clearly the sphere of center the origin 
and radius Ikl will contain all the 3 circles C;. Together with an arbitrary plane, 
there will be a family of co3 degenerate cubic surfaces containing all the 3 circles. 
However, our method shows that there are in fact 4 families of 032,003,co3,004 

cubic surfaces containing the 3 circles. The cubic surfaces consisting of.the sphere 
and an arbitrary plane form only a subfamily of the family of co4 surfaces. In fact, 
the last family is defined by 15 equations and depends on the parametric ratios 
uloo : u002 : uolo : uool : ~000. Setting uoll = 0, then we get ul l l  = u110 = 
ulol = 0 too and the other equations show that the family degenerates into the 
subfamily of co3 degenerate cubic surfaces consisting of the sphere e2 +y2 +z2 = k2 
and the plane uloo * z + uolo * y + uool * z + uooo = 0. 

Our method shows that the above are the only possible cubic surfaces which 
contain the 3 circles. As each non-degenerate family of cubic surfaces given above 
depends on several parameters, we may determine, if we like, such ones among 
them which will meet further requirements as in Sect 1 by our method. However, 
if CYLi are the cylinders with z ,y ,z  axis as axis and bounded by C;,i = 1 , 2 , 3  
respectively, then in view of the form of (4.5), there cannot exist any cubic surface 
containing all the 3 circles and touching smoothly the 3 cylinders along these 
circles. 

The above two examples concern curves like circles and surfaces like circular 
cylinders which are easily parametrized. With such parametrizations the problems 
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in these examples can be dealt with by other known methods, cf. e.g. [B-111. 
However, curves and surfaces are generally non-parametrizable except in the very 
rare case of rational ones. This is already so for general cubic curves and cubic 
surfaces. The following is such an example which cannot be treated by means of 
parametrizat ions. 

Ex.3. Let f l(z,y,z) and fz(x,y,z)  be as f ( x , y , z )  in (4.1) with coefficients 
u ; j k  replaced by a;jk and b;jk respectively. Let S1,Sz be the irreducible cubic 
surfaces defined by f l  = 0 and f2 = 0 respectively and C1,Cz be the irre- 
ducible cubic curves having generic points with respective defining asc-sets IRRl  = 
{y,gl},IRR2 = {gz,z}, where g1 = fl(z,O,2),g2 = fz(z,y,O).  Our problem is to 
determine cubic surfaces S as in (4.1) which will contain both C1 and C2 and meet 
eventually further requirements. Now C1, C2 will intersect the z-axis y = z = 0 in 
points with z-coordinates given by the respective equations 

3 2 
a003 * z + a002 * + a001 * z f a000 = 0,  

(4.9) boo3 * z3 + boo2 * z2 + boo1 * x + boo0 = 0. 

For a cubic surface S containing C1,Cz to  exist it is necessary that these two 
triples of intersection points should be the same. So we assume at  the outset that 

a003 = b003, a002 = bOO2, =OOl = 6001, a000 = b000. (4.10) 

For the sake of simplifying the computations we shall assume that the coincident 
triple of intersection points will none of them be the origin or the point at infinity 
on the z-axis so that 

a000 = boo0 # 0, a003 = boo3 # 0. (4.11) 

We assume further that neither the z-axis will be asymptotic to the curve C1 nor 
the y-axis will be asymptotic to the curve C2 so that 

a300 # 0, b030 # 0. (4.12) 

Under the conditions (4.10)-(4.12) our method, in applying the package wsolue 
, shows that the only cubic surfaces S of (4.1) containing the the two cubic curves 
will form a family of m4 cubic surfaces depending on the parametric ratios ullo : 
11111 : 11120 : 11210 : 11300 and are defined by, besides (4.10), the equations below: 

(4.13) 
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We may determine subfamilies meeting further requirements by our method if 
required. Complete set of families of cubic surfaces containing the two cubic 
curves with some of the intersection points at infinity or (4.1) not observed have 
also been determined. 

Further much more complicate examples have been treated by D.K. Wang. 
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Abstract T h e  d e t e r m i n a t i o n  of c e n t r a l  c o n f i g u r a t i o n s  in p l a n e t  
m o t i o n  m a y  be reduced  t o  a p r o b l e m  of p o l y n o m i a l  e q u a t i o n s - s o l v i n g .  W e  
d e t e r m i n e  t h u s  t h e s e  c o n f i g u r a t i o n s  in t h e  case  of t h r e e  p l a n e t s  b y  t h e  
c h a r - s e t  m e t h o d .  It s h o w s  t h a t  t h e  o n l y  s o l u t i o n s  a r e  t h e  c las s i ca l  o n e s  
d u e  t o  E u l e r  a n d  L a g r a n g e .  T h e  s a m e  m e t h o d  p e r m i t s  a l so  t o  d e t e r m i n e  
t h e  r i g i d  c o n f i g u r a t i o n s  f o r m e d  by t h ree  para l l e l  f i l a m e n t s  in a n  i n c o m -  
p r e s s i b l e  n o n v i s c o u s  f l u i d  e z t e n d i n g  t o  i n f i n i t y  m o v i n g  u n d e r  t h e i r  o w n  
i n f l u e n c e s .  

1. Central Configurations in Planet Motions. 

Notations 1.1. 

J,, := {1,...,n}; 

J: := { ( i , j )  I i , j  E J,,,i # j } ;  

ml, .  . . ,mlL := masses of n particles moving under mutual Newtonian grnvi- 
tational attractions. 

r l ,  . . . , r,, := positions of these masses at a certain momemt, with ri # rj for 
i # j .  

[ m1 y: " '  "..I := a c o n f i g u r a t i o n  formed of masses mi at positions 
r,, . . .  1-1 

L ,  7 ,n. r .  i = 1 . . .  

Definition 1.1. The configuration m1 mz ' ' .  m ? ~  J is a r i g i d  con f igura -  

t i o n  (respectively a c e n t r a l  c o n f i g u r a t i o n  with respect to the masses m l , .  . , m,, := 
There are initial velocities of the masses mi such that under the Newtonian grav- 
itational attractions the configurations formed by the masses during the motion 
will remain c o n g r u e n t  (respectively s i m i l a r )  to the initial one. 

i r1 r2 . . r,, 
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As a direct consequence of7Newtonian mechanics for a rigid or a central con- 

the center of mass of the masses ml,.  . . , m7, may 
m7c rtc 1 ml m2 . . .  

rl r2 . . .  figuration 

be considered to be fixed during the motion. 

Definition 1.2. An i n e r t i a l  coordinate  s y s t e m  associated to a rigid or a 

:= A Cartesian coordinate system for 
mtL r 7 L  1 ml m2 ... 

r1 r2 ... central configuration 

which the origin is at the fixed center of mass of the masses ml , .  . . , m7L. 

Again as a direct consequence of Newtonian mechanics, we have the following 
proposition: 

rl r2 . .  . Proposition 1.1. For a rigid or a central configuration 

we have in any associated inertial coordinate system 

Definition 1.3. Two rigid configurations with respect to same masses m l , .  . ., 
m7& belong to the same c a n f i g u r a t i o n  class := they have same center of mass and 
there exists an orientation-preserving similarity transformation which keeps the 
center of mass fixed and tranforms one configuration to  the other. 

Some Historical Account about Central Configurations. 

Clearly a rigid configuration is also a central configuration with same set of 
masses. The converse is known to be true, see e.g. [Wint], Sect.355-382. It follows 
that a central configuration determines a class of rigid configurations and vice 
versa. 

In what follows only inertial coordinate systems are considered 

Notations 1.2. 

q3(n) = q3(n;ml,...,m,,) := niimber of classes of rigid configurations with 

q2(n) = q2(n;ml,...,m,,) := number of classes of rigid configurations with 
given masses m l , .  . , m7, for which the masses m, are situated in the same plane. 

~ ( n )  = ql(n;ml, . . . ,m,,)  := number of classes of rigid configurations with 
given masses ml ,  . . , mlL for which the masses mi are situated in the same line. 

Remark 1.1. Our notations differ from those of Wintner in his book [Wint] 
in that 44, q3 of that book correspond to q 2  - q I , q 3  - q2 here. 

Results known. For given masses ml ,  . . , m,, we have: 

given masses ml, . . . , m7,. 

q l ( 2 )  = q 3 ( 2 )  = 9 3 ( 2 )  = 1; 

q1(3) = 3. (Euler 17G7); 
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qZ(3) = q3(3)  = 4. (Lagrange 1772); 

ql(n) = $. (Moulton 1910); 

q 3 ( n )  > qz(n) for each n > 4 with some particular sets of ml, ... ,mrL. (Wald- 

It is clear that 

I 

vogel 1972). 

Q1 (n;  m1, .. . , mn) I d n ;  m1,. * * , mlL) 5 q3(n; m1,. * * , m J .  (1.2) 

It is known that q1  (n; ml, . . . , mlL) is finite for all n and masses ml,  . . . , m7L owing 
to the results of Moulton. 

W i n t n e r  Conjec ture .  qS(n;ml,...,m,,) and hence also qz(n;ml, . . .  ,mlL) 
are finite for all n and masses ml , . . . , m,, . 

In recent years Smale and his followers have studied central configurations 
with topological methods via Morse critical point theory. See e.g. [Sm1,2]. It 
seems that Wintner's conjecture remains open. In this section we shall restrict 
ourselves to the actual determination of rigid or central configurations in treat- 
ing it as a problem of polynomial equations solving. For this purpose we shall 
adopt an inertial coordinate system associated to the rigid or central coniigura- 

tion and the following notations will be used: 
m7~ rlL I ml m2 ' . .  

rl r2 . . .  
Nota t ions  1.3. 
[ 
r, = ( x p , y z ) , i  E J T L ;  

2 2 3  = 2% - xjr Yz3 = Y1 - Y], ( i , J )  E A?; 
TZj = & +& ( i , j )  E J,". 

F.andarnenta1 Equat ions ~ O T  R i g i d  C o n  f . iguTations.  

in a plane it is known that 

during the motion the plane will be fixed to keep the configuration congruent to the 
original one, cf. [Wint] again. Take now planar inertial coordinate system ( x , y )  
with origin 0 at the center of mass. Then the configuration will move around 0 
with an angular velocity w such that 

m7L rn i ml m2 . . .  
rl r2 . . .  For a rigid configuration 

Up to factors mitheright - handsides  represent the total Newtonian attractive 
forces exerted on the mass mi by all the other masses, while the left-hand side 
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represent the corresponding centrifugal forces. The equations (1.3),, show in par- 
ticular that w is a constant. Furthermore, the equations are invariant under 
orientation-preserving similarity transformations with origin keeping fixed.* The 
constant w may then be changed. 

We have assumed rij # O , ( i , j )  E JK, which means that collisions are out of 
consideration. The determination of rigid configurations and hence also central 
configurations amounts then to the solving of polynomial equations obtained from 
(1.3),1 by clearing of fractions. TO achieve this we shall introduce some preliminary 
transformations of (1.3),1 to make easier the solving. 

Let us take the complex number field C as the basic field and introduce 
complex variables ui, v;, z i j ,  w;j as follows. 

U ;  = x i  + i * y ; ,  v; = x i  - i * yi ,  i E J,,, 

From (1.3) we have now the following set of polynomial equations: 

To these we may also add 

Ci mi * u; = 0 ,  
Ci mi * vi = 0 ,  

which follows from (1.1) or (1.3). 

Remark 1.2. In the above eqiiations C is to be extended either on i E J,, 
or ( i , j )  E " J , ~  as is evident from the context and the variable T is introduced to 
render the equations homogeneous in the relevant variables. 

Remark 1.3. In the above equation ui ,v i ,  etc. should satisfy the following 
conditions to  meet the reality of the situation: 
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mo,ml,  ... ,m, are all real numbers, with mo < 0,mi > 0,i  E J,L.  
Actually T = 1, and all ~ ; j , ( i , j )  E J,",, are real and positive. 

u ; , q  for i E J,,, are conjugate complex numbers, i being p. 
z;j # O,w;j # 0, for ( i , j )  E J,",. 

Definition 1.4. 
rl r2 .. . rll ... 

For a rigid or central configuration 

reality conditions := the conditions in Remark 1.3. 

Determination of Rigid or Central Configurations for n = 3. 

The determination of rigid or central configurations for n = 2 is trivial. Let 
us proceed to  the case n = 3 which amounts to the problem in the example below. 

Example 1. To solve the system of equations (1.5)3 - (l.8)3 for the variables 
u;,v;,mo,r;j with i E 53,(ij) E 5: in terms of the parameters mi,i E 5 3 .  

For the solving let us first replace the variables '112,213 I 0 2  I v 3  by u12, ~ 1 3 ,  u12, 0 1 3  
in setting 

so that 

U 2 3  1 U13 - U 1 2 ,  0 2 3  = 0 1 3  - 012. (1 . lo)  

To solve (1.5)3 - (l.8)3 is then easily seen to be equivalent to the solving of the 
system Q S  = 0 below for v a r i a b l e s ~ ~ , ~ ~ ~ , ~ l 3 , ~ ~ , ~ ~ ~ , ~ 1 3 , m ~ , ~ ~ ~ , ~ ~ 3 , ~ ~ 3  in terms 
of known parameters mltm2,m3. Here QS = {ql,...,qg} with 
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(1.11) 

qo = (vi3 - v12) * ( u 1 3  - ui2) - 7'43. 

Remark that the reality conditions have to be observed. In particular y12, T ~ ~ ,  T ~ ~ ,  

mo, ml,  m2, m3 are all non-zero. Let N Z  be the product of all these non-zero vari- 
ables and parameters. Then the problem is reduced to  the determination of 

(1.12) 

in which ( T C )  means that the zeros are restriceted to those for which the reality 
conditions are observed. 

To determine (1.12) let us first arrange the variables and parameters involved 
in the following order: 

Let us apply now the Replacement Rules in replacing q 2 ,  q3 by the remainder q lo  
of q3 with respect to q3 and the resultant q 1 1  of q? and q3. The resultant ql l  has 
an index set [57 mo 31 while q l o  is of the form 

410 = v13 * 9 0  + v12 * h0, (1.14) 

where go, ho have index sets [12 mu 21 and [S  mu 21 respectively. Similarly, let us 
replace q 5 , q G  by the remainder 412 of 4 5  with respect to q~ and the resultant q 1 3  

of q5 and qq.  It turns out that q13 is the same as 411 so that it may be removed 
while q I 2  is of the form 
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Forming remainders of qa with respect to q 1 0 1 q 1 2 , q 7  in eliminating 0 1 3 , ~ 1 3 , 0 1 2  

successively we get a pol q14 which may be factored as 

(1.16) 

It follows from 414 = 0 that either f a  = 0 or f b  = 0. Form next the remainders of 
q9 with respect to  q 8 , q 7 ,  q1o,q12 we get a pol 415 of the form 

Consider first the case f a  = 0. Then after reduction it turns out that qls will be 
factored into three factors f a i , i  = 1 ,2 ,3  as shown below: 

(1.18) 

Consider next the case f b  = 0. Then q15 after reduction will be factored into 
factors f b i , i  = 1 ,2 ,3  given below: 

(1.19) 

It follows that Zero(,,.(QS/NZ) is inchded in the union of Zero(T,)(ASl /NZ) 
and Z e T o ( , , ) ( B S k / N Z )  for k = 1 ,2 ,3  in which 

It is easy to see that this inclusion is actually an identity so that we have 

In (1.21) the union is to be extended over k = 1 ,2 ,3  Let us denote for simplicity 
the six zero sets in (1.20) by Z A k  and Z B k  respectively. Then owing to the reality 
csnditions f a 3  # 0 so that we have 
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(1.22) 

On t h e  other hand by our general method we have 

In (1.23) CS,k = { c u ~ ~ , ~ ~ ~ , c u ~ ~ } , ~  = 1 , 2  are triangulated or asc-sets with pols 
cuk i ,  i = 1,. . . ,8 given below: 

(1.24) 

(1.25) 

and  cUZk same as calkl for 7c = 5 , 6 , 7 , 8  From ~ ~ 1 2 ~ ~ ~ 1 3 ,  c a z 2  it  is readily seen that  
ZAl givesthe central configuration of Lagrange while Z A z  gives that  of Euler for 
which the particles mi, m2 , m3 are collinear with ml lying between m2 and m 3 .  

In particular, c,z1 gives a quintic equation in a which has one and only one real 
solution positive owing t o  the  reality conditions as originaly given by Euler. 

~ 1 2  
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The sets ZB1 = Zero(,,)(BS1/NZ) coincides with Z A l  = Z e r o ( , , ) ( A S 1 / N Z )  
and the sets ZBk = Zero(,,)(BSe/NZ),Ic = 2 , 3  are similar t o  ZAz = Zero(,,) 
( A S 2 / N Z )  which correspond to the other two collinear central configurations of 
Euler. 

The set of all possible central configurations in case of n = 3 is thus completely 
determined which is consisting of the classical ones due to  Euler and Lagrange but 
no others. 

2. Rigid Configurations in Vortex Motions .  

Consider now vortex movements in an incompressible and nonviscous fluid 
extending to  infinity. 

Notations 2.1. 

Fll  ... , F,, := n parallel rectilinear vortex filaments moving under their own 
influences. 

K l , .  . . K,, := strengths of the n vortex filaments Fi. 
P := a fixed plane perpendicular -to all the n filaments Fi with a coordinate 

system (z,y). 

origin 0 to that trace. 
rl l . .  . , r,, := traces of vortex filaments F; on the plane P, or vectors from the 

e := unit vector orthogonal to the fixed plane P.  
~ i j  := distance between the parallel filaments F; and Fj. 

I C z  ' " := vortex configuration of the n filaments Fi. 
rl r2 . . .  r,, 

Hypothesis K. 

Under Hypothesis K it is known that there will exist a c e n t e r  in the finite 
part of the plane P such that, if the center is taken as the origin 0, then we will 
have 

ci Ic; * zi = 0, 
ci ki * yi = 0. (2.2) 
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Consider now a vortex configuration 

Definition 2.1. 

[ :: m2 ' ' ' "'1 is afized configuration := the configuration remains fixed 

Definition 2.2. 

r2 ... r1.. 

during the motion under its own influences. 

is a rigid configuration := the configuration remains con- [:: :; . ' '  ... "..I r71 

gruent to the original one during the motion under its own influences. 

Remark 2.1. There is no analogue of fixed configurations for particles mov- 
ing under mutual Newtonian attractions. 

Some Elementary Properties of Rigid Vortex Configurations. 

will be a vortex configuration verifying Hypothesis Below [ :: 
K so that the center of the system exists which is taken to be the origin of the 
coordinate system. 

Propos i t ion  2.1. For a rigid vortex configuration which verifies Hypothesis 
K the whole configuration will rotate about the fixed center with a uniform angular 
velocity. 

Proof.  Let the origin 0 be at the fixed center. Let us denote by 2 the 
angular velocity about 0 of the whole rigid configuration at time t .  Then the 
velocity vi(t) of i-th filament at time t will be 

k2 r2 . . .  . . .  "..I rrL 

Now the velocity of filament Fi due to filament Fj at time t is given by 

Hence the velocity of Fi at time t is 

Comparing the two expressions of vi(t) ,  we get 
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As r ; ( t )  differs from ri(0) = ri by a rotation independent of i ,  we see that c ( t )  is 
independent of 2. Hence = & is the uniform angular velocity of the whole 
rigid configuration as to be proved. Moreover we have 

Remark 2.2. From the proof we see that c = 0 corresponds to the case of a 
fixed vortex configuration. 

Proposition 2.2.  For a fixed vortex configuration it is necessary that 

C;+j k; * k j  = 0. (2.4) 

Proof. From (2.3) we get 

As c = 0 for a fixed vortex configuration, we get (2.4). 

F u n d a m e n t a l  Equat ions o f  Rigid V o r t e x  C o n f i g u r a t i o n s .  

From (2.3) we get 

Let us introduce u;, vi, z ; j ,  wij  as given below: 

TLen (2.5),, Vill be transformed into the equations below: 
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(2.9)?, T . . - T . . - O  3z - , z;j + zj ;  = 0, w;j + w j ;  = 0. ( i , j )  E J:. 

To these we may also add 

The variables and parameters involved in (2.7)7L - (2.10)7L are subject to some 
reality conditions,  viz. 

kl,... , k,, are real and non-zero, and ICO is real. 

u ; , ~ ; ,  are complex conjugates for i E J,,. 

~ ; j  are real and positive, for ( i j )  E J,',. 

u ; j , v i j , z ; j ,w; j  are all non-zero, for (ij) E J?',. 

T is actually equal to  1. 

Determinat ion of R i g i d  Vortex. Conf igurat ions  in Case  of  n = 3. 

In comparing (2.7), ,  - (2.10)1L with (1.3),, - (1.8)?, we see that the deter- 
mination of rigid vortex configurations will be analogous to that of rigid planet 
configurations. Consider in particular the case n = 3 or the problem below: 

Example 2. To solve the system of equations ( 2 . 7 ) ~  - (2 .10)3 for 
variables u i , ~ ; , k O , r ; j  with i E 53,(ij) E 532 in terms of the parameters k ; , i  E J3. 

For fixed configurations we have ko = - c  = 0 and the solving is quite easy. 
So in what follows we shall consider only the case ko # 0. 

For t l h  purpose let us replace as before U ~ , U ~ , V Z , V ~  by ~ 1 2 , u ~ 3 , ~ 1 2 , ~ ~ 3  by 
means of (1.9), (1.10). Then the solving of ( 2 . 7 ) ~  - (2.lO)3 is equivalent to the 
solving of QS = 0 under the relevant reality conditions where QS = (41, .  . . , q 9 }  

with gi given below: 
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(2.11) 

We have to determine 

in which ( T C )  means that the zeros should be chosen among those verifying the 
relevant reality conditions and NZ is the product of the non-zero variables and 
parameters ko, kl, k2, k 3 ,  T I ? ,  ~ 1 3 ,  ~ 2 3 .  

Proceed now as in Example 1 we get finally the result below: 

Zero( , , ) (QS/NZ)  = u Zero( , , ) (CSk/NZ) ,  (2.13) 
k = l , 2 , 3 , 4  

In (2.13) we have csk = { c ~ I , . . .  , c k 8 )  for each k with ck, given below: 

(2.14) 
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and c2i same as cl;, for i = 5,6,7,8.  The polsets CSs, CS4 are similar to CS2.  The 
zero-set of CS1 is analogous to the Lagrange case while those of CS,, CS3,  CS4 
are analogous to the Euler cases of planet motions. 

Remark 2.3. As JC1,IC~,IC3, though non-zero, may be either positive or neg- 
ative, so from cZ1 = 0 we will get either none, or 1, or 2, or 3 positive real roots 
for the corresponding rectilinear vortex motions, in comparing with the single one 
rectilinear planet motion in that case. 
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Abstract. The char-set method of polynomial equations-solving is naturally extended to 
the differential case which gives rise to an algorithmic method of solving arbitrary systems 
of algebrico-differential equations. As an illustration of the method, the Devil's Problem 
of Pommaret is solved in details. 

Key words. Algebrico-differentia1 equations, (Differential) Zero-decomposition theorem, 
Riquier-Janet theory and method, integrability d-polynomial, compatibility d-polynomial, 
Pommaret's devil problem. 

I Introduction 

Let y , u j , j  E J ,  be infinitely differentiable functions in independent variables X = { X k , k  = 
1 , 2 , .  ' .  .n}. A polynomial in various derivatives of y and uj with respect to  Z k  with coefficients in 
the differential field of rational functions of X will be called an  algebrico-di;gerentiaZ polynomial. 
Suppose given a finite system of such polynomials DPS = {DP, I i E I } .  Let us consider the 
associated system of partial differential equations of y with uj supposed known: 

DPS = 0, or DPi = 0, i E I 

Our problem is t o  determine the integrability conditions for y to  be solvable in terms of X k , u l j  

and in affirmative case to  determine the set of all possible formal solutions of y. 
Criteria and even algorithmic methods of solving the above problem were known in quite 

remote times for which we may cite particularly RiquierI'z2], JanetI3x4], and E. car tar^[^,^]. In 
recent years J. F. Pommaret had given a systematic formal intrinsic way of treatment and had 
published several voluminous treatises, cf. e.g. [7, 8, 9). On the other hand, the present author 
had given an alternative method in following essent,ially the steps of Riquier and Janet, cf. 
[lo]. The present paper is actually a simplified version of the above paper. An example due to  
Pommaret, the so-called Devil's Problem will he treated in deta.ils to  illustrate the procedure 
of our method. 

For the illustration of our procedure let us first, recall our char-set method of solving arbitrary 
purely algebraic polynoniial equations. Thus, consider a set of variables X = {zl, XZ, . . , zn} 
and polynomials in X with coefficients in the complex field C. We shall introduce some partial 
ordering among all finite systems of such polynomials. For this purpose let us arrange first the 
variables ZI; in natural ascending order. Any non-constar~t polynomial P in C [ X ]  may then be 
written in aEanonica1 form 

P = I d  * z: + J d - 1  * zZ-1 t~ ' ' ' + I " ,  

Received October 29, 2003. 
*The present paper is in honor of late Professor K.'l'liom as a great mathematician, a great scientist, and 

also a great thinker of modern times. 
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in which I ,  are themselves polynomials in variables 11,12, ' .  . , 1,-1 with Id # 0. We call then 
c the class of P ,  d the deg~ee of P,  I, the leading variable of P ,  and Id the leading coefficient 
or initial of P. We then introduce a partial ordering of non-zero polynomials first according 
to class and then to degree, the non-zero constants being considered as polynomials of lowest 
ordering. 

For the partial ordering of polynomial systems let us consider first such polynomial sets 
well-arranged in the following sense. The polynomials in the set are non-constant ones and may 
be so arranged with classes ci steadily increasing: 

0 < c1 < c2 < " '  < c,. 

The leading coefficient or the initial of the i-th polynomial in the set is either a non-zero constant 
or has a class less than ci which, if it is of class cj, 1 5 j < i, should have a degree less than 
that of j - th  polynomial in the set. Such a polynomial set is then called an ascending set (abbr. 
asc-set). Some partial ordering is then introduced among the system of all such asc-sets, with 
the set consisting of a single non-zero constant considered as a trivial asc-set to  be arranged in 
the lowest ordering. 

For such a polynomial 
system, any asc-set of lowest ordering contained wholly in the given system is called a basic 
set (abbr. bas-set) of the system. A partial ordering is then unambiguously introduced among 
all non-empty polynomial systems according to the partial ordering of their basic sets. Any 
polynomial system containing a non-zero constant polynomial will be clearly one of lowest 
ordering. 

After the introduction of partial ordering among all finite polynomial systems let us consider 
now such a given system PS and consider the scheme (S) shown below: 

Consider now arbitrary finite systems of non-zero polynomials. 

ps = p s Q  ps1 . . .  psi . . .  PSm 
BS" = CS (S) BSo BS' . . .  BSi . . .  

RSO RS' . ' RSi ... RS" = 0. 

In the scheme (S) each BSi is a basic set of P s i ,  each RSi is the set of non-zero remainders, 
if any, of polynomials in PS' \ BSi with respect to BS',  and Psi+' = PS U BS' u RSz if RSi 
is non-empty. It is easily proved that the sequence of BSi is a steadily decreasing sequence: 

BSO > BS' > . . > BS' > . ' .  

Such a sequence cannot be an infinite one and should terminate at certain stage m with RS" = 
0. The corresponding basic set BS" = CS is then called a characteristic set (abbr. char-set) 
of the given polynomial system PS.  The zero-set of PS, Zero(PS),  consisting of all possible 
complex solutions or zeros of the system of polynomial equations PS = 0, is closely connected 
with that of CS by the Well-Ordering Principle in the form below: 

in which I P  is the product of all initials of polynomials in C S  and Zero(CS/IP) = Zero(CS)\ 

Now PSU { I P }  is easily seen to be a polynomial set of lower ordering than P S .  If we apply 
the Well-Ordering Principle to PSU { I P }  and proceed furt,her and further in the same way we 
should stopped in a finite number of steps and arrived at  the following 

For any finite polynomial system PS there is an aZgo- 
rithm luhzch wall give in a finite number of steps a finite set of asc-sets CS3 with initial-product 

ZeTo(IP) .  

Zero-Decomposition Theorem 
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I P S  such that 

Now CS" are all asc-sets. Hence all zero-sets Zero(CS') and all Zero(CSs/ I P S )  may be 
considered as well-determined in some natural sense. The formula (2 )  gives thus actually an 
explicit determination of Zero(PS)  for all finite polynomial systems P S  which serves for the 
solving of arbitrary systems of polynomial equations. 

Mathematics should be incessantly faced with the solving of various kinds of problems, 
both theoretical and practical ones. Such problems are abundant in nature, in sciences, in 
reconstructions, in engineering, in administrative works, etc., besides those in mathematics 
herself. As the data given and results to be found are usually connected by some form of 
equations, so equations-solving becomes naturally one of the main concern of mathematics. As 
the algebraic polynomial equations and differential equations, ordinary or partial, appear as the 
usual form of equations which arise most often, so the solving of such kinds of equations become 
naturally our most urgent task to deal with. In this section we have presented an algorithmic 
method of solving arbitrary systems of polynomial equations. It is conceivable that there will 
be various kinds of applications of this general method. This is really the case. Among the 
applications we may cite in particular the mechanical proving on computers of theorems in 
various kinds of geometries, those of euclidean geometry in particular. See e.g. the book [ll] of 
S.C.Chou. For the methods of our theory as well as their applications we refer to  the author's 
book [12] and the references there. For the extension to differential case we refer to the next 
sect ions. 

Remark finally that, instead of theorem-proving, polynomial equations-solving occupies a 
central position throughout the long history of thousands of years of development of Chinese 
ancient mathematics. In fact, the above general method of polynomial equations-solving had its 
origin in some of our ancient classic due to the scholar Zhu Shijie in Yuan Dynasty (1271-1368 
A.D.) ,  see [13]. Of course, there are many defects in Zhu's work. However, the main lines 
of thought and treatment are sound and the above Well-Ordering Principle is just a modified 
reformulation of Zhu's work in applying the modern techniques even terminologies of the works 
of J. F. Ritt, see [14, 151. For more details we refer to various writings of the present author, 
notably the book (121. 

2 Partial Ordering of Algebrico-Differentia1 Polynomials and Algebrico- 
Differential Polynomial Systems. 

Let us consider now the case of algebrico-dz~erential polynomials (abbr. ad-pol or simply 
d-pol) and such polynomial sets (abbr. ad-polset or simply d-polset) with notations X ,  i k ,  y, aj, 
D P S ,  DPi, etc. as in the beginning of Section 1. A d-pol with no y or its partial derivatives 
actually occuring in it will be called a trivial d-pol. For each tuple of R non-negative integers 
p = ( i l ,  iz,. . ,in) let us write IlplI for i l  +iz + . . i, and a, for the partial derivative a z ; ~ ~ ~ ~ ~ z k  . 
We shall arrange all the partial derivatives 13,y of y in the usual lexicographical order of p .  For 
any non-trivial d-pol D P  the highest derivative occuring in D P  is then called the leading 
derivative or simply the lead of D P .  If the lead is d,y, then p is called the class of DP.  If 
the highest degree of 8,y occuring in D P  is d (> 0), then d is called the degree of D P ,  with 
class and degree undefined for trivial d-pols. For non-trivial d-pol D P  with class p and degree 
d (> 0), we can write D P  in the form 

D P  = I * (8,~)~ + lower degree terms in a,y. 
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The coefficient I (f 0) of ( 8 , ~ ) ~  in D P  , which is itself either a trivial d-pol or non-trivia! d-pol 
in partial derivatives of lower ordering than a,y, is called the initial of DP.  The formal partial 
derivative of D P  with respect to a,y is called the separant of DP.  Clearly the separant is the 
same as the initial when degree d of D P  is 1 ,  and of the same class but  of lower degree than 
D P  if d > 1. 

We now introduce a partial ordering among all non-trivial d-pols by first according to  
their class and then to their degree, with trivial d-pols in the lowest ordering. The following 
proposition is now clear from the very definitions: 

Proposition 1 Any sequence of d-pols steadily decreasing in ordering 

DP1 > DPz t ' .  . > DPT t ' .  . 

is necessarily finite. 
For two non-trivial d-pols DP, DQ we say that  DQ is reduced with respect to D P  if no 

proper derivative of the lead of D P  occurs in DQ and the lead itself is either not occuring in 
DQ, or occuring in DQ with a degree less than the degree of D P .  

For the introduction of partial ordering among arbitrary d-polsets let us consider first that  
of particular d-polsets called ad-ascending sets (abbr. ad-ax-sets or simply d-asc-sets) defined 
as follows. A d-polset is called a d-asc-set if it  is either consisting of a single trivial d-pol or 
a d-polset for which the d-pols are all non-trivial ones and may be arranged in a sequence of 
d-pols in increasing ordering such that  each one in the sequence is reduced with respect to the 
preceding ones. In the case of a single trivial d-pol the corresponding d-asc-set is then called a 
trivial d-asc-set. 

Consider now two non-trivial d-asc-sets DAS,  D B S  with d-pols arranged in increasing or- 
dering as follows: 

DAS : 

D B S :  

DAl < . . . + DA,, 

DB1 4 . . .  + DB,. 

We shall say that DAS is of higher ordering than D B S  or D B S  is of lower ordering than DAS 
if either (a) or (b) below holds true: 

(a) There is some k ( 5  min(r ,s))  such that for each i < k ,  DA,  and DBi are incomparable 
in ordering while DAk > DBk as d-pols. 

(b) r < s and DAi, DBi are incomparable in ordering as d-pols for all i 5 r. 
It is easy to see that  the above definition introduces really a partial ordering among all 

d-asc-sets with trivial d-asc-sets considered to be in the lowest ordering. As Proposition 1 we 
have also the proposition below for d-asc-sets: 

Proposition 2 Any sequence of d-asc-sets steadily decreasing in ordering 

DASl t DASz > . . .  t DAS, t . . .  

is necessarily finite. 
Consider now an arbitrary d-polset D P .  Any d-asc-set wholly contained in D P  will be 

called an ad-basic-set (abbr. ad-baset or simply d-baset) of D P .  We shall introduce now partial 
ordering among all d-polsets according to the partial ordering of their d-basets. It is easily seen 
that this is unambiguously well-defined independent of d-basets chosen from the d-polsets. 

Thk above completes the introduction of partial ordering among d-pols and d-polsets. After 
this preparation we shall show how to solve arbitrary systems of algebrico-differential equations 
in  next section. We remark however that  the partial ordering in the present section is only one 
of many possible ways which will meet our purposes. 
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3 (Differential) Characteristic-Set Formation and Solving of Arbitrary 
Algebrico-Differentia1 Polynomial Equations 

To extend the notion of char-set and the method of solving polynomial equations in the 
ordinary case to  differential case we need two fundamental procedures of remainder formation 
and integrability-condition formation to be described in what follows. 

For this purpose let us consider a non-trivial d-asc-set DAS as given below: 

DAS : DAl + DAz + . . .  + DA,. 

With respect to DAS we have then the following theorem due to J. F. Ritt[14~'5] which is 
fundamental for the whole theory: 

For any non-trivial d-pol D P  there are for each a E 
{ 1,. ' .  , r }  integers s,, t, and certain partial derivatives and d-pols C a b  forb E {1,2,  ' .  , b a } ,  
such that 

(dA) 

Ritt's Remainder Theorem 

D R  = S;' * . . .  * S:. *I:' * . , . * I >  * D P -  C C a b  * aTabDA, (dR) 
a,b 

is reduced with respect to DAS,  i.e. reduced with respect to each d-pol in D A S .  
The above formula (dR) will be called the d-Remainder Formula of D P  and the procedure 

of getting D R  from D P  the  reduction of D P  with respect to  DAS.  
Consider now a pair of nontrivial d-pols DP, DQ with classes p = ( i l ,  iz , .  ' .  ,zn,), v = 

( j l , j z , . . .  , j n )  respectively. Suppose that  neither i k  2 j k  nor jk 2 i k  for all k E {1,2,  . .  . ,n} .  
Such a pair will be  called a legal pair with respect to  DAS.  Now for each k let mk = 

C = (ml,mz;..,m,). Then 8cDP and 8,DQ have the same lead 6'cy with degree 1. Let the 
initials of 8,DP and 8,DQ be IF  and I ,  respectively. Then the difference Iq*8[DP- I~+8 ,DQ,  
after eventually reduction with respect to DAS,  will be called the eventually reduced integra- 
bility d-pol of the legal pair D P  and DQ with respect to the d-asc-set DAS.  

With the above notions of d-remainder and integrability d-pol, eventually reduced or not, 
with respect to  a non-trivial d-asc-set we can now extend our procedures in ordinary polynomial 
case as given in scheme (S) of Section 1 to the differential case as shown in the scheme (dS) 
below: 

. .  
max(zk,Jh),pk = mk - ikrqk = mk -.ik. Set I = ( m , m , , . , , P , , ) , q  = (q1 ,q2 , . . , ,qn)  and 

D P S =  DPS' DPS' . . .  . DPSi  . . .  DPS" 

(dS) 
DBS' DBS' . . .  DBS% ' . .  DBS" = D C S  
DRIS'  DRIS' . . .  D R I S ~  . . .  DRIS" = 0  
DCPS' U DCPS' U . ' '  U DCPSi  U . .  . U DCPS" = DCPS.  

In the scheme (dS) DPS is the given d-polset. For each i ,  D B S  is a d-baset of DPS' ,  and 
the set D R I F  is the union of two parts. One is the set of all possible non-zero d-remainders 
formed from d-pols in D P S z  \ DBSi  with respect to DBS' ,  while the other is the set of 
integrability d-pols formed from all possible legal-pairs of d-pols in DPS" eventually reduced 
with respect to DBS ' ,  so far they contain actually y or its derivatives. On the other hand those 
containing no y or its derivatives but containing possibly uj  or their derivatives will form a set 
of compalibility d-pols for which the vanishing will form compatibility conditions in order that  
the given set of equations D P S  = 0 will have solutions. In case DRIS i  is non-empty, then the 
union D P S  U DBS' U D R I S  will form the next d-polset DPS"'. 

As is easily verified, the d-basets D B S  will form a sequence of steadilly decreasing ordering: 

DBS' % DBS' t . . . + DBS" F 

By Proposition 2 this sequence can only be a finite one, to be stopped at  a certain stage ni 
with DRIS" = 0. The corresponding d-baset DBS" = DCS is then called an ad- or simply 
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d-characteristic set (abbr. d-charset) of the given d-polset D P S .  The union DCPS of all 
sets DCPSi, i = 1,2, .  . . ,m,  will form the totality of all possible compatibility d-pols bhose 
vanishing form the compatibility conditions to  guarantee the existence of solutions of the partial 
differential equations DPS = 0. 

For any d-polset DPS and d-pol D G  let dZero(DPS) be the set of all possible solu- 
tions of the partial differential equations DPS = 0 and dZero(DPS/DG) = dZero(DPS) \ 
dZero(DG). Then we have from scheme (dS) the following (diflerential) Well-ordering Prin- 
ciple: 

dZero(DPS) = dZero(DCS / D I S P ) U d Z e r o ( D P S U { D I S P } ) ,  (dW) 

in which DISP is the product of all initials and separants of d-pols in DCS, so far the com- 
patibility conditions DCPS = 0 are assumed to be verified. 

As in the case of ordinary polynomial equations-solving, we deduce by successive applications 
of the above (differential) Well-Ordering Principle the following theorem, which is a t  the basis 
of solving arbitrary systems of algebricc-differentia1 polynomial equations: 

For any finite d-polset DPS there zs 
an algorithm which will give in a finite number of steps a finite set of d-asc-sets DCS' with 
initial-separant-products DISP" as well as  sets of compatibility d-pols D C P S "  such that 

(Differential) Zero-Decomposi t ion Theorem 

dZero(DPS) = U d Z e r o ( D C S "  / DISP ' ) ,  (dZ) 
9 

so far  some compatibility conditions are supposed to  be verified. 
In order to  give formal explicit solutions of the partial differential equations DPS = 0 for 

d-polset DPS let us consider first the case of a non-trivial d-asc-set D A S  as given by (dA). Let 
the classes of DA, in (dA) be p a ,  a = 1,2 ,  ' .  , r.  Then all partial derivatives of the leads spay, 
proper or improper, will be called principal derivatives, and all the others paramatric ones. 

Consider now any set of constants ck E C ,  k = 1,2,  . . , n, and also constants c, E C for each 
parametric derivative &y. The values z k  = Ck will give definite values to the known functions 
u j , j  E J ,  as well as their derivatives. We suppose that  the above values will not render zero 
the initial-separant product ISP of DAS. The set of these constant values Ck ,  c, will then be 
called an admissible preliminary constant set with respect to the d-asc-set DAS. 

With values of such admissible preliminary constants substituted in the equations DA, = 
0, a = 1 , 2 , .  . . , T, we can solve for them to get values for the proper principal derivative cpo 
for classes pa. Let us take any set of such values for each pa. By differentiating DA, and 
substituting the preliminary values as well as the chosen values of cpa,  we get also definite 
constant values c, for arbitrary improper principle derivatives &,y. With these constant values 
we form now a Formal Taylor Series F T S  of the form below: 

F T S  = 5 * n (zk - ckj tC,  r l / ~ / /  
in which T runs over all integer-tuples 7 = ( t l ,  tz,.  . . , tn) with 1 1 ~ 1 1  = t l  + t2 + . . . + t,z. 

It is easy to verify the following 
Formal Taylor  Series Theorem With a given admissible prelimznary ualue set  a11 

possible solutions of the partial differential equations D A S  = 0 for which the initial-separant 
product of D A S  is non-zero are given by formal Taylor series of above form F T S .  

Consider now an arbitrary non-trivial d-polset DPS with a non-trivial d-charset D C S  as 
given in the scheme (dS). Then for any admissible preliminary value set for the d-asc-set DCS, 
for which the corresponding initial-separant product I S P  of DCS is not zero, we will get 
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totality of solutions of the partial differential equations D P S  = 0, so far all compatibility d- 
pols in D C P S  are rendered zero. We may treat in the same way the d-charsets DCS“ in the 
(differential) Zero-Decomposition Theorem (dZ) of D P S  and get the totality of solutions of 
DPS = 0 in the form of Formal Taylor Series, so far the preliminary value set will not render 
zero the corresponding initial-separant product ISP”,  while render zero all the d-pols in the 
corresponding compatibility d-polset. 

Remark that the above is only a special case of our general theory and method which we 
refer to the previously cited paper [lo]. In fact, in the general theory there may be several 
unknown functions y~ ,yz ,  etc. instead of a single one y. Moreover, the coefficient field may 
be an arbitrary differential field with differential operators obeying the usual differential rules. 
Furthermore, instead of pairwise determination of integrability d-pols, we may apply the device 
of multiplicativity of variables originated by Riquier and Janet to make smaller the number of 
pairs of forming the integrability d-pols. However, as the essence of these methods are actually 
the same as in the above particular case so we shall not enter into them. 

Besides, the relations between the notions of d-charset, d-asc-set, etc. in our procedure and 
those of passiveness, prolongations, involutiveness, etc. in the procedures of Riquier, Janet, and 
Cartan require some clarification which we shall do in later occasions. Instead we shall show 
as an illustration how to solve a particular example by our procedure which will be described 
in details in the next section. 

It is clear that our general method of algebrico-differentia1 equations-solving will have an 
immense variety of applications as in the case of ordinary polynomial equations-solving. In 
particular, as in the ordinary case, we have applied our general method of differential equations- 
solving to the mechanical proving of differential geometry theorems, and to the automated 
determination of explicit form of relations for which only the existence of the relations is known. 
We refer these to the author’s papers 116-181 and the paper [19] of S. C. Chou and X. S. Gao as 
well as the references in these papers. On the other hand, we shall leave the studies of various 
other applications to later occasions. 

4 An Example: Pommaret’s Devil Problem 

For the sake of illustration of his formal intrinsic method of treatment of algebraic partial 
differential equations, Pommaret had exhibited in details an example, what he called the Devil’s 
Problem, in his paper [7], his treatise [9], as well as in various courses or lectures taken place 
in France, in Germany, in Beijing, and elsewhere. We shall treat this Devil’s Problem also in 
details by our own method as exhibited in Section 3. For this purpose let us reproduce the 
original statement of the Devil’s Problem as well as its final solution from Pommaret’s writings 
as given below. 

Let u ,u ,y  be 3 functions of the Cartesian coordinates z1 , z2 , z3  on 
euclidean spaces related by the following system of 2 PDE where &,y = a,. ’ : 

Devil’s P rob lem 

(1) If 7~ = v = 0 the space of solutions of the resulting linear system of PDE for y is a 

( 2 )  Otherwise, what kind of Compatibility conditions must be satisfied by u and v in order 

(3) Does there exist a “general” way to solve such problems? 
The final result of Pommaret on this problem may be described as follows: 

vector spac,e over the constants. What is its dimension? 

to insure the existence of solutions for y? 

431 



160 WU WENJUN(WU WEN-TSUN) Vol. 17 

The final general solution is furnished by a “Good” Set consisting of 4 “good” algebraic 
differential polynomials G I ,  . . , G4 below: 

In (G) w and z are given by 

1 
w = p 3 , v  - Zzallv - azzu), 2 = a33w - a,,zu - z2allw 

Pommaret solved the above question (2) in deriving two Compatibility Condztions A = 
0, €3 = 0 with A, B given below: 

1 
( C C )  

5~ = azw - aIlv, 
B = 8 3 3 3 3 ~  - 2Z2a1133w + ( “ 2 ) 2 a l l ~ ~ w  - a11233U + Z Z a 1 1 1 1 ~ U  ~ a1111U. 

Pommaret showed further that  the two compatibility conditions A = 0, B = 0 are not indepen- 
dent of each other. They are in fact connected by the following differential identity 

6’3333A - 2zZ&133A + ( z ~ ) ~ ~ ~ ~ ~ ~ A  - 2azB = 0 

In the case of u = 0, v = 0 so that  w = 0, z = 0 too the “good” sets become simply 
6’1111~ = al lzy = a2zy = &y - z2al1y = 0. It follows that  there remain only 12 derivatives 
below which can take arbitrary values, viz.: 

y, sly, a l ly ,  a l l ly ,  aZY, a l Z Y >  a,?/, al3Y> a113Y1 a1113Y, a 2 3 Y >  a123Y 

As a consequence Pommaret solves the question (1) in giving a vector space of dimension 12 
spanned by the above vectors. 

Let us now apply our own method to the solving of the Devil’s Problem. For this purpose 
let us first change the notations in order to make mainly in accordance with those in Section 
2. Thus, instead of z1,z2,z3 we shall write x1,zz,z3 and instead of 833y for & we shall 
write dzooy, etc., as in Section 2. In this way the system of 2 PDE (D) of the Devil’s Prohlem 
will be D P S  = 0 with DPS = {DPl,DPz} in which 

09 = ~ Z O O Y  - xz *  OOZY - 11, 
DP2 = aozoy ~ U. 

As in the scheme (dS) of Section 3 ,  we have then DPSO = D P S  = {UP’’, DP;} wit11 

DPP = DP1, DP; = DPz 

The d-baset chosen from DPSo is then DBSo  = {DBY, DB;} with 

DB? = DP;, DB; = DPP 

in increa3ing ordering. There are clearly no d-remainders but t,here is one integrability d-pol 
eventually reduced to be determined from the legal pair (UP; ,  DP;).  To determilie it let, us 
first form 

8zooDP; - ~ o z o D P ~  = Z’z * &zzY + 2 * aolzy - ~ Z O O V  + 80,071 

= A , say .  
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We reduce now A with respect to the d-baset DBSO to get the reduced integrability d-pol 

DIYz = A - 2 2  * aoozDBY = 2 * &zy - 2 * w, 

in which 

1 
2 

w = -(azoov - 1 2  * aoozv - aozou). 

We see that ;DIy2 is actually the same as the “good” set Gz and w is actually the same as the 
w given by Pommaret but in different way of notations. 

As the integrability d-pol DI$ contains actually derivatives of y it will form the set DRISO 
with the corresponding compatibility d-polset DCPSO empty. Hence, in adjoining D1& or 
simpler f * DIf2 to DPSo  we get the new d-polset DPS’ = {DP:, DP,’, DP,’} with 

DP: = DP,O 1 &ooy - 22 * aoozy - U, 

DP; = DP; = aozoy-v, 
1 

DP,’ = 5 * DI;2 aolzy - W. 

The d-baset chosen from DPS’ is then DBS’ = {DB: ,  DBi,DB,’} with 

DB;  = DP;, DB; = DP;, DB;  = DP: 
in increasing ordering. Again there are no d-remainders but there are 3 legal pairs (DP:, DP,’), 
(DP:, DP,’), (DP,’, DP,’). The first pair has already been considered so there remain only two 
new ones to be considered which give two integrability d-pols eventually reduced below: 

DI:, = 6’zooDPi - aolzDP: - 1 2  * aolzDBi 

= a004Y - 2, 

DCP;, = ao~oDP,’ - aoozDP,’ 

= - a01ow + aoozv, 

2 = azoow - 2.2 * a,,,w - ao1zu. 
in which z is given by 

It is readily seen that DI;, is the same as the “good” set “GI” and z is same as that given before, 
both by Pommaret in different notations. We see that DI;3, containing actually derivatives of 
y, is to be a d-pol in DRIS’ ,  while DCP,’,, containing only derivatives in u ,v ,  but not y, is to 
form the compatibility d-polset DCPS’. Furthermore the compatibility d-pol DCP;, is readily 
seen to be equal to - + A ,  where A is the compatibility d-pol also already given by Pommaret 
in different notations. 

Adjoin now DI!, to DPS’ to get D P S 2  = {DP:, DP;, DP:, DP;} with 

DP; = D P t ,  DP; = DP;, DP: =DP,’, DP; =DI: ,  
The d-baset is then DBS’ = { D B ; ,  DB; ,  DB; ,  DB:} with 

DB? = DP: = DI!3, 

DB; = DP;, 

DB,” = DP;, 

DB: = DP: 
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in increasing ordering. Again there is no d-remainders bu t  there are 3 new legal pairs to  be 
considered: (DP:, DPT), (DP:, DPZ), (DP:, DP:) which give 3 compatibility d-pols DCP!4, 
DCPZ4,, DCP:4 as given below: 

DCP,Z, 1 azooDP2 - ~ o o ~ D P , ~  - 5 2  * aoozDBt 
= - a200.Z + 5 2  * 8002Z + 8004% 

DCPi4 = i3ozODP: - aoo4DP,Z 

DCP$ = aoloDP: - 80ozDP: 
= - aOZOz + a004u, 

= - a01ot + aoozw. 

As DRIS' = 0 ,  the procedure ends a t  the stage m = 2 so that  the scheme (dS) in the present 
case becomes (dS)' below: 

DPS = DPSo DPS' DPS2 

(W' DBSO DBS' DBS' = D C S  
DRISO DRIS' DRIS2  = 0  
DCPSO U DCPS' U DCPS' = DCPS. 

Remark that  DCS here is the same as  the "good set" { G l ,  G2, G3, G4} given by Pommaret, 
while the compatibility d-polset here is given by 

DCPS = DCPSO U DCPS' U DCPS2,  with 
DCPSO = 0, 
DCPS' = {DCPi3},  
DCPS2 = {DCPT4, DCPi4, DCP,2}. 

The compatibility d-pols in DCPS are not independent of each other. To determine their 
interrelations let us first turn these d-pols to be in u and u by means of the expressions of w and 
z in u and ?I. Let us consider now these DCP's as d-pols in u as unknown function while ti as 
known function in X = {x1,x2,x3}. Then the leads in IJ of the d-pols DCPi3, DCPf4, DCPi4, 
DCP,Z, are seen to be respectively azlov, & ~ O O I J ,  8420~, 8 4 1 0 ~ .  Let us treat now DCPS as a d- 
polset in IJ as we have treated DPS as a d-polset in y by means of our general method. The 
d-baset is then seen to be consisting of the-two d-pols DCPi3, DCP,Z, with leads 8210v, 8 ~ 0 0 ~ .  

It is readily found that  the d-remainders of DCP&, DCP,Z, with respect to the d-baset are both 
zero with corresponding d-remainder formula given below: 

DCP,Z, = &1oDCPJ3 - 2 2  * aoizDCPi3, 
DCP24 = 8zooDCPis - 5 2  * & I ~ ~ D C P ~ ~  

On the other hand there is only one legal pair (DCPi3,  DCP,2,) for which the integrability 
d-pol after reduction with respect to the d-baset is found to be zero with the corresponding 
interrelation given below: 

8oioDCPf4 - 8400DCPi3 + 2 * x z  * &02DCP$3 - X; * 13ou4DCP~~ = 0. 

It follows that  the procedure ends a t  the stage 771 = 1 with the d-charset coiisistiiig of the two 
d-pols DCPi3, DCP,2,. I t  is also easily verified that  these two d-pols are respectively equal to  
-A/2 and' - B  of Pommaret, and the interrelations between DCPi3, DCP,Z, are the same as 
that  between the two compatibility d-pols A ,  B gi\jen by Pommaret, only in different notations. 

We see that  Pommaret's results are complete for the Devil Problem and our results too, 
though by different ways of treatments. Remark that Pommaret uses a method with quite in- 
volved logical reasonings and modern techniques in applying exact sequences, diagram-chasing, 
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etc. On the other hand our method is highly computational with little mental efforts, and the 
computations are almost straightforward. 
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On the Construction of Groebner Basis of 
a Polynomial Ideal Based on Riquier-Janet 
Theory 
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Abstract. As a consequence of a previous study of algebraic differential geom- 
etry ([see WUl]) there may be associated to  certain special kinds of differential 
ideals some well-behaved basis enjoying some well-behaved properties. If the 
differential ideals are further specialized so that they correspond to  ordinary 
polynomial ideals then such a well-behaved basis will become the usual Groeb- 
ner basis of the polynomial ideals while the latter is not known for differential 
ideals. 
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0. Introduction 
Riquier and Janet have created a theory of PDE which has been further developed 
by Ritt and Thomas and is closely related to the corresponding theory of E. Cartan. 
Based on such a theory the author has shown in a previous paper [WUl] how to 
construct a d-char-set DCS of a d-polset DPS for which their d-zero-sets are closely 
connected according to the following decomposition formula: 

d-Zero(DPS) = d-Zero(DCS/J) + SUMi d-Zero(DPSi). 

In the formula J is the product of all initials and separants of the d-pols in DCS, 
and DPSi are the enlarged d-polsets of DPS in adjoining to it one of such initials 

The present paper is partially supported by NSFC Grant JI85312. It is reprinted, with permission 
and with minor editorial changes, from Systems Science and Mathematical Sciences 4/3 (1991): 
193-207, originally received on September 4, 1990. 

437 



346 w u  

or separants. In the particular case for which all these initials and separants are 
non-zero constants in the basic d-field, the above formula becomes simply 

d-Zero(DPS) = d-Zero(DCS). 

Moreover, denoting the differential ideal with DPS as a basis by d-Ideal(DPS), we 
see from the construction of DCS and theorems proved in that paper that DCS is 
also a basis of this ideal, or 

d-Ideal(DPS) = d-Ideal(DCS). 

Furthermore, this basis DCS possesses the following well-behaved property: 

the d-remainder of DP w.r.t. the basis DCS is 0: 
A d-pol DP will belong to the differential ideal d-Ideal(DPS) if and only if 

d-Remdr(DP/DCS) = 0. 

For this reason we shall call the corresponding d-char-set DCS, in the above 
particular case, a well-behaved basis of the differential ideal d-Ideal(DPS) with 
DPS as a given basis. 

Let us consider now the further specialized d-polset DPS with the following 
restrictions: 

1. The basic d-field is one with trivial differentiations so that it is just an 

2. The independent variables are still XI, . . . , X ,  while there is only one 

3. Each d-pol DP in the d-polset DPS is of the form 

ordinary field of characteristic 0. 

dependent Y .  

D P  = SUMtCt * DERtY, 

in which t runs over a finite set of n-tuples of nonnegative integers and Ct are 
non-zero constants in the basic field. 

We are thus in the situation of a system DPS = 0 of linear PDE with constant 
coefficients. Now to each partial derivative DERtY we may make a corresponding 
monomial X t  = Xfl  * . . .  * X $  in which (i l ,  . . . , in )  is the n-tuple t .  Under the 
correspondence the d-pols will then be turned into ordinary pols in X I , .  . . , X ,  
with coefficients in an ordinary field of characteristic 0. The above theory will 
then give a well-behaved basis of an ordinary polset PS. It turns out that this well- 
behaved basis is, in the present non-differential case, just the usual Groebner basis 
of the corresponding polynomial ideal Ideal(PS). This offers thus an alternative 
method of constructing a Groebner basis of a polynomial ideal different from that 
of Buchberger. 

In the present paper we shall consider the last case of ordinary polsets alone. 
Our exposition will be so given that it is independent of the Riquier-Janet theory 
and the previous paper [WUl], though it will follow closely the steps exhibited in 
that paper. In studying the properties of the well-behaved basis of a polynomial 
ideal introduced in this way it will follow that this basis is just the Groebner 
basis of that ideal. We prove now several well-known beautiful properties of the 
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Groebner basis in a way along the line of the thoughts of the previous paper based 
on Riquier-Janet theory. The proofs are thus somewhat different from the known 
ones scattered in the literature. These proofs may in fact be carried over t o  the 
differential case as stated above for the well-behaved basis, while the Groebner 
basis is undefined in that case. We remark in passing that our theory will give a 
unique expression for an arbitrary pol w.r.1. such a basis of a polynomial ideal, 
while for the usual theory of the Groebner basis such an expression is unique 
only modulo the basis in some way. Finally, we give a concrete example for which 
the Groebner basis is determined by the present method in using the REDUCE 
implemented in our machine SUN3/140. Further examples are yet to be studied 
and a complexity study of the present method is required. 

1. Tuples of Integers 
Let n be a positive integer fixed throughout the present paper. 

DEF. An ordered sequence of n non-negative integers 

t = (11,. . . ,I,) 
is called an n-tuple or simply a tuple. 1, is then called the i-th coordinate o f t ,  to 
be denoted by 

DEF. The particular tuple with all coordinates = 0 will be called the 0-tuple, t o  
be denoted as 0. 

Notution. For any tuple u and any integer i 2 1 and 5 n, the tuple u’ with 

COORi(t) = Ii.  

COORi(u’) = COOR~(U) + 1, 
COORj(u’) = COOR~(U),  j # i ,  

will be denoted by ui or iu. 

DEF. For any two tuples u and v ,  we say u is a multiple of v or ‘u is a divisor of 
u, if 

We write then 

DEF. For any two tuples u and v ,  their product uv = uu is the tuple with 

COORi(u) 2 COORi(v), i = 1,. . . ,?z. 

u>>v or v<<u.  

COORi(uv) = COORi(u) + COORi(v) ,  i = 1, .  . . ,ri. 

We introduce now an  ordering among all the ,n-tuples according to the fol- 
lowing 

DEF. For any two tuples u and v we say that u is higher than v or v is lower than 
u if there is some k > 0 and 5 n such that 

COORi(u) = COORi(v), 
COOR~(U)  > COORk(u). 

i > k ,  
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We write then 
u > v  or v < u .  

DEF. A set of tuples T is said to  be autoreduced if no t in T is a multiple of anther 
t’ in T. 

The following two lerrirnas are already known or easily deduced from known 
results. 

Lemma 1. Any sequence of tuples steadily decreasing in order is finite. 

Lemma 2. Any autoreduced set of tuples is finite. 

DEF. For any finite set of tuples T, the mazimum of T ,  t o  be denoted by Max(T), 
is the tuple defined by 

Max(T) = n-tuple(MAXl(T), . . . ,MAX,(T)), 
MAXi(T) = Max{COORi(t)/ t E T } .  

with 

DEF. For any finite set of tuples T, the completion of T, to  be denoted by Comp(T), 
is the set of tuples defined by 

Comp(T) = {u/ u << Max(T) and u >> t for some t in T } .  

DEF. For any finite set of tuples T and any tuple t << Max(T), the integer 
i (1 1, 5 n) is called a multiplier of t w.r.t. T if 

COOR,(t) = MAXi(T). 

Otherwise i is called a non-multiplier o f t  w.r.t. T .  In that case we have 

COORi(t) < MAXi(T). 

Notation. For any finite set of tuples T and any tuple t << Max(T), we shall set 

Mult(t/T) = set of all multipliers o f t  w.r.t. T, 
Nult(t/T) = set of all non-multipliers o f t  w.r.t. T. 

DEF. For t << Max(T), the set of all multiples tu o f t  with 

COORi(u) = 0 for i in Nult(t/T) 

is called the total multiple set o f t  w.r.t. T, to be denoted by 

TMU(t/T) = {tu/ COORi(u) = 0 for i in Nult(t/T)}. 

Lemma 3. Let T be a finite set of tuples. For any tuple v there is a unique tuple 
t << Max(T) such that v is in TMU(t/T). Moreover, if v is a multiple of some 
tuple in T ,  then t is in Comp(T). 

Proof. t is determined as COORi(t) = Min(COORi(v), MAXi(T)). 0 

Tuple-decomposition Theorem. For any finite tuple set T the totality of tuples each 
of which is a multiple of some tuple in T is the disjoint union of sets TMU(t/T) 
with t running over Comp(T) . 

Proof. This follows directly from Lemma 3. 0 
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We shall now introduce an ordering in the totality of autoreduced sets as 

Let us consider any two autoreduced sets AS and AS' with tuples arranged 
follows. 

in increasing order: 
(AS) : 
(AS)' : 

t i  < t 2  < ' . .  < t,, 
ti < tk < . . . < t i .  

DEF. The autoreduced set (AS) is said to be higher than the autoreduced set 
(AS)', or (AS)' lower than (AS), if either of the two following cases holds true: 

(a) There is some k 5 r arid 5 s such that 

ti = tl for i < k ,  while t k  > t; 

(b) r < s arid t i  = ti for i 5 r .  

Iri notation, we shall set then 

(AS) > (AS)', or (AS)' < (AS) 

Lemma 4. A n y  sequence of autoreduced sets steadily decreasing in order is finite. 

Proof. Let the sequence be 

( S )  : AS1 > AS2 > . .  

arid suppose the contrary that it is infinite. For each autoreduced set AS, let its tu- 
ples be arranged in increasing order. By Lemma 1 the sequence a s l l ,  aszl ,  . . . , m i l ,  

. . . of which asil is the first tuple of AS?, should consist of the same tuple, say t l ,  
from a certain stage onwards. Denote the correspondirig infinite sequence of au- 
toreduced sets from that stage onwards by 

(Sl) : AS11 > AS12 > . . 
Again by Lemma 1 the sequence of second tuples in ASli, should consist of the 
same tuple, say t z ,  from a certain stage onwards. Denote the corresponding infinite 
sequence of autoreduced sets from that stage onwards by 

(S2)  : AS21 > AS22 > . .  

The above remoning can be repeated indefinitely so that we get an infinite sequence 
of tuples 

which is clearly a n  autoreduced set. This contradicts however Lemma 2 and hence 
(T) : t i  < t z  < . . .  , 

(S) is finite. 0 

From the very definition of the ordering we have also 

Lemma 5. Let T be an  autoreduced set und u be a tuple which is not a multiple 
of any tuple in T .  Let T' be the autoreduced set obtuined b y  adjoining u to  T and 
then removing all tuples in T which are multiples of u. Then T' is of lower order 
than T .  
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2. Well-Arranged Basis of a Polynomial Ideal 
Henceforth throughout the paper there will be fixed an integer n, a set of variables 
XI , .  . . , X,, and a field K of characteristic 0. By a pol will then be meant, unless 
otherwise stated, a polynomial in K [ X 1 , .  . . , X,]. 

By a m o n o m  is meant a power-product in X i  of the form 

xt = xi- * . . . * X ?  * . . . * ~ 4 1 ,  
3 

in which the tuple t = ( i l ,  . . . ,in) will be called the degree-tuple of the monom 
X t .  Any non-zero pol P can then be written in the unique normal  f o r m  

P = A1 * Xt '  + A2 * X t 2  + . . . + A, * Xt7 . ,  

with Ai non-zero in K ,  and the degree-tuples ti in decreasing order, viz. 

tl > t z  > ' ' .  > t,. 
We call A1 * X t l , X t l , A 1 ,  and tl resp. the leading t e r m ,  the leading m o n o m ,  the 
leuding coe f i c i en t ,  and the leading degree-tuple, to  be denoted resp. by 

Lterm(P), Lmonom(P), Lcoef(P), and Ldeg(P). 

DEF. For two non-zero pols PI and P z ,  PI is said to  be higher than ,  lower than ,  or 
incomparable t o  Pz according as whether the leading degree-tuple of PI is higher 
than ,  lower than ,  or identical to  that  of P2. In notation, we shall write resp. 

PI > P z ,  PI < P z ,  and PI <> Pz. 

DEF. For a finite polset PS of non-zero pols the set of leading degree-tuples of 
pols in PS will be called the degree-tuple-set of PS to  be denoted by DTS(PS). 

DEF. A finite polset PS of non-zero pols is said to  be autoreduced if its degree- 
tuple-set is autoreduced. 

DEF. Let AS be an autoreduced polset of non-zero pols and T = DTS(AS) he 
its degree-tuple-set. A non-zero pol P is said to  be reduced w.r.t. A S  if for each 
term in P, the corresponding degree-tuple is not a multiple of any tuple in T .  The 
autoreduced AS itself is said to  be reduced if each pol of AS is reduced w.r.t. the 
autoreduced polset formed from AS by removing that pol. 

For any autoreduced polset AS consisting of non-zero pols Fi there may be 
different ways of putting P into a form 

P = SUMiE; * + R, (2.1) 
in which Ei, R are pols and R, if not zero, is reduced w.r.t. AS. We shall now 
proceed in the following way to  get a unique R from P as follows. Write P in 
the normal form. Let c * X t ,  c in K ,  be the non-zero term in P, if it exists, such 
that t is of highest order with t a multiple of some tuple u in T ,  u being chosen 
to  be the highest one in T .  Write t = uv and let the pol in AS having u as its 
leading-degree-tuple be 

Fi = a * X u  + Fz', 
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with a * X u  as its leading term, a # 0 being in K .  Set 

PI = P / c  - X "  * Fi/a.  

Then Pl is such a pol that the term of highest order in Pl having its degree-tuple 
tl as a multiple of some tuple in T ,  if it exists, is of lower order than t above. We 
can then apply the same procedure to PI as above to get a pol Pz. The procedure 
can be continued until we get a pol P, which is reduced w.r.t. AS. This pol P, will 
then be the R required. 

DEF. The unique pol R reduced w.r.t. the given autoreduced set AS got from P 
in the above manner will be called the rest of P w.r.t. A S ,  to be denoted by 

R = Rest(P/AS). 

DEF. The autoreduced polset A S  is said to  be higher than the autoreduced polset 
AS', or AS' lower than  AS if 

T = DTS(AS) > T' = DTS(A9).  

Given an  arbitrary finite polset PS of non-zero pols let us form now a scheme 
(SA) below: 

PS= PSO PSI ' . '  PS, 
AS0 AS1 . . .  AS, (SA) 
RSo RS1 . . .  RS, = Empty. 

The scheme is formed in the following manner: 
For each z AS, is an autoreduced polset with pols chosen from PS, such that 

the degree-tuple of any remaining pol in PS, is a multiple of the degree-tuple of 
some pol in AS,. Each RS, is then the polset of all non-zero rests, if it exists, of 
the pols in PS, -AS, w.r.t. AS,. The polset PS,+1 is just the union of the previous 
AS, and RS,: 

PS,+1 = AS, + RS,. 

From the construction we see by Lemma 5 of Sect. 1 that the autoreduced 
sets AS, are steadily decreasing in order: 

AS0 > AS1 > . . . . 

By Lemma 4 of Sect. 1 the sequence is finite so that the procedure has to stop 
at a certain stage with its corresponding rest-set RS, = Empty as shown in the 
diagram (SA). 

Theorem 1. The  final autoreduced polset AS, zn the scheme (SA) forms a basrs for 
the rdeal Ideal(PS) wzth PS as a basrs. In other words, 

Ideal(PS) = Ideal(AS,). 
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Proof. Let ASo consist of pols P, and the other pols in PSO be Q, so that Ideal(PS) 
has a basis consisting of pols P, and Q,. Let R, = Rest(Q,/ASo). Then by defini- 
tion of rest, it is clear that the ideal Ideal(PS0) has also a basis consisting of pols 
P, and those R, which are non-zero, or 

Ideal(PS) = Ideal(PS0) = Ideal(AS0 + RSo) = Ideal(PS1). 

In the same way we have 

Ideal(PS1) = Ideal(PS2) = . . . = Ideal(PS,). 

Hence Ideal(PS) = Ideal(PS,) = Ideal(AS,) as to be proved. 

DEF. The final autoreduced polset AS, in the scheme (SA) will be called a well- 
arranged baszs of the ideal Ideal(PS). 

3. Well-Behaved Basis of a Polynomial Ideal 
Let AS be an  autoreduced polset with degree-tuple set T .  For any tuple u in 
Comp(T) let u = tv with t the highest tuple in T which is a divisor of u. Let Ft be 
the pol in AS with t as its degree-tuple and let us set H ,  = X "  * Ft. In particular, 
if u is itself in T ,  then u = t and v is the 0-tuple so that H ,  is just the pol Ft of 
AS. 

DEF. The pol H ,  defined above will be called the completed pol of AS relative to 
u. The polset consisting of all such completed pols will be called the completed 
polset of AS. 

DEF. A product of the form M*H, in which H, is the completed pol of AS relative 
to u in Comp(T), and M a monom Xw for which each i with COORi(w) # 0 is a 
multiplier of u will be called an  M-product of AS. 

DEF. A finite linear combination of M-products of AS with coefficients in K will 
be called an M-pol of AS. 

Theorem 2. Any pol P can be written uniquely in the form 

P = M P + N ,  (3.1) 
in which M P  is an M-pol of AS and N is reduced w.r.t. AS. 

Proof. Suppose that P is not reduced w.r.t. AS. Then in P there will be a term 
a * X u  of highest order with u a multiple of some tuple in T, a # 0 being in K .  
By Lemma 3 of Sect. 1 there is a unique t in Comp(T) with u=vt such that each i 
with COORi(v) # 0 is a multiplier of t .  Let Ht be the completed pol of AS relative 
to t with leading term Lterm(Ht) = b * X t .  Set 

Pi = P/u  - X u  * Ht/b, 

or 
P = c1 * MP1 + b l  * PI, (c1 = a /b ,  bl = a )  
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with MPl = X u  * Ht an M-product. If PI is not reduced w.r.t. AS, then there 
will be a term a1 * X U 1  of highest order in PI with u1 a multiple of some tuple 
in T and u1 is of lower order than u. Apply now the preceding procedure to  PI 
arid we get a pol P2 so that PI = c2 * MP2 + b2 * P2, with b 2 , c ~  in K and MPz 
an M-product of lower order than MP1. The procedure can be continued to get 
pols P3, etc. until we arrive at some pol P, which is reduced w.r.t. AS. We may 
then write P in the form (3.1) with M P  an M-pol and N = b, * P, reduced w.r.t. 
AS as required. That the decomposition of form (3.1) is unique follows also easily 
from Lerrinia 3 of Sect. 1. 0 

DEF. The pols M P  and N in (3.1) will be called resp. the M-part and the N-part 
of the pol P w.r.t. AS. 

Consider now any u in Comp(T) with corresponding completed pol H ,  and 
any non-multiplier i of u. Then ui = w is also in Comp(T) and the decomposition 
of X ,  * H ,  into the M-  and N-parts can be put in the form 

X i  * H ,  = a * H ,  + MP,, + NUi, 

in which a # 0 is in K ,  MP,i is an M-pol with each M-product in it of lower order 
than H ,  or X i  * H,, and N,i is the N-part of X i  * H,. Note that NUi is reduced 
w.r.t. AS. Owing to  its importance we shall lay down the following 

DEF. The N-part N,i of pol Xi * H ,  in (3.2) will be called the N-pol  of AS  relative 
to the tuple u in Comp(T) and the non-multiplier i of u. 

(3 .2 )  

Consider now a finite polset PS and let us form the scheme (SB) below: 

P S =  PSO PSI " '  PS, 
wso ws1 " '  wss (SB) 
NSO NS1 . ' .  NS, = Empty. 

The scheme is formed in the following way: 
For each i WSi is a well-arranged basis of the ideal Ideal(PSi), determined 

from Psi as in Sect. 2 with scheme (SA) applied to Psi, and NSi is the set of all 
non-zero N-pols of WSi,  if it exists. Finally, the polset PSi+1 is the union of the 
preceding sets WS, and NS,, or 

PS,+1 = wsi + NSi. 

As in the case of scheme (SA), the sequence of autoreduced sets WSi is steadily 
decreasing in order so that the above procedure will end in a certain stage with 
corresponding NS, = Empty as shown in the diagram (SB). 

Theorem 3. T h e  f ina l  polset WS, in the  scheme (SB) i s  a basis of the  ideal 
Ideal(PS), o r  

Ideal(PS) = Ideal( WS,). 
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Proof. By Theorem 1 of Sect. 2 we have Ideal(PS0) = Ideal(WS0). Now each pol 
N in NSo is the N-part of some pol Xi * H ,  with H ,  the completed pol of WSo 
relative to the tuple 'u. in Comp(T0) where To is the degree-tuple-set of WSo and 
i a non-multiplier of u so that Xi * H, = M P  f N with M P  an M-pol of WSo. 
As both H, and MP are clearly pols in the ideal Ideal( WSo), the same is for N.  
Hence 

Ideal(PS0) = Ideal( WSo) = Ideal( WSa + NSo) = Ideal(PS1). 

Proceeding further in the same way we get then successively 

Ideal(PS) = Ideal(PS1) = . . . = Ideal(PS,) = Ideal( WS,), 

as to be proved. 0 

DEF. The final autoreduced polset WS, in the scheme (SB) will be called a well- 
behaved basis of the ideal Ideal(PS). 

In the next section it will be shown that the notion of well-behaved set 
coincides with the usual notion of Groebner basis. 

4. Identification of Well-Behaved Basis with Groebner Basis 
Consider any ideal ID for which the well-behaved basis, say WB, has been deter- 
mined as in Sect. 3 so that ID = Ideal(WB). 

Theorem 4. A n y  pol in the ideal ID is  an  M-pol of its well-behaved basis WB, or 
the N-part  of any such pol is 0. 

Proof. Let T be the degree-tuple set of WB. For any u in Comp(T) let H, be the 
corresponding completed pol. It is enough to prove that any product of the form 
M * H ,  with M a monom and u in Comp(T) is an M-pol. We shall prove this by 
induction on the order of M * H, as well as on the number of X ' s  in the monom 
M as follows. 

If each i for which Xi appears in the monom M is a multiplier of u, then 
M * H ,  is already an M-pol and nothing is to be proved. Suppose therefore M = 
M' *Xi with i a non-multiplier of u. As WB is the well-behaved basis of the ideal, 
the N-pol relative to u and i is 0 so that (3.2) of Sect. 3 may be written as 

Xi * H ,  = a * H, + MP, (4.1) 
in which v = ui, and MP is an M-pol of lower order than H ,  or Xi * H,. It 
follows that M * H, = a * M' * H, + M' * MP, of which M' * MP is of lower order 
than M * H, and M' has a smaller number of X's than M. By induction M' * H, 
and each term in M' * MP are M-pols and so is M * H,. The theorem is thus 
proved. 0 

Theorem 5.  The rest of any pol P w.r.t. the well-behaved basis WB coincides with 
the N-part of P w.r.t. WB. 
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Proof. The rest is determined as the pol R in P = SUMkCk * W k  + R, in which 
wk are the pols in WB, ck are pols too, and R is reduced w.r.t. WB. By Theorem 
4 SUMkCk * wk is an M-pol so that R is the N-part of P ,  as to  be proved. 0 

From Theorems 4 and 5 we get the following 

Theorem 6 .  A pol P belongs to an ideal ID i f  and only i f  its rest w.r.t. the well- 
behaved basis W B  of ID is 0: 

P E ID * Rest(P/WB) = 0 ,  

The previous results may be further put into a strengthened form as follows. 

Theorem 7. A well-behaved basis WB with degree-tuple-set T of an ideal ID pos- 
sesses the following well-behaved property: 

Any pol P in K [ X 1 ,  . . . X,] has a unique expression 

P = SUM,a, * M u  * H ,  + N, (4.2) 
in which H ,  are completed H-pols with u running over the completion Comp(T) 
of T ,  Mu are monorns in these X i  with each i a multiplier of u, a ,  are constants 
in K ,  and N is reduced w.r.t. WB. Moreover, P is in the ideal ID  i f  and only i f  
N = 0.  

From the unique expression (4.2) for any pol in ID w.r.t. WB we get imme- 
diately the following theorem due t o  Macaulay, cf. [MI: 

Theorem 8. The Hilbert function of an ideal is completely determined b y  the degree- 
tuple-set of a well-behaved basis of the ideal. 

Theorem 9. Let the well-behaved basis WB of an ideal ID consist of the pols 
Wl , .  . . , W,. For any completed pol H ,  of WB and any non-multiplier i of WB 
w.r.t. u let us rewrite (4.1) in the form 

SUMiS,ij * Wj = 0. (4.3) 
Then the sets S,i = (S,il,. . . , S,ir) form a basis of the linear space of possible 
solutions (4,. . . , S,) in pols for the syzygy equation 

SUMjSj * Wj = 0. (4.4) 

Proof. Consider any solution of equation (4.4) in pols Sj. Denote the left-hand 
side of (4.4) by S.  Then S is a pol belonging to  the ideal ID with a well-behaved 
basis WB. From the proof of Theorem 4 we see that S can be shown to be 0 by 
successive reductions in the form of (4.1) or (4.3). Hence S = 0 is a consequence of 
equations (4.3) or S is a linear combination of S,i with pols as coefficients, as to 
be proved. We remark only that the solutions S,i are not necessarily independent 
ones. 

If the ideal ID is given a basis Fl,  . . . F,, then each Fi is a linear combination 
with pol-coefficients of Wj in the well-behaved basis WB and vice versa, which 
can be explicitly determined by means of the constructions in schemes (SA) and 
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(SB). Hence the above will furnish a method of deriving a basis of the solutions 
(5’1, . . . Sm) of the syeygy equation 

SUMkSn * Fk = 0. 

Theorem 10. T h e  reduced well-behaved basis WB of a n  ideal ID = Ideal(PS) with  
polset PS as a basis i s  uniquely determined u p  t o  constant multiples by the  follo,wing 
two  properties: 

( u )  WB is a reduced autoreduced basis of ID. 

( b )  Le t  T be the  degree-tuple-set of WB. T h e n  for a n y  tuple u in Comp(T) 
with  completed pol H,and a n y  non-mul t ip l ier  i of WB ‘w.r.t. u, the  N - p u r t  of  
X i  * H ,  i s  0. 

Proof. We have shown how to determine from PS by schemes (SA) and (SB), by a 
further reduction if necessary, a well-behaved basis WB of ID verifying properties 
( a )  and (b ) .  From the proofs of Theorems 5 and 6 we see that there will follow also 
the following property ( c ) .  

(c) The rest of any pol P in the ideal ID w.r.t. WB is 0. 

Consider now any polset WB’ verifying the analogous properties (a)’, (b)’ 
and hence also (c)’ .  There is no loss of generality in assuming that all the pols in 
WB and WB’ have been normalized to have their leading coefficients = 1. We are 
to prove that WB‘ coincides with WB. 

To see this let us arrange the pols in WB and WB’ both in decreasing order, 
viz. 

(WB) W1 > W2 > ’ . .  > Wr, 
(WB)’ : w; > w; > “ ’  > w;. 

By ( c )  we have Rest(W;/WB) = 0 and by the corresponding rest formula we see 
that the leading degree-tuple of W; should be a multiple of the leading-degree- 
tuple of some pol in WB , say Wi. In the same way, by (c)’  the leading-degree-tuple 
of Wi should be a multiple of the leading-degree-tuple of some Wj of WB’. As WB’ 
is autoreduced it will only be possible that W,’ coincides with W;. Then W{ will 
have the same leading-monom as Wi. Applying the same reasoning to  Wl we see 
that W1 should have the same leading monom as some WL of WB’. This is only 
possible when Wi = WI , WL = W; and W1, W{ have the same leading-monoms. 

Applying now the same reasoning to Wz and W; we see that they should 
have the same leading monoms. Continuing we see then WB and WB’ should have 
the same number of pols or r = s and each pair Wi and W,l should have the same 
leading monoms. 

Consider now the last two pols W, and W: in WB and WB‘. As Wi has the 
same leading monom as Wr and Wi has rest 0 w.r.t. WB we see that Wi should 
be identical t o  W,. Let us consider the pair W,-1 and W:-l. As the rest of W:-l 
w.r.t. WB is 0 we should have an identity of the form 

WL-1 = Wr- l f  Mr,  
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in which M, is an M-pol constructed from W,. Now WiPl and W,-l have the 
same leading monoms and no other monoms in W:-l and W,-l can be multiples of 
the leading monom of W,. It follows from the Tuple Decomposition Theorem that 
this will be possible only when M ,  = 0 or W:-l is identical to WrPl .  Applying 
now the same reasoning to the other pairs of pols in WB and WB’ successively in 
the reverse order we see that all the pairs should be identical to each other. The 
theorem is thus proved. 0 

Consider now an ideal ID with a reduced well-behaved basis WB. For m < 
n let ID‘ be the ideal of all pols in ID in X I , .  . . , X ,  alone. Let WB‘ be the 
autoreduced polset consisting of such pols in WB in X I ,  . . . , X ,  alone too. Then 
we have the following. 

Theorem 11. Let  WB be a reduced well-behaved basis of a n  ideal 

I D c  K[X1, . . . ,  X,]. 

T h e n  the autoreduced polset 

WB’ = WB n K [ X l , .  . . , X m ]  

is  a reduced well-behaved basis of the ideal 

ID’ = I D n  K[X1,. . . , X m ]  

Proof. Let T be the degree-tuple-set of WB and T’ that of WB‘. Consider now 
any pol P in ID’. Let us consider P as a pol in ID and write it in the form (4.2). 
By Theorem 6 we have N = 0. By the Tuple Decomposition Theorem we see 
that in (4.2) for each term in H ,  we should have COORk(u) = 0 for k > m. Let 
Max’(T) be the m-tuple got from Max(T) by deleting the last n - m coordinates. 
It is clear that Max(T’) << Max’(T). I t  follows that for each H ,  in (4.2) for which 
COORk(u) = 0 for k > m, each i with X i  occurring in Mu which is a multiplier 
of u w.r.t. WB should also be a multiplier u w.r.t. WB’. Hence the N-part of P ,  
considered as a pol in ID’, is 0 too w.r.t. WB’. This implies in particular property 
(b) in Theorem 10 corresponding to  WB’ of ID’. By Theorem 10 again WB’ is 
thus a reduced well-behaved basis of the ideal ID’. This completes the proof of the 
theorem. 0 

Finally, in comparing with the usual definition of Groebner basis of a poly- 
nomial ideal we see readily from Theorem 6 the following. 

Theorem 12. A n y  well-behaved basis of a polynomial ideal ID is a Groebner basis 
of ID. If the well-behaved basis is  reduced and the leading coeficient of each pol in 
the basis is  normalized t o  1, then the basis is  coincident with the reduced Groebner 
basis of ID. 

The well-behaved basis of a polynomial ideal, being nothing else but the 
usual Groebner basis of ID, will enjoy the various already well-known properties 
of Groebner basis. Some of such properties have been restated and reproved in the 
form of well-behaved basis as given above. The treatments and proofs are however 
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done along the line of the thoughts of previous sections, giving thus alternative 
proofs of these known theorems about Groebner basis different from the known 
ones. Moreover, the proofs are given in order that they may be readily transferred 
to the differential case as described in the Introduction for which the corresponding 
notion of Groebner basis is non-existent. Furthermore, the above treatment shows 
that any pol in K [ X 1 , .  . . , X m ]  will have a unique expression w.r.t. a well-behaved 
basis, i.s. a Groebner basis, of a polynomial ideal in the form of equation (4.2), 
which is a property more precise than the corresponding known one for a Groebner 
basis under the usual known treatment. 

5. An Example 

The schemes (SB) and (SA) in the previous sections give an algorithm for the 
determination of a well-behaved basis, i.e. a Groebner basis of an ideal Ideal(PS) 
with a given basis PS. As an illustrative example (Problem 9(b) in [CG]) let us 
consider the following polset PS = {PI,  P2, P3) with 

Pi = X 2  +Y  * Z +  D * X  + 1, 
P2 = Y 2  + Z * X  + E * Y  + 1, 
P3 = 2 2  + x * Y + F * 2 + 1. { 

Introduce now an ordering among the various indeterminates by 

Z > Y  > X  > D > E >  F. 

This amounts to equating these indeterminates to X i  such that X i  > X j  if and 
only if i > j .  We shall retain however the usual notations of 2, etc. as it will not 
cause misunderstandings. 

According to the scheme (SB) we form first the well-behaved set (in decreas- 
ing order) WSo consisting of W1, W2, W3 with 

w1 = P3, w2 = Pl, w3 = P2 

The leading-degree-tuple set of WSo is 

so that Max(T) = (1, 1 ,2) .  The completed H-pols arranged in descending order 
are thus 7 in number, viz. 
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Let the N-part of an H-pol H w.r.t. a non-multiplier i be denoted by N ( H / X i ) .  
Most of the N-parts may be directly seen to be 0 by definition and the only non- 
zero N-parts are readily found to  be the following ones: 

N1 = - N ( H s / Z )  
= - Z *  H5 + Hi - F * H5 + X 2  * H7+ D * X * H7 + H7 
= 2 * Y 2  * X 2 + Y 2  *X * D + Y 2  +Y * X 2  * E + Y * X  * D * E 

+Y * X + Y  * E - X 3  * F - X 2 *  D *  F + X 2  + X *  D - X * F + 1, 

N2 N ( H 6 / Z )  
= Z * H ,  - HZ + F * H ,  - X * H7 - D * H7 
= z - 2 * y2  *x - y 2  * D - Y * X  * E - Y * D * E - Y 

+x2 * F + x * D * F - x - D + F, 
N3 = N ( H 7 / Y )  

= Y * H7 - H5 
= Y 3  + Y 2  * E + Y - X 3  - X 2 *  D - X ,  

N4 = N ( H 7 / Z )  
= Z* H7 - H3 - Y * H ,  - E * H,j + F * H7 
= Z + Y 2  * F - 2 * Y * X 2  - Y * X * D + Y * E * F - Y 

- x2 * E - x * D * E - x - E t F. 

The polset PSI = WSo + NSO thus consists of 7 pols, Wi and N j .  We proceed to 
form a well-arranged basis WSI of Ideal(PS1) according to scheme (SA) in starting 
from &So = PSI,  viz. 

QSO QS, . . .  QSr, 
AS0 AS1 . .  . AS,, 
RSo RSi . . . RS,. 

It is found that for T = 6 the polset QS, consists of 4 pols Qi below: 

Q1 = Z + Y 2  * F - 2 *  Y * X 2  - Y * X  * D +Y * E * F - Y - X 2  * E 
- X * D * E - X  - E + F, 

Q2 = Y 2  * D * F + Y 2  * F2 + 2 * Y 2  + . . .  , 
Q 3 = Y * X 2 * G 3 + . . . ,  
Q4 = Y * X * G4 +.  . . , 

in which G3,G4 are pols in D ,  E ,  and F alone. The number of the terms of Q3 
and Q4 are resp. 90 and 314 and Q4 is non-factorizable. To make computations 
not too complicated we shall consider the special case of F = E which will not 
influence the computations already done. It turns out that in this case of F = E 
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the pols Qi will be simplified to  the following ones: 

Q1 = Z + Y 2  * E - 2 * Y  * X 2  - Y * X *  D +Y  * E 2  - Y - X 2  * E 
- X  * D * E - X ,  

Qz = Y 2  * D *  E + Y 2 *  E 2 + 2 * Y 2  + 4 * Y  * X 3  + 2 * Y  * X 2  * D 
- 2 *  Y * X 2  * E - Y * X  * D * E - Y * X  * E 2  + 2 * Y * X 
+Y * D *  E2 +Y * E 3  + 2  * Y  * E + 2 * X 3  * E + 2 * X 2  * D * E 
- 2  * X 2  * E 2  + 2 * X 2  - 2 * X  * D *  E 2  $- D * E  - E 2  + 2 ,  

Q3 = FI * Fz, 
Q4 =: Fi * F3. 

The pols Q3 and Q4 split into factors Fi with 

FI = 2 * X 2 + X * D - X * E + 2 ,  
Fz = Y * D *  E - Y * E 2  - 2 * X 3  - 3 * X 2  * D - X *  0 ’ - X  - E ,  
F3 = 2 * X 4  + 3  * X 3  * D + 2  * X 3  * E  + X 2  * D2 + 2  * X 2  * D * E 

+ X 2  * E 2  + X 2  + X *  D *  E 2  + 2 * X  * E +  E2. 

The polset QS, is now already an autoreduced one and may be taken as the 
corresponding well-arranged set A&. Let us denote the completed H-pols by 

H liJ - = X i  * Y j  * Ql, i 5 6 , j  5 2 ,  

Hzi = X i  * Q 2 ,  

H3i = X i  * Q3, 

i 5 6 ,  

i 5 4,  
H4 = Q4. 

The variables corresponding to the non-multipliers are then resp. at most 

X ,  Y for Hlz j ,  

X ,  Z for Hzi, 
X ,  Y ,  Z for H3i, 

Y ,  Z for H4. 

To determine the N-pols let us consider first N ( H 3 0 / Y )  where H30 = Q3. 
By direct computation we find 

( D  * E + E 2  + 2 )  * E *  ( D  - E )  * Y  * H30 = Pz *Q4 + P3 *Q3 + E2 * ( D  - E)’ * FI * Q z ,  

in which Pz, P3 are pols in X of degree 2 and 3 resp. As all terms X i  * Q j  occurring 
in the right-hand side of the above equation are M-products, it follows that 

N ( H 3 0 I Y )  = 0. 

Consider now N ( H 4 / Y )  where H4 = Q 4 .  Write F2 in the form F2 = Y * E * 
( D  - E )  - P with P a pol in X of degree 3.  Then by simply rewriting we get 

E * ( D  - E )  * Y * H4 = F3 * Q3 + P *  Q4, 
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in which all terms X t  * Qj on the right-hand side are M-products. We thus again 
have 

N ( H 4 I Y )  = 0. 
That other N-pols are all 0 may be deduced from the above ones or directly 

by rewriting in a similar way almost without computation. In conclusion it follows 
that QS, is already a well-behaved basis or a Groebner basis GB of the ideal 
Ideal( PS) . 

The zero-set Zero(PS) = Zero(GB) may be determined as follows. As F l ,  F3 
are easily seen to  be prime to each other (0, E are independent indeterminates) 
so Q4 = 0 has 6 zeros of X ,  2 from Fl = 0 and 4 from F3 = 0. For each zero 
of F1 = O,Q3 will be 0 too and Q2 = 0, Q1 = 0 will give 2 zeros of GB. On the 
other hand, for each zero of F3 = 0 we have F1 # 0 and the resultant of Q2 and 
F2 is found to be 0, so such a zero of F3 will be extended to only one zero of GB 
determined by FZ = 0 and Q1 = 0. In all we have 8 zeros of GB or PS. We remark 
that in the present case each zero of Q4 = 0 can be extended to  at least one zero 
of GB. This is however not the case in general. Cf. e.g. [WU2] and [L]. 
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On “Good” Bases of Algebraico-Differential 
Ideals 
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Abstract. The characteristic set method of polynomial equations-solving is 
naturally extended to the differential case, which gives rise to an algorithmic 
method for solving arbitrary systems of algebrico-differentia1 equations. The 
existence of “good bases” of the associated algebrico-differentia1 ideals is also 
studied in this way. As an illustration of the method, the Devil problem of 
Pommaret is studied in detail. 
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1. Introduction 
In the seminar DESC held in Beijing, April 14-16, 2004, the present author gave 
a talk bearing the title “On ‘Good Bases’ of Polynomial Ideals” [lo]. The present 
paper is an extended form of that talk in extending the notion of “good bases” of 
polynomial ideals to that of algebrico-differentia1 ideals. 

To begin with, let us consider a finite polynomial set PS in the polynomial 
ring R = K [ z l ,  . . . , z,], K being a coefficient field of characteristic 0. Then there 
are two important problems to be studied, viz: 

Problem P1. Determine the totality of solutions of PS = 0 in all conceivable 
extension fields of K ,  t o  be denoted by Zero(PS) in what follows. 

Problem P2. For the ideal Ideal(PS) with basis P S ,  determine some kind of good 
basis which will enjoy some good properties t o  be made precise. 

We shall show how to solve Problem 1 in the polynomial case in Section 2, 
explain how to  extend the solution to the algebrico-differentia1 case in Section 3, 
and solve Problem 2 in the polynomial case in Section 4 by using the method 
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developed in Section 3. In Section 5 we shall study Problem 2 in the algebrico- 
differential case and introduce the notion of probably existing "good basis" for 
certain algebrico-differentia1 ideals. Finally in Section 6 we shall provide a solution 
to  the Devil problem of Pommaret as an illustrative example. 

2. Problem 1 in the Polynomial Case 
For Problem P1 the present author has given a method for determining Zero(PS) 
completely, which may be described briefly as follows. 

Arrange the variables 5 1 ,  . . . , x, in the natural order; then any non-constant 
polynomial P E R may be written in the canonical form 

P = I@: + 11x:-1 + . ' .  + Id,  

in which all the I3 are either constants or polynomials in 5 1 ,  . . . , x,-1 alone with 
initial I ,  # 0. With respect t o  class c and degree d ,  we may introduce a partial 
ordering + for all non-zero polynomials in R, with non-zero constant polynomials 
in the lowest ordering. Consider now some polynomial set, which either consists 
of a single non-zero constant polynomial, or in which the polynomials may be ar- 
ranged with classes all positive and steadily increasing. We call such polynomial 
sets ascending sets. Then we may introduce a partial ordering + among all such 
ascending sets, with the trivial ones consisting of single non-zero constant poly- 
nomials in the lowest ordering. For a finite polynomial set consisting of non-zero 
polynomials, any ascending set wholly contained in it and of lowest ordering is 
called a basic set of the given polynomial set. A partial ordering among all finite 
polynomial sets may then be unambiguously introduced according to  their basic 
sets. 

For any finite polynomial set PS c R, consider now the scheme 

PS=PSO PSI ' . '  psi . . .  PS 
(S) BSO BS1 ' . '  BSi . . .  B S m  = C s  

R S o  RS1 . . .  RSa . . .  RSm 0. 
In this scheme, each BSi is a basic set of Psi, each RSi is the set of non-zero 
remainders, if any, of the polynomials in PSZ \ BSZ with respect to  BSZ, and 
Psi+' = PS U BSi U RSi  if RSi is non-empty. It may be easily proved that the 
sequences in the scheme should terminate at certain stage m with R S m  = 0. The 
corresponding basic set BS" = CS is then called a characteristic set (abbreviated 
chur-set) of the given polynomial set P S .  The zero set of P S ,  Zero(PS), which is 
the collection of common zeros of all the polynomials in PS, is closely connected 
with that of CS by the well-ordering principle in the form 

Zero(PS) = Zero(CS/IP) u Zero(PS u {IP}), 

in which IP is the product of all initials of the polynomials in CS and 

Zero(CS/IP) = Zero(CS) \ Zero(1P). 
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Now PS u { I P }  is easily seen to be a polynomial set of lower ordering than 
P S .  If we apply the well-ordering principle to  PS U { I P }  and proceed further and 
further in the same way, we should stop in a finite number of steps and arrive at 
the following 

Zero-Decomposition Theorem. There is an algorithm which may compute, from 
any finite polynomial set PS and in a finite number of steps, a finite set of ascending 
sets CS with initial-product IP such that 

Now all CS" are ascending sets. Hence all the zero sets Zero(CSS) and all 
Zero( C S " / I P s )  may be considered as well-determined in some natural sense. The 
formula (Z) gives thus actually an explicit determination of Zero(PS) for all finite 
polynomial sets PS , which serves for the solving of arbitrary systems of polynomial 
equations. This solves Problem 1 in the polynomial case. 

3. Extension to Algebrico-Differential Systems 
The above method of solving arbitrary systems of polynomial equations has been 
extended to arbitrary systems of algebrico-differential equations, either ordinary 
or partial ones, which will be explained below. 

Let y, uj, j E J ,  be infinitely differentiable functions in independent variables 
X = {XI,. . . , z,}. A polynomial in various derivatives of y and uj with respect 
to z k  with coefficients in the differential field of rational functions of X will be 
called an ulgebrico-differential polynomial. Suppose that we are given a finite set 
of such polynomials DPS = {DPi I i E I } .  Let us consider the associated system 
of partial differential equations of y with uj supposed known: 

DPS = 0 ,  or DPi = 0 ,  i E I .  

Our problem is t o  determine the integrability conditions in terms of X k ,  uj for y to 
be solvable and in the affirmative case to determine the set of all possible f o rmal  
solutions of y. 

Criteria and even algorithmic methods for solving the above problem in some 
sense were known in quite remote times, for which we may cite in particular the 
work of C. H. Riquier, M. Janet, and E. Cartan. The method of Riquier and Janet 
was reformulated by J .  F. Ritt in his books [5, 61. In recent years, J. F. Pommaret 
has given a systematic f o rmal  intrinsic way of treatment and published several vo- 
luminous treatises. On the other hand, the present author has given an alternative 
method in following essentially the steps of Riquier and Janet as reformulated by 
Ritt 171. The method consists in first extending naturally the notions of ascending 
sets, basic sets, remainders, etc. in the ordinary case to the present algebrico- 
differential case. Orderings among all derivatives and then partial orderings may 
then be successively introduced among all algebrico-differentia1 polynomials, all 
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differential-ascending sets, and finally all systems of algebrico-differentia1 polyno- 
mial sets, somewhat analogous to the ordinary case. 

For any system DPS of algebrico-differentia1 polynomials, we may then form 
a scheme (dS) analogous to the scheme (S) in the ordinary case as shown below: 

DPS = DPSo DPS' . . .  DPS . . .  DPS " 
DBSO DBS' . . .  D B S Z  . . .  DBS" = DCS 
DRISO DRIS' . . .  DRW . . . DRIS" = 0 
DCPSO U DCPS'U . . .  U DCPSi U . . .  U DCPSm= DCPS. 

(dS) 
In the scheme (dS), DPS is the given algebrico-differentia1 polynomial set. For 

each i ,  DBSZ is a differential basic set of DPSi. The set DRISZ is the union of two 
parts: one is the set of all possible non-zero differential remainders in the sense of 
Ritt formed from differential polynomials in DPSZ \ DBSi with respect to DBSi ,  
while the other is the set of integrability differential polynomials formed from 
certain pairs of differential polynomials in DPSi ,  so far they contain actually y or 
its derivatives. Such pairs may be determined by the notions of multiplicativity and 
non-multiplicativity due to Riquier and Janet. On the other hand, those containing 
no y or its derivatives but containing possibly uj  or their derivatives form a set 
of compatibility differential polynomials whose vanishing gives the compatibility 
conditions under which the given system of equations DPS = 0 has solutions. 
In case DRIS' is non-empty, the union DPS U DBSi  U DRISi forms the next 
differential polynomial set DPS i+ l .  

As in the ordinary case the sequences will terminate at a certain stage m with 
DRISm = 8. The corresponding differential basic set DBS" = DCS is then called 
a differential characteristic set  (abbreviated d-char-set) of the given differential 
polynomial set DPS.  The union DCPS of all sets DCPSi, i = 1, . . . , m, will form 
the totality of all possible compatibility differential polynomials whose vanishing 
forms the compatibility conditions to guarantee the existence of solutions of the 
system of partial differential equations DPS = 0. 

As in the ordinary case the above will lead finally to the formation of the 
totality of formal solutions of the given system of algebrico-differentia1 equations 
under suitable initial data for which we refer to the paper [9]. 

4. Problem 2 in the Polynomial Case 
Let us now consider the particular case for which the differential polynomials in 
DPS are all linear with constant coefficients. For each tuple of non-negative inte- 
gers p = ( i l l .  . . ,in), let us write ( ( p ( (  for il+. . .+a, and make the correspondence 

allfill 
Partial derivative . t-----f Monomial xy . . . xz ax: . . . ax> 

Then the partial differentiation of a derivative with respect to some xj will corre- 
spond to the multiplication of the corresponding monomial with the variable xj. 
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In this way a differential polynomial set DPS consisting of only linear differential 
polynomials with constant coefficients will become, under the above correspon- 
dence, a polynomial set PS in the ordinary sense. The scheme (dS) will then be 
turned into some scheme (W) for PS somewhat of the following form: 

P S =  PSO PSI . . '  psi . . .  PS " 
WS" = ws (W) wso ws1 . . .  wsi . . .  

Iso Is1 . . .  I s i  . .  . 1s" = 0. 

In the above scheme the WSi are certain subsets of Psi enjoying some well- 
arranged properties and each ISi  consists of remainders of the polynomials in 
Psi \ WSi with respect to WSi as well as those determined from certain pairs 
of polynomials in WSi determined hy the notions of multiplicativity and non- 
multiplicativity of Riquier and Janet. The union of WSi, ISi and eventually PSo  
will then he Psi+' so far IS2 # 0. It turns out that the final set WS is a basis 
of the given ideal Ideal(PS) and possesses many nice properties. It turns out 
too that this basis WS is just the well-known Grobner basis of the given ideal 
Ideal(PS), which may now be found in some way different from the original one 
of B. Buchberger. Moreover, many known properties connected with the Grobner 
basis which are dispersed in the literature have been proved in some simple and 
unanimous manner. We refer to the paper [8] for details. In particular, we have the 
following nice property of Grobner bases which solves the important membership 
problem. 

MP. A polynomial P in R belongs to the ideal Ideal(PS) if and only if the remain- 
der of P with respect to the Grobner basis of PS is 0. 

It turns out that the Russian mathematician V. P. Gerdt has also found the 
Grobner basis of a polynomial ideal essentially in the same way as above. He has 
used an alternative name of inuolutiue basis and has given also a detailed analysis of 
various possible notions of multiplicativity and non-multiplicatiuity due to Riquier, 
Janet, Thomas, and Gerdt himself. For more details we refer to the paper [2] by 
Gerdt. At this point the author would like to express his hearty thanks to I). Wang 
who pointed out to the author the above-mentioned work of Gerdt. 

5. Problem 2 in the Algebrico-Differential Case 
Let us consider now Problem 2 of algebrico-differentia1 systems in the general case. 
Let DPS be an arbitrary finite algebrico-differentia1 polynomial set as before. The 
problem is to find some f ini te  differential basis of the differential ideal dIdeal(DPS) 
that enjoys some nice properties as the Grobner basis in the polynomial case 
and solves in particular the corresponding membership problem. It is natural to 
extend the method of Buchberger in the polynomial case to the present algebrico- 
differential case. Unfortunately, in 1986 G. C a d  Ferro showed in a well-known 
remarkable paper [l] that such a f inite differential Grobner basis does not exist in 
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general. In later years the possibility of existence of such finite differential Grobner 
bases was widely studied, notably by F. Ollivier (see [3]). 

Now let us try to deal with this problem by our method explained in Section 3. 
Consider again the diagram (dS). We suppose naturally that all the compatibility 
conditions are verified. I t  is clear from the constructions that 

dIdeal(DPS) = dIdeal(DPSo) = dIdeal(DPS1) = . . .  = dIdeal(DPSm). 

Suppose that for the final d-char-set DCS the following condition GC is 
verified. 

GC.  The initials and separants of the algebrico-differentia1 polynomials in DCS 
are all constants. 

By the differential remainder theorem of Ritt,  it is readily seen that DCS 
is a differential basis of dIdeal(DPS) and a differential polynomial DP belongs to 
dIdeal(DPS) if and only if the differential remainder of D P  with respect to DCS 
is 0. 

I t  is thus seen that under the condition GC the final d-char-set DCS will serve 
as a finite differential basis of dIdeal(DPS), which solves the membership problem 
in a simple way. The condition GC is clearly less stringent than the condition of 
linearity and coefficients-constancy, which leads to  the usual Grobner basis in the 
polynomial case. On the other hand, the verification of the condition GC can be 
seen only after lengthy computations of d-char-set. In any way we may lay down 
the following definition. 

Definition. An algebrico-differentia1 polynomial set DPS verifying condition GC 
is called a good set  and the corresponding differential basis formed by the final 
d-char-set is called a good basis of dIdeal(DPS). 

In view of the significance and also the weakness of the above notion of good 
basis, we suggest now some problems for further study. 

Problem 3. Try to find some intrinsic conditions for an algebrico-differentia1 poly- 
nomial set to be “good” directly from the given set without passing to the final 
d-char-set . 

Problem 4. Try to weaken the condition GC such that the differential ideal gen- 
erated by the given algebrico-differentia1 polynomials still has a finite differential 
basis that verifies some simple membership condition. 

Problem 5. Compare our condition GC with other known conditions introduced 
by Ollivier and other authors. 

6. Example: Pommaret’s Devil Problem 
To illustrate our treatment of algebrico-differentia1 polynomial sets, let us consider 
the Devil problem of Pommaret, given for example in his paper [4]. We shall treat 
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this Devil problem in detail by our method as exhibited in Section 3. For this 
purpose let us reproduce the statement of the Devil problem below. 

Devil Problem. Let u, w, y be three functions of the Cartesian coordinates zl, 5 2 ,  z3 

in Euclidean spaces related by the following two partial differential equations 

(D) 
DP1 = dzooy - Z ~ ~ O O Z ? J  - 

DP2 = 8 0 2 0 ~  - v = 0 ,  
1 0 ,  

with the corresponding algebrico-differentia1 polynomial set DPS = { DP1, DP2). 
Note that here and below we use the notation d,,,,,, for the partial derivative 

~ Q + ~ Z + ~ I  " 
d Z a 3  $22 z. ' 

3 2  

The functions u, w are supposed to  be known. The problem consists in finding 
the compatibility conditions to be satisfied by u and w in order t o  insure the 
existence of solutions for y and to see whether the given algebrico-differentia1 
polynomial set DPS is a good one or not. 

It turns out that our procedure ends at the stage m = 2 so that the scheme 
(dS) in the present case becomes 

DPS = DPSo DPS DPS 

(dS') 
DBSO DBS DBS2 = DCS 

DCPSO U DCPS' U DCPS2= DCPS. 
DRISO DRIS' D R I S ~  = 0 

The final d-char-set DCS is found to  consist of 4 algebrico-differentia1 poly- 
nomials 

GI = 8004Y - z ,  

(G) Gz = 8 0 1 2 ~  - w ,  
G3 = ~ O Z O Y  - u ,  
G4 = 8 2 0 0 ~  - ~ n d o o a ~  - 2 ~ .  

In (G),  w and z are given by 

w = ;(azOow - s2aoozw - aozou) ,  
z = d2oow - dOl2U - 22d002w. 

The compatibility conditions are found to be A = 0 and B = 0 with 

(CC) 
% A  = dolow - ~ O O ~ V ,  

B = d4OOw - 252dzoz~ + 52d004w - d212U + 22dO1421 - d004u. 

It may also be shown further that  the two compatibility conditions A = 0 and 
B = 0 are not independent of each other. They are in fact connected by the 
differential identity 

d400A - 2~2d202A + zZdoo4A - 2doloB = 0. 

Naturally all the above were found by Pommaret by his method and in his 
notations. which are different from ours. 
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Now we see that the d-char-set DCS consisting of the 4 algebrico-differentia1 
polynomials GI,  . . . , Gq verifies the condition GC so that the given algebrico- 
differential polynomial set DPS is a good one with a good basis for the corre- 
sponding dIdeal(DPS). 
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Wu studying in France, 1948 

Wu and his students, 1974. From right: Yu Yan-Lin, Jiang Jia-He, Li Pei-Xin, 
Wang Qi-Ming 
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Wu’s family. From left: Wu Uue- ing, Wu Wen-Tsun, Wu Yun-~i ,  
u Xing-Xi, Chen Pi-He, 1978 

Wu and Professor Chem S~ing-Shen, 1980 
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Wu in a welcome ceremony for Professor N e d  Cartan (fourth from left) in 

Wu received the National Supreme Award of Science and Technology from former Chinese 
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2002 

Wu and members of the Mathematics Mechanization Research Center, 2006 
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Wu gave the Shaw Prize acceptance speech in Hong Kong, 2006 

Chinese President Hu Jin-Tao chatted with Wu at Wu’s home before the Chinese New 
Year, 2008 
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