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Abstract. We investigate the homotopy type ofTOP(M)/TOP(M), where M is a compact manifold, TOP(M) 
is the simplicial group of homeomorphisms of M which restrict to the identity on 0M, and TO'-'~P(M) is the 
simpticial group of block homeomorphisms of M which restrict to the identity on OM. In the so-called 
topological concordance stable range of M, we obtain an expression in tcrrms of the topological Whitehead 
spectrum ofM. IfM is smooth, we also investigate the homotopy type of DIFF(M)/DIFF(M); in the smooth 
concordance stable range of M, it has an expression in terms of the smooth Whitehead spectrum of M. 
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Introduction 

Let M be a compact topological manifold. Denote by G(M) and TOP(M) the spaces 
of self-homotopy equivalences and self-homeomorphisms of M which are the identity 
on t?M. We want to investigate the difference between G(M) and TOP(M), or 
G(M)/TOP(M). 

Recallthat surgery the~ory, notably the Sullivan-Wall long exact sequence, analyses 
G(M)/TOP(M). (Here TOP(M) is the simplicial set of block homeomorphisms of M; its 
k-simplices are the self-homeomorphisms of Ak• M which are the identity on 
Ak• ?M and which preserve the faces diAkx M for 0 ~<i~  k.) It remains to 
understand T O'~P( M )/T O P( M). 

Let ~~  be the space of topological concordances of M (see Hatcher [183 or 
Waldhausen [41]). If the stabilization maps 

c~x~ ~ ~T~ x D 1) ~ cgT~ X D 2) . . . .  

are all k-connected, then we say that k is in the topological concordance stable range for 
M. The direct limit c~T~ x D ~ of the spaces c~v~ x D j) is an infinite loop space. 
It determines a spectrum whose suspension (!) we denote, for one reason or another, by 
f~Whsm~(M). We construct an action of Z 2 on ~WhsT~ We are particularly 
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interested in the homotopy orbit spectrum S~ A z2 f~WhsT~ and its zeroth infinite 
loop space, written Q(S~ A z2 f]WhsT~ Here S ~ plays the role of EZ 2, and the 
subscript + marks an added base point. 

THEOREM A (topological version). There exists a map 

S ~ cbs: TOP(M)/TOP(M) ~ Q( + A z2 tlWhsT~ , 

which is (k + 1)-connected if k is in the topological concordance stable range for M. 

Remark. Using Theorem A and the filtration of S ~ by skeletons S i, one obtains 
a spectral sequence for the analysis of 7r, (TOP(M)/TOP(M)) in the concordance stable 
range. This is known and due to Hatcher [19]. If we localize at odd primes, then 
Theorem A is a result of Burghelea and Lashof [9]; see also Burghelea and Fiedorowicz 
[8] and Hsiang and Jahren [21]. 

THEOREM A (smooth version). I f  M is smooth, then there is a map 

@~: DI~'~F(M)/DIFF(M)~ Q(S ~ A z2 glW__~hsDIVF(M)) 

which is (k + 1)-connected if k is in the smooth concordance stable range for M. 

We hope the notation in the smooth version is self-explanatory. The smooth version 
can be used to analyse G(M)/DIFF(M), just as the topological version can be used to 
analyse G(M)/TOP(M). The proofs of the topological and smooth versions are 
identical, and we will concentrate mostly on the topological case in this introduction 
and throughout the paper. Note, however, that concordance stability is better 
understood in the smooth case. Kiyoshi Igusa has shown that if M is smooth and 
k < dim(M)/3 approximately, then k is in the smooth and in the topological 
concordance stable range for M. See Igusa [23, 24]. 

Our proof of Theorem A proceeds by separating the combinatorial aspects of 
TOP(M) from its geometrical aspects. The method is: 

Euclidean Stabilization. Let Topb(M x ~i) be the topological or simplicial group of 
homeomorphisms f :  M x Ni ~ M x ~i such that f is the identity on t3M x Ni, and 

there exists an e ( f ) > 0  with ]lpr2f(m,z)-zJI < e ( f )  for all m s M ,  
z e Ni, where Pr2: M x Ni ~ Ni is the projection. 

We call f a bounded homeomorphism. The bounded theory was introduced and first 
exploited by Anderson and Hsiang [2]. 

t ~ J  

Of course, there is also a block version TOPb(M x Ni) and we get a commutative 

diagram 

TOP(M) ~ TOPb(M• ~1) __+ TOpb(M • ~2) 

TOpb(M x TOP(M) ~ RI) ~ TOpb(Mx ~2) 
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where the horizontal arrows are given by crossing with the identity on N1, or by 
Euclidean stabilization. Write 

TOPb(M x ~oo) = ~ )  TOPb(M x Ni) and 
i 

TOpb(M x N~o)= TOpb(M x Ri). 
i 

The next result implies that Euclidean stabilization kills the difference between 'honest' 
and blocked. 

THEOREM B. The inclusion TOpb(M x R ~) c~ Topb(M x R ~) is a homotopy 
equivalence. 

The stabilization map TOP(M)-~ TOpb(M x R ~176 is also close to being a homo- 
topy equivalence; for example it is so if M is simply connected and, therefore, 
TOpb(M x N~)/TOP(M) is approximately the same as TOP(M)/TOP(M), and is 
much easier to handle. Using the Anderson-Hsiang theory, we construct a spectrum 
~WhT~ with Z2-action whose 0-connected cover is flW_hhsT~ and whose 
homotopy groups in negative dimensions are the negative algebraic K-groups of 
~zt(M ). We then analyse TOPb(M x R~)/TOP(M) in terms of f~WhT~ and use 
combinatorial methods to pick up the trifles lost through Euclidean stabilization. This 
is summarized in the next result. 

THEOREM C. There exists a map 

S ~176 O: TOPb(M x N~)/TOP(M) --, Q( + A z2 ~lW~hT~ 

which fits into a commutative square 

TO P( M)/TiP(  M) 

TOpb(M x ~~ 

TOW(M x N~)/TOP(M) 

cbs 

q) 

Q(S~ A z2 flWhsT~ 

Q(s ~ A ~ ~W_~_h~~ 

The square is a homotopy pullback square if dim(M) ~> 5. 
In future papers on this subject, we want to use the known relationship between 

concordance theory and algebraic K-theory to obtain numerical results. 

Leitfaden: Sections 2 and 3 contain the geometric part of the proof of Theorem A, and 
Section 4 contains the necessary combinatorics. Sections 1 and 5 contain introductory 
and supplementary material about bounded homeomorphisms, for which we claim no 
originality. Sections 0 and 6 are about language. 



578 MICHAEL WEISS AND BRUCE WILLIAMS 

O. Preliminaries 

Simplicial sets are pol~ular in homotopy theory for two different reasons. Firstly, many 
important spaces, such as Eilenberg-MacLane spaces or classifying spaces in 
K-theory, can be conveniently defined in simplicial language. Secondly, certain 
necessary constructions (of mapping objects, say) can be performed easily in the 
category of simplicial sets when they are painful in the category of topological spaces. 

We are mostly interested in the second aspect, and we have found it necessary to 
introduce yet another substitute for the notion of space which does not suffer from the 
combinatorial rigidity that simplicial sets inevitably have. Our reason for avoiding 
rigidity is that we wish to use the language of coordinate free spectra in Sections 2 and 3; 
in particular, some of our 'spaces' will come equipped with an action of the orthogonal 
group O(n), and the action should be continuous. The use of simplicial sets in this 
situation would obscure even the simplest arguments. 

0.1. DEFINITION.  A virtual space is a contravariant set-valued functor Y on the 
category of topological spaces and continuous maps, satisfying the sheaf condition: 

I f X  is a topological space with an open covering { U  i J i ~ J} ,  and if for each i e J 
an element s i in Y(U~) is given such that 

Silglcauj:Sjluic~Uj in Y ( U ~ c ~ U j )  

for all (i,j) e J x J, then there exists a unique s ~ Y ( X )  such that sEv ~ = s~ for all 

i E J .  

A continuous map between virtual spaces Y1, Y2 is a natural transformation Y1 ~ Y2. 
A pointed virtual space is a virtual space Y together with a continuous map * ~ Y, 

where * is the constant one-point functor. 

0.2. REMARKS. (i) The notion of quasi-space in Kirby and Siebenmann [27] is very 
similar in character. In Siebenmann's words 'a quasi-space is a "space" of which we 
want to know only the sets of maps to it of certain specified pleasant spaces'. The same 
could be said of virtual spaces; see 0.3 below. 

(ii) The category of virtual spaces is a topos, by definition of that word. See the 
introductions to Johnstone [25], Barr and Wells [4], and Wraith [45]. 

0.3 EXAMPLE. Every topological space Y can be regarded as a virtual space in the 
obvious way: Let Y ( X )  be the set of continuous maps from X to Y, if X is another 
topological space. The category of topological spaces and continuous maps is therefore 
contained in the category of virtual spaces and continuous maps, as a full subcategory 
(by the Yoneda lemma). If U is a virtual space and X is a topological space, then U(X)  

can be identified with the set of continuous maps from X to U. 

0.4. EXAMPLES. (i) Let M be a compact topological manifold as in the introduction, 
and let V be a finite-dimensional real Hilbert space. Let TOpb(M x V) be the virtual 
space which to each topological space X associates the set of locally bounded 
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homeomorphisms 

f : X x M x  V ~ X x M x  V 

preserving the projection to X, and restricting to the identity on X x ~M x V. 
('Locally bounded' means that any x ~ X has a neighbourhood U c X such that the set 

of real numbers {d(z,f(z))] z e U x M x V} is bounded. Here d is the distance 
measured in the V-direction only.) 

(ii) Suppose now that M is smooth. An element f :  X x M x V ~ X x M x V of 
TOW(M x V)(X) will be called smooth if, for each point x e X, the restriction 

L :  {x} • M • {x} • M • V 

is smooth, and if the higher derivatives D(f~,), D2(fx), . . .  vary continuously in x. (Each 
derivative D"(fx) is a continuous section of some vector bundle over {x} x M x V; 
letting x vary, one obtains a section of some vector bundle over X x M x V, and this is 
still required to be continuous, for all n > 0. We do not put any bounds on the higher 
derivatives.) 

The smooth elements ofTOpb(M • V ) ( - )  define a virtual subspace DIFFb(M • V) 
of TOpb(M x V). 

0.5. CONSTRUCTIONS with virtual spaces. Since virtual spaces form a topos, 

practically all categorical constructions can be performed with them. We mention a few 
explicitly. 

(i) The product of an arbitrary family of virtual spaces is again a virtual space. 
(ii) Let Y be a virtual space. A virtual subspace A c Y is a subfunctor which is 

a virtual space in its own right. 

(iii) Take A c Y as in (ii). The diagram * ~ A ~ Y, where * is the one-point functor, 
has a pushout in the category of virtual spaces: Take the contravariant functor which to 
a topological space X associates the pointed set Y(X)II-A(X)*, and subject it to the 
standard construction for converting presheaves into sheaves. The resulting virtual 
space Y lka * has the required universal property. 

The reader is warned that if A and Y happen to be genuine topological spaces, then 
the pushout Y 11_ A * in the category of virtal spaces will not usually agree with the 

pushout Y s in the category of topological spaces. However, the virtual version 
behaves much better than the topological version, and it would be unwise not to use it 
(see Section 6). There is a risk of confusion here, but the consequences of such 
a confusion would be quite harmless. 

(iv) As an application of(iii), define the wedge Y1 v I12 of two pointed virtual spaces 
Y1, I12 by taking Y = Y1 s I12 and A = * s  in (iii). 

(v) Define the smash product Y1 A Yz of two pointed virtual spaces to be 
(Y1 x Yz)_[L(rl vr2)*. 

(vi) To define the direct limit of a direct system 

�9 " - - ' L - I - ' Y . - - ' L + I  . . . .  
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of virtual spaces, takes the contravariant functor X ~ lim, Y,(X) and subject it to the 
standard construction for turning presheaves into sheaves. (Again, direct limits in this 
sense should not be confused with direct limits in the category of topological spaces.) 

(vii) If Y1 and I12 are virtual spaces, then the rule which to every topological space 
X associates the set of continuous maps X x Y~ --, Y2 is a contravariant functor with 
the sheaf property, or a virtual space. It is called the virtual space of continuous maps 

Y1 -+  ] /2 ,  written map(Y1, II2). 

The definition is a little sloppy because the 'set' of continuous maps X x Y1 + Y2 
need not be a set. But if Y~ is a genuine topological space, then it can be identified with 
Yz(X x Y1) and is therefore a set. 

If Y, and Y2 are both pointed, then we can similarly define the virtual space of all 
pointed continuous maps from Y, to Y2, written map,  (Y1, Y2). 

(viii) If Y is a pointed virtual space, let ~Y  = map,(S 1, Y), using (vii). Note that 

f)"Y = map,(S 1 /x S 1 A ".  A S I, Y), 

which is not quite the same as map,(S", Y) because smash products are to be taken in 
the category of virtual spaces. But the difference is quite inessential. 

(ix) Suppose that J is a virtual space with group structure. (This means that the sets 
J(X) are groups, and the maps J(X) ~ J(X') induced by continuous maps X --* X' are 
group homomorphisms.) Suppose further that H c J is a virtual subspace which is also 
a subgroup. The rule which to every topological space X associates the set of left cosets 
J(X)/H(X) is then a contravariant set-valued functor, but it need not have the sheaf 
property. Now apply the standard construction for converting presheaves into sheaves. 
The result is a virtual space J/H. For example, we could take Y = TOpb(M x (V �9 •)) 
and H = TOW(M x V), or J = DIFFb(M x (V �9 N)) and H = DIFFb(M x V). In 
fact, we will do so in Section 1. 

More generally, suppose that H is a virtual space with group structure acting on 
a virtual space Y. Then it is possible to define a virtual orbit space Y/H in the same way. 

0.6. REMARK. Let Y be a virtual space and let X be a topological space. To every 

f ~ Y(X) we can associate a map of sets 

f ' :  X + Y(*); x ~ ft{x} e Y({x}) -~ Y(*). 

Most of the virtual spaces that we will encounter are such that f '  determines f for 
arbitrary X a n d f e  Y(X). To specify a continuous map between virtual spaces with this 
property, say II1 and Y2, it is sufficient to specify the map of sets Y,(*) --+ I72(*)- 

0.7. DEFINITION.  Two continuous maps fo, f l  : U --+ Y between virtual spaces are 

homotopic if there exists a continuous map f:  U x I--+ Y such that fw• {0} = fo and 

f lux {,} = L .  

Homotopy is an equivalence relation. To check for transitivity, suppose there are 
given two homotopies 

ha: U • [0, 1] --+ Y, ho,: U • [2, 3] ~ Y 
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such that h~ connects fo with f l  and h,~ connects f l  with f2. Let p,: U x [0, 2[ 
U x [0, 1] be given by p,(u, t) = (u, min{t, 1}) and let p~,: U x ]1, 3] ~ U x [2, 3] 
be given by p~(u, t) = (u, max{t, 2}). Let h: U x [0, 3] ~ Y be the unique continuous 
map which equals h,p,  on U x [-0, 2[ and hop~, on U x ] 1, 3]. Then h is a homotopy 

connecting fo with f2. 
We can now say that a continuous map f :  U ~ Y between virtual spaces is a weak 

homotopy equivalence if f , :  U ( X ) / ~  ~ Y ( X ) / ~  is an isomorphisms for all CW-spaces 
X, where ~ denotes the homotopy relation. 

0.8. DEFINITION. The materialization of a virtual space Y is the simplicial set ymat 
whose k-simplices are the continuous maps A ~ ~ Y, for all k/> 0. 

It will be shown in a separate appendix (Section 6) that there is a sufficiently well 
defined continuous map from the geometric realization of ymat to ]1 which is a weak 
homotopy equivalence. Moreover, all the constructions in 0.5 behave well under 
materialization, in the sense that they yield easily predictable homotopy types. The 
moral is that we can pass freely from the world of virtual spaces to that of simplicial sets. 
We will in fact use virtual spaces when rigidity would be a hindrance, and simplicial sets 
when combinatorial arguments are needed. 

1. Bounded Homeomorphisms and Diffeomorphisms 

This section is a survey of results due in their final form mostly to Anderson and Hsiang 
[2], with ideas from Hsiang and Sharpe [22], Hatcher [181, Siebenmann [38], Edwards 
and Kirby [17], and M. Brown (unpublished). See Madsen and Rothenberg [28, 29] 
and Anderson and Pedersen [3] for recent applications of the bounded theory. The 
controlled theory of Chapman [15] and Quinn [35, 36] is also closely related. 

For simplicity of notation, we present results and proofs in the topological category 
first, but it should always be kept in mind that we make similar claims for the smooth 
category. We comment on the similarities and minor differences in Remark 1.17. 

We begin by stating two instrumental theorems: an isotopy extension theorem, and 
a wrapping theorem known under the name 'belt buckle trick'. 

1.1. ISOTOPY EXTENSION THEOREM. Let  X be a topological manifold, V c X an 

open subset, C a compact subset of  V. Suppose there is give a continuous family of  

embeddings 

Jt: V ~ X for t e A  n 

such that Jb is the inclusion for some b ~ A n. Then there exists a continuous family of  
homeomorphisms 

Jr: X ---} X ,  with t ~ A n, 

such that Jt agrees with jr on C for all t, and Jb = idx. Further, if  jtlov is the inclusion 
OV c a X  ~ X for all t, then Jtlox can be the inclusion OX ~ X for all t. (Continuity of  the 
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families {j,} and {J,} refers to the compact-open topology.) 

Proof See Siebenmann [39], 6.5.III, 6.6, 2.3, 1.3.(0) or w of Cernavskii [14]. 

It would be useful to have an isotopy extension theorem in the bounded case. 
Suppose, for instance, that X in Theorem 1.1 is equipped with a proper map p: X --. ~k, 
that C is closed instead of compact, and that the family of embeddings {j,} satisfies 
a boundedness condition (which means that [] pOt(x)) - p(x)I] < e for some e > 0 and all 
x ~ V and t e A"). Does a (bounded) extension {J~} as in 1.1 exist? The answer is no; see 
Hirsch [20], ch. 8 ex. 9, We will use the belt buckle trick as a substitute for the missing 
isotopy extension theorems. 

Define TOpb(M x N") as in 0.4. Suppose that H is a finitely generated subgroup of 
the additive group ~", and let TOpb(M x ~"; H ) c  TOPb(M x ~") be the virtual 
subspace consisting of all bounded homeomorphisms which commute with the 
translations 

M x N" ~ M x R"; ( m , z ) ~ ( m , z  + h) 

for arbitrary h e H. 

1.2. BELT BUCKLE THEOREM. Choose integers j, k ,m  >~ O. Write Ni+k+,, = 
W x Nk X R m. The forgetful map 

u: TOpb(M x Nj+k+,,; zk+,,) t~ TOpb(M x R#+k+,,; zk) 

has a homotopy splitting 

w: TOpb(M x Nj+k+,,; zk) ~ TOW(M x Rj+k+,,; 7/k+,,), 

SO that uw ~- identity. 

1.3. LEMMA (for the proof of 1.2). Let X be a topological space. Let ~_, fl_, ~+, fl+ be 

open embeddings X x ~ ~ X x ~ such that 

_ ( x  x ~),  # _  ( x  x ~ )  ~ x x ] - oo, 0 ] ,  

~+ ( x  x ~), / L  ( x  x ~ ) ~  x x [o, + oo [, 

_ = f l_  =ident i ty  on X x ] - o v , - c ] ' (  
for some c > O. 

~+ fl+ identity on X • [c, + ~ ]  ) 

Let X • ~ • 7//(~_, ~+) be the quotient space obtained from (X • ~) • 7/ by 

ident~ying (~+(x, r), z) with (a_(x, r), z + 1)for all z ~ 7/. Define X • ~ • Z/(fl_, fl+) 
similarly. Then there is a canonical homeomorphism 

X • ~ x 7 / / ( ~ _ , ~ + ) ~ x  • ~ • 7//(B-,  ~+) 

which commutes with the translation (x, r, z) ~ (x, r, z + 1). 
Proof The canonical homeomorphism is the composition of homeomorphisms 

x • ~ x 7 / / ( :_ ,  : + )  ~ x • ~ • 7/ /(~_,  : + )  ~ x • ~ • z / ( ~ _ ,  ~+). 
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To see for example that 

X x It? x 7//(c<, c~+) ~- X x ~ x Z / ( ~ _ ,  ~+), 

note that the underlying sets can both be identified with ((X x ~) - im(a+)) x 7/. The 
identity is then a homeomorphism. 

Some choices will be needed in the proof  of Theorem 1.2. Choose homeomorphisms 

e + : R -* ] + 2, + oo [ and e_ : ~ ~ ] - o% - 2 [ which are the identity on [ + 3, + oo [ 
and on ] - o % - 3 ] ,  respectively. Choose also a homeomorphism 2 :R  x 

7//(e_, e+) -* N commuting with the actions of 7/. (Here we use notation as in 1.3; the 

generator of 2 acts on N x 7//(e_, e+) by ( r , z ) ~ ( r , z  + 1) and on R by r~-~r + 1.) 

Choose 2 so that the composition 

~ ~ R x {0} c-, ~ x Z/(e_, e+) ~ , ~  

agrees with the identity in a neighbourhood of 0 e N. 

Proof of 1.2. (This is also given, in a slightly different setting, in Madsen and 

Rothenberg [29], Part  III.) We can assume that m =  1. Let g be a point in 
T O W ( M  x NJ+k+I; 7/k), and assume that g has bound ~<1 with regard to the last 

coordinate. (This means that liNg(X)-p(x)]] ~< 1 for all x e M  x R j+g+t, where 
p: M x R j+k+ 1 ._+  ~ is the projection to the last coordinate.) Put X = M x Ni+k in 1.3, 

and 

a _ - = i d  x x e_, c~+ = i d  x x e+, 8 -  = g a - g - 1 ,  fi+ =gcz+g-1. 

Then 

x x R x 7 / / ( ~ _ , ~ + ) ~ - X  x ~ x 7 / / ( ~ _ , ~ + )  

X x ( ~ x Z / ( e _ , e + ) ) ~ X x  R 

by 1.3.  and X x N = M  x Rj+k+t. Therefore 9 x id~:X x N x Y/(a_,c~+)--, 

X x ~ x Y_/(fl_,fl+) can also be regarded as a homeomorphism w(g) from 

M x Nj+k+l to itself. This defines the map w on the virtual subspace of 
TOpb(M x Nj+k+l; 7/k) consisting of all g having bound ~<1 with regard to the 

last coordinate. But the inclusion of this subspace is clearly a weak homotopy  
equivalence, or a homotopy  equivalence after materialization. 

Showing that uw is homotopic to the identity amounts to showing that the map 

g ~-~ uw(g)" g -  1 is nullhomotopic. This is an easy consequence of the fact that uw(g), g-  ~ 
agrees with the identity in a neighbourhood o f M  x Nj+k x {0}, by construction. (Use 

an Alexander trick, which means pushing the two halves of uw(g).g -a towards 
m x ~j+k X { + Oe} and M x NJ+g x {--oe} respectively, by conjugating with suit- 
able translations.) 

1.4. N O T A T I O N .  We define TOpb(M x N") as in 0.4 and regard it either as a virtual 
space or as a simplicial set, using the materialization functor. If n = 0, we simply write 
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TOP(M). Note that homeomorphisms in TOP(M) are the identity on ~?M. Accordingly, 

TOP(M x D k) is the space of homeomorphisms of M x D k which are the identity on 

•(M x Dk). Relative versions will be marked as such; for instance, if #o M is a 
codimension zero submanifold of ~M, we write TOP(M, ~?o M) for the virtual space 

(or simplicial set) of homeomorphisms of M which are the identity on ~?M - ~o M. 

In the sequel, it is sometimes helpful to think of certain homeomorphisms of certain 

manifolds as perturbations of the identity homeomorphism. For example, let 

f :  D" ~ D" be a homeomorphism keeping S"-  1 pointwise fixed; regard it as a perturb- 
ation, and remove it by radially shrinking the domain of perturbation to the centre of 

D". This shows that TOP(D") is contractible; of course, the trick is due to Alexander [1]. 

Anderson and Hsiang I-2] employ a different Alexander trick which consists in pushing 
the domain of perturbation towards oo. We often use the label 'alex' for constructions 

involving an Alexander trick of this type. 
A typical example is the map from TOpb(M x D k x ~") to f~kTopb(M x ~k+,) 

defined as follows. Take a bounded homeomorphism f:  M x D k x ~n__, 

M x D k X ~", and regard it as a bounded homeomorphism f: M x Nk X N " ~  
M x ~k X ~ "  by extending trivially outside M x D k x [~" c M x ~k X ~". F o r  

z s R k, let trz: M x ~k X ~" - ~  M x ~k X ~n be the translation by z. The map 

( t r _ z . f . t r z  i f z ~ R  k 

z ~ Udentity if z -- oo 

is then a continuous map from ~kw{oO} to T o p b ( M  x ~k X ~"), Identifying 
R k u {oo} with S k, regard it as a k-fold loop alex(f)  in TOpb(M x Rk+"). 

1.5. P R O P O S I T I O N .  The map 

alex: TOpb(M • D k x ~ n ) ~  ~ k T O p b ( M  X ~k+.) 

is a weak homotopy equivalence. 

Proof We may assume that n = 0, because otherwise we know from 1.2 that 

alex: TOPb(M x D k x ~")-- .  ~2kTopb(M X Nk+,) 

is a homotopy retract of another map 

alex: T O p b ( M  x D k x ~n; 2n) -* ~ k T O p b ( M  • ~k+n; ~.) 

defined by the same method. The latter will be a weak homotopy equivalence if 

alex: TOPb(M x (S1)" x D k) -~ f~kTopb(M X (S1)" x R k) 

is (use covering space arguments). The factor ($1)" can be absorbed in the symbol M. 
We may also assume that k = 1, because otherwise D k -~ D 1 x D ~ x D ~ x ... x D ~, 

and the map can then be written as a k-fold iteration. 

When k = 1 and n -- 0, proceed as follows. Let E be the space of all pairs (f, 9) where 
f , g :  M x N ~ M x R are bounded homeomorphisms (equal to the identity on 
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c3M x R) such that  

glMx]-~o,-1] = identity, gtu• +~E = fire • [z, +~[ 

for some z >i 0. (This is a vir tual  space, of course; the bounds  o n f a n d  g are required to 

exist locally, as in 0.4, and z is also required to exist locally.) Let E o c E be the subspace 

consisting of the pairs ( f ,  g) w i t h f  = id. Clearly E o ~- T O P ( M  x D1). We will prove: 

1.6. L E M M A .  (i) E is contractible. 
(ii) The diagram 

Eo--*E (S, 0)~S ~ TOpb(  M x ~)  

is a fibration (after materialization, cf. end of  Section 0). 

Proof of(i). If z ~ ~, let trz: M x ~ --, M x ~ be the t ranslat ion by z. The m a p  

E-~  E; ( f , g ) ~ ( ( t r  z . f g - l . t r ~ ) . g , g )  

is the identity ifz = 0 and becomes ( f  g) ~~ (g, g) as z tends to + oo, since f and g agree 

on M x {z} for large z. Therefore,  E can be deformed into the subspace E' consisting of 

all (f,  g) with f = g. But E' is contractible,  as is shown by the deformat ion  

E' x [0, + o o ]  -*E ' ;  ((g,g),z)~-~(tr~.g.tr_~,tr~.g.tr_~). 

(Remember  that  glM • I - oo, O] = identity.) 

Proof of  (ii). Using the mater ial izat ion functor,  we regard the m a p  E --, TOPb(M x N) 
as one of simplicial groups. O u r  task is to show that  it is a K a n  fibration of simplicial 

groups,  which amoun t s  to saying that  it maps  onto the identity componen t  of 

T O p b ( M  x ~). But the identity componen t  of any simplicial g roup  is generated by the 

simplices whose zeroth vertex is the base point. 

Suppose then that  { f : M  x R ~ M  x ~ [  t ~ A " }  is a typical n-simplex in 

T O Pb(M x ~); let b ~ A" be the zeroth vertex, and assume that  fb = id. Apply the 

isotopy extension theorem 1.1 with X = M x ~, C = C_ 1 ~ C~ the union of two small 

closed tubular  ne ighbourhoods  abou t  m x [ -  1} and M x {z}, for some (large) real 

number  z; and V = V 1 ~ V~ the union of two slightly larger open tubular  neighbour-  

hoods  abou t  M x { - 1 }  and M x {z}. Specify the embeddings  j, by 

Jtlv_~ = inclusion, J~lv~ = ftlv~. 

(They are indeed embeddings  because z is considerably larger than the uniform bound  

on {f}.)  N o w  1.1 yields a family of (possibly unbounded)  h o m e o m o r p h i s m s  

Jr: M x ~ --* M x ~ (t E A"; Jb = identity) 

restricting to the identity on 0M x ~ and equal to j, on C, and we let 

i g t=  on M x [ z , + o o [  ~ for t ~ A  ~. 

enti ty on m •  
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Then {(ft, g,)[ t e A"} is an n-simplex in E which lifts { f i t  e A"}. This proves 1.6. 

Completion of the proof of 1.5: From 1.6 we get that 

TOP(M x D  1) c----- >Eo_~t~TOPb(M x ~), 

but it is not clear that this homotopy equivalence agrees with the map alex of 1.5. To 
prove this we need the missing arrow in a commutative diagram 

TOP(M x D 1) c_ ~Eo 

Cone on TOP(M x D 1) ---~E 

1 alex 1 
ZTOP(M x D 1) >TOPb(M x N). 

Write the cone on TOP(M x D 1) as TOP(M x D 1 ) /X [--- oo, -I- oO], where - o0 serves 
as the base point of [ -  o% + oo]. Recall the definition of E as a space of certain pairs, 
and define the missing arrow by 

(tr_~. f . t rz ,  f )  if z ~> 0, 
f A z ~ ( ( t r _ z . f . t r z ,  tr_ z . f . t r z )  i fz~<0.  

Here f :  M x D 1 --, M x D I is a homeomorphism, z is a real number (or + ~ ,  - oe), 
and f is obtained from f by extending trivially outside M x D 1 c M x N. The proof of 
1.5 is finished. 

There is a slight refinement of 1.5, as follows. For simplicity take n = 0 in 1.5. Observe 
that ~kTOP(M) is contained in TOP(M x D k) as the subgroup consisting of all 
homeomorphisms M x D k ~ M  x D k preserving the projection to D k. Also 
~kTOP(M) c flkTOpb(M x Nk) because TOP(M) c TOpb(M x Rk). 

1.7. PROPOSITION. There is a weak homotopy equivalence 

alex: TOP(M x Dk)/t~kTOP(M)~ fIkTOpb(M x Nk)/flkTOP(M)fat, 

where TOP(M)fat c TOpb(M x Nk) is a subgroup containing TOP(M) as a deformation 
retract. 

Proof We work with virtual spaces again. Note that the map in Proposition 1.5 is 
a group homomorphism (always use the multiplication on FIkTOpb(M X Nk) induced 
from the multiplication on TOpb(M x Nk)). It sends flkTOP(M) c TOP(M x D k) to 
the subgroup tikTOP(M)e~t c flkTOpb(M x Nk), where TOP(M)f, t consists of all 
homeomorphisms in TOpb(M x R k) preserving the projection to Nk. The deformation 
retraction of TOP(M)fat into TOP(M) is clear (use an Alexander trick), and the 

composition 

flkTOP(M) m a p  of  1 . 5  ) f l k T O P ( M ) f a t  ~ flgTOP(M) 

is homotopic to the identity. 
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Define the bounded concordance space c~b(M x R") to be the virtual space of all 

bounded homeomorphisms f :  M x N" x D 1 ~ M x N" x D 1 which are the identity 
on M x ~" x { -  1} u t?(M x R") x D 1. If f is such a homeomorphism, i.e. a bounded 

concordance, let c~f: M x ~" ~ M x [R" be the restriction o f f  to M x ~" x { + 1} 

M x ~ " .  

1.8. PROPOSITION.  There is a weak homotopy equivalence 

alex: ~b(M x R") ~ f~(TOpb(M x R"+I)/TOpb(M x N")). 

Proof. Given a bounded concordance f: (M x R") x D 1 ~ (M x R") x D 1, define 

a bounded homeomorphism f: (M x R") x N ~ (M x ~") x ~ by the rule 

f = f  on (M x ~") x D  1 

f = i d  o n ( M  x N") x ] -  o% - l ]  

f = 0 f  x i d  on (M x R") x [+1 ,  +oo[ .  

Then the formula z ~ t r _ z ' f ' t r z  defines a map from R u { - o o ,  +oo} to 
TOW(M x N" § 1). Here tr z is translation by z, acting on the last factor of(M x ~") x N. 

I f z = - o % t h e n t r  z . f . t r  z is the identity; if z = + o % t h e n  

t r _ ~ . f . t r ~ = 0 f  x i d : ( M x  ~ " ) x  ~ - - - , (Mx ~ " ) x  R. 

Therefore {tr_~.f. tr2] z e [ -  o% + oo] } defines a loop in 

TOpb(M x N"+t)/TOpb(M x N"), 

which we call alex(f). This defines the map. 
To prove that it is a homotopy equivalence, let Y be the homotopy fibre of the 

inclusion TOpb(M x JR")c~ TOPb(M x R"+t). This is conveniently defined as a 

virtual space. The projection 

Y ~  f~(TOPb(M x ~n+I)/TOpb(M • ~n)) 

is a weak homotopy equivalence (see Section 6). Also, the map which we just defined 

factors as 

~b(M x Rn)--+ Y ~- )n(TOpb(M x N"+~)/TOpb(M x ~")) 

because for any bounded concordance f we can regard {tr_~. fl-tr~ ] z E [ -  0% + oo] } 
as a typical point in Y. There is a strictly commutative diagram 

TOPb(M x N" x D  1)c ,~b(M x N") ~ TOPb(M x N") 

a x 1 
gITOpb(M x R n+l) ( ~ Y ~TOPb(M x R") 

in which the rows are fibrations up to homotopy (by 1.2). Therefore, the arrow in the 
middle is a homotopy equivalence. 
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1.9. REMARK. There is a standard involution o n  c~b(M • ~n) which consists in 

turning a concordance f upside down and composing with (Of x D1) - 1 Define an 
involution on O(TOpb(M x 0~" x ~ ) / T O p b ( M  x R")) by conjugating with the flip 

-id: R ~ [R on the last factor of M • R" x ~, and reversing loops. Then the map in 

Proposition 1.8 commutes with involutions. 

1.10. P R O P O S I T I O N .  There  is a weak  homotopy  equivalence 

alex: cgb(M x D k x ~")  ~ ~kcgb(M • ~g+"). 

P r o o f  L e t X = M •  1 , a n d 0 o X = M x  { + l } c 0 X .  ThenCgb(M • D k •  ~") = 

T O p b ( x  x D k x R", ~o X x D k x ~n) and cgb(M x ~k+,,) = TOPb(X x ~k+,, 

00 X • ~k+,); see 1.4 for notation in relative cases. Therefore 1.10 is a special case of 

a relative version of 1.5, whose proof is similar to that of the absolute version. Note: the 
map in 1.10 is obtained in the usual way, by embedding D k in ~k and pushing off 

towards infinity in all possible directions. 

So far we have not discussed stabilization maps between concordance spaces. The 

stabilization map OK(M)- .  Cg(M • D k) is defined so as to fit into a homotopy 

commutative diagram 

~(M) = ) TOP(M x D 1, M x { . - { - 1 } )  

I x Dk 

TOP(M x D k x D ' , M  x D k x ( + I } U M  x ~D k x D 1) 

Db : ,  TOP(M • D • D1, M • D • {+1}). 

(Note that M x c~D k x D 1 is just a collar attached to M x D k x {+1}.) 
An explicit description is as follows. Choose an embedding e: D k x D ~ -~ D k x D 1 as 

in Figure 1. Given a concordance of M, say f :  M x D 1 -~ M x D 1, take products with 

D ~ < 

i I 

e ( s  k-~ , ,D  ~ ) 

v 
D k 

~ -  e (Dk• D ' ) 

Fig. 1. 
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D k to obtain a homeomorphism M x e(D k x D 1) ~ M x e(D k x Da). Extend this over 

all of M x D k x D ~ in the evident way to obtain a concordance of M x D k. 

There are similar stabilization maps ~b(M x R") ~ ~b(M X D k x R"). In 1.11 and 

1.12 below, we combine these with the deloopings given by 1.10 and 1.8 to construct 

a spectrum flWh(M). 

1.11. D E F I N I T I O N S .  Let ~C be the category offinite-dimensional real Hilbcrt spaces; 

a morphism from V to W will be a linear map V --* W preserving the scalar product. If 

V is in J ,  we let V ~ be the one-point compactification of V; it is a pointed space with 
base point oo. 

Write F(V) = TOPb(M x (V G N))/TOW(M x V). If V 1 ~ V 2 is a morphism in the 

category ~r write V 2 = V 1 �9 V~ and define an induced map F(Vz) ~ F(V2) by taking 

the product with the identity on V~. This makes F into a functor. 

Suppose that V and W are objects of J .  For  any z~  V let G: V@ W @  R-~ 

V �9 W G R be the unique rotation which sends (0, 0, 1) e V | W �9 R to a positive 

scalar multiple of (z, 0, 1) and which restricts to the identity on the orthogonal 
complement of 

{(az, O , b ) [ a , b ~ }  c V O W O ~ .  

Define a continuous map 

a: V ~ A F(W) ~ F(V @ W) 

by 

a ( z , f ) = r  z.(id v x f ) . r z ,  

a(oo, f )  = base point, 

where f is a point in TOPb(M x (W G R)) (see 0.6.). We regard a as a natural 

transformation between functors in two variables V and W. 

(Proof of continuity of a: Any doubts about  continuity must be due to the exceptional 
role played by the point oo in Vfl There is another formula for a in which ~ ~ V C no 

longer appears exceptional, but 0 e V ~ does; the formula is 

a ( z , f )  = (r_=-(1 V x f ) .r~)(r_~z.(1 v x f).roo=) -1, 

with r~z = l ima.  ~ raz (a > 0) and f as before.) 

The functor F and the binatural transformation a form what is called a coordinate 
free spectrum; see Section 2. For  the moment  it is sufficient to observe that the spaces 
F(N~ F(EI) ,  F(E 2) . . . .  and the maps 

a: ZF(R") -- (~1)c A F(R") ~ F @  "+1) 

constitute a spectrum in the usual sense. Call it ~Wh(M). 
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1.12. LEMMA. The diagram 

(~b(M X ~n) stabilization ;' cgb(M x D k x ~") 

l _~11.10 
-~ i.S ~kc~b(M • ~n+k) 

-~11"8 
f~F(N") ~ ~ f~(f~kF(N"+k)) 

commutes up to a preferred homotopy. 

Proof This is a consequence of two observations. For the first, choose e > 0 and let 
TOpb=~(M x Nk+l) consist of all bounded homeomorphisms in TOpb(M x Nk+Z) 

with bound ~<e (see the proof  of 1.2). Let 10e. D k+l c Nk+ ~ be the disk of radius 10e 

about the origin, and let EMBb=~(M x lOe.Dk+a,M x R k+~) be the space of 

embeddings j: M x lOe.D k+l --~ M x ~k+l with bound ~ e  (meaning t ha t j  is e-close 

to the inclusion, the distance being measured in the ~+~-direct ion only). 
First observation: The restriction map 

res: TOpb= ' (M x N k + l ) ~ E M B b = , ( M  x lOe.D k + l , M  x Nk+l) 

has a homotopy  left inverse q, so that q.res ~ id. 

(Proof Assume e = 1. Inspection shows that the map w: TOpb=a(M x Nk+l)_.  
TOpb(M x Nk+l ;zk+l)  from the proof of 1.2,  factors through the space 

EMBb=I(M x 10.D k+l, M x Nk+l). But w has a homotopy  left inverse by 1.2.) 

For  the second observation, let K c Nk+ ~ = Nk G N be a closed smooth connected 

codimension one submanifold without boundary. Suppose that there exists a compact 

set C c K such that for all x ~ K - C the tangent space r(x) of K at x contains the 
vertical axis 0 �9 ~ c ~k O ~. (Always regard ~(x) as a linear subspace of ~k+ 1.) Then 

Nk+ ~ _ K has two components, one of which has bounded image under the projection 
~k | ~ __. ~k; call this the interior component. 

Such a K gives rise to two maps 91, gz from ~(M) to the (virtual) space of maps of 
pairs 

map((D k • D 1, O(D k • D1)), (TOpb(M x ~k+~), TOpb(M • ~k))), 

as follows. For x ~ K, let n(x) be the inward normal vector of K at x, of length e/2, where 
e is very small. Identity K x D 1 with a subset of Nk + 1 by the rule (x, v) ~ x + v. n(x) for 

x e K and v e D 1. Given a point in Cd(M), say f :  M x D 1 ~ M x D ~, we now define 
a bounded homeomorphism ~: M x Nk + 1 ~ M x Nk + 1 in the expected way. Namely, 

f ag r ee swi th id  r x f o n K  x (M x D I) ~ M x (K x D 1) c M x Nk+l; it agrees with 
the identity on M x (ext. comp. of Nk+l _ ( K + D ~ ) ) ,  and with ~3f x id on 
M x (int. comp. of R k+l - (K x D1)). Then the map 

~k+l ~ T O p b ( M  • ~k+l); z ~ t r _ z . f . t r z ,  
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where tr denotes translations, extends to a map of pairs 

(D k x D 1, O(D k x D1) )~  (TOpb(M x Nk+l), TOpb(M x Rk)) 

provided we regard D k x D 1 as a compactification of R k x N 1 ~- N~+I in the evident 

way. Call this extension g l ( f ) .  

Continuing with the s a m e f  let f: M x R ~ M x R be equal t o f o n  M x D 1, equal 

to the identity on M x ] - 0% - 1] and equal to 0 f  x id on M x [ + 1, + oo [. As in the 

proof of 1.8, define a continuous map 

~.t': ~ w { -- o% + oo } --~ TOpb(M x ~) 

by z ~ tr_ z . f .  tr z. Let h: D 1 ~ R w { - o% + oo} be an orientation-preserving homeo- 
morphism. There is a unique continuous map from R k+l to T o p b ( M  x Nk+ 1) which 

is constant on the exterior component  of R k+ 1 _ (K x D1), constant on the interior 

component  of R k+l - ( K  x D1), and which sends ( x , v ) e K  x D ~ c Nk+~ to the 

bounded automorphism c~y (h(v)) x ida(x) of 

(M x N) x r ( x ) ~ M  x ( N  x z (x) )~-M x Nk+l 

(For x e K, identify N x z(x) with ~k+l by the rule (r, t) ~ t + r.n(x),  where r ~ R and 
t e z(x).) Again, this map from Nk+~ to TOpb(M x R k+t) extends to a map of pairs 

(D k x D1,0(D k x D 1 ) ) - + ( T O p b ( M  x Rk+I), T O p b ( M  x Rk)) 

where we regard D k x D ~ as a compactification of R k+~. Call it g2(f ) .  

Second observation: The maps 91 and g2 are homotopic. 

(Proof  Note that all bounded homeomorphisms in sight have bound ~< e. Use the 

first observation to replace spaces of e-bounded homeomorphisms by spaces of 

e-bounded embeddings throughout. Since e is the width of a tubular neighbourhood of 

K, it can be taken arbitrarily small. Letting it tend to zero, the homotopy  from gl to gz, 
or rather from res.g~ to res '92, becomes obvious.) 

In the application to 1.12, let K be the boundary of a smooth contractible 
codimension zero submanifold W ~ Nk+l such that 

D k x [ + l , + o o [ c W c D  k x  [ - 1 , + o o [ c R  k x  R-------Nk+l. 

Interpret g~ and g2 as maps with target f~k+I(TOpb(M X Rk+~) /TOpb(M x Rk)). 

Then gl,  gz are essentially the maps which 1.12 asserts to be homotopic, so long as 

n = 0 in 1.12. For  n > 0 the proof is similar; the idea is to absorb the factor N" in the 
symbol M. 

In the corollary below, Q(E) denotes the zeroth infinite loop space associated to 
a spectrum E, and Z"E is the n-fold suspension of E. 

1.13. COROLLARY.  There are homotopy equivalences 

Q(E"f~W_~_h(M)) _~ lira c~b(M X D k x R n+l) 
k--* eo 

for  n >~ - 1, the limit being taken with respect to stabilization. In particular, the loop 
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space of Q(f~Wh(M)) is homotopy equivalent to limk~ o~ ~ (M x Dk). (The limit should be 
interpreted as one of virtual spaces, cf. 0.5. (vi), or as one of simplicial sets; it is also the 
homotopy limit.) 

The next topic to be discussed is Theorem B. Recall from the introduction that 
TO~pb(M x ~n) is the simplicial set whose k-simplices are the bounded homeomor- 
ph i sms  A k x M x ~" --* A g x M x R" which preserve the blocks di Ak x M x ~" for 

0 ~< i ~< k. This is truly a simplicial set and not a virtual space; but even the fact that it is 
a simplicial set requires proof, because the degeneracy operators are not obvious. 

Let A be the category with objects In] = {0, 1 , . . . ,  n} for n ~> 0, and with monotone 
maps as morphisms, so that simplicial sets are contravariant functors from A to the 
category of sets. Suppose that p: [k] ~ [ j ]  is an epimorphism in A. This induces 
a linear surjection p, :  A k ~  A j sending vertices to vertices. Let V(p) be the space of 
linear maps i: A J .-.4. A k such that p , .  i = id: A j --* A k. These maps i are not required to 

send vertices to vertices, but they are determined by their effect on the vertices of At; 
therefore 

V(p) l-I ( p , ) - l ( { s } )  �9 se[j] 
The evaluation V(p)x AJ--,Ak; (i, z)--* i(z) is onto. Now if y is a j-simplex in 
TO'~pb(M x ~"), then there is a unique k-simplex p*(y) in TO'~pb(M x ~") making the 

following square commutative: 

V(p) x (AJ x M x [2") --~ 

l idxy 

V(p) x (A ~ x M x R") --* 

A k X M x R" .  

p*(y) 

A k X M x ~"  

This defines the degeneracy operators in TO~'~Pb(M x N"). 

Interpret Topb(M x N") as a simplicial set using the materialization functor; then 

there is an inclusion 

TOPb(M x ~") ~ TOpb(M x ~"). 

Write TOpb(M x B ~176 for the simplicial set [ JTOpb(M X f~"); similarly 
TO'~pb(M x ~oo) = UT~'pb(M X R") (see the introduction). 

1.14. 'THEOREM B'. The inclusion of simplicial sets 

TOPb(M x B ~176 c_, TOPb(M x R ~176 

is a homotopy equivalence. (Therefore so is the inclusion 

TOPb(M • R~)/TOP(M) ~ T o p b ( M  • ~ ) / T O P ( M ) . )  

Proof We will show that the inclusion induces an isomorphism on ~g for all k/> 0. 
Fix k. Write )~ = TOP~(D k x M x ~o~); regard this as a virtual space, preferably. Let 
X c )~ consist of all bounded homeomorphisms in .~ preserving the projection to D k. 
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Clearly X ~- ~kTOpb(M X M~176 There is a commutative square 

~o(X) ~3~ , ~o(~) 

(1) I [ (2) 
rCk(TOpb(M X R~)) (4) )TCk(TOpb(M X M~176 

with horizontal arrows induced by inclusion and vertical arrows defined ad hoc, but 
still obvious. Clearly, (1) is an isomorphism, since X ~- f~kTopb(M X R~~ clearly, (2) 
is onto. We will see in a moment that (3) is an isomorphism which forces (4) to be onto. 

By 1.5, there is a homotopy equivalence 

= TOpb(D k x M x [R ~) ~ -  ) ~kTOpb(M X R~~ 

so that the inclusion X % J~ corresponds to the inclusion 

f~kTOpb(M X R~)c---~ ~kTOpb(M x R ~ 

(see also 1.7). Therefore (3) is an isomorphism and (4) is onto. Injectivity of the 
homomorphism (4) can be proved by a relative version of the argument which proves 
surjectivity. We leave this to the reader. 

1.15. REMARK. The homomorphism 

nk(TOP(M)) --* nk(TOpb(M x •oo)) ~ nk(TOpb(M x M~176 

induced by the inclusion can be factorized as follows: 

~ im[TCk(TOPb(M x Rk)) i ~Zk(TOpb(M x ~k+l))] 

t / 

7rk(TOP(M)) , rCk(TOpb(M X [R~ 

To define the lift, represent an element in rck(TOP(M)) by a homeomorphism 
A k x M ~ A k x M which is the identity on d(A k x M). This determines an element in 
7zoTOP(A k x M)) -~ rco(TOP(D k x M)). Now use 1.5 to go from rc0(TOP(D k x M)) to 
~Zk(TOpb(M X Nk)). Checking that the dotted arrow is an isomorphism is straight- 
forward. 

Using 1.7 instead of 1.5, one obtains a relative version in which all simplicial groups 
in the diagram are divided by their common subgroup TOP(M). 

1.16. REMARK. There is a well known relationship between bounded homeomor- 
phisms/concordances and lower algebraic K-theory which is described in an appendix 
(Section 5). It will be used in proving Theorem C, but not in proving Theorem A. It can 
also be used in giving a quick proof of Theorem A when M is simply connected and 
dim(M) >/5. 

1.17. REMARK. To do justice to the title of this section we now discuss the smooth 
versions of 1.1 - 1.16. 
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The isotopy extension theorem 1.1 has a smooth version in which X is smooth, {Jr} is 
a continuous family of smooth embeddings, and {Jr} is a continuous family of 
diffeomorphisms. ('Continuity' refers to the compact-open or weak topology on the 
space of smooth maps; see Hirsch [20]. Note that a continuous family of smooth 
embeddings is not the same as a smooth family of smooth embeddings.) Replacing C in 
1.1 by a compact smooth codimension zero submanifold containing C and contained in 

V, we see that we can take C itself to be a compact smooth codimension zero 
submanifold of the smooth manifold X. In this case the theorem can be deduced from 
chap. II, 2.2.1 of Cerf [13]. Cerf's result states, roughly, that the restriction map from 
the space of suitable diffeomorphisms X ~ X to the space of suitable embeddings 
C ~ X is a fibre bundle. 

The belt buckle trick 1.2 works in the smooth case just as it does in the topological 
case. Therefore DIFFb(M x ~J+*+"; 7/") is a retract of DIFFb(M x R~+k+'; Zk+m), 

up to homotopy, for arbitrary j, k, m >~ 0. The proof of 1.2 used certain choices of 
homeomorphisms e+, e_, 2; in the smooth version these have to be diffeomorphisms. 

The smooth version of 1.4 needs a detailed comment. We defined DIFFb(M x ~") 
in 0.4 as the virtual space of all bounded diffeomorphisms M • ~ n ~  M • ~n 

which agree with the identity on ~M x ~". However, it is often more convenient to let 
DIFFb(M x 0~ ") consist of all bounded diffeomorphisms M • ~" ~ M x R" which 
agree with the identity on an infinitesimal neighbourhood of ~M x R n (which 
means that the higher derivatives also agree on 0M • R"). This does not affect the 
homotopy type of DIFFb(M • ~n), but it ensures, for example, that the proof of 1.5 
works as it stands in the smooth case. Similarly, it is often convenient to define the 
smooth concordance space c~b(M x R ") to consist of all bounded diffeomorphisms 
f :  (M x R ") x D 1 ~ (M x ~") x D i which agree with the identity on an infinitesimal 
neighbourhood of ~(M x ~ )  x D i u ( M  x ~n) x { - 1 } ,  and which agree with 
~f x id: (M x ~ )  x D i ~ (M x R") x D i on an infinitesimal neighbourhood of 

(M x R") x { + 1}. (Recall that ~?f is the restriction o f f  to (M x R ") x { + 1}.) Again, 
it makes no difference to the homotopy type of the smooth concordance space 
~ ( M  x N") whether or not we include these technical conditions, but we should in 

view of 1.8 and 1.10. 
With these precautions, statements 1.5 - 1.13 and their proofs are valid in the smooth 

case. (It is a curious but undeniable fact that the Alexander trick of Anderson and 
Hsiang works in the topological category and in the smooth category, whereas the 
original Alexander trick of [1] only works in the topological category, or at best in the 
PL category. In the perturbation language introduced just before 1.5, we can explain 
this by saying that shrinking a smooth perturbation fails to shrink its derivatives, but 
pushing a smooth perturbation away to ~ certainly takes care of the derivatives also.) 
In 1.13, note that f~Wh(M) is an abbreviation for flWhT~ which must be replaced 
by ~whDIFF(M) in the smooth version. 

In 1114, define DIFFb(M x N ~176 as the union of the simplicial sets DIFFb(M x Nn); 
t ~ J .  

a k-simplex in DIFFb(M x N") is a diffeomorphism f :  A k x M x R" --* A k x M x N" 
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such that 

f(d~A k x M x R " ) c d i A  k x M x ~" 

whenever 0 ~ i ~ k. (~,he degeneracy operator,  s in DIFFb(M x ~") agree with those in 
TO'~pb(M x ~ )  ~ DIFFb(M x ~n).) Then DIFFb(M x ~") is a simplicial group and, 
therefore, it has the Kan extension property. The smooth versions of 1.14 and 1.15 are 
valid, with the same proofs. 

Finally, Remark 1.16 also makes sense in the smooth setting; see Section 5. 
We return to the topological category for Sections 2, 3, and 4. Smooth versions exist. 

2. Coordinate Free Spectra 

In constructing the map 

TOpb(M • ~~ Q(S~g A z2 f~Wh(M)) 

promised in the introduction, we shall make essential use of the fact that the spectrum 
flWh(M) of 1.11 has the structure of a coordinate flee spectrum in the sense of May 
[30]. In this section, we give a definition of coordinate free spectra, geared to our needs, 
and derive a few basic consequences. 

We investigate covariant functors F from the category J defined in 1.11 to a suitable 
category of spaces - this could be the category of all topological spaces, or (preferably) 
the category of virtual spaces. To avoid distraction, let us be naive and work with 
ordinary topological spaces in this section. 

A functor F from J to the category of topological spaces is continuous if, for 
arbitrary V, W in J ,  the map 

Mor(V, W) x F(V) -~ F(W); (g, x) ~ g,(x) 

is continuous. Here Mor(V, W) is the space of morphisms with the usual topology. 

2.1. DEFINITION. A coordinate free spectrum consists of a continuous functor 

F: J ~ category of pointed topological spaces 
and a map 

a: V c A F(W)-+ F(V + W) 

natural in both variables V and 141, such that the composition 

F(W)  ~- {0} c/x F(W) ~ ,F({0} ~) W) ~- F(W)  

is the identity for all W in J .  
We often write F instead of (F, a). Note that the space F(~~ F(~I), F(~ 2) . . . .  and 

the suspension maps 

Z F ( R " ) ~ ( ~ I ) C A F ( ~ " ) -  ~ + F ( ~  "+1) 
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form a spectrum in the usual sense, with a generous definition of that word. This will 

also be written F. 

Examples of coordinate  free spectra are: 

F(V)  = V c = V c A S o (the sphere spectrum) 

or more generally 

D(V) = V r A Y, 

where Y is a pointed CW-spaces. The maps a are obvious in both cases. 

2.2. P R O P O S I T I O N .  Let  (F, a) be a coordinate-free spectrum and let V, W, X be 

objects o f  J .  Then the following diagram is commutative up to a canonical homotopy: 

V r A W cA F(X)  ~ > ( V + W )  C A F ( X )  

I V c A a  a 

V r F ( W • X )  - " , F ( V G  W + X ) .  

Proo f  Fix v ~ V, w ~ W. For  t e [0, lJ, let vt, w t e V �9 Wbe defined by the equations 

v, + w, = v + w, (v , ,  w t )  = 0, 

where ( , ) is the inner product;  

w t = Ct(W + tv), 

for suitable c t in N. So vo = v, wo = w, but vl = 0, w 1 = v + w. See Figure 2, with t - �89 

Define fv, w,t: F(X)  ~ F ( V  �9 W �9 X )  to be the composi t ion 

F(X) 

{vt} x {wt} x F(X)  

(3 
(v,> c/x <wt) ~ A F(X)  

F(V  + W 03 X )  

inclusion, 

( v t ) c  A r 

( v t )  c A F((w,> �9 X )  q ' F((vt> G (wt> �9 X). 

Def inef t :  V ~ A W ~ A F(X)--+ F ( V  O W |  by 

ft(v, w, x) = fv, w,t(x) 
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O w 
W 

Fig. 2. 

in case v, w ~ oo. Then f0 is equal to the composition 

V r A W ~ A F ( X ) - +  V c A F ( W O X ) - - - * F ( V O  W + X )  

and f~ is equal to the composition 

Vc ^ WC ^ F(X) ~ , (V + W)C A F(X) - ~  , F(V  + W + X)  

using the last clause of 2.1. So { f I 0 <~ t <~ 1 } is the required homotopy. Continuity is 
easily established by observing that if one of v, w is large, then one ofvt ,  w t must be large 
for arbitrary t s [0, 1]. 

2.3 DEFINITION.  An involution on a coordinate free spectrum (F, a) is a natural 

transformation tw: F ~ F such that t w . t w  = identity, and such that the following 
diagram is commutative for all V, W in ~r 

V CA F ( W )  " + F ( V + W )  

V c A  F ( W )  r > F ( V + W ) .  

For example, if F is the suspension spectrum associated with a CW-space Y, so that 

F ( V )  = V c A Y, then any involution on Y determines an involution on F. A more 
interesting example can be found in the next section. 

Now suppose that P" is a smooth compact manifold with boundary, smoothly 
embedded in a Euclidean space NN for some large N. (Later we shall specialize by letting 

P = ~P".) Write ~e or just ~ for its tangent bundle. Note that the tangent space z x of 
P at x e P inherits an inner product from NN. I fF  is a coordinate free spectrum, we can 
therefore form a fibre bundle F(r) over P whose fibre over x ~ P is F(rx). 

Write W ~ for the quotient P modulo ~P. Let Q(pcol/x F)  be the zeroth infinite loop 
space associated with the spectrum p~o~ A F; that is, Q(W ~ A F) is the homotopy direct 
limit (=  telescope) obtained from the spaces f~m(w~ A F(Rm)) by letting m tend to oo. 

(We use the compact open topology for loop spaces, and also for the space of 
continuous sections of F(v) which occurs in the next proposition.) From now on the 
notation F(...) will be used for the space of sections of the fibre bundle '...'. 
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2.4. PROPOSITION.  There is a Poincard duality cum stabilization map st: F(F(~)) 
Q(W~ A F). 

Proof  This is obtained by composing two rather obvious maps. To describe the first, 
let v be the normal bundle o fP  ~ in ~N, with Thom space T(v). Again, each fibre v= ofv is 
a Hilbert space. Note that T(v) is the union, but not the disjoint union, of the one-point 

compactifications vS, = v=w {oo}. Any section s of F(z) determines a pointed map 
T(v) ---* F(NN); 

y ~ v~ ~ y A S(X) ~ V~ A F(r,)  ~ a(y A S(x)) e F(v= 0 Vx) "~ F ( ~ N )  �9 

We have therefore constructed a map 

(1): F(F(~)) --* space of pointed maps from T(v) to F(Ns). 

The other map is a familiar Poincar6 duality map. Take a pointed map f :  T(v) ~ F(NN). 

Then the composition 

S N ~  - ~ N u { ~ }  ~o,,.vs~ , T(v)CO , projectio, ALpool A F(~u  ) 

is an element in DN(pr A F(~N)) c Q(pr A F). (We hope the notation T(v) TM is 

self-explanatory.) Therefore, we have constructed a map 

(2): (space of pointed maps from T(v) to F(~N)) ~ Q(W ~ A F). 

Combining (1) and (2) gives the map in 2.4. By 2.2, it is essentially independent of the 
integer N and the embedding P c~ ~N. Note that pcu~ = p+ if c~P = Q. 

Suppose next that P" c U m are closed smooth manifolds, with U ~ embedded in ~N. 
Then it is reasonable to search for a map F(F(TP)) --+ F(F(v v)) to fit into a commutative 

diagram 

F ( F ( T P ) )  - -  , F(F(TU)) 

i s , 
Q(P + A F) __',.c,u=io. , Q(U + A F). 

Such a map exists, but it requires some preparation. Choose a tubular neighbourhood 

of P in U, with fibres orthogonal to P. 

2.5. NOTATION.  Let the orthogonal tubular neighbourhood be given by a vector 
bundle r: E --* P with zero section i: P ~ E, and a smooth codimension zero embedding 
f :  E ~ U such that f .  i = inclusion: P ~ U. 

We will also need an isometric isomorphism cc f* ( vv ) ->( i r )* f* ( v  v) of vector 
bundles over E, restricting to the identity over i(P) c E. This can be chosen at random, 
or it can be manufactured using parallel transport in the Riemannian manifold U. In 
more detail, any point x E E can be connected with Jr(x) by a straight line segment; the 
image of the segment under f is a path in U along which tangent spaces can be 
transported. 
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2.6. PROPOSITION.  Any orthogonal tubular neighbourhood of P in U gives rise to 
a map j: F(F(zP))~  F(F(zV)) making the square 

F(F(vP)) , r (F(v v)) 

Q(P +[A F) , Q(!  + A F) 

commutative up to a preferred homotopy. 
Proof Let s be a section of F(rV). For x ~ P and z ~ E x, let f(z) e U be the image of 

z under f in 2.5. Define j(s) by 

j(s)(f(z)) = image of z ^ s(x) under the composition 

E~ A F('vP)---~---~F(E~,r P) ~- F(zV~) r ~ - '  'F(zy(=)), 

where ~ is the bundle isomorphism in 2.5. If y ~ U is not of the form f(z) as above, put 
j(s)(y) = base point. This defines the map j. 

(Dioression: If F is a coordinate free spectrum of fantasy spaces, then the formula for 
j(s) does not give a continuous section unless we insist that f :  E --, U in 2.5 extend to an 
embedding f :  E ~ U of the fibrewise disk compactification EofE ,  and that e be defined 
over all of E. We call such a tubular neighbourhood regular.) 

Commutativity of the square in 2.6 is proved by dividing the square into two, as 
suggested by the proof of 2.4. (Write map,( . . . )  for spaces of pointed maps). 

r(F(z~))  J , r ( f ( ~  ~)) 

map,( r(ve), F(RN)) ,map,( Z(vV), F(RN)) 

L 
Q(P + /x F) ' Q(U + /x F). 

The vertical arrows in this diagram are defined in the proof of 2.4, and the horizontal 
arrow in the middle is composition with the collapsing map T(v v) --, T(ve). Commut- 
ativity is now easy to check. 

Now let T c U be the compact codimension zero submanifold obtained by deleting 
the interior of a regular tubular neighbourhood of P in U. 

2.7. PROPOSITION.  The diagram 

F(F(~e)) - j ,F(V(vV) ) ~cst~ic.o., F(F(r  T) ) 

Q(P+ /x F) inclusion ) Q ( U +  A F) collapse ,Q(T ~176 F) 
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is commutative up to preferred homotopies. 

Comment: Suppose given a diagram 

A - - f  , B -  g ,C 

A ' - -  ~ B ' - - - - - - ~ C '  f '  g, 

of pointed spaces and continuous maps such that g f  = * and g ' f '  = *. Suppose we 
wish to show that it is sufficiently commutative for all practical purposes. Then we need 

three homotopies. The two obvious ones are 

{ x t } : f '  p ~ - q (  and {y~}:g'q~-rg, w i t h 0 ~ < t ~ < l .  

These two give rise to a homotopy  between maps from A to C', 

�9 = g ' f ' P  "~ 9 ' q f  ~- rgf  = *, 

or a map from ZA to C'. Clearly this map should be equipped with a nullhomotopy 

{z,}. 
In proving 2.7, construct the homotopies {xt} and { Yt} in such a way that {g'xt} and 

{ Y t f }  are strictly zero. Then take {z,} to be zero also. 

We shall need twisted versions of 2.4, 2.6, and 2.7 which are a little harder to state. In 

the situation of 2.4, suppose that the smooth manifold P" c NN comes equipped with 
a double covering g: P ~ P, and suppose that the coordinate-free spectrum comes 

equipped with an involution tw: F ~ F. Write r for the tangent bundle of P, and let 

FtW(r) be the fibre bundle over P whose fibre over x ~ P is 

F'W(rx) = F(rx) Xz 2 g -  l(x), 

where Z 2 acts on F(rx) by tw, and on g - l ( x )  by permutation. 

2.8. P R O P O S I T I O N .  There is a stabilization map 

F(F,W(r)) ~ Q(pCol Az 2 F), 

with Z 2 acting on pcnl by covering translations and on F by tw. 

The proof resembles that of 2.4 and is left to the reader. Next, let P, U, T and F be as 
in 2.7, but suppose that U is equipped with a double covering 0 -~ U and that F is 

equipped with an involution tw. 

2.9. P R O P O S I T I O N .  There is a diagram, commutative up to preferred homotopies, 

F(FrVe(q~p)) __ j , r ( F t w ( T u ) )  restriction ) F ( F t W ( T  T )) 

Q(P+ Az2 F) inclusion :, Q(~+ Az 2 F) collapse ~Q(7.col Az ~ F). 
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We conclude this section with a few historical remarks. Coordinate-free spectra were 

introduced by May [30] and Puppe [34], perhaps in reaction to Boardman's work on 
smash products of spectra (see Vogt [40]). Our definition is slightly different from 
May's; it is more functorial, but does not incude the strict associativity that May 
requires. However, the proof of 2.2 shows that associativity of the suspension cr up to all 
higher coherences is automatic in our version. We are content with that, especially since 
our main example (in 1.11) does not satisfy strict associativity. 

The result in 2.4 is a reformulation of Poincar6 duality in the language of coordinate 
free spectra; in particular, the map st defined there is a homotopy equivalence if F is 
a coordinate free s This means that the adjoints F(W) ~ Y2 v F(V �9 W) of 
the suspension maps a: V~A F ( W ) ~ F ( V O  W) are homotopy equivalences for 
arbitrary V, W in J .  We do not claim any originality here: the same point of view is 
used, e.g. in B6digheimer's work on configuration spaces [6]. A section space of the 
type discussed in 2.4 occurs in Theorem 1 of Anderson and Hsiang [2]; it is a very close 
relative of the section spaces we are going to use. 

3. The Hyperplane Test 

Let F be the coordinate free spectrum defined in 1.11. Its values F(V), for V in J ,  are 
virtual spaces. As we have indicated the results of Section 2 can be applied to F. They 
will be so applied; when all the work has been done the reader may want to use the 
materialization functor in order to see genuine maps between genuine spaces. 

For V in J ,  we let - 1 :  M x (VO R ) ~  M x (V O  N) be the homeomorphism 
sending (m, v, r) to (m, - v ,  - r ) .  Define tw: F(V) --* F(V) by tw( f )  = ( -  1 ) . f . ( -  1), 
whe re f  is a point in TOW(M x (V �9 R)) and represents a point in F(V). Then tw is an 
involution as in 2.3. 

Let z be the tangent bundle of RP"; let RP" = S" and assume that NP" is embedded 
in some NN. By 2.8, there is a Poincar6 duality cum stabilization map 

F(VtW(z)) ~ Q(S"+ Az2 F) 

with Z 2 acting on S" by the antipodal map and on F = ~Wh(M) by tw. This is of 
interest to us because we want to compose it with the map in the next proposition. 

3.1. P R O P O S I T I O N  (Hyperplane test). There is a continuous map 

TOPb(M x ~"+ 1)/TOP(M) --* l~(Uw(0), 

where ~ is the tangent bundle of ~P". 
Proof. Let ~ be the tangent bundle of S". We regard S" as a subset of [~" + ~, regardless 

of where RP" lives; so ~x �9 ~ is canonically and linearly identified with R" + 1, for each 

x ~ S  ~. 
To each f i n  TOPb(M x ~"+ 1) we must associate a section of U~(z), or equivalently, 

an equivariant section of F(O. For  any x e S ", we can regard f as an element of 
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TOpb(M x ('gx O N)) since ~x (~ ~ = ~"+ 1; therefore we can regard f as an element of 

F(fx) = TOW(M x (?x �9 N))/TOpb(M x ~). 

So f does give rise to a section of F(~); it is equivariant. It depends only on the class of 

f modulo TOP(M). 
Now compose 3.1 with 2.8 to get a continuous map 

T o p b ( M  x ~"+~)/TOP(M) -~ Q(S~+ Az2 F). 

3.2. PROPOSITION.  The square 

TOpb(M x ~")/TOP(M) ~ Q(Sn+ -1 Az2 F) 

I inclusion [ inclusion 

TOPb(M x N"+I)/TOP(M) -~ Q(S"+ Az2 F) 

is commutative up to a preferred homotopy. 

Proof This follows from 2.6, or rather its twisted version. By inspection, the square 

TOW (M x N")/TOP(M) hyperplane test )F(FtW(zn_l) ) 

inclusion j of 2,6 (*) 

T o p b ( M  x N"+I)/TOP(M) hyperplane test ) F(FtW(z,)) 

is commutative up to a preferred homotopy, where z"-  1 and z" are the tangent bundles 

of NP"-1 and NP", respectively. 

3.3. COROLLARY. The maps in 3.2 stabilize to yield a map 

O: TOpb(M x N~~ Q(S~ Az2 F ) =  Q(S~ Az2f~Wh(M)). 

This is the map promised in the introduction. It is most suggestive to think of r as 
a map between towers of fibrations whose effect on each stage is, in some sense, 
stabilization. This is the content of the next proposition, which is obtained by plugging 
together two diagrams. The first is the one in 2.9 with P = ~ P " -  1 and U = ~P", so that 
T is contractible, and 7 "c~ S"V S", where Z 2 acts by interchanging the wedge 
summands. The second is the diagram (*) from the proof of 3.2. There is only one 
reasonable way to plug these together. Note that the composition 

y o p b ( m  x ~n+ 1)/TOP(m) _, F(FtW(zV)) 

I restriction 

r(Ftw(zr )) ~- F(~") 

agrees with the projection 

T o p b ( M  x R"+I) /TOP(M)-* TOW(M x ~"+I)/TOW(M x ~")= F(R"). 
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This proves what we want: 

3.4. PROPOSITION.  The diagram 

TOpb(M x R")/TOP(M) 

1 
TOpb(M x N"+I)/TOP(M) 

1 
TOpb(M x R"+~)/TOPb(M x ~") = F(N") 

, Q(s"+- ~ Az2 F) 

1 
, Q(S"+ Az2 F) 

l 
,Q(Y~"F) 

is commutative up to preferred homotopies. (The bottom horizontal arrow is the 

inclusion 

F(R") c lim f2kV(R "+k) = Q(E"F), 

which may also be called stabilization.) Recall that three homotopies are needed, as in 
2.7. Both columns are fibrations up to homotopy after materialization. (A diagram of 
pointed spaces and maps X I ~ y 0 ~ Z, with gf = *, is a fibration up to homotopy 

if the inclusion of X into the homotopy fibre of 9 is a homotopy equivalence.) 

3.5. REMARK. Suppose that M is simply connected, dim(M) ~> 5, and that k is in the 
topological concordance stable range for M. Then from 5.7 we know that F(~") is an 
n-connected (n + l)-fold delooping of the concordance space Cg(M x D"). (See also 1.10 
and 1.8.) We also know from 5.7 that Q(Z"F) is an n-connected (n + 1)-fold delooping 
of the stabilized concordance space Cg(M x D~). By 1.12, the map F(~") --* Q(E"F) 
in 3.4 is just an (n + 1)-fold delooping of the usual stabilization map ~g(M x D") --* 

~ (M x D ~), and is, therefore, (k + n + 1)-connected by assumption on k, and afortiori 
(k + 1)-connected. An easy induction using 3.4 now shows that qb in 3.3 is (k + 1)- 
connected. Therefore, Theorem A is proved for simply connected M with dim(M) ~> 5, 
since then TOP(M)/TOP(M) ~_ TOW(M x R~)/TOP(M) by 1.14 and 5.7. 

3.6. PHILOSOPHY.  Here is some additional evidence for Theorem A in the 
nonsimply connected case. In 1.15 we identified rc,(TOP(M)/TOP(M)) with 

im [n,(TOpb(M x [R")/TOP(M)) ~ n,(TOpb(M x ~"+ 1)/TOP(M))]. 

Go from there to 

im [n,(Q(S"+ -~ Az2 92Wh(M)) ~ n,(Q(S"+ Az2 flWh(M)))] 

~- ~z,(Q(S~ Az2 f~Whs(M))) 

by the hyperplane test. (The isomorphism labelled !, can be deduced from a suitable 
definition of Postnikov covers, such as in Dold 1-16]; recall that f~Whs(M) is the 
0-connected Postnikov cover of f~Wh(M).) The result is a factorization 
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~,  ( T O P ( M ) / T O P ( M ) )  . . . . . . . . .  -~ re, (Q(S ~ Az2 f~Whs(M))) 

__1 
~,(TOPb(M x ~~ 

~z,(TOPb(M x R~)/TOP(M)) ,~,(Q(S~ Az~ nW_hh(M))) 

which one would like to see induced by a map 

@~: T O P ( M ) / T O P ( M )  ~ Q(S~ Az2 nWhs(M)). 

3.7. DIGRESSION. There is a slightly different way of describing the connection 
between T O P ( M ) / ( T O P ( M )  and concordance theory, in the s~pirit of Weiss [44]. 
To keep the discussion simple, let us concentrate on TOP(M) rather than 
T"~P(M)/TOP(M).  Fix an integer n ~> 0, and regard ft,(TOP(M)) as a factor group 
of %(TOP(M x D")), as in 1.15. We will construct 

(i) a fibration p: E ~ S"- 1 whose fibres are homotopy equivalent to the topological 

concordance space Cg(M x D"-I); 
(ii) an involution on the total space E, covering the antipodal involution on S"~ 1; 

(iii) a map ~k from TOP(M x D ") to the space of equivariant sections of p. 

Write ~0: E -~ NP"- i for the quotient of p: E ~ S"- ~ by Z2; accordingly write F(iO) for 
the space of equivariant sections of p, which is also the space of sections of i0. 

In order to explain the connection with the approach used so far, we also construct 
the missing homotopy equivalence e in a commutative diagram 

TOP(M x D") -~ ,f~"TOpb(M x ~") 

(iv) 1~ t hyperplane test ~ 3"1 

r(/~) ~ , f~"(r(F t~(~))). 

Here are the details. 
(i) For each s e S "-1 c ~", let (s)  c N" be the subspace generated by s, let (s)  • be 

the orthogonal complement, and let D ( s ) ,  D ( s )  • be the unit disks in (s)  and (s)  ~, 
respectively. We identify D ( s )  l x D ( s )  with D ( s )  s + D ( s )  c ~". 

Let E s be the (virtual) space of self-homeomorphisms o f M  x D ( s )  • x D ( s )  which 
are the identity on 

M • O ( s )  1 • { - s }  U ~(M • D(s) ~) • O(s). 

Clearly, 

E s ~- Cg(M x D ( s )  • ~- CK(M • D"-I ) .  

Define p: E ~ S n-1 to be the fibre bundle such that p- l ( s )  = E s for all s ~ S n-1. (This 
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must be interpreted as a fibre bundle with virtual spaces as fibres, say.) 

(ii) For f e E  s, let 3 f : M  x O < s > l ~ M x O < s >  • be the restriction of f to 
M x O<s> • x {s} ~ M x O{s> I. The map 

E S ~ E_~; f ~ (0f  x idD<s> )-  1. f 

is a homeomorphism (of virtual spaces); letting s range over S"- 1 gives an involution on 

E which covers the antipodal involution on S"-1. 
(iii) Take an element f in TOP(M x D"), meaning a self-homeomorphism of 

M x D" which is the identity on 3(M x D"). For any s e S"- 1, r ega rd f  as an element of 
E~ by extending f trivially outside M x D" c M x (D<s) • + D<s)). This gives an 
equivariant section O(f )  of p: E ~ S"- 1. 

(iv) Recall how the homotopy equivalence 

alex: TOP(M x D") -~ ---+~"TOpb(M x R") 

was defined: Given f e TOP(M x D"), define f :  M x ~ " ~  M x R" by extending 
f trivially outside M x D". Then the rule z ~ tr_~. f .  try, where z e ~" and tr~ denotes 
translation by z, defines a map from R" w {oo} to TOW(M x ~"), or an n-fold loop in 
TOW(M x ~"). This defines alex, as a map between virtual spaces. 

Much the same method works if we pick f in the space E~ defined above, for fixed 
s e  S "-1. Let f be equal to f on M x D<s> l x D(s>; let it be equal to Of x id on 
(M x D<s> • x {ts] t ~> 1}, and let it be equal to the identity outside M x D<s> • x 

{ts j t  >~ - 1  }. Picture (Figure 3): again, the rule z ~ tr_~. f .  tr~ defines a map from 
R" u {oo} to TOW (M x R")/TOPb(M x <s>• 

~ D < s >  

E D<s> • 

<s> 

Fig. 3. 

f= f  here 

f'=identity here 
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Letting s range over S"- 1, or rather over II~P"- ~, we obtain in this way a map of fibre 
bundles 

J~ l ~nF tw(r) 

which is a homotopy equivalence on the fibres. It induces a homotopy equivalence 

e: F(/~) ~ , F(f~"F*'~(r)) ~ f]"F(U'~(z)). 

To see what the digression is good for, suppose that M is a point. Then M is a smooth 
manifold of dimension zero. The smooth version of Remark 3.5 shows that we have 
established Theorem A (smooth version) in this case, since a one-point space is simply 
connected. That is, we have constructed a map 

qb,: DIFF(*)/DIFF(*)~ Q(S~g A z2 ~')WhsD'FF(*))" 

Note that DIFF(*) is contractible, but DIFF(*) is not; instead ~j(DIFF(*)) is 
(obviously) isomorphic to the group of pseudo-isotopy classes of oriented diffeo- 
morphisms of S j for all j ~> 0, which is, in turn, isomorphic to the group | of 
oriented smooth (j + 1)-dimensional homotopy spheres if j ~> 5. Evaluating qb s on 
homotopy groups therefore gives invariants for exotic spheres. Moreover, the smooth 
version of Digression 3.7, with M a point, gives a more direct description for these 
invariants, namely, one which does not mention bounded diffeomorphisms. This is also 
the description used in [44], where exotic spheres are investigated by this method. 

3.8. DIGRESSION. Here is another interesting point of view: the map �9 in 3.3 is a kind 
of Kahn Priddy map. (See Kahn and Priddy [26] or Segal [37].) To explain why, we 
shall reformulate the results of Sections 2 and 3 in abstract (and sloppy) terms. 

Let E be a continuous functor from the category j of 1.11 to the category of 
associative topological monoids. We assume that 7~o(E(V)) is a group for each V in J .  

Examples: 

(i) E(V) = TOpb(M x V), 

(ii) E(V) = DIFFb(M x V) if M is smooth, 

(iii) E(V) = O(V) = orthogonal group of V, 

(iv) E(V)= G(V)= monoid of self-homotopy equivalences of the unit sphere 
S(V) c V. 

There are many others. We associate with E a coordinate free spectrum F with 
involution by letting 

F(V) = E(V | aVE(V); 
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the involution tw and the suspension maps have been defined explicitly in the special 
case when E(V)= TOPb(M • V), but the definitions generally make sense. The 

hyperplane test and 2.8 give a map 

q~: E(R ~) := holim E(En) ~ Q(S~ Azz F) 

of which 3.3 is a special case. 
Now concentrate on examples (iii) and (iv). Clearly, the spectrum F in example (iii) is 

the sphere spectrum S o , with trivial involution. But the maps 

o(v  �9 ~)/o(v) --, G(V | ~)/G(V) 

are approximatey (2dim(V))-connected for any Vin J .  (See, e.g., Wall [43], Cor. 11.3.2.) 
It follows that the spectrum F in example (iv), stripped of its coordinate free structure, is 
also a sphere spectrum S o with trivial involution. Therefore in example (iv) we obtain 

q5: G ~ Q(EP~), 

where G c Q(S ~ consists of the components of degree + l. It is not difficult to see that 
composing q~ with the transfer from Q(~P~) to Q(S~ ~- Q(S ~ results in 

inclusion - ca: G ~ Q(S~ 

where cl is the constant map with value 1. So �9 is a Kahn-Pr iddy  map. 

4. Proof of Theorems A and C 

In this section, we work with simplicial sets (rather than virtual spaces); the word space 
will often be used to mean simplicial set. 

Let X be a pointed simplicial set with a filtration Filto(X ) ~ Filtl(X ) ~ Filtz(X ) c 
�9 .. c X, so that 

X = 0 Filti(X)" 
i=O 

Assume that Filti(X ) contains the base point and has the Kan property for all i (then so 
does X). Call an n-simplex y in X positive if the corresponding simplicial map 
f / A  n -~ X is filtration-preserving, which means that 

fy(i-skeleton of A n) c Filti(X), for all i. 

The positive simplices form a simplicial subset 

P~ c X 

which is still filtered if we let Filti(P~ = P~ ~ Filth(X). Then Filt~(P~ has the Kan 
property for all i, and 

/-skeleton of P~ c Filt/(p~ for all i. 
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Now assume additionally that X is a simplicial group and that Filth(X) is a simplicial 
subgroup for each i. Then P~ is also a simplicial subgroup of X, and 

(P~ ~ P~ 

The isomorphism makes sense if we regard the simplicial set X/Filto(X ) as filtered by 
simplicial subsets Filtr ). 

We can interpret X as a tower of fibrations with stages Filth+ ~ (X)/Filt~(X), and we 
can interpret P~ as a tower of fibrations with stages Filt~+~(P~176 The 
inclusion map 

Filti + ~ (P~176 c~ Fil h + z (X)/Filt~(X) 

induces an isomorphism in ~ for j > i >~ 0, whereas 

nj(Filt,+ I(P~176 = O, for j ~< i ~> O. 

This is clear from the definitions if the homotopy groups in question are interpreted as 
relative homotopy groups (of the inclusion maps Filti(P~ Filt~+l(P~ and 
Filth(X) c_, Filti+ 1 (X)). So the stages of the tower P~ are Postnikov covers of the stages 
of X. 

We now specialize by letting X = TOW(M x N~), with filtration given by 
Filth(X) = TOW(M x N~), for i ~> 0. 

4.1. PROPOSITION. There is a map po,q) makin9 the following square commutative (up 
to a preferred homotopy): 

p~ • ~) /TOP(M)--~-~----~Q(S~ Az2 f]W.hs(M)) 

J 
TOpb(M x N~)/TOP(M) * ,Q(S~ Az2nWh(M)). 

Proof The spaces Q(S~ Az2f~Wh(M)) and Q(S~ Az2 ~W_h_hs(M)) have fltrations 
given by 

Filti(Q(S ~ Az2 nWh(M))=  Q(S~+ -~ Az2 nWh(M)), 

Filti(Q(S ~ Az2 f~W__hhs(M)) = Q(S~+ -1 Az~ f~Whs(M)). 

The map (I) preserves filtrations; if we make the same requirement for P~ then 
existence and essential uniqueness of P~ is a straightforward consequence of 
obstruction theory. Suppose, namely, that we have already constructed a lift 

Filt~(P~ x N ~)/TOP(M))--2~ Q(S~+ - 1 AZ 2 f~W_hhs(M)) 

TOpb(M x ~i)/TOP(M) o~ , Q(S~+ -1 Az2 ~Wh(M)). 



AUTOMORPHISMS OF MANIFOLDS AND ALGEBRAIC K-THEORY: I 609 

In trying to extend this to a lift 

Filti+I(P~ x N~)/TOP(M)) P~162 

we encounter obstructions in the relative homotopy groups 

nj(Q(Si+ Az2 f~W.hs(M)) ~ Q(Si+ Az2 f~W_hh(M))) 

for j > i. (We can say j > i because the/-skeleton of P~ x N~)/TOP(M) is 
contained in Filth(...), where the lift is already defined.) But these relative homotopy 
groups are zero (forj > i). Therefore, obstructions vanish and choices are unique up to 
contractible indeterminacy. 

4.2. PROPOSITION. Write B i for (i - 1)-connected i-fold deloopings. For any i >~ O, 
there is a diagram 

Filti(P~ x N ~ ) / T O P ( M ) ) - - -  

Filt~+~(V~ x R~)/TOP(M)) - -  

l 
BI+I~(M x D i) 

pos(I) 

pos(I) 

, Q(S~+ -~ Az2 f~Whs(M)) 

l 
Q(s~+ A~ flW__hhs(M)) l-- 

>Bi+IC~(M x D ~) 

(with Cg(M x D ~~ = lira (s x Dr;)) whose columns are fibrations up to homotopy, 
and which is commutative up to preferred homotopies. (Three homotopies are required; we 
label them {xt} , {y~} and {zt} as in the comment after 2.7.) 

Proof Note that Bi+lCg(M x D ~) is the /-connected Postnikov cover of 
Q(ZiflWh(M)). If we replace B i+ 1 ~(M x D ~o) by Q(EiflWh(M)) in the diagram, then 
its existence and commutativity up to three homotopies {x~}, {Yt} and {zt} are obvious 
from the proof of 4.1 and from 3.4. It is not difficult to lift the two maps with target 
Q(Zif2Wh(M)) to the Postnikov cover Bi+1Cg(M x D ~). The difficult thing is to lift 
{Yt} and {z~} to B~+I~(M x DO~ Solution: Requiring the existence of a lift of {z~} 
is tantamount to prescribing the lift of {Yt} over the subspace Filti(P~ c 
Filti+l(p~ The partial lift of {Yt} can then be extended over all of 
Filt~+I(P~ because the inclusion Filti(P~ Filti+I(P~ is 
/-connected. 

4.3. PROPOSITION. I f k  is in the topological concordance stable range for M, then the 
map P~ in 4.1 is (k + 1)-connected. I f  dim(M) >~ 5, the square in 4.1 is a homotopy 
pullback square. 

Proof It k is in the topological concordance stable range for M, then the bottom 
horizontal arrow in diagram 4.2 is (k + i +  1)-connected and therefore (k + 1)- 
connected. Suppose for induction purposes that the top horizontal arrow in the same 
diagram is (k + 1)-connected; then so is the middle horizontal arrow, which gives the 
induction step. Letting i tend to infinity we obtain the connectivity claim in 4.3. 
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For the proof of the last sentence of 4.3, we make the following observation. Suppose 
that W, X and Y are commutative squares of pointed spaces and maps of the form 

i 'i; 
) .  

interpret W, X and Y as covariant functors from a category Z with four objects (the 
corners) to the category of pointed spaces. Suppose also that a natural fibration up to 
homotopy 

W Y ~X --g ~Y 

is given; this means that f and 9 are natural transformations such that 

W(c)  ~ , x ( c )  ~ , Y(c) 

is a fibration up to homotopy (see 3.4) for each object c in Z. Suppose, finally, that Wand 
Yare homotopy pullback squares, ls it true that X is a homotopy pullback square? The 
answer is yes if the upper left corners in W and Y are connected. 

Use this as follows: Assume that dim(M) ~> 5. Let 

Filti(P~ x ~ ) ) / T O P ( M )  ~ Q(S~+ -1 Azz flWhs(M)) 

TOPb(M x Ni)/TOP(M) , Q(S~+ - i A z  2 g~Wh(M)) 

be the square from the proof of 4.1, and let 

Bi+lC~(M x D ~) ~Bi+I~(M x D ~ 

r%+~/E]~ = l l 
TOpb(M x Ni+I)/TOpb(M x Ni) ,Q(EiY~Wh(M)) 

where the horizontal arrows are stabilization maps and the vertical arrows are 
Postnikov covers. By 5.8, the square Fli+1/71 i is a homotopy pullback square. By 
inductive assumption, so is E]i. Therefore, so is V]i+ 1, by the observation just made, 
since 4.2 gives a natural fibration up to homotopy [Z]i ~ Fli+l ~ ~]i+l/[:]i. Letting 
i tend to infinity completes the proof. 

We see from Propositions 4.1 and 4.3 that all the things we ever wanted to know 
t*%.r 

about TOP(M)/TOP(M) are true for P~ x N ~~ The moral is that we 
have to produce the missing homotopy equivalence in a commutative diagram 

,TOpb(M x N~176 TOpb(M x ~ ) / T O P ( M )  c-- ~- 

This looks like a combinatorial problem. We will solve it by constructing a bisimplicial 
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set which contains P~ x R ~176 and TOP(M)/TOP(M) as its vertical 

and horizontal 0-skeleton, respectively, and which is homotopy equivalent to both. We 
begin with a few elementary facts about bisimplicial sets (see Waldhausen [421). 

4.4. DEFINITION.  As usual, we let A be the category with objects [hi = {0, 1 . . . . .  n} 
for n >~ 0, and with monotone maps as morphisms. A bisimplicial set 3E is a contra- 
variant functor from A x A to the category of sets; we write Y,[k,j] for the value of X on 
([k], [j]). We can interpret �9 as a contravariant functor 

[ k ]  ~ :~ [k ,  - ] 

from A to simplicial sets; in this case the simplicial maps 

( f  x id)*: 2f[k, - 1  - '  ~[m, - ]  

(induced by a monotone map f:  [m] --* [k]) are called horizontal operators. See Figure 
4. We can also regard 3E as a contravariant functor 

[j]  ~-~ ~ [ - - ,  j ]  

from A to simplicial sets; then the simplicial maps 

(id x f )*:  3 E [ - , j ]  ~ ~ [ - ,  i] 

(with f :  [i] -~ [ j ]  a monotone map) are called vertical operators. Finally we call 
�9 [0, - ]  and ~ [ - ,  0] the vertical and horizontal 0-skeleton, respectively. 

The geometric realization of ~ is 

L[ ak x a~ x ~[k,j]  / ~ ,  
k,j>~O 

where ~ denotes the usual relations. 

.I 

verticQ[ l O-skeleton 

horizontal 
~ /  operator 

/ 

. . . .  * * vert[cQ[ 
~ ~ ~ ~--------operotor 

h o r i z o n t o l  
O-skeleton 

Fig. 4. 

The next two lemmas are standard knowledge; formally, 4.6 is a consequence of 4.5. 

4.5. LEMMA. (i) Let g : I I ~ Y ,  be a map of bisimplicial sets such that g [ k , - ] :  
1 I l k , -  ] ~ 31Ek, - ] is a homotopy equivalence for each k (on geometric realizations). 
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Then g itself is a homotopy equivalence (on geometric realizations). 
(ii) Ditto, but with vertical and horizontal interchanged. 

4.6. LEMMA. (i) Let Y be a bisirnplicial set in which all horizontal operators 

3ilk, - J  ~ 3i[n, - ]  are homotopy equivalences. Then 3i is homotopy equivalent to its 
vertical O-skeleton ~[0, - ] ,  i.e. the inclusion is a homotopy equivalence. 

(ii) Ditto, but with vertical and horizontal interchanged. 

4.7. EXAMPLE. Let ~(n) be the bisimplicial group whose (k,j)-bisimplices are the 
bounded homeomorphisms 

f : A  k x A  j x M x  ~ ' ~ A  k x A  j x M x  ~" 

such that 

(i) f restricts to the identity on A k x A j x ~?M x ~" 

(ii) p r - f  = pr, where pr is the projection to A k x A J. 

One can check by hand that the conditions 4.60), (ii) are satisfied by ~(n), and also by 

= U .  
The composite homotopy equivalence e given by 

TOPb(M x ~ ' )  -~ ~(n) [0, - ]  c_= ) ~(n) ( ~ ( n )  [ - ,  0] ~ TOpb(M x ~ ' )  

is homotopic to the identity on TOPb(M x N"); to put it differently, the two evident 
inclusions of TOpb(M x N') into the geometric realization of ~(n) are canonically 
homotopic (and they are both homotopy equivalences by 4.6). 

Sketch proof'. Clearly e2~ id. Construct a trisimplicial group whose (k,j, i)- 
trisimplices are the bounded self-homeomorphisms of A k x A J x A i x M x ~" 
preserving the projection to A k x A J x A i. Find that e 3 - id also; therefore e -~ id. 

4.8. EXAMPLE. Let Z(n) be the bisimplicial group whose (k,j)-bisimplices are the 
bounded homeomorphisms 

f :A  k x A  j x M x  ~ ' - - ,A  k x A  ~ x M x  R" 

such that 

(i) f restricts to the identity on A k x A j x •M x ~" 
(ii) pr 2 . f  = pr2, where pr 2 is the projection to A J 

(iii) f(d~A k x A j x M x ~ ' )  = diA k x A ~ x M x ~" for O ~< i ~< k, where d i i s t he  
ith face. 

In other words, f is fibre preserving in the vertical direction, but only block preserving 
in the horizontal direction. 

Again one can check by hand that ~(n) satisfies condition 4.6.(ii), meaning that all 
vertical operators are homotopy equivalences. (Compare the homotopy groups.) Now 
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let 2; be the union of the 3;(n). Then all maps in the commutative diagram 

TOW(M x R~o)c 5~,.~ -+ ~ ,  ho,~.__ zTOW(M x R ~~ 

TOPb(M x R~)c ,~,t. § ~ - ~ T ~ ' p b ( M  x R~) 

must be homotopy equivalences (on geometric realizations) by Theorem B. (Arrows 
labelled vert. or horiz, are inclusions of vertical or horizontal 0-skeletons.) 

4.9. EXAMPLE, By construction, X in the preceding example is a filtered bisimplicia] 
group; in particular, each simplicial set 3; [k, - ]  is filtered. Define a bisimplicial group 
3 in such a way that 

3[k, - ]  = P~ - ] ) ,  for all k >~ 0. 

In some sense 3 is the ideal compromise between TOP(M) and P~ x ~ ) ,  
because 

3[0, --1 - P~ x ~ )  and 3 [ - ,  0] -~ TO'~P(M). 

4.10. PROPOSITION. The inclusions of the vertical and horizontal O-skeletons, 

p~ x R ~) % 3 and TOP(M) ~, 3, 

are both homotopy equivalences (on geometric realizations). 
We postpone the proof because it requires more bisimplicial machinery. Instead, 

here is the proof of Theorems A and C, modulo 4.10. We look at the bisimplicial set 
3/~(0) of 4.9 and 4.7. The inclusions of the horizontal and vertical 0-skeletons, 

TOP(M)/TOP(M) % 3/~(0) 

and 

P~ x N~)/TOP(M) c~ 3/~(0), 

are homotopy equivalences by 4.7 and 4.10. Therefore 

TOP(M)/TOP(M) ~_ ~~ x ~R~~ 

This is essentially what we had to prove, but we also wanted the homotopy equivalence 
to fit into a homotopy commutative diagram 

~~ x R~)/(TOP(M)~ ~ ~TOP(M)/TOP(M) 

TOP~(~ x iR ~ ) / T O P ( M ) ~  TO~Pb(M x N ~~ 
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Consider then the larger diagram 

P~ x ~ ) / T O P ( M )  c 

F 
Topb(M x N~)/TOP(M) c 

-~ I er. 

~ / ~ ( o )  c 

ver. hor. 
__ )3/6(o), __ 

(*) 

i 

(**) 

-~ TOP(M)/TOP(M) 

, TOW(M x N~)/TOP(M) 

~~ hot. 
I- 

.C 
, ~/,~(o). 

Deleting the arrow labelled i and inserting the inclusion 3/6(0) % 3;/6(0) instead, we 
obtain a strictly commutative diagram. Therefore, commutativity of square (*) up to 
a preferred homotopy is equivalent to commutativity of square (**) up to a preferred 
homotopy. But we know from 4.7 that the vertical and horizontal inclusions 
TOpb(M x R~)/TOP(M)c~ ~/~(0) are canonically homotopic; therefore (**) is 
indeed commutative up to a preferred homotopy. 

The machinery needed in proving 4.10 consists of a lemma and two remarks. The 
lemma is a refinement of 4.6 for bisimplicial groups X. Define 

NJi[k, - ]  = (~1 ker(di: ~[k, - ]  ~ 3s 1, - ] )  

where the di are the horizontal elementary face operators. Then N3i[k , - ]  is a 
simplicial subgroup of X[k, - ]  for each k/> 0. Define similarly NY~[-, j]  c ~ [ - , j ]  
for all .1"/> 0. 

4.11. LEMMA. (i) I f  N31[k, - ]  is contractible for all k > O, then the condition in 4.6.0) 
is satisfied. 

(ii) I f  N3i[ -  ,j] is contractible for all j > O, then the condition in 4.6.(ii) is satisfied. 
Proof (of (i)). Fix n ~> 0. The zeroth vertex map X [ n , - ] - ,  t[[0, - ]  is a split 

surjection; we must prove that its kernel W is a contractible simplicial group (because 
then the degeneracy map X[0, - ]  ~ X[n, - ]  will be a homotopy equivalence, and 
since n was arbitrary all horizontal operators will be homotopy equivalences). Filter 
W as follows: For each j between 0 and n, let I(j) be the set of injective morphisms 
[j] ~ [n] in A which map 0 e [j]  to 0 ~ [hi. Let 

Wj = ('~ ker(f*: W c X[n, - ]  ~ 3s - ] ) .  
f ~I(j) 

Then Wo = W and W, = { 1}. There is a restriction map 

[I f * : W j _ , / W j ~  l-J NY~[j,-]  
f ~I( j)  f ~l( j)  

which is clearly injective. Using degeneracy operators and the group structure in W i_ ,, 
one can easily show it to be surjective. Therefore, the assumption in 4.11.(i) implies 
contractibility of W. 
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4.12. REMARK. Suppose that X is a bisimplicial group such that N3i[k,-] is 
contractible for all k > 0. Then ~ , ( ~ [ 0 , - ] )  ~ ~,(~) by 4.11 and 4.6. The homo- 
morphism 

~ , ( x [ - ,  0]) --, ~,(~) ~ ~,(~[o,  - ] )  

has the following explicit description by transgression. Write 

int ~[k,  - ]  = ~ ker(di: X[k, - ]  --* ~ [ k -  1, - ] ) .  
all i 

Then int X[k, - ]  c N)i[k, - ] ,  and N31[k, - ]  is contractible if k > 0, so that 

(a) E~(N2E[k, - ] / i n t  ~[k, - 3 )  - int 3E[k, - 3  

if k > O. But the face operator d o gives an injection 

(b) NX[k, - ] / i n t  ~[k,  - 3  --. int ~ [ k -  1, - 3 .  

Putting (a) and (b) together, we get transgression maps 

int ~[k, - ] --* ff~(int ~ [ k -  1, - ] ) ,  for k > 0 .  

Now represent an element in 7rk(~ [ - ,  0]) by a k-simplex in 2E[-,  0] with all faces at the 
base point. This, then, is also a 0-simplex in int .t~[k, - ]  and represents an element in 
~o(int ~ [ k , - ] ) .  Pass from there to ~k(int ~ [ 0 , - - ] )  = ~k(~[0,--])  by iterated trans- 
gression. It is not difficult to see that the two homotopy classes under consideration, in 
~k(~[--,  0]) and in ~k(~[0, --]), have the same image in ~k(X). 

4.13. REMARK. For a generalization of 4.12, suppose that 11 c X is an inclusion of 
bisimplicial groups such that Nil[k,-] and NX[k,-] are both contractible for all 
k > 0. Then we know that 11 and ~ satisfy condition 4.6.(i) and, therefore, so does 
g3 = t~/ii. Again, the homomorphism 

~,(~3 [ - , 0 ] )  ~ ~,(~1) m ~,(~) [0, - ] )  

can be described by transgression: For k ~> 0, let 

N~[k,-]  = ~ dFl(base point), 
i ,~0 

g)[k, - ]  = ~ d71(base point), int 
all i 

where the d~ are the horizontal elementary face operators (going from ~ ) [ k , - ]  to 
~ [ k - 1 , - ] ) .  Inspection of 4.11 shows that the inclusion N~[k,- ]~Nil[k,-] 
Ng3 [k, - ]  is an isomorphism of simplicial sets. Therefore, Nr - ]  is contractible if 
k > 0; therefore also the map 

do: N ~ [ k , - ]  ~ S ~ [ k - 1 ,  -3  
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is a Kan fibration onto its image fig-1" We get transgression maps 

int ~[k ,  - ]  ~ ~(flk- 1) = ~(int ~ ) [ k -  1, - ] )  

as before. 

Proof  o f  4.10: We will first show that N 3 [ k ,  - ]  is contractible for all k > 0. Note 
that 

N 3 [ k ,  - ]  = p ~  x A k x ~oo, M • do Ak • ~ ) ,  

where we use the filtration of ~ oo by subspaces ~i to make sense of the superscript 'pos'. 

See 1.4 for relative notation. There is an obvious identification of simplicial sets 

p~ • A k x ~ ,  M • d0 Ag • R ~) ~ p~ X D k-1 X ~ ) ;  

also, 7cj(P~ x D k-1 x D2~)) is isomorphic to 

im[rcj(cgb(M • D k-1 x ~J ) )~n j ( cgb (M x D k-1 x RJ+I))] 

for any j />  0, almost by definition. But the inclusion map c-~b(M X D k- 1 X [~J) -+ 

cffb(M X D k-1 X R j + l )  is nullhomotopic. (By 1.8, it can be delooped to an inclusion 
map F([R j) ~ F(~J+I), where 

F(V)  -= TOpb(M • D k-1 • ( V O  ~ ) ) / T O p b ( M  x D k-1 x V) 

for any finite-dimensional real Hilbert space V. Replacing M by M x D k- ~ in 1.l 1, we 

see that the inclusion F ( R J ) ~ F ( ~  j+l)  is nullhomotopic; in fact there are two 
essentially different nullhomotopies, giving rise to a map F(~ j) --+ flF(~J+l).)  The 
conclusion is that N 3 [ k , - ]  has trivial homotopy groups. This proves one half of 
4.10, namely, that the inclusion 3[0 ,  - ]  -~ 3 is a homotopy equivalence. 

We now use 4.12 to check that the homomorphism 

~ , ( 3 [ - ,  0] --, ~,(3) ~ ~,(3[0, - ] )  

is an isomorphism. Note that 

int 3[k,  - ]  = P ~  • A k x ~oo) 

so that 

rcj(int 43 [k, - ] 

= im[~.(TOpb(M x A k x ~ J ) - ,  ~j(TOpb(M x h k x R J+l))] 

whereas 

~zi+ 1 ( int  ,3 [ k -  1, - ] )  

= im[~j+l (TOpb(M x A k-1 x NJ+I)--,rci+I(TOPb(M x A k-1 x R~+2))]. 

The transgression 

~j ( in t  .3 [k,  - ] )  ~ ~j  + 1 (in t 3 [k  - 1, - ]) 



AUTOMORPHISMS OF MANIFOLDS AND ALGEBRAIC K-THEORY: I 617 

is then simply obtained from the Anderson-Hsiang isomorphism 

rcj(TOPb(M x A k x NJ)) ~ ~j+I(TOpb(M x A k-1 X ~ j+ l ) )  

by passing to factor groups. Using 4.12, we then find that the homomorphisms 

~zj(TOe~P(M)) = ~zj( 3 [ - ,  03) ~ ~j(3 [0, - ] = ~j(P~ x ~ ~)) 

have the following unsurprising description. Represent an element in hi(TOP(M)) 
by a j-simplex with all faces at the base point. This represents an element 
in zo(TOP(M x A J)) ~ no(TOP(M x D J)) - ~j(TOPb(M x R J)) and, therefore, an 
element in 7z2(P~ x R~)). It is quite easy to check that this homomorphism 
from rc,(T~P(M)) to zc,(P~ x R~)) is an isomorphism. This proves the 
second half of 4.10. 

4.14. REMARK. The last sentences of the proof give an explicit description of the 
isomorphism 

r ~ J  

~z,(TOP(M)) ~ 7~,(p~ x ~ ) ) .  

Using 4.13 instead of 4.12, one obtains an equally explicit description of the 
isomorphism 

7z,(TOP(M)/TOP(M)) ~- z~,(P~ x N~176 

Since 

cbs: TOP(M)/TOP(M) ~ Q(S + Az2 f~Whs(M)) 

is defined to be the composition of the homotopy equivalence 

TOP(M)/TOP(M) ~_ P~ x N~ 

with 

P~ P~ • ~ ) / T O P ( M )  --* Q(S+ Az2 f~W__hhs(M)), 

this shows that the effect of qb ~ on homotopy groups is what it was supposed to be 
(return to 3,6). 

5. Appendix: Geometry and Lower K-Theory 

We need to recall the connection between bounded or controlled geometry and lower 
algebraic K-theory, as developed by Anderson and Hsiang [2], Quinn [35, 36], 
Chapman [15], and Pedersen [31]. 

Let N be a manifold (with ON = Q) equipped with a proper map p: N ~ R j. Assume 
that N has a bounded fundamental group (oid); see Pedersen [31]. Pedersen 
investigates equivalence classes of bounded h-cobordisms (W; N, N') over N, under the 
equivalence relation given by bounded homeomorphism relative to N. 



618 MICHAEL WEISS AND BRUCE WILLIAMS 

5.1. B O U N D E D  h - C O B O R D I S M  T H E O R E M .  Suppose that dim(N)~> 5. Equiv- 

alence classes of  bounded h-cobordisms over N are in one-one correspondence with the 
elements of  an algebraically defined group 

f Wh(Tr), if j = 0, 

K l_j(z0 = "~/~o(Z~r), if j = 1, 
| 

[ ,K  1 _/(Z~r), otherwise, 

which only depends on the fundamental group (oid) ~z = ~zl (N ). The product h-cobordism 
corresponds to the neutral element. 

See Pedersen [31] for details. No te  that  ~ must  be finitely presented since we assume it 

is bounded.  For  the definition of the negative K-groups ,  see Pedersen [33]. In 

Pedersen's  formulat ion,  it is such that  the p roof  of 5.1 can be quite analogous  to that  of 

the ord inary  h-cobordism or s -cobordism theorem, which is contained in 5.l as 

a special case (j = 0). 

5.2. R E M A R K S .  (i) Theorem 5.1 is valid in the smooth  and in the topological  category. 

(ii) There is a mild generalization to the case where c3N r Q ;  in this case one classifies 

bounded  h-cobordisms over  N, equipped with a bounded  produc t  s tructure over  8N. 
The obstruct ion groups (or classification groups) are the same. 

5.3. C O R O L L A R Y .  Let  M be a compact manifold as in section 1. l f  dim(M) + n ~ 5, 

then 

rcj(rgb(M x ~")) ~ tq+j_,(Tz), for 0 <~ j < n, 

where ~ = nl(M).  

Proof  Write M x D j • ~ , - i - 1  = N, keeping j fixed; then 

7"Cj(c~b(M X ~n)) ,~ 7CO(C~b(M X O j x ~"-J)) = 7"CO(C~b(N X ~)), 

by 1.10. Here  we regard N as a manifold with control  m a p  equal to the project ion 

p: N ~ R " - J -  i. We will describe an i somorphism 

fl: no(C~b(N x ~)) --* hcob(N x [0, 1]), 

where hcob(N x [0, 1]) is the group  of equivalence classes of bounded  h-cobordisms 

over  N x [0, 1] trivialized over  #(N x [0, 1]). This reduces 5.3. to 5.l. (The group  
structure in hcob(N x [0, 1]) can be defined by juxtaposi t ion,  since N x [0, 1] u 

N x [ 1 , 2 ] = N  x [ 0 , 2 ] ~ N x  [0,1].)  
For  the definition of fl, let f : N  • D 1 • ~ ~ N  • D 1 • ~ be a bounded  con- 

cordance. Choose  z > 0 so large that  N • D 1 • {0} and  f ( N  • D 1 • (z})are  disjoint. 
Then the region enclosed by N •  1 • {0} and f ( N x D  1 • {z}) is a bounded  
h-cob0rdisms over  N • [0, z] ~ N • [0, 1]. See Figure 5. It  is trivialized over  
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~3(N x [0, 1]) in the sense that  there is an identification 

N x D 1 x {0} u 0 N  x D ~ x [O,z]uf(N x D 1 x {z}) 

~liduidu f - t  

X • D '  • {0} ~ ON x D '  • [0, ~1 ~ N • D '  • {z} = D 1 • ~(N • I:0, z]).  

This is a provis ional  definition of the m a p  ft. We will see below t h a t / ? ( f )  depends only 

on the componen t  o f f .  I t  is clear that  fl(fg) = f l ( f )  + fl(g) for a rb i t ra ry  f, 9. 

N• D~• 

N*'{-1} • 

Nx O I x ' ( 0 } ~ ~ f ( N x  O ~• {Z}) 

N~'[-1} • 10} ' . ~ . , -  / N• x'{Z~" 

N• x [0,z] .~ N• [0.z] 

Fig. 5. 

Suppose now that  fl(f)--0. We must  show that  f belongs to the identity 

componen t  of cgb(N x R). By assumption,  the bounded  h-cobordism over N x [0, 1] -~ 

N x [0, z] which we associated with f can be equipped with a bounded  p roduc t  

s tructure extending the given p roduc t  structure over  0(N x [0, z]). With this infor- 
mat ion,  it is easy to deform f into a bounded  concordance  g such that  g is the identity 

on N x D 1 x {0}. The usual Alexander trick then deforms g into the identity 
concordance.  

The surjectivity of fl can be p roved  by an Eilenberg swindle. Take  any bounded  

h-cobordism ff over  N x [0, 1], trivialized over  0(N x [0, 1]); and take another  one 

which is inverse to #, say - # .  Let/~i be the bounded  h-cobordism over  N x [i, i + 1 ] 
given by 

#, if i is even, 

# i =  -IL, i f i i s  odd. 

Let  X = U#/ ,  so tha t  X is a bounded  h-cobordism over  

N x ( U [ i , i  + 1 ] ) - - N  x R. 

Writ ing 

X= U (~iw~+1) 
i even 

and using a fixed bounded  p roduc t  structure on ~ u #~+ ~ = # u - ~  for all even i, one 
obtains a bounded  produc t  structure 

J l : X  ~ >(N x R) x D 1. 
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Writing 

X----- Q~) (]git,..J#i+l) 
i odd 

one obtains another bounded product structure 

j 2 : X  ~ ---~(N x N) x D 1. 

T h e n f  = J : ( J l ) -  1 is a bounded concordance ofN x ~ such that f l( f)  = I~, as required. 
To show that f l( f)  only depends on the component of f,  we invoke a continuity 

principle which is implicit in Pedersen [31]. It states the following: Suppose that 
a bounded h-cobordism (over a manifold L with control map p: L--+ Nk, for some 

k > 0) has a bounded product structure over some open subset U c L; suppose also 
that U contains the inverse image under p of a large disk about the origin in Nk. (Here 
'large' means large in comparison with the various bounds satisfied by the bounded 
h-cobordism and by the product structure over U.) Then the algebraic invariant 
J ~ KI_k(gl(L)) determined by the bounded h-cobordism (see 5.1) is zero. 

Proof. Inspection shows that BHS(y )=  0, where BHS is the Bass-Heller-Swan 
monomorphism from •1-k(rq (L)) to Wh(z h (L) x zk). See the definitions in Pedersen 

[32, 333. 
For a continuous path 

[0, 13 --+ cgb(s x N); t ~ ft, 

we now compare fl(f,) and 

fl(ft+e) = f l ( f t )  + fl(ft+e" f t l )  �9 

An application of 1.1 and the continuity principle just formulated, shows that 
fl(f~ +," f ; 1 )  = 0 tbr arbitrary t and sufficiently small e. Therefore, fl(f,) is the same for 
all t e [0, 1]. 

5.4. COROLLARY. I f  dim(M) + n >>. 5, then 7ro(TOpb(M x N"+I)/TOW(M x N")) 
maps injectively to ~c 1 _,(tO, where rr = gt (M). (The homotopy groups rrj for 0 < j ~ n 
are covered by 1.8 and 5.3.) 

Proof. Represent an element in ~o(TOpb(M x Nn+I)/TOpb(M x R")) by some 
bounded homeomorphismf:  M x N "+ ~ --+ M x N "+ 1. For  sufficiently large z > 0, the 

region enclosed by M x e"  x { - z }  and f ( M  x N" x {0})is a bounded h-cobordism 
over M x N" x { - z} .  Together with 5.1, this defines the map. Injectivity is obvious. 

Let N be the manifold in 5.1 again. If (W; N, N') is a bounded h-cobordism over 
N with torsion invariant x e ~l-j(Tr), then it is also a bounded h-cobordism over N' 
with torsion invariant y e ~Cl_j(~r), say. Then y = ( -1)"T(x) ,  where n = dim(N) and 
T is the transposition or conjugation involution on K 1 _j(7 0. It depends only on the first 
Stiefel-Whitney class w,: 7r --+ Z 2 of N or of N'. 
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5.5. COROLLARY. Let M be a compact manifold as in Section 1. I f  dim(M) + n >~ 5 

and j >>, 0, then there is a homomorphism 

rcs(TO~Pb(M x ~"+I)/TO'~Pb(M x R" ) )~  Hj(Z2; tq_,(n)) 

which is an isomorphism if j > 0 and a monomorphism if j = O. Here, Z 2 acts on ~c 1 _,(n) by 
( - 1 ) " + " -  IT, where m = dim(M) and n = rcl(M ). 

This can also be written in the shape of a long exact 'Rothenberg' sequence relating 
the homotopy groups of TO'~Pb(M • ~") and T~'Pb(M • R"+ 1). See 1.14 for notation. 

Indication of,,proof Suppose for notational simplicity that n = 0. Represent an 
element of n j (TOW(M x 0~)/TO"~P(M)) by a j-simplex having all faces at the base point. 
This can be represented in turn by a bounded home0morphism f: A s • M • ~ 
A j x M x R. Then the region enclosed by f(A s x M x {0}) and A s x M x { - z } is an 

h-cobordism over A s x M • { -z} ,  trivialized over O(A j x M x {-z}) ,  for large 
z > 0, It determines an element x in Wh(n) = ~:1(7r). I f j  > 0, we have to show that 
x + ( - 1 ) J + " - l T ( x ) = O ,  because only then does x represent an element in 

Hi(Z2; Wh(rc)). To this end observe that x + ( -  1) j+" -  1 T(x) is the Whitehead torsion 
of the inclusion doA s x M • {0} c~ X, where X = f (A  s • M • {0}) is the top of the 
h-cobordism under consideration. But this Whitehead torsion is clearly zero, as can be 
seen by applying f - ~ to X. This completes the description of the homomorphism in 5.5 
if n = 0; the arguments for n > 0 are analogous. Surjectivity (forj  > 0) can be proved 
by a suitable Eilenberg swindle, and injectivity can be proved by a relative version of 
the argument which proves surjectivity. 

The corollaries above are by no means new: 5.3 is due to Anderson and Hsiang [2], 
and 5.5 is implicit in Anderson and Pedersen [3]. They are equally valid in the smooth 
category (although we have only stated the topological versions) because of 5.2.(i). We 
now state secondary corollaries; again, it is understood that these are also valid in the 
smooth category. 

5.6. COROLLARY. Let M be a compact topological manifold. Then 

7z_s(f2Wh(M)) ~ I c l _ j ( T z l ( M ) )  , f o r j  >~ O. 

Proof By 1.13 we have 

~_j(~Wh(M)) ~-lira %(cgb(M x D k x ~+1)) ,  

where the limit runs over k and is taken with respect to stabilization. So 5.6 follows from 
5.3 (and its proof). 

5.7. COROLLARY. Suppose that M is simpl~ connected. Then f~Wh(M) is O-connected. 
~) I f  also dim(M) >t 5, then the inclusion TOP(M) c~ TOpb(M x N is a homotopy 

equivalence; therefore TOP(M) -~ TOPb(M x N~) by 1.14. I f  dim(M) + n >1 5, then 
TOPb(M x N"+I)/TOPb(M x N")is n-connected. 
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Proof For anyj  >~ 0, the group ~Cl - j({ 1 }) vanishes because it injects into ~cl (Z J), e.g. 
by Pedersen [-32], and because KI(Z ~) is zero according to Bass, Heller and Swan [5]. 
See also Carter [10-12]. 

5.8. COROLLARY. With M as in 5.6, write 

F(R") = TOPb(M x ~n+I)/TOpb(M x ~") 

as in 1.11. Assume that dim(M) + n ~> 5. Then the inclusion 

F(N")c ,lim f~kF(N"+k) = Q(Z"f~Wh(M)) 
k ~ c o  

induces an isomorphism on ~rj,for 0 < j <~ n, and an injection on ~o. (The direct limit is one 
of virtual spaces, and is taken with respect to the maps a defined in 1.11.) 

Proof Recall that 1.12 gives us a good understanding of the maps a: F(N')  
f~F(R" +1) once the functor f~ has been inflicted on them. It follows together with 5.3 
that the induced map =j(F([R"))--+ ~tj(f~F(R"+l)) is an isomorphism for 0 < j  ~< n. 

Injectivity of the map ~o(F(R")) --* 7r0(f~F(R "+ 1)) is harder to prove, although 5.3 and 
5.4 identify its source with a subset of its target. Concepts seem to fail at this point, so we 

use a trick. 
Write F(R"; M) instead of F(N"), for greater precision. Feel free to define and use 

relative versions, such as F(R' ;  M, 0oM), where ~30 M is a codimension zero sub- 
manifold of M. See 1.4 for relative notation. 

Step 1: The map a: F(~"; M x D k) --+ f~F(~"+ 1; M x D k) is an injection on ~z o, if 
k > O. (Proof: F(R"; M x D k) is homotopy equivalent to a union of components of 
~)kF(R"+k; M) by 1.5. Again by 1.5, it is sufficient to know that a: F(R"+k; M)--, 

f~F(~"+l+k;M) is an injection on =k, which we do know.) 
Step 2: The inclusion of ~F(Nn+ 1; M x D k) in f~F(N'+ 1; M x D k, M x S k-l) is an 

injection on ~z o. (Proof'. Using 1.8 identify it with an inclusion map between 
concordance spaces, say i. This has an obvious left homotopy inverse r, so that 

ri -- identity.) 
Step 3: There is a commutative square 

Zto(f(R~; M)) - -  ~ l' 
~o(F(~"; M x O k , M x S k - l )  P 

,r~I(F(R~ M)) 

,~I(F(R"+I;  M x Dk, M x Sk-1)) 

where the vertical arrows are obtained by taking products with D k, and the horizontal 
arrows are induced by a. Now suppose, for example, that k = 4. Then by 5.4 and 
a suitable relative version of 5.4, the map 7 is injective and its image is contained in 

im [rro(F(R"; M x D 4) --+ ~o(F(R'; M x D 4, M x $3))] 

because taking products with S 3 annihilates the algebraic torsion invariant of any 
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bounded h-cobordism. Using steps 1 and 2, conclude that fi.7 is injective. Therefore, e is 

injective. 

6. Appendix: Materialization 

Let Y be a virtual space. If Y r (Z), choose a base point in u Denote by [X, Y]pt the set 
of homotopy classes of pointed maps from X to Y, where X is any pointed connected 
CW-space. The contravariant functor [ - ,  Ylpt satisfies the conditions in Brown's 
representation theorem [7]; the conclusion is that there exist a pointed connected 

CW-space X" and a pointed continuous mapfU: X" -~ Y inducing an isomorphism on 
homotopy groups. An obstruction theory argument then shows that 

f . :  [ - ,  X"]pt ~ [ - ,  Y]pt 

is an isomorphism of functors on the category of all pointed connected CW-spaces. 
(The same argument is normally used in proving Whiteheads theorem in homotopy 

theory.) 
Arguing for each path component of Y separately, one can easily deduce that there 

exist a CW-space W u and a continuous map g": W" ~ Y which is a weak homotopy 
equivalence. See the definition preceding 0.8. Call g" a CW-approximation of Y. 

A more careful look at Brown's representation theorem gives the following result. If 
g: W ~ Y is any continuous map from a CW-space W to Y, then there exist a CW-space 
W" containing W, and a continuous map g": W~ ~ Y extending g which is a weak 
homotopy equivalence. This can be used to show that CW-approximations of Y are 
sufficiently unique for all homotopy theoretic purposes. (Given two approximations, 
construct a third containing both of them, etc.) 

Now let ymat be the simplicial set defined in 0.8, with geometric realization I ymat[. Let 

gU: W u ~ y be a CW-approximation, and arrange W" to be the geometric realization of 
a simplicial set. Then g" determines a map W " ~  Iym"t[ which is simplicial. For if 
f :  A k ~ W" is a k-simplex in W", then g" f :  A k ~ Y is a k-simplex in yma~. A brutal check 
on homotopy groups, which we leave to the reader, shows that this map W" ~ t ](mat t is 
a homotopy equivalence. Choosing a homotopy inverse I gmat I ~ W", which is unique 
up to contractible choice, and composing with g" we obtain a continuous map 
I ym"~[ ~ Y which is a weak homotopy equivalence. 

6.1. OBSERVATION. Suppose that Y is a virtual space and W, X are CW-spaces. 
Then 

[W, I(map(X, t))matl] ~ [W, map(X, Y)] = [W x X, Y] -~ [W x X, I ymatl]. 

This shows that the virtual mapping spaces of 0.5. (vii) have the right homotopy type. 
Square brackets denote homotopy classes of maps. 
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6.2. OBSERVATION. If 

�9 . . - ~ y . _ l ~ y - ~ y o + l  . . . .  

is a direct system of virtual spaces, with n c Y, then 

( im i ymat 

(See 0.5.(vi); the limit on the right is one of simplicial sets.) 

6.3. PROPOSITION.  Let H ~ J be an inclusion map of virtual spaces with group 
structure. Define J/H as in 0.5.(ix). Then the map jmat _. ( j/H)m,t is onto with kernel H mat, 
so that (J/H) mat ~ jmat/Hmat. 

Proof. Inspection, 

6.4. PROPOSITION.  Let A c+ y be an inclusion map of virtual spaces. Write Y~ for the 

virtual space quotient of Y by A (see 0.5.(iii)), and write (ymat)~ for  the simplicial set 
quotient of ymat by A mat. Then the evident map from (ymat)_ to (Y~ )m~t is a homotopy 

equivalence of simplicial sets. 
ymat mat Proof. Compose the evident map f( )~1-~ I(Y~) I with the canonical weak 

homotopy equivalence I(Y_)mat i --* Y~. Our task is then to show that the resulting map 
ymat f :  I( )_ I ~  Y_ is a weak homotopy equivalence. 

Suppose then that g: S k-~ Y~ is a continuous map, for some k >~ 0. We must 

factorize this through f ,  up to homotopy. By definition of Y_ there exists an open 
covering {V/} of S k and continuous maps gi: Vi ~ Y such that the square 

Vi ~i ~ Y 

S k ~ Y_ g 

commutes for each i, and such that for arbitrary i, j we have either 

giivic~Vj : g j lv i r~Vj  

or both gilv,~vj and gjlvi~vjfactor through A < Y. Now choose a triangulation ofS  k 

such that each simplex is contained in one of the V i. Choose an ordering on the set of 
vertices. This identifies S k with the geometric realization of a simplicial set. Using this 
simplicial set structure on S k, we see that the gi define a simplicial map 0 from S k to 

ymat ( ) . .  Namely, the restriction ofgi to any j-simplex in Vi gives a j-simplex in ymat The 
image j-simplex in (Ym"t)_ is well defined. 

It is not difficult to see that 0 is the map we are looking for. Therefore 

f , :  [S k, ym,t ( )-]  Is  k, Y_] 

is onto for every k >~ O. A relative version of the same argument shows that it is also 
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injective. The usual obstruction theory argument then shows that 

f,: [X, (ymat)~] ~ I-X, Y_] 

is a bijection for any CW-space X. This means that f i s  a weak homotopy equivalence. 
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