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Abstract. We develop a theory of Spanier-Whitehead duality in categories with cofibrations 
and weak equivalences (Waldhausen categories, for short). This includes L-theory, the invo¬ 
lution on K-theory introduced by [Vo] in a special case, and a map Ξ relating L-theory to 
the Tate spectrum of $ acting on K-theory. The map Ξ is a distillation of the long exact 
Rothenberg sequences [Sha], [Ra1], [Ra2], including analogs involving higher K-groups. It 
goes back to [WW2] in special cases. Among the examples covered here, but not in [WW2], 
are categories of retractive spaces where the notion of weak equivalence involves control. 
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0. Introduction 

For any ring R, Quillen has defined an algebraic K-theory Ω-spectrum, $. His 
construction is in terms of the category of finitely generated projective modules 
over R, but it can be applied to any exact category. In order to study concordances 
of manifolds Waldhausen generalized Quillen’s construction to apply to what Wald¬ 
hausen calls categories with cofibrations and weak equivalences. (Following 
Thomason we will call them Waldhausen categories.) An example is given by the 
category of based compact CW-spaces. More generally, the category of retractive 
relative CW-spaces $ over a fixed space X, with compact quotient Y/X, is an 
example of a Waldhausen category; its K-theory spectrum is known as $. 

Waldhausen supplied several powerful tools along with his construction of $ 
for a Waldhausen category $, such as the additivity theorem, the approximation 
theorem, and the generic fibration theorem. Even if one is primarily interested in 
the algebraic K-theory of rings these tools have important applications [Sta], 

1 Both authors supported in part by NSF grant. 
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[Tho2]. Also in [CPed] excision in controlled algebraic K-theory of rings is proved 
using Waldhausen’s machinery. 

Suppose that R is a ring with involution (involutory anti-automorphism). The 
problem of classifying manifolds up to homeomorphism or diffeomorphism lead 
Wall to define algebraic L-groups Ln(R) in terms of quadratic forms on finitely 
generated projective (or free, or based free) modules over R. The L-groups turned 
out to be the homotopy groups of a spectrum [Q]. Ranicki [Ra3] associates such 
L-theory spectra to any additive category with chain duality. (There is a quadratic 
L-theory spectrum made using quadratic forms, and a symmetric L-theory spectrum 
made using symmetric forms.) Specifically, by using additive categories of “modules 
parametrized by a simplicial complex” Ranicki gave an algebraic description of 
Quinn’s L-theory assembly map which is used to classify manifolds up to homeo¬ 
morphism. Also Ranicki’s chain duality setup has been used to construct controlled 
versions of L-theory for rings [FP]. The assembly map in L-theory can then also 
be identified with a forget control map. This has been used to prove many cases 
of the Novikov conjecture; see [FRR]. 

If one wants to study the spaces of homeomorphisms or diffeomorphisms of a 
manifold, then the L-theory of rings or even additive categories is not adequate. 
One is forced to consider L-theory and K-theory of certain Waldhausen categories 
equipped with duality, and a certain map Ξ relating the L-theory to the K-theory. 
For this reason we need a theory of duality in Waldhausen categories which, unlike 
Ranicki’s chain duality theory, allows “nonlinear” cases; and we need to understand, 
in this generality, L-theory, K-theory, and the Ξ-map. Waldhausen categories of 
retractive spaces where the notion of weak equivalence involves control are important 
in applications to geometry and should therefore be the central examples of such 
a theory. 

To explain what Ξ is about, we note that many of the classical invariants for 
symmetric forms over a ring R take values in groups constructed from Ki (R) where 
i = 0,1, or 2. This suggests that there should be a connection between the symmetric 
L-theory spectrum $ and the algebraic K-theory spectrum $. Since the 
classical constructions of L-theory are modelled on the pre-Quillen definitions of 
“low dimensional K-theory”, the connection is hidden. In [WW2] we established 
the connection by constructing Ξ, a natural map from $ to the Tate spectrum 
for $ acting on $. A nonlinear version of this does already appear in [WW2], 
but it is very limited and there is no mention of “control”. But it was certainly 
motivated by our study of spaces of homeomorphisms. 

In this paper we introduce the notion of a Spanier-Whitehead product $ on a 
Waldhausen category $. This is a functor $ from $ to pointed 
spaces. The space $ should be thought of as the space of pairings between C 
and D. If $ satisfies certain axioms listed in §2, reminiscent of Spanier-White-
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head duality, then for every C in $ there exists an essentially unique object C in 
$ which comes with a nondegenerate pairing $. We think of C′ as the dual 
of $. We obtain an involution on $ which, modulo technicalities, is induced 
by $. With the same hypotheses on $ we have constructions of $ (sym¬ 
metric L-theory spectrum) and $ (quadratic L-theory spectrum) which gener¬ 
alize Ranicki’s constructions for additive categories with chain duality. There is a 
natural transformation Ξ from $ to the Tate spectrum for $ acting on $. 
There is also a symmetrization map from $ to $. 

In [DWW] we used the fact that the assembly map in the algebraic K-theory of 
spaces can be identified with a forget control map to prove an A-theory index 
theorem for the A-theory Euler characteristic. Exploiting Poincaré duality and the 
results and examples of this paper, we shall in a future paper produce a $-
equivariant version which can be viewed as an A-theory index theorem for the 
A-theory signature. 

Section headings 
1. Spanier-Whitehead products 
2. Axioms 
3. First Consequences 
4. The involution on $ 
5. Generating classes 
6. The axioms and the $ construction 
7. The involution on $ 
8. The axioms and parametrization 
9. Symmetric L-theory and the map Ξ 

10. Stable SW products 
11. Quadratic L-theory, and Ξ revisisted 
12. Naturality 

1.A. Examples related to §1 
2.A. Examples related to §2 
5.A. Examples related to §5 

12.A. Examples related to §12 

Guide. We define SW products in §1. In section §2 we list some axioms on a 
Waldhausen category $ with SW product which are in force most of the time in 
succeeding sections. The main purpose of these axioms is to ensure that every object 
in $ has a sufficiently unique Spanier-Whitehead dual. In §3 and §4 we show that 
this is the case. 

Much of the material in the remaining sections is about verifying that S W products 
and the axioms are hereditary. That is, if the Waldhausen category $ comes with 
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an SW product satisfying the axioms, then certain other Waldhausen categories 
constructed from $ inherit an SW product, which again satisfies the axioms. 

Example 1. Waldhausen constructs the K-theory spectrum $ by first constructing 
a simplicial Waldhausen category $. To show that an SW product $ on $ 
satisfying the axioms of §2 determines an involution on (a new model of) $, 
we first have to show that $ determines an SW product on each $, again 
satisfying the axioms. The SW product on $ appears already in §1, as an example, 
but the axioms are first checked in §5 and §6. Only then are we ready to produce 
an involution on $; this is done in §7. 

Example 2. A symmetric object in a Waldhausen category $ with SW product is 
an object C together with a homotopy fixed point φ of the symmetry involution 
on $. If the underlying point in $ is nondegenerate, we call (C, φ) a 
symmetric Poincaré object. For us, symmetric L-theory is the bordism theory of 
symmetric Poincaré objects in a Waldhausen category with SW product. The most 
elementary type of bordism (without any symmetric self-duality to begin with) in 
the Waldhausen category $ would be a functor from the poset of nonempty faces 
of the standard 1-simplex $1 to $. The most elementary type of higher bordism 
would be a functor from the poset of nonempty faces of the standard n-simplex Δn 
to $, with n > 1. Of course, these notions become more interesting when self-duality 

conditions are imposed. In any case, to do symmetric L-theory in $, we need to 
introduce a category of functors $ from the poset of nonempty faces of a 
standard m-simplex to $, for each m ≥ 0. This appears already in §1, as an example. 
It is necessary to check that each $ inherits an SW product from $, which 
satisfies the axioms if the original one on $ does. We do this in §8. Only then are 
we ready to define the symmetric L-theory of $ and the map Ξ; this is done in §9. 

The discussion in §9 takes place at the space level. For example, in §9 we define 
the symmetric L-theory of $ as a space, not as a spectrum. It turns out that in 
order to raise the discussion to spectrum level one needs a spectrum-valued SW 
product on $. This is also needed to define quadratic objects in $. Namely, suppose 
that $ comes with a spectrum-valued SW product $. Then we can 
(re-)define symmetric objects in $ as pairs (C, φ) with $ and we 
can define quadratic objects in $ as pairs (C, ψ) with $, where 
the subscript $ indicates a homotopy orbit spectrum. A quadratic object (C, ψ) 
determines a symmetric object $ where $ is the norm map. We call (C, ψ) 
a quadratic Poincaré object if $ is a symmetric Poincaré object. For us, 
quadratic L-theory is the bordism theory of quadratic Poincaré objects in a Wald¬ 
hausen category with spectrum-valued SW product. 

We show in §10 that a space-valued SW product on $ is always the 0-th term of 
an Ω-spectrum-valued SW product. In §11, we assume that $ comes with an 
Ω-spectrum-valued SW product satisfying the axioms. We then introduce the sym-
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metric L-theory spectrum of $, improve Ξ to a map of spectra, and define, at last, 
the quadratic L-theory spectrum of $ and the symmetrization map from quadratic 
L-theory to symmetric L-theory. 

In § 12 we explain how these constructions depend functorially on the Waldhausen 
category $ with SW product (satisfying the axioms). 

The example sections § l.A, §2.A, § 5.A and § 12.A can be read in the order in which 
they come, after the theoretical part. Another possibility is to read §n.A after §n. 

0.1. Conventions. A space is a compactly generated Hausdorff space, unless we say 
otherwise. Products and mapping spaces are formed in this category in the usual 
way [MaL]. Base points are nondegenerate unless we say otherwise. These con¬ 
ventions are taken from [Go1]. 

The geometric realization of a simplicial set X is a space |X|. The nerve of a 
category $ is a certain simplicial set $, and the classifying space of $ is $, 
which we usually shorten to $. 

Homotopy limits and homotopy colimits of diagrams of spaces are defined as in 
[Go1] (which is to say that they are defined as in [BK], except that we work with 
diagrams of topological spaces rather than diagrams of simplicial sets). We distin¬ 
guish between reduced homotopy colimits (of diagrams of based spaces) and un¬ 
reduced homotopy colimits (of diagrams of unbased spaces). A reduced homotopy 
colimit is the quotient of the corresponding unreduced homotopy colimit by the 
classifying space of the indexing category. 

1. Spanier-Whitehead products 

Let $ be a Waldhausen category, that is, a category with cofibrations and weak 
equivalences [Wald2]. Let $ denote the zero object in $. 

1.1. Definition. By an SW product on $ we shall mean a functor 

$ 

from $ to the category of based spaces (see 0.1) which is w-invariant, symmetric 
and bilinear (explanations follow). 

● w-Invariance means that the functor takes pairs of weak equivalences to homo¬ 
topy equivalences. 

● Symmetry means that the functor comes with a natural isomorphism $ 
$, whose square is the identity on $. 

● Bilinearity means (in the presence of symmetry) that, for fixed but arbitrary 
D, the functor $ takes any cofiber square in $ to a homotopy 
pullback square of spaces. (A cofiber square is a commutative pushout square 



538 M. Weiss, B. Williams 

in which either the horizontal or the vertical arrows are cofibrations.) Bilinearity 
also means that $ is contractible. 

Usually, in studying a specific Waldhausen category $, one is compelled to introduce 
some other Waldhausen categories. For us it will be important to know whether 
and how these other Waldhausen categories can be equipped with SW products if 
$ is so equipped. 

For example, there is the simplicial Waldhausen category $ constructed from 
$. See [Wald2]. Each $ is a Waldhausen category whose objects are certain 
functors $ from the poset of pairs (i,j) with 0 ≤ i,j ≤ m to $. The 
functors must satisfy two conditions: C(i,j) = * if j ≤ i, and 

$ 

is a pushout square where the horizontal arrows are cofibrations, for i,j < m. Up 
to isomorphism, such a functor (diagram) is determined by its top row, which can 
be an arbitrary string of cofibrations 

$. 

The remaining information consists of chosen subquotients, 

$. 

We suppose that $ is equipped with an SW product and try to use this to define, 
in the simplest way possible, an SW product on the Waldhausen category $, for 
each m ≥ 0. A good formula is 

$ 

for C and D in $. (The category of based spaces in the sense of 0.1 is closed 
under homotopy limits.) Note that the quadruples (i,j,p,q) satisfying the conditions 
i + q ≥ m and j + p ≥ m still form a poset, and $ is a 
covariant functor, so that the homotopy limit is at least defined. However, the 
formula does not seem all that simple. The justification is given in 1.3 and 1.4 below. 

For now, the following may help. The main point here is that, for C and D in 
$, an element η in $ determines elements in $, one 
for every pair i,j with 0 ≤ i ≤ m and 0 ≤ j ≤ m. Under suitable conditions on $, 
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we will show in § 6 that if η is nondegenerate (a notion defined in § 2), then its images 
in the various $ are also nondegenerate. In other words, 
the quadruples (i,j,p, q) with i + q = m and j + p = m appearing in the definition 
of $ are particularly important to us. The quadruples (i,j,p, q) with i + q > m 
and j + p > m are needed mostly to give “coherence”. 

1.2. Lemma. The functor $ on $ defined above is an SW product. 

Proof. Given C, D in $ we map $ isomorphically to $ via 

$ 

using the symmetry property of $ as a functor on $. For fixed i,j,p, q the 
functor $ on $ has the bilinearity property re¬ 
quired in 1.1. Therefore $ in 1.2 has the bilinearity property. □ 

We may ask how the SW product in 1.2 varies with m. Write $. 
The category with objects [m] for m ≥ 0 and monotone maps as morphisms has 
an automorphism (conjugation) of order two which takes f: [k] → [m] to $ 
where rk and rm are the order reversing bijections of [k] and [m], respectively. In 
other words, $. Recall also that $ is a simplicial cate¬ 
gory. Then, for C and D in $, and a monotone f: [k] → [m], we have f*C 
and $ in $. For example, 

$, 

and if i + q ≥ k and j + p ≥ k, then $ and $. It follows 
that we have a map induced by f, 

$. 

Let us: [m] → [1] be the unique monotone map with us(s) = 1 and us(s — 1) = 0, 
for 0 < s ≤ m. Let v : [1] → [m] be given by υ(0) = 0 and υ(1) = m, so that usυ = id 
on [1]. Note $. We shall use these monotone maps to compare $ on $ with 
$ on $, noting that $ and that $ on $ is the same as $ on $ 
under this identification. 

1.3. Proposition. For C and D in $ and us, ut: [m] → [1] and υ : [1] → [m] as 
above, the canonical map 

$ 

is a homotopy equivalence if s + t ≤ m + 1. If s + t > m + 1, then $. 
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Proof. Let T be the poset of all quadruples (i,j,p,q) such that i + q≥m and 
j + p ≥ m, and 0 ≤ i,j,p, q ≤ m. Let F be the functor on T taking (i,j,p, q) to 
$. Let $ consist of the (i,j,p, q) for which i < s and p < t. 
Then for (i,j, p, q) not in T0 we have $ by inspection. Also, any element 
in T which is ≥ an element in T\T0 belongs to T\T0. It follows that the projection 

holim F → holim F|| T0 

is a homotopy equivalence (again by inspection, going back to the definition of the 
holim). 

Suppose now that s + t ≤ m + 1. Then for $ we have q = (i + q) — i 
≥ m — i ≥ m + 1 — s ≥ t and similarly j ≥ s, so that F | T0 is isomorphic to a constant 
functor with constant value $. The nerve of T0 is contractible 
because there is a maximal element. This shows that 1.3 holds when s + t ≤ m + 1. 

Next suppose s + t > m + 1. Let $ consist of the elements (i,j,p, q) for 
which j < s or q < t. Note that ω = (s — 1, m, t — 1, m) is the maximal element in 
T0. Then $ is a retract of T0 (in the category of posets, with maps preserving 
≤ as morphisms). Furthermore F|T0 pulls back from $ because F|(T0\T1) 
is isomorphic to a constant functor. This leads to maps 

$ 

which are easily seen to be reciprocal homotopy equivalences. From the definition 
of the homotopy inverse limit, there is a homotopy pullback square 

$ 

where the vertical arrow on the left is projection, and the one on the right is the 
inclusion of the constant maps. Note that T1 has a final sub-poset consisting of the 
(i,j,p, q) with i = s — 1 and p = t — 1. This final sub-poset has a contractible clas¬ 
sifying space, so that |T1| itself is contractible. Therefore (from the homotopy 
pullback square just above) the projection 

$ 

is a homotopy equivalence. Since F|T1 has contractible values, we can conclude 
holim $ holim $ holim $ holim $. □ 

We see that our formula for $ on $ gives good and predictable results when 
applied to objects of the form $ with C, D in $. An arbitrary object 
E in $ fits into a natural diagram 
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$ 

where the arrows are cofibrations and each cofiber Es/Es—1 is isomorphic to an 
object of the form $ for some Cs in $. Because of the bilinearity, it follows 
that $ is “correctly defined” on all of $. 

1.4. Example. Let $ be the category of chain complexes of finitely generated free 
abelian groups, graded over $ and bounded (from below and above). The morphisms 
are the chain maps; a morphism is a cofibration if it is split mono in each degree, 
and a weak equivalence if it is a homotopy equivalence. Each C in $ has a dual 
$. For C, D in $ we have chain complexes hom(C, D) and $, 
and an isomorphism $. 

We can introduce analogous notions in $. For C in $ we define C* by 
$. For C and D in $ we define hom(C, D) as a chain 
subcomplex of hom(C(0, m), D(0, m)) whose k-chains are the homomorphisms of 
graded groups C(0, m) → D(0, m) raising degrees by k, and taking the image of 
C(0, i) in C(0, m) to the image of D(0, i) in D(0, m), for each i with 0 ≤ i ≤ m. 
The restriction maps from hom(C, D) to hom(C(m —j, m — i), D(p, q)), defined 
whenever m —j ≤ p and m — i ≤ q, determine a chain map 

(●) $. 

(Note that $ is a covariant functor.) The 
chain map (●) is always an isomorphism. For the proof, replace $ by the category 
$ of graded f.g. free abelian groups, bounded from below and above. Think of (●) 
as a natural transformation between bi-additive functors on $. It is 
enough to verify that it is an isomorphism when C(0, m) and D(0, m) have rank 
one. This case is easy. 

Therefore, if we wish to have a natural isomorphism $ for 
objects C, D in $, we are forced to define 

$. 

Of course, there are other ways to say the same thing. For example, we know that 
$ injects in the ordinary tensor product of chain complexes $, 
and the image of this injection is easy to identify; this leads to 

$. 
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In order to make S W products from tensor products, we use the Kan-Dold functor. 
The Kan-Dold functor associates to a chain complex E the simplicial abelian group 
whose n-simplices are the chain maps from the cellular chain complex of the CW-
space Δn to E. We will write $ for the composition of the Kan-Dold functor 
with geometric realization. The functor $ respects finite limits. 

There are now two slightly different ways of introducing an SW product in $. 
Given C and D in $, we might define 

$ 

where the limit is taken over all (i,j, p , q) with i + q ≥ m and j + p ≥ m. Alternatively, 
we might define 

$ 

(same conditions on i,j,p, q) which means that we use the formula just before 1.2, 
and an SW product on $ given by $. These two slightly different 
definitions are not isomorphic, but they are related by a natural transformation 
(the usual map from a limit to the corresponding homotopy limit) respecting the 
symmetry Τ. By 1.3, the natural transformation is a homotopy equivalence in certain 
cases. The filtration argument given after the proof of 1.3 shows that it is always 
a homotopy equivalence. 

Another Waldhausen category which frequently arises in the study of a Waldhausen 
category $ is $, the parametrization of $ by a finite simplicial complex X. 
This is defined as follows (compare [RaWe], [Ra3]). Let sub(X) be the poset of 
simplicial subcomplexes of X, viewed as a category. An object of $ is a functor 
F from sub (X) to $ which takes all morphism to cofibrations, takes $ to *, and 
takes unions to pushouts. (Such a functor is determined up to isomorphism by its 
restriction to the full sub-poset of sub (X) consisting of all the nonempty faces of 
X.) Any natural transformation F1 → F2 between such functors qualifies as a mor¬ 
phism in $. It is a cofibration if F1(Z) → F2(Z) is a cofibration for all 
$, and for each pair of subcomplexes $ of X, the evident morphism 

$ 

is a cofibration. (This ensures that the functor $ is again in $; 
it is of course the cofiber of the cofibration.) The morphism F1 → F2 is a weak 
equivalence if F1(Z) → F2(Z) is a weak equivalence for all $. 

1.5. Definition. An SW product $ on $ gives rise to one on $ by the formula 
$ where the homotopy inverse limit is taken over the 
poset of all nonempty faces $. 
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2. Axioms 

For motivation, we return to the setting of 1.4. Suppose that C and D are objects 
in $. A component of $ will be regarded as nondegenerate 
if the corresponding homotopy class of chain maps C* → D is the class of a 
homotopy equivalence. It is not a trivial matter to generalize this notion to the 
abstract setting of 1.1. In this section we list a number of axioms, about a Waldhausen 
category $ with SW product, which will make it possible. 

To begin, we suppose again that $ is an abstract Waldhausen category. We suppose 
also that $ is small (the class of objects is a set), although in our examples $ is 
usually only equivalent to a small category. The first few axioms do not involve an 
S W product. The notions cylinder functor, cylinder axiom, saturation axiom from 
[Wald2] appear in 2.1; we explain them in the comment after 2.1. 

2.1. Axioms. $ is equipped with a cylinder functor satisfying the cylinder axiom 
[Wald2, § 1.4]. The weak equivalences in $ satisfy the saturation axiom [Wald2, § 1.2]. 

Comment. The saturation axiom is the following condition: if a, b are composable 
morphisms in $ and two of a, b, ab are weak equivalences, then so is the third. 

An example of a Waldhausen category with cylinder functor is the category of 
compact based CW-spaces, where the morphisms are the based cellular maps, the 
weak equivalences are the homotopy equivalences, and the cofibrations are the 
CW-embeddings. In this case, the cylinder functor is the rule associating to a 
morphism f: X → Y its reduced mapping cylinder T(f), and the canonical maps 
X → T(f) and Y → T(f) (front inclusion and back inclusion) and T(f) → Y 
(cylinder projection). 

For the abstract version, we need two other Waldhausen categories $ and 
$ associated with $. The objects of $ are the arrows of $, the morphisms 
from f: A → B to g : C → D are the commutative squares 

$ 

in $, and we call such a morphism a cofibration {weak equivalence} if the two 
vertical arrows are cofibrations {weak equivalences}. The objects of $ are the 
morphisms of $. Again, a morphism in $ from f: A → B to g: C → D is 
a commutative square of the form 
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in $. If, in this square, both A → C and $ are in $, then the 
morphism given by the square is a cofibration. If both A → C and B → D are weak 
equivalences, then the morphism given by the square is a weak equivalence. 

A cylinder functor on $ is a functor T on $ taking every object f: C →D 
to a diagram of the form 

$ 

with pj1 = f and pj2 = idD, and taking morphisms in $ to natural transform¬ 
ations between such diagrams. There are two additional conditions. The first of 
these (Cyl1) requires thaty j1 and j2 assemble to an exact functor from $ to $, 

$. 

The second (Cyl2) requires that j2 : D → T(* → D) be an identity morphism for 
each D in $. The cylinder functor is said to satisfy the cylinder axiom if the cylinder 
projection p: T(f) → D is a weak equivalence for any f: C → D. 

Suppose that $ comes with a cylinder functor T. The cone of a morphism 
f: C → D, denoted cone(f), is the cofiber of j 1 : C → T(f). We often write cone(C) 
instead of cone(idC). The suspension ΣC of an object C in $ is the cone of $. 
(End of comment.) 

A quasi-morphism from an object C in $ to an object D in $ is a diagram of the 
form C → D′ ← D where the arrow ← is a weak equivalence and a cofibration. 
Diagrams of this type, with fixed C and D, are the objects of a category $ 
whose morphisms are commutative diagrams of the form 

$. 

Write [C, D] for the set of components of $, and write $ for 
the class of a morphism f: C → D (regarded as a quasi-morphism C → D = D). 
The sets [C, D] are the morphism sets in a new category $, with the same objects 
as $. Explicitly, the composition law [D, E] × [C, D] → [C, E ] is defined on repres¬ 
entatives D → E′ ← E and C → D′ ← D as follows. Let E″ be the pushout of 
D′ ← D → E′ and form C → E″ ← E (arrow → via D′, arrow ← via E′). This 
represents an element in [C, E], as required. — Clearly $ is a functor 
from $ to $. It is an exercise to show that the functor takes weak equivalences 
to isomorphisms, provided $ satisfies 2.1. This is actually carried out in [Wei]. 
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2.2. Axiom (Simplicity). Let f be a morphism in $ such that [f] is an isomorphism. 
Then f is a weak equivalence. 

This axiom ensures that there is a reasonably close relationship between $ and 
$. The remaining axioms are about $, and they have a very familiar form 
reminiscent of Spanier-Whitehead duality. 

2.3. Axiom (Stability). The suspension functor $ is an equivalence of 
categories. 

For the next two axioms, suppose that $ is equipped with an SW product $. The 
rule $ can be regarded as a functor on $. 

2.4. Axiom (Co-representability). For every B in $, the functor on $ taking C 
to $ is co-representable, say by an object T(B) in $. 

Let’s spell this out. We must have an isomorphism $ naturally 
in C. The object T(B) is characterized by this property up to unique isomorphism 
in $. 

2.5. Axiom (Involutivity). For every B in $, the canonical morphism from T2(B) 
to B in $ is an isomorphism. 

The canonical morphism is the image of id $ under the chain of bi-
jections $. One can see 
that 2.5 is not a consequence of 2.4 by looking at the most trivial possible SW 
product, $. Then 2.4 is satisfied, but 2.5 is not unless $ is equivalent 
to a category with one object and one morphism. 

Remark. When 2.4 holds, we can regard T as a functor from $ to $. It is 
self-adjoint in the sense that $ in $, naturally. This follows 
from the symmetry of $. The canonical natural transformation T2(B) → B is just 
the counit of the adjunction [MaL, IV.1]. It is therefore an isomorphism for all B 
in $ if and only if T is an equivalence $. 

3. First consequences 

Throughout this section, we assume that $ satisfies the axioms of §2. The goal 
here is to translate statements about $ into statements about a topological 
category whose objects are those of $, and where the space of morphisms from C 
to D is the classifying space $ of the category $. This topological 
category is essentially a hammock localization in the sense of Dwyer and Kan, 
[DwyKa1], [DwyKa2]; see [Wei, 1.2] for more details. 



546 M. Weiss, B. Williams 

3.1. Quotation [Wei]. There is a composition law in the shape of a functor 

$ 

which on objects is defined as follows: the pair (D → E′ ← E, C → D′ ← D) is mapped 
to C → E″ ← E, where E″ is the pushout of D′ ← D → E′. The morphisms C → E″ 
and E″ ← E are via D′ and E′, respectively. Here we are assuming that pushouts 
of diagrams F ← G → H in $, where one of the arrows is a cofibration, are ca-
nonically defined in $. (The definition of a Waldhausen category requires that they 
exist, and the universal property makes them unique up to unique isomorphism.) 
The composition law is associative up to a natural isomorphism of functors. Also, 
the object 
$ 

in $ acts as a two-sided identity, again up to a natural isomorphism. 

It is always possible to replace $ by an equivalent category so that the pushouts 
needed above are canonically defined and associative, with units. What this means 
is that, when $ has been so improved, the composition law just described is asso¬ 
ciative and has two-sided identities. See [Isb]. We will use this below, in the proof 
of 3.5. 

3.2. Corollary. Let $ be a quasi-morphism. The corresponding mor-
phism C → D in $ is an isomorphism if and only if f is a weak equivalence. In 
that case the maps 

$ 

given by composition with the quasi-morphism $ are homotopy 
equivalences, for arbitrary B and E in $. 

Proof. Suppose that the quasi-morphism in question represents an isomorphism in 
$. Then it follows immediately from 3.1 that composition with it gives homotopy 
equivalences. Next, it is an exercise to show that the composition of our quasi-
morphism with 

$ 

(representing the class [e]) is in the class [ f] . But we saw in §2 that [e] is an 
isomorphism in $, so that C → D′ ← D represents an isomorphism in $ if 
and only if [f] is an isomorphism in $. Now apply axiom 2.2. □ 



Duality in Waldhausen categories 547 

3.3. Theorem. For fixed D in $, the contravariant functor $ takes 
cofiber squares to homotopy pullback squares. 

This is the main result of [Wei]. It uses axiom 2.1 only. A cofiber square in $ is a 
commutative pushout square in which either the vertical arrows or the horizontal 
arrows are cofibrations. With a view to 3.4, we note that $ has a canonical 
base point, corresponding to the object 
$ 

in $. The base point is sufficiently natural, so that $ becomes 
a contravariant functor from $ to based spaces. 

3.4. Corollary. For arbitrary C, D in $, the suspension functor from $ to 
$ induces a homotopy equivalence $. 

Remark. The proof uses axioms 2.1, 2.2, 2.3 only. 

Proof. We begin by proving that suspension $ induces 
an isomorphism on πk for all k. Suppose inductively that this has been established 
for k ≤ n and all C and D; the induction start is of course axiom 2.3. From 3.3 we 
have the following commutative diagram in the homotopy category of based spaces: 

$. 

In more detail: the vertical arrows are extracted from the homotopy pullback squares 
obtained by applying $ and $ to the cofiber squares 

$ 

respectively. This should make the horizontal arrows in $ obvious. (Note that we 
have used Σ cone(C), not cone(ΣC).) Applying the inductive assumption to the 
upper row in $, one finds that the map in the lower row induces isomorphisms 
in πk for all k ≤ n, which completes the induction step. Therefore the suspension-
induced map $ is bijective on πk for all k ≥ 0 and con¬ 
sequently 

$ 
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is a homotopy equivalence. Using $ once more, we deduce that 3.4 is correct 
provided C is of the form ΣB for some B. But axiom 2.3 implies that we can indeed 
assume C = ΣB without loss of generality. □ 

Our main goal in the remainder of this section is to prove corollary 3.8 below, 
which is dual to 3.3 since it claims linearity of the expression $ in the 
second variable. 

We begin by comparing $ and $. There are two seemingly 
different but equally reasonable ways to define a partial stabilization map from 
$ to $. For the first, start with the cofiber square 

$ 

and apply $ to obtain a commutative square with contractible upper right-
hand and lower left-hand terms, 

$. 

This gives $ as claimed. For the other definition, start 
with the cofiber square 

$ 

and apply $ to obtain a commutative square with contractible upper right-
hand and lower left-hand terms, 

$. 

This results in $, a homotopy equivalence by 3.3; we 
pre-compose with $ of 3.4, another homotopy equiva¬ 
lence. 
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3.5. Lemma. The two partial stabilization maps $ are 
homotopic. (Therefore both are homotopy equivalences.) 

Proof. Let s = sC,D be the partial stabilization map defined first, and let σ = σC,D 

be the other. Fix D. An easy Yoneda type argument which we leave to the reader 
shows that both maps are completely determined, for all C, by what they do to 
$. It is therefore quite enough to verify that s(idD) and σ(idD) belong 
to the same component $. Here we have to be explicit. By inspection, 
s(idD) has the following description: Choose a path in $ from the 
vertex 

$ 

to the base point (which is the zero morphism from D to cone(D)), viewed as a 
quasi-morphism). The image of that path under the map from $ to 
$ induced by cone(D) → ΣD is a loop, equal to s(idD). (The description 
is up to contractible choice, but the definition of s is also up to contractible choice 
only.) Again by inspection, σ(idD) has the following description: Choose a path in 
$ from the vertex 

$ 

to the base point. Its image under the map $ 
induced by the boundary inclusion D → cone(D) is a loop, equal to σ(idD). To see 
that the loops are homotopic, we introduce another loop. Choose a path in 
$ from the identity vertex 

$ 

to the base point. Its image under the map $ 
induced by projection cone(D) → ΣD and boundary inclusion D → cone(D) is a 
loop, clearly homotopic (even equal with appropriate choices) to both s(idD) and 
σ(idD). □ 

For B, C, D in $ there is a slant product $ 
defined by $. Not surprisingly, this is induced by a map of 
spaces 

$. 

This map can be described as follows. Let X0, X1, X2 be the (unreduced) homotopy 
colimits of the functors from $ to based spaces which take an object 

$ 
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to $ and $ respectively. The obvious natural transformations 
induce maps 

$ 

giving a based map X0 → X2 well defined up to contractible choice. (The contractible 
space by which we parametrize the choices is the space of retractions r from the 
reduced mapping cylinder of X2 → X1 to X2. Each of these retractions r can be 
composed with X0 → X1 and the front inclusion of the cylinder, giving a map 
X0 → X2.) We obtain the map we have been looking for by projecting from X2 to 
$ and observing that X0 is homeomorphic to $. 

3.6. Definition. A class in $ is nondegenerate if the corresponding element 
in [T(B), C] is an isomorphism in $. Equivalently, $ is non-
degenerate if slant product with [η] is a bijection $ for all D. 

Remark. Axiom 2.5 is equivalent to the statement that the symmetry map from 
$ to $ takes nondegenerate components to nondegenerate com¬ 
ponents. Proof: Without loss of generality, the nondegenerate component lives in 
$ and corresponds to $. Apply symmetry to obtain a 
class in $ corresponding to some element of [T2(B), B]. This element 
is exactly the canonical morphism T2(B) → B in $. 

3.7. Proposition. If η belongs to a nondegenerate component of $, then the slant 
product with η is a homotopy equivalence $ for any D. 

Remark. The proof uses only axioms 2.1, 2.2, 2.3, and of course the SW product 
$ and the nondegeneracy assumption on η, which should be read as in the second 
sentence of 3.6. 

Proof The proof is by a bootstrap procedure similar to that used in the proof of 
3.4. First we show that $ induces isomorphisms on πk, for 
all k ≥ 0. Suppose inductively that this has already been established for k ≤ n and 
all D; the induction start (k = 0) comes from the nondegeneracy assumption on η. 
By applying $ and $ to the cofiber square 

$ 

we obtain two homotopy pullback squares (by the second sentence in 3.5 and 
bilinearity of $) with contractible upper right-hand and lower left-hand vertices, 
and therefore compatible homotopy equivalences 
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$. 

Compatibility means that the square 

$ 

commutes. Applying the inductive assumption to the upper row in the square, we 
see that $ induces isomorphisms on πk for k ≤ n + 1. 
Since every object in $ is related to an object of the form ΣD by a chain of weak 
equivalences (2.3 and 3.2), this completes the induction step. As in the proof of 
3.4, we may conclude that 

$ 

is a homotopy equivalence for all D. In particular, the lower row in the square just 
above is a homotopy equivalence. But then the upper row must be a homotopy 
equivalence. □ 

3.8. Corollary. For every C in $, the covariant functor $ takes cofiber 
squares to homotopy pullback squares. 

Proof. Fix C and choose B and $ in a nondegenerate component. This is 
possible by 2.4 and 2.5. Slant product with η is a map from $ to $, 
natural in D. By 3.7 it is a homotopy equivalence. It is therefore enough to know 
that $ takes cofiber squares to homotopy pullback squares; but this is 
part of the definition, 1.1. □ 

4. The involution on $ 

Assume throughout this section that $ with the SW product $ satisfies the axioms 
of § 2. At the end of this section we will know that $ has a canonical involution. 
(Strictly speaking, we must replace $ by a larger space $ mapping to $ 
by a homotopy equivalence, and it is $ which has the involution. Compare 
[Vo].) In later sections we will see that $ and $ also satisfy the axioms 
(see 1.5). When combined, these results lead to an involution on the spectrum $ 
and many other good things. 

Write $ for the union of the invertible components of $. Then 
$ is a full subcategory of $, and by 3.2 its objects are those diagrams 
$ 
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for which f is a weak equivalence (and e is a weak equivalence and a cofibration, 
as always). The following key lemma relates the results of §3 to the homotopy type 
of $. 

4.1. Lemma. For C in $, let $ be the functor on $ given by $. 
Then hocolim $ is contractible. 

Proof. By Thomason’s homotopy colimit theorem [Tho1], hocolim $ is homotopy 
equivalent to the nerve of a single category $ with the following description. 
Objects are diagrams 

$ 

where f is a weak equivalence, e is a weak equivalence and a cofibration, C is fixed 
but D and D′ are not. Morphisms are commutative diagrams 

$. 

The objects of the form $ are the objects of a full subcategory 
$. The inclusion $ has a left adjoint $, 
so that $. But $ has an initial object. □ 

Remark. Let $ be the component of $ which contains the object C. It is a 
consequence of 4.1 that $. To see this note first that $ 
is empty when D is not in the component of C. Therefore hocolim $ is in effect 
a homotopy colimit taken over $. On the other hand, $ takes any morphism 
in $ to a homotopy equivalence, so that the projection hocolim $ is 
a quasifibration. Its total space is contractible according to 4.1, and its fiber over 
the base point is $. 

4.2. Proposition. For B in $ let $ be the functor on $ given by $, 
where $ consists of the nondegenerate components. Then hocolim $ 
is contractible. 

Proof. Essentially this is a consequence of 4.1 together with 3.7. Choose some C 
and some point $. We wish to compare the two functors $ and 
$ on $. To make the comparison easier we introduce a third functor $ 
defined as follows. For D in $ let $ be the homotopy colimit of the functor 
on $ whose value on an object 
$. 
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is the (contractible) homotopy fiber of $ over the point f*(η). 
Projection from the hocolim to $ is a homotopy equivalence, and it is 
also a natural transformation $ of functors in the variable D. But there is 
also a forgetful transformation $, and again we know (from 3.7) that 
$ is a homotopy equivalence for every D. (It is simply the slant 
product with η restricted to certain components, provided we make the identification 
$ Therefore 

$. □ 

Remark. The true meaning of 4.2 is that every object B in $ has a (Spanier-
Whitehead) dual which is unique up to contractible choice. Indeed, hocolim $ is 
the space of choices of duals. 

4.3. Corollary. Let $ be the functor on $ defined by $. The 
composition of the projection map hocolim $ with projection to the 
first coordinate $ is a homotopy equivalence hocolim $. 

Proof. There is a Fubini principle for homotopy colimits of functors on product 
categories which, applied to the present case, means that 

$ 

where $ is the functor defined in 4.2. The homeomorphism is over $. □ 

4.4. Remark. Homotopy colimits can always be interpreted as classifying spaces of 
topological (or simplicial) categories. This is how they appeared in the literature 
for the first time, in [Seg]. Specifically, let $ be the topological category whose 
objects are triples (B, D, z) where B, D are objects in $ and z is a point in $. 
A morphism from (B1, D1, z1) to (B2, D2, z2) is a pair of weak equivalences B1 → B2, 
D1 → D2 so that the induced map $ takes z1 to z2. Then $ 
is homeomorphic to hocolim $. From this point of view, the true meaning of 4.3 
is that the forgetful (simplicial, continuous) functor 

$ 

induces a homotopy equivalence of the classifying spaces. (Here $ is a discrete 
category as always.) Note that $ defines an involution on 
$, where τ is the symmetry operator from 1.1. 
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5. Generating classes 

Let $ be a Waldhausen category satisfying axioms 2.1 and 2.2. Here we develop 
techniques for checking axiom 2.3 and, if there is an SW product $, also axioms 
2.4 and 2.5. 

Let $ be a class of objects of $. Let $ be the smallest full subcategory of $ which 
● contains $ and the zero object 
● is closed under formation of mapping cones 
● is closed under isomorphism, that is, $ in $ and B in $ implies C in $. 

We say that $ is a generating class if every object of $ is isomorphic in $ (see 
3.2) to an object in $. 

A covariant or contravariant functor from $ to based spaces is w-invariant if it 
takes weak equivalences to homotopy equivalences, and linear if, in addition, it 
takes cofiber squares to homotopy pullback squares and takes $ to a contractible 
space. 

For example, any object D in $ determines a contravariant functor $ 
which is linear by 3.3. If $ is equipped with an SW product $, then $ 
is a covariant linear functor. Lemmas 5.1 and 5.2 below can facilitate the analysis 
of such functors. 

5.1. Lemma. Let $ be a natural transformation between covariant linear 
functors from $ to based spaces. Let $ be a generating class for $, closed under 
suspension Σ. If $ is a homotopy equivalence for every C in $, then 
$ is a homotopy equivalence for every C in $. 

Proof. Choose C in $ and m ≥ 0 and a diagram of cofibrations 
$ 

such that Ci/Ci—1 is isomorphic to some object in $, for 0 < i ≤ m, and Cm is 
isomorphic to C in $. By induction, $ is a homotopy 
equivalence, and by hypothesis $ is a homotopy equiv¬ 
alence. Using the commutative diagram 

$ 
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where the rows are fibration sequences up to homotopy, we conclude that the 
middle arrow becomes a homotopy equivalence after Ω has been applied. The 
argument works equally well for ΣCm, so that 

$ 

is a homotopy equivalence. Linearity of $ and $ now shows that $ 
is also a homotopy equivalence. □ 

5.2. Lemma. Let $ be a natural transformation between contravariant linear 
functors from $ to based spaces. Let $ be a generating class for $ such that 
$ is a homotopy equivalence for every C in $. Then $ 
is a homotopy equivalence for every C in $. 

Proof. Choose C in $. Arguing inductively, we can assume that C is the mapping 
cone of a morphism f: C1 → C2 in $ such that the left-hand and middle vertical 
arrows in the commutative diagram 

$ 

are homotopy equivalences. Since the rows are fibration sequences up to homotopy, 
it follows that the right-hand vertical arrow is also a homotopy equivalence. □ 

We will often use 5.1 and 5.2 to establish axiom 2.3 in special cases. For the rest 
of the section, assume that $ comes with an SW product $. The following lemmas 
and corollaries are meant to facilitate the verification of 2.4 and 2.5. 

Before stating 5.3, we note that any morphism in $ has a mapping cone, well 
defined up to non-unique isomorphism. Namely, if the morphism is from C to D, 
represent it by a quasi-morphism C → D′ ← D (second arrow a weak equivalence 
and a cofibration); its mapping cone is defined as the mapping cone of C → D′. 

5.3. Lemma. Suppose that $ satisfies 2.1, 2.2, 2.3. Let $ be a cofib¬ 
ration sequence in $. If $ is a co-representable functor on $ for 
i = 1,2, then it is co-representable for i = 3. A co-representing object is the mapping 
cone of T(g):T(B1) → T(B2). 

Proof. Choose Ci and ηi in $ in nondegenerate components, for i = 1, 2. Then 

$ 
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by 3.7 and the remark following it. Choose a quasi-morphism C1 → C2 in the 
component corresponding to that of g: B2 → B1 (from the cofibration sequence). 
Replacing C2 by something weakly equivalent if necessary, we may assume that 
the quasi-morphism is a genuine morphism f: C1 → C2. It turns out that the square 

$ 

commutes up to a homotopy which is natural in D. In fact the Yoneda line of 
reasoning reduces this to the assertion that 

$ 

commutes up to homotopy, where id $ is the identity vertex. An equi¬ 
valent assertion is that f*(η1) and g*(η2) are in the same component of $. 
But that is clear from the construction of f. 

Let C3 be the mapping cone of f. Bilinearity of $ shows that there is a fibration 
sequence up to homotopy 

$ 

natural in D, and 3.3 gives a fibration sequence up to homotopy 

$ 

natural in D. Using the homotopy commutativity of (●) now, we conclude that 
there is a homotopy equivalence $, well defined up to 
homotopy and as such natural in D. Again the Yoneda reasoning shows that e is 
none other than slant product with $, the image under e of the identity 
vertex in $. □ 

5.4. Corollary. Suppose that $ satisfies 2.1, 2.2, 2.3 and that $ is a co-
representable functor on $ for every B in a generating class $. Then $ satisfies 2.4. 

Proof. For every object B in $, the functor $ is a co-representable 
functor on $, by 5.3. □ 

5.5. Lemma. Suppose that $ satisfies 2.1, 2.2, 2.3, 2.4. Suppose also that the functor 
$ is linear, for fixed B in $. Let $ be a generating class for $, closed 
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under Σ. Suppose that whenever B is in $ and C is in $ and $ is in a 
nondegenerate component, then the slant product with $ is a bijection 
$ for all D in $. Then $ satisfies 2.5. 

Proof. Fix B in $ and C in $ and $ in a nondegenerate component. We 
note first that slant product with $, as a map, is a homotopy equivalence 
$ for every D in $. This is proved exactly like 3.7. Lifting the 
restriction on D, we can still say that slant product with τ(η) is a natural transfor¬ 
mation 

$ 

of functors in the variable D. (Actually, to make it strictly natural we would have 
to enlarge $ without changing the homotopy type; see the paragraph preceding 
3.6.) The two functors are linear by assumption, and for D in $ the natural trans¬ 
formation specializes to a homotopy equivalence. Therefore by 5.1 it specializes to 
a homotopy equivalence for arbitrary D in $. In particular, the slant product map 
$ is a bijection for arbitrary D, or equivalently, the canonical 
map T2(B) → B is an isomorphism in $. This holds for B in $. 

Let $ be the class of all objects B in $ for which T2 (B) → B is an isomorphism 
in $. We have seen that $. Therefore it is sufficient to show that if f: C → D 
is a morphism in $, with C and D in $, then the mapping cone of f is in $. 

We can regard T as a contra variant functor from $ to $. Let us call a 
diagram B → C → D in $ exact if, up to an isomorphism of diagrams, it can 
be obtained from a cofibration sequence in $ by passage to $. If B → C → D 
is exact, then [B, A] ← [C, A] ← [D, A] is an exact sequence of abelian groups 
for every A in $. (Exactness in the based set sense follows from 3.3; the abelian 
group structures are due to the fact that $ 
for any n > 0, by 2.4 and 3.3.) An extra careful reading of the proof of 5.3 (exercise) 
shows that the contravariant functor T takes exact diagrams C → D → is to exact 
diagrams T(C) ← T(D) ← T(E). Now fix an exact diagram C → D → E in $ 
and form the ladder 

$ 

where the vertical arrows are the canonical morphisms. Suppose that C and D are 
in $. Applying [?, A] for some A in $ transforms the diagram into a diagram of 
abelian groups with exact rows. Four of the vertical arrows are then isomorphisms 
of abelian groups, and the fifth is an isomorphism by the five lemma. Since this 
holds for arbitrary A in $, the canonical morphism T2(E) → E must be an 
isomorphism in $, so that E is in $. □ 



558 M. Weiss, B. Williams 

5.6. Lemma. Suppose that $ satisfies the axioms of §2. Let $ be a generating class 
for $. For objects B, C in $ and a class $, the following are equivalent: 

(1) [η] is nondegenerate; 
(2) slant product with [η] is a bijection $ for every D in $. 

Proof Assuming (2), let $ be the class of all objects D in $ for which slant product 
with [η] is a bijection $. We must show that mapping cones of 
morphisms between objects in $ belong to $. This is done by a five lemma 
argument, as in the proof of 5.5. □ 

6. The axioms and the $ construction 

Assume throughout this section that $ with the SW product $ satisfies the axioms 
of § 2. We shall prove that $ satisfies the axioms. 

6.1. Theorem. Let C, D be objects in $. The canonical map 

$ 

is a homotopy equivalence. 

Explanation and proof. The quadruples (i,j,p,q) satisfying the stated conditions 
form a sub-poset of [m]4, where [m] = {0,...,m} as usual. The rule taking a 
quadruple (i,j,p, q) to $ is a covariant functor. Note 
that C(m —j, m — i) and D(p, q) are objects of $, and that the conditions on i,j, p, q 
are equivalent to m — j ≤ p and m — i ≤ q. 

Fix D for the moment. We are then dealing with a natural transformation between 
contravariant linear functors in the variable C. Using axiom 2.3 for $, one finds 
that the objects in $ which are iterated degeneracies of objects in $ form a 
generating class $. Therefore by 5.2 it suffices to establish 6.1 in the special case 
when C is in $. Therefore fix $, where A lives in $ and where 
us : [m] → [1] is monotone, onto, with us(s) = 1 and us(s — 1) = 0. The specializ¬ 
ation functor $ has a left adjoint, so that the corre¬ 
sponding specialization map 

$ 

is a homotopy equivalence. All we have to prove now is that the other specialization 
map 
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(●) $ 

is also a homotopy equivalence. Here we still assume $, but now we also 
find it convenient to “unfix” D. In fact domain and codomain of (●) are linear 
functors in the variable D, by 3.8. Because of 5.1, we may assume without loss of 
generality that $ for some B in $ and some t. Summarizing, we may 
assume $ and $, and must show that (●) is a homotopy equivalence. 
This is done as in the proof of 1.3. □ 

6.2. Corollary. For any m ≥ 0 and objects C, D in $, the suspension map from 
[C, D] to [ΣC, ΣD] is a bijection. 

Proof. We have $ and $. The ex¬ 
pressions which 6.1 gives for $ and $ are homotopy equivalent 
(via the suspension) by 3.4. □ 

6.3. Lemma. $ satisfies 2.3. 

Proof Let $ be the class of all objects in $ which can be desuspended infinitely 
often in $. Because of 6.2, all we have to show is that $ contains all objects 
of $. But $ contains the generating class $ from the proof of 6.1, and is 
closed under formation of mapping cones. □ 

6.4. Lemma. $ satisfies 2.2. 

Proof. Suppose that f: C → D is a morphism in $ representing an isomorphism 
in $. Then, for any monotone injective υ : [1] → [m], the morphism υ*f from 
υ*C to υ*D represents an isomorphism in $. Since 2.2 holds for $, 
it follows that each υ*f is a weak equivalence, and this in turn implies that f is a 
weak equivalence in $, by the very definition of $. 

6.5. Lemma. $ satisfies 2.4 and 2.5. 

Proof. Assume m ≥ 2. Let us: [m] → [1] be the usual monotone surjection with 
us(s) = 1, us(s — 1) = 0. By 5.4, to check 2.4 it suffices to check that for B in $ 
and every s with 0 < s ≤ m, the functor $ on $ is co-repre-
sentable. Choose C in $ and η in a nondegenerate component of $. Let 
t = m + 1 — s. From 1.3 we have a forgetful homotopy equivalence $ 
$. Choose $ in the component corresponding to that of 
$. We establish 2.4 for $ by showing that $ is in a nondegenerate 
component. To do this we use the homotopy commutative diagram 
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$ 

where the horizontal arrows are slant products (with $ and η, respectively) and the 
vertical arrows are specialization maps. (In the lower row, make the identifications 
$ and $.) We saw in the proof of 6.1 that the 
left-hand vertical arrow in (●) is a homotopy equivalence. The other vertical arrow 
is a homotopy equivalence when D is an iterated degeneracy of an object in $, 
by 1.3. It is therefore a homotopy equivalence in general, by 5.1. Therefore $ is 
nondegenerate. 

Finally we note that the arguments given for nondegeneracy of $ apply equally 
wel to $. It follows that the canonical morphism $ is an isomor¬ 
phism in $. Now 5.5 shows that 2.5 holds for $. Note that the linearity 
hypothesis needed in 5.5 is satisfied, thanks to 6.1 and 3.8. □ 

6.6. Proposition. For B,C in $, and a class [η] in $, the following 
conditions are equivalent: 

(1) [η] is nondegenerate; 
(2) the image of [η] in $ is nondegenerate, $; 
(3) the image of [η] in $ is nondegenerate, $; 
(4) the image of [η] in $ is nondegenerate $. 

Proof. (1) $ (2) and (1) $ (3): It is enough to prove (1) $ (2). Choose t > 0 and 
choose some D in the image of $. Then D belongs to $, the 
generating class used in the proof of 6.1. We have a homotopy commutative diagram 

$ 

where the vertical arrows are specialization maps, and the horizontal ones are slant 
product with η and the image of η in $, respectively. It is 
enough to show that the two vertical arrows are homotopy equivalences. (For the 
implication (1) $ (2), note that D(m — t, m) is arbitrary; for (2) $ (1), note that 
D is arbitrary in $ and use § 5.) We will in fact show that each of the two vertical 
arrows taken by itself is a homotopy equivalence, without assuming any relationship 
between the objects B and C in $. Using § 5, we may assume without loss of 
generality that B, C are also in $. Then 1.3 takes care of the right-hand vertical 
arrow, and an argument completely analogous to 1.3 (but starting from 6.1 rather 
than the definition of $ on $) takes care of the left-hand vertical arrow. 
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(1) $ (4): Given B, C and nondegenerate [η] as in (1) and integers s, t as in (3) 
with 0 < s < t ≤ m, let w : [2] → [m] be given by w(0) = 0, w(l) = s, w(2) = t. 
Then $ is given by $, $, $. Let μ be the image of 
η in $. Then (2) holds for [μ] because it holds for [η], because (1) 
holds for [η]. Therefore (1) and (3) hold for [μ]. In particular, the image of [μ] 
in π0 of 

$ 

is nondegenerate; but of course it equals the image of [η] there. □ 

6.7. Corollary. Let w: [m] → [n] be monotone. Suppose that $ is 
nondegenerate, where B and C are objects in $. Then the image of [η] in 
$ is nondegenerate. 

Proof. Use the equivalence (1) $ (4) in 6.6. □ 

7. The involution on $ 

7.1. Definitions. Waldhausen’s definition of the K-theory space $ for a Wald¬ 
hausen category $ is 

$. 

Here $ is regarded as a simplicial category. Suppose now 
that $ comes with an SW product $ and satisfies the axioms of § 2. Using the 
notation from the remark following 4.3, we modify Waldhausen’s definition as 
follows: 

$. 

Explanations. By § 6, for each m ≥ 0, the Waldhausen category $ comes with 
an SW product and satisfies the axioms of § 2. Therefore the topological category 
$ is defined; see 4.4. By 6.7, each monotone [m] → [n] determines an operator 
from $ to $, so that $.$ is a simplicial topological category. By 
4.3 and 4.4, the forgetful functors 

$ 

for m ≥ 0 induce homotopy equivalences of the classifying spaces. They commute 
with simplicial operators, and so define a (simplicial, continuous) functor 
$ 
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which induces a homotopy equivalence of the classifying spaces. Applying Ω, we 
obtain a map $ which is a homotopy equivalence. 

Each $ comes with an involution ι, as in 4.4. The involution ι anticommutes 
with the simplicial operators relating the $ for m ≥ 0. That is, for a monotone 
f: [m] → [n], we have 

$ 

(see § 1 after 1.2). Nevertheless, ι determines an involution on $. Here is 
an explanation in abstract terms. First of all, for each m ≥ 0 the order-reversing 
bijection [m] → [n] determines a linear homeomorphism Δm → Δm which we in¬ 
dicate by $ for $. Now suppose that Y and Z are simplicial spaces, and 
$ is a collection of maps which anticommutes with the sim¬ 
plicial operators, i.e., 

$ 

for monotone f : [m] → [n]. Define |g|: |Y | → |Z | by mapping the point with 
coordinates $ and $ to the point with coordinates $ and $. 

The special case we are interested in here is $ and g = ι. 
In this case |g | is an involution, by inspection. 

Remark. One can still see the similarity with [Vo]. However, our construction is 
clearly more general and better adapted to [Wald2]. 

Waldhausen shows in [Wald2, § 1.3] that $ is the zero term of an Ω-spectrum 
whose n-th term is the space 

$. 

The same argument shows that $ is the zero term of an Ω-spectrum with 
involution whose n-th term is the space with involution 

$. 

Here $ is the geometric realization of the n-simplicial space 

$ 

and the (multi)-simplicial operators anticommute with the involution, as before. 
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7.2. Summary. $ is an infinite loop space with involution and the forgetful map 
$ of infinite loop spaces is a homotopy equivalence. 

Suppose now that $ and $ are Waldhausen subcategories of $. What this means 
for $, say, is that $ is a Waldhausen category in its own right, with notions of 
cofibration and weak equivalence restricted from $, and the inclusion functor 
$ is exact. See [Wald2, 1.1, 1.2]. Suppose moreover that $ and $ are full 
subcategories of $, closed under weak equivalence in the following sense: if C → D 
is a weak equivalence in $, and one of C, D is in $ (in $), then the other is in 
$ (in $). Then $ and $ also inherit the cylinder functor from $. Suppose finally 
that whenever C and D are objects in $ such that a nondegenerate class exists in 
$, then C belongs to $ if and only if D belongs to $. Informally, $ 
and $ are dual subcategories of $. 

Let $ be the full topological subcategory consisting 
of the objects (C, D, z) with C in $ and D in $. See 4.4. Let 

$ 

so that $ is an infinite loop subspace of $. By 4.3 and 4.4, the 
forgetful maps 

$ 

induce homotopy equivalences of the classifying spaces. This leads to the following 
generalization of 7.2, which we shall need in §9. 

7.3. Proposition. The forgetful maps $ of infinite 
loop spaces are homotopy equivalences. There is an involutory homeomorphism 

$. 

8. The axioms and parametrization 

The goal is to check that the category $ defined just before 1.5 satisfies the 
axioms of § 2 provided $ does. The overall strategy is similar to the one used in 
§ 6. In particular, we rely on 5.1 and 5.2. Assume throughout this section that $ 
satisfies the axioms of § 2. 

8.1. Proposition (compare 6.1). Let C, D be objects in $. The canonical map 

$ 

(where s and t are faces of X) is a homotopy equivalence. 
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Explanation and proof. The pairs (s, t) with $ form a poset where (s, t) ≤ (s′, t') 
if $ and $. The rule $ is a covariant functor from the 
poset to spaces. 

Let s0 be a face of X. We say that an object C of $ is concentrated on s0 if 
$ for any face s not containing s0, and C(s0) → C(s) is an isomorphism if 
s does contain s0. The objects in $ which are isomorphic to objects con¬ 
centrated on some face of X form a generating class. Therefore, by 5.2, it is enough 
to establish 8.1 in the special case where C is concentrated on s0. 

Note that the specialization functor $ from $ to $ has a left 
adjoint λ which embeds $ in $ as the full subcategory of the objects concen¬ 
trated on s0. It follows that the specialization functor $ 
(where C is concentrated on s0 but D is arbitrary) also has a left adjoint, given on 
objects by 

$ 

where D" is the pushout of λ(D') ← λ(D (s0)) → D and we have identified C with 
λ(C(s0)). Consequently the specialization map 

$ 

is a homotopy equivalence. All we have to prove now is that the other specialization 
map 

$ 

is also a homotopy equivalence. This is true because 

$. 
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8.2. Corollary (compare 6.2). For objects C, D in $, the suspension map from 
[C, D] to [ΣC, ΣD] is a bijection. □ 

8.3. Lemma (compare 6.3). $ satisfies 2.3. 

Proof. Let $ be the class of all objects in $ which can be desuspended 
infinitely often. Because of 8.2, all we have to show is that $ contains all objects 
of $. We note that 

(1) the mapping cone of a morphism in $ with domain and codomain 
in $ belongs to $; 

(2) if ΣC belongs to $, then C belongs to $. 
Finally we note that if C is an object of $ concentrated on a face s of X, 
then C belongs to $. □ 

8.4. Lemma (compare 6.4). $ satisfies 2.2. □ 

For a face $, let $ be the class of all objects B in $ such that B(s) is 
weakly contractible for $. Then $ is a generating class for $, and 
we want to use it to check axioms 2.4 and 2.5 following the method of 5.4 and 5.5. 
Note that $ for B in $ and arbitrary C in $, from 
the definition of $ in $. It is this fact which makes $ such a convenient 
generating class. 

Notation: For a face r of X, we denote by ∂r the union of the proper faces of r, 
a simplicial subcomplex of X of dimension |r| — 1. For C in $, write C(r/∂r) 
for the cofiber C(r)/C(∂r). More generally, if r and s are faces of X with $, write 
C(r/s) for the cofiber C(r)/C(s). 

8.5. Lemma. For C in $ and D in $, the evaluation functor from $ to 
$ induces a homotopy equivalence of the classifying spaces. 

Proof. By 5.2 it suffices to check this when C is concentrated on a face s of X. We 
have seen before (proof of 8.1) that in this case the specialization functor 

$ 

induces a homotopy equivalence of the classifying spaces. It follows that |$| 
is contractible for $, in agreement with what we are trying to prove, since then 
$. In the case r = s we note that $ and obtain the factorization 

$. 

Here the first functor induces a homotopy equivalence of the classifying spaces, 
and so does the second because the projection from D(r) to D(r/∂r) is a weak 
equivalence in $. □ 
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8.6. Proposition. $ satisfies 2.4. 

Proof. Given a face $ and B in $, choose C in $ so that C is concentrated 
on r and such that there exists a nondegenerate class [η] in $. Then 

$. 

Therefore [η] determines $, and it turns out that [$] is again 
nondegenerate. Namely, for arbitrary D in $ we have a commutative square 
of sets 

$ 

in which the horizontal arrows are slant products (with [$] and [η], respectively). 
The vertical arrows are bijections and the lower horizontal arrow is also a bijection 
by 3.7, here applied to $. We have made the identification $ 
$. 

Summarizing, for each B in $ the functor $ on $ is 
co-representable. We complete the proof by applying 5.4. □ 

For C, D in $ and a face r of X, we have the specialization map from $ 
to $. In the proof of the next proposition, we need an enhanced spe¬ 
cialization map of the form 

$. 

This is well defined up to homotopy, as the composition of an obvious map 

$ 

(where r is fixed) with a homotopy inverse of the inclusion 

$ 

where $ if $ and $. Strictly speaking, holimsF(s) is 
canonically homeomorphic to the space of pointed maps $, 
so one needs to choose an identification of r/∂r with $. 

8.7. Proposition. $ satisfies 2.5. 
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Proof. Let B, C and [$] be as in the proof of 8.6. By 5.5 it is sufficient to show 
that the slant product with $ is a bijection 
$ 

for every face $ and every $. The slant product with $ fits into a 

commutative diagram 

$ 

in which the lower horizontal arrow is the slant product with [μ], the image of 
[ $ ] under the specialization map 

$. 

The left-hand vertical arrow in the diagram is a bijection by 8.5. (Here we use the 
restrictive assumption on D.) The right-hand one is a bijection by inspection. So 
now we need to know that slant product with [μ] (lower horizontal arrow) is a 
bijection. 

If s does not contain r, then both C(s) and B(s/∂s) are isomorphic to $ in $, 
so that slant product with [μ] is a bijection for trivial reasons. Assume therefore 
that s contains r. Then $ and B(s/∂s) is isomorphic to Σ |s |—|r |B(r) in 
$. With these identifications we rewrite the lower row in the square as 

$ 

and recognize (exercise) that it is the slant product with $. 
But this is a bijection by 3.7, since $ satisfies 2.5 and $ was 
nondegenerate to begin with. (See the remark after 3.6). □ 

8.8. Proposition. For B, C in $ and $ the following are equivalent: 
(1) [η] is nondegenerate; 
(2) for each face $, the image of [η] under the specialization map 

$ 

is nondegenerate. 

Proof. We apply 5.6, with $ as in 8.5. For D in $ and $ 
as above we have a commutative diagram of slant products (horizontal arrows) 
and specialization maps (vertical arrows) 
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$. 

By 8.5, one of the vertical arrows is a bijection, and we have noted many times 
before that the other is a bijection, too. Therefore the upper horizontal arrow is 
bijective if and only if the lower one is; in other words, (1) is equivalent to (2). □ 

We need the following application of 8.8 in §9. It will help us to verify that certain 
(incomplete) simplicial sets have the Kan extension property. 

8.9. Application. Suppose that X= Δm, that $ is the i-th face (of dimension 
m — 1) for some i, and $ is the union of all proper faces of X except Y. Suppose 
that B and C are in $, and a nondegenerate class in $ exists. Then 
the following are equivalent: 

(1) $ is a weak equivalence; 
(2) $ is a weak equivalence. 

Proof. For a face r of X, of any dimension, define $ as in 8.5 and let $ be the 
class of all objects D in $ for which $ if t does not contain r, and 
$ is a weak equivalence if t contains r. Up to weak equivalence, objects 
in $ are objects concentrated on r. By 8.8, if E1 and E2 are objects of $ and 
a nondegenerate class in $ exists, then E1 is in $ if and only if E2 is in 
$. In other words, $ and $ are “dual” to each other. Now assume that (1) holds. 
Then we can find a morphism B1 → B in $ such that B1 is in $ and 
B1(Y) → B(Y) as well as B1(X) → B(X) are weak equivalences. The mapping 
cone of B1 → B is therefore weakly equivalent to an object in $. In short, 
B is weakly equivalent to an object in 

$. 

Then C is weakly equivalent to an object in 

$ 

and this implies (2). The converse, (2) $ (1), can be proved similarly. □ 

8.10. Corollary/Definitions. Let $ be a simplicial subcomplex. Restriction of 
parameters in an exact functor $, and from the definition of $ 
in $, the restriction functor $ is accompanied by a binatural transformation 

$. 
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By 8.8, this takes nondegenerate components to nondegenerate components. Let 
$ be the inverse image of $ under the exact functor $. Then $ 
inherits from $ the structure of a Waldhausen category with SW product. It 
follows from 8.8 that the dual T(B) in $ of some B in $ belongs 
to $, up to isomorphism, so that $ satisfies axioms 2.4 and 2.5. 
Axiom 2.1 for $ is obvious, and axioms 2.2 and 2.3 for $ can be 
established as in 8.1, 8.2, 8.3. 

For any m ≥ 0 and any face $ not contained in Y, we define an exact functor 
$. Note that ps has a left inverse qs given by 
(qsD)(t) = D for faces $ containing s, and S for faces t not containing 
s. The following lemma will be useful in § 9, in constructing the map Ξ (see intro¬ 
duction). 

8.11. Lemma. The map $ induced by the ps for all faces 
$ not contained in Y is a homotopy equivalence. Equivalently, the map from 
$ induced by the qs for all faces s of X not contained in Y is 
a homotopy equivalence. 

Proof (compare [Lü, § 10]). For C in $ let Ci in $ be defined by 
$, where Zi is the i-skeleton of the subcomplex $. Then each C 
in $ fits into a natural diagram of cofibrations 

$ 

where m is the dimension of X. The additivity theorem of [Wald2] now implies 
that the identity map of $ is homotopic to the sum of the maps induced 
by the exact functors 
$ 

for —1 ≤ i ≤ m. Each Fi factors through $ where 
the product is over all i-simplices $. The conclusion is that the map from 
$ to $ induced by the ps for all faces $ not contained in Y 
has a homotopy left inverse. But clearly it has a homotopy right inverse also, 
namely, the map from $ induced by the functors 
qs. □ 

8.12. Corollary. The diagram $ is a fibration 
sequence up to homotopy. □ 
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9. Symmetric L-theory and the map Ξ 

Suppose throughout this section that $ is a Waldhausen category with SW product, 
satisfying the axioms of §2. We abbreviate $. 

9.1. Definition/Notation. A 0-dimensional symmetric Poincaré object in $ is an 
object C in $, together with a point φ in $ whose image φ0 in $ 
is in a nondegenerate component. The set of 0-dimensional symmetric Poincaré 
objects in $ is denoted by $. 

Further explanations. The superscript $ means: form the space of homotopy 
fixed points of the action of $. Here the action is on $, and the generator 
of $ acts by Τ of 1.1. The homotopy fixed point φ is a $-map from is $ to 
$, and φ0 is the value of φ at the base point of $. 

In the next definition, a Δ-set is a simplicial set without degeneracy operators, i.e., 
a contravariant functor $ from the category Δ (with objects [m] for 
m ≥ 0, and monotone injections as morphisms) to the category of sets. 

9.2. Definition. $ is the realization of the Δ-set $. 

(Note that this depends not only on $, but also very much on $.) One should 
think of a 0-dimensional symmetric Poincaré object in $, for example, as a 
bordism between two 0-dimensional symmetric objects in $. Similarly, 
0-dimensional symmetric Poincare objects in $ are to be thought of as m-para-
meter bordisms, so that $ is the bordism theory of symmetric Poincaré objects 
in $. 

Remark. $ is (the realization of) a fibrant Δ-set, i.e., one having the Kan 
extension property. Proof: Fix m > 0. Let X = Δm and define $ as in 8.9. 
We will sometimes regard X, Y and Z as simplicial complexes, and sometimes as 
Δ-sets. 

Extending a Δ-map $ to a Δ-map $ is the same as lifting a 
0-dimensional Poincaré object (C, φ) in $ to a 0-dimensional Poincaré object 
(D,ψ) in $, so that $. Here $ is the restriction 
functor. (See 8.10.) To construct (D,ψ), we first construct D. Note that D(W) = 
C(W) is prescribed for all subcomplexes $. Let D(X) be the pushout of 

$ 

where cyl denotes mapping cylinders and p is a cylinder projection. It is good to 
think of D(X) as the relative mapping cylinder of id : C(Z) → C(Z), relative to 
$. We define $ as the back inclusion and $ as 
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the front inclusion of the relative cylinder. This completes the construction of D; 
all we really need to know about it is summarized in the two properties 

(1) the cofibration $ is a weak equivalence; 
(2) the cofibration $ is also a weak equivalence. 

These properties ensure that $ has a lift $. It remains 
to show that the class [ψ0] in $ is nondegenerate. Let f: TD → D be a 
morphism in $ representing the adjoint of [ψ0], a morphism in $. By 
8.9, the cofibrations $ and $ are weak equi¬ 
valences. By 8.10, the specialization fw : (TD)(W) → D(W) is a weak equivalence 
for any subcomplex W of Z, in particular for W= Z. Combining this information 
with (1) and (2) above, we see that fw: (TD)(W) → D(W) is a weak equivalence 
for all $ so that f is a weak equivalence in $. □ 

Each 0-dimensional symmetric Poincaré object (C, φ) in $ can be viewed as a point 
in $ projecting to the vertex (C, C, φ0) in $. (The notation comes from 
§4, in particular, the prefix x indicates enlarged models designed so that $ can 
act.) Further, we have the inclusions $ and $. 
Consequently $ and for the same reason $ is contained 
in $, and so we see an inclusion map 

$. 

(The domain of $ is the realization of a Δ-set and the codomain is the realization 
of a Δ-space.) The domain of $ is $ and the codomain will eventually (in 
9.3—9.14) be identified with Ω∞ of the Tate spectrum $ (prefix x suppressed). 
This is the mapping cone of a certain norm map from a homotopy orbit spectrum 
to a homotopy fixed point spectrum, 

$. 

More details about Tate spectra are given later in this section. The identification 
of the codomain of Ξ with $ goes back to [WW2], although not in 
this generality. We will not use results from [WW2]. 

9.3. Lemma. The geometric realization of the Δ-spectrum $ is con-
tractible. 

Proof. By 8.11, the geometric realization in question is homotopy equivalent to the 
geometric realization of 

$ 
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where $ denotes the set of nonempty subsets of {0, . . . ,m}. Here the face 
operator f* induced by a monotone injection f: [m] → [n] is given by (f*(x))(s) = 
x(f(s)) for a nonempty $. 

The geometric realization of any Δ -spectrum [m] → Y[m] has a canonical fil¬ 
tration (by skeletons) which leads to a spectral sequence converging to the homotopy 
groups. Its E1 term including differential is isomorphic to the chain complex of 
graded abelian groups 

∙∙∙ → π*Y[m + 1] → π*Y[m] →∙∙∙ 

where the differentials are alternating sums of homomorphisms induced by face 
operators di. In the case of the Δ -spectrum $, the E1 term is therefore 
isomorphic to the tensor product of the graded abelian group $ with a chain 
complex D of ungraded abelian groups, 
$. 

The differential in D is given by (∂x)(s) = ∑i(— 1) ix(e i(s)) where ei is the monotone 
injection from [m] to [m + 1 ] with $. Now all we have to show is that D 
is acyclic, because then the E2 term of our spectral sequence will vanish. 

Let $ consist of the $ which contain 0, and let $ 
be the complement of $. The splittings $ determine 
a splitting of D as a graded group: $. The differential maps D_ isomor-
phically to D/D_. Therefore D is acyclic. □ 

Call a CW-spectrum V with an action of a discrete group G induced if there exists 
a CW-spectrum U and a G-map $ which is an ordinary homotopy 
equivalence. 

9.4. Lemma. Let Φ be the homotopy fiber of the face map $ 
induced by the functor “restriction to the 0-th vertex”. Then Φ is induced as a spectrum 
with $-action. 

Proof. Remember that $ is short for $, a spectrum with $-
action. The inclusion of $ in Φ is a homotopy equivalence by 8.12. 
(Here we embed Δ0 in Δm as the 0-th vertex.) So it is enough to show that 
$ is induced as a spectrum with $-action. 

Next we reduce to the case m = 1, as follows. Let $ be the 0-th face, opposite 
the 0-th vertex. There is an isomorphism of Waldhausen categories from $ 
to $ where $. The isomorphism takes C in $ to the 
cofibration in $, alias object in $, given by 

$ 
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where s runs through the faces of Z. The inverse isomorphism i from $ 
to $ comes with a binatural inclusion 

$ 

which is a homotopy equivalence, respects the symmetry operators Τ, and takes 
nondegenerate components to nondegenerate components. This is clear from 1.5 
and 8.8. Therefore the inclusion of $ in $ is a homotopy 
equivalence, and respects the actions of $. 

Having reduced to the case m = 1, we finally show that $ is induced 
as a $-spectrum. Let $ be the 0-th face (opposite the 0-th vertex) and let 
$ be the unique face of dimension 1. Let $ be the full subcategory 
consisting of the objects C for which $ is a weak equivalence in $, and 
let $ be the full subcategory consisting of the objects D for which 
D(t) is weakly equivalent to the zero object of $. By 8.8, if C and D are objects 
in $ and a nondegenerate class in $ exists, then C belongs to $ if 
and only if D belongs to $. 

We now use the functors $ and $ defined in 
8.11. Of the functors $ and $, the first induces a homotopy equivalence 
$ by the approximation theorem [Wald2, 1.6] and the second 
induces a nullhomotopic map. Of the functors $ and $, the first induces a 
homotopy equivalence $ by the approximation theorem, and the 
second induces a map $ with the property $, by the ad-
ditivity theorem. (Namely, f+g is homotopic to the map induced by the exact 
functor $ from $ to $; but $ for all C in $.) It follows that g is 
also a homotopy equivalence. We conclude that the composition 

$ 

(first map induced by the inclusions, second map induced by ps and pt,) is a homotopy 
equivalence. Therefore, by 8.11, 

$ 

is a homotopy equivalence. By 7.3, the duality involution on $, as a homotopy 
class of maps, takes the wedge smmand $ to the wedge summand $, and 
takes the wedge summand $ to the wedge summand $. □ 

9.5. Definition. Let $ be the following minor variation on $ objects of 
$ are covariant functors from the poset of nonempty faces of Δm to $, and 
morphisms are natural transformations between such functors. A morphism 
f: C → D is a cofibration if fs: C(s) → D(s) is a cofibration for all faces s, and a 
weak equivalence if fs: C(s) → D(s) is a weak equivalence for all faces s. 
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Our reason for introducing $ is this. In some situations it is annoying that 
the rule $ is not a simplicial spectrum (it is only a Δ -spectrum, 
since the degeneracy operators are missing). Fortunately the inclusions $ 
$ are homotopy equivalences (see 9.7 below), and the rule 
$ is a simplicial spectrum because $ is a simplicial 
Waldhausen category. 

9.6. Lemma. The inclusion $ has the approximation property [Wald2, 
1.6]. 

Proof. The first part, App 1, holds by definition. For the second part, App 2, suppose 
given C in $ and E in $ and a morphism x : C → E in $. We must 
find a factorization 
$ 

of x such that D is in $ and f is a cofibration in $ and g is a weak 
equivalence in $. Suppose that D(s),fs,gs have already been constructed for 
all faces $ of dimension i. Let $ be a face of dimension i + 1. Let D1 (t) 
be the colimit of 

$. 

This may also be described as a colimit of the objects C(t) and C(s), D(s) for 
faces $. It follows that there is a unique map u:D1(t) → E(t) extending 
xt: C(t) → E(t) and the compositions 

$ 

for faces $. Let D(t) be the mapping cylinder of u. The cylinder projection is 
a weak equivalence gt: D(t) → E(t) and the inclusion C(t) → D1(t) → D(t) is a 
cofibration ft: C(t) → D(t). Proceed in the same way for all other faces of dimension 
i + 1. □ 

9.7. Corollary. The inclusion $ is a homotopy equivalence. 

9.8. Corollary. The inclusion $ is an equivalence of categories. 

We introduce an SW product in $ using the formula of 1.5, that is, $ 
$ where the homotopy limit is taken over the faces of Δm. 

9.9. Corollary. $ with the SW product defined just above satisfies the axioms 
of § 2. 
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Apart from a description of $, lemmas 9.3, 9.4 and 9.6 (with corollaries 
9.7—9.9) are all we need in order to identify the codomain of Ξ in $ with 
$. We turn to a description of the Tate functor $. For us, $ 
will be a CW-spectrum with an acton of the discrete group G by cellular automor¬ 
phisms, and $ will be a CW-spectrum. (See the remark after 9.11.) CW-spectra 
and maps between CW-spectra are defined in [Ad, Part III, §2]. 

9.10. Definitions. 
● For CW-spectra $ and $, let $ be the geometric realization of the 

simplicial set whose k-simplices are the maps from $ to $. If $ and $ are 
both equipped with an action of the discrete group G by cellular maps, then we 
have $, the subspace of G-maps. 

● Suppose that $ is a CW-spectrum with an action of the discrete group G by 
cellular maps. Let BG be the standard classifying CW-space for G, with universal 
cover EG. The spaces 

$ 

for n ≥ 0 form a CW-Ω-spectrum which we call $. Note that $ is always an 
Ω-spectrum by definition, even though $ might not be an Ω-spectrum. We also 
define $. 

● Suppose that $ is a CW-spectrum with an action of the discrete group G by 
cellular maps. For each i ≥ 0 there is a cofibration sequence $ 
of pointed G-spaces, where $ denotes the join and EGi is the i-skeleton of EG. This 
leads to a fibration sequence up to homotopy of spectra, 

$. 

The right-hand term in this sequence is the Tate spectrum $. 

9.11. Properties. 
● A map $ of CW-spectra with cellular G-actions which is an ordinary 

homotopy equivalence induces a homotopy equivalence $. 
● The functor $ takes homotopy pushout squares of CW-spectra with 

cellular G-action to homotopy pushout squares of spectra. It takes $ to $. 
● If G is finite and $ is an induced G-spectrum, then $ is contractible. 
● For finite G, there is a chain of homotopy equivalences 

$. 

natural in the variable $. In other words, the homotopy fiber of $ is 
related by a chain of natural homotopy equivalences to $. 
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Proof. The first two properties listed are obvious. For the last two, we assume that 
G is finite and use the following fact: there exist a functor V from CW-spectra $ 
with cellular G-action to CW-spectra and a natural transformation $, 
the norm map, such that 

a) $ is related through a chain of natural homotopy equivalences to $; 
b) $ is a homotopy equivalence if $ is induced as a G-spectrum. 

Such a pair $ is provided by [GM, 5.10], where $ is denoted $ and $ is 
informally identified with $. We use it to set up a commutative square 

$ 

where the horizontal arrows are induced by the projections from $ to $. 
Since $ has a finite G-invariant filtration by CW-subspectra for which the 
filtration quotients are induced, the norm map for $ is a homotopy equiv¬ 
alence by property b) of V and $. Therefore the left-hand vertical arrow in the 
square is a homotopy equivalence. Also, the upper horizontal arrow is a homotopy 
equivalence by property a) of V and $. As a result we can identify the lower 
horizontal arrow with the right-hand vertical arrow (the norm map), at least in the 
homotopy category. The last two properties listed in 9.11 are now restatements of 
properties a) and b). □ 

Remark. An early version of the Tate construction appears in [WW2]. More con¬ 
ceptual versions appear in [AdCoDw] and [GM]. The norm map plays a central 
role in [AdCoDw], but unfortunately property b) which we used in the proof of 
9.11 is not explicitly stated. In the terminology of [GM], the Tate construction is 
a functor from suitable G-spectra to suitable G-spectra, and our Tate spectrum is 
the fixed point spectrum (in the equivariant sense) of theirs. 

In [AdCoDw] and [GM], the group G is a compact Lie group, so that our 
account above is less general in one respect and more general in another respect 
(since we allow infinite discrete groups). Allowing infinite groups in this context is 
an idea going back to Pierre Vogel. However, we only need the case $. 

We return to our business: understanding the codomain of $ in ($). 

9.12. Theorem. The following inclusions of spectra are homotopy equivalences: 

$. 

Proof Abbreviate $. By 9.4, the homotopy fiber of the 0-th vertex 
operator from κ(m) to Κ(0) is induced as a spectrum with $-action. Since the 
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Tate functor $ respects fibration sequences up to homotopy and annihi¬ 
lates induced spectra, the 0-th vertex operator $ is a homotopy 
equivalence for every m. Therefore all face operators in the Δ -spectrum 
$ are homotopy equivalences, so that the inclusion of $ in 
$ a homotopy equivalence. Next we look at the cofibration se¬ 
quence 

$. 

By the last property in 9.11, its last term is homotopy equivalent to the geometric 
realization of $. This simplifies to 

$ 

which is contractible by 9.3. □ 

Obviously what we really want is an infinite loop space version of 9.12, and so 
what we need is a lemma stating that under certain conditions, Ω∞ commutes with 
geometric realization. The following is enough. 

9.13. Lemma [Wald1, Lemma 5.2], [May, Thm. 12.7]. Let $ be a 
diagram of based simplicial CW-spaces. Suppose that 

● gmfm: Xm → Zm is the zero map for each m ≥ 0; 
● Xm → Ym → Zm is a fibration sequence up to homotopy for each m ≥ 0; 
● Zm is connected for each m ≥ 0. 

Then $ is a fibration sequence up to homotopy. 

Remark. Let $ be a simplicial CW-spectrum such that $ is 0-con-
nected for all m ≥ 0. Let $ be a functorial Ω-spectrification of $. Lemma 
9.13 shows that the geometric realization of $ is again a CW-Ω-spec-
trum. In particular: 

$. 

9.14. Theorem/Summary. All arrows in the following diagram of spaces are homotopy 
equivalences: 
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$ 

Proof. Abbreviate $ and $. The last arrow in the 
diagram is a homotopy equivalence since all face operators in the Δ -space 
$ are homotopy equivalences (see proof of 9.12). Using 
9.6—9.9, we can replace the middle arrow by the inclusion of geometric realizations 
of simplicial spaces 

$. 

By 9.13, the diagram 

$ 

is a fibration sequence up to homotopy, and its last term is homotopy equivalent 
to Ω∞ of the realization of $, which is contractible by 
9.12. □ 

Summarizing, 9.14 is our license to write 

$. 

10. Stable SW products 

10.1. Definition (compare 1.1). By a stable SW product on a Waldhausen category 
$ we shall mean a functor 

$ 
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from $ to the category of Ω-spectra (details below) which takes pairs of weak 
equivalences to homotopy equivalences, and which is symmetric and bilinear in the 
following sense. 

● Symmetry means that the functor comes with an isomorphism $ 
$, natural in both variables, whose square is the identity on $. 

● Bilinearity means (in the presence of symmetry) that, for fixed but arbitrary 
D, the functor $ takes any cofiber square in $ to a homotopy pullback 
square of Ω-spectra. Bilinearity also means that $ is contractible. 

In 10.1, an Ω-spectrum is a collection of based spaces Em for $, together with 
based maps εm: Em → ΩEm+ 1, for $. (To be even more precise, Σ means smash 
product on the left with [—1, + l ] / { — 1 , +1} , and Ω is right adjoint to Σ.) A 
morphism from an Ω-spectrum {Em} to another, say { $ } , is a sequence of maps 
$ such that $ for all $. The morphism is a homotopy 
equivalence if each fm is a based homotopy equivalence. 

The m-th term of the Ω-spectrum $ in 10.1 will be denoted by $. 

10.2. Observation. Let $ be a stable SW product on $. Then for each $, the 
functor $ is an (unstable) SW product on $. □ 

10.3. Proposition. Suppose that the SW product $ satisfies the axioms of § 2 for 
m = 0. Then $ satisfies the axioms of § 2 for all $. 

Proof. We have $, showing that 
$ is a co-representable on $ if and only if 
is co-representable. Therefore 2.4 holds for $ if and only if it holds for $. 

Given C in $ and $, write TmC for the object (unique up to unique 
isomorphism) which co-represents $. Then 

$ 

which shows that $. Therefore $ is an equivalence 
of categories if and only if Tm _ 1 is an equivalence. In other words (see remark after 
2.5), axiom 2.5 holds for $ if and only if it holds for $. □ 

10.4. Proposition. Suppose that the Waldhausen category $ has a cylinder functor 
and an SW product $ as in 1.1. There exists another SW product $ on $ and a 
natural transformation $ which is a based homotopy equivalence 
and respects symmetry. Consequently $ is the zero-th term of a stable SW product 
$. on $. 

Proof. Given C and D in $ let X(C, D) be the reduced homotopy colimit of the 
commutative diagram of based spaces 
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(●) 

$ 

where all maps are induced by $, cone(C) → ΣC, $, cone(D) → ΣD. 
Let $ be the reduced homotopy colimit of the smaller diagram 
obtained from the above by deleting the term in the center, $, and all 
arrows touching it. Since Y(C, D) is a reduced homotopy colimit of contractible 
spaces, it is homotopy equivalent to the reduced homotopy colimit of the corre¬ 
sponding diagram with a point at each vertex. Therefore Y(C, D) is contractible 
and the inclusion $ is a homotopy equivalence, so that 

$. 

The symmetry τ of $ leads to an involutory natural isomorphism 

$ 

which involves a diagram flip. We define $. The sym¬ 
metry $ is given by $, where f denotes a based map 
from [—l, + l] /{—l,+l} to X(C,D)/Y(C,D) and υ: [—1,+ 1] → [—1,+1] is 
the reflection at 0. 

Let V(C, D) be the reduced homotopy colimit of the diagram of based spaces 

(●●) 

$ 

and let $ be the reduced homotopy colimit of the subdiagram 
obtained by deleting the term in the middle and all arrows touching it. Then clearly 

$ 

where Ψ is the classifying space of the indexing category (with 9 objects) we are 
using, and ∂Ψ is the classifying space of the subcategory obtained by deleting the 
terminal object. 
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We want to produce a map j : V(C, D)/W(C, D) → X(C, D)/Y(C, D) with good 
symmetry properties. To do so we use the cofibrations $ c , $ 
and the zero maps $, C → ΣC, $, D → ΣD to get a map from diagram 
( $ ) to diagram (●). Passage to reduced homotopy colimits then gives the map j we 
want. By inspection, the following diagram commutes: 

$ 

where φ : Ψ/∂Ψ → Ψ/∂Ψ is the involution induced by the diagram flip mentioned 
earlier. Now Ψ as a space with $-action is homeomorphic to [ — l, + l ]× [—1, + 1], 
with $ acting by reflection υ on the first factor and trivially on the second factor. 
Using this second homeomorphism, we can write j in the form 

$ 

with adjoint $. So we have our natural 
map from $ to $. It is a homotopy equivalence and has all the 
symmetry properties we need. □ 

11. Quadratic L-theory, and Ξ revisited 

Suppose again that $ is a Waldhausen category equipped with an SW product $, 
and that $ and $ satisfy the axioms of § 2. We will use the stabilization $ of 
$ given by 10.4 to improve on §9 in two respects. First, the space $ 
(defined using $) turns out to be an infinite loop space, and the map Ξ from it 
to $ is a map of infinite loop spaces. Second, we can define a quadratic 
L-theory space $, whose realization is again an infinite loop space, and a 
symmetrization map $, which is a map of infinite loop spaces. Usually 
$ has greater geometric significance than $, and one tends to be interested 
in the composition 

$ 

which has enormous geometric significance. 

It will be necessary to handle several SW products at the same time, so we will for 
example write $ to mean $, constructed using the SW product $. 
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Notation, preliminaries. For a based Δ -space X let $ be the Δ -space given by 
$ for n > 0, and $. For i≥0 the (i + l)-th face operator 
$ agrees with the i-th face operator X(n) → X(n — 1), and the 
0-th face operator is zero. Compare [Cu]. Note that every simplex in $ has its 
0-th vertex and 0-th face (opposite the 0-th vertex) at $. There is a continuous 
bijection $ provided geometric realizations are taken in the based sense; 
for example, $. If each X(n) is a based CW-space and the 
face operators X(n) → X(m) are cellular, then $. 

In a similar spirit, we introduce the full subcategory of $ consisting of 
all objects B for which $ if s is the 0-th vertex or the 0-th face. It is isomorphic 
to $, and so we have the inclusion functor $. Explicitly: 
σ takes B in $ to $ defined by 

$ if t is the 0-th vertex 
$ if t is contained in the 0-th face 

$ otherwise 

where $ has vertices x1 — 1, . . . ,xr — 1 if $ has vertices 0, xl,..., xr. 
The functor $ intertwines the SW products on $ on 
$ and $ on $ (see 1.5) in the following way. There is a forgetful 
fibration 

$ 

where t runs through all faces but s only runs through those contained in the 0-th 
face or equal to the 0-th vertex. The codomain of this fibration is contractible since 
it is a homotopy limit of contractible spaces. The fiber over the base point is 
homeomorphic to $ by inspection. The inclusion of the fiber is therefore 
a homotopy equivalence $. We compose 

$ 

to get our intertwining map. (Occasionally we denote it by σ also.) It follows from 
8.8 that the intertwining map takes nondegenerate components to nondegenerate 
components; moreover it is clearly compatible with the symmetries τ of 1.1. 

1 1 . 1 . P r o p o s i t i o n . The spaces $ for $ form an Ω - s p e c t r u m . 

Proof. For the purpose of this proof, think of $ as an (unrealized) Δ-set. 
Map $ to $ by sending the (m + l)-simplex (C,φ) to the 
(m + l)-simplex (σC, σφ). Here (C, φ) is a 0-dimensional symmetric Poincaré object 
in $ with respect to $. By inspection, the induced homomorphism of 
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homotopy groups from $ to $ is an isomorphism for 
m > 0 . □ 

Next, we repeat the exercise with $ instead of $. Here again it 
will be important to declare the SW product, so we write $ instead of just 
$, to indicate that $ acts by an action constructed using the SW product $. 
Our model for $ is the geometric realization of the Δ-space 
$, as explained in 9.14. 

1 1 . 2 . P r o p o s i t i o n . The spaces |$| for $ form an Ω-spec-
trum. 

Proof. Much as in the proof of 11.1, the functors σ induce a map of Δ -spaces from 
$ of $ to $. This gives the spec¬ 
trum structure, but it does not show that the spectrum so obtained is an Ω-spectrum. 
Using 9.14, we reduce to the statement that the spaces 

$ 

for $ form an Ω-spectrum (with structure maps induced by the functors σ as 
before). Since all face operators in the Δ-spectrum $ are 
homotopy equivalences, it becomes irrelevant whether we apply Ω∞ before or after 
realization. So all we have to show is that for fixed $, the map of Δ-spectra 

$ 
induced by the functors σ turns into a homotopy equivalence. For this purpose we 
abbreviate $ and $. We have 
to show that a certain map $ is a homotopy equivalence. Since all face 
operators in $ are homotopy equivalences, the canonical map 

$ 

is a homotopy equivalence. There is an analogous map for $; it has the form 

$ 

and it is also a homotopy equivalence because all face operators in $ are homotopy 
equivalences. Now it only remains to show that the map between homotopy colimits 
of the rows in the commutative diagram 
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$ 

is a homotopy equivalence, or equivalently, that 

$ 

is a fibration sequence up to homotopy. Since the Tate functor respects fibration 
sequences up to homotopy of spectra, it is more than enough to show that the 
K-theory functor turns 

into a fibration sequence (up to homotopy) of spectra. But this is clear from 8.11. □ 

Remark. The proof of 11.2 also shows that the spectrum described in 11.2 is 
homotopy equivalent to $. 

For each $, the constructions of §9 give us a map $ from $ of 11.1 to 
the space $ of 11.2. As i varies, these maps constitute a 
map of spectra which we write in the form 

$. 

We turn to the construction of $, the quadratic L-theory space. It will be 
necessary to expand the Ω-spectrum $ into an Ω-bispectrum $, with 
terms $ so that $. One way to achieve this, naturally in C 
and D, is to define $ for m > 0 inductively as the n-th term in a functorial 
Ω-spectrification of $. 

Given C in $, a convenient model or replacement for $ is the 
union $ hofiber[X → Xi] where X is the space of $-maps $ and 
Xi is the space of $-maps of spectra 

$. 

Both mapping spaces are to be constructed as geometric realizations of simplicial 
sets. Correctness of this model or replacement follows from 9.10 and 9.11; that is, 
it has the right homotopy type. It is convenient because it comes with a forgetful 
map to $. This is of course the norm map, as a map of infinite loop 
spaces. — These conventions are understood in the next definition. 
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11.3. Definition/Notation. A 0-dimensional quadratic Poincaré object in $ is an 
object C in $, together with a vertex ψ in $ whose image under 
the composition 

$ 

is in a nondegenerate component. The set of 0-dimensional quadratic Poincaré 
objects in $ is denoted by $. 

11.4. Definition. $ is the geometric realization of the Δ-set given 
by $. 

Remark. $ is a fibrant Δ-set. 

Implicit in definitions 11.3 and 11.4 is a Δ-map $, given by converting 
all quadratic Poincaré objects in sight into symmetric ones via the norm map. This 
is the symmetrization map, and for the usual reasons it is an infinite loop map. 
For example, a delooping of $ is $. 

12. Naturality 

Let $ be an exact functor between Waldhausen categories equipped with 
SW products $ and $, respectively. Suppose that the axioms of §2 are satisfied 
for both $ and $, and that in addition to F we are given a natural transformation 

$ 

commuting with the symmetry operators Τ (see 1.1) and taking nondegenerate 
components to nondegenerate components. Then the map $ induced 
by F becomes a $-map between spectra with $-action provided the big models 
of $ and $ of §7 are used. Also, there are maps of spectra $, 
$ induced by F and φ, and the diagram 

$ 

commutes. All of this is straightforward, but often the construction of a pair (F, φ) 
is laborious. We shall discuss two examples in 12.A. 
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1.A. Examples 

1.A.1. Example. We already have the example 1.4, where $ is the category of 
bounded chain complexes of finitely generated abelian groups, and $ 
$. 

More generally, suppose that $ is an additive category, and let $ be the category 
of bounded chain complexes in $. A contravariant additive functor $ 
has a canonical extension $. Following [Ra3], a chain duality on $ is a 
contravariant additive functor $ together with a natural transformation 
e from $ to the inclusion $ such that for each object M in $ 

i) $, 
ii) eM : T2 (M) → M is a homotopy equivalence. 

Assume now that $ is equipped with a chain duality (T, e). Given objects C, D in 
$ define $ (a chain complex of abelian groups). Ranicki 
shows that there is a canonical involutory isomorphism $. It 
follows that an SW product on $ can be defined by 

$. 

1.A.2. Example. Let $ be the category of based compact CW-spaces (base points 
are understood to be 0-cells). Morphisms are all cellular maps, the cofibrations are 
those morphisms which up to CW-isomorphism are inclusions of subcomplexes, 
and the weak equivalences are the morphisms which are homotopy equivalences. 
For objects X, Y in $ we let $. 

In more detail: Let $ be the geometric realization of the simplicial 
set whose k-simplices are the based maps 

$ 

where $ is the one-point compactification of $. Let $ be the colimit of 
the based spaces $. The conditions in 1.1 are easily verified. 

1.A.3. Example. Fix a space B. Let $ be the category of retractive relative CW-spaces 
over B, with finitely many cells relative to B. In other words, an object of $ is a 
retractive space 

$ 

(ri = id) where X has the structure of a CW-space relative to B, with finitely many 
cells. A morphism in $, from $ to $, is a map $ rel B which is 
cellular relative to B, and respects the retractions. 

A morphism is a cofibration if, up to isomorphism, it is an inclusion of a relative 
CW-subspace. A morphism is a weak equivalence if it becomes an isomorphism in 
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the relative homotopy category of spaces containing B. These definitions are taken 
from [Wald2]. 

For $ in $ let $. For $ and $ in $ 
let $, where $. The union $ is to 
be topologized in such a way that 

● Z with the obvious topology is an open subspace 
● a set $ containing ∞ is a neighborhood of ∞ if and only if the image 

of its complement under Z → X × Y has closure disjoint from B × B. 

Points in $, other than ∞, are triples (x, w, y) where $ and $ and ω is 
a path [—1,1] → B such that ω(— 1) = r(x) and ω(l) = r(y). We do not claim that 
$ is compactly generated Hausdorff. We do not claim that the base point in 
$ is nondegenerate. Let $, using the conventions of 
1.A.2 to make Ω∞Σ∞ precise. Note that $ is a CW-space. 

Remark. The space $ has a canonical filtration whose q-th stage is the union of 
$ for all i,j with i+j = q. Here Xi is the relative i-skeleton of X, still a 
retractive space over B. Sometimes it is convenient to take this filtration into account 
and to re-define $ as the geometric realization of the simplicial set whose 
k-simplices are filtration preserving based maps 

$ 

where Δk has the skeleton filtration. Again, $ would be defined as the 
colimit of the based spaces $. 

Illustration. Suppose that $ and $. That is, both X and Y are 
spaces obtained from B by adding a disjoint point. Then $ is homotopy 
equivalent to $, where $ is the space of paths in 
B from r(x) to r(y), with the compact-open topology. Note that with our definitions, 
$ is a CW-space even though B and hence $ can 
be pathological. 

We now check that $ in 1.A.3 satisfies the conditions in 1.1. Symmetry is obvious. 
For the w-invariance, suppose that f: X → X' is a weak equivalence in $ and Y 
is another object of $. Then there exists a map g: X' → X which is relative to B 
but perhaps not over B, and homotopies $, also relative to B 
but perhaps not over B. Using g and the homotopies, one shows easily that 

$ 

is a based homotopy equivalence. Therefore $ id from $ to $ is a 
homotopy equivalence. 
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Showing bilinearity is harder. Since we have the w-invariance, it is enough to 
consider a cofiber square in $ of the form 

(*) 
$. 

where cone(U) and cone(g) are defined using the cylinder functor in $. We must 
show that for any Z in $ the resulting square 

(**) 

$ 

is a homotopy pullback square. Now (**) is obtained from 

(***) 
$ 

by applying Ω∞Σ∞, and inspection shows that (***) is a pushout square of based 
spaces, with $ homeomorphic to the reduced cone on $. So it is 
enough to show that the functor Ω∞Σ∞ takes squares of based spaces of the form 

$ 

to homotopy pullback squares. An equivalent but more informal way to say the 
same thing: the stable homotopy groups of the based spaces X, Y and $ cone(X) 
fit into a long exact sequence. This may seem like a familiar statement. But at this 
level of generality it is probably not so familiar, since we are working with reduced 
cones and mapping cones, taken in the category of “all” based spaces (including 
based spaces with degenerate base points). Adams proves it in [Ad, Part III, 3.10]. 

(Here is some guidance. We need III.3.10 of [Ad] with X and Y equal to suspension 
spectra of possibly pathological based spaces, and W equal to the sphere spectrum. 
So we need 3.10 in the case where the domain is a CW-spectrum but the codomains 
are just spectra as in [Ad, Part III, §2]. Since his 3.10 relies on his 3.8, 3.7 and 3.6, 
these must be interpreted in the same way - domains are CW, codomains need 
not be.) 
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For the next examples we introduce control. As a preliminary, let B be a set and 
let U, V be subsets of B × B. Let 

$ such that $ 

$. 

1.A.4. Definitions. A control structure on a set B is a collection $ of subsets of 
B × B with the following properties. 

●$. 
●$. 
●$. 
● the diagonal of B × B is in $. 

A subset W of B is $-bounded if W×W belongs to $. 

Example (bounded control). Suppose that B is equipped with a metric. Let $ consist 
of all subsets $ for which $. This defines a control 
structure. The $-bounded subsets of B are exactly the subsets of finite diameter. 

Example (continuous control). Suppose that B is an open dense subset of a space 
C. Let $ consist of all $ with the following property: for any (Moore-Smith) 
sequence of points (xα, yα) in U such that one of the (Moore-Smith) sequences (xα) 
and (yα) in B converges to a point in C\B, the other converges to the same point 
in C\B. Again, this defines a control structure on B. The $-bounded subsets of 
B are the ones whose closure in B agrees with their closure in C. 

(A Moore-Smith sequence is a map from a directed set; if every point in C has 
a countable neighborhood base, ordinary sequences indexed by $ will do.) 

In these examples, B is a topological space and the control structure is compatible 
with the topology in the following sense: Each $ is contained in some $ 
which is open in B × B. 

Suppose now that B is a space equipped with a control structure $, compatible 
with the topology. Let p: X → B and q : Y → B be spaces over B. A map f: X → Y 
is $-controlled (or just controlled for short) if the set $ belongs 
to $. 

A homotopy of maps from X to Y is controlled if it is controlled as a map from 
X × [0,1] to Y, where X × [0,1] is viewed as a space over B in the most obvious way. 

Example. Let $ be the control structure on B determined as above by an inclusion 
B → C, where B is open dense in C. Let p: X → B and q: Y → B be spaces over 
B. Then a map f : X → Y is $-controlled if and only if the following holds: for 
every $ and every neighborhood V of z in C, there exists another neighbor-
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hood W of z in C such that $ implies $ and $ implies 
$. This is the definition of controlled map used in [ACFP] and [CaPe]. 

1.A.5. Definition. Let $ be a control structure on Bi, for i = 1,2. The product con¬ 
trol structure $ on $ consists of those subsets of $ 
whose images in B1 × B1 and B2 × B2 under the appropriate projections belong to 
$ and $, respectively. 

1.A.6. Preliminaries. Suppose that the space B is equipped with a control structure 
$, compatible with the topology. Let $ be the category of retractive spaces $ 
for which 

● X comes with a structure of finite dimensional CW-space relative to B; 
● for every $-bounded $, the number of cells $ for which 

$ is finite; 
● the sizes of the cells $ are controlled in the sense that $ 

belongs to $, where r : X → B is the retraction. 

The morphisms in $ are the retractive cellular maps. A morphism is a cofibration 
if, up to isomorphism, it is the inclusion of a relative CW-subspace. A morphism 

$ 

is a weak equivalence if there exists a map g : Y → X (relative to B but not necessarily 
over B) and controlled homotopies $, $ relative to B. 

It is not completely obvious that $ satisfies the axioms of a Waldhausen category. 
Axioms Cof 1, Cof 2, Cof 3 and Weg 1 are obviously satisfied, but Weg 2 is not quite 
so easy. However, Weg 2 for $ is a direct consequence of the following controlled 
homotopy extension property (CHEP) which can be established by induction over 
skeletons: 
Let $ be a cofibration in $ (we assume $). Let W be any other retractive 

space over B. Let f : Z → W be a retractive map and let {ht: Y → W|0 ≤ t ≤ 1} 
be a controlled homotopy of maps relative to B, with h0 = f on Y. Then there 
exists a controlled homotopy {Ht: Z → W} of maps relative to B, extending {ht}, 
with H0= f. 

Note that if B is equipped with the trivial control structure, so that $ consists of 
all subsets of B × B, then $ in l.A.6 is identical with $ in l.A.3. In this connection, 
note also: 

● The control structure determined by a metric on a space B is trivial if and only 
if B has finite diameter. 

● Any control structure on a compact space B which is compatible with the 
topology is trivial (exercise). 



Duality in Waldhausen categories 591 

1.A.7. Example. We continue to work in $ of 1.A.6, but we assume also that B 
has a countable base for its topology. For X, Y in $ and open $, $, let 

$ 

where Z is the space of triples (x, ω, y) with $ and $ and ω:[— 1,1] →B 
such that Ω(—1) = r(x), ω(l) = r(y) and $. The union $ 
is to be topologized in such a way that 

● Z with the obvious topology is an open subspace 
● a set $ containing ∞ is a neighborhood of ∞ if and only if the 

image of its complement under Z → X × Y has closure disjoint from B × B, and 
the image of its complement under Z → X → B is $-bounded. 

We do not claim that $ is compactly generated Hausdorff. However, using 
the conventions of 1.A.2 and 1.A.3 to make sense of Ω∞Σ∞, we find that 

$ 
is a CW-space and that $ is an SW product on $. 

Remark. Suppose that $ is $-bounded and $. Then the set of all $ 
for which there exists a $ with $ is also $-bounded. This shows that, 
for a subset $ containing ∞, the complement of W has $-bounded image 
under Z → X → B if and only if it has $-bounded image under Z → Y → B. 
Consequently $. 

Remark. All we care about when we define the neighborhoods of the base point 
∞ in $ is this: what is a based continuous map f from $ to 
$ going to be? Such an f will of course be fully described by its 
restriction to $, an open subset of $. The restriction is a continuous 
map from $, subject to a condition: f—1 (C) is compact when¬ 
ever $ is the complement of an open neighborhood of the base point in 
$. 

Illustration. Suppose that $ and $ where S and T are discrete 
(therefore countable). Then $ is homotopy equivalent to 

$ 

where the hocolim is taken over those $ which are open in B × B, and 
$ is the space of paths ω: [0,1] → B from r(s) to r(t) such that 
$. 
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To show that $ in 1 .A.7 satisfies conditions 1.1, we proceed as in 1 .A.3. In particular, 
the observation that the functor $ from $ to based spaces respects 
mapping cylinders and mapping cones is crucial. 

1.A.8. Variation. To make 1.A.6 and 1.A.7 more user-friendly we introduce a larger 
category $ (with $ as in 1.A.6) whose objects are certain retractive spaces 
$ with good homotopy theoretic properties, but without a relative CW-struc-
ture. More precisely, a retractive space $ is an object of $ if the following holds. 

There exist an object $ in $ and a retractive map f: X → Y which 
is a weak equivalence (read this as in 1 .A.6). 

The notion of weak equivalence (in $) is defined exactly as in l.A.6. A morphism 
in $, from ($) to ( $ ) , is a cofibration if, up to isomorphism, it is the 
inclusion of a closed subspace $, and has the CHEP described in l.A.6. 

With these definitions, $ is a Waldhausen category. We shall now verify that the 
inclusion $ has the approximation property [Wald2, 1.6]. This consists of 
two parts, of which the first stipulates that an arrow in $ be a weak equivalence 
in $ if it is a weak equivalence in $. This is true by construction. For the second 
part, we have to check the following. Given any object X in $ and a morphism 
f:X → Y in $, there exist a cofibration f 1 : X → X' in $ and a weak equivalence 
f2 : X' → Y in $ such that f = f2f1. To construct f1 and f2, we begin with a weak 
equivalence g: Y1 → Y where Y1 is in $. Since g is a weak equivalence, it is then 
easy to construct a controlled map u: X → Y1 (relative to B, but not necessarily 
over B) and a controlled homotopy h (relative to B, but not necessarily over B) 
from f to g u. By induction on the skeletons of X, the map u is controlled homotopic 
(relative to B) to a cellular map; so we may assume without loss of generality that 
u is cellular to begin with. Let X' be the relative mapping cylinder of u. Define 
f2 : X' → Y so that it extends the identity on B, agrees with the homotopy h on 
(X \B ) × [0,1), and with g on Y'. There is a unique retraction X' → B such that f2 

becomes a morphism in $. Let f 1 : X → X' be the front inclusion of the cylinder. 
Clearly f2 is a weak equivalence and f1 is a cofibration. 

Therefore $ induces a homotopy equivalence of the K-theory spectra. 

Suppose that X and Y are objects in $. We define $ literally as in l.A.7. It 
is not difficult to show that if X and Y are in $, and $, $ are weak 
equivalences with $, $ in $, then the induced map 

$ 

is a homotopy equivalence. This in turn implies at once that $ with the SW product 
$ satisfies the conditions of 1.1. 



Duality in Waldhausen categories 593 

1.A.9. Example. We conclude the list of examples with a twisted version of l.A.8. 
Suppose that E → B is a spherical fibration, with fibers homotopy equivalent to 
$, and with a distinguished section which is a fiberwise cofibration [Jm, §22]. 

For X and Y in $ (of 1.A.8), and open $, $, we (re-)define $ 
as $, where Z is the space of all quadruples (x, w,y, e) for which 

● $, $ 
● ω:[ — 1,1] → B is a path such that ω(— 1) = r(x), ω(l) = r(y) 
● e is an element of the fiber of E → B over ω(0). 

The topology on $ is defined in such a way that 
● Z with the obvious topology is an open subspace 
● a set $ containing ∞ is a neighborhood of ∞ if and only if the 

image of its complement under Z → X × Y has closure disjoint from B × B, and 
the image of its complement under Z → X → B is $-bounded. 

Then we let $ and note that $ so defined is an SW 
product on $. It specializes to $ of l.A.8 in the case where γ is the trivial bundle 
$. 

Illustration. Suppose that $ and $ where S and T are discrete. 
Then $ of 1.A.9 is homotopy equivalent to 

$ 

where Er(t) is the fiber of E → B over r(t). Apart from that, notation is as in the 
illustration following l.A.7. 

2.A. Examples 

2.A.1. Example. The axioms of §2 are satisfied for $ and $ from example l.A.l. 
This is obvious. 

All other examples in § l.A fail to satisfy axiom 2.3. However, this can be repaired. 
For simplicity, we concentrate on $ from 1.A.3, the category of retractive spaces 
over B which are CW-spaces relative to B with finitely many cells. To avoid confusion 
later on, we denote the suspension functor $ by ΣB instead of Σ. 

2.A.2. Example. Let $ be the stabilization of $ under suspension. In detail, an 
object of $ is a pair (k, X) with $ and X in $. We think of (k, X) as a formal 
(de)suspension, $, and accordingly define the set of morphisms from (k, X) to 
(l, Y) as 
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$. 

Then $ is a Waldhausen category in its own right, with a cylinder functor. 
(A morphism f: (k, X) → (l, Y) is a cofibration if it can be represented by a 

cofibration $ for some i. It is a weak equivalence if it can be 
represented by a weak equivalence $ for some i. To define the 
cylinder of f: (k, X) → (l, Y) find the minimal i ≥ 0 such that f can be represented 
by some $, and form the cylinder Z of fi in $. Then (i, Z) 
is the cylinder of f in $.) 

2.A.3. Lemma. $ satisfies axioms 2.1, 2.2 and 2.3. 

Proof. 2.1 and 2.3 are obviously satisfied. To prove 2.2 we use [Wei, §3]. Denote 
objects in $ by single letters A, B,C,... for brevity. The hypothesis [Wei, 3.2] 
clearly holds for $. That is, if in a commutative diagram 

$ 

in $ the rows are cofibration sequences, and two of the vertical arrows are weak 
equivalences, then so is the third. (Note that this does not hold in $.) Therefore 
by [Wei, 3.6], a morphism f : C → D in $ is a weak equivalence if and only if it 
becomes invertible in $ and has zero torsion in $. Here $ is K0 

of the full subcategory of $ consisting of the objects which becomes isomorphic 
to the zero object in $. 

We now show that $ is zero. If C is an object in $ which becomes 
isomorphic to $ in $, then $ (the categorical coproduct) is also isomor¬ 
phic to $ in $ and has zero torsion in $. Therefore by [Wei, 3.6] again, 
the unique morphism $ is a weak equivalence in $. But then, from 
the definition of weak equivalence in $, the unique morphism $ in $ is also 
a weak equivalence. So the torsion of C is zero. □ 

Having stabilized $, we must redefine the SW product. 

2.A.4. Definition/Observation. For (k, X) and (l, Y) in $ let 

$ 

(where Ωi+ j(...) is defined as the geometric realization of an appropriate simplicial 
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set). This is natural in (k, X) and (l, Y) and has the properties of an SW product 
on $ listed in 1.1. 

In § 5.A we will show that $ with the SW product $ satisfies axioms 2.4 and 2.5. 
For now let us look at some specific morphism sets in $ and $. Note that 

$ 

for objects X and Y in $ (so that (k, X) and (l, Y) are objects of $. Therefore 
it is quite enough to look at some specific morphism sets in $. 

2.A.5. Calculation. Suppose that $ and $ as in the illustration 
following l.A.3. That is, both X and Y are spaces obtained from B by adding a 
disjoint point. Then 

(*) $ 

where, as usual, $ is the space of paths in B from r(x) to r(y). 
For the proof we introduce the space P of pairs (z, ω) where $ and ω is a 

path from r(x) to r(z). Since $, the space P is the union of closed 
subspaces P0 and P1 where P0 consists of the pairs (z, Ω) with $, and P1 consists 
of the pairs (z,ω) with $. We note that $ is a cofibration, and that 

$ 

is a homeomorphism. Also, P0 → P is a cofibration and P0 is contractible, so 
that P→ P/P0 is a homotopy equivalence. Altogether, $ 
$. Hence we may replace $ by P in (*). In i) 
below we produce a map ξ from $ to πm(P), in ii) we produce a map ζ 
from πm(P) to $, and iii) we show that ζ and ξ, are inverses of one another. 

i) Let $ represent $. Since e is a cofibration 
and a weak equivalence, there exists a homotopy {ht: Z → Z|0 ≤ t ≤ 1} rel im(e) 
such that h0 = idz and im(h1) = im(e). Then 

$ 

is a map from $ to P. Its homotopy class ξ depends only on α, not on 
the chosen representative of α, for the following reason. We lose no generality by 
allowing only special quasi-morphisms $, that is, quasi-morphisms 
for which the resulting map $ is a cofibration in $. (If the map in 
question is not a cofibration, replace Z by the relative mapping cylinder of 
$ and replace f by the front inclusion of the cylinder. By inspection, 
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the homotopy class ξ does not change.) Any two special quasi-morphisms repre¬ 
senting α can be connected by a chain of morphisms (between special quasi-mor¬ 
phisms) of the form 

$ 

where the arrow in the middle of the diagram is a cofibration. This uses another 
mapping cylinder construction, explained in [Wei, §2]. Again, upper row and lower 
row of the diagram give rise to the same class in πm(P). This completes the verifi¬ 
cation, so that we may write ξ = ξ (α). 

ii) We start with a based map $ such that the composite map 
$ is cellular. Let Z be the reduced mapping cylinder of that com¬ 
position. Make Z into a retractive space over B as follows. On $, use the 
given retraction. Points of Z not in $ can be written in the form (a, t) with 
$ and $, and we map those to $. Here g2(a) is a path in B, 
the second component of $. Note that the front inclusion of the cylinder 
extends automatically to a map $ of retractive spaces over B. Therefore 
front inclusion and back inclusion of the cylinder define a quasi-morphism 
$ and an element ζ(g) in [$]. It is not hard to see that 
it only depends on the homotopy class of g. 

iii) By construction, ξζ is the identity on πm(P). Suppose that we start with some 
quasi-morphism $ as in i), representing a class α, then construct 
from it a map $ representing ξ(α), and then construct from that map as in 
ii) a quasi-morphism $ representing ξζ(α). Then clearly there 
exists a morphism in $, given by the vertical arrows in 

$. 

Therefore ξζ(α) = α and ξζ is the identity. □ 

Remark. The reader may find our use of arbitrary (compactly generated Hausdorff) 
spaces in the calculation 2.A.5 scary. Here is a way to avoid pathological spaces. 
We note that the two sides of (*) are invariant under weak homotopy equivalences 
in the following sense. Given a weak homotopy equivalence υ: B → C, and X, Y 
as in (*), the maps 

$ 
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$ 

are bijections. It follows immediately that (*) in the special case where B is a 
CW-space implies the general case of (*). 

2.A.6. Example. The construction of $ from $ and the SW product on $ from 
that on $ go through without essential changes if we assume that B comes with a 
control structure and define $ as in 1.A.6., and $ on $ as in l.A.7. Even more 
generally, $ of 1.A.6 and $ of l.A.7 could be replaced by the larger $ of 1.A.8 
with $ as in 1.A.8; so $ would be defined as the stabilization of 
$ 

Still more generally, we can start with the SW product of 1 .A.9, and use it to make 
an SW product on $, as in 2.A.4. 

Note in passing that the inclusions $ and $ are equiva¬ 
lences of categories. 

2.A.7. Calculation. Suppose that $ and $ as in the illustration 
following l.A.7. Then, in the notation used there, 

$. 

The proof resembles that of (*) in 2.A.4. Later we will want to know that the direct 
sum $ can be replaced by a product ∏t, so that we can also write 

$. 

Namely, for each $ and $, there exist only finitely many $ for which 
$ is nonempty. Proof: Fix $ and $ and let $ consist of 
all points $ such that $ is nonempty. Then certainly $ and 
therefore {b} × Ws and Ws × {b} belong to $. But 

Ws×Ws = (Ws×{b})({b}×Ws), 

so Ws × Ws belongs to $, which means that Ws is $-bounded. Since the second 
condition in 1.A.6 must hold for $, the set of all $ for which $ 
is finite. □ 
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5.A. Examples 

5.A.1. Example. Let $ be the category of 2.A.2, the stabilization of $ in l.A.3. 
Equip this with the SW product $ of 2.A.4. Let $ be the class of all objects which 
are isomorphic in $ to an object of the form (n, X) with $ and $ 
as in the illustration following l.A.3. Then $ is a generating class. We shall use 
this fact to establish axioms 2.4 and 2.5 for $. 

Suppose that $ and $ are retractive spaces over B. Then 
(m, X) and (n, Y) belong to $, and from l.A.3 and illustration and 2.A.4 we have 

$. 

In particular, the constant path from r(x) to r(x) is an element ηm in 

$. 

The component of ηm is nondegenerate. To prove this it suffices by 5.6 to show that 
slant product with [ηm] is a bijection from [(— m, X), (n, Y)] to π0 of $ 
for arbitrary n and $ as above. Now 2.A.5 and the observations preceding 
it give 

$ 

showing that [(— m, X), (n, Y)] and π0 of $ are in “abstract” bijection. 
An easy inspection shows that the slant product with [ηm] is exactly this bijection. 
Now 5.6 applies, so [ηm] is indeed nondegenerate. 

We see that the conditions of 5.4 are met and conclude that $ satisfies axiom 2.4. 
Further, the symmetry involution τ takes the component of $ 
to the component of $, which is also nondegenerate. There¬ 
fore the conditions of 5.5 are met, and $ satisfies 2.5. □ 

5.A.2. Example. Similar reasoning shows that $ and $ of 2.A.6 with the SW 
product $ defined there satisfy axioms 2.4 and 2.5. The appropriate generating 
class $ consists of all objects isomorphic in $ or $ to one of type (m, X) 
where $ for discrete S. One finds, using 5.6, that $ has 
a nondegenerate component which remains nondegenerate when τ is applied. Then 
5.4 can be used, and finally 5.5. □ 

5.A.3. Example. Continuing in the notation of 5.A.2, suppose that $ and/or $ 
are equipped with the SW product $ of l.A.9. Here γ is a spherical fibration on 
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B, with distinguished section, and with fibers homotopy equivalent to $, say. For 
$ as in 5.A.2, one finds (as in 1.A.9, illustration) that 

$. 

The right-hand side contains an element ηm whose (s, t)-coordinate is zero for $, 
and equal to the constant path from r(s) to r(s) if s = t. (Some open U containing 
the diagonal must be selected for this to make sense, but the component of ηm does 
not depend on the choice of U.) Think of [ηm] as a component of 
$. It is nondegenerate (use 5.6) and maps under τ to the com¬ 
ponent [η n - m ] of $, which is also nondegenerate. Now 5.4 and 
5.5 can be used as before, and the conclusion is that $ and $ with the SW 
product $ satisfy axioms 2.4 and 2.5. □ 

12.A. Examples 

12.A.1. Example (change of control space). Suppose that B, B' are spaces equipped 
with control structures $, $ respectively. Assume that $ and $ are compatible 
with the topologies of B and B', respectively. Let f: B → B' be a (continuous) map 
with the properties 

(1) $; 
(2) $. 

Then the pushout with f (see remark below) is an exact functor $, where 
$ and $ are the Waldhausen categories made from $ and $ as in 
2.A.6. One finds that literally 

$ 

for objects C, D in $, provided the SW products $ on $ and $ on $ are 
constructed as in 2.A.6. Call the inclusion ø. It commutes with the symmetry 
operators. 

It remains to show that ø takes nondegenerate components to nondegenerate 
components. We can think of this as a statement about $ and 
$, a natural transformation between functors 
on $. It is equivalent to the statement that a certain natural transformation 

ν : T'F → FT 

defined just below is a natural isomorphism; here T from $ to $ and T' 
from $ to $ are the duality functors. The natural transformation evalu¬ 
ated on C in $ is the morphism T'F(C) → FT(C) which is the image of 
$ under 
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$ 

Now a five lemma argument shows that v will always be an isomorphism if it is an 
isomorphism for C of the form (0, X), where $ and S is discrete. (Objects 
of this type, and isomorphic objects in $, and their iterated suspensions and 
desuspensions, form a generating class in the sense of § 5.) In the case C = (0, X) 
and $ we know from 5.A.2 that TC is isomorphic to C and T'F(C) is 
isomorphic to F(C). In short, we can proceed by inspection. □ 

Remark. In working with several categories of retractive spaces it is a good idea 
to let the underlying sets of the base spaces (here B, B') be subsets of a large set 
V1, and to allow only retractive spaces X (here: over B or B') for which the underlying 
set of X? is contained in some other large set V2 disjoint from Vl. Then the pushout 
of a retractive space $ along f, for example, can be defined set-theoretically 
as $. 

12.A.2. Example (linearization). Let $ be the Waldhausen category of l.A.3. For 
objects X and Y in $ we define $ as in the remark following 
l.A.3. 

Let B~ → B be a normal covering with translation group π. Denote by $ the 
category of bounded chain complexes of finitely generated free left $ π-modules. 
The standard SW product in $ is $ (compare 1.4 and l.A.l), 
where Ct is C with a right action of $. The right action and the left action are 
related via the involution $. 

We will use B~ → B to create a pair consisting of an exact functor F and a natural 
transformation ø, 

$, 

$. 

The functor F takes $ to the reduced cellular chain complex of X~/B~, 
where X~ → X is the covering pulled back from B~ → B using r : X → B. Any 
m-simplex z in $ determines a filtration-preserving stable composite map 

$ 

which in turn determines a chain map $ from the cellular chain complex of Δm to 
the tensor product $. The geometric realization of $ is a natural 
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map $. (Compare 1.4 and l.A.l.) It 
respects the symmetries Τ. 

An obvious deficiency of the pair (F, ø) just constructed is that the domain $ of 
F is a Waldhausen category which in general fails to satisfy the axioms of § 2. 
However, we have the stabilization $ from 2.A.2 and 2.A.3. We can extend F to 
an exact functor $ by the recipe 

$. 

Similarly ø extends to a natural transformation of functors on $. Proceed as in 
12.A.I to verify that ø takes nondegenerate components to nondegenerate compo¬ 
nents. □ 
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