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Introduction 

Alexander proved that any oriented link diagram can be transformed into a 
closed braid by an ambient isotopy ([1, 2]). But we note that his transfor- 
mation does not keep invariant the number of Seifert circles and the writhe 
between the original diagram and the obtained closed braid. 

In this paper we will give an alternative method which keeps invariant the 
number of Seifert circles and the writhe (Theorem 1). 

The existence of such a transformation gives that s(L)>b(L) for any orient- 
ed link L (Theorem 2), where s(L) denotes the minimal number of Seifert 
circles of all diagrams for L and b(L) denotes the braid index of L. 

It is obvious that s(L)< b(L), therefore we have the following theorem. 

Theorem 3. For any oriented link L, s(L)= b(L). 

Two estimates for the degree of a variable of the two variable Jones 
polynomial are given in [-3], [5] and [6]. We will show that they are essen- 
tially equivalent to each other. 

1. Notations and definitions 

Let D be an oriented link diagram. We define the writhe wr(D) of D by wr(D) 
=~s ign (c )  where c ranges all of the crossings of D and sign(c) is defined as in 

r 

Fig. 1. Let s(D) be the number of Seifert circles of D, where Seifert circles of D 
are the circles obtained by smoothing all the crossings of D as in Fig. 2. 

For a braid b, let g be the closed braid diagram got by closing b, i.e. tying 
the top ends to the bot tom ends of b as in Fig. 3, e(b) be the exponent sum of 
b, and n(b) be the number of strings of b. 

Let C and C' be oriented circles on the 2-sphere S 2, we say that C and C' 
are coherent (anti-coherent resp.) iff [C]  = [C ' ]  ( -  [C ' ]  resp.) ~ Hi(A), where A 
is the annulus bounded by C and C' on S 2. Let C 1 . . . .  , C, be mutually disjoint 
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oriented circles o n  S 2, and suppose that each circle has a positive integer 
weight and let w(Ci) denote the weight of C i. Let a 1 . . . . .  a, be mutually disjoint 
oriented simple arcs on S 2 such that for all a~, if xE(Cic~aj)uc~a ~ then a 
neighbourhood of x is diffeomorphic to one of the situations in Fig. 4. 

Then we say that {C a . . . . .  C,; a l , . . . , a , }  is a system of weighted Seifert 
circles. See an example of a system in Fig. 5. 

Let 5 e denote the set of all systems of weighted Seifert circles. 
Let S = { C ~ , . . . , C , ;  a 1 . . . .  ,at} be an element of ~ Then we will give a 

method of producing a number of link diagrams from S. 
First we replace every C~ with an arbitrary w(Ci)-string closed braid. 

Secondly we replace every a t with an arbitrary [w(Cil )+ ... +w(C~,,)]-string 
braid so that, it wedges into each w(CJ-s t r ing braid C~, where C~1, .... C~m are 
the circles of S which intersect aj. So, we obtain a number of link diagrams 
from S. 

If a link diagram D is obtained from S by using the method as the above, 
then we say that D is derived from S. There is an example of a diagram in 
Fig. 6 which is derived from the system in Fig. 5. 

Let ~(S) denote the set of link diagrams which are derived from S. For 
each integer t, let ~(S, t )= { O ~ ( S ) l w r ( O ) = t } .  Let &w(S,t) (Sf(S) resp.) denote 
the set of all oriented link types which are presented by a diagram in @(S,t) 
(~(S) resp.). 

It is shown easily that for any oriented link diagram D, there exists a 
system S~5 e such that D ~ ( S ) .  We can choose S = { C  1 . . . . .  C,; a 1 . . . . .  at} for 
such a system, where C 1,. . . ,  C, are the Seifert circles of D and a l , . . . , a  r are 
placed at each crossing of the diagram and w(C~)= 1 for all C~. 

Let S = { C ~  . . . . .  C,; a~ . . . . .  a r } e ~  We define the total weight w(S) of S by 
w(S)=W(Cl)+ . . .  +w(C.). 

For  each positive integer p, let @ = { S s 5 ~ [ w ( S ) = p } ,  and let Tp={C; }~@ 
where w(C)=p.  Clearly ~(Tp) is the set of all p-string closed braid diagrams. 
We call rip the trivial system of total weight p. 
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Fig. 6 

2. Bunching operations 

We define two operations, the bunching operations of type I and type I1, by 
the following. 

Let S={C 1 ..... C,; al .... ,at} be an element of 
If there are two coherent circles C i and C i such that Int(A)c~ {C 1 u ... u C,} 

=~b, where A is the annulus bounded by C i and Cj on S 2, then we define a 
new system S' as follows. 

Let C be an abstract circle and f :  A-~ C be a continuous map such that 
fIc, and flcj are homeomorphisms,  if Anak•O then f (A~ak)={one point} 
and if Cina,4:O, Cjnat+O and ak,#a I then f(Cinak),t=f(Cinaz). Then the 
quotient space (SZu C)/ f (x)~x  is a 2-sphere, let S' =(S u C)/ f (x)~x  with w(C) 
=w(C~)+w(Cj). 

We say that S' is derived from S by applying the bunching operation of 
type I to C~ and C~. See Fig. 7. 

If there are two anti-coherent circles Ci and Cj of S and a band b on S 2 
such that b n S = ~ b n ( C i u  Cj)=diud j and bn{a 1 u ... uar} =~, where d i and dj 
are subarcs of C~ and Cj respectively, then let S ' =  {C~, ..., Cg . . . . .  (~i . . . . .  C,, C; 
a~ ....  ,at}. Here ~i, Cj means the deleting of these circles, C=(C~uCjwc~b)- 
Int(d iudj),  and the orientation of C is determined from those of C~ and Cj 
naturally with w( C) = w( Ci) + o~( Cj). 

We say that S' is derived from S by applying the bunching operation of 
type II to C i and Ci. See Fig. 8. 
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3. Lemma and Theorem 1 

Lemma.  Le t  S and S' be e lements  o f  ~ I f  S' is derived f r o m  S by the bunching 
operation o f  type  I or type I I  then w(S)=w(S ' )  and ~ c # ( S , t ) c ~ ( S ' , t )  f o r  any  
integer t. 

P r o o f  I t  is obvious  that  w ( S ) = w ( S ' )  by the definition of the bunching oper-  
ations. We will show the latter claim. 

In the case of type I, we can show easily that  ~ ( S , t ) c @ ( S ' , t ) .  Therefore  
~e(s,  t) = ~ ( s ' ,  t). 

In the case of type II, let C i and Cj be the circles of S to which the 
bunching opera t ion  of type II is applied. Let  b, di, d i be as in the above 
description. Let  N k be a regular ne ighbourhood  of C k such that  
N k C ~ { C a w . . . w C , } = C  k for k = i , j .  Let C + be the componen t  of ~?N i which 
intersects b. Let  C i be the componen t  of 0Nj which does not intersect b. Let 
b 1 be a thin band  which joins C i and C}-. Let  b z be a thick band  which joins 
C + and  C j, as in Fig. 9. Let  

C'~= { C~u  C}- wOb~ - I n t  {(Ci ~ C ; ) c ~ O b l } ,  

C) = { Cj  w C + u Ob2} - Int  {(Cj u C +) c~ 0b2}, 

d' i = C i c~ b l ,  d~ = Cj c~ b2, e i = C '  i - C i and ej = C) - Cj. 
Let  S " = { C  1 . . . . .  C i . . . . .  Cj  . . . . .  Cn, C'i, C); a 1 . . . . .  at} , where the or ientat ions 

of C' i and C~ are defined f rom the those of C i and Cj natural ly with w(C'i) 
= w ( C i )  and w( C) )=  w( Cj). See Fig. 10. 

Fo r  any element D of ~(S,  t), we can deform D to a element D' of ~(S" ,  t) 
under  a regular isotopy as in Fig. 11. We call this deformat ion  the bunching 
deformation.  

Figure 11 is unders tood  as the following. 
We can assume that  d' i and d) are replaced by trivial braids when we 

produce  D from S. Let  z i and zj denote  those trivial braids. First we stretch out 
z~ to z) and set it on ej. Secondly we stretch out z~ to z'z and set it on e~. Let  e 
be e i (ej resp.) and z be z i ( ~  resp.). If  an arc a of S intersects e then the braid  fl 
placed at a is changed by the following m a p  (p, 

~ b  2 (~" 
Fig. 9 
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~0: Bp+q--'+ Bp+q+r,  

(Tkb'-*'O" k if  i N k < p - l ,  
p+r 

6,~---~p-~pp where  p =  1~ at 
l=p+ 1 

akl'"~ak+ r if p+ l<k<p+q-1,  (Fig. 13), 

where a k is the generator of the braid group which exchanges the k-th string 
and (k + 1)-th string by a right hand twist (Fig. 12), 

P= Z w( C), q= Z w( C), 
Cc~a'*O Cc~a"*O 

C~S C~S 
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where a' (a" resp.) is the component  of a - e  which contains the starting point 
(terminal point resp.) of the oriented arc a; and r=n(v).  

S' is derived from S" by the bunching operation of type I, therefore 
D'e~(S' ,  t). 

We shall note that q~ keeps invariant the exponent sum of the braids. 
Therefore wr(D) = wr(D'). 

This completes the proof  of the lemma. [] 

We note that the bunching operations decrease the number of circles of a 
system. 

The next Theorem asserts that any oriented link diagram can be deformed 
to a closed braid by the bunching deformations. 

Theorem 1. I f  S is a non trivial system then there is a pair of  circles of S to 
which the bunching operation of  type I or type II  can be applied. 

Proof Let S = { C  1 . . . . .  C,; aa,... ,ar}. We cut the S 2 along C 1 . . . . .  C,, then 
there is a piece P which is not a disk because S is not trivial. 

In the case that P is an annulus, let C i • Cj = OP. If Ci and Cj are coherent 
then the bunching operation of type I can be applied to them. If C~ and Cj are 
anti-coherent then the bunching operation of type II can be applied to them. 
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In the case thet P is not  an annulus, we cut P along a l , . . . , a  r, We can 
assume that every piece is a disk, because if there is a piece which is not a disk 
then we can add oriented arcs to S to cut the piece into disks. Then there is a 
piece Q such that  ~(~Qc~(ClW. . . uC , ) )>4  because P is neither an annulus 
nor  a disk. We note that #(~,Q r 1 w.. .  w C,)) will always be even because of 
the orientation of arcs. 

Let O Q ~ ( C i w . . . w C , ) = E ~ u . . . u E m ,  where E~, . . . ,E  m are on 0Q in this 
order, m > 4 ,  and m is even. Let E j c C i .  Then Cij and Cij§ are coherent 
(1 < j < m - 1 )  therefore Ci~ and Cij+, - are anti-coherent ( l < j < m - 2 ) .  We claim 
that C~,+ C~ or Ci~4 = C~. Assume that C~,= Cz~ and Ci = C ~ .  Let D~ be the 
disk bounded  by Cij which does not  contain Q ( j = l , 2 ) .  Then Q w D t w D  z 
contains a surface of  genus 1, a contradiction. 

Hence the bunching operat ion of  type II can be applied to one of the pairs 
(Ci,, Ci~ ) and (Ci~, Ci4 ). 

This completes the proof  of  Theorem 1. [ ]  

4. Applications 

By the lemma and Theorem 1, we get the following Theorem. 

Theorem 2. For any Sc@ and integer t, ~ZP(S, t) ~ ~(Tp, t). 

This Theorem means that  b(L)<s(L) for any oriented link L. Then we get 
Theorem 3 in the introduction. 

Let d(L) (if(L) resp.) be the lowest (highest resp.) degree of PL(I, m) about  the 
variable l, where PL(l,m) is the two variable Jones polynomial  of  L ([4]). It is 
shown in [3, 5] and [6] that  for any oriented link L, the following inequalities 
hold. 

re(L) < d_(g) < d(L) < M(L), (1) 

m'( L) < d_(L) < d(L) < M'(L), (2) 

where m, M, m' and M '  are defined by the following. 

m(L)=max{wr (D) - ( s (D) -  1)ID is a diagram for L}, 

M(L)=min{wr(D)+(s(D)-1)ID is a diagram for L}, 

m'(L) = max { e ( b ) - ( n ( b ) -  1)16 is a closed braid for L}, 

M'(L) = rain {e(b)+ (n(b)- 1)16 is a closed braid for L}. 

The next Corol lary means that the two inequalities (1) and (2) are essen- 
tially equivalent to each other. 

Corollary. For any oriented link L, m(L)=m'(L) and M(L)=M'(L).  

Proof. It is obvious that m'(L)<=m(L) and M(L)<=M'(L) because wr(6)=e(b) 
and s (6)=  n(b) for any braid b. 

To show the reverse inequalities of the above, we assume that  D 1 and D 2 
are diagrams for L such that m(L)=wr(D1) - ( s (D1) - I  ) and M(L)=wr(D2) 
+ ( s ( D 2 ) - i  ). By Theorem 2 we can transform D 1 and D z to a closed braid 61 



356 S. Yamada 

and ~2 r e spec t i ve ly  s u c h  t h a t  wr(Ol)=wr(~l), s(D1)=s(60, wr(Dz)=Wr(~2) a n d  

s(Dz)=s(62). T h e n  we get t h a t  m'(L)>m(L) a n d  M(L)>M'(L). [] 

Acknowledgement. I wish to thank Professor H. Murakami, Professor Y. Nakanishi and Professor 
T. Kobayashi for their suggestions for this problem and helpful advices. I wish also to thank 
Professor M. Ochiai for his constant encouragement. 

References 

1. Alexander, J.W.: A lemma on system of knotted curves. Proc. Natl. Acad. Sci. USA 9, 93-95 
(1923) 

2. Birman, J.S.: Braids, links, and mapping class groups. Ann. Math. Stud., vol. 82. Princeton, NJ: 
Princeton Univ. Press (1974) 

3. Franks, J., Williams, R.F.: Braids and the Jones-Conway polynomial. Preprint 1985 
4. Freyd, P., Yetter, D.; Hoste, J.; Lickorish, W.B.R., Millett, K.; Ocneanu, A.: A new polynomial 

invariant of knots and links. Bull. Am. Math. Soc. 12, 239-246 (1985) 
5. Morton, H.R.: Seifert circles and knot polynomials. Math. Proc. Camb. Philos. Soc. 99, 107-109 

(1986) 
6. Morton, H.R.: Closed braid representations for a link, and its 2-variable polynomial. Preprint 

Liverpool 1985 

Oblatum 10-VII-1986 


