Mathematics

Network Induction and Resolution Diagrams of
the Brieskorn Singularities

By Akio YAMADA

Department of Mathematics, The College of Arts and Sciences,
The University of Tokyo, Komaha, Meguro-ku, Tokyo 153

and Yukio MATSUMOTO

Department of Mathematics, Faculty of Science, The University of Tokyo,
Hongo, Bunkyo-ku, Tokyo 113

(Received January 31, 1983)

§1. Introduction

In our previous paper [5], we characterized those weighted graphs of type
Il that appear as resolution diagrams of the Brieskorn singularities of type (2,
¢,7), and gave an outline of the proof. The purpose of the present paper is to
fully formulate the “network induction” to which we referred there and to
give detailed proofs of the theorems in [5] as an application of the network
induction.

Roughly speaking, the network induction is a generalization of the usual
mathematical induction, but it proceeds along a network, i.e., a directed graph,
in which any two vertices may have infinitely many edges connecting them.
We shall formulate it more precisely in §2.

In this section, we will recall the main results of [5] for reader’s convenience.

Let V(2,q,7) be a complex hypersurface in C* defined by the equation z2+
21+27=0, where 2, ¢, v are pairwise coprime integers with 2<g<r. The
hypersurface V(2,q,7) has an isolated singular point at the origin called the
Brieskorn singularity of type (2,q,7).

As is well known [1], the (minimal) resolution diagram of V{(2,q,7) is a
weighted graph of the following shape:

—~2

~b, —b, —b;
1.1) -b ————e——e (b, €1=2)

——————s
—C1 —Ca —Cu
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The positive integers (weights) b, by, ¢; are computed as follows:
Let &, v, z be positive integers defined by

2yr=~1 (modgq), 2zg=-1 (modv)
(1.2) 0<y<g , 0<zgr
2bgqr =qr+2yr+2zq+1 .

Then gly=[bi; by, -+, b] and r/z=[ey, €3, -+ -, cul, Where [n, 1o, - - -, #,] denotes
the continued fraction

v

The number b defined above is equal to 1 or 2.

We are interested in weighted graphs of type II, that is, graphs whose
weights are even integers.

In weighted graphs of type II, the number » must be equal to 2. Thus
the weighted (planar) graphs of type II such as (1.1) are in one to one correspond-
ence to the arrays of positive even integers X:[?i’?z’ o "3‘1. We denote the

yGoy "ty Ly
weighted graph corresponding to X hy D(X).

Let S be the totality of arrays of integers. S has a structure of semi-group.

Product in S is defined by juxtaposition:

[m;, RN m,,_[ I'm{, e, mf:]_{m;, S, Wy M e, m’]
My vy Wy L Lnl, e, Ry v, My B, e, omn L

The identity element in S is the empty array [Zﬂ

To state our results we need to define three special types of elements in S
called “joints,” “molecules” and “ head and tail,” respectively.

A) Joints. There are four elements Z,Z,T,TeS called joints:

> 22 6 e 722, 4,22 e
z=|2 28] z=am. TRRYRE| =D,

where ¢: S—S is the involution defined by

((X):[nl’ h ﬂ,,:l for X'z[ﬁzh T Wl”] .

MMy vty Wiy Ry oy W
We call (X) the inverse of X.
B) Molecules. Let &.e,pn, pu€S be defined as follows:
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o=| 2 5 . [(Br—1)x2] _
e= ) = == =4, i
[fﬁjl ¢ l(é) » Dn [ O +2 J ) Z)n (pn>

where n=1, and the notation m#2 stands for the sequence 2, 2, -- -, 2 consisting
of m 2's. A molecule M is a product (in S) of these auxiliary elements
(* particles ™) & ¢, pn, pa of the following form:

_{éﬁﬂm DrrPuesys - preoe or its inverse (y: evenz0) ,
EDuciy PucesPucny -~ Pren@ Or its inverse (p: oddz=1) .

For a more precise construction rule and examples, see [5].
C) Head and tail. The head HeS is defined by H::[%], the same element as
the simplest molecule de=¢é. The teil LeS is defined by L=[2f52].

Our main results in [5] are as follows:

TweoreM 1.1. Let XeS. Then D(X) is a weighted graph of type II which
appears as the resolution diagram of a Brieskorn singularity (2,q,7) (g<7) if and
only if X is written as the following product in S:

(13) X=[{1W1]|M2]2 . 'ﬂ4p,,1j ,1]‘4’,L (Uél) i
where H is the head, L is the tail, each M; is a molecule and each [; is a joint.
Remark. The above decomposition of X is unique. ‘

TueoREM 1.2. Suppose that D(HM, ], - -J,.M,L) and D(H- (M, ], - - J,_.M,)L)
are vesolution diagrams of the singularities (2,q,v) and (2,q',v"), respectively.
Then (q,7) and (¢', ") ave velated by

q =—4g+3r
r'=—bg+4r .
The “if ” part of Theorem 1.1 and Theorem 1.2 are proved by the network
induction arguments (§§3,5). We remark that also in the proof of the “only
if 7 part of Theorem 1.1 (§4) the network induction applies in principle, but

the proof slightly deviates from the formalism as given in §2 in its most
rigorous sense.

§2. Principle of Network Induction

Let . be a set and E=(L(a, £))c. peixs @ family of sets indexed by (a, fe.1
X A such that ,

Ea, HNE(e’, f)=¢ ~ for (a, )/, ) .

Then we say that (4, E') is a nefwork. An element of A is called a verfex
and an element of FElw, p) is called an edge having « as its starting point and g
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as its terminal point. Since [Ela, ) and Ela’, ") are disjoint for (@, )#(a’, 8,
the starting point and the terminal one of an edge f are uniquely determined
and denoted by o(f) and o(f), respectively. A path o starting at a vertex a
and terminating at a vertex 5 is defined as a finite sequence (fu,fu-i, = Jf1)
of edges f; (1=i=n) such that

o( fi)=a {(fi)=0o(fi) (A=isn-1), o(fu)=p .

The integer » is called the length of w and denoted by |w|. We denote the
totality of paths starting at « and terminating at 8 by Q(x, f). In the case a=
A we include the empty path, i.e., empty sequence ¢=( ) of edges, in 2a, @)
and define its length |$| to be zero. Let w=(fu, -+, /1) be a path. Then o=
(FiSimn - foen fi) (1£1, j=n) is called a subpath of . The empty path ¢ is a
subpath of any path. Let

o0=(fn, -, [1)eQa, ) and o’ =(gu, -, 0)€2E, 7).

Then we define the composition w'ow of w and o’ as

w'ow: z(.(lmy cey fm e ,f,)e.()(a', 7) .
Clearly we have
[ ow|=|w'|+ |}, wop=awm .

PrincIPLE OF NETWORK INDUCTION. Let (A, E) be a network and fix a
vertex ave:d. Suppose that for each vertex Pe.d, a propositional function P is
defined on Qay, B), that is to say, to each path weXNao, B), a proposition Pyw) is
assigned. Assume that the following two assertions hold.

1% P (@) is true;
2° for B,yed, weQ(ws, f) and feFE(B,7),
Pylw) implies PA(f)om).

Then, for any ped and any weXay, f), Pyw) is irue.
This is shown by mathematical induction on the length of w.

Remark. When /1 is a singleton {ao} and Eas, o) also is a singleton {fu},
we have

“Q(a'()y QO):{{/J)? (fo)v (fﬁ:fo)! (fﬁrforfﬂ)y i '} y

which is in one to one correspondence to the set of
all non-negative integers by assigning to we@(ay, ao) y f,
its length |w]. The network induction on this “Peano

network” (4, £') is nothing other than the ordinary  TFig. 1. Peano network
mathematical induction (Fig. 1).
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§3. Brieskorn Network of Type (2, *, %)

We proceed to construct a network, called Brieskorn mnetwork of type (2,#, %),
in order to prove the Theorems in §1. Let 4:={ILIIL, IV} and define

ELID: =}, ELID:={
EQLID: ={pnz1} ,  E{ILIV):={5}
EQLID: ={pulnz=1l) ,  EULIV):={
EW,1):=1Z,2,T, T} .

!

For all other pairs (e, B)edX A, we define E(a, f) as the empty set. Then (1, £)
is a network, which we call the “ Brieskorn network of type (2,#,#) (Fig. 2).

¥

Ly
| —
. <

=7

T
Fig. 2. Brieskorn network of type (2, #, %)

Define a map R from the set of all edges in (4, £) to the semi-group S of arrays
of integers defined in §1 as follows:

R(P") M =__Pn , R(;Dn)_: = ~£ =
R():=] for J=Z,Z,T or T.
Then R is a map: J Ea,p)—S.
(o, B)EAXA

Let @, feAd and o=(fa, -+, f1)eR(a, f). Define
olw) 1 =R(fR)R(fu-1)- - R(f1)eS .

{R@::e, RE:=¢, R@:=¢, RO:=¢,
)
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Then p is a map: W Qa,B)—>S .

(a,frednd
An array MeS is a molecule if and only if there exists a path w=(fa -, 1)
e, 1V) such that M=p(w) and f1¢E(IV,I) for all iefl, ---, n} Thus, an array
XeS is written as (1.3) if and only if there exists a path wef2(I,IV) such that
X=Hp(w)L.

Let X:[b“ '”’b"]eS be written as (1.3). Recall from [5] that a subarray

Cir el Cu
x'=[ff: jjj:?f] of X (1=k=t, 1=/=w) is said to end with M if there exists an
integer 1 such that 1=1=y and X'=HMJ, - -MiJio:M;. Suppose that X=
Hp(w)L (0eQ(,IV)). Then, a subarray X’ of X ends with M if and only if
there exists a subpath @’ of @ such that X'=Hp(e’) and o’€Q(l,1V). Similarly,
a subarray X’ of X ends with J(p, p, resp.) if and only if there exists a subpath
o of o such that X' =Hp(w') and o’ 2(IV,IV) (Q(IL, IV), 211, IV), resp.).
Define four polynomials in Z[y,7/,¢, &’ as follows:

Fip ', 5,0 =149 —4p—)E=L)

FII(7}1 77’) C) Z/) . =1+77’:/_4(n—77,>(6:'-'£,) ’

FHI(’?) 77’7 C! C/) . =1 +77/Z“4(77“77/)(C"C’) ’

Fry(n, 7/, &, 0 1 =147 —4(p—7)C-C) .
Let f be a vertex in the Brieskorn network of type (2,%,%), i.e, p=LILII or
IV and let Y:[g“’y" ""y”‘]eS. For each pair (%, ) of integers with 0=k=t

0y B1y ' * %y Butt

and 0=/=<u, we define

(Y&, Da: =Fs(ye, Yrr1s 21 241) -

This notation will be used later in §4.

For each pe, define a propositional function P; on (1, f) as follows: Let
weX], §) and define X, : =p(w)L(eS). Write X, explicitly as an array of integers:
sz[gc, (CJMl, Zéi] (Here, the indexing order of {bs} and {c;} is different from

us Lu—-1y 3
that written so far. This ordering is temporarily adopted for convenience of

the proof of lemma 3.1 below). Define an array Y,,,=[7J““" i " "y"]eS by
Zut1y Buy * " 75 R0

ye=0, ni=1, Yen=bp—ve (A=k=1),
z2=0, zi=1, zu=c&Z—2 (léléu) .

3.1) {
Then, a proposition Paw) is defined as follows:
Pg(w) : Fﬂ(‘ylﬂ, Vi, Zut1y 2u) =0 .
LemmA 3.1, For any ped and any weQ(, p), Pyw) holds.

Remark. This lemma is essentially the same as the Fundamental Lemma
in [5], and its proof contains main idea in proving Theorems 1.1 and 1.2.
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Proof. We shall prove this lemma by network induction.

1°. When £=I and w=¢, we have

szL, t=0’ Zt:z, 'y():Os ?/1:11 32—_—‘21 23:3'

Hence, Fi(y., yo, 23, 22)=0, i.e,, PI((/;) is true.
2°. Let jB,yed, we(l, ) and feFE(8, 7). Suppose Psw) is true. Putting o=
(Fewe(, ), we have
X =plw")L=R(Npl@)L=R(f)X., .
When we write

Y = Dy Dpeyy o0, OF _ by, Doy, v ey iy
P . s R(f)'— . . N
Cuy Cu—1y * "5 €y Cury Cwrt1y * 00y Curd

with #=¢ and #’'=zu, Y, is written as

v _[ym,,, Yoy w oty Yvny Yra, =00y .?/nJ
@'~ k)

Zyrkty Bury "7 7y Budy Butty "t 5 R0

where {Yrloerersr and {Zosicws: are determined by (8.1) with ¢ and # replaced
by # and 2/, respectively. Hence,

(yk“):(b’“ ”1><"”‘> for 1=k=l
Yi 0 /\yes =T

2\ _fC ~1 <3L> . S
(Zz )-(1 0) " for 1=l=sw' .

For any array Q:[lf”” bf"*" T b““]eS, we define 2x2 matrices
Cyry Curets * 7y Cyrl

v=(1 )0 )0 D)

. [Cur ~N\/cut —1 . Cus1 —1
ver=(7 (" G D)
Under this notation, we have

(") =wmon(™) () =viren(%) -

Y Y w
There are several cases to be treated separately, according to the pair (3, ;) such

that feE(f, 7).

The case in which (B, y)==1,1I).
Since f=¢, we have
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URD=U@=(y 1) VROD=VO=(; o)

Hence,
Folyen, o, 2w, 2u) =1 Yea1Zu — 40 o1 =10 )(Bue oy~ 2u0)
=1+ Y 18us1 '“4(?/z+1 - ?/z)(zm (—2u)
=Fz(ym, Yty But1y Zu) .
Since  Fy(¥io1, U Zust, 22)=0 by network induction hypothesis, we have

Fulyean, Yo, Zusr, 20) =0, i.e., Pu(w’) holds. The cases in which (5 1)=(,1II),
(IL, IV) or (III,1V) are proved similarly.

The case in which (3, )=(11, III).
Since f= p, for some integer nz1, we have, denoting 2X2 matrix <1 )

by G,

vrey=vpa=(" )
V<R<f>>=V<_m>=G”'”"=<sffl :S’ﬂ;)

Hence,

Fuai i1, Y, Zurry Zur)
= uezen =40 o — Yo X Zu v — Zu)
=14y {8nzues +(—=8n+Dzu} — 42+ 1)y s — yeh(Bus1 —2u)
=14 yenzu—4Yer1 ~ ) (Zus1—2u)
=Fu(Yer1, Vi Zusrs Zu)
=0 (by network induction hypothesis),

which implies Prdw’).
The case in which (5, y)=(I1,1I) is shown similarly.

The case in which (f, r=31Vv,D.
If f=2, we have

U(Rcf»:cf(z’):cz(f ?)zﬁf :3)
vap=va=(; G)e=(5 7).

Hence,
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Fi(Yersr, Yo, Bursty Zur)
=14y 2w =400 — Yo ) (Zur 11— Zur)
=14 (1631 —3y)(162y4+1 — 112u) — 451 — e )(132u 41 —B20)
=1 = dyizusr +4Ye12u +40@ue — 3yizu
=Fry(Yes1 Yo, Zurr, Zu)
=0 .

If f=T, we have

24 =17

7 ) V(R(f)):r/m:@ ~01)_

U<R<f>>=U<T>=(

Hence,

Fi(yoes Yo, Zurery Bus)
=14+(24y1 —17y)(82u. 1 —&u) — ATy 1 — By )T 2w —20)
=Fw(¥ien, Yoo Zusr, Zu)
=0 .

Since the polynomials Fi(y, 7/,£, (') and Fu(y,7/,$, (') are invariant by the
transformation (y, 7/, ¢, 0)——((, ¢, 7, 9/), and Z=«(Z), T=«(T), the cases in which

f=Z and f=T are reduced to those in which Ff=Z and f=T, respectively.

Thus, whatever edge f may be in E(IV,I), we have F(yu.1, % Zuvts Z0) =0
Therefore, Pi{w’) holds.
This completes the network induction. Q.E.D.

§4. Proof of a Weakened Version of Theorem 1.1

It is assumed in Theorem 1.1 that Brieskorn singularities (2,q,7) always
satisfy the condition g<7. In §4, we prove a slightly weakened version of
Theorem 1.1, not assuming g<7:

TueoreM 1.1/, D(X) is a weighted graph of lype I which appears as the
resolution diagram of a Brieskorn singularity (2,q,v) (not necessarily satisfving
q<7r) if and only if X is written as the following product in S:

(1.3) Xe=HM \MJo- - M, J.. ML (v&1)

or

1.8y X=HM J\Ms]s-+ - M, JoetM, L) (»=1),

where H is the head, L is the tail, each M; is @ molecule and each [; is a joint.

Remark. The decomposition of X ends with L or (L), according as g<r
or g>r. This will be proved later in §5 with aid of Theorem 1.2.
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Proof. The “if " part is already shown in [5], using Fundamental Lemma.

In order to prove the “only if” part, suppose that X=[[C)i’:::’lg‘]es is such
) 3

that D(X) is a weighted graph of type II which appears as the resolution dia-
gram of a Brieskorn singularity (2, ¢, 7), where ¢ and 7 are coprime odd integers
greater than 2. We shall show that X can be decomposed as (1.3) or (1.3).

There exist integers y, z and b satisfying (1.2). Since b must be equal to
2 in our case, we get

dgr=qr+2yr+2gz+1 .
Define two sequences {yi}ogpztss and {Z}ocizuer Of integers inductively :
Yoi=q, WI=Y, Y =bwe—ye,  for 1=kst,
Zo =1, zyi=z, 2y =08 — 2 for 1=l=u .
Then, we have the relation
(4.0) dyoz0=1 41020+ 21120+ 29021
and
O=ven<we (=k=h), w=1, p.,=0,
0=za.<a (1=l=n) zZ,=1, 2y =0 .

In order to prove that X is written as (1.3) or (1.3) we make use of the net-
work induction again, but in reverse direction this time. To be more precise,
it suffices to show the following five propositions (Cf. Fig. 2):

1° [?1‘]-——[{ and (Y1, 1)ry=0;

2° if (Yik, Dwv=0, then one of the following two statements holds:

) [bl,...,bk ]Z[bx,-..,fji.jz and (Y 1k 1+ D=0 |
1. 3

Ciy "y O Ciy vy C

(i) {”"""l’“'Jz[”“""bk]é and (Y)k+1,Du=0 :

Cyy 5 O Cry " 01

3% af (Y&, D=0, then one of the following two statements holds:

(i) by, - .,bicru]:[bl, . n,ikJé and (Ylk+1,l):=0 ,
1

Ciy "7 Cg Ciy * 0y

by bey by -+, b

(i1) b =" b for some n=l
Cry ** 0y Clysn— Cyy s, 01 47

and (Yk+1,/4+812—1)y=0;

4° if (Yik, Du=0, then one of the following two statements holds:
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W [l e an @isie=o

Cry ot Crax Ciy, * €L

by, ¢, brignt by, oo, b5 Y-

(ii) [ U ]:[ b ]pn for some nz=1
Ciy =ty Cle Ci, vyl

and (YE+8n—1,[4+1)m=0;

5° if (Yik, D=0, then one of the following two statements holds:

G [P o [y
Ciy "+ Cu Ciy ", CL Ciy ", CL
.. by, « oy by by, + <, bi . ..
(if) = ]] with h<k' <t, 1<l =u and some joint ],

e eed Loyt a

and (Ylk’,l’)w=0 N

Yoy * 0y yu-1]€5

where Y denotes the array [z 2
0y ° "ty Rutl

(Proof of 1°) If v, were greater than or equal to 2y, it would follow that 2y,
=vo—1 because y, is an odd integer. So we would have

3yezo—1=2y02,+29:20 (by (4.0))
=2y0(20—1) (o —1)z0
=3v020—2%0—20 .
Hence,

2y0+zo=1

which is a contradiction. Thus, v, <2y.
Since yo=by,—y> (b, —1)y,, we have

O =Dy <2y,

Hence, b, =2. Similarly, ¢,=2. Thus [2]:[1.

Substitution of yo=2y,—v. and z,=2z,—2: into (4.0) proves (¥|1, 1)w=0.

(Proof of 2°) Suppose (Y&, Diw=0. Then, k<t holds because k=¢ implies i,
=0 which contradicts (¥|k, Hiv=0. Since k+1=¢, b, is defined. Similarly ¢,
is defined.

If bre =3 and ¢ =3, we would have

Ye=besVrr —YeraZOre1 ~ DY + 1229501 +1 .
Hence,

Ye—Yrr1 =Y +1 .
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Similarly
=z 22 +1 .
We would, therefore, obtain

(Y&, Div=14yu12000— 4 U — Vs ) (21— 2141)
S14+Yre80 —4Wes + )&+ 1)
<0,

which is a contradiction. Therefore

bk;+1=2 or CL+1=2 .

(i) When ¢;;,=2, we have [b“ by ]:[bh 2’”]@ and

€yt € Ci, "5 CL

(Y&, I+ D=1+ ves12101 —4Ye — Y 1)(Zrr1 — Z142)
=14 ypniZe —4Ws— v & —2001)
=(Y]k, D
=0 .

(i) When by, =2, similarly we have

[5’1' ""bk+*]=[l’“ """’“]é and (Yik+1, Du=(Y[k, Div=0 .
Ciy €1 Ci, s+, €1

(Proof of 3°) Suppose (Y|k, Din=0. Then, k<¢ and by, is defined, similarly as
in the proof of 2°.
(i) When by+1=2, one has

(Yie+1, =Yk, D=0 .
(ii) When by,,=3, one considers the propositions
(P) for O0=i=zi+1
and
Q) for 0=i=iy,
where i : =4by,,—10, as follows:

[+i=u and
T4 venzi—{e—i+2)yre +4(Uen —Y e )} (Brpi —Zinin1) =0 ,
(@) I+i<wu and cra=2 .

(F)

We shall show by induction on 7 that () (0=i=i,-+1) and (@) (0=i=i;) hold,
as follows:
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[First step] () holds because (Y&, D)ui=0.

[Second step] For each i=ix, (F;) implies (@;).
(Proof) Suppose (£;) holds.
If [+i=wu, then z.,=1 and z,:.,=0, which would imply the relation

0=1—{Gr—i+Dyp+1 +4Wir1— Yr+2)} S1— Wrs1+4)

contradicting yx>(0. Thus, /+i<u.
If ¢1414:=3, then one would have

i = Clri18Lai41—Zriae
Z(crin — D2 +1
=2z +1 .

Hence,

o Zitl
=2 .

Bivi— i1 =

On the other hand,
(ik“i+2)?/k+1+4(.7,/la+1“?/k+2)§—22/k+1+4 .
Combining these two inequalities, one would obtain

(G —1+2)yrs, +4(Yrs1— Yi+2) (Bres — Ztaa41)
%(?lkﬂ'f“z)(zui‘f‘l)
>14+yrs 12
which contradicts (P;). Therefore, crizi,=2.
[Third step] For each i=iy,
(&) and (@) imply (Privy) .

(Proof) Suppose (F%) and (€;). Then, clearly /+i+1=<u. Substituting z.:
=22;,141— 21442 IDtO the equation in (&), we have
O=1+?/k+1(221+z‘+1 *Zz+i+2)—{(ik—i+2)y1c+1 +4('!/la+1 ‘*Z/kw)}(zniﬂ —Z1si2)
=1+ Yrr18aie1— {Gr—1+L)yen F4(Ykr1— Vi) Zrrs41 —Zaiez)
which proves (Pii).

Thus, (P) (0=i=iz+1) and (Q:) (0=i=<i) hold. In particular, (Pi ) reads
as follows:
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0=14yx. 1Ri4ig+1— Ve +4Wen —yk+2)}(zl+1:k~n —Z+ ik+2)
=1 T Ykr1Zicigee —4( Y1 ‘_’Z/k+2)(zl+ik+1 Bt 2)

=(Y|k+1, [+ix+1u .

For 0=i=1i;, (Q;) means crie1=2. Since D(X) is of type II, bx:: can be written
as 2n+2 for some integer n=1. Then,

ix+1=4bgs —9=8n—-1 .

We obtain, therefore,
[ Dis ]_[ 2n+2 ]_
Ciity Creny * s Clagne | - (Br—1)+2 =h

(Y|k+1, [+87—1)=0

and

as desired.

(Proof of 4°) Similar to that of 3°.
(Proof of 5°) Suppose (Y&, [)=0.
(i) The case in which k=t or /=u.
If k=t¢, then yr=1 and vz, =0. Substituting these values into (Y&, =0,
we have

4.1) 1—-3z,+42,,,=0 .
The equation (4.1) does not hold for /=#. Thus, /<# and ¢, is defined.
Then,
3z,—1
2z = ZLZ ész'Cl—nZt»H"Zhwz>((fl+1'—1)zl+1 y

which implies ¢, =2.
Substituting z,=22z;., —2: into (4.1), we obtain

1—2211+325..=0 ,
which shows /+1<w# and

2&”:»;-(22”1—1):&.2“‘

because z.1=2zwe+1=2. Hence, ¢;42=2 and
1—2p2+22145=0 .
If [+2<u, one would have

212 =221+ 1532144
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and S0 ¢1:5=3, which contradicts the assumption that D(X) is of type II
Therefore [+2=# and
[bh “',bz]z[l’n. m’bk]L '
L1, 0, Cy €ty ** 0L
If /=u, a similar argument shows

I:bly v ',bt:lz[bh ’ ")bk—ll(L) .
Cy """y Cy Cyy v, Cp

(ii) The case in which k<¢ and /<u.

In this case our argument flows along the chart in Fig. 3. First we show
that bpoi=2 or ¢;y=2. If bz =3 and ¢.1=3 then

yrt+1 . z+1
2 2

yu—ye )@ —2) =4 - >14+uz

which contradicts (Y1k, )i=0.
(A) The case in which by, ,=2.
Substituting ¥,=2yk+1 —ye.2 into (Y&, Hi=0, we obtain

4.2) T yronzi—Yne ~Yire) (32— 420,1) =0 .

biis=0 c131=6 €112=2 C13=2

(Aa) Z
4.4 (4.5) (4.6)
bri1=2 brra=2
(A4)
4.2) (4.3
bm«s=4 C1i1=8 bpra=2 bpis=2 —
(AB) T

4.7 4.8

(i)

Cro87=06 Dpr1=6 Dpio=2 Dpra=2

(Be) Z
Ci1=2 C1:2=2 /
(B) \ ‘

cra=4 bi1=8 c14=2 Crs=2
(BF) T

Fig. 3,



22 Akio Yamapa and Yukio MATSUMOTO

If k+1=¢, then ¥z.:=1 and yr+:=0 and so
1-2z4+42,,=0 ,

which is a contradiction. Thus, &+1<¢.
If z,=3z,—4z,,,, then one would have

(Wrer ~Yes2)(Bz—42011) <Yr#iZ
which contradicts (4.2). Therefore, z,<32z,—42;.,, and so
> 224 .
Hence,
=3 .

Since D(X) is of type II, we have ¢, =4.
Hence,

ZL——].

Zn =

and

3z;—4z,= Szl,;_ll .

If bxi2=4, then one would have

2 1 bz+4
Wrir—Yre2)Bzi—4z101) = ykg+ . Zl3+ >1+yenz ,

which contradicts (4.2). Thus, br42=38.
Since D(X) is of type II, we have byo=2. Substituting vi+1=2Vr+a—Vr+s
into (4.2), we obtain

(4.3) L4 ypeazi—(Yrro—Yre)(2—42141) =0 .
If 2+2=¢, then vrro=1, ¥x::=0 and
1‘-21+4Z;+1=0 .

Hence, one would have ¢;+:=5, which contradicts the assumption that D(X) is
of type II. Thus, E+2<¢.
If z;=22;,—42;,.,, it would follow that

Yis2— Yrra) 221 —4201) <Urs221

which contradicts (4.3). Therefore, z;<2z;—4z,1.
Hence, z;>4z;,,, which implies ¢;.;=5. Since D(X) is of type II, we have
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¢1+1=6. Hence,

ZL—']_

2 =

and so

3z;+2

Z—221 =

If %122 2(¥kro—Yrrs), then one would have

(Yire—Yr+a)2(20—22141) <UYk+221 »

which contradicts (4.3). Therefore ¥.:<2(¥r+2—Yx+s), 1 €, Yr+2>> 2Ysss.
It follows that bizys=4 under the assumption that D(X)is of type II. Hence,

2pra+1
ym—?/mz—yfg—m
If ¢;.1=9, then the inequality

- ZL‘—].

2141

would hold. Hence

(Wrre—Yies)2zi—221:1) = zykg+l 2. BZLZ_]' > Yrpsegi+1

(by z=2). This inequality is contradictory to (4.3). We obtain, therefore,

(.'“_1:6 or 8.

If by.e=7, then it would follow that

5ypta-t+1 3z,+2
(2/k+z—Z/Ic+s)2(zz"‘zzz+1)% ?/x.+62+ <2 Z;;— > Ypre2it1

(by yr+2=2). This contradicts (4.3). We obtain, therefore,

bk+s =6 or 4 .
(Aa) The case in which bp.3=86.
Substituting yx+2=6ys+s—¥Yr+s into (4.3), we have

4.9 1+ yrs2i— BUrsa— Vesa) (&1 —42000) =0 .

If ¢1.1=7, it would follow that
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z+2
3

(5Yr+s _‘Z/k+4)(zl“‘4zl‘t»1)~?~_ (dyrss+ 1) >14+wyiiss

contradictory to (4.4). We obtain, therefore, c;..=6.
Substituting z;=62;.1 —z;,. into (4.4), we have
(4.5) 1+4yiraZro ~— QUks — Yk )220 —2002) =0 .
If [+1=u, then z.,=1, 2,..=0 and
14+-4yies—2(4Ynes ~Yie) =0 ,

which is a contradiction. Thus, /+1<u.
If ¢1.2=3, then one would have

3z +1

5 >1+4yeia2ier

Akrs— Vi) (22101 —2102) Z BYpra+1)

which contradicts (4.5). Therefore, cja=2.
Substituting zp.,=2z..—214s into (4.5), we have

(4.6) 1+2'.l/k+821/»~2"‘(2?/10&3‘?/}“»4)(331&B—ZZLA‘—B)co .
If [+2=u, then z,.=1, 2,.3=0 and
0=1—4yrss+3vrss <l —Vrrs ,

which is a contradiction. Thus, /+2<u.
If ¢1.323, then

(QUrrs—Vrr )22 —22140) = (Vs + 122102+ 1) > 1+ 20k 02142
which is contradictory to (4.6). We obtain, therefore,
Cres=2 .
To sum up, it is shown that
[b;m, bi+a, bk+s]=[2, 2, 6]=Z_
Cre1y Citzy Clis 6,2,2 ’
e, [0 BB o BZ with =k 8 and =143,
Substituting z;3.=22145— 24 into (4.6), we obtain finally
(Yl#, l’)w=(Y|k+8,l+3)w=O .

(AB) The case in which beis=4.
Substituting Ys+2=4¥Ur+s—yr+s into (4.3), we have

“.7 14+ Yrisgr — QYkss— Y+ a)(Zi—42141)=0 .
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If Cl+1é6, then

V4 ;
(BYies—Yrea)Zi—4204 ) =3Urss- —§L<1 + Vie+821

which contradicts (4.7). We have, therefore, ¢;.,=38.
-Substituting z,=8z;,;—z;;2 into (4.7), we obtain

4.8) 1+ 4yirazi — QUi — Ve s)(dZ00 —2142) =0 .

25

When one changes (Yi.s, Yirs Zrs1, Zrea) N0 (Zre1, Zrin, Yira, Yira), (4.8) is converted
into (4.5). The remaining part of the case (Ap) is, therefore, reduced to the

part following (4.5) in the case (Aa): we obtain
k+4<t, bra=brs=2 and (Y1k+5,[+1)w=0.

Consequently,

[bku, Dire, Oivss biciay Dy '.] [2, 2,4,2, 2] /f-
= 8 = .

Cray

Hence,

by, - -,bkfl___[l)x, N8 Iff with B =k+5 and I'=[+1

EATREEN~Y Ci, "o
and
(YR, INw=0 .

(B) The case in which ¢;+,=2.
Similarly to the case (A), one can show

CI,+2=2
b}a,|.1=6 or 8
Crr2=6 or 4 .

(Ba) The case in which ¢;13=6.
It is shown as in the case (Aa) that -

bk+1=6 and bk+2=bk+3=2 .

Hence,

I:bl;;.p-l; bfc+‘l’.1 bk'*3]=Z .

Ci+1s Ciyo, Clys

Thus,
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[(b‘ N ff]r—[fl ::::i:‘]._z with B'=Fk+3 and I'=/+3,
and
(Y1R', =0 .
(Bf) The case in which ¢.a=4.

As in (Ap) one can show that

Lb]’ .. -,l)ﬁj']z(b]’ sy bk\!I With k,=k+1 alld l/=l+5 ,

Ciyt 0oy Cr Ciy t vy C1
and
(Y&, Nw=0 .

The proof of 5° being completed, the “only if ” part of Theorem 1.1° is
proved. Q.E.D.

Remark 1. The uniqueness of decomposition of X is shown by the follow-
ing two propositions :
(i) MX=M'X' implies M=M' and X=X,
(i) JX=J'X' implies /=] and X=X,
where M and M’ are molecules, J and J/ are joints, and X and X’ are arrays.
Both (i) and (ii) can be proved easily by the definitions of molecule and joint.

Remark 2. By a network induction scheme, one can observe that the
number of vertices of a weighted graph of type II which appears as the res-
olution diagram of a Brieskorn singularity (2,¢,7) is a multiple of 8—which
is a well-known fact.

§5. Proof of Theorem 1.2

In order to prove Theorem 1.2, we prepare some notations and a lemma.
Define eight 2x2 matrices as follows:

/-8 8 __/-10 8 (-8 8 /-8 6
BI.—(_G 8), Bn-——(mg 8), Bm.—(_8 m>, Bw.-(__g 8>,

(8 -8 (8 -8 /10 -8 /8 -6
ai=(§ 75 aui=(5 D). om=(y Zg)+ Cwi=(g Zg)

Then, 4X4 matrices Ay, An, Am and Ay are defined by

w0

([ Be 3B\ __
Au=( Ty %) +=LILILIV,

where £ denotes the 2X2 unit matrix.
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. e ! .. 4
Let Y=|:y°’ ’y”‘]eS and Y’=[y,u' ’y'f”]es_

2oyt *y Buri 2ottty Bpes

For each pair (k,]) of integers with 1<k=<t¢ and 1=/s=w-2, we define four
vectors denoted by (Y, Y|k, Dy, <Y, Y|k, Du, <Y, Y|k, D>m and <Y, Y|k, v :

Y Vi
Y, Yk Dy = 2 = A Y5 ) =111 10 TV
- 4
2t 2141
r bl; Y bﬁ- .
LemMA 5.1, Let X= . ; eS be written as (1.3)
Ly vty by,
and
AR A .
X'= Y eS as X'=H- (<M1f1 y._1 ,,_1M)L
Cps v ’Cr 2|
Define
Y::[I.I/Os c '.l/H-l—leS [)y
Zoy vy By
=0, w=1, wia=bwr—vr, (=2k=D),
zZen=0, z.=1, zoa=az—zm I=l=su) ,
and

! s !
Y’-———[yf’ ,?!,u-l]es by

2oy """y Btes
{ Yu1=0, vu2=1, yi=by—vyi (=I=u-2),

2ls=0, zl.o=1, zi_i=cizl—zh (A=ZR=E+2) .

Then, the following four propositions hold :

1. if a subarray [lgi"gj] of X ends with M, then (Y, Y|k, =0 (zero
vector);

. if a subarray [0 2] of X ends with p, then (Y, V'\k, Du=0;

III. if a subarray {b" b’“] of X ends with p, then <Y, Y|k, Dm=0;
IV. if a subarray [bl’ ":’cl] of X ends with ], then Y, Y|k, =0,

Proof. We prove this lemma by resorting to a network induction; it
suffices to show the following eight assertions:
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12 (Y, V')t —~20=0;
9° if (V, ¥'|k, [pr=0 and [l’hj“ bk] [b,,- b ]

s, 01 C],"',C..

e, then (Y, Y'|k, [—1>y=0;

3° if (Y, V'|k, [5=0 and [”h ;j*“]:{bn S b ‘]e, then <V, Y'|k—1, [om=0;

 Cr Cyy a('
42 if (Y, Y’k Du=0 and [bh :j:’ff]:[?:: b *] g, then <V, V/|b—1, D=0

5@ If <Y Y/M [>11=0 and [Z)x, --~,£k]=[bl, -.',bk—-l jlp"’ for some ”_2:—.11 then
nc-"l (71,‘."61,—'81L‘11 Fe
Y, Y'Nk—1,1-8n+1>m=0;
6° if (Y, Y'|k, 5m=0 and [b*’:jj’ﬁ{f]=[’;yj:j beon ‘]pL for some n=1, then
Y, Y'Nk~8n+1,[—1on=0;

7° if <V, ')k, Dm=0 and [b*' j"'bk]z[’%“ B¢ Je. then <7, V7[R, 1=Dw=0;

c Gl Ciy * " Ol

8° if (¥, Y|k, Dv=0 and [b" ’?ﬁ] [?:: :CI]], where J is a joint, then
<Y, Y|k, IDr=0. ) '

(Proof of 1°) Since

Y Yu-2 1
Yerr |__ Y 10
Zuz| | 2 | 8]
2u—1 2 2

a straightforward calculation shows
Y, Y|t u—2y=0
(Proof of 2° through 8°) The hypotheses of 2° through 8° are of the form:

(Y, Yk, Ipx=0 and [bwwbk]:[b.,---,bﬂQ’

ey el Loy e

where @ is a subarray of X and #=LILIII or IV. For an array Q=
[bi“’ o b’“]eS we defined in §3

Cj'*'h” y €
. bi+1 -1 bi+2 -1 . bk -1
v =% % G

Y,(Q)::_(cfl“ -01><c,~1+2 —-(-)l)‘”(iz —(~)1>~

(o) =0 @) e (31)=7@(3)

On the other hand, since

Then,
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.. ! e "
[b" ’ﬂ:;([l"’ ’b’"D for 1=kh=f and 1=/=<u—2 ,

/ 14 . ~
Cl!".yck (41,"',(’[

Ui\ _venf 4 2] >= (Z/ ) _
(?/}»H) I/(Q)<Z/{H> and (Zé-n v@ it

Hence, if <Y, Y|k, [)x=0, then

we have

¥ i e
?/;‘H =<V(Q) 0 ) Yo -____(V(G» 0 ),1 Yk+1
2 0 U\ =, 0 o)) ™ =
i Zjin -IEN1

Yi

:<V(Q) 0 >A (U(Q)“‘ 0 ) Yie

0 @/ 0 V@t

i1

The conclusions of 2° through 8° are of the form:
Y, Y0, 15.=0 E=LILIUI or IV) .

Thus, it suffices to show that

(M@ 0N (VO 0 Yo,

0 U@ 0 V)
Furthermore, since we have
V(@) 0 @) 0 _ (V@B U@ 3E
( 0 U(Q))A*( 0 V(Q}">ﬁ< —5F U(Q)C*V(Q)”)
and

ByCy=CyBy=—16E (=111 111,1V) ,
we have only to prove
VQ)B.UQ) ' '=5; .

Here is a table of @, *, # and the equality to be proved for each of 2° through
8°:

§ * Q 4 the equality to be proved

2 I ¢ Il Vie)Bil(e)™ = Bu (5.1)
| ge I é I V(&)B:U@) " = B (5.2)
B 1I F v V(&)Bul(2)" = By (5.3)
" 5° 11 P" 111 V(_p'lL)BIIU(Pn)yl =B (5 . 4)
i 6° 111 Da I V(pu) BuxU(pn) "= Bu (6.5)
i 7° 11 4 v V(e)BuU(e)'= B (5.6)
o8 v 7 I V(J)BwU(J) = B (5.7)
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[Proof of (5.1)] A straightforword calculation using Ulg)=FE and V(e)=G
{(where G denotes ({‘ —61) as in the proof of Theorem 1.1’) shows (5.1).
[Proof of (5.2)] (5.1) implies

Ule)Ci Vie)y ' =Cy

as stated earlier. Since Ci= —Bi, Cu= — B and U({Q))=V(R) for any QeS, we
have :

V(@) BU(e) ' = Ul«@)(—C) V(@)™

=-~Ule)C:V(e)™

=~y

=Bm s
which is no other than (5.2).
[Proof of (5.3)] A straightforward calculation shows (5.3).
[Proof of (5.6)] Since Ciy= —Fw and Cy=—Bn;, (5.6) is to (5.3) what (5.2) is
to (5.1). Hence, (5.6) is proved similarly to (5.2).
[Proof of (5.4 Since Upa=(*"2 1) and Vip=cor=(gB, “8n 10,

(5.4) is verified directly.
[Proof of (5.5)] It is reduced to that of (5.4) similarly to the cases (5.2) and

(5.6) because Cy= — By and Ciu= — By.

[Proof of (5.7)] We have only to show the equality in the cases in which J=Z
or T, the remaining cases in which J=Z or T being reduced to the former
cases (respectively). Since we have

v2=e() §)=(u o)
V(Z’)=(;5 ~(—)1>G2=(136 1121>’
om=o (i )= Tis)
)
(5.7) is verified straightforwardly. Q.E.D.

Proof of Theorem 1.2. Sﬁppose that X, X', Y and Y’ are elements of S
as in the assumption of Lemma 5.1. Since the subarray [?’} of X ends with /,
1
we obtain

<Y, Y"1, D=0

by Lemma 5.1. A similar argument as in the proof of Lemma 5.1 shows °
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(5.8) <Y, Y'[0,0%=0 ,
where
s Yo
a
Y, ¥700,0%:=| " |—a ¥ ],
2y 2y
Z{ F4

W ._( B 3E Y S 7 S
‘4”"<-5E cn)’ b“'”(-s 4)' C"”(ﬁ ﬁ4>'

because of the equality
V(H)B[vU([‘])"l?—‘ By .

Since yo=gq, z,=7, vi=¢' and z;=7’, (5.8) reads as

q -4 0 3 0\/q
vl -6 4 0 3 V%wn
| Tl-5 0 4 0|«
z) 0 -5 6 —4/\z
Thus, we obtain the desired result. Q.E.D.

Proof of Theorem 1.1. Since Theorem 1.1’ has already been proved, noth-
ing remains but to show that, if XeS is written as (1.3), then g<7. Let XeS
be written as (1.3). Define X' by

XI . ':-f['l(Ml]l v ’A/wal b~XlWD)L .

Then, by Theorem 1.1/, D(X”) is a weighted graph of type II which appears as
the resolution diagram of a Brieskorn singularity (2,¢’,7’) where ¢’ and #' are
coprime odd integers greater than 2. Theorem 1.2 says that

q'=—4q+37r .
Since ¢'>0, we have
3
.._7/< ” ,
g< 1 ?
which completes the proof. Q.E.D.
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