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Introduction 

In their paper [6], Farrell and Hsiang proved the following: 

Theorem. Let N" be a closed connected fiat Riemannian manifold where n 4= 3, 4 
and let M" be an aspherieal manifold such that ~I(M") is isomorphic to 7c1(N"), 
then M n and N" are homeomorphic. 

This is equivalent to the statement that the structure set ,~op(N) consists of 
a single element. The structure set appears in the surgery exact sequence [16]: 
...--*[Z N, G/TOP]-~ L,+ I(~I N)--* 5,~ G / T O P ] ~  L,(~I N), and the 
result is proved by showing that the homomorphisms [,rJN, G/TOP]- ,  
L,+i(~ 1 N) are bijections. 

We would like to prove a similar result for certain stratified spaces. Let F 
be a crystallographic group acting on N" and consider the orbit space P,"/F. If 
F is torsion-free, P,"/F is an n-dimensional closed flat Riemannian manifold, 
and Farrell and Hsiang's result will apply to this. If F has torsion, P,"/F is a 
stratified space. The following is our conjecture. 

Conjecture. I f  a stratified space is homotopy equivalent to P,"/F in some nice 
way, then it is homeomorphic to N"/F. 

This paper is the first step toward this conjecture. As with the Farrell- 
Hsiang theorem this conjecture is approached by showing the functions in 
appropriate "stratified" exact sequences are bijections. Our main result is a 
partial computation of one of the terms in these exact sequences, specifically 
the L-groups of F. Actually we need to do the computation for a slightly larger 
class of groups. Let A be a finitely generated group which maps onto a 
crystallographic group F of rank n with a finite kernel; in other words, A acts 
by isometrics on IR" discretely, virtually faithfully, with a compact orbit space. 
Let W A be a free contractible A-space. Then the map p: (P,"x WA)/A--.~"/A 
has point inverses p - l ( x ) =  WA/A x, which are classifying spaces for " isotropy" 
subgroups Ax. Quinn has defined ~-spectra IL(X) whose homotopy groups are 
the surgery obstruction groups L~(r~IX) [7]. This functor can be applied 
fibrewise to obtain a "sheaf" of spectra IL(p)~P,"/A, with fibre over x, 
IL(P-I(x)). Next Quinn has defined [9] homology groups with spectral sheaf 
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coefficients H,(~"/A;IL(p)). For technical reasons we use a definition of IL 
using the Poincar6 chain complex of Ranicki [12, 13]. The homotopy groups 
are the limits L7 ~ of Ranicki's lower L-theory /31-") [11] which may differ 
from Li possibly by 2-torsion. The following is our main theorem. 

Theorem (4.11). I f  A is a finitely generated group which acts by isometries on ~"  
discretely, virtually faithfully, with compact quotient, then there is a natural 
isomorphism modulo 2-torsion: 

a: H ,  (I("/A; lL(p)) -~ L,~ (A). 

The map a is essentially Quinn's assembly map. To explain the calcu- 
lational significance of the theorem, let us recall that there is an Atiyah- 
Hirzebruch type spectral sequence [9, Theorem 8,7] HI(~"/A;L~~ 
=~ Hi+j(R"/A; IL(p)). Here L~ O~(p) is obtained by applying nj fibrewise to IL(p), 
or equivalently applying L~ ~ to the sheaf of isotropy subgroups A x. Since the 
isotropy subgroups are finite, the theorem provides a "calculation" of L-*(A) 
in terms of L-oo of finite subgroups. 

This is the first systematic calculation of surgery obstruction groups for a 
class of infinite groups with torsion. Previously purely algebraic techniques 
have been mostly limited to finite groups, and geometric techniques limited to 
torsion free groups. Here we refine the geometric techniques to reduce calcu- 
lations for these infinite groups to those for finite groups, which are accessible 
to the algebra. 

The organization of this paper is as follows. In w t, we prove the splitting 
lemma for quadratic Poincar6 complexes and pairs. In w we introduce qua- 
dratic complexes with geometric control in the sense of [8-10]. Using the 
results in w we prove the stable splitting lemma for geometric quadratic 
Poincar6 complexes and pairs (2.5) and the stable splitting lemma over a 
manifold (2.11). In w we construct the spectra L ( X ; p )  and IH(X;L(p)) for 
stratified systems of fibrations p: E ~ X  [9], define the assembly maps, and 
prove the characterization theorem (3.9), which characterizes elements of ho- 
mology groups as certain objects with geometric control. At the same time the 
shrinking lemma (3.10) can be proved. The key ingredient of the proof of these 
is an application of the stable splitting lemma of the previous section. We also 
show in this section that the homotopy groups of IL(,; B a ~ , )  are the limits of 
Ranicki's lower L-groups of A, where B A is the classifying space of A. In w 
the main theorem (4.11) is proved. The proof is like that in [6]. We use 
induction on the "size" of the action of A (= the  size of F), Farrell and Hsiang's 
structure theorem of crystallographic groups (4.2), and Dress's induction theory 
[2]. When the induction on the size of F does not work, we need to use the 
characterization theorem and the shrinking lemma. 

This is a work done basically in the author's Ph.D thesis at Virginia 
Polytechnic Institute and State University. I would like to thank Professor F.S. 
Quinn for suggesting this problem to me and for providing many invaluable 
comments. 
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1. Splitting lemma for quadratic Poincar~ complexes and pairs 

In this section, we give a sufficient condition to splitting quadratic Poincar6 
pairs defined by Ranicki. We use notations and sign conventions used in [13]. 
R denotes a ring with 1 and an involution. Let c = ( f :  C--*D, (6~,,~)) be an (n 
+l)-dimensional quadratic Poincar6 pair over R, and C' (resp. D') be an n- 
dimensional subcomplex of C (resp. an (n+ 1)-dimensional subcomplex of D). 
We assume that 

(1.1) C/C' is n-dimensional, D/D' is (n+ 1)-dimensional, and 

(1.2) f (C ' )=D' .  

Let i c denote the inclusion map of C' into C, and Pc denote the projection 
map of C onto C/C'. We fix splittings Jc: C / C ' ~  C and qc: C ~  C' of Pc and 
i c. These give an identification of C with C'| and if we define a chain 
map Pc: (C/C')r~(SC')r= C'~-1 by ( - ) ' - l q c d j c ,  then the boundary map of C 
is given by a matrix 

d :C;|174 

under this identification. Here S denotes the suspension of a chain complex. 
Maps iD, PD, JD, qD, P ,  are defined in the same way for D. 

Let C" denote the chain complex (C/C')"-*. By the assumption 1.2, f 
induces a chain map f '=qDf ic :  C ' ~ D '  such that i a f ' = f i  c. The algebraic 
mapping cone C(f')  of f '  is a subcomplex of the algebraic mapping cone C(f)  
of f Define D" by (C(f) /C(f ' ) )  "+1-*, or equivalently C(pDfJc) "+ 1-. .  There is 
a chain map (inclusion map) 

f " =  (01) : C'/=(C/C')"-r~D'r '=(D/D')"+'- ' |  "-" 

from C" to D". Recall that ( l + T ) r  C " - * ~ C ,  and ( ( l+T)gf fo ,  (-)~(1 
+ T) ~,0f*): D"+ 1 -r ~ C(f) ,  = D r | Cr_ 1 are chain equivalences. Here �9 denotes 
the dual. 

(1.3) Lemma (Splitting lemma for quadratic Poincar6 pairs). Let c, C', D', C", 
D" be as above. We further assume that 

(1.4) 

and 

(1.5) 

Hi(Pc(l + T)qJoPc)-O for i<0 ,  

H,(Pv((1 + T) b~hop* , f(1 + T) 00p~))=0 for i<0.  

Then there are two adjoining (n+ 1)-dimensional quadratic Poincar~ triads over 
R: 
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~1  ~ 

C' - ,D '  

and 

whose union is homotopy equivalent to c. 

B ~ C "  7j t 

C ~ D" - - - 4 ,  

Proof We give explicit matrices describing the quadrat ic  structures and the 
equivalence. This will be necessary later when we will have to check that  these 
satisfy certain size estimate. B and C ~ in the l e m m a  are defined to be S-~ C((i o 
( l+T)~bop~) :  C ' O C " ~ C )  and S-IC((iD, ( l + T ) 6 ~ o p *  , f( l+T)~bop*): 
D ' O  D " ~  D) respectively. Here  S-1  denotes the desuspension. We have a chain 
m a p  g ~ = f ' O f O f " "  Br=C'rQCr+IQC ~''-~C'~=DrOD~+IQD r . '  ' " Notice that, 
since B and C ~ are chain equivalent  to S -~ C(pc(1 +T)Oop~) and S -~ C(pD((1 
+T)6OoP3, f ( l + T ) 0 o  * Pc)), the assumpt ions  1.4 and 1.5 imply that  B and C ~ 
are chain equivalent  to non-negat ive chain complexes.  We define an n-dimen- 
sional quadra t ic  s tructure (6~, - ~ )  on the pair  g~: B-~  C ~ as follows: 

( - - )  . . . . .  T~iO~_ 1 (s > 1) 

0 

" C ! . . . . .  = D . . . . . .  ( ~  D n+  l . . . .  (~  C . . . . . . .  ~ Cr! = Dr' Q D r +  i �9 Dr" 

0 ~ o  = o 
0 

:C~.-r=D . . . .  O D . + X - , O D  . . . . .  ~ C~r=D'rQDr+a OD 7 

i r i s= (__)  . . . . . .  I T t / I s_  1 ( s > l )  

0 

: B n - 1  . . . .  = C '"-1 . . . .  @ C . . . . .  @ C .. . .  1 . . . .  -~Br= C'r@ Cr+ 1 @ C'/ 

i qc(l + T)O~ (-)"r PcO 
~o = 0 ( - )"  +~j 

0 ; 
: B " - l - r =  C,,-1-r  0 C , - r O  C . . . .  1 - r ' - ' ~ B r =  Crr @ Cr+ 1 @ Ctr t, 

where p' = (PD, qD fJc): D . . . . .  = (D/D')r + 1 �9 (C/C')r--* D; and j '  = (JD, 0): D . . . . .  ~ Dr + 1. 
A direct calculation shows that  this is Poincar6. And  the duality implies that  B 
is ( n -1 ) -d imens iona l  and C ~ is n-dimensional.  Thus (g~: B--+C) is an n- 
dimensional  quadra t ic  Poincar6 pair. Now the triads in the l e m m a  are given 
by 
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: gc 

c '  ~ - - ,  D' 

g~, v,~ =(r162 t 

' 

�9 g~ ~ f " ,  7~2=(~,3qj,0,0 

C t ---,-:~ D" 
gD 

where gc=( -1 ,0 ,0 ) ,  g~=( -1 ,0 ,0 ) ,  gc=(0,0, 1), g~=(0,0, 1). These are (,7+ 1)- 
dimensional quadratic Poincar6 triads. There union is 

( F = f ' O f  0 ( - f " ) :  (C' WB C")~ = C',.@B~_ ~ @ C 7 o ( D ' u c ,  D")~ 

' ' ~ D "  (0 w ~ O , O  w~O)) 

where C ' u B C "  and D'uc ,  D" are push-outs of 

C' ~ g'~" B g'd'__, C" 

D' ~ gb C' gl; ,,,, 

i.e., C('(g'og'~) ) and C('(g'D,g~)) respectively, and 

( 0 u ~ 6 0 ) s = 0 0 0 @ ~ |  D,,,+I r O D  . . . .  O D  "+1 " O D  . . . . .  O D  ' ' '+~- '  

~D',.OD',._,@D,.OD'} ~OD'; 

(0 u~0)~ = 0 0 0 0  q,.~O 0 0 0 :  C . . . .  0 C ' " - 1 - r 0 C " - ~ 0 C  . . . .  ~ - r o c  . . . . .  

-,. c; o c;_, �9 c, .o c';_~ �9 c;'. 

Chain equivalences 

t(0,0,1,0,0): C - - C ' u ~ C " ,  and 

t(0,0, 1,0,0): D -0 D'wc, D" 

make the following diagram commute: 

f C - - - - ~  D 

~ ;  Orp Ct u B C" F --> / )  uCr ' 
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and 
t(O, O, 1, O, O)~h~(O,O, 1, O, O) = (0 ~ 0 ) ~  

'(0, o, 1, o, o)~4,s(o,o, 1, o, 0)=(0 u~o)~, 

for each s>0.  Therefore the union is homotopy equivalent to the original 
quadratic Poincar6 pair, and the lemma is proved. [] 

(1.6) Remarks. (1) If c is strictly n-dimensional, then the conditions 1.4 and 1.5 
are satisfied when the images of C'" and D '"+1 by ( l + T ) ~ o q  ~ and (1 
+ T ) ~ o  q* lie in C~) and D~), respectively. 

(2) If C, C', D', C/C', D/D' are free, then the above argument can be carried 
through in the category of free chain complexes. 

(3) If the splitting of the boundary is already given, we can construct a 
splitting with the given splitting of the boundary. 

2. Geometric chain complexes and the stable splitting lemma 

Geometric modules, geometric morphisms, and geometric chain complexes are 
defined in [10, w 1]. Since these are essential to this paper, we review them at 
first. Let p: E--,X be a map, where X is a metric space. This is called the 
control map. 

(2.1) Definitions (Quinn). A geometric Z-module on E (generated by a set S) is 
a free module Z[S]  together with a map of the basis f :  S ~ E .  We usually 
require that geometric Z-modules be locally finite in the sense that every point 
in E has a neighborhood whose preimage by f in S is finite. 

A geometric morphism h: Z [ S ] - - * Z [ T ]  of geometric Z-modules with f:  
S--*E and g: T--*E is a sum Nmjp} x'y), where m y Z ,  xeS, yeT, and p}X'Y) is a 
path: [0, t-y) (x,y) is a non- t j '  ]--*E which starts at f(x) and ends at g(y). Here tj 
negative real number. We require that the sum is locally finite in the sense that 
for each xeS there are only finitely many paths o(. ~'y) with non-zero coefficient, r j  

and for each yeT  there are only finitely many paths o(. x'y) with non-zero r j  

coefficient. In a morphism we allow a deletion or an insertion of a path with 
coefficient 0. Morphisms are composed by composing the component paths 
and multiplying coefficients: let h = r  (~'Y)- r-, �9 mjpj . 7g[S]-~Z[T] ,  k=Znlu!Y,s)" 
2 g [ T ] - ~ [ U ] ,  then kh=Znimj#1Y'8)p~ x'y). Here the Moore composition of 
paths is used, and we write compositions of paths from right to left. 

A homotopy (~) of a morphism is obtained by changing all the paths in the 
morphism by homotopy keeping the endpoints fixed. 

A morphism has radius e (in X )  if each path with non-zero coefficient in the 
morphism has image in X (via p) inside the closed ball of radius e about its 
starting point. Similarly, a homotopy of morphism has radius e if the homotopy 
of each path has image in X inside the closed ball of radius e about the 
starting point of the path. The symbol T denotes a homotopy of radius e. 

Suppose W is a subset of X. The restriction Z [ S ] I W  of a geometric module 
�9 [S], f :  S ~E ,  to W is Z[(pf)- l(W)].  The restriction hlW of a morphism h is 
obtained by throwing away all the paths with initial point outside of p-I(W).  
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A geometric morphism h: Z [S]  ~ Z [ T ]  of radius e is an e-isomorphism (with 
support W) if there is a geometric morphism k: Z [ T ]  ~ I [ S ]  of radius e such 
that there are e homotopies (=homotopies  of radius e) kh ,7  1, 
hk T l ( k h l W  T 1, h k I W  T 1). Here l's denote the "identity" morphisms made 
up of appropriate constant paths with coefficient 1. According to this defi- 
nition, an e-isomorphism with support W may not be an ~-isomorphism. It is an 
e-isomorphism if W =X.  

(2.2) Remarks. (1) We sometimes do not mention the map of the basis f:  
S--, E of a geometric Z-module Z IS] and pretend as if the basis points were in 
E. 

(2) Suppose E has a universal cover /~. Then by taking the pull-back S ~ E  
of geometric Z-module 7g[S] on E, we get a geometric Z-module on /~, which 
is naturally a free Z [n lE] -modu le  generated by S. A geometric morphism 
between geometric Z-modules on E induces a 7/Ire 1El-module homomor- 
phism. 

(2.3) More Definitions. A geometric Z-module chain complex C on E (with 
support K c X)  is a sequence of morphisms of geometric Z-modules on E: 

d t  d~ - 1 

C: ... "-* C i > Ci_ 1 -  ~ ... 

such that d i_ i di~O(d i_ l dilK~O). Here 0 denotes the empty morphism. Such 
C has radius ~ if all d/s have radius e and there are homotopies 
d2~O(d21K~O ) of radius e. The word "support"  may not give a correct 
impression. It does not mean that C lies over K, but it means that, roughly 
speaking, C is a chain complex when restricted to K and may not be so 
outside of K. Thus C is a geometric chain complex if it has support X. Similar 
remarks will apply to the followings. 

A chain map f (with support K) between geometric Z-module chain com- 
plexes C, D (with support K) consists of geometric morphisms f~: C I ~ D  i such 
that d f ~ f d ( d f l K  ~ f d l K ) .  It has radius ~ if all f /s  have radius e and there are 
homotopies d f ~ f d ( d f I K ~ f d [ K )  of radius e. 

A chain homotopy (with support K c X )  between two chain maps f ,g: C ~ D  
(with support K) is a collection {Hi} of geometric morphisms Hi: Ci~Di+ 1 
such that d H i + H i _ i d ~ f i - g i ( ( d H i + H i _ l d ) l K ~ ( f ~ - g l ) l K )  for all i. It has 
radius e if all the H/s  have radius e and there are e homotopies dHi 

+ H i -  1 d T fi -gi((dHi +Hi -  1 d)lK T (f~ -gl)l K). 
A chain map f:  C ~ D (with support K) is a chain equivalence (with support 

K )  if there are a chain map g: D ~  C (with support K) and chain homotopies 
g f ~  1 and f g ~  1 (with support K). It is an e-chain equivalence (with support 
K )  if f g and the two chain homotopies have radius e. 

A chain contraction of C with support K ~ X  (of  radius e) is a chain 
homotopy {si: Ci~Ci+ 1} with support K between 1 and 0: C ~ C  (of radius 
e). 

The dual ~[S]*  of Z [S]  is Z[S]  itself. When we have a geometric mor- 
phism h=2Ym~t~t. ~'y)'~ . Z [S]  ~ I [ T ] ,  its dual h*: ~.[T]* ~ Z [ S ] *  is defined to be 

pj (tj - t ) .  h* =Xmj#} y'~), where #}r'x)(t)= (~'Y) (~'Y) 
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The tensor product over 7Z. of a geometric Z-module Z[S] ,  f'. S-~E, on E 
and a geometric Z-module Z [ T ] ,  g: T ~ F ,  on F, denoted 7Z,Z [S] |  [T],  is a 
geometric Z-module Z [ S x  T], f x g :  Sx  T ~ E x F ,  on ExF.  The tensor pro- 
duct h | k of geometric morphisms h = Z mj p}X,x,): Z IS] ~ Z [S'] (on E) and k 

(y, y'). 
= X n i f l  i . Z [ T ] - ~ Z [ T ' ]  (on F) is defined to be ~.v'-,,,j,,i'- pj~(x'x')~ ,,ly, y ' ) ~ . i  , where 

(x,x') (y,y') Pj |  is a path from (x,y) to (x',y') in ExF:[O, t j + u i ] ~ E x F  sending t 
to (p~'X')(t),y) if O<t<t~ and to ,(x',,-~,!Y'r ~,, if tj<t<tj+u~ (p~,X'). 
[0, t j ] ~ E  and /x}Y'Y'): [O, u i ]~F ). (See Remark 2.2(1).) The morphism (hh') 
| (kk') is homotopic to (h | k)(h' | k'). 

In w 1, we studied quadratic Poincar6 complexes. Now we define geometric 
quadratic Poincar6 complexes. Again p: E--* X is the control map. 

(2.4) Definitions. An n-dimensional geometric Z-module quadratic complex c 
=(C,O) on E with support K consists of the underlying strictly n-dimensional 
geometric Z-module chain complex C on E with support K and a quadratic 
structure ~b={~bslS>0}. Here ~b~ is a set of geometric morphisms: C . . . . .  
=(C . . . .  )* ~ C, (feZ) such that 

(,) [dt~s + (_ ) ,  r +(_)  . . . .  x(~j +~ +( _y+,  Tr ,)] IN ~ 0  

:C . . . . . .  IlK->C~ (s>=O). 

T above sends f: CP--* Cq to ( - )Pqf* :  c q ~  Cv. Such a complex c is PoincarO if 

(1 + T)~0: C"-*-~C 

is a chain equivalence with support K. When the support is X, we do not 
mention the support. It has radius e if C, all the morphisms Os, and all the 
homotopies (*) above have radius e (and (1 + T)~b 0 is an e-chain equivalence 
with support K when it is Poincar6). 

A map (resp. homotopy equivalence) of n-dimensional geometric Z-module 
quadratic complexes on E (with support K) 

f: (C,~b)~(C',~') 

is a chain map (resp. chain equivalence) f:  C ~ C' (with support K) such that 

(**) f ~b J *  ~ ~b' ( f  ~b ~f *[K ~ ~'~ I K). 

A homotopy equivalence f is an e-homotopy equivalence (with support K) if f :  
C-~C'  is an e-chain equivalence (with support K) and the homotopies (**) 
have radius ~. 

Similarly, geometric symmetric PoincarO complexes (of radius ~) and geomet- 
ric quadratic or symmetric PoincarO pairs and triads (of radius e) can be defined 
by replacing everything in the standard definition by geometric objects (of 
radius a) and replacing the necessary identities by homotopies (of radius e). If 
M is a PL manifold of dimension m, then a PL triangulation of M produces an 
m-dimensional geometric Z-module symmetric Poincar6 complex on M. See 
Ranicki [13] and Quinn [10]. This will be denoted a*(M). Unions and tensor 
products of geometric complexes and pairs are defined by the same formulae as 
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the standard cases. Then the following is the main technical result of this 
section. 

(2.5) Lemma. (Stable splitting lemma for geometric quadratic Poincar6 pairs). 
Fix n and p: E ~ X .  Given any e>0,  there exists 6 > 0  such that for any (n+l) -  
dimensional geometric Z-module quadratic Poincard pair c on E of radius 6 in X 
and a subset Y of X,  the (n+ 2)-dimensional geometric 7~-module quadratic 
PoincarO pair a*(S 1) @c on S ~ x E is e-homotopy equivalent to a union of two (n 
+2)-dimensional geometric 7Z-module quadratic Poincar~ triads of radius e lying 
over yE and X - Y  -~ respectively. Here we use the control map p'=(constant 
map) x p: S 1 x E--* {pt.} x X = X. 

To prove this, we need the following local "folding" argument (of. [1] w 14). 

(2.6) Lemma. I f  a geometric 7Z-module chain complex (C,d) on E of radius 6 in 
X has a chain contraction with support W ( c X )  of radius 6 and satisfies the 
following: 

CIIW=O for l<k,  

then C is 26-chain equivalent to a geometric Z-module chain complex (C',d') on 
E of radius 6 in X such that 

(1) CilW-O=O for l<k,  
(2) c ' l s - w = f l X - W ,  and 
(3) there exists a chain contraction of C' with support W -2~ of radius 36. 

Proof Let {sl} denote the chain contraction of C with support IV,, and let i, j, r, 
q denote the following canonical inclusion morphisms and projection mor- 
phisms: 

i q 

C k [ X -  W ~ ,C k' ~Ckl w-~,  j 

We have homotopies dk+ l sk j~  j and dkj~O. Define (C',d') as follows: C't= C l 
(l+k, k+2), C'k=CklX- -W -~, C'k+z=Ck+2@CkIW-~; d'k=dk i, d'k+l=Pdk+,, 
d'k+2=(dk+z,Skj), d'k+3=t(dk+3,0), d't=d I otherwise. Let T be a chain complex 
with Tk+2=Tk+I=Ck[W --~, Tt=0 otherwise, and d r = l :  Tk+2--*Tk+l; and let 
T' be the desuspension of T. There are obvious chain equivalences f:  
C--* C �9 T and h : C' @ T' ~ C'. Define a chain map g: C | T ~  C' @ T' by 

g t = l  if l q : k + l  

( j) -~- : C k + I O C k I W - b - - - - ~ C k + I ( ~ C k l W  -iS. 
gk+l qdk+ 1 

Since gk+ 1 can be decomposed as 

g is a g-isomorphism. Composing f, g, and h, we obtain a 2 &chain equivalence 
between C and C'. A desired chain contraction {s't} of C' is defined by s i=0  
for l<=k, S'k+l=t(Sk+l, qdk.  O, S'k+2=(Sk+2, --Sk+ESk+lSkj), and s'l=s l for l>k  
+3. [] 
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Using this l emma  repeatedly,  we get the following: 

(2.7) Corollary.  Fix n and p. Given any e>O, there exists 6 > 0  such that for 
any n-dimensional geometric Z-module chain complex C on E of radius 6, C is e 
chain equivalent to an n-dimensional geometric 7Z-module chain complex C' on E 
of radius e satisfying: 

(1) CoIW-~= . . . .  C ' . _ 2 1 W - ' = 0  
(2) c I x - w = c ' l x - w  
(3) there exists a geometric morphism s" C'._ ~ -~ C'. of radius ~ such that 

d, s lW -~.7 1 and sd,  [W-~ T 1. 

It is in general impossible to finish this e l iminat ion in the last two layers, 
but if we "s tabi l ize"  everything, wc can avoid the difficulty as follows. Let  
(A, dA) be the underlying geometr ic  Z -modu le  chain complex on S 1 of a*(S~): 
0 ~ A  l ~ A 0 - - * 0 .  Then A |  C' is a strictly (n+  1)-dimensional Z -modu le  chain 
complex on $1 x E of radius e in X : 

O~ A, |174 | I)-e(Ao| ,)@(A, | 2)~ 

l |  ] 0 l |  ] 

and (A | C')i [ W - ~ = 0  if i < n - 2 .  The  morph i sms  

(1 (~Sti)(~ (1 ~)Si_ 1): (Ao ~) Cti)(~(A1 (~ Ci- 1) --+ (A0 (~ C'i+ 1) (~ (A1 ~) Cti), 

where s',_ 1 = s, and s' i = 0 if i + n - 1, define a chain contract ion of A | C' with 
suppor t  W -~ and radius e. Use 2.6 again to get a strictly ( n +  1)-dimensional 
geometr ic  Z -modu le  chain complex C on S I x E of radius e in X such that  
CilW-Z~=O if i < n - 1 ;  the boundary  m a p  d: C , + a ~ C  . is given by the 
following matr ix:  

d = ( ( - ) " d A |  l @ s j )  
l |  0 

:(A 1 | C',) | (A o | C',_ ~ I W -  2~) ~ (A ~ | C',) @ (A, | C',_ i), 

where j is the inclusion morph i sm of C',_ 1[ W-2e  into C',_ 1. N o w  we consider 
the following e- isomorphism of C,+ 1 to itself: 

�9 1 1 | ' 

where q is the project ion morph i sm of C'._ 1 onto  C'._x[W-2fl Then 
h [ W - 3 ~ d l W - 3 f l  If we replace the boundary  m a p  d: C . §  by dh -1, we 
get a new geometr ic  Z - m o d u l e  chain complex C', which is e- isomorphic  to C 
and the boundary  m a p  dh-1 is homotop ic  to the identity when restricted to -r 
W-3fi  Now we can delete C,+I[W -4~ and - '  -4~ C'. C,[ W f rom Thus we obtain 
the following: 
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(2.8) Lemma.  Fix n and p. Given any e>0,  there exists 6 > 0  such that for any 
strictly n-dimensional geometric Z-module chain complex C on E of  radius 6 in 
X which has a chain contraction with support W and radius 6, there exists a 
strictly (n+ l)-dimensional geometric Z-module chain complex C on S ~ x E of 
radius e in X satisfying 

(1) C lies over X -  W -e, 
(2) C is ~-chain equivalent to A | C, and 
(3) ~IX-W=(A| 

Proof of 2.5. Suppose an (n + 1)-dimensional pair (f: C--, D, (60, 0)) of radius 6 
is given. Define subcomplexes C', D' of C, D as follows: 

CI = Ci I y-{i+ 1)a 

D;=D~IY -ia. 

Then 1.1 and 1.2 are automatic, and 1.4 and 1.5 are also satisfied. (See Remark 
1.6(1).) So formulae in the previous section will give a splitting into two (n+ 1)- 
dimensional triads. The only defect is that the common boundary pieces B and 
C ~ of Lemma 1.3 may lie all over X. It is easy to cut off the portion of B lying 
over y - , a ;  B is chain equivalent to S -1 C(Pc(l+T)Oop~).  Similarly for C.  
Next notice that pc(1 + T)Oop* is a chain equivalence with support X - y a .  
The formula on p. 167 of [-15] produces a chain contraction of S -~ C(Pc(1 
+ T)Oop*) with support X - y 3 a  and radius 36. Now, using Lemma 2.8, we 
can eliminate the portion of S -~ C(Pc(1 + T(~op~) lying over X _ya'  for some 
6 ' > 0  which depends only on 6 and n. Apply the same argument to C t. This 
ends the proof of Lemma 2.5. D 

The notion of pairs(=2-ads)  and tr iads(=3-ads) naturally extends to "(k 
+ 2)-ads" (Ranicki [13]) or "higher algebraic bordisms" (Weiss [17]). A (k + 2)- 
ad x of chain complexes is a collection of 

(1) the underlying chain complex [x], 
(2) k +  1 (k+ 1)-ads 0oX, . . . ,0kx satisfying 

~j~iX=~i~j+l x if O<=i<=j<k, 

(3) a pair UOix- , l x l .  
Let x be a (k+2)-ad. When i 1 < ... <i~, we define ~{i ........ }x by 0ii~ ..... O,x. 

An n-dimensional quadratic Poincar~ (k+2)-ad x is a (k+2)-ad x of chain 
complexes together with structure maps 

(O~)s: I ~ x l  "-I~d . . . .  -~ I ~ x l ,  ~ c  {0, 1 , . . . , k }  

such that 
(1) ?i x is an ( n -  D-dimensional quadratic Poincar6 (k + 1)-ad for each i, and 
(2) (U 0i x + ]x[, (~k,, U ~9~)) is an n-dimensional quadratic Poincar6 pair. 

Here I~l denotes the size of the subset c~. 
Let X be a metric space and p: E - - ,X  be a map. If we use geometric Z-  

module chain complexes on E, we can define geometric ~-module quadratic 
PoincarO n-ads on E. Such a thing has radius ~ (resp. support K c X) if all the 
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involved chain complexes, chain maps, chain homotopies,  and structure maps 
are replaced by those of radius e in X (resp. support  K). An  n-ad x is called 
special if ~3~0.~ ...... _2~x=0. Recall that  an "n-ad"  in the usual sense is a to- 
pological space together with n - 1  subsets. We call this a topological n-ad to 
distinguish it from n-ads of (quadratic) chain complexes. Let (E,# ,E)  be a 
topological n-ad. A geometric Z-module quadratic PoincarO n-ad x on (E, ~ , E) is 
a geometric Z-modu le  quadratic Poincar6 n-ad on E such that 01x lies over 
0iE for each i. 

Let us consider the following problem. Let M be an n-dimensional compact  
manifold with a PL-tr iangulat ion L, and fix a metric on M. Also let p: E ~ M  
be a map. Suppose each n-simplex A of L is given a geometric Z-module  
quadrat ic  Poincar6 (n+2)-adx A of dimension m on a topological (n+2)-ad  
(p-  I(A), p -  1 (8, A)) such that 

(2.9) (compatibility) if two distinct n-simplices A and A' have a c o m m o n  (n 
- 1)-face, ~i A = 0j A', then 0 i xn = - 0j x~,. 

We would like to glue all these (n + 2)-ads to get an m-dimensional geomet- 
ric Z-module  quadrat ic  Poincar6 pair on E. We can also consider a problem of 
the inverse direction. Notice that there is a small difficulty. Ranicki 's  formula 
allows us to glue things only along a codimension 1 boundary  piece, so we 
have to be careful about  the order of  glueing. There are several ways to avoid 
this difficulty; we do it in the following way. First we glue locally so that the 
local blocks behave nicely, and then we glue the blocks (which can be glued in 
any order). When  we split something, we first split it into several blocks so that 
each block is over a union of  simplices in a controlled way, and we split each 
block into the desired pieces. More  precisely, assume that  the tr iangulation L 
of  M is the first barycentric subdivision of another  tr iangulation K. For  each 
vertex v of K, consider its star S(v) in L, or the dual cone. Two such dual cones 
are either disjoint or  meet along codimension 1 cell(s). The glueing and 
splitting problem over S(v) can be solved by looking at the link L(v) of v in L. 
Note  that  L(v) is an ( n - D - d i m e n s i o n a l  sphere and the tr iangulation is the 
first barycentric subdivision of another. Thus we can keep on reducing the 
dimension until the link becomes a circle, and in this case there is an obvious 
order of  2-simplices and glueing and splitting can be done. Thus we have: 

(2.10) Theorem. (Glueing over a manifold). Let L be the barycentric subdivision 
of  a PL-triangulation of  a compact n-dimensional manifold M and p: E--* M be a 
map. And suppose each n-simplex A is given an m-dimensional geometric Z-  
module quadratic Poincar~ special (n+2)-ad on (p-l(A), p-l(~?,A)) which are 
compatible on common faces (in the sense of 2.9). Then one can glue them 
together to get an m-dimensional geometric Z-module quadratic Poincard pair on 
(E, p-  1 (~3M)). 

(2.11) Theorem. (Stable splitting lemma over a manifold). Let us f i x  m and p: 
E--*M and let L be the first barycentric subdivision of a PL-triangulation of  the 
compact manifold M. Fix a metric of M. Let e be any positive number. Then 
there exists 6 > 0  such that any m-dimensional geometric Z-module quadratic 
Poincark pair on (E,p-I(OM)) of radius 6 can be split into pieces each of which 
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has radius e and lies over an e-neighborhood of the corresponding simplex of L, 
after tensored with a sufficiently large number of cr*(S1)'s. 

(2.12) Remark. If a splitting of the boundary is already given, then the result 
can be arranged to have the given splitting of the boundary. 

3. Surgery spaces and assembly maps 

Let p: E--*X be a map, where X is a metric space. In this section we first 
construct an ~-spectrum IL(X;p) which might be called a "controlled L -~ 
theory spectrum". If X is a single point *, then IL(*; E ~ * )  is homotopy 
equivalent to the L-~-theory spectrum IL(E), whose homotopy groups are the 
limits L,~~ E) of Ranicki's lower L-groups/2,J~(nl E) [11]. Next we describe 
homology H.(X;IL(p)). It is a sort of generalized homology with local coef- 
ficients, defined by Quinn [9, w Given a space X and a spectrum ~ the 
usual (constant coefficient) generalized homology groups H . ( X ; 5  P) is the ho- 
motopy groups of an g2-spectrum lim f2"(~ x X/{base point} x X) 

n ~ c ~  

= lim f2"(( U ~ • {x})/(Q) {base point} x {x})). In our case, we apply the L - ~ -  
n ~  cO x E X  x ~ X  

theory spectrum functor L ( - )  to each fiber of p: E--,X, and define 
H.(X;IL(p)) to be the homotopy groups of an f2-spectrum IH(X;IL(p)) 

= lira ~2"(( U 1L , (p-  l(x)) x {x})/( U {base point} x {x})). Actually, we assume 
n ~  or3 x E X  x ~ X  

that X is a polyhedron and apply IL ( - )  blockwise to p and use 1L(p-l(d))• A 
as a building b]ock of IH(X;IL(p)), where A is a simplex of X. When p is 
sufficiently close to being a fibration, these two approaches are equivalent 
[ibid.]. Lastly we show that the homology spectrum IH(X; IL(p)) is homotopy 
equivalent to the controlled L-~176 spectrum IL(X;p), for certain maps p 
(Theorem 3.9). This will be used to prove the main theorem (4.I1) in section 4. 

Now let us begin defining IL(X;p). A point in L , ( X ; p )  is, roughly speak- 
ing, an (n+l)-dimensional geometric ;g-module quadratic Poincar6 complexes 
on l t~x E whose sufficiently high suspension (defined below) is cobordant to 
one with arbitrarily small radius measured in X. For example, an n-dimension- 
al surgery problem between PL-manifolds M ~ N together with a map N ~ E  
inducing an isomorphism on ~a produces such a quadratic Poincar6 complex 
on E; one can make the radius as small as one likes by choosing sufficiently 
fine PL triangulations. Actually, by successively taking barycentric subdivisions 
of M and N, one gets a sequence of quadratic Poincar6 complexes with radius 
converging to 0. This defines a "path"  in the "space of quadratic Poincar6 
complexes" IP,(X; p). 

There are cases in which we need a restriction map IL(X,p)~L(W;plW) 
for an open subset W of X. Note that, when we restrict a geometric quadratic 
Poincar6 complex with support the whole space X to W, the result is generally 
not a quadratic Poincar6 complex on p-l(W) with support W because it is 
damaged near the frontier of W in X. So, when we define IL(X ; p) and IP(X; p), 
we need to consider complexes with support not necessarily the whole space. 
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This surely complicates the construction. Fortunately, we can simplify the 
construction, as long as we deal with compact X's. See Remark (3.3) below. 
One place where we might use restriction maps is the proof of theorem 3.9. 
There are at least two ways of establishing a homotopy equivalence between 
IH(X;IL(p)) and IL(X;p), one employed in this article and one employed by 
Quinn in [9]. In Quinn's way, one needs to check that IL satisfy a certain 
restriction axiom. In this article, theorem 3.9 will be proved without using 
restriction maps, but the full definition will be given for completeness. 

Fix p: E ~ X  and an integer n. A primitive k-simplex x of degree n with 
radius ~ and support K c X  is an (n + k + l)-dimensional geometric Z-module 
quadratic Poincar6 special (k + 2)-ad on ~ l x  E with radius e in X and support 
K c X, for some non-negative integer I. The composition IR ~ x E--* E--* X is the 
control map. We require that x be locally finite and have bounded radius in ~ 
x X  via 1 xp. If x has radius r and support K, then its faces OoX,...,Okx are 

primitive ( k -  1)-simplices of degree n with radius e and support K. 
For  a primitive k-simplex of degree n with radius e and support K, we have 

the following operations. 

(1) Reduction. Suppose e '>e  and K ' c K ~ X .  Then x can be regarded as a 
primitive k-simplex of degree n with radius e' and support K'. This is called a 
reduction of x. 

(2) External suspension, a*(S1)|  gives an (n+k +l+  l)-dimensional geo- 
metric Z-module quadratic Poincar6 special (k+2)-ad on S 1 x N I x E. Lifting 
everything into the infinite cyclic cover ~ x N t x  E = N  t+ 1 x E, we obtain a new 
primitive k-simplex of degree n. The result is denoted by Xx, and called the 
external suspension. Z " x  = X X.. .  ~ x has the same radius and support as x. 

Now we define the space of quadratic Poincar6 ads. 

(3.1) Definition. IP,(X;p) is the A-set with simplices (which will be called 
elaborate simplicies) defined inductively: an elaborate 0-simplex is a primitive 
0-simplex of degree n, i.e., a strictly (n+l)-dimensional geometric Z-module 
quadratic Poincar6 special 2-ad (=complex)  on N~x E for some l (with unre- 
stricted compact support and radius). An elaborate k-simplex a consists of an 
underlying primitive k-simplex [a[ of degree n, together with k + l  elaborate (k 
-1)-simplices •o a . . . . .  ?k a. We require these to satisfy the usual ~g c~j identities, 
and in addition require that the external suspension of a reduction of the 
underlying primitive (k-1)-s implex IOi~r[ of Oia be equal to the i-th face c?i[a[ 
of the underlying primitive k-simplex [a[. The support and radius of an elab- 
orate simplex are those of its underlying primitive simplex. 

We are not interested in IP,(X;p) itself; it is contractible, because there is 
no restriction on radius and support in the definition. If we required that the 
support be equal to X and the radius be arbitrary, then we would have the 
usual L-~-group  spectrum. In the following definition, we are going to put a 
restriction on both the support and the radius. Suppose K is a compact subset 
of X, e is a positive number, and N is a positive integer, then IP,(X,K,p,e) 
(IP,(X,K,p,e) (N)) denotes the subset of IP,(X;p) made up of all the simplices 
with support containing K, radius not exceeding e (and the dimension of the 
underlying primitive simplex less than or equal to N). 
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(3.2) Definition. We define a d-set  IL,(X;p) as follows. Let A k be a k-simplex 
with the obvious  A-set structure and let [0, oe) have the t r iangulat ion with 
vertices at integer points. The obvious ordering of vertices makes  [0, oo) into a 
A-set. A k-simplex of IL , (X;p)  is defined to be a A-map Ak| oo)~IP,(X;p) 
which satisfies the following condit ion:  there are an increasing sequence of 
compact  sets K i c X  with (.J (interior of  K ) = X ,  a sequence ei of numbers  
mono tone  decreasing to 0, and a positive integer N, such that  the image of A k 
|  0o) lies in IP,(X, Ki,p,~i)(N). Here | denotes the geometr ic  product  of A- 
sets [14]. 

(3.3) Remarks. (1) When  X is compact ,  we may replace IP,(X, KI,p,g) (N) by 
IP,(X, X, p, e) (N) in the above. In this case, we write IP~(X, p, ~:) (resp. IP~(X,p, e)(N)) 
instead of IPo(X,X,p,e) (resp. IP,(X,X,p,O(N)). The union U{IP ' (X,p,  0 I e > 0 }  
(resp. U {IP~(X,p, e)(N)}) is denoted IP~(X; p) (resp. IP'(X; p)(N)). 

(2) IP,(X; p) satisfies the Kan  condition. As was ment ioned  a b o v e ,  this fact 
itslef has no impor tance  at all. Wha t  is impor tan t  is the construct ion used to 
prove  it. Note  that  the same proof  works for IP '(X;p).  For  example,  suppose 
we have a " h o r n "  of k-simplices of IP,(X;p), Yo . . . . .  Yk, satisfying 8jy i = --81Yi+ 1 
(0 <i<j < k). After some necessary suspensions, we can fit Y0,-..,Yk together  to 
produce a new k-simplex Yk+ 1. There is an obvious cobord ism (product  cobor-  
dism) between Yk+~ and itself, and this gives a (k+  1)-simplex x such that  8~x 
=y~ ( i=0 ,1  . . . .  , k + l ) .  The  radius and suppor t  of x depend on those of .Vi'S (i 
=0 ,  1, .. . ,  k). Therefore,  IL , (X;p)  also satisfies the Kan  condition. 

The next result describes the spect rum structure. Unfortunately,  our  sub- 
scripts for IL do not coincide with the indexing for spectra. 

(3.4) Theorem. There is a natural homotopy equivalence T: f2IL,(X;p)  
~IL,,+ l (X;p) .  

Proof A k-simplex of g21L~(X;p) is a d - m a p  a: Ak |  zo)| We 
define Ycr: AR| oO)~IP ,+ I (X;p )  as follows. Let r be an m-simplex of A k 
|  (7(z |  consists of several simplices of IP,(X;p). We can fit these 
together  after some necessary suspensions and the result is an m-simplex of 
IP,+x(X;p),  since c r ( z | 1 7 4  This defines a k-simplex Tcr of 
IL,+ ~(X; p). 

We will show that  T is a h o m o t o p y  equivalence. First of all, note that  each 
O-simplex of IP,+I(X;p) can be natural ly regarded as a 1-simplex of IP,(X;p) 
with two 0 faces, and a O-simplex (r: [0, oo)--+IP,+~(X;p) of IL,+~(X;p) can be 
expressed as in the following picture. 

0___2____ 0.__2____ 0 . . . .  
r ~x(1) o(2) 

afrO, H) ,~([ 1,21) 

0 . . . . . . . .  0 . . . . . . . .  0 . . . .  . 
O 0 

This itself is not a 0-simplex of g2IL,(X;p), since this picture is not tri- 
angulated. By inserting trivial cobord isms  as in 3.3(2), we can t r iangulate  this 
picture : 
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0_--~ . . . .  
0-(0) t o /  a(1) / a(2) 

oy o,y / 
/al[0,  H) / ~([1,2]) / 

0 . . . . . . . .  0 . . . . . . . .  0 . . . .  . O o 

Here t i denotes the trivial (=product)  cobordism between or(i) and itself. Or one 
can supply a more formal construction: suppose gr([-i, i + 1]) ~ IP~+x(X, Ki, p, el), 
then one can easily construct a "simplicial" map /11| i+1] ~IP,(X,  K i,p, el) 
by sending one of the two 2-simplices of/11 |  to the 2-simplex a([i,i 
+ i]) whose edges are a(i), or(i+ 1) and 0, and the other to the 1-simplex a(i). 
Then use the relative /1-map approximation theorem of Rourke and Sanderson 
[14, theorem 5.3] to get a A-map. Here we use the fact that IP,(X, Ki,P, ei) is 
Kan (3.3). Observe that this gives the same map as above (up to homotopy). 
Similar argument will be used often later, and will be called the "triangulation 
argument".  Now this defines a 0-simplex E0, o o ) |  ) of ~IL,(X,p).  If 
we apply T to this, then the result is different from the original only by trivial 
cobordisms; therefore these two can be connected by a 1-simplex of 
ILn+l(X;p); i.e., T maps into every component. Next consider an element of 
the relative homotopy group ~j(T). By the Kan condition it is represented by a 
map p: AJ@[O, oo)~IP,+I(X;p) such that PlSiAJ=0 for i<j and pIOj/1J=Tcr 
for some a: A ~ - I |  [0, oo ) |  ~ IP , (X;  p). We need a deformation of p rel 8; p to 
a map in the image of T. An extension o': /1J@[O, oo)| of ~r can 
be constructed by first letting o-'(x)=0 for r in (Us~/1J)| oo)| ~ 

i<j 
|  oo)|  {0, l} and then using the triangulation argument. There is an ob- 
vious cobordism which gives a simplex connecting p and To'. [] 

Now let us consider a special case when X is a single point ,. In this case, 
1Lj(*;E--+,) is homotopy equivalent to IP j ( , ;E-o , ) .  We denote IP j (* ;E~*)  by 
~Lj(E). 
(3.5) Proposition. There is a natural isomorphism 

O: L~~ 

where G is the fundamental group of E. 

Here L; ~ is the direct limit limL(. -j) of Ranicki's lower L-groups [11]. 
j~oo 

L,(.-i)(G) is defined to be the kernel of the product of projection maps 

j+1 
ij1) t711+1 G)~ 1-I I!1)  G) .  n+j+ i~.~ X ~n+j+ I( ~'jx 

The m a p / j - ; )  ~ / j - j - 1 ) i s  induced by the map 

1(x) t T J +  a __+ r ( l )  , 2 G) .  o-*(S1)@: ~.+j+l~_ xG) / . : ,+j ,z(Z j+ x 

Proof of 3.5. First let us define 0. An element of/3,-i)(G) can be represented by 
a free (n+j+l)-dimensional quadratic Poincar6 complex over Z[Tl j+l x G]. 
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Represent this by a geometric Z-module  quadrat ic  Poincar6 complex o n  T j + l  

xE,  where T J+l is a ( j+ l ) - to rus .  The pull-back of this on ~fl+l  x E  has a 
bounded radius in the ~,J+ 1 coordinates. So we can regard this as an n-simplex 
of IL0(E ) with zero boundary,  and hence as an element of ~,ILo(E). (cr*(Sl)|  
on the left side corresponds to 27 on the right, so this defines a homomorph i sm 
0 of  the direct limit. 

Next we show that 0 is onto. Take an element of ~ IL(E) and represent it 
by a locally finite geometric Z-module  quadratic Poincar6 complex c on IR j 
x E  with bounded radius on IR i for some j. Split c along {0} x l U - l x E  

without taking the external suspension; we obtain a splitting c ~ c + v 4 c _ ,  
where b may lie all over ~ xE.  We proved that the geometric Z-module  
quadratic Poincar6 complex o-*(S1)| on S I x  ~:{J x E is homotopy  equivalent 
to another complex d which lies on S 1 x{0} xF, fl - l  xE.  So Z c  on F , . x l R J x E  
has a splitting c'+ wd,c' , where d' is the pull-back of d in R x {0} x IR j -  1 x E. 
Note that Zd',  the pull-back of cr*(S1)| ' (on I R x S  ~ x F ,  j-1 xE)  on N x N  
x IR J- ~ x E also has a splitting d+ w d,d'_. Here + and - are with respect to 

the second 11t. We claim that Z c  and Xd'  are cobordant .  X c O ( - 2 7 d ' )  is 
cobordant  to (c'+ <Od, ( - d + ) ) G ( c '  W_d,(--d'_)). Since c'+ wd, ( - d + )  (resp. 
c '  w - d ' ( - d ' ) )  lies over ~,, x [0, or) x IR j-1 x E (resp. ~, x ( - c~, 0] x IR j-1 x E), 
the next lemma implies that these are cobordant  to 0, and hence Z c is 
cobordant  to 27d'. Repeat  this process until one gets Z'Je ', where e is a 
geometric 7/-module quadrat ic  Poincar6 complex on T J x E, and e' is the pull- 
back of e on NJ x E. This e represents an element of L~ 0o (G). Obviously 0 sends 
this element to [c] ~z ,  IL(E). 

(3.6) Lemma.  Any locally f ini te  Z-module quadratic Poincar~ complex on F, j 
x E which lies over [-0, c~) x IR J- 1 x E is locally f ini tely  cobordant to zero. 

Proof  Let c be such a complex, and t denote the parrallel translation of IR 
x N  j -1  x E  defined by t ( x , y , z ) = ( x + l , y , z ) .  Then c is cobordant  to a locally 

finite complex 
C (~ [( -- t C) (~ (t 2 C)] (~ [( - -  t 3 C) {~ (t 4 C)] ( ~ . . .  

= [c @ ( - t  e)] | [(t 2 c ) @ ( - t  3 e)] @ . . .  

which is cobordant  to zero. []  

Let us go back to the proof  of 3.5. We will prove the lnjectivity of 0. Pick 
an element x in the kernel of 0. Its image is cobordant  to 0. Apply  the same 
argument  to this null cobordism as in the onto part. This will show that x 
=0.  [ ]  

This justifies the following notat ion:  

3.7 Notation. L~~176 :=rt IL(E). 

Next we describe homology  H , ( X ;  IL(p)) defined by Quinn  [9, w 8], in terms 
of A-sets. We assume X is a finite polyhedron and p is a simplicial stratified 
system of fibrations. We fix a A-set K with realization ]K] equal to X;  for 
example, the first derived of a triangulation of X gives such a A-set. 
H,(X; IL(p ) )  does not depend on the choice of K [ibid.]. Recall that  I L ( - )  is a 
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covariant functor from spaces to spectra of A-sets (3.4). We apply I L ( - )  
blockwise to p. Define a A-set IL.(p) by: 

{ U I L , ( P - ~ ( A ) ) |  
A e K  

where a simplex A e K  is given the obvious A-set structure, and the equivalence 
relation ~ is generated by " a simplex in IL.(p- 1 (0j A)) | 0~ A is identified with 
its image in lL(p-~(A)) |  The realization IlL.(p)l is homeomorphic to" 

{ U III-',,,(P-~(A))I x IAI}/~, 
A e K  

since 1L.(p-I(A)) is Kan. Here ~ is induced by the identification of simplices 
given above. Denote by p,  the natural projection of [lL,(p)l to X. Also the 
section i: X--,IIL.(p)I is defined by fitting together the base points of the pieces. 
Further the structure maps ]IL_.(p-I(A))I -~ ]~2IL_._~(p-~(A))] ~ f2 ILL._ l(p -I(A))I 
fit together to make IIL_.(p)I into an ex-spectrum ([9, p. 423]): 

IlL .(p)l--> K2x(]lL_,_ ~(P)I). 

For a subpolyhedron Y of X, the composition 

i n c l u s i o n  
IIL_,(P)I ~ s I(P)I) , ~2(]IL_,_ ~(p)l/i(X)) 

induces a map: 

IlL_,(p)l/i( X)  w p , I ( Y) ~ f2(llL_,_ 1 (p)l/i( X)  ~2 p , I ( Y)). 

Taking ~2 "- j  of this we have a map: 

~2"- J([lL_,(p)]/ i( X)  u p ,  l ( y )  ) _+ ( p -  ; + I(IIL_, - ~ (p)[/ i( X)  ~ p , l ( y)  ). 

We replace this by a A-map between A-sets, applying singular complex functor 
S and then applying forgetful functor F [14]. 

(3.8) Definition. The homology spectrum H(X, Y;IL(p)) is an s of A- 
sets defined by 

II-I;(X, Y; lL(p))= lim FS(2 n J(llL ,(p)l/i(X) u p ,  I(Y)). 

The homology groups are the homotopy groups of this spectrum. 
The functor I L ( - )  which was used to construct IH(X, Y;IL(p)) is homotopy 

invariant; in fact, the homotopy type of IL(E) depends only on the fundamental 
group r i lE  (3.5). Therefore, according to Quinn [9, p. 421], I H ( - ; I L ( - ) )  is a 
homology theory on the category of polyhedra with stratified systems of 
fibrations. From now on we always assume p as such. The following is the 
main theorem of this section. 

(3.9) Theorem. (Characterization theorem). Let  p: E - * X  be a polyhedral 
stratified system o f  f ibrations on a f ini te  polyhedron X .  Then there is a homotopy 
equivalence A j: IHj(X; IL(p)) ~ IL_ ~(X; p). 
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Proof One way to prove this is to use Characterization theorem (8.5) of Quinn 
[9]. But, since we will also need something more explicit (3.10 below), we give 
a definition of the map A, called the assembly map, and prove that it is a 
homotopy equivalence. 

A k-simplex of FSs is a map p: S"-JxAk--~llL_,(p)]/i(X). 
By modifying p a little, if necessary, we may assume that there exist a compact 
codimension 0 submanifold V of S" - Jx  A k and a cellular map p': V~lIL,(p)l 
with respect to a triangulation of V such that p sends the complement of int(V) 
to the base point [i(X}] and p[V factors through p'. We may assume the 
triangulation of V is a derived of another, and regard V as a A-set. By a 
simplex-wise inductive application of the relative A-map approximation theo- 
rem of Rourke and Sanderson [14, theorem 5.3], we may assume p' is a 
(realization of) a A-map, because IL,(p-I(A))| is Kan. A further appli- 
cation of the approximation theorem produces a homotopic A-map, also de- 
noted by p', into a subcomplex (JIL_,(p I(A))x FG(A) of IL ,(p), because 
IL_,(p-I(A)) is Kan. For each (n-j+k)-dimensional simplex A of V, p'(A) is 
given a structure of (-j+k+l)-dimensional geometric Z-module quadratic 
Poincar6 special ( n - j + k + 2 ) - a d  on lWx E with radius measured in X = t h e  
diameter of p.p'(A). Glueing all these, after taking external suspensions if 
necessary, we obtain a ( - j + k + / ' ) - d i m e n s i o n a l  geometric Z-module quadratic 
Poincar6 special (k+2)-ad on lRZ'xE with radius max {diameter of 
p .  p'(A)I A ~ V}, which is a simplex of IP j(X; p). Note that, since p is a stratified 
system of fibrations, each piece can be shrunk to produce a copy of a smaller 
radius lying over a simplex A' of a barycentric subdivision of p. p'(A) (use a lift 
to E of a shrinking map p.p'(A)--*A'), and we fill in the resultant gaps with 
fine product cobordisms and glue these together to obtain a simplex with a 
smaller radius. More precisely, let V' denote the barycentric subdivision of V. 
There is an obvious simplicial map f:  V ' ~  V homotopic to the identity which 
maps, for each (n-j+k)-simplex A of V, one of the (n-j+k)-simplex A' of V' 
contained in A to A and all the others to faces of A. Apply the argument above 
to approximate (relatively) the composition p'f: V'~ I IL  ,(p)J by a A-map. 
Then use a lift of the homotopy lv~- f to shrink things. This is called the 
"barycentric subdivision shrinking argument". There is a cobordism between 
the original and the new simplex, and repeated application of this barycentric 
subdivision shrinking argument, together with the triangulation argument, gen- 
erates a map Ak| oc)--,IP j(X;p). Since the radius goes to 0 as t ~  or, this 
defines a simplex of IL j(X;p). This defines the desired map Aj. 

In the following proof, we will not mention taking barycentric subdivisions 
or external suspensions when we glue or split things for simplicity. First we 
will show that Aj maps into every component. Let ~ be a 0-simplex of 
IL j(X;p);  since X is compact, we may assume that a is a map from [0, oo) to 
IP ' j (X;p)  (m with a sequence e i monotone decreasing to 0 such that 
~r([i, oo))cIPj(X,p, ei) {N} for each i, where N is some positive integer. Embed X 
in S " - j  for a sufficiently large n, and let W and r denote a regular neigh- 
borhood of X in S "-~ and the retraction: W ~ X .  Let p': E ' ~ W  be the 
stratified system of fibrations obtained as the pull-back of p by r; E' retracts 
to E, and p' is an extension of p and has the advantage that the base space is a 
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manifold. ~(0) can now be regarded as an ( / - j ) -dimensional  geometric 7/- 
module quadratic Poincar6 complex on R~x E' with radius e o (with respect to 
p'). Let us split (stably) ~(0) into pieces lying over the simplices of W. Let e be 
any positive number;  the stable splitting lemma gives 6 > 0  such that if ~r(0) has 
radius 3, then each split piece lies over an e-neighborhood of the corresponding 
simplex of W. We may assume that this is the case. If e0 >6,  then we can 
replace o by another simplex 0'(0 = o(t +i) in the same component as 0, where 
i is chosen to be sufficiently large so that el <6- If we had chosen e sufficiently 
small at the beginning, we can construct a map of p' to itself of radius e which 
sends (p,)-i (e-neighborhood of A) to  ( p ' ) - l ( A )  for each simplex A~W. This 
map induces e-isomorphisms which make each split piece lie exactly over the 
corresponding simplex of W. The retraction E ' ~ E ,  then, induces isomorphisms 
that make each piece lying on N t x  E for some I. Thus we have a triangulation 
of W such that each simplex of W is given a geometric 7/-module quadratic 
Poincar6 ad on R t x  E. Since there are only trivial ads over the simplices in 
OW, we can associate trivial ads to the simplices in S " - J - i n t ( W )  and define a 
0-simplex of FSfP-J(IIL,(p)[/i(X)). We will show that Aj sends p into the same 
component  as m First of all, by construction, (Ajp)(O) and or(0) can be joined 
by a 1-simplex in IP'j(X;p). This is the first step of the inductive construction 
of a 1-simplex ~ connecting o and Ajp. Assume we have constructed a map 
from 0 o A 1 | [0, oo) • A 1 | [0, m] tj t~ 1A 1 | [0, oc) for some integer m, giving o 
and Ajp on each end. We can extend this over AI|  Ira, m+ 1] by applying the 
"barycentric subdivision" shrinking argument to the union tr([m, m+ 1])wz(A 1 
| {m})wAjp([m,m+ 1]) to get r ( A I |  {m+ 1}) and then applying the triangu- 
lation argument to the resulted cobordism to fill in the square A 1| [m,m + 1]. 
This inductively constructs the desired homotopy. Thus Aj maps into every 
component. 

Next we will show that the relative homotopy groups ~k(Aj) vanish for all 
k. Its element is represented by a map o: Ak| oQ)~IP'_j(X;p) such that 
O[~idk=o for i<k a n d  O[~kAk=Ajp for some p:  sn-JXOkAk--*l[L_n(p)I/i(X) 
such that p(S"-Jx~?OkAk)=[i(X)]. We may assume that p maps the comple- 
ment of the interior of some codimension 0 submanifold V of S "-j x 0 k A k to 
i(X), and hence restricts to a map p' :  V~[IL ,(p)[. Roughly speaking, 0(0) is a 
Poincar6 pair whose boundary is split into pieces lying over simplices of V. To 
find a k-simplex p~ of FSgP-J([IL,(p)[i(X)) whose image Ajp~ by Aj is homo- 
topic to cr fixing the boundary, we want to apply the stable splitting lemma to 
0(0). As before we assume that X is a subcomplex of S "-j. This time let W 
denote a regular neighborhood of X in S "-J  x A k, where S " - j  is identified with 
S " - j  x {the center of the ( k -  1)-simplex C?kAk}. We extend p to the pull-back p': 
E ' ~  W using the retraction W ~ X  and split things here as before. Unfor- 
tunately, the splitting of the boundary of ~(0) is not over Wo=Wc~(S"-J 
x Ok Ak) but over V. We remedy this as follows, changing p by homotopy. First 

apply the "barycentric subdivision" shrinking argument to each split piece to 
get a homotopic  map, denoted by p again, for which the radius of each split 
piece is very small. Consider the composition p,p': V - , X .  Choose sufficiently 
large m, so that the mapping cylinder M of p,p'  can be embedded in ,~,"S "-j 
•215 1] SO that Vc,~msn-J•215 } and xcxmsn-JX63kAkX{1 }. 
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Take a regular neighborhood N of M in 2 m S" -j  x Ck Ak X [0, 1], then N retracts 
to M and then to X. Use this to get a pull-back E * ~  N of E--* X. At 0, Z " p '  
gives a geometric Z-module  quadratic Poincar6 complex on E* split over 
simplices of SmS"-~x ~kAkx {0}, and at 1, consider X" of the boundary of a(0) 
regarded to be on E*. Since these are essentially the same thing, these can be 
connected by a cobordism. Actually, if one places sufficiently many layers of 
product cobordisms along the mapping cylinder, we may assume that the 
radius of the cobordism is very small. If everything is sufficiently small, then 
we can apply the stable splitting lemma over N, to get a homotopy of p to a 
new map for which the splitting is over a regular neighborhood of X in 
~,msn-J X (~k Ak. Thus, from the beginning, we may assume that the splitting of 
the boundary of or(0) is over W o. Now we can apply the stable splitting lemma 
to obtain a map p~:S"-JxAR-~[IL_,(p)[/i(X), p, is a k-simplex of 
FSgP-J(IlL,(p)I/i(X)) with all faces at the base point except p. The same 
argument as in the first part  gives a homotopy between ~ and Ajp~ fixing the 
boundary. This completes the proof. [] 

The proof  actually gives the following: 

(3.10) Corollary. (Shrinking lemma). Let p be as in 3.9. Then, given any positive 
integer n, there exists a positive number e such that for any 0<6 <~, there is a 
function ("shrinking function") S: IPj(X,p,f)(")-*ILj(X;p) such that the map 
IPj(X,p, 6)~")--*IPj(X; p) induced by the Jollowing composition is homotopic to the 
inclusion map." 

]Pj (X,  p, ~)(n) S restriction to 0 
' , n ~ j ( x ; p ) - -  , ~ ( x ; p ) .  

4. Crystallographic groups 

We begin this section by reviewing some work on crystallographic groups by 
Farrell and Hsiang in [6]. F is crystallographic if it is a discrete co-compact 
subgroup of E(n), the group of rigid motions of Euclidean n-space. Identify N" 
with the group of translations of N", then E(n)=lR">aO(n). The intersection of 
F and IR" is the maximal abelian subgroup of F with finite index, which is 
denoted by A and is called the translation subgroup of F. The finite factor 
group F/A is called the holonomy group of F. The rank of F is the rank of A. 
For any positive integer s,F~=F/sA and A~=A/sA. T and T, denote the infinite 
cyclic group and the finite cyclic group of order n respectively. 

4.1 Examples. (1) D~ will denote the infinite dihedral group; i.e., D~ c E ( l )  is 
the subgroup generated by x~--~x+l and x v - - , - x  (where xel / ) .  It is a semi- 
direct product T>a T2, where T 2 acts on T via multiplication by - 1 .  

(2) See [6, p. 658] for the definition of 2-dimensional crystallographic 
groups of type 1, 2 and 3. The holonomy group of a crystallographic group of 
type 2 or 3 is T z �9 T2. 

(3) A crystallographic group F of rank n > 2  with holonomy group G is 
called special if there exist a crystallographic group P of rank m >  1 and an 
infinite sequence of positive integers s such that, if H is a maximal hyper- 
elementary subgroup of F~, either 
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(4.1.1) H projects to a proper subgroup of G via the canonical map F,--* G; or 

(4.1.2) H is conjugate to a hyperelementary subgroup H' and there is a group 
surjection q: q- I (H ' ) - - ,P  together with a t/-equivariant affine surjection h: 
~ ,  ~ p m such that 

Idh(X)l =< (2/]/~)IXl 

for each vector X tangent to ~t", where q: F~F~ is the natural projection and 
I rs are the Euclidean metrics on N "  and N". Note that /~ is required to be 
independent of the choice of s and H. 

Farrell and Hsiang showed that 2-dimensional crystallographic groups of 
type 1, 2 or 3 are special [6, theorem 4.2]. 

On the other hand, T and Doo are not special, because they have rank 1. 
But a similar statement as above holds true for D~ when we replace "hyper- 
elementary" by "elementary". In fact, let /~ = D~o and {s} be the set of all odd 
primes; then the only maximal elementary subgroups of (D~)~= T~ >~ T 2 (dihed- 
ral group of order 2s) are H 1 = T s and H2=  T 2 up to conjugacy. The image of 
H 1 in T 2 is {1}, so H 1 satisfies (4.1.1). For H 2, q - I ( H 2 ) z ( s T ) > ~ T  2, so we can 
let tt be the obvious isomorphism: (s t )>~Tz~T>~T2=F, and h be the linear 
map h(x)=(1/s)x  (x6N).  Thus H 2 satisfies (4.1.2). 

The following results of Farrell and Hsiang will play a key role in the proof 
of our main theorem. 

(4.2) Theorem. ([6, theorem 1.1], [5, theorem 3.1]). Let F be a crystallographic 
group of rank n and holonomy group G, then either 

(i) F = F' >~ T where F' is a crystallographic subgroup of rank n - 1 ; or 
(ii) there is an infinite sequence of positive integers s - 1  mod IGI such that any 

hyperelementary subgroup of F, which projects onto G (via the canonical map) 
projects isomorphically onto G; or 

(iii) G is an elementary abetian 2-group and 
(a) /f IG]=2, then F = A ~ T  2 and Tz=G acts on A via multiplication by - 1 ,  

and 
(b) /f IGI>2, then F maps epimorphically onto a crystallographic group of 

type 2 or 3. 

(4.3) Lemma. ([6, lemma 1.2]). Let O: F ~ F '  be an epimorphism between 
crystallographic groups F of  rank n and F' of  rank m. Then there exists a 4)- 
equivariant affine surjection F: IR" ~ ~ " .  

Theorem 4.2 above is stated in a slightly different form from [6, theorem 
1.1]; this stronger version is implicitly used in the proof of [6, theorem 5.1]. 
On p. 665 of [6], a crystallographic group /~ is replaced by if, via an epi- 
morphism 0: F ~ F .  This epimorphism should not increase the order of the 
holonomy group. In the case of possibility (ii) of 4.2 (with r used as F), 0 is 
the identity map. In the case of possibility (iii)-(a), one uses the obvious 
epimorphism from ff to (TO 7 ) > ~ ;  so both have the same holonomy group. 
In the case of possibility (iii)-(b), F has holonomy group of order >4 ;  so the 
epimorphism does not increase the order of holonomy group. 
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Suppose F satisfies 4.2(ii). Theo rem 4.1 in [6] and an a rgument  in the 
proof  of theorem 4.4 [-ibid.] shows that  F is special; F itself is used as /~. 
If F satisfies the possibili ty (iii) of 4.2, then F maps  epimorphical ly  onto a 
crystal lographic group of type 1, 2 or 3 with the order of  the ho lonomy group 
<IG], or  F is T x T : .  Therefore  we can rephrase 4.2 as follows: 

(4.4) Corollary. Let F be a crystallographic group of rank n > 1, then either 

(1) F =F'  ~ T  where F' is a crystallographic subgroup of rank n - 1 ; or 
(2) there is an epimorphism from F onto a special crystallographic group 

which does not increase the order of  the holonomy group; or 
(3) F is isomorphic to D~. 

Next  let us consider a slightly larger class of groups. Suppose A is a finitely 
generated group  which maps  onto a crystal lographic group  F of rank n with a 
finite kernel. For  example,  if A is a virtually abelian group  of rank n, then, by 
l emma 1.2 in [5], there is a surjection A ~ F  onto a crystal lographic group of 
rank n with a finite kernel. Via this surjection, A acts by isometries on R"  
discretely, virtually faithfully, with compac t  orbit  space. The  orbit  space N"/A 
is equal to IR"/F. The action of F may  not  be free, since F may  have torsion, 
but its t ranslat ion subgroup  A acts on R"  freely and the orbit  space is a flat 
torus T". The ho lonomy  group  G of F acts on T" as a group of isometries so 
that  ~,,"/F = T"/G. Therefore  the orbit  space can be viewed as the orbit  space of 
a finite group action on a compac t  smooth  manifold. If (H) is the conjugacy 
class of a subgroup  H of G, then Y~m denotes the subset of T"/G consisting of 
the points x such that  the isotropy subgroup at a point of  T" lying in the orbit 
x is in (H). It is observed in [6] that  { Y~n)} gives a stratification of T"/G. 

Let W A denote a free contractible A-complex. A acts freely on R " x  W a 
diagonally. 

(4.5) Proposition. The projection p: (]R" x WA)/A--~P~"/A is a stratified system of 
fibrations. 

Proof Let /~: A ~ F  denote  the surjection and r: R"  ~ R " / A  the quotient  map. 
For  each orbit  x~IR"/A=IR"/F, define A~ and F~ to be the isotropy subgroups  
of A and F at a point  f f~r - l (x) .  A x and F x are well-defined up to conjugacy. 
The m a p  p has point  inverses p - l ( x ) =  WA/A x, which are classifying spaces of 
A x. Since Ax=/~-l(F~), this proposi t ion  will be proved if one can show that  (F~) 
is constant  on each componen t  of each s t ra tum Y~n). Suppose x is in Y~m, and 
let [x-]~T" denote the orbit  of Y by A. The isotropy subgroup  of G at [x-] is H. 
Let n denote  the quot ient  map :  F ~ G .  Then nIF~: F x ~ H  is an isomorphism.  
This implies that  F~ is locally constant  on Y~m, and it in turn implies the 
proposi t ion.  []  

Again let /~ be the surjection A ~ F .  Let  us study the geometr ic  implicat ion 
of corollary 4.4(1), (2), and (3). First suppose (1) F = F '  x T .  Then by 4.3, the 
ep imorph i sm ~b: F ~ T  induces a q~-equivariant affine surjection F: R " ~ R .  F 
is also (~b/~)-equivariant and defines a m a p  F: R " / A ~ I R / T = S I ;  F is a fibre 
bundle with fibre R " - ~ / A  ', where R " - ~  is a fibre of  F and A'=ker(~b3)  
= f l - l ( F ' ) .  ( R " •  WA)/A also fibres over  S 1 with fibre ( R , - I •  WA)/A," Then p 
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restricts to a stratified system of fibrations between the fibres p': (IR "-1  
• WA)/A' "-"+ ~t. n - ~/A'. 

Next suppose F satisfies 4.4(2) (resp. (3)), and let q5 be the surjection F--*F' 
(resp. the identity map: Doo ~Doo). Let/~, s, q, h be as in 4.1 (3) with F replaced 
by F'. Suppose H is a maximal hyperelementary (resp. elementary) subgroup of 
F~'. Define a subgroup At. t of A (F n of F) by A n = f l - 1 4 ) - l q - l ( H )  (F n 
=qS-~q-l (H)) .  F n is a subgroup of F of finite index, and hence a crystallog- 
raphic group. Thus A n maps onto a crystallographic group, and we can 
consider Pn: ( Rn x WA)/A n ~ IR"/A n. Here the complex W a is used as W A .  

If H satisfies (4.1.1), then the holonomy group of q-~(H) has a strictly 
smaller order than F'. 

Next suppose that H satisfies (4.1.2). Replace H by H'. The surjection 0 
induces a ~b-equivariant affine surjection f:  I R " ~ P t .  The maps f and h induce 
a surjection 

c~: ~" /A  u = Kt."/FI_ I --* IRt/q- I(H) ~ ~m/~. 

The composition h f: ffZ"~lR m will be denoted by 6. We consider the com- 
position ~Pu; the map Pu can be understood by studying c~p/~ and the restric- 
tion of Pu to the preimages of points of p m//~. For an orbit x~Rm/l?, l? x 
denotes the isotropy subgroup of/~ at a point Y~IR m in the orbit x, as usual. 
Define a subgroup An(x) of Au(Fu(x ) of Fu) by A n ( x ) = ( q ~ l A n ) - l ( ~ )  (Fn(x) 
=(qc~lFn)-l(Px)); i.e., Au(x)(Fn(x)) is the set of elements of Au(Fn) which leaves 
the affine subspace R " - m = ~ - I ( X  -) of R" invariant. Au(x ) and Fn(x ) are well- 
defined up to conjugacy. The point inverses (o~pu)-~(x) of o~pu are (Rn-m 
X WA)/An(x ). Note that c~ Pn is a stratified system of fibrations, and that we can 
use the same filtration of p m//~ and the same neighborhoods of strata as those 
for the projection /3: (p~mx Wi.)/F--,R"/[" , since A n is determined by ~ .  The 
actions of An(x ) and Fu(x) on R , - m  give a homomorphism 

Au(x ) t~' , Fn(x ) ~ -* E(n -m),  

where/3' is the restriction of/3. Let F*(x) denote the image of this in E(n-m).  

(4.6) Proposition. F*(x) is a crystallographic subgroup of E (n -m)  and the 
kernel of Au(x ) ~ F*(x) is finite. 

Proof Let K be the kernel of q d?lFn: F n ~ F .  Since K is a normal subgroup of 
a crystallographic group F n, K is also a crystallographic group. In fact there is 
a K-invariant (n-m)-dimensional  affine subspace V of It," on which K acts 
discretely and faithfully with compact quotient. (See Farkas [3], theorem 17.) 
Since all the parallels of ~ , - m  in IR" are of the form ~-l(pt) ,  they are all 
invariant under the action of K, and hence V is contained in one of these, say 
~-l(Xo) for some XoeR m. Both V and ~-l(x0) have the same dimension, so 
they are actually equal. Therefore ~-~(Xo)/K is compact. On the other hand, 
the actions of K on ~-l(x-) and on ~-l(Xo) are affinely equivalent. So 
I I" - ' /7(K)  is also compact. Since F~(x) contains ~(K), IZ"-' /F*(x) is compact. 
F*(x) is obviously discrete in E(n-m);  therefore, F*(x) is a crystallographic 
subgroup of E(n-m) .  Now IKer(y)l = [ K .  Ker(?): K]  <[Fn(x): K] =IF~I < oo, so 
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Ker(y) is finite. Since the kernel of fl is finite by assumption, so is the kernel of 
~/~'. [] 

Thus Pn restricts to Px: (F , f - "  • WA)/AH(x)--+P,"-'/AH(x), where A n maps 
onto a crystallographic group F~(x) with finite kernel and acts on ~ , " - "  via 
the action of F~(x). Note that n - m  is strictly smaller than n. 

Next we observe that H,(F,"/A ; lL(p)) and L,~((1R" x Wa)/A ) satisfy elemen- 
tary and hyperelementary induction. Let fi: A--+F be as before, and suppose 
we have an epimorphism ~: F ~ G  onto a finite group G (not necessarily the 
holonomy group of F). Of course, what we have in mind is the composition 
q(o: F--+F'-+~' above, where F'  is a special crystallographic group. For a 
subgroup H of G, let AH=f l - I~ -1 (H)  and Fu=g, - l (H) .  Let 5 ~ denote the 
category of the subgroups of G and conjugations and Ab denote the category 
of abelian groups. 

Let us define a Mackey functor M: 5~--,Ab. For a subgroup H of G, M(H) 
is defined to be Hi(IR"/An; IL(pn)), where Pn is the projection (IR" 
x WA)/An--+IR"/An. Suppose f = ( H , g , K )  is a morphism from H to K, i.e., g is 
an element of G such that g - l H g c K .  Pick an element 2eA such that Off(2) 
=g.  Then the actions of 2 on lR"x W A and P,." induce a map f , :  PH+PK 
between stratified systems of fibrations; i.e., we have a commutative diagram: 

(~.~ • WA)/A,, ..... S"_~ (~.,, • WA)/A~ 

IR'~ / A u f~.~, IR " / A K . 

We have the following two operations corresponding to f e  : 

(1) (functorial image f ,  : 1P(N"/A n ; pu) --+ IP(F."/AK; PK))" If Z IS], h : S -+ (F." 
x WA)/An, is a geometric 7l-module on (~."x WA)/A n, then a geometric 7Z- 
module f,(71[S],h) on (lR"x WA)/A K is defined to be 7Z[S] with f#h:  S-+(~" 
x WA)/A ~. If k = Z mpp  is a morphism between geometric Z-modules on (IR" 
x Wa)/AH, then f , k = X m p f ,  p is the functorial image of k. These induce a 
map f , :  IP(F."/ A H ; PI~) ---' IP(~"/ A K ; P K)" 

(2) (pullback f * :  IP(IR"/Ar;px)-+IP(IR"/Au;p~)). If Z[S] ,  h: S--+(IR" 
x WA)/A K, is a geometric Z-module on (N"x  WA)/AK, then f*(7l[S],h) is 

(71[S*],h*), where h*: S * + ( F , " x  WA)/A n is the pullback of h. Pullbacks of 
morphisms are also defined by pullbacks of paths in the obvious way. These 
define a map f *  : IP(IR"/AK ; PK) --+ IP(F'"/AH; pn). 

Obviously, f ,  does not increase the radius. On the other hand, f *  may 
increase the radius in general; but f *  does not increase the radius measured in 
IR", so it does not increase the radii of things which have sufficiently small 
radius. Therefore f ,  and f *  induce maps IL(IR"/A~I; Pn)-+IL(~'"/AK; PK) and 
IL(~-"/Ar;PK)-+IL(P'"/An;Pn)" By the characterization theorem, these induce 
the desired maps f , :  M ( H ) ~  M(K) and f * :  M(K)--+ M(H). M is a bifunctor. 

(4.7) Proposition. M satisfies the double coset Jormula, and hence is a Mackey 
functor. 
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Proof Let L and E be subgroups of a subgroup H of G, and suppose H has a 
k k 

double coset decomposition H =  ~ LgiE, gleH. Let A n =  U ALGAL, be a 
i = 1  i = 1  

corresponding double coset decomposition of An, where ff~ is an element of A H 
such that 0 f l (~ i )=g ,  Let P be the pullback: 

i.e., 

P 

(R" x W~)/AL 

, (~" x W2/Ac 

I (L', e, Hie, 

, (~" x W . , ) / A . ,  

P = i f [x ] ,  [ y ] ) e ( ~ "  • W2/AL x (~" • W2/AL, 

[ x L .  = [y]~  e ( l t "  x W2/A.}, 

where xMR"x W A and [ ] denotes the corresponding orbit. Then it is easily 
verified that the map 

k 

i = 1  

is a AH-isomorphism. Therefore we obtain a pullback diagram: 

k 

U (JR." X WA)/ALmg~L,g_I (Lng'L'g'-I'g'-LL')~'~(]R" • WA)/A L, 
i=l l 

(Lr~g,L'g,- 1, e , L ) .  (L', e,H)# 

(IR" x WA)/A L (L~,m. , (R" x WA)/A u 

and the double coset formula is easily derived from this. []  

Dress's equivariant Witt ring GW(H,Z) [2] acts on M(I-I) by tensor pro- 
duct. Recall that GW(H,Z) is constructed using H-spaces. An H-space is a Z- 
free (left) ZH-module  N together with a symmetric H-invariant non-singular 
form jr.. N x N ~ Z  Let N * = H o m z ( N , Z ) ,  then N* is also a (left) ZH-module.  
An element hel l  acts on N* by h.e(y)=e(h-L.y) for o~eN*, yeN. By letting 
(CN)0=N* and (CN)I=0 for i:I:0, we have a Z-module  chain complex C N. We 
define a 0-dimensional symmetric Poincar6 structure q~I: N ~ N *  by r  
= f ( x , - ) .  By assumption qSf is an isomorphism. If {el, ..., em} is a (free Z- 
module) basis of N* and Z[S] ,  h: S ~ ( N "  x WA)/An, is a geometric Z-module, 
then N* |  is a geometric Z-module Z[{e  1 . . . .  , %} x S] on ( l t " x  WA)/AH, 
where a basis element ei|  is sent to h(x) for xeS. Since A n maps onto H, A n 
acts on N*. A u is supposed to act diagonally on the free ZAu-module corre- 
sponding to this geometric Z-module  on ( lR 'x  WA)/A H. This can be done 
through the following definition of morphisms. Suppose a: M ~ N  is a Z H -  
homomorphism of N-free ZH-modules  with Z-bases {di}, {ek} and b: 
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Z[T] -~2g [S ]  is a morphism of geometric Z-modules on (N"x  WA)/A H. Let 
p<:'Y) be a path in the morphism b. Pick a point 2 (resp. ~ ) eN"x  W A in the 3 
orbit x (resp. y)e(R" x WA)/A H. Lift this path to a path in IR" x W A from ~ to 3~'. 
Let gcA n be the unique covering transformation which sends # to ~'. Write 
g-~.a(di)=Xai~kek. Then consider a sum of paths 22,~jk~,ijkge'| . . . .  | where 
pl~j, | . . . .  | The tensor product a |  is a morphism from M |  ] to 
N |  ] defined as the sum of these sums for all <x.r), pj s in b. The tensor 
product formula in [13, w viewed as above, allows us to take tensor 
products with (Cu,dp:), and this induces the desired action of GW(H, TI) on 
M(H). The following theorem can be proved in the same way as the proof of 
[4, theorem 2.3]. 

(4.8) Theorem. M is a GW(-,7Z)-module. 

Another Mackey functor M':  5 ~ A b  can be defined by setting M'(H) 
=L]~( (R"  x WA)/AH). f ,  and f *  are defined in the same way as for m. We can 
prove: 

(4.9) Theorem. M' is a GW(-,Z)-module.  

As an immediate consequence of 4.8 and 4.9, we have the following theo- 
rem. See [2]. 

(4.10) Theorem. I f  F is the family of the conjugacy classes of maximal hyper- 
elementary subgroups of G. Then the following sequences are exact. 

0 ~ Hj(IR"/A; IL(p)) ~ . . . .  )~ @ Hj(IR,/An; iL(ptt)) 
H~F 

- - - - +  @ Hj(]Rn/AHngKg ,; ]L(Puc~gKg ,)) 
H,K,g 

0 --+ L i ~ ((~" x WA)/A ) ~ . . . .  )H _ -,  Q Lj IIF: • W~)/A.) 
H~F 

- - - +  G LS~((~."• W a ) / A . ~  ~). 
H,K,g 

If  F is the family of the conjugacy classes of maximal elementary subgroups of 
G, then these are exact when each term is tensored with 7111/2]. 

The following is the main result of this paper. 

(4.11) Theorem. Suppose A is a finitely generated group which acts by isomet- 
ries on IR" discretely, virtually faithfully, with compact quotient. Let p be the 
projection (No x WA)/A -+ IR"/A, where W a is a contractible free A-complex. Then 
there is a natural isomorphism 

1 @a: 7/[1/2] | |  

Proof The composition 

IH_j(~'/A;IL(p)) a-J , I L j ( ~ n / A ; p )  F , IPj(~'/A;p) 

has image in IPj.(F,"/A;p)=~(,;(F,"x WA) /A~ , )=IL j ( ( I ( ' x  Wa)/A), where A j 
is the assembly map (3.9) and F is the restriction to 0; so it defines a map 
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lId_j(~"/A;IL(p)) ~ILj((N" x WA)/A ). This induces the desired map a: 
Hj (P,'/A; IL(p)) ~ L~ ~ (A). 

Note that the theorem is a statement on the action of A on IR" and not on 
the group itself. We will prove the theorem inductively on the "size" (n, h(F)) of 
the action of A, where F is the image of A in E(n) and h(F) is the holonomy 
number of F; i.e., h(F) is the order of the holonomy group of F if rank(F)=  1, 
and h(F) is the minimum order of the holonomy group of a crystallographic 
group of rank > 2  onto which F can map epimorphically if rank(F)__>2. We use 
the lexicographic order for the pairs (n,h(F)). If n=0 ,  then ~,.n/A is a single 
point. Since IH j( , ; IL(p)) ' -dLj( , ;p)  (=ILj(WA/A)) by 3.9, the theorem is ob- 
vious in this case. So assume that n > 1. 

First suppose that F satisfies (1) of 4.4. We use the notation in the remarks 
after 4.4. Recall that IR"/A fibres over S 1 with fibre diffeomorphic to N'- I /A ' .  
The homology group Hj(IR"/A, IR"- 1/A'; lL(p)) is isomorphic to 
Hi_ I(IR'-1/A';IL(p')). Thus we have a commutative ladder: 

...--* Hj(~"-a/A';IL(p')) - -  ~ Hj(]R"/A;IL(p)) 

...-* L 7 ~(A') , L~ ~(A) 

--~Hj_ 1(~_  n -  1 / a ' , ~ ] L ( p t ) )  - - - - - ~  H j_ 1 (~._ n 1/A' ;~(p ' ) ) - - ) . . .  

-~ L~21(A')  , / ~ 2 1 ( A t  -- ' . . .  

The first row is the exact sequence for the pair (N"/A, IR"-I/A'); and the 
second row is induced from the well-known exact sequence due to Wall, 
Shaneson, Farrell and Hsiang. By induction hypothesis and 5-1emma, 1 |  is 
proved to be an isomorphism. 

Next suppose F satisfies 4.4(2). Choose an epimorphism q~: F--*F' onto a 
crystallographic group F' of rank 1__>2 whose holonomy group G' has order 
equal to h(F). Apply corollary 4.4 to F'. As rank(U)>2 ,  the possibility (3) does 
not occur. In the case of possibility (1), F '  maps epimorphically onto T, and 
hence so does F. We have already observed that the theorem holds true in this 
case. In the case of possibility (2), F'  maps epimorphically onto a special 
crystallographic group F" with holonomy group G", and [G"I<IG[. F" is 
special, so it has rank >2.  As [G'[ is the minimum, [G"[ =[G'[ =h(F). So we may 
assume from the beginning that F'  is special. So there exist a crystallographic 
group/~  of rank m > 1 and an infinite sequence of positive integers s such that 
any maximal hyperelementary subgroup of F s' satisfies (4.1.1) or (4.1.2) with F 
and G replaced by F'  and G'. 

We first show that the map being considered is injective. Suppose y is an 
element of the kernel. We will show that y = 0 .  We can regard 2ry to be an 
element of H~(It"/A;IL(p)), for some r. Represent 2ry by a 0-cell p of 
IHj(N"/A;IL(p)). A_j  p(O) represents the image a(2 r y) by a, which represents 0 
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in 7Z.[1/2] |  By choosing a sufficiently large r, we may 
assume that A_ip(O ) represents 0 in L]~((~t"x WA)/A ). The Kan condition 
implies that there exists a l-simplex a of lLj((N"x WA)/A ) which connects 
A_jp(0) and 0. Pull cr back to IR" x W a and 3 be the radius measured in R". It 
is a finite number. Choose a positive number s in (2) sufficiently large so that 

26K/] f s  <e 

where K is the Lipschitz constant of the affine surjection f:  F , ~ - , ~  t induced 
by the epimorphism q~: F ~ F '  and e. is the positive number posited in 3.10, 
where we consider IPj(P,'//~,/3, _)ta,mo). Note that e depends not only on /~ but 
also on the dimension of or, so we cannot choose s which works for all y's. 
Now we have a commutative diagram: 

O ~ H j(N"/'A ; IL(p)) -~ . . . .  )~ @ H j(P,"/ A n ; IL(pn) ) ~ . . . 

a t ~  a n , 

O~LS~((R"  x WA)/A) ~ n@L~*((IR" x WA)/An)-~ ... 

where each row comes from the restriction maps corresponding to the con- 
jugacy classes of the maximal hyperelementary subgroups H of F~' (4.10). For H 
which projects to a proper subgroup of G', the size of the action of A u is 
strictly smaller than the size of the action of A, because A H maps onto q - I ( H )  
and the order of the holonomy group of q - l ( H )  is strictly smaller than IG'] 
=h(F). So, by induction hypothesis, l |  is an isomorphism, and hence 
resn(2 'y)=0.  For H which projects onto G', we have a shrinking map c~: 
P," /An~IR" /F ,  after replacing H by H'. Notice that the map a H factors 
through Hj(II."/['~IL(epn)), by regarding things controlled in F,"/A n to be 
controlled in F,"/F via c~, and that the image of resn(2ry) in Hi(~,m/F;IL(c~pn)) 
which is represented by resn(A jp(0)) is 0, due to smallness of cr in IR"/F and 
the shrinking lemma. Now we claim that the map 

Z [ 1/2] | Hj(P,"/An; IL(pn) ) ~ Z [ 1/2] | Hj(N"/P;  IL(c~ Pn)) 

is an isomorphism; this will imply that resn(2 r y )=  0. 
Recall that 

H , ( X ;  lL(p))= [S*, lim FSf2J(]IL_j(p)I/i(X))]. 

To prove the claim, we show that the map 

lim FSQJ(IlL_;(Pn)I/(R"/Au) ) ~ lim FSf2; (ILL_ ~(~ pu)I/(IR"/F)) 

is a homotopy equivalence up to 2-torsion. For the convenience of the proof, 
we replace IL(p) by 

lL'(p) = { U IL(p- l(va)) | A } /~ ,  
A 
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where v~ is a carefully chosen vertex of a simplex A of the control space. See 
[9, proof of 8.6]. Recall that (c~pu)- l (va)=( lR"-"x WA)/A~I(% ), and that the 
size of the action of An(v~) is strictly smaller than that of A. Therefore, by 
induction, lL((c~pH)-l(va))~lH(~t."-"/An(v~);lL(p~)) modulo 2-torsion. Here PA 
is the stratified system of fibrations ( ~ " - ' x  WA)/AH(vA)---~P,~"-m/AH(VA). So, 
modulo 2-torsion, 

lim FSf2J(IIL'_ j(p,)[/(~t."/A~)) 
J 

=limFS~2i+k{( ~ IlL i_k((pH )- I(%,)) I X A')/~}/(~"/AH) 
i + k A '  c l R ~ / A H  

~-limFSf2'{ U limf2k(I IL' k i(P~)I/(N"-"/An(VA))) X A/~)/(P,"/F) 
i A ~ / F  k -- -- 

-~ lim FSf2'(( U [IH,(IR"-"/ A~(%) ; 1L(p~))[ x A )/~ )/(Nm/l?) 
i A 

~-lim FSQi((U [lL_,((e p~/)- 1(%)) I x A)/~)/(N"/F) 
i 

= lim FSf2'(IIL' ,(~ pi~)[/(N"fi?)). 
i 

Thus the claim is proved. Now we have proved that resH(2~y)=0 for all H. 
Since the product of restriction maps (resn) H is injective, this implies that Uy,  
and hence y, is 0; i.e., 1 |  is injective. 

The onto part is similar. Pick an element y of Z[-1/2] @L~(( IR"  x WA)/A ). 
Without loss of generality we may assume that y belongs to L~ ~((IR" x WA)/A ). 
Represent y by a geometric Z-module  quadratic Poincar6 complex y* on (~" 
x WA)/A. We want to show that the restriction image resH(y ) of y in each 
7 / [ 1 / 2 ] |  Wa)/A,) lies in the image of l @ a ~ .  If the size of the 
action of A H is strictly smaller than that of A, then by induction hypothesis 
this is the case. If not, then there is a shrinking map ~: IR"/A,~F,"/F for 
some crystallographic group /~ of rank m >  1, and we can make the radius of 
the restriction image res,(y*) of y* arbitrarily small on ~lm//~, by choosing a 
very large integer s. (Thus s is chosen after y* is picked up and /~ is inde- 
pendent of s and H, as in the injectivity part.) Now the characterization 
theorem implies that resn(y ) comes from an element of 7/.[i/2] 
| and hence from an element YH of ~g[1/2] 
| ). Finally (Yn)H is the image of an element x of Z[1/2]  
| by the restriction map. Here we need to use the next column 
of the diagram, which is already known to be isomorphic or at least injective. 
(This is why we proved injectivity part  first.) Since restriction maps are in- 
jective, 1 |  sends x to y, and this completes the onto part  in case 4.4(2). 

Lastly, if F satisfies (3), we use elementary induction instead of hyper- 
elementary induction. This is the only place where we need to use 7/[1/2] |  
Now the induction step is completed, and the theorem is proved. [] 

Note that, if F contains no element of order 2, then D~ never shows up in 
the induction steps. Therefore, for A acting on IR" with no elements of period 
2, the theorem holds true without taking tensor products Z[-1/2] |  

As a final remark, let us relate this result to the usual assembly map. 
Consider the following diagram: 
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H ,(BA;IL(I)) f - ~  H ,(IR'/A;IL(p)) ---~----, L,~ 

H ,(IR'/A;IL(1)) 

where B A =(~x n • WA)/A is a classifying space of A. The composition af  is the 
usual assembly map. This diagram is induced by a diagram of morphisms of 
stratified system of fibrations: 

(I:BA--~BA)-* (P:BA--*~n/A) --~(BA--r ) 

"<1 
(1 : IR'/A -~F,O/A). 

Note that the point inverses of p are the classifying spaces of the isotropy 
subgroups of A, which are finite, and hence are 2g[1/k]-acyclic, where k is any 
integer such that k and the order of these finite subgroups are coprime. This 
implies that p is an ordinary-2g[1/k]-homology isomorphism, and hence p,  is a 
(Z[1/k] @)-isomorphism. And this, in return, implies that f is a split (Z[1/k] 
@)-injection. The main theorem states that a is a (7Z [1/2] @)-isomorphism. 
Therefore we get: 

(4.12) Corollary. Suppose A is a group which acts by isometries on ~," discretely, 
virtually faithJully, with compact quotient, and k is an integer which is coprime 
with the order of each isotropy subgroup of A. Then the assembly map 

Z[1/2, 1/k] @H,(BA;IL(1))~ 7z [1/2, 1/k] @L,~  (A) 

is a split injection. 

This is a stronger form of the Novikov conjecture, which states that the 
assembly map is injective when tensored with Q. 
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