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Note added in proof

Ken Ribet has pointed out to me that the extension L/F in Theorem 4.1is in
fZ}ct unramified at the discrete places of semistable reduction for A (and'at the
d}screte places of semistable reduction for A X B in Theorem 42). Ifvis a
discrete place of F of semistable reduction for A, choose distinct priml:s p and
greater than 2 and not equal to char(F) or to the residue characteristic of v Bq
the Galois criterion of semistable reduction (Proposition 3.5 on p. 350 of SGA; 7Iy
Lecture Notes in Mathematics, Vol. 288 (Springer, Berlin)), the inertia group for’
v acts on A, by a unipotent matrix of echelon 2, and therefore the ramification

index at v of F(A,) over Fis a imi
. » power of p. Similarly for ¢, and th i
unramified in F(A4,) N F(A)). . nd therefore v s
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Abstract
Yao, D., Higher algebraic K-theory of admissible abelian categories and localization theorems.
Journal of Pure and Applied Algebra 77 (1992) 263-339.

We define admissible abelian categories and compute the K-theory of such categories, with the
aim to study and compute the K-groups of noncommutative rings and other noncommutative
situations. One of the main results of this dissertation is the localization theorem.

Introduction

The purpose of this paper is to generalize the recent results of Thomason and
Trobaugh on algebraic K-theory of schemes to certain noncommutative situa-
tions, that is. to establish a localization theorem and related results for algebraic
K-theorv of noncommutative rings and other noncommutative situations.

A localization theorem is a theorem on the local and global relationships which
helps one to reduce a giobal problem to a local one which is usually less difficult.
Quillen [11] established a localization theorem for G-theory (or K'-theory) which
became a main support for his many results about G-theory of noetherian
schemes. Thomason and Trobaugh [14] recently succeeded in establishing a
localization theorem for K-theory of commutative rings and quite general
schemes and thereby being able to give proofs of many basic results about
K-theory of commutative rings and schemes. The attempt to establish localization
theorems for K-theory of noncommutative rings started as early as the attempt for
the commutative cases. For the story of this, see [1], {2], [4-7]. [16], [17]. etc.

Since the main results of this paper require more definitions, they will appear in
Section 5. Instead we present two applications of the main results here:

0022-4049/92,505.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved
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z‘rlne;rem 6.2. Let R be an arbitrary ring, tis. .., t, be n elements in the center of R

(tz fot, tnere are ¢y, ..., ¢, € Aut(R) such that for any a€R, ta=¢(a),
e(t)=1t, (p,.°qol..= gogforalli,j=1,... n. IfRt;+---+ Rt, =R, then wéhavle,
a homotopy equivalence " ,

K®(R)— holim (1‘[ KPRl ') s H KP(R[1 1))

=1 '

1w

and therefore a strongly convergent spectral sequence

EL7=H" (H KRl D= T] K2R -

ij=1

~

>K{ L (R).

Actually. this paper was partially motivated by the above result which fi
appeared In correspondence between C. Weibel and T. Hodges where it -
rals?d as kind of a conjecture and all t,’s were assumed in the center of R; nd C.
Weibel pointed out a proof when R is regular. Hand

Combined with Quillen’s results on fil i
: tered rings (see [11 i
71), our main results imply: g ee [l Secton 6. Theorem

Proposition 6.2. Let X be a smooth variety over a field k; then the embedding from

the structure sheaf G, of X ¢ ]
! ¥ o0 the sheaf 9, of germs of d 1
induces isomorphisms of K-groups: wel o ilferentiat perctors on X

K (X)= K, (9y) foralln .

The reader may find a brief sketch of the paper is helpful.

For greater generality and wider applications, in Section | we introduce the
concept of admissible abelian categories (Definition 1.6.1), which is motiv: tcd bL'
the.way to glue sheaves given over a covering (cf. Proposition 1.5.1). W, . 'C o
basic properties of such categories, amon onis Promestion
1.6.9.
peirfl;facc(imc]);;:;m:iri:;galocally projﬁctive objects, in Section 2 we consider

re a generalization of usual perfect com
(s:c(:)}:rrlle to Oﬁlr context of admissible abelian categories.pThe categc?rl}?xocfs :cvrcht‘
develioe;j(eej t\)Mlllé‘bthhe category to define K-theory. This technique was originally
peveioped Yy : .f rothendieck a'nd greatly exploited in {14]. One main advantage
rsgon ng geifzzt cczﬁpll:((es l'nstead‘ of locally projective objects is that the
cocylinder functors. We afe theesanb?e ?ci\?;al::l:;li/sen ot ot the powertil e
Waldhausen's construction of K-theory where
cocylinder functors is required, while usually th

g which an interesting one is Proposition

antage of the powerful results in
the existence of cylinder and
¢ category of locally projective
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objects does not have cylinder and cocylinder functors. The basic characterization
of a perfect complex is Proposition 2.4(a).

Section 3 consists of the definition of K-theory of admissible abelian categories
and the proofs of the two basic results of this paper: the excision theorem
{Theorem 3.2) and the localization theorem (Theorem 3.3) in proto-form. The
K-theory defined here coincides with the usual K-theory in most cases people are
interested in, for example, when the admissible abelian category is the category of
all R-modules, with R an arbitrary ring; or the admissible abelian category is the
category P}, of all quasi-coherent sheaves over the projective line over a ring (cf.
[11, Section 8.2]); or the admissible abelian category is the category of all
quasi-coherent sheaves of %,-modules where R, is a quasi-coherent sheaf of
0,-algebras, and X is a scheme with an ample family of line bundles (for
example, X is a quasi-projective scheme over an affine scheme §), etc.

Section 4 contains the proof of the projective line bundle theorem (Theorem
4.0.1) for an admissible abelian category. Section 5 follows [14] to construct
negative degree K-groups, corresponding to which is the nonconnected K-theory
spectrum; and extends the results obtained in Sections 3 and 4 to negative degrees
and lists the main theorems this paper has obtained which are Theorem 5.2 (Bass
fundamental theorem), Theorem 5.3 (excision), Theorem 5.4 (projective line
bundle theorem), Theorem 5.5 (localization) and Theorem 5.7 (Mayer—Vietoris).

Section 6 contains the two applications mentioned above.

Finally 1 would like to thank heartfully my adviser Robert Thomason whose
guidance has been invaluable in my study of mathematics and preparation of this
paper. 1 also want to thank Charles Weibel for his valuable comments and
encouragement. This paper is a revised version of my Ph.D. Thesis submitted to
the Department of Mathematics at the Johns Hopkins University which 1 also
want to thank for its hospitality.

1. Admissible abelian categories

1.0. In this section we define admissible categorics and ¢stablish basic properties
of such categories. One keeps in mind as a naive example the category of all
quasi-coherent sheaves of € -modules over a scheme X with an ample family of
line bundles. The main reference for the part of category theory is [10], also [12]
for torsion theories and localization.

A category is called locally small if for every object in the category, the
collection of all its subobjects is a set. In this paper, we assume all the categories
considered to be locally small.

First we briefly review the torsion theories and localizations over an AbS
category. An Ab3 category is an abelian category which is cocomplete and has
exact colimits. Let «f be an Ab5 category; a torsion theory on & is a pair of
collections of objects in &, 7 =(F, F), such that (a) if AET, B € %, then
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Hom (A, B)=0; (b) if A€ o is such that for any B € , Hom_(A, B) =0,
then A € J; if B € o is such that for any A € 7, Hom_(A, B)=0, then BE &.
Let 7= (J, F) be a torsion theory on &, then  is closed under quotients,
extensions and direct sums. Conversely, if we have a collection I of objects
in o such that J is closed under quotients, extensions and direct sums, then
we have a uniquely determined torsion theory 7=(9,%), where F={B€
s |Hom, (A4, B)=0, for any A€ J}. A torsion theory 7=(7, %) is called
hereditary if 7 is also closed under subobjects. In this paper we consider only
hereditary torsion theories, and omit writing ‘hereditary’. We call objects in J to
be 7-torsion and objects in & to be r-torsion free. Also, for the sake of explicitly,
we use 7-Tor to denote the collection of all 7-torsion objects and 7-Free to denote
the collection of all r-torsion free objects, instead of 7 and %. A morphism
f:A— Bin o is called a 7-isomorphism if ker( f) and coker( f) are 7-torsion. An
object C in & is called r-closed if for any t-isomorphism f: A B, f*:
Hom (B, C)—Hom_(A, C) is an isomorphism. We denote by &f, the full
subcategory of & of all 7-closed objects. If we let 7-Tor also denote the full
subcategory of &/ of all 7-torsion objects, then 7-Tor is a thick subcategory of s,
so we have the quotient functor j* : &/ — s¢/(7-Tor), which is exact. If j! has a
right adjoint functor j, . : &//(7-Tor)— s, then we call 7 a localizing torsion
theory. In that case, we have a category equivalence between «//(r-Tor) and A,
then we can letj , : &, < & be the embedding, and choose a functor still denoted
by j! : sl — s, uniquely up to natural isomorphism, such that jej =1Id,,
(jr,j,.) are adjoint and jI is exact. Notice that then & is also an Ab5 categor}:,
J-. s left exact, and the adjunction map Id—j </ is a T-isomorphism. A torsion
theory is a localizing torsion theory iff for any object A € s/, there is an object
CE 4, and a r-isomorphism A— C, or iff the embedding j_, : &, — o has an
exact adjoint functor j¥ : & — &_. From now on, for a localizing torsion theory T,
we always let j, : o, — of denote the embedding. Choose the adjoint functor
JjIisl— sl to be such that j*oj =1Id,, then (;7,j.) is called a localizing
adjoint pair of functors for 7. 4

Let X={r,0,...} be a set of torsion theories on , 7 =< ¢ means (m-Tor) C
(o-Tor); the union U __, 7 is the smallest torsion theory =7, for all 7 € X, the
intersection ()__, 7 is the biggest torsion theory =7, for all + € X, and then

<7Qx 7') -Tor= (M (7-Tor) .

TEX

1.0.1. Lemma. Let 7= o be two localizing torsion theories on o ; then:

(a) o, D s, as subcategories of .

(b) s, N (o-Tor) is closed under subabjects, quotients, extensions, and direct
sums in .. So o N(o-Tor) determines a torsion theory ¢ on &, with
o-Tor= sl N (o-Tor). Then (oA); =4, and (j:[\b,r,jg*) becomes a localizing
adjoint pair for ¢ on ..
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Proof. Omitted. O

Thus if 7= o, we will use & to denote the induced localizing torsion theory on

s, and choose (j)|,,j,-) to be the localizing adjoint pair of functors for ¢.

T

1.0.2. Lemma. Let 7,0 be two localizing torsion theories on &i. If there is a
natural isomorphism (f,.*j)* (jga®i2)=> Ui 2i3)o (fraoi?)s then i, 0
(o-Tor) is closed under subobjects, quotients, extensions, amf direct sums in &_. So
s, N (o-Tor) determines a torsion theory & on o, with ¢-Tor = s, ﬂ(a--ToQ.
Then (4,); = o, 0 3 |o s b= S and jo ) 0o+ Aoy — o, become a localiz-
ing adjoint pair of functors o on A..

Proof. Notice that &7, , C &, and &/, C &, , then the proof is easy. U

Thus if 7,0 are two localizing torsion theories on an Ab5 category =/ such that
there is a natural isomorphism (j,,j*)e(j . °ji)—=(j,.°jr)°(j..2j ), then
+U o is also a localizing torsion theory on &/, and we will use & to denote the
localizing torsion theory on &, induced from o, and choose (j; ], Jola, ) tobe
the locaﬁzing adjoint pair of functors for . See Corollary 1.5.2 for the more
delicate problem of intersections of torsion theories.

1.1.0. Definition. Let of be an AbS category; a line bundle on & is an endo-
equivalence of the category F:s/— &/, Notice that F preservcs‘exactncss,
colimits. etc. A section of F is a natural transformation s:Id— F such that
Fs=sF: F— F~. A divisor on & is a pair (s, F) with s a section of F.

-1, . > b
Given a divisor (s, F) on & we construct an endo-functor s~ 1 =/ — o with
sT'A=lim (A—“éFAiaF:A'Y—F; --+) for any A€ &l. Because F and lim are
- -1 - Teve « et e i
exact, so is s . It is easy to sec that s~ 'os =y (notice that here we use a

. 5 N sk 22, sh- s L .
convention: if the morphism A—lim (A= FA——FA—— -} is fm 150Mor
phism, we let s 'A = A). Let s also denote the torsion theory on &/ with s-Tor =

all those A € o/ with s7'4 =0. Then the embedding «f, — o/ is right adj(?int to
sl — ol So s is a localizing torsion theory on o/, and we let j© =5

1.1.1. Lemma. Let (s, F) be a divisor on an Ab5 category s, then the embedding
Jou & — &l is exact and commutes with colimits.

Proof. First notice that
s s 2 sFC
joejr=st=lim (ld—>FHF =5
5 5

commutes with colimits. Let {B,} be a diagram in &/, then
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jo.lim B, =j,.lim jj,.B, =j.j; lim j.B,
=lim j,.j;'j,.B, =lim j.B, .
The exactness of j, is easy to see by considering the pushout of the diagram:
A< B—0.
Remember that j,, is always left exact for any localizing torsion theory 7. [J

1.1.2. Example. Let &/ = R-Mod, the category of all left R-modules, where R is a
ring, F=1d, let s be a central element of R, and also let s:Id—1d be the
multiplication by 5. Then (s, F) is a divisor on R-Mod, s™'M = M[s™'] for any
M € R-Mod, and o, = R[s™'}-Mod.

1.1.3. Example. Let o/ = R-Mod, s be an element of R such that there is an
automorphism ¢ of R with sx = ¢(x)s, ¢(s) = 5, forany x € R. Let R be the R-R
bimodule R with multiplication r® a® b— ¢(r)ab and let F= LRO— s:Ild—F
be induced by the bimodule morphism R— _R sending x to sx for any x € R.
Then (s, F) is a divisor on R-Mod, s 'M = M[s"'] for any M € R-Mod, and
& = R{s~']-Mod.

By Morita theory, if o« = R-Mod, any line bundle F on & is of the form P® -
for some finitely generated projective R-R bimodule P which is invertible in the
sense that there is another R—-R bimodule Q such that PRQ=Q®P=R as
bimodules. A section is a bimodule morphism s: R— P such that s®1, =
1, 8s: P->PQP.

1.1.4. Example. Let o = Qcoh(X), the category of all quasi-coherent sheaves of
Ox-modules over a scheme X, £ be a line bundle on X, s : €, ~ % a section. Sct
F=%®~. Then (s, F) is a divisor on Qcoh(X) and &, = Qcoh(X,), where X, is
the nonvanishing locus for s. Let F be a line bundle on of, & = F(€,). Then Lis a
line bundle in the usual sense because £|, = P7, where U is any open affine
subscheme of X and P is a projective invertible I'(U, €, )-module and F= ¥ ® —.

1.1.5. Example. Let X be a scheme, ®, be a quasi-coherent sheaf of 0,-
algebras, s = category of all sheaves of #,-modules € Qcoh(X). Then a line
bundle Z on X induces a line bundie F on s with F(.{({)= L&, M. for any
M E . A section of £ on X induces a section on F, and 7, = the category of
sheaves of 9, -modules € Qcoh(X,). In particular, if X, is affine, then
A, =I(X,, Ry)-Mod.

1.1.6. Example. Let & = P}, the category of modules on the projective line over
R (recall [11]). An object in P is a triple (M, 6, N), where M € R{T]-Mod,
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NER[T ']-Mod and §:M[T ']-> N[T] is an isomorphism of R[T, T 'J-
modules. Let F=()(1), ie. for any (M,8, N)E Py, F((M,6,N))=
(M, 6, N)(1)=(M, T"'¢, N), and let

s=(1, T : (M, 6, N)—F(M,0,N)=(M, T 'o,N).

Then (s, F) is a divisor on Pj, and

(1,77

s{(M, 6, N) =lim (M, 6, N)—— (M, T™'6, N)—>-+")
=(M, 0, N[T™']).

Thus &/, is equivalent to the category of all (M, 6, M[T']), where M € R[T}-
Mod, so is equivalent to R[T]-Mod.

Before going ahead, we establish the following facts:

1.2.1.1. Let G,, G,, H, and H, be endo-functors on a category &, A, : G, — H,,
A,: G,— H, be natural transformations. Then we have the canonical natural
transformation MA, G G,— H\H,, where M\A, = H A, 2 0,G, = A H, G A,
More generally, let G,,...,G,, H,,..., H, be endo-functors on 4, A;: G, —
H, be natural transformations. By induction we have a natural transformation

Al.‘./\n: Gl...G":(...((GIGZ)GB)...G")
—H - H,=(-((HH)H,) H,).

These natural isomorphisms are subject to coherent conditions that certain

diagrams commute, therefore A, - - - A, thus defined is independent of the paren-
theses.
1.2.1.2. If we have a third set of endo-functors of o, P,,..., P,. and natural

transformations g, : H,— P,, then the composite

Ay B1 B
GI...G”;_.)Hl...Hn_.__)pl”.p’l
is equal to
(oa)y - (pod),
G+ G————>P P,

where (peA), = p,° A, We can use induction to prove it easily.

1.2.1.3. Let G,..., G, be a set of endo-functors on &/, natural isomorphisms
B,:GG,— GG, i,j=1,...,n are said to satisfy the coherent commutative
TR , s
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condition if 8,8, =id and the following diagram commutes:

GBjx

B G;
G,G,G, G,G,G,—">G,GG,

BijGr Gy Bij
GiGin_(E(—-) GijGi T GijGi .

IfG,,...,G,and H,,..., H, are two sets of endo-functors on o, and natural
transformations g, : G,G,— G,G, and ¥y * H:H,— H,H, satisfy the coherent com-
mutative condition, and natural transformations A, : G,— H, are such that the
diagram

GiG/ .i) G/Gi

AA; AA;

HH—— HH,
Yij [

commutes, then by coherence for any permutation p of {1, ... ,n}, there is a
unique natural transformation
Ap : Gl “ee Gn_>Hp“) e Hp(n)

induced by A8, and vy, which is independent of intermediate steps. The reader
who wants to sce details about coherence may consult [9].

1.2.2. Definition. A finite set of divisors (s,, F,).. .. ,(s,. F,) on an Ab5 category
ol is called compatible if there are natural isomorphisms v, : F,F,— FF, i,j;

I,...,n, which satisfy the coherent commutative condition as in 1.2.1.3, and
further, s;F, =y, o F5;: F,— FF.

1.2.3. Example. Let s/ = R-Mod, Si,...,5, be n elements in the ring R,
®,--.,¢, be n automorphisms of R, such that for any a € R. s.a=gla)s,,
@(s) =5, 0.0, = ¢;¢; set F, = <R &= Then {(s,, F)....,(s,. F,)} becomes a
set of divisors on &f as described in Example 1.1.3, and they are compatible. In
particular, if 5,,...,s, are n elements in the center of a ring R. then we can let
¢, =1d for all i and get a compatible set of divisors.

1.3.1. .Deﬁnition. If (s, F), (1, G) are two divisors on an Ab3 category « and
there is a natural isomorphism v : F— G such that yet=s, then we say (s, F)
and (¢, G) are isomorphic.
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1.3.2. Lemma. For two isomorphic divisors (s, F) and (t, G) with isomorphism v,
v induces a natural isomorphism s ol

Proof. In the diagram

d—— F—2E L F2...

[d——sG——G*---
t G

the vertical natural transformations are from 1.2.1.1, and the commutativity of
the diagram is from 1.2.1.2. Because all the vertical maps are isomorphisms, we
get a natural isomorphism on the colimits: st O

1.3.3. Let (s,, F,).....(s,, F,) be compatible divisors on & with natural iso-
morphisms vy, : F,F,— F;F,. By 12.1.1 we have natural transformations
5,5, :1d— FF;; then (s;5;, F;F}) is a divisor on o/ by 1.2.1.3. We call (s,s;, F,F})
the intersection of (s,, F,) and (s;, F;). It is a straightforward check that
(s;5,. F;F})) is isomorphic to (s;s;, F;F;) through v,. More generally, let /=
{i;..... i,} be a p-tuple of elements of {1,...,n}; then we have a divisor
(2., s, [T, F) on & 1f J is a g-tuple, then {y,} induce a unique isomor-
phism v, : (II, F,,()(H/ F,,)_’ (I, F/[)(HA Flk)-

1.3.4. Lemma. {(I]s,,IIF)}, are compatible divisors on . In particular, for
arbitrary natural numbers k..., k,, {57, Fi), i=1,...,n} are compatible

divisors on si.
Proof. Obvious.

1.3.5. Lemma. Let {(s,. F,),i=1,...,n} be compatible divisors on s{; then:
(a) There are natural isomorphisms of functors (s,s/)A‘ﬁs,_ls;‘ induced by

{v,}-
(b) There are natural isomorphisms B, : sfls;‘ - s;'sf[ induced by {vy;} which
satisfv the coherent commutative condition in 1.2.1.3. If
-1 . S i 5;F; 2
Acld—s) =lim(ld—F——F —--)
-_—

denotes the natural transformation induced by Id—1d, then we have

/\,s‘I =B,j°s,.'1/\ .

i i

(c) F(s;-ToryCs;-Tor. st (s;-Tor) Cs,-Tor.
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Proof. (a) Let Z" be the ordered set of all nonnegative integers, G;: /A A
Cat(«, o) be the functor with G (p, q)= F/F]; then (a) is from the com-
mutativity of colimits:

lim (lim Gy(p, g))=lim (lim G,(p, ¢)) =lim G,(p, p).

q 14 » q p

(b) Let GIT.,. be the transpose of G, i.e., G]T.i(p, q)=G,(q, p). Then let B, be
the natural isomorphism induced from the natural isomorphism I} : G;— G]T.,.
induced by v, in an obvious way. The other statements are from 1.2.1.

(c) Let A€ (s;-Tor). Then s_l(s_'A)—s_l(s_‘A)—s_l(O) 0, so s;'(A)E

s;-Tor, thus s—l(s -Tor) C 5;-Tor. Similarly, s (FA) F(s; 'A)=0, so F(A) €
s,.-Tor, thus F(s;-Tor) Csj-Tor. O

1.4.1. A complex of functors (F.,d) on & is a chain (or cochain) complex in
Cat(, o). We call (F., d) acyclic on a subcategory B C & if for all B € 3,

(F.(B),d)=:--— F (B)—>F,_(B)—>--

is acyclic in &f. We call (F., d) acyclic mod B if H, (F.(A),d) € 3 for all A € .
If G is another endo-functor on &, then G(F., d)=(GF., Gd) and (F.,d)G =
(F.G, dG) are complexes of functors on . If we have two complexes of functors
(F.,d) and (H.,3) on &, we define (F., d)(H.,d) to be the direct sum total
complex of the double complex (F,H,, J) of functors.

1.4.2. Lemma. If (F.,d) or (H., ) is bounded, or they both are bounded from
one side, then (F., d)(H., d) is acyclic if one of the following is assumed:

(@) (H.,d) is acyclic and all F,’s are exact.

(b) (F., d) is acyclic.

Proof. Obvious. OO

1.4.3. Definition. Let (s, F}),...,(s,. F,) be compatible divisors on an AbS5
category &; then

:]:

(Id———)F)—Id——>K(sl,... $,)

i=1

is a complex of functors on &, where

K'(sy,...,5,)= @ F—>€BFF—>

i<j

We call K'(s,,...,s,) the Koszul complex of functors on  with respect to
(s,, F1),....(s,, F,), and call € = (s,) the augmentation of the Koszul complex.
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1.4.4. Lemma. Id->K'(s,,...,s,) is acyclic mod (M7, (s-Tor)).
Proof. Because si_l(Id——:—'—> F)= (Idi—> Fj)s,-_1 ,and si_l(Id—i» Fy=s" SELIN st
is acyclic,
i-1
5! (H (Id— F,-)) =T] (1d—= F ) = s H (Id— F,)

k=1 k=i+1

is acyclic by Lemma 1.4.2, i.e.,
H* (]‘[ (1ld—> F,.)> €s,-Tor,
for all i, so [], (idi» F)) is acyclic mod (M., (s-Tor)). O

1.4.5. Definition. Let (s,, F;),....(s,. F,) be compatible divisors on an AbS
category &; then

[[(d—5s ) =1d—2> &7 .. .5 ")

i=1

is a complex of functors on &, where A, is as in Lemma 1.3.5(b) and
n
Py -1 -1 -1 -1
sytyonnss, ):éBlsi @@si s;t—
i= i<j

We call &Gs;',...,s;") Cech complex of functors on sl with respect to
G F). (5, F, ), and call & =(A,) the augmentation of the Cech complex.

1.4.6. Lemma 1d->&(s7',...,s; ') is acyclic mod (M7, (s-Tor)).

Proof. Similar to the proof of Lemma 1.44. O

1.5.1. Proposition. Let (s, F,)....,{(s,. F,) be compatible divisors on an Ab5
category . denote by X the category of data (M. 6,), ;. where M, € o, .

6, : S,ﬁx(hl,)—is;x(}\/l,) for i <j, such that for any i <j <k, the following diagram
conmutes:

“1g-t Bij -1 si' Ly o
s, M,——s; s; M ———s] 5, M,
\‘Yllﬁlk 15"‘

v
sT's 1M———>li sptsT M———>e s,\s 'M,;
ik if

a morphism in 3 is f=(f):(M,,8,)— (N, n), where f;: M;— N, such that
S fie6,=m08 7 ]

Then there is a category equivalence between o, and 3, where o =) s;.
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Proof. Define G : £ — 3 by G(A) = (s 'A, By;) for any A € &, where B, is as in
Lemma 1.3.5(b), and H: 3 — o by H(M,, ,])) P for any (M,, 6,) € 2 where
P is the equalizer of the following fork:

ir Vij

I={fii<j

[T,

[Is7'(M)),

i<j

&=(8y)i<y
where f; is the composite

HM 7 A g L7 -

‘ T M — s (M) —s; (M)

i
and g, is the composite

ft A/’ -1
HMi > M, >8; (M),
i

and the ;s are projections. In order to prove &il,—iE, since duid/(a-Tor),
we need to prove &/(o-Tor)= 3. By [10, Theorem 4.9], we need to show that G
is exact, which is obvious, and that H is a full and faithful right adjoint functor of
G. By the universal property of an equalizer, for any A € of and (M,, 0,)E 3, we
have a natural isomorphism

i Yif

Hom (A, P)—»Homv((s_lA By), (M, 6,)),

ie., H' is right adjoint to G. To prove H is full and faithful, we need to prove that
t}?e adjunction morphism GH — Id is an isomorphism, i.e., s,._’(P)—E>M for all i.
Since 57! is exact, we get the exact sequence

551

0—>s,_‘(P)—->Hs (M)__;.)ﬂs, s;'(M).

i<j

Consider M, as an object in &f; then G(M,) = (s;'(M,), B,) € X. We claim that
the equalizer of the fork from G(M,) is M, itself, i.e.,

0—>M——>H D)= s (M)

is exact. In fact, let h=(h;): N—T],s;'(M,) be such that foh=geh, where
N&d; then 6,04, °h, = A;°h, for all 4, j; in particular, 6,2 Ao h, = Aok, for all i.
Because

57 (M) 57 T (M) = 7 sy (M) = 57 (M)

is an isomorphism, we have h, = A;'o@,0A,0h, for all i, i.e., h, is uniquely
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determined by h,. Let k=h,: N— M, =s;"(M,); then ((s;"))ck=h, so M, is
indeed the equalizer of the fork.
Because the following diagram commutes:

Hs M) [T (57 (M)

i<j

(a,.,)J j(ﬁ,, 571 (0)

Hs, "MY=3T]s; ' (s (M)

i<f

and the vertical morphisms are isomorphisms, the rows have isomorphic kernels,
e, s, (P)=M,. O

1.5.2. Corollary. Let (s, F,),...,(s,. F,) be compatible divisors on an AbS
category s, then o = N7, s, is also a localizing torsion theory on A, and the
functor j*:sl— s, can be chosen to send A €as to the equalizer of

(S._l(A% Bij)' u

1.6.1. Definition. An admissible abelian category is an AbS category &f provided
with a finite set of compatible divisors {(s;, F;), i =1,...,n} such that:

(a) Each &/, has a set of small projective generators

(6) M7, (s,-Tor) =0.

Recall that an object A €  is called small if for any morphism A=l B,
where B, € o, the image is contained in U<, B; for some finite subset Jof 1.

1.6.2. Example. In Example 1.2.3, if we further assume that Rs; + -+ Rs, =
R, then {R-Mod, (s,, F,), i=1,...,n} becomes an admissible abelian category.

1.6.3. Example. Let s/ = P, the category of modules on the projective line
bundle over a ring K, dnd F=( )1): Py— Py as in Example 1.1.6 be the
functor sending (M, 6, N) to F(M, 6, N)=(M, T~ '8, N); then

s =(L.T7): (M, 6,N)— F(M, 6. N),
and

5, =(T.1): (M, 6, N)— F(M, 6, N)
are two sections of F, and (s,, F) and (s,, F) are compatible. Since

s,-Tor = {(0,0, N)€ Py | N € R[T']-Mod with N[T] =0} ,

s,-Tor = {(M, 0,0) € P} | M € R[T]-Mod with M{T "'} =0} .
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so (s,-Tor) N (s,-Tor) = 0, and because (Pg), = R[T]-Mod and (P}), = R[T'}-
Mold, both of which have a set of small projective generators,
{Pg, (sy, F),(s,, F)} is admissible.

The following lemma gives us more examples of admissible abelian categories:

1.6.4. Lemma. (a) Let (s, F}),....(s,, F,) be compatible divisors on an Ab5
category i, such that A, has a set of small projective generators for all i,
o=, s;- Then {d,,(s;, F), i=1,...,n} is an admissible abelian category,
where (s,, F,) is the divisor on s, induced by (s,, F,).

' (b) Ler {d,(s;, F), i=1,...,n} be an admissible abelian category, {(t;, G,),
J=1,...,m} be another finite set of divisors on o such that {(s;, F,), (t;, G;)} are
compatible, v={\7_,t,. Then {d,,(55.FG), i=1,....n, j=1,...,m} is
admissible.

Proof. (a) From Corollary 1.5.2, o is a localizing torsion theory on &, so & is
also an AbS category. We only need to show that F; induces endo-equivalence
on of,. From Lemma 1.3.5(c), F,(s;-Tor)Cs;-Tor, so F,v(ﬁ';:1 (s,-Tor) C
ﬂizl(sj-Tor), that is, F,(o-Tor) C o-Tor; then F;'(e-Tor) C o-Tor because o-
Tor is closed under isomorphism. Let f: A— B be a o-isomorphism; then
F7'(f): F;'A— F'B is also a o-isomorphism, so for any C € o,

(E7'(f)* - Hom ,(F ' B, C)— Hom,(F'A, C)

is an isomorphism. But Hom(F,'B, C)=Hom (B, F,C). so we get an iso-
morphism

f*:Homy(B, F,C)—Hom4 (A, F.C),
and thus FCE A, ie.,
Fly:d,~d,.
In the same way, we prove
Fi_I[ﬂa: A, — s, .
So Fi[% is an endo-equivalence of &/ .
(b)_As in (a), {(s,, F})} and {(1;, G,)} naturally induce compatible divisors

{(51-3 F))} and {(G. G)} on s/, by restriction.
First we prove (M, ; (5,7,-Tor) =0. Let M € (), (5,,)-Tor). i.e.,

=-1

SU =S (M) =0
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for all i,j. Let M, denote the maximal §5-torsion subobject of M; then
MIM,C 5, ' (M). So ;' (MIM)C ;' (5" (M)) =0; then M/IM, € t,-Tor for all j,
i.e., M/M, €N, (i-Tor). But M, (z-Tor) =0, as is proved in (a) above, so
MIM, =0, i.e., M€S5-Tor for all i. Thus

Me Q (5,-Tor) = (Q (s,.-Tor)) N =0,

and therefore [, ; (5,¢;-Tor) = 0.

Since (<, );; = (&4):‘,, = (Jdﬁ)fl,-], it remains to prove that if & has a set of small
projective generators, and (f, G) is a divisor on &/, then &, has a set of small
projective generators. It is easy to see that an object P in an Ab3 category is small
projective iff the functor Hom(P, —) commutes with arbitrary colimits. Now let
P € sf be small projective, {A,} be an arbitrary diagram in 5 then

Hom,,(¢”'(P). lim A,)=Hom,(P, j,.lim 4,)
= Hom,,(P, lim j..A,)
= lim Hom (P, j,.A,)

—

s -1
—h_n; Hom,, (1" P, A,

where the embedding j,, : &, — & is exact and commutes with colimits by Lemma
1.1.1, so ¢~'(P) is also small projective in s/,. Obviously the image under t'ofa
set of generators in o is also a set of generators in &f,. Therefore. &/, also has a set
of small projective generators. This finishes the proof of (b). O

Next, we proceed to prove that an admissible abelian category is a grothendieck
category with a set of locally finitely generated gencrators. Recall that a grothen-
dieck category is an AbS category with a set of generators.

1.6.5. Definition. Let o be an Ab5 category with a sct of small projective
generators. An object A in o is called finitely generated (f.g.) if there is an
epimorphism {[Z, P,— A, where {P,;} arc small projective objects in &. Let
{sl.(s,, F).i=1,...,n} be an admissible abelian category; an object A in & is
called locally f.g. (with respect to {(s;, F,)}, if specification is needed) if each
s;'Ais f.g. in o, .

1.6.6. Lemma. Let {, (s, F,),i=1....,n} be an admissible abelian category:

then:
(a) If A€ s is locally f.g., then for any directed inductive system {A,} in &,
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and any epimorphism h_r)n (A,)—> A, there is some A, such that
Al (4,)- A

is an epimorphism.

) If {(s), F/'.), j;= 1', ...,m} is another finite set of compatible divisors on o
such that {‘?f, (s’j, F)),i=1,...,m} becomes an admissible abelian category, and
{(s;, F,), (sj,.F].)} are compatible, then an object A € s is locally f.g. with respect
to {(s,, F,)} iff A is locally f.g. with respect to {(s}, F})}.

Proof. (a) By definition, for each i, we have an epimorphism [[{_, P,—s;'A
where {P,} are small projective objects in & ; then we have the lifting Y

///
—
//

&
lim 571 (A4,) =57 '(lim A,)—>s; ' (A4)

q
i
kl=1

q . s
But [J7_, P, is also small projective in s/, so the lifting can be factorized as

i

-1 . -1
] P,—s; (A%)—>1,_m)s‘_ (A,)

il

1

for some «,. Thus the composite
57 (Ag) = lim 57 (4,) =57 (A)

is an epimorphism. Choose a, big enough such that we have epimorphisms
57N (A= lim 57 (4,) =5 (4)

for all i=1,...,n; then we have an epimorphism A, —lim (4,)— A.

(b) Because {(s;, F;), (s}, F})} are compatible, {a%, (s?), F.Ig'.),i j} is also
?dmlssible. Let A € o be locally f.g. with respect to {(s,, F.I)},lthlen o’bviously A
is locally’ f.g. }Jvith respect to {(s;s}, F;F}), i, j}. So s;"liA) is locally f.g. in
{..szfx;, (ss55, F;F}),i=1,...,n} for each j. Because A, has a set of small projec-
tive generators, we have an epimorphism '

IEIIPﬁLm(U P)=s(4),
a 7 aeld

where J runs over all finite subsets of I and {P_} are small projective objects in
AS,,. But by (a) above, we have J such that the composite
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a€ly J act
is an epimorphism, i.e., s']-'l(A) is f.g. in Ax; for each j. So A is locally f.g. with
respect to {(s;, F))}. O

1.6.7. Lemma. Lt o be an AbS category with a set of small projective generators,
{¢, G j=1---, m) be a finite set of compatible divisors on &, 7= ﬂ:",] . If
A€ s, BE s, such that there is an embedding A~ j:Band A is locally f.g. in
o, , then there is a f.g. subobject B, of B such that A =j*B,.

Proof. We regard of = { £, (id,1d)} as an admissible abelian category; then by
Lemma 1.6.4(b) 57, is an admissible abelian category, so it makes sense to say A
is locally f.g. in &, . Because j,. is left exact, we have j_,A <> j_.jfB. Let B' be the

pullback:
B ——— B
J j’“B
jA——J..°J;B

where pp is the adjunction morphism which is a r-isomorphism. Because jris
exact, it preserves pullbacks:

;B —— B

l li;w,,md

A=j*j.Aes [ j.jfB=].B
So we have j¥B’ = A. Since & has a set of small projective generators, we have
lim B, =U B, = B’, where B_ runs over all f.g. subobjects of B". Then
—

im j*B.=jlim B, = A.

— —_

Since A is locally f.g., we have by Lemma 1.6.6(a), an epimorphism jfB;O—> A
for some a,. On the other hand. jiB, —j;B'=A, s0 j¥B, = A. We take
B,=B, < B'-B. O

1.6.8. Lemma. Let {4, (s, F.),i=1...-, n} be an admissible abelian category,
{(t;, G).j=1.... ,m} be another finite set of divisors on & such that
{(s;- F). (1;, G} are compatible, and 7= ﬂ:‘:‘ . f A€ d,. BE si, such that
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/A;:»]EII; and Ais locally f.g. in s, then there is a f.g. subobject B, of B such that
=1; Dy-

Proof. First, we may assume m <n and {(t,G)), j=1,...,m} is a part of
{(s;, F;),i=1,...,n}; for if not so, we let

{(s;, F), (st FG),i=1,...,n,j=1,...,m}
replace {(s,, F,), i=1,...,n}, and
{Gitj, F,G)),i=1,...,n,j=1,...,m}

rep’lace {(t;, G}, j=1,...,m}. Then because (17_, (s,-Tor) =0, we have 7=
n.j=1 L= ﬂ,",sitj. So this replacement does not change &, and does not change
being locally f.g. by Lemma 1.6.6(b).

We use induction on n. When n =1, nothing needs to be proved because
0=m <n. Assume the lemma for n — 1.

To do the inductive step, let o = ﬂf;‘ 5, B,=j*Be . Then

ASjI(BY=j7(js (B) =i (B))

(notice that (757., for m=n—1). From the induction hypothesis, we have a
locally f.g. subqb)ect By B, € &, such that jI(B,,)= A. Then j2—(B,,) is
also locally f.g. in o, Cof,. Let By=j*(B)=s, €, . then

Jro(Bio) = fios(B)) = jao(ji(B) = Jaus,(B)
= jros;(J(B)) = jam=(By) .

Iiy Lemma 1.6.7, we have a f.g. subobject B,, = B, in &/, such that Jo(By) =

JzT5:(Byy)- Then by Proposition 1.5.1, there is a B,]Eszlnsuch that j*(B”(,)E_ B
I ~ . - 7 !

?B?B];"(BU) = Byy. so By is locally f.g. in &. But B, B, =j¥*(8B), B,,~ B, l=]

J5,(B). so we have B, B, and j} (B,) =i (j*(B,)=j*(B = is fini

J (). 0 we haw o) =7z (J5(By) = jI(B,) = A. This finishes

1.6.9. Proposition. Let {sf,(s;, F,), i=1,...,n} be an admissible abelian cate-

gory, then o has a set of locally f.g. generators. Therefore, s is a grothendieck
category.

Proof. First we prove that for any A€ of, U A_ = A, where A_ runs over all the
Ioc.ally f.g. subobjects of A, which implies that the collection aof all locally f.g
obj?cts.generates &. We use induction on n. When n =1, o has a set of sm.ali
projective generators, so obviously U A_ = A. Assume we always have U A4 _ =
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A for n—1. To do the induction step, let o= ﬂ,'.: 5, A, =ji(A4), A=
j;:(A) =s5.'(A); then by the induction hypothesis, we have UA, =4,
U A, =A4, By Lemma 1.6.8, for each A, there is a locally f.g. subobject
A, o A such that j;(A,)= A,; for each 4,,, there is a locally f.g. subobject
A’ A such that j*(A)= A,,. Then jI(UA,)=A,=];(4), islJAy=
A,=ji(A),s0oUA, =A

Next we need to show that the collection of all isomorphism classes of locally
f.g. objects in & is a set. But this is obvious, because each &, has a set of small
projective generators, so the collection of all isomorphic classes of f.g. objects in
o, is a set. Then the collection of all isomorphic classes of locally f.g. objects in &
is a set because of Proposition 1.5.1. O

1.6.10. Corollary. Let {s, (s, F;),i=1,...,n} be an admissible abelian cate-
gory. Then A € of is locally f.g. iff for an arbitrary directed inductive system {A,}
and epimorphism lim A_— A, there is some a, such that the composite

A, —limA,— A
o0 —

is an epimorphism. Therefore, being locally f.g. is independent of the choice of

{(sis FDY-

Proof. In Lemma 1.6.6(a) we have proved the ‘only if’ part of this corollary. For
the “if' part, by Proposition 1.6.9, we have

limA,=UA,=4,

where A _ runs over ali locally f.g. subobjects of A. Then from the hypothesis, we

have some «, such that
A, —lim A =A
ARG

is an epimorphism. So A, = A. and A is locally f.g. O

2. Perfect complexes

2.0. In this section we will generalize the notion of perfect complexes over a
scheme to our context of an admissible abelian category and establish the basic
characterization of a perfect complex and other properties. The category of
perfect complexes will be the category from which we construct our K-theory

spectra.
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2.1.0. Let &/ be an abelian category, we will fix the following notations in this
paper:

C(sf) =: the category of all complexes in o, i.e., objects are complexes whose
terms are objects in &, and morphisms are chain maps.

H(s)=:the category of all complexes in s, but morphisms are homotopy
equivalence classes of chain maps.

D(sf)=:the derived category, formed from H(sf) by formally inverting all
quasi-isomorphisms (i.e., chain maps which induce isomorphisms on the homol-
ogy of the complexes); for details see [8).

Notice that C(of), H(sf) and D(«) have the same objects, but different
morphisms, and we have the canonical functors C(sf)— H(s¢)— D(A).

2.1.1. Definition. Let {<,(s;, F;), i=1,...,n} be an admissible abelian cate-
gory; we call an object PE s locally small projective if each s'P is small
projective in o, . A complex E* in o is called strictly perfect if E* is bounded and
all terms E” are locally small projective. A complex E" is called perfect if for each
i, there is a bounded complex E; in o, with each E} small projective in &, and a
quasi-isomorphism E; — s, 'E". We will fix the following notation in this 'paper:

P(al) =:the full subcategory of & of all locally small projective objects in .

We need an inductive resolution lemma which is a special case of [14, Lemma
1.9.5]. Recall that a complex E° is called cohomologically bounded above if
H'(E*) =0 when i = n for some n.

2.1.2. Lemma. Let A be an abelian category, D be a full subcategory of A, C,(A)
be a full subcategory of C(A) such that every complex in Cy(A) is cohomologically
bounded above. Suppose all bounded complexes in D are in Cy(A), and C(A) is
closed under mapping cones of morphisms D*— C*, where D" is any bounded
complex in D and C* € C(A). Assume further

2.1.2.1. For any integer n, any C* € C(A) such that H(C')=0 when i=n and
any epimorphism in A, A— H""'(C"), where A€ A, there exist a DED and a
map D— A such that the composite D— A— H" " Y(C*) is an epimorphism in A.

Then for any cohomologically bounded above complex D* in D, any C* € C,(A)
and any chain map D* = C", there exists a bounded above complex D" in D, a
degreewise split monomorphism D* %D ", and a quasi-isomorphism D" C*
such that x =x'ob.

If further x is already an n-quasi-isomorphism, then we may choose D'' = D' for
i=n.

Proof. This is given by an inductive construction using 2.1.2.1. For details, see
[14, Lemma 1.9.5]. OJ
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2.2.1. Lemma. Let o be an AbS category with a set of small projective generators,
and regard of = {4, (id, Id)} as an admissible abelian caz:egory. y .
(a) If E'€C(d4), F' is strictly perfect and ther,e is a quan-fsomorphfsm
E*— F°, then there is another strictly perfect complex F" and a quasi-isomorphism
F""— E*, thus E" is perfect. '
(b) If E'— F'— G is a homotopy fibre sequence in D(s), and any two of E”,
F* and G are perfect, then so is the third one.
(c) If E*,F* € C(A), then E* @ F" is perfect iff E* 'and F* are bofh perfec{.
(d) For any E* € C(&), there is a directed inductive system {E.} of strictly

perfect complexes and a quasi-isomorphism 1_13 E:—E".

(e) E- is perfect iff for any directed inductive system {E.} in C(s1), we have an
isomorphism

HomD(d)(E',inl E:) '=“li_m) Hom, ,(E" E) .

Proof. The proof is essentially the same as in [14]. The interest reader may follow
the ideas in [14] to fill in the details without much trouble.
(a) Confer [14, 2.2.4].
(b), (c) Confer [14, 2.2.13].
(d) Confer [14, 2.3.2].
(e) We can have a quick proof for (¢) in our conte?(t. '
If E" is perfect, {E.} is a directed inductive system in C(4), we want to prove

HomD(‘ﬂ)(E‘,li_r_n_, E)= En_}HomD(m(E', E.).

Because every perfect complex is quasi-isomorphic to a strictly perfect complex,
we may assume E° is strictly perfect. Let f€Homy, (E ’!l—ﬂ E:) be repre-
sented as

E'— F'—lim E, .
—

By (a) above we have another strictly perfect complex £’ and a quasi-isomor-
phism E™ 5 F", so f can be represented as

E'<E"—limE.
—

Since E" is bounded and each term E'" is small projective, the chain map
E’—lim E_ can be factorized as
—

E"—E; —lim E
T

for some . It is easy to check that this factorization gives us the desired

isomorphism.
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Conversely, if E° makes HomD(d)(E' -) commute with directed inductive
systems in C(sf). Choose a quasi-isomorphism: lirp) E. > E", as is insured by (d),
where all E’s are strictly perfect. Because

HomD(d)(E’,ll_m) E}) =h_m) HomD(&!)(E'a E}),

we see that the inverse of lxm E. = E" in D(«) factorizes through some E_, so
E* is a direct summand of some E. in D(«). By (c) above, E" is perfect. [

Next we proceed to give a characterization for the perfect complexes in a
general admissible abelian category, analogous to the one given in Lemma
2.2.1(e).

2.3.1. Definition. Let & be an Ab5 category, {(s;, F;), i=1,... ,n) be compat-
ible divisors on &, o = U,'.;l s,;. Define a functor
Rj,.: C(d,)—> C(st),
Rj, (E") =Tot(&s;",...,s;")j,.E")
=Tot(é(5;",...,5,HE"), VE € (C(4,),

where é(s7',...,s7) and &517,...,5, ") are Cech complexes of functors de-
fined in Definition 1.4.5. There are natural transformations Jj,.~Rj,. and

ld, =j; },,*'—’JURJW induced by the augmentation of the Cech complex 8 =
(/\) Id— &(s] ,...,s;l).

2.3.2. Lemma. (a) Rj,,: C(oA,)— C(d ) preserves quasi- isomorphisms, there-
fore naturally induces a functor D{sf,)— D(.szi) still denoted by Rj,,..

(b) For any E* € C(A,), §=(A,): E* —j*Rj E'isa quasi-isomorphism.

© (10, Rjo,) is an adjoint pair of functors between D(s) and D(L,).

(d) Rj,. commutes with colimits.

Proof. (a) If E* € C(s,) is acyclic, then 5, 'E" is acyclic in o, , because 57 s
exact. Thus

Rj, (E")= Tot(@s E-®s55 E-_,...>

i<j

is acyclic because each column of the bicomplex is acyclic. Clearly R]w preserves
mapping cones, so Rj,. preserves quasi-isomorphisms.
(b) By Lemma 1.4.6,

cone(8) = cone(E" — j; Rj,.E') = Tow(E'— &7, ..., 5, )E)
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is acyclic because each row of the bicomplex is acyclic mod (ﬂ, ; (§,-Tor)) and
ﬂ, 1 (5-Tor) =0, so 5 is a quasi-isomorphism.
(c) Define natural transformations

Mol IdD(.’zI)—) Rja*]: s vy Rfu*—’ldnwa)
as follows: for any E* € D(&f), let
pp =81 Er—Tot(Esy 'y .. s, DE )= Rijs E°;
for any F* € D(sf,), let v be the morphism represented by
Jo R (F) P F

In order to prove that (j¥, Rj,.) is an adjoint pair between D(sf) and D(s4,), we
need to prove that the natural transformations of functors

vigejar s —is
and
Rj,.vouRj,.: Rj,.~ Rj,.
are natural isomorphisms. (Notice that one usually requires vjyojrp =1d;. and

Rj vouRj =1dg, ., but a slight modification of the usual proof shows that
o* T * i
under these weaker h)potheses we still have a natural isomorphism

Homo(;-/‘,)(f: , o) E Homn(y/)(_» Rj,.)

and thus an adjoint pair.) . o o ‘
Let E' € D(f), then (vjFoj* ). is the composite in D(sf):

58 =8 - I I T
jPE R A (Tow(é(sy . .5, VE ) —— i E = E
1
Tot(4(5; ", ..., 5, JlE").

Because § is a quasi-isomorphism by (b) above, vj¥oej*p is an isomorphism in
D(sd,).
Let F* € D(«,), then (RF]U,Vo/.LR/U,)F is the composite in D{&f):
BRiyF . Ripu®) A . id . a. g
Rj, s R, i Ry (F7) e Rjp ' == R F

Because & is a quasi-isomorphism and Rj,, preserves quasi-isomorphisms, so
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Rj,.(8) is also a quasi-isomorphism. To see that 8z;_.r- 18 a quasi-isomorphism,

look at
cone(dy; r.) =Tot(H (Id— 7MY, ... ,s;‘)j:F-> .
i=1
It is easy to check that the complex of functors
[TAd—s Hes .50

i=1

is acyclic since each

r

H (Id—>s_l)s o5

is acyclic. So 84;,.r- 15 @ quasi-isomorphism, and (Iéjt,*voyf?jw)p. is an isomor-
phism in D(«).
(d) This follows immediately from Lemma 1.1.1. 0O

2.3.3. Lemma. Let s be an AbS category, (s, F}),...,(s,_., F,_,) and (1, G)
be n compattble divisors on s. Denote (s;, F] )—(st FG), i=1,...,n—-1

o= ﬂ, LS, O —ﬂ:'_l s;=a Ut If (o-Tor) N (¢+-Tor) =0, then for any E'e
(), we have an exact sequence of complexes
0= E* = Rj,.(jTE)®ju(JE" )= Rj, (/3. E)—0.

Proof. Consider the complex of functors

n-1

ITad—s7Had—

i=1

=(Id— &Y. s pad— Y

=Id— (s, sl )@ s s, s )
which is  acyclic  mod (1N, (s,-Tor)) N (+- -Tor)) = mod ((¢-Tor) N (t-Tor)) =
mod (0) by Lemma 1.4.6, so it is acyclic. Then for any £° € C(f), we get an

€xact sequence

0— E"—Tot(&s;',...,s]' YE)®'E
—Tot(&(s;'s...,5, )7 D Y)—0,

which is just the exact sequence required in the lemma. (I

Now we can prove the following:
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2.4. Proposition. Let {4, (s;, F}),i=1,...,n} be an admissible abelian category;
then:

(@) A complex E* € C(oA) is perfect iff Hom,,,\(E", =) commutes with directed
colimits in C(s4). Therefore, being perfect is independent of the choice of the
compatible divisors {(s;, F;), i=1,...,n}.

(b) If E'— F*— G is a homotopy fibre sequence in D(s), and any two of E",
F* and G* are perfect, then so is the third one.

(c) E*@®F" is perfect iff E*,F" are both perfect.

Proof. (a) Let E° be perfect. We use induction on the number n of divisors to
prove Hom, (E", —) commutes with directed colimits. Whenn=1, s, :1d— F,
has to be an isomorphism, and thus &, = . So & has a set of small projective
generators, and Homp , (E", -) commutes with directed colimits by Lemma
2.2.1(e). Assume (a) for n — 1. To do the inductive step, since ﬂ, L (s;-Tor) =0,
in Lemma 2.3.3 we take (¢, G)=(s,. F,). Then for any F' € C(s&f), we have a
short exact sequence of complexes

0= F = Rj, jiF ®j, jiF = Rj,.js F =0,
1

where (s), F})=(s;5,, F,F,), o=_s
long exact sequence

n—-1 ,

and ¢’ =1[1;_, s;. So we have the

i

<= Homy,, (E", F*)—Homy,, (E", Rj,.j; F)®Homy , (E, j, .j5 F")
—Hom, (E", Rj,..j 3. F )~ Homp, (E*[~1]. F)—>- -
By Lemma 2.3.2(c), we have
Hom pyy(E", Rj,.j3 F*)=Homy, \(jTE" jIF).

Because j; commutes with directed colimits and clearly preserves perfectness, and
Hom ,;,(jrE", jx( )) commutes with directed colimits by the induction hypoth-
esis, so does Hom,,\(E", Rj,.j*()). Similarly Hom, . (E", Jo () and
Homy, (E", Rj,..j;-( ) also commute with directed colimits. Then by the
five-lemma, Hom,, ,,(E", -) commutes with directed colimits.

Conversely. if E* € C(«/) such that Hom,)(&,)(E', —) commutes with directed
colimits in C(&/), then HomD(d )(s —) also commutes with directed colimits
in C(&, ). Because (s;" js , 1:*) are an exact adjoint pair of functors between
of and J they automatlcally induce an adjoint pair of functors between the
derived catevones D(sf) and D(s,); and because j,, commutes with directed
colimits by Lemma 1.1.1, by Lemma 2.2. 1(e), s; TUE s perfect in &, for all
..... n. So E* is perfect in .
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(b) Apply (a) above and the five-lemma to the following long exact sequence

.. ‘_—)Homo(d)(E'[—l], —)—»Homb(&,)(G', __)

—>Hom,,, (F", —)—>HomD<‘d)(E', -

(c) Because

Hom (., (E* & F', =) =Hom ,(E", -) & Hom,,, (F", -) ,
we can apply (a) above. [

2.5.0. Let {d,(s;, F,), i=1 n} be issi
, (s;, F), s, an admissible abelian cate /

we hals;e another two finite sets of divisors on s, {(t, G) j=1g°r)”25}5‘;’:§

¢ > G, yeees
{(u.,‘, ), k 1,..”;,r}, such t}}at {(s;, F), (. G, (uy, H) i, kY are com-
patible. Put r=ﬂj=lt/, pm=00 . v
Z..S.EI.CI(,;m)ma. i(/iVith the assumptions and notations as in 2.5.0 suppose that
E* € ) an jEE’EC((ﬂ,)-)=C(&i ) is acyclic i ’
Ji(Rj..E*)E C(s4, ) is acyclic in sz;“. - e e Then

Proof. Since j}(Rj..E") is acyclic in o, iff
i B -1/5
P UeRiGED) = pe (R LE') € O, )

;(s_ac;ychc for al! k= 1.;. ol it suffices to prove u,:l(f?j‘,,E') is acyclic for all
ﬁr,...,r. r%mce JzE® is acyclic in () =, rUpr=(N" tHy
= N o . ‘
éin(:lc:lt;:k) ] ,akdt,uk (Lemma 1.3.5(a)), ¢} 'u;'E" is acyclic in o forjalll]/' k
¢ the embedding &/ = >, is ex “WTE s ac .
e ing o, (&fuk)l’-e o, Is exact, L ‘wi'E" s a/c;'clic in A, .

u; (Rj,,E*)=Tot (@ w B D )

i<j
= -1 -1p. ~1,-1, -
To (7 5 Bt g )
i<y
is ic i
acyclic in 4, because each column of the double complex is acyclic in &/ a
“f\"

2.5.2. Lemma. With the assumptio [
d . .
Tor) P (aony oo e plions and  notations as in 2.5.0, if further
(@ IfE'€C(d)and jE € C(sf ) i ic i R
K s acycl ’ WJIEY)
a quasi-isomorphism in .52; ) Yy then BT AR E) b
(b) If E" € C(4,) is perfect, j* E- j ic i R
: A JaET € C(oA, ) is acyclic in oA, & i E
C(sf) is perfect in o with M (IAij:,E') acyclicu’ztn o, o then B €
»
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Proof. (a) By Lemma 2.3.2(b),
j2 (cone(E" — Rj,.j? E)) = cone(j} E*= I Rj,.(j] E*))

is acyclic in &, , i.e., cone(E"— Rj..j*E") is acyclic mod(r-Tor). By assumption,
joE" is acyclic in &, then u'E* = ;' (jLE") is acyclic in o, for all k. So

u; (cone(E*~ Rj_j*E*)) =u;" (Tot (]_m[ (Id— t;l)E'>>

j=1

ETot(H (Id— z;‘)u;‘E-)
=1
is acyclic in &, for all k, that is, cone (E'—>I§j,.*jf*(E‘) is acyclic
mod (M-, (i,-Tor)). But

(h (u,;Tor)) M (v-Tor) = (n-Tor) N (r-Tor) =0,

so cone(E'— Rj..j*E") is acyclic in &, that is, E'— Rj_jYE" is a quasi-

isomorphism.
(b) Follow the proof of [14, Theorem 2.6.3], but replace Rj, by Rj,. 0

2.6. Definition. An admissible abelian category {&,(s;, F,), i=1,...,n} is
called strongly admissible it P(&f) generates &f. (Recall that P(«/) denotes the
class of all locally small projective objects in s4.)

2.6.1. Examples. (a) Example 1.6.2 and Example 1.6.3 are examples of strongly
admissible abelian categories.

(b) Let X be a scheme with an ample family of line bundles, %, be a
quasi-coherent sheaf of O,-algebras, &f =the category of all sheaves of R,-
modules CQcoh(X); then & is a strongly admissible abelian category (cf.

Example 1.1.5).

2.6.2. Lemma. Let {,(s,, F), i=1,...,n} be a strongly admissible category,
E* be a bounded perfect complex in s. Then there is a strictly perfect complex E"
and a quasi-isomorphism E'— E*. Thus, a complex in s is perfect iff it is
isomorphic in D(s{) to a strictly perfect complex.

Proof. Let E£° be bounded and perfect. In Lemma 2.1.2, let A=, D= P(sA),
C,(sf) = all perfect complexes in &f. Because P(sf) generates o, it is easy to see
that all conditions in Lemma 2.1.2 are satisfied. So for every perfect complex E7,
there is a bounded above complex F* with all F™ € P() and a quasi-isomorphism
F*— E°. So F" is also perfect. Then for each i=1,...,n, there is a strictly
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perfect complex E; in & and a quasi-isomorphism E;—s; 'F', so
cone(E;—s;'F') is acyclic. Because E; and s;'F" are both bounded above
complexes of small projective objects in &, , and moreover E; is bounded below
cone(E; > s 'F*) splits, and when m small enough,

>

sTUF™ = cone(E; — s\ F*y™
=Im(s;'d™) ® Im(s; 'd™ ")
=57 Im(d@™) P s; ' Im(d™"")

where the d™’s are the boundary maps of F*. Thus when m small enough, each
57 Im(d™) is small projective in &/, that is, Im(d™) EP(«4). Choose m small
enough so that also E* =0 when k < m because E* is bounded; then we have a
quasi-isomorphism ="F* 5 E*, and r="F" is strictly perfect. We let E”* = t="F",

If E* is isomorphic in D(s/) to a strictly perfect complex, then by Proposition
2.4(a), E is perfect. If E" is an arbitrary perfect complex, then E* is cohomologi-
cally bounded below, so when m small enough and n big enough E" is isomorphic
in D(sf) to 77"(+"E"), and 7="(+>7E") is a bounded perfect complex. From
the above, there is a strictly perfect complex E’* and a quasi-isomorphism
E"=7%"(r*"E"). So E" is isomorphic in D(sf{) to E" O

3. Excision theorem and proto-localization theorem

3.0. In this section we will use Waldhausen's K-theory construction to define
K-theory for admissible abelian categories. It can be regarded as a generalization
of K-theory of schemes to certain noncommutative situations. The proto-localiza-
tion theorem is proved here, which is one of main goals of this paper. For
Waldhausen categories, complicial biWaldhausen categories, the derived category
of a complicial biWaldhausen category, K-theory spectra of Waldhausen
categories, and basic results like the additivity theorem, fibration theorem,
approximation theorem, cofinality theorem, etc., we refer to (15} and [14, Section
1].

3.1.0. Definition. Let {, (s, F,), i=1,...,n} be an admissible abelian cate-
gory, P(sl) = the full subcategory of C(«f) of all perfect complexes in . P(A)
becomes a complicial biWaldhausen category with cylinder and cocylinder
functors, where weak equivalences are quasi-isomorphisms and cofibrations are
degree-wise monomorphisms. We define the K-theory spectrum of &, denoted by
K(s), to be the Waldhausen K-theory spectrum of P(A), ie., K(d)=
K™(P(£)), where K¥ denote the Waldhausen K-theory functor.
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We quote Thomason and Trobaugh’s derived category theorem below for easy
reference:

3.1.1. Theorem. Let A and B be two complicial biWaldhausen categories, each of
which is closed under the formation of canonical pushouts and pullbac{cs, and let
F: A—B be a complicial exact functor. Suppose that F induces an equivalence of

the derived categories
W'F:W A->W'B.

Then F induces a homotopy equivalence of the K-theory spectra
K¥(F): K¥A)— K¥(B).

Proof. [14, Theorem 1.9.8]. O

As we have shown that perfectness is independent of the choice o.f t.he
compatible divisors {(s;, F;), i=1,...,n} (Proposition .2‘4(a)), P(A) is in-
dependent of the choice of {(s,, F}), i=1,..., n} and so is K(s4).

3.1.2. Example. Let R be a ring; then {R-Mod, (id, 1d)} is a strongly admiss}ble
abelian category. Let P(sf) denote the full subcategory of C(«) of all strictly
perfect complexes in an admissible abelian category s{; then by Lemma 2.6.2,

W (P, (R-Mod))— W™ 'P(R-Mod)
is a category equivalence, so we have
K(R-Mod) = K™(2?(R-Mod)) = K" (Z,(R-Mod)) .

According to Gillet and Waldhausen ({3] or [14]), KY(2,(R-Mod)) is homotopy
equivalent to KC(P(R-Mod)) (recali that P(s7) is the full subcategory of gll locally
small projective objects in the admissible abelian categorg' ), where K denotes
the Quillen K-theory functor for exact categories, and K (P(R-Mod)) is the usual
K-theory spectrum of R, so we have K(R-Mod) = K(R). . 4

Generally, if {4, (s, F;), i = 1,...,n} is a strongly admissnb.le abelian category,
then P(sf) is an exact category, the embedding i : P(A)— s is exact and reﬂc.cts
exactness, P(&f) is closed under extensions in &, and P(sf) satisfies .the follf>wn}g
extra condition: if f : P—> Q is a morphism in P(&/) and i( f) is an eplmorphlsm in
s, then f is an admissible epimorphism in P(s7). So the theorem of Gillet and
Waldhausen applies, and we have

K(st) = KMP(4)) = K™ (Py(s)) = KUR(A)) -
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If {, (s, F;),i=1,...,n} is only an admissible (not strongly) abelian category,
then K(sf) need not be homotopy equivalent to K2(P(sf)). We will see that it is
K(sf) that behaves well under localization.

3.1.3. Let {&, (s;, F}), i=1,...,n} be an admissible abelian category, {(;, G,),
j=1,...,m} and {(u,, H,), k=1,...,r} be another two finite sets of divisors
on & sruch that {(s,, F,), (¢, G)), (4, H,), i, j, k} are compatible, 7 = ﬂ;":, L,
H=0 g Uy
Denote P(sf off sf, ) = Waldhausen subcategory of P(sf) of those perfect
complexes E* with % E* acyclic in o4, (‘off’ is to suggest that the complexes are
supported off &,). Then P(« off &, ) is also a complicial biWaldhausen cate-
gory. Define K(f off &£, ) = K™(P(s off &£,)). Clearly,
JI o P(st off o, )— P(A, off A,

ru,;)

is an exact functor of Waldhausen categories.

3.2. Theorem (excision). With the assumptions and notations as in 3.1.3, assume
(7-Tor) N (pu-Tor) =0. Then j! induces a homotopy equivalence of spectra

K(j*): K(sd off o) — K(st, off f,,,) .

Proof. By Lemma 2.5.2(b), Rj,, is an exact functor from 2(, off &, ) to
P(s4 off 4,). By Lemma 2.3.2(b), j’ Rj,, is naturally isomorphic to Id over the
derived category W™ ' (P(sf, off ,.,,)). and by Lemma 2.5.2(a), Rj_,j is natur-
ally isomorphic to Id over the derived category W™ (P(sf off N So(jr, Rj.)
induces an equivalence of the two derived categories. Then by Theorem 3.1.1,
they induce a homotopy equivalence of the two Waldhausen K-theory
spectra. [ ’

3.3. Theorem (proto-localization). With the assumptions and notations as in 3.1.3,
we have the following homotopy fibre sequences of spectra:
(a) (absolute form)

K(s4 off o) — K(sd )— K(,)™ ,
(b) (relative form)
K(sd off o, )~ K(s off 51, )— K(, off s,

U

where K( )~ is some covering spectrum of K( ), i.e., there is a map of spectra
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K( )" — K( ) such that
7, (K()7)—= m,(K( ) =K,()
are isomorphisms for n=1 and a monomorphism for n = 0.

First let us see what will suffice to prove the theorem (cf. {14, 5.2]). For (2), let
P(sf for sd,) be the complicial biWaldhausen category which has the same
underlying category as P(sf) does, and the same cofibrations as P(s) does; but
the weak equivalences in P(«f for &) differ from those in (&) and are deﬁm?d
as follows: f:E‘—F' in P(of ford,) is called a weak equivalence iff
j¥f:jfE'—jF' is a quasi-isomorphism in < . By the fibration theorem [15,
1.6.4], we have the following homotopy fibre sequence:

K¥(P(A off d,))— K¥(P(d))— K(P(oA for o)) .

If we can prove that K¥(#(sd for #£,)) is a covering spectrum of K¥(2(s4,)),
then the proof of (a) is done. By Thomason and Trobaugh’s cofinality theorem
{14, Theorem 1.10.1]. if we let

G = coker(Ky(st) = Ko(4,)) ,
then we have a homotopy fibre sequence of spectra
K¥(®)— KM (P(A )= <G,

where @ is the full Waldhausen subcategory of P(sf,) whose objects are those
perfect complexes E° such that the class [E’]€ Ky(s4,) is in the image of
K, (el )— K,(.), and “ G is the spectrum with m,*G" =G, , G =0,i=1
So we need to prove K™(P( for o,)) = K¥(#). By Theorem 3.1.1. we nAeCd to
prove that the derived category W (P for &) of P(sd for o) is equivalent
to the derived category W™ (%) of B through an exact functor. Thus after all, 1o
prove Theorem 3.3(a). it will suffice to prove that

W)t W (P for od,)) > W™ (B)

is an equivalence of categories. Notice that for an admissible abelian category &,
WY P(A)) is a full subcategory of D(s) =W~ (C(s)), so it will suffice to
prove the following:

3.3.1(a) For a perfect complex E* in o, , its class [E'] € Ky(s,) is in the ir.nage of
K (sf)—> K,(sf.) iff there is a perfect complex F* in o such that jOF" is
isomorphic to E” in D(sf,).
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3.3.2(a) For any two perfect complexes E;,E; in &, and a morphism
f:jXE;—jXE; in D(d,), there is a third perfect complex E” in & and
morphisms b: E;— E” and c: E;— E" in D(«) such that j5(b)=j (c)°f in
D(s4.) and j}(c) is an isomorphism in D(sf,).

3.3.3(a) For any two perfect complexes E},E; in &, and two morphisms
fi.fo: E;— Esin D(A), it jX(f,) =jI(f,) in D(,), then there is a third perfect
complex E" in & and a morphism e : E;— E " in D(«) such that eof, = eof, in
D(sf) and j (e) is an isomorphism in D(,).

From the same consideration as above, to prove Theorem 3.3(b), it will suffice
to prove the following:

3.3.1(b) For a perfect complex E* in o, with j*(E") acyclic in &, ,, its class
[E']€ Ky(o, off £,,,) is in the image of Ki(o off o, )— Ki(, off &, ) iff
there is a perfect complex F* in s with j(F*) acyclic in &, such that jXF" is

isomorphic to E” in D(«,).

3.2.2(b) For any two perfect complexes E},E; in & with j}(E}) and j;(E3)
acyclic in &, , and a morphism f : j} E{—j} E; in D(sf,), there is a third perfect
complex E" in &f with j (E ") acyclic in o, and two morphisms b : £;— E" and
c:E;—E"™ in D(&) such that jX(b)=jX(c)of in D(#,) and j}(c) is an
isomorphism in D(,).

3.3.3(b) For any two perfect complexes E,E; in o with j(E]) and j (E})
acyclic in &, , and two morphisms f,, f, 1 E{— Ej in D(&), if j7 (f)) =] (f) in
D(,), then there is a third perfect complex E” in o with j;(E™) acyclic in &,
and a morphism e : E;— E" in D(&f) such that eof, = eof, in D(&f) and j (e) is
an isomorphism in D(«,).

The rest of this section will be given to the proof of 3.3.1(a),(b), 3.3.2(a),(b)
and 3.3.3(a),(b). But [14, 5.2.6] shows that 3.3.2 in fact implies 3.3.3, and the
proof can be taken over to our context. So what we need to show is 3.3.1 and

3.3.2. We start with the following:

3.3.4. Remark. If 3.3.2 is true, then actually we can choose & and ¢ to be chain
maps in the following way: Let b be represented as

b b;
E; i Fi i El.
and ¢ be represented as

cy €3
E;—> F,«—E".
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Let E™ be the homotopy pushout

E; E/. Eé
F; F;
AN /

Then

jripehy) Fi(iseca)

JTE; jrE" jrES

represents j () ejX(b) = f, e, jr (i, b)) =j! (i2°C2)°fil:1 D(&Z,.)A ‘\\'e replace
E". bandcby E™ i,°b, and i,°c,, respectively. If jX(E™) is acyclic in &/, then
so is j,(F}) and j;(F}), and so is JR(E™). .
Also notice that in K,(s/) or K (« off sf,), we always have [E™]=[Fi]+
(F3]-(E"1=[E"]+[E"1-[E"]=[E"].

3.4.1. Lemma (cf. [14, 5.4.1]). Let {4, (5,. F}). i= 1,...,n} be an admissible
abelian category, (1, G) be a divisor on &, E° be a strictly perfect complex in o
and F* be an arbitrary complex in . Then:

(@) Iff:1'E'—> ¢ 'F* s a chain map. then there is an integer p>0. a chain
map b E'— G?F" such that (Y b)Y =17 (") o f (recall from 1.3.3 that " is the
section of G* induced by t:id— G, and we have the equality G¥tiot” =1""" =
G 1"y, . »

(b) If fi.f.: E'— F" are two chain maps such that t7'(f,) =t (f,). then there
is an integer p >0 such that t”of, =1t"2f,. 1 - .

() Iff,.f.: E*— F" are two chain maps such that t7'(f) =t (f.). where* =
stands for “being homotopy equal 10, then there is an integer p >0 such that

thef = thef.

Proof. If Q is a small projective object in an Ab3 category, then Hom{Q.-)
commutes with directed colimits. If Q is a locally small projective object in an
admissible abelian category &/, by Proposition 1.5.1, o is equivalent to X as
defined in Proposition 1.5.1, then Hom ,(Q. —)EHom:((Si_l(Q). B;). —) com-
mutes with directed colimits because each S;I(Q) does. Therefore. for the strictly
perfect complex E°, the mapping complex Hom'(E", —) commutes with directed
colimits, and then




296 D. Yao

Hom, (¢t '(E"), tHEY)
=Hom(E", j.t"'(F"))
= Hom_,(E", lim (FF—=GF —--+))
= li_m_)(Hom;,(E', F)—>Hom (E', GF*)—--*).

Since the cycle group Z°(Hom') is the group of all chain maps and the
cohomology groups H°(Hom") is the group of all homotopy classes of chain
maps, applying these functors, we get the lemma. O

We will first prove 3.3.1 and 3.3.2 for a special case: &/ has a set of small
projective generators.

3.4.2. Lemma. Ler & be an AbS category with a set of small projective generators.
We regard s ={f,(1d,id)} as a (strongly) admissible abelian category. Let
{(4;, G)),j=1,...,m} be a finite set of compatible divisors on i, 7= ﬂ'j":[ BT
be a strictly perfect complex in s, and F* be an arbitrary complex in . If f :
i*E*—j*F* is a chain map, then there is an integer p>0 and a chain map
b:E = K'(t?,.. ,t2)F such thar jr(b)=jr(t)ef in C(dd,), where
K*(t?,...,t0) is the Koszul complex and t=(¢§,...,t5) : Id— K"(¢7,... . th) is
the augmentation, as in Definition 1.4.3.

Proof. First we prove that there is an integer ¢>0 and chain maps
5,1 E'— GF" such that j[ (b)) =jI(t])efforall j=1,...,m. Applying Lemma
3.4.1(a) to

N GIEY = E s = EFY)

here is a ¢, >0 big enough and b;:E'— G{'F" such that by =
Jehyer'(f) forall j=1,...,m. Since {<,. (7. G).j=1...., m} is an ad-
nissible abelian category from Lemma 1.6.4(b), and j7E" is a strictly perfect
:omplex in &7, , by applying Lemma 3.4.1(b) to j (b)) and j[ (:]')° f. we see that
here is an integer g, >0 such that

FRG i (b)) = ERGej (1) o f = T{ e

nod,. Let by=1G{ob}, g=q, + q,, then we have jf (b)) =;{t])f.
According to Lemma 1.3.4, {(t{, G¥), j=1,...,m} are still compatible di-
isors on . Obviously (t;.’)_l = t;', to simplify notation, we write (¢, G,) for
t4, G1). Then we have b, : E'— G,F" and j[ (b)) = (t,)f. n
Let (t;t;, G,G;) be the intersection of (¢,, G;) and (#;. G,). as defined in 1.3.3. A
traightforward check shows that
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-1 _ -1 °
(tit/) (tiGjobj)_(titj) (Gitj b).
By Lemma 3.4.1(b) there is a p, >0 such that
(14)7G,Go1,Gob, = (t:4)'G,G;° Gt;°b, .
From the coherent commutativity of {(¢;, G,)}, it is easy to check that
+1 +1 L +1,.py+ly, o
TG et Gro b, = G T et G b,
Choose p, big enough so that this holds for all i.j. Let p=p, +1, and
b=("G,oby,...,.thG,°b,)  E*— K (¢, .. tE)F*
be induced from the chain map of the double complexes:

E* = E* ———— 0 R | |
H
1
|

I

: @GfF'————)@GiPG:’Fn..__,Gf,”Gi‘[;.
; -

If

K (t0,.. .., th)F°

i<
Then the equality j*(b) = ;7 (1)°f follows from the equalitics

JIG b)) = (]Gl (b)) =JI G f =TS
for all j. This finishes the proof of the lemma. [l

Notice that j (1) is a quasi-isomorphism by Lemma 1.4.4, so the above lemma
extends a chain map in &/, to a morphism in D{s/). In order to extend a
morphism in D{(s/,) to D(&/). as is needed in 3.3.2, we need to work harder.

3.4.3. Lemma. Let o be an AbS category with a set of small projective generators.
{(4t, G), j=1,....m} be a finite set of compatible divisors on si. 7= nr., 1
then:

(@) jI(P(sd)) generates ..

(b) For any perfect complex E™ in o, there is a bounded above complex F* in
o, with all F" € j7(P(el)). and a quasi-isomorphism F*— E".

() If F* is a bounded above complex in . with all F" € j (P(sd)). then for any
given integer r. there is a strictly perfect complex P* in s wiih P =0wheni<r.a
complex M" in s, with M’ =0 when j > r, and a morphisin d M —j P such
that
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C,(M', dr’ P') = Ml Mr__d:_)j:Pr+l_>j:Pr+2_) .

becomes a complex in A,, for which there is a quasi-isomorphism
F—>C(M,d, P).

(d) If E" is a strictly perfect complex in A with E' =0 when i<n, and

fHjfE > C(M, d, PY)

is a quasi-isomorphism with r < n, then there is a p >0 and a chain map
g:C(M", d, P )= (K (t],...,t0)F")

which is a quasi-isomorphism.

Proof. (a) Let A€ &, because P(s/) generates o/, we have a surjection
1IP,—j..A with P, EP(). Then

it (U Pa) =17 (P)=jj.A=A

is a surjection because j is exact. So j¥(P(#)) generates &,.

(b) In Lemma 2.1.2, let A=, D be the full subcategory of &/ with
Ob(D) = j¥(P(«)), Cy(s4,) = all perfect complexes in .. To check condition
2.1.2.1, let E” € Cy(s,), and suppose H'(E*)=0wheni=n,and M— H""(E")
is an epimorphism in &, . Since j’ (P(sf)) generates &,, we have an epimorphism
H.e, iZ(P,)— M, so the composite

L j2(P)—M—H"(E)
a€l
is also an epimorphism. We claim that H"~'(E") is locally f.g. In fact. since E- is

perfect, for each j=1,...,m, we have a strictly perfect complex E; in &, and a
quasi-isomorphism E;— 7 'E". So '

H(E;)=H'(i;'E")=1;"H(E")=0

for i=n, thus E;=Bi(E})€BZi(E;) for i=n—-1. In particular, E';_l=

n—1 . n—1 . n— oy I . - . .
B (E;)®Z"(E;), s0 Z l(E/.) is a small projective object in &/, for each
‘=1,...,m, and we have epimorphisms '

Zn—l(E;)_)Hn~l(E;)E Hn~1(t—;1E.) — t—;lHn‘l(E.)
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for all j. Thus by definition, H" Y(E") is locally f.g. in &, . From Corollary 1.6.10,

we have a finite subset J C I such that the composite

1L 2Py~ 11 2 (P)— H'H(ED)

aEJ a€l
is an epimorphism. But [1,c; i (P,) =j! (Lses Po) €D, 5O condition 2.1.2.1 is
met. We can apply Lemma 2.1.2 to get a bounded above complex F* with all
F' €j*(P(d)) and a quasi-isomorphism F’*— E".

(c) Let F° be a bounded above complex in of, with all F" €} (P(+)). We use

induction. Since F* is bounded above, we may assume F" is already of the form of
C (M, d", P*) for some integer n, i.e.,

F':3"'-—>1VI"_I dant M a" ijnH i@ jfp"‘:—*"'
with (P°,d) a strictly perfect complex in of. Let M"=jrQ. with Q €P(d)
regarded as a complex; then we have the chain map jT*Q—d—>ij'. Applying
Lemma 3.4.2, we have a chain map

b:Q— K (%, .. . t0)P"
such that j*(b) = j*(f)°d" with j(¢) a quasi-isomorphism. Now let

P =:cone(Q——K*(t",.... 15)P"),
M= M =M TS M T 50

Then C,_ (M",d"',P") becomes a complex, and cone(jlb)=
C,_ (M". d""", P"). We have the following commutative diagram of chain maps
and complexes:

M — s iYP) —————— cone(d) = F
]

NG

| .
(M= j*Q)—s Kl 1) T ——— cone(j b)

Since jF(¢) is a quasi-isomorphism, we get a quasi-isomorphism F*—
C,_(M" d"', P"). We iterate this procedure to construct C(M.d.P).

(d) Because f:jPE"—C(M",d, P’} isa quasi-isomorphism and Rj.. pre-
serves quasi-isomorphisms (Lemma 2.3.2(a)), we get an acyclic mapping cone Z:

R jrE -l R (M d, py-Y, 7+ = cone(R),.(f)) -
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Let (0, ¢) be the composite of

P = C (M, d,P)—Rj, . C(M",d,P)>Z".
Since P"is a bo}}mded complex of small projective objects in & and Z" is acyclic,
we have (0, ¢) = 0. Let w = (1, v) be a homotopy for (0, ¢) 2 0. Then a standard
computation shows that

u:P' - Rj jE
is a chain map, ¢ L Rj..(f)°u, and

v:P = Rj.C(M, d, P)[-1]

is a homotopy for ¢ = Rj..(f)°u. Because

RjjrE =T0t(,62 t;‘E'—a_EBti"t;‘E-_,..)

i<j

=T°t<j€:91(_li£1)(5'—*G,E'——>"'))

_,,Gj(li_m)(E«_) GGE —:)—- )
=£n_1)<Tot</_€:mBl E~—>§§E-—>~-->
—>Tot<jé:91 G/.E'——>“€<B/G,.G/E'—>~~>—>~~>
:li_m)(K'(t‘;,...,tﬁ,)E'—>K'(tl,.,.,tm)E‘-—»---)
=£rx_1qK'(t'l’,...,tZ,)E'
and P° is a bounded complex of small projective objects, u can be factorized as
u =y, ou’ for some integer p >0, where

u P > K(t],.. . tP)E"
is a chain map and
g, K@y, )BT =lim KO(ef, . ) E”
—_— n

is the structure map of the colimit. Since each jfE —jFK (¢! tIYE"
T T I’ bl
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" is a quasi-isomorphism by Lemma 1.4.4, so is each jrK'(t],....t0)E"—

'*K'(tqﬂ,...,t"“)E', and so is
]‘r 1 m
jle/p : j,*K’(tf,...,t,‘,’,)E'—>jf liqu'(t‘{,...,tZ,)E‘ .

. hoa. . . . . s .
Since ¢ =Rj,.(f)ou, Rj..(f) is a quasi-isomorphism, and jr¢ is an r-quasi-
isomorphism because ¢ is the composite

P s TP o jiC (M d, P )= R, .C(M" d P),

j* (u) is also an r-quasi-isomorphism. Since jE@y=jr(p,)e)7 (') and jig,)isa
quasi-isomorphism, ji(u') is also an r-quasi-isomorphism. Since E'=0 when
i<n and f:j*E'—>C/(M"d,P) is a quasi-isomorphism, we have
H(C, (M, d’, P'))=0 when i<n. Since r < n, we see that

)y P K )ET

m

can be extended to a quasi-isomorphism
g:C (M~ d, P Yy—jIK (1], ..., tPYE"
by setting g, =0 in degree k<r. a
Now we can prove a special case of 3.3.2 and 3.3.1.

3.4.4. Proposition. Ler « be an AbS category with a set of small projective
generators, {(t;. G;),j=1,... om} and {(u,. H). k=1,....r} bewo finite sets
of compatible divisors on o, T = ﬂ'j":: t;, and p = oy Ugs then:

(a) For any two perfect complexes E{E; in 4, and a morphism
f:jrE;—jrE in D(A,), there is a third perfect complex E" in & and
morphisms b: E{— E" and ¢: E;— E’ in D(d) such that JjEby=j(c)efin
D(sl,) and j(c) is an isomorphism in D(.).

(b) In (a) if we further assume that ju(E3) and ji(E3) are acyclic in o, . then
we can have E' with jL(E'"} acyclic in 54,

Proof. Since <7 has a set of small projective generators, we can assume E;and E3
are both strictly perfect and Ej=0= E} when i<n for some n. Let f be
represented as

JTE <G = s

Then G is a perfect complex in .. By Lemma 3.4.3(b), there is a bounded
above complex F* with all F' € jf(P(s)) and a quasi-isomorphism F’ SGLsof
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can be represented as
JTE{«<—F =l E;.

Let H' =j'E{U,. jT E; be the homotopy pushout. Then f can be represented as
j;Ei—> H «——|YE;,

and obviously H" is also bounded above and all H' € j*(P(«)). By Lemma
3.4.3(c), choose r<n such that we can find a complex C,(M",d", P') and a
quasi-isomorphism H*— C,(M", d’, P*), then f can be represented as

J{Ei—> C(M",d", Py E;.

No.w applying Lemma 3.4.3(d) to jX E5 = C,(M", d’, P*), we get a quasi-isomor-
phism C(M", d’, P')—jIK*(t],... 15 )E; for some p >0. Then f can be repre-
sented as

e B £

FE = K@, . )E;<— ] E;.

Pu: K" =K(t},... . tL)E3; then K* is a strictly perfect complex in & because all
Gy vaE; are strictly perfect. Applying Lemma 3.4.2 to f,, f,, there are chain
maps b,b, and ¢ >0 as in the diagram

\/ SN

K@, ... )K"
\ s
i\ s
N

En

such that j,*(_b,)=j:"(t)°fl and jY(b,)=jI(t)f,. Let E” be the homotopy
pushout, b =i;° B, and ¢ = i, B,; then f can be represented as

P I - O

JTE; JTE" < rE;,

T

ie., jX(bY=jF(c)of, and clearly jX(c) is an 1som0rph15m in D(s4.) because f, is.

(b) In the proof of (a) above, if jLE; is acyclic in &l,, then j*(K")=
Ja (K@, ... )E ) is acyclic in &, because each] G? - G"E; is a‘(L:vclic in
o, . Then so 151 K@, .. K ) and so is jL E" D " )
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3.4.5. Proposition. With the same assumptions and notations as in Proposition
3.4.4, we have:

(a) For a perfect complex E’ in s, its class [E']1 € K,(4l,) is in the image of
K, (d)—> Ky(sd,) iff there is a perfect complex F* in d such that JEE s
isomorphic to E* in D(&.).

(b) For a perfect complex E* in s, with ji(E") acyclic in s, ,, its class
[E*]€ Ky(, off &) is in the image of K( off &,)— Ko(, off.J‘U#) iff
there is a perfect complex F* in o with j.(F") acycltc in o, such that j}F* is
isomorphic to E* in D(HA,).

Proof. (a) First, applying Lemma 2.2.1(d) to Rj.,E’, we have a directed inductive
system {E.} of strictly perfect complexes in & and a quasi-isomorphism
lim E.— Rj_E". Let f be the morphism in D(s,) represented by

—

E'—>11R/ E e—j’ llmE

then f is an isomorphism in D(sf, ), since E*—j*Rj_E" is a quasi-isomorphism
by Lemma 2.3.2(b). Because E~ is perfect,

Homn(;d,)(E'» i ll_m) E}) ’='h_m) HomD(.;JT)(E" TEY,

a

hence f can be factorized in D(4,) as
. -k . . % . .
E'—jlE,—]; (h—T> E)
for some «. Thus E° is a summand of j’E. in D(sf,), i.e., there is another
complex E™ in &f, such that E*@ E" is isomorphic to jI E in D(s.).

Next we will use Grayson’s cofinality trick to finish the proof of (a) (cf. {6,
Section 1] or [14, Proposition 5.5.4]).

Let 7 be the abelian monoid with the generators of all quasi-isomorphism
classes ( E*) of perfect complexes in &/, modulo the relations

() (E})+(E3) = (E;OE3),

(i) (E*)=0if E* is isomorphic in D{&,) to j F for some perfect complex F*
in 4.

As is proved above, for any perfect complex E” in sf,, there is another complex
E" in s, and a perfect complex F* in of such that E' @ E" is isomorphic to j* E;,
in D(sf,), then E" is also perfect and (E')+ (E")=(E'®E")=0. So
actually  is already a group. Suppose (G) =0 in =; this means that there are
perfect complexes H* in s, and K',L° in & such that G*@®@H &) K" is
isomorphic in D(sf,) to H*@jFL". Let H" be such that H*© H" is isomorphic
in D(,) to j*F* for some perfect complex F" in &f; then G" @ (F"&K") is
isomorphic in D(sf,) to jT(F"® L"), so G' is isomorphic in D(s,) to the
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cone of JY(FF®K)—j'(F®L'). By Proposition 3.4.4(a), the
morphism jT(F*@K")—j’(F*®L") can be extended to a morphism in
D(sf), so cone(jI(F'®K')—jI(F'@L") is isomorphic in D(s,) to
Jji(cone(F* @ K"~ F*@®L")). Thus (G") =0 in « iff G* is isomorphic in D(s,)
to j} F* for some perfect complex F* in &f.

Hence it remains only to show that = is isomorphic to Ky (&, )/Im K, (7).
Comparing the presentation of 7 and K,(f,)/Im K,(<f) in terms of generators
and relations, we see that we only need to show that if E;—>E;— E; is a
homotopy fibre sequence of perfect complexes in &, , then (E3) = (E}) + (E}).
Let E|",E; be such that E{® E|" and E;® E}" are isomorphic in D(sf,) to j* F;
and j! F; respectively for some perfect complexes F; and F; in 5. By adding
E—E;—0and 0—>E;y—>E} to E;— E;— E;, we get a homotopy fibre
sequence

Ei®QE - E;QE ' ®E; > E;®E;;
then
E;®E®E;y =cone(E;QE[-1}—>E;SE)
= cone(j; Fi[-1]= 7 F})
= )7 (cone(F3[=1]— F})
are isomorphic in D(s,), so
0=(E) +{E) +(Ey) =(E3) — (E}) —(E3) .

as required.
(b) Look at the following commutative diagram

Koty ————— of Tmy)

I

Kolitnp)

Ky(of off o) Ky(o,q, off 1)

J(KU(I‘E)

Ky, off of, )

From the excision Theorem 3.2, K (jI) is an isomorphism with the inversc
K(Ri¥).IfE" € P(d, off o, ,,) is such that [ E"] is in the image of K,(j}), then
[R/T E’] is in the image of K (j..), so [Ri¥E’] is in the image of

Ko(d)— Ko(,,, ). From (a) above, there is a perfect complex F” in of such that
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Jjin.F° is isomorphic to Rj*E* in D(,,,). So
FF =)= (RITE)FE
are isomorphic in D(sf,), and
JrF =G )= (RITE)

are isomorphic in D(, ). Because s (Rj¥E") is acyclic in o7, by Lemma 2.5.1,
jiFis acyclic in &,. O

With &/ an Ab5 category having a set of small projective generators, Proposi-
tion 3.4.5 is 3.3.1 and Proposition 3.4.4 is 3.3.2, so we have proved Theorem 3.3

for this special case which serves as the first step of the induction we are going to
use to prove Theorem 3.3 for general admissible abelian categories.

3.5.1. Lemma. Let {s4,(s,, F,), i=1,...,n} be an admissible abelian category,
{((up, HY), k=1,...,r} be a finite set of divisors on = such that {(s,, F,),

n—1 r .
(u,, H,)} are compatible, o = M_, s, and p = [, _, u,; notice that we have the
following commutative diagram:

N
N

If F* € P(sd, off A,,,,) is such that the class [s, 'F*] is in the image of

Tl

Ky(st, off st )= Koy, Off by )

then there is an E* € P(d off &) such that JYE* is isomorphic to F* in D(,).

Proof. Since
(5, FleIm(Ky(st, off <, )~ Ko(sd, . off &, )

by Proposition 3.4.5(b), we have a G* € P(, off &/, ) and an isomorphism in
D(s,,, ) between 5, 'F* and jEG". Let this isomorphism be represented as

aUs,,
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5~ H <3G
then H' € P(A,,, off o, ). Through the adjointness of (57'=j%, j;») and
(j3, Js.), we have chain maps F*— j.H" in C(4,) and G"— j; . H — Rj; H" in
C(s, ), so we have chain maps in C(f):

Rjan'_) Rja-x(jfntH') = RquS,l*H.
and

j:"tG. _)js,,*Rj&tH. = I’éjaUs,,'H. .

Let E° be the homotopy pullback

A &
Rj,.F .G (1)
RjaUs"*H'

We want to show that E° € P(o off &/, ).
Applying j¥ to (1), we get a homotopy pullback in C(,)

-
E
— Je N
- ~

kB e
jeRj.-F > jri,G @)
2 Ry H

?ecause H* —>j:US"Rj0USn*H' is a quasi-isomorphism by Lemma 2.3.2(b), and j, ,
is exact, we have a quasi-isomorphism -

jf,,*H. —_)js‘"«j:u;,,kjau;"*H. = j:R].gUS"*H' .

EE 3 . .o .. .
Because jsG'— H® is a quasi-isomorphism as assumed, we get another quasi-
isomorphism

j20, .G = e JEG i H
So the composite

2,6y H = R,
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is also a quasi-isomorphism, which is the right lower side of the homotopy pull
back (2). Thus the left upper side of ), j:E‘—>j:1‘2ja,F’, is also a quasi-
isomorphism. But F*—j; Rj,.F" is a quasi-isomorphism and F" is perfect ind,,
so j*Rj,.F" is also perfect, and so is j E".
Applying s;' to (1), we get a homotopy pullback in C(s, )
AN

// \\

7' RigoF, POV @)

—1
sn R]aUsn*

H
Because s, F"—H" is a quasi-isomorphism as assumed and Rj;. preserves
quasi-isomorphisms, we have a quasi-isomorphism:

S;Rj,FT = RS F = Rig =5, Rjpu, H

which is the left lower side of the homotopy pullback (3). So the right upper side
of (3), s, 'E —s.'j,.G'=G",isalsoa quasi-isomorphism, and s E* is perfect
in & . Now since ]:E and s 'E" are perfect, by Proposition 1.5.1, E* is perfect
in &. Finally we need to check that j:E' is acyclic in &,. By Lemma 2.5.1,
in Rj,.F", j:f?jawn*H' and j.j, .G are all acyclic in s, , thus so is jLE"

The isomorphism between F* and j*E" in D(s,) is represented by

JYE*—"> jiRj, F e—F . O

3.5.2. Lemma. Ler {, (s, F),i=1,...,n} bean admissible abelian category,
{(u,, H), k=1,...,r} be a finite set of divisors on sl such that {(s;, F;).
(uy, H)Y are compatible, o= ﬂ,.";‘ S, U= ﬂ;:, u,. If E;.E5€ P(sl off ,),
f:jrE;—jYE; is a morphism in D(sd,). then there is a third perfect complex
E™ € P(d off o) and two morphisms b : E}— E" and ¢: Ex—~ E" in D()
such that j*(b) =j¥(c)ef in D(s,) and jX(¢) is an isomorphism in D(,,).
Moreover, we can choose E* such that [E"]= [E3] in Ky(d off &,,).

Proof. In the following somewhat long and cumbersome proof, we want to find
complexes EH* € P(sd off ). a morphism b € Hom,,(E;. E7) represented
by

Ej < H —E",
and a chain map ¢ : E;— E’, such that JH(B)=ji(c)of in D(,) and j¥(c)isa

quasi-isomorphism. When we do so, then we have proved the lemma except for
the last sentence.
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diagram:

is

n

,F./Eé\u
—

Rj,.is E}
\ .

RjyigisF*

jo Rizds F°

Then we get the outside square of the following homotopy commutative diagram:

E;

/E'\ (8)
i F'/ \R‘ g
o i Es

\J}"*RL,,K' -~

Because the lower square of (8) is the homotopy puliback (7). we geta chain map
c:E}— E In the proof of the perfectness of £° above, we have shown that
jYE —j*Rj,.j!E; is a quasi-isomorphism, but the composite

. fslo) Lk kA -3
JEE3—s jrE =R, s

is a quasi-isomorphism by Lemma 2.3.2(b}, so j¥(c) is a quasi-isomorphism. This
is the ¢ we wanted to get, as explained at the beginning of the proof.
Let H* be the homotopy puliback

o
E; _Rj,.G )
Ri,.j,E;

In order to define a chain map H'— E°, we consider the following diagram:
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H

™~

(1) Rj,.G"

I\

/ E;
jo o F (ii) Rj,.jrE; (10)

\fe. . F,/(...) l (iv)
]u‘]a]s"* ’11
\ /

which we want to be homotopy commutative. The square (i) is (9). so is
homotopy commutative; the square (ii) is homotopy commutative by the naturali-
ty of the functors; the square (iii) is homotopy commutative by the homotopy
commutativity of the left lower triangle of (5); and square (iv) is homotopy
commutative by the homotopy commutativity of (6) and the naturality of the
adjunction maps of adjoint pairs. Thus (10) is homotopy commutative. Compare
the outside square of (10) with the homotopy pullback (7):

lh'
j: *F.é
" \

j, Ris. K

Rj,.jsEs

chrxjfn~K'

4

Rj,.i, E: (1)

N\

Rj,.j; K

Then we have a chain map 2 H°— E° which makes (11) homotopy commuta-
tive. Let b € Hom,,, (E}, E7) be represented by

Eje—H —>E",

where a is as in (9). Then a straightforward check shows that j(b) = j(c)efin
D(d,).

To prove the last statement of the lemma, i.c.. to choose E° such that
[E*]=[E;] in Ky(s{off &), we just simply let cone(c)& E* replace the old
E. 0O

3.5.3. Corollary. Let {4, (s;, F),i=1,... ,n} be an admissible abelian category,
{(u,, H), k=1,....r} be a finite set of divisors on o such that {(s;, F),
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. -1 r
(u., H,)} are compatible, o= ﬂ,Ll S, and w=10),_ u,; then we have a
homotopy fibre sequence of spectra

K(d off o, ,, )= K( off o, )~ K(oA, off 54, )",
and thus we have a long exact sequence

= K (oA, off ot )= Ko( off 1,
— K(sd oft o)~ Ky(sd, off ).

Proof. This corollary is a special case of Theorem 3.3(b). In this special case,
Lemma 3.5.1 is 3.3.1(b) and Lemma 3.5.2 is 3.3.2(b). O

3.5.4. Proposition. Let {sf, (s, F,), i=1,...,n} be an admissible abelian cate-
gory, {(u,, H), k=1,...,r} be a finite set of divisors on = such that {(s;, F)),
(uy, H)) are compatzble o, =N’ s;y and p=1_ | Uy then:

@) For a perfect complex E'e ?/‘(d off &/ Uk ), its class [E°]€
K (&f off J, o) I8 in the image of K (of off.szf )— K, (&1 off &10 uu ) iff there is
a comple\ Fe P(sA off o, ) such that jU Fis zsomorphtc to E" in D(dA, )

(b) For any two complexes EI,E EP(doffsd,), and a morphtsm
f: ]0 £ —>]g ESin D(d, ) there is a third complex E' E P( off o, ) and two
morphlsms b:Ei—E" and c:ES—E" in D(sf) such that ju (b)—j,, (c)of
in D(sA, ) and ]0 (c) is an isomorphism in D(sd, ) and [E 1= [E_] in

Ky (o off &17 ).

(c) We ha\e a homotopy fibre sequence of spectra

K(A off &, m)_’ K(oA off o, )~ K(;J off «f,

o, u“)~ s

and thus we have a long exact sequence of groups

“ = K (o, off of

o, Up

)— Ku('ﬂ off &‘ngmu)
— K, (A off .J )= K, (&i off

opun) -

Proof. We use induction for n — p = r,

When r=1.i.e., p=n— 1, the proposition is the combination of Lemma 3.5.1,
Lemma 3.5.2 and Corollary 3.5.3.

Assume the proposition is true for r — 1, i.e., for p+1

To do the inductive step for (a), since

[E°]€ Im(K,(oA off o, )~ K(,(Jﬂ% off &Z%UU# ),
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then
[E*] € Im(Ky(sL,, _, oft st, )= Ky(sA, off A, ).

By the induction hypothesis, we have a complex E'€ P, ,off &, ) such
that ja E*is isomorphic to E* in D(&, ) Also since

[E*) € Im(K,(f off ,)— Ky(s4, off 1, ),

it means that there is a complex H* € P(s/ off &, ) such that [/U ‘1=[E"} in
o(szi off & ,). Then

UU;.L

Ko H1-1ED=1i3 s H -1 E']
=[E]-[E]=
in Ky(s4, off £, ). By the induction hypothesis, we have the long exact
[
sequencep

u(&‘zo,_l off d(un_luu)nap)—’ Ko(da”,, off Jjunﬂq,‘)

K,(i3)

K,(st, oft o

aI,U;L) *

Since [j:‘lH']—[E']EKer(K(,(j;P)), there is a complex G'€
P(st,,  off i, uyn,,) such that (j; H1-[E]=[CG] ie.

[jZ H1=[EN+[G1=[E'&GC|

in Ky(o, offsd, ,uw)- Notice that j3 (E S&GHy=j? E \,/u G* is still iso-
morphic to E” in D(szfa) because ]U G is acyclic. Now [E € G'] is in the image
r

of K(«f off o, ) > Ky(s,  off o, _,uw). by Lemma 3.5.1, there is a complex
F* € P(« off 54, ) such that Ja F is isomorphic to E° S G".

Je ¥ =43 (o FYFJE (E®G)=E

in D(si, ) This finishes the “only if”" part of (a), while the “if" part is obvious.

To prove (b), by the induction h)pothesls there is a complex E'€
P(oA, offtd, ,.) and b: j; E; —E" ¢ ir E~—>E in D(«£, ) such
that ]{, (b)—] (c) f and /a ©) 15 an 1somorphlsm in D(s/, ). and [],, lE;}~=
[E Jin Ky(s4, off o, luu) From Lemma 3.5.1, the equalm [1(, E1=1E7]
implies that we can let E’ —] [ for some F* € P(A off o, ) Applying
Lemma 3.5.2 to 5 and ¢ and notlcmz Remark 3.3.4, there are F|,F;€
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P(sd off 4,) and chain maps b,: E{—F;, b,: F'—F;, ¢;: E;—>F; and
¢t F'>F; such that ji (b)=j% (b)°b, j:,_(c)=jk (c)°¢, and
Ja,_[(b3),j5 _(c,) are isomorphisms in D(s, ). Let E be the homotopy
pushout as in the lower square of the following diagram:

Let b=1i,0b, c=1i,°¢,; then

o L 1 C I
o (EYD) Jo (E") iz (E3)

represents f, i.e., j:P(b) =j:P(c)°fin D(sd, ). Because Fi,F3,F' € P(sA off s,),
so E'€ P(A off of,). In order to meet the requirement that [E‘]={E;] in
Ky(o off &, ), we simply let cone(c)® E* replace the old E". _

(c) Obvious, since (a) above is 3.3.1 and (b) above is 3.3.2. O

Proof of Theorem 3.3. Actually Proposition 3.5.4 already implies Theorem 3.3
after a small modification. Let {#(s,, F;), i=1,...,n} be an admissible abelian
category, {(t, G;), j=1,....m} and {(u,, H,), k=1,...,r} be another two
finite sets of divisors on o/ such that G F), (4, Gy (g, Hy)o i, jo k) are
compatible. Then {, (s,, ), (s;t;, F;G,). i, j} is also admissible, and
{(sit,. F,G)), i, j} becomes a part of {(s,, F}), (s:¢;, F;G)), i, j} and all divisors are
stil’II compatible by Lemma 1.3.4, Let 7= ﬂ;":i t and 7' = N, ;Sit;. Because
M,_, (s,-Tor)=0. we have 7=1". Since being perfect is indepéndent of the
choice of the structure divisors as pointed out in Proposition 2.4, Theorem 3.3 is
Proposition 3.5.4 for the structure divisors {(s,, F,), (sit;. F,G), i, jy O

4. Projective line

4.0. In this section we will generalize the construction of the polynomial ring
R[T] and projective line P (cf. [11]) for a given ring R to the construction of
H[T] and P!, for a given category . If o is an admissible abelian category, so
are $/[T] and P.. Mainly we will prove the following theorem which is a
generalization of [11, Section 8.3]:
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4.0.1. Theorem. Let {4, (s,. F,), i=1,...,n} be an admissible abelian category,
{(u,, H), k=1,...,r} be divisors on s such that {(s;, F}), (u,, H,)} are com-
patible, p = ﬂ;zl u,; then there are homotopy equivalences

(a) (absolute form) K(&f) X K(sf)— K(P.),

(b) (relative form) K( off &, ) X K(&f off o£,)— K(PL, off P;“).

This theorem will be used to define the negative K-groups, therefore the
nonconnected K-theory spectra.

4.1.0. Definition. Let A denote the free monoid with one generator 7, i.e.,
N={1=T° T? ...} with composition T'e T/ = T**\. Let f be an Ab5 category,
A an object in &f. Recall that an A-action on A is a monoid morphism
A: N —Hom_(A, A). Obviously there is an 1-1 correspondence between A
actions and Hom_,(A, A) by sending an action A to A(T)E€ Hom,(A, 4). An
object A € o together with an action A on it is called an A-object in &, denoted
by (A, ¢) with ¢ = A(T)EHom_(A, A), or simply A if no confusion would
arise. When we say ‘the morphism 7' : A— A’, we actually mean the morphism
MTH)=¢": A— A.

Let &[T] denote the category of all #-objects in & where morphisms are
N-action preserving morphisms. If we regard & as a category with a single object
* and Hom(*, *) = &, then &[T]= Cat(¥, &), the category of all functors from
N to o and natural transformations. So #[T] is also an Ab5 category. If
{(A.. ¢,), P35} is an inductive system in A[T], then

lim (2, ¢,). @5) = (lim {4,, P5},lim ¢,).

For any A € o, let A[T]= (@;0 A, T)e [T]., where all A; = A (i actually
indicates the ‘degree’) and T is the shift to the right by degree I:
(ag, a,,...)—(0,a, a,,...). Then ( )[T]: s/ — <[ T]is an exact and exactness-
reflecting functor. We also have the forgetful functor from &/[T] to s/ sending
(A, @) to A, which is also an exact and exactness-reflecting functor.

4.1.1. Lemma. Let s be an AbS category, then:

(a) The functor ( Y T]: o — [T is left adjoint to the forgetful functor; more
explicitly, for any A€ o, (B, £) € d[T], we have a natural isomorphism

O : Hom (A, B)— Hom, ) ((EBO A, T). (B. 5)) ,

f=0(H=(£1).

(b) ()[T] preserves small projective objects and generators.
() If (s, F) is a divisor on o, then (s, F) naturally induces a divisor on AT
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which will be still denoted as (s, F) with

F(A, @)= (FA, Fo), S =5.. V(A @)EsT],
Moreover, sl [T]|= A[T),, and the diagram

7] &f[T]

e
J/ -
A =

OIT]

commutes.

d) If {A,(s,, F,), i=1,...,n} is an admissible abelian category, then so is
{LT), (s;, F),i=1,....n}. If {, (5, F)), i=1,...,n} is strongly admissible,
then so is {A[T], (s;, F,), i=1,...,n}.

Proof. Easy. Omitted. [

4.1.2. Let ¥ ={1, T, T7% ...} be the free monoid generated by one element
T™'. Replacing & by &', we have the category /[T "']. Of course #[T] and
[ T™'] are the same except that we use different symbols for the generator of
the free monoid. We do so for later convenience.

LetZ={...,T ", T’=1,T,...} be the free group generated by 7" Replacing
A by ¥ in Deﬁnmon 4.1.0, we can define Z-action, ¥-objects, the category
AT, T ] of all Z-objects and F-action preserving morphisms, and the functor
T T "> A[T, T '] sending A to (EB,:,I A, T), etc. Obviously we also
have Lemma 4.1.1 for &[T, T '] and ( )[T. T7"].

Since N C %, N CZ, every SZ’action naturally induces an A-action and
N -actlon by restriction, so &[T, T™'] is naturally embedded in A[T] and
&[T ™"] as a full subcategory. Moreover, ST, T™']is also a localization of /[ T]
or #[T™'] through a canonical divisor defined as foliows: Let T denote the
natural transformation Id i, —1Id,; with T, , = ¢ for any (A, ¢) € A|T];
then obviously (7, Id) becomes a divisor on &/[T], and

T7Y(A, ¢)=lim (4, ¢)— > (A, ¢)—> )

= (lim (A2 A% ). lim @) € AT, T

because hm @ EAut(A) So we have &|T}, yf[T, T7']. In the same way we

have the divisor (T7 dr-y) on &[T7') and [T '\, =oA[T, T ']

Lfl[(s ]F) is a divisor on y{ then (s, F) and (T,1d ;7)) are always compatible on
T
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4.1.3. Definition. Let </ be an AbS5 category. The projective line over & is the
category P, of all triples M = (A%, 6, A7), where A~ EJ[ A" ed[T™! ]and
8: T (A")— T(A7) is an isomorphism in {7, T~ '}; a morphism in P is a

pair

f=(fi f2): M=(A"0,A)>N=(B"n.B),

where f~ EHomJ,m(A+ B"), f~ €Hom,r-y(A7, B™) such that o T ()=
T(f,)°6. P., is also an AbS category.

Let (s, F) be a divisor on &/, then we can ndturall) extend it to a divisor on P,
still denoted as (s, F), where F: P!, — P! sends M=(A",0,A7) to FM=
(FA",F§, FA") and s:1d, — F is the natural transformation with s, =
(5 4+, 54-). We have (P.), —P

There are two canonical d1v1sors on Pl,, which we define as follows. For an
integer n, let ( )(n): P!, — P!, be the functor sending M=(A",0, A7) to
M(n)=(A", T_"GB A7). Let t,.1,:1d—( )(1) be the natural transformations
with 1, =(1, T~ 'y and t,‘,—(T 1) for anv Me P!, Clearly (1,( X1)) and
(5, ( )(1)) are two compatible divisors on P!,. and

(1.T™hH

-t
1M = lim (A7, 6, AL (4T T e ATy )
=(A", 6, T(A7)),

(T4} - (T.1)

M =lim ((A7,6, AT)—— (A", T e AT )——")
=(T7'(A7).0,47).

So the embedding functor j, .+ 1{T]— P, sending A to JA=(ALT “'A)
induces a Cdtwcr\ equnvalnnu. between “1[ f] and (P’ ), and j, . has an exact

adjoint /, P!, — o/[T] sending M = (A", Y tof M)= A" Thus (j,*l, Jo)
becomes a lomllzmgy adjoint pair of tumtms for the dmsur o )(l)) Similarty
we have (/, Ji. ) a localizing adjoint pair of functors b;t\\un Pl oand [T d
for the divisor (1., ( Y1)). If (s. F) is a divisor on /. then thL extended divisor
(s. Fyon P, is dl\\'d)S compatible with (¢,, ( )(1)) and ( ).
4.1.4. Lemma (@) If{A, (s, F), i— lo..., n} is an admissible abelian category .,
then so is {P',. (s, O i=1..... n,j=1.2}.

by If {A. (5;.F).i=1, n} is a strongly admissible abelian category, then
sois {PL. (s, FC)(1)), i—l ..... n,j=12}.

Proof. Only (b) needs a little proof.
Since . is strongly admissible, i.e., P(s/) generates &/. we claim that

(P[T). T P[T 'D|PEP), n=0.x1... ) CP(PL)
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generates PL,, thus PL, is strongly admissible. In fact, let

f=(f" ) M=(A"6,A")>N=(B",,B")
be a nonzero morphism in P.; then f* and f7 are not both zero. Let us assume
f7 #0 (a similar proof for f ~ # 0). Because P(s)[T]={P[ T] | PEP(4)) gener-
ates .szf[T] by Lemma 4.1.1(b), we have a PEP(/) and g* :P[T]— A" such
that f*og” 0. Because P{T '] is also a small projective object in [T '] by

Lemma 4.1.1(b), Hom ,;-4(P[T '], =) commutes with colimits, so the com-
posite

PIT "= PT, T""]= T7'(P[T) 2 71 (4")
—> T(A7) =lim (AT 4" -T2

can be factorized as

P[T 7| A" lim (4™ 47T,
for some n, where ¢, is the structure morphism of the colimit. Then

g=(8" 8 ) (P[TLT" P[T ')~ (A", 6,47)
is a morphism in P!, and fog#0, so

{(PITL T, PIT ') | PEP(A), n=0,%1,...} CP(PL,)

generates P.,. [J
From now on in this section, we will always assume < to be an admissible
abelian category.
4.2.1. Definition. Define the functor
7tid—> Py, @ A)=(A[T],1,A[T""]), YA,

then 7* is an exact and exactness reflecting functor.
Define the functors @, and R'n,:

T Pym AL w(M)=ken(d”), VM=(A"0,AT)EP),,

R'm,:Py—dl, R'w,(M)=coker(d’), VM= (A%,8,A7)e P,
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where d°=(8c ¢y, —¢;): AT® A > T(A7), and

(;-:A+_)T—1(A+):Ii_ng(A+ T A+ T )
- _ -1
(pg:A“—éT(A_)=l_ilr)1(A"—Tl—>A Iy

are the structure morphisms of the colimits. Notice that when we take kernel and
cokernel we forget #-, ¥ 7- and Z-actions.

4.2.2. Lemma. (a) If 0> M'— M—> M"— 0 is an exact sequence in P, then we
have the exact sequence in s{:

0— m (M) 7 (M)~ 7 (M")
S R'7 (M= Rz (M) R'm (M)—0.

(b) Let A€ of; then

n+l

=0,
mimr oy = B A"

0 n<0,
Ry =] @ A

0 n

|/\

V
™)

(¢) If M€ P, is locally f.g., then there is an integer ny such that when n = n,,
R'w (M(n)) =0.

Proof. (a) Obvious by definition and the snake lemma.

(b) Obvious by definition.

{c) First assume & has a set of small projective generators, then of course o is
strongly admissible. From the proof of Lemma 4.1. 4gb) {(w*P(n)| PE
P().n=0,%1,...)  generates P, so there is a surjection
e, 75 (P ) (n, )—)M where P, € P(sf). Then by Corollary 1.6.10, there is a
finite subset J C I such that [[, <, 7*(P,)(n,) — M is a surjection. Choose n, such
that n, + n,> -2 for all « € J, then when n=n,

Rz, (11 7 (P)@)m) = 1] Rima(m*(P ), + ) =
a€l a€J
by (b) above. But by (a) above, we have a surjection

Rz, (1] 7)) = R (M)

€S

so R'm (M(n)) =0 when n = n,.
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Now let {, (s F,)} be an admissible abelian category. Then s;'(M) is a
locally f.g. in Pﬂ for all i. Since Pg, , has a set of small projective generators,

there is an ng such that R TT*(S_I(AI)(H)) 0 when n=n,. Choose n, large
enough so that this holds for all i. Then when n = n,, because s, "is exact, we
have s; ' (R'm,(M(n))) = R'm (s] ' (M(n))) =0, so R'm,(M(n))=0. O

4.2.3. We have two canonical divisors (¢,,( )(1)) and (t,,( ))(1)) on PL as
defined in Definition 4.1.3. Because (¢,-Tor) N (¢,-Tor) =0, for any M € P,, we
have the following sequence which is exact in P, for all integer n by Lemma
1.4.4:

(t2.—1p) 1yt
0> M(m)—2=" M(n + 1)@ M(n + 1) —~2 M(n +2)—0.
(12)
4.2.4. Definition. M € P, is called regular if R'w (M(—1))=0.

4.2.5. Lemma. (a) If 0— M'— M— M"—0 is an exact sequence in P,, then:
(i) If M', M" are regular, so is M.
(it) If M is regular, so is M".
(i) If M is regular, and 7 (M(—1))— 7, (M"(—1)) is surjective, then M’ is
regular.
(b) If M is regular, so is M(n) for all n = 0.
(c) If A€ A, then 7w*(A) is regular.

Proof. Obvious. 0O
4.2.6. Lemma. If M & P., is regular, then there is a surjection
T (M= M.

Proof. First notice that #* and =, are an adjoint pair of functors. In fact, for any
M=((A ), 6, (A7, £))€ P, and any B € s/, define

@ : Hom,, (7*B, M)— Hom (B, = M),
f=®(f)=m.(f)

and

¥ :Hom (B, 7, M)— Hom, (7B, M),
s—= V(e =(f, ),

where f, and £, are defined as follows: Since 7, M is a subobject of A" D A",
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denote
porp )i m (M) AT®A A (or A7)

the restriction of the projection A" @A™ — A" (or A7), then let
fi=0(p °g): BIT]=> (A", 1),
fi=0(p eg): BT ']>(47, ),

where @ is defined as in Lemma 4.1.1(a). Then it is easy to check that ®and ¥
are well defined and ®@o¥ =1 and ¥ed=1. So we take the morphism
vy 7w (m(M))— M to be the adjunction map of the adjoint pair. To prove »,, is
surjective, we need to prove that

O(p") = (n'>p Vot ma((T) =B 7. (4)— (4" )
and
O(p )= (£ op ) S m T =B m(M)— (47 ©)

are both surjective.
Let

7 (M) ATBAT - AT

denote the restriction of the projection A* & A~ — A™ (or A”). First we prove
that U, Im(p, )= A", Since &/ is an admissible abelian category. by Proposition
1.6.9. J is generated by locally f.g. objects, so we have A" =U 4, where {A }
is the set of all locally f.g. subobjects of A”. We want to prove that each A

contained in an Im(p ) for some r.
Consider the composite

hajA;L—)A‘-—) T"(A*)—B> T(A’):in_} (A71—§—>A_—->~~~)4

Since A is locally f.g., Hom (A, . ~) commutes with directed colimits, A, can be
factorized as

A A — s lim (AT = AT ),
—

where ¢ is the structure map of the colimit (*r" here indicates that the map sends
A~ to the "rth’ A” in the colimit), so Im h, CIm ¢, . Let A} be the pullback of
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the following diagram:

Al—————— A

Al Im(e;)Clim (A" — A" — )
_—

then we have a surjection A, — A_ . But the definition 7, (M(r)) = ker(d®) means
that 7 ,(M(r)) is the pullback of the following diagram:

Al————— A

P ¢;=Trey

: Nl _e -
Al Im(e) Clim (A" —— A7)

50 Al is in fact a subobject of m (M(r)); then A} CIm(p;). Thus we have proved
that U, Im(p])=A".
Next we want to prove that for any r=0,

Im(@r*(M) (e A*>=Im(§%w*(M(i))—2’i’—>A*),

ie., NigIm(n'ep™) = YioIm(p/).
We use induction on r. When r =0, it is obvious.
Assume the equality holds for r—1, r=1.

To prove the inductive step, consider the exact sequence from (12):
0 M(r —2) =200 M(r — 1)@ M(r — 1) —2 M(r)— 0.

Because M(r—1) is regular, we have R'w, (M(r—2))=0; then by Lemma
4.2.2(a) we have a surjection

7 M(r— 1)@ 7w M(r — 1) —=2 s = M(7) .

So we have Im(p,)—Im((t +t)e p, - Recall ¢, =(1, T H=(,¢), t,=

(T,1)=(n, 1), so tep/ = Pl e pli=n° p,-, and Im(p,])=Im(p/,)+
Im(neop,_,). Then
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Il
M~

S im(p) = 3, Im(pi) + Im(nep =)

il
- ©

~ -
|

= Im(n'ep™) +n(Im(p;_)))

,..
]
Lo

Im(n'ep )M(Ellm(n °p ))

-

[,

2 Im(n'ep )+Zlm(n op”)

i i=0

2Im(n °p’).

-

Thus the induction proof is fulfilled, we have Im(@(p~))=A". Similarly we
prove that Im(@(p~)) = A", thus finishing the proof of the lemma. O

4.2.7. Definition. Let rP’, be the full subcategory of P!, of all regular objects.
Obviously we can regard rP., as an exact subcategory of P!, in Quillen’s sense. If
we restrict 7, to rP!,, then m, is an exact functor.

Define a functor

Z:tP, P, Z(F)=ker(w*n,F—>F), VFEIP,,

where v is the adjunction map. Because =, and 7* are both exact on P, s is
Z. Because

T (mrm )= ﬂ*F—I'—VF—> 7, F
is an isomorphism, by Lemma 422(a), 7, (Z(F))=0, and by Lemma
4.2.5(a)(iil), Z(F)(1) is regular.
Define another functor
T,:1P,— P, T (F)=7J(Z(F)1)), VFE P, .
Then T, is also exact because Z and 7, are both exact on P,
4.2.8. Lemma. For any F €1Pl,, we have an exact sequence in P
0— 7T F)~1)— 7*(7, F)—~> F—=0.

Proof. Follow the idea of [11, p. 132]. O

We will use induction to prove Theorem 4.0.1. So we first consider a special
case: o is an AbS category with a set of small projective generators.
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4.3.1. Lemma. Let o be an AbS category with a set of small projective generators;
if M=(P", 8, P")EP(PL), and M(1) is regular, then (M) EP(A). If further
M is regular, then T (M) € P(d).

Proof (cf. [11, 1.12 and 1.13]). M =(P", 6, P") EP(P.,) implies P* € P(«£[T)])
and P~ €P(A[T"']). Since P(of)[T] generates s{T] by Lemma 4.1.1(b), we
have a surjection [T P,[T]— P~, where P, €P(«). But P is small projective in
s£[T], this surjection splits, so P* is a summand of [[ P,[T]. Thus P* is a
projective object in & (forget the -action). Similarly, P~ and T(P ) are also
projective objects in &f. By the definitions of 7, and R'w, we have an exact
sequence which now splits,

0> 7 M)>P @P > T(P )>R'w (M)=0-0,

thus 7, (M) is projective in /.
It remains to prove 7,(M) is small. According to the proof of Lemma 4.1.4(b),
{7*P(n)| PEP(), n =0, =1....} generates P!, s0 we have an exact sequence

O0—ker— [ #%(P ) n,)—>M—0,

acl
where P, €P(sf), ker €P(PL,). and I can be a finite set because M is locally
small projective. By Lemma 4.2.2(c), there is an n,>0 such that when n = ng.
ker(n) is regular, so by Lemma 4.2.2(a), we have a surjection

/ N

T ( [ = (P)(n, + n))—> 7 (M(n)) .

ag]

Because 7, (o, 7*(P,)(n, +~ n)) is small projective by Lemma 4.2.2(a),
m.(M(n)) is small projective when n = n,. Applying Lemma 4.2.2(a) to the exact
sequence from (12):

0->Mn—-1)»Mn)SMn)— Mn+1)—0,
and because M(1) is regular, when n =1 we have a short exact sequence:

0= 7. (M(n — 1)) = 7 (M(n)) © 7 (M(n)) > 7 (M(n —1))—> 0
which splits since 7, (M(n +1)) is projective. So 7 ,(M(n — 1)) is small since
7.(M(n + 1)) is small. Then by induction over decreasing n, all 7w, (M(n)) are

small for n =0, in particular, 7 (M) is small.
If further M is regular, then Z(M) is reguiar. Since in the exact sequence
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0— Z(M)— w*m (M)—>M—0
both M,m* 7 (M) EP(PL), Z(M)EP(Py,), thus T\(M) = 7 (Z(M)(1)) € P(s£).

4.3.2. Proposition. Let sf be an AbS5 category with a set of small prczjective
generators, {(u,, H,), k=1,...,r} be compatible divisors on o, p. = R VT
then there are homotopy equivalences induced by the functor (E°, F*)—
T E@wrF(~1)

(a) (absolute form) K(sf) X K(sf)— K(P.), ‘ .

(b) relative form) K(« off o, ) X K(of off 4, )— K(P, off Pﬂ“).

Proof. Follow the idea of [14, 4.9-4.12], only simpler. Since . and P, are both
strongly admissible, we can consider only strictly perfect comple)fes by Lerr'nfla
2.6.2 and the derived category theorem. Consider the following complicial

biWaldhausen categories: )
A, = strictly perfect complexes E* in P!, such that all E"(k) are regular,

A = strictly perfect complexes in P.,,
B = strictly perfect complexes in &.
Then the embeddings

A CA,, ~~CACP(P,), BCP4A)

induce homotopy equivalences K™¥A)=KYA,,,), and therefore
KYA )= KYA), Yk=0,1,....

Then the functor
=g )Da*( )(-1):BxB—A CA

induces homotopy equivalence since the composite functors @ ¥ and ¢'° P both
induce homotopy equivalences, where

V=(m*(), 7" ()(1):A—>BxB,
V' '=(mw,, T,):A,—>BXB.
(b) In the proof of (a) above, if we replace all A,, A and B b.y AN
P(PL, off P!, ), AN P(P, off P!, ) and BN 2(d off &i,). the proof is still true,

thus we get the required homotopy equivalence. U

4.3.3. Proposition. Let {&,(s;, F,), i=1,...,n} be an admissible abelian cate-
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gory, {(u,, H,), k=1,...,r} bea ﬁmte set of divisors on o such that {(s,, F,),
(u,, H.)} are compatzble o= ﬂ, Lsn=_ | Uy then we have a natural long
exact sequence

_)K( T Us, Offdau: u,;)__)Ko(&g Offﬂ )
o(sd, off GUF)@K (&f Off&f )
- KD( oUs, off ﬂaux Uu)

Proof. From Theorem 3.3, we have the following homotopy commutative dia-
gram of spectra where the rows are homotopy fibre sequences:

K(st off ,,) ——> K(sf off st,) ——> K(sf, off f,,,)"
K(od, off o, )= K(sh, Off A, ) —> K(sd,,, off &, ,,)"

So we have the following commutative diagram of K-groups with the rows exact:

> K\(A, Off o, ) ——> K(sd Off ) ——> K, (sd off of,) ——> K (e, off of

! 1 | |

s Koy, ot A, ) Ko, OFf S ) —— Ko( A, off o, ) —— K(sL,,, off T, )"

FUs,
oUs,

By Theorem 3.2.2, we have isomorphisms
KA off oA, )~ K, (o, off o, L) 20,
so we get the following long exact sequence:

off &/

= Ki(4, sus,on) > Ko(od off 7,)

als,

— K,(st, off o

oUp

)" ® Ko(st, off o, )
o(, s, Off &,

UUS,'U}L)~ N

Comparing this long exact sequence with the one required in the proposition, we
see that we need to get rid of ‘~’ (recall from the proof of Theorem 3.3,

Ko(H, off o, )" = Im(Ky( off s, )— K,(sd, off of,,,)) .

etc.), i.e., we need to prove the following sequence
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(Ko(ig).Koli3))

Ky(st off o, ) — """ Ko(sd, off o,,,) D Koy(sd, off L, ,,)

Koljs=Koli3)
Ko(st, s, Off Ay 1)

is exact at the middle. Clearly
(Ko(]'s't) = Ko(j3 0o (Ko(j2), Ko(j:l)) =0.

Let (a, b) €ker(K, (]: )} — K,(j2)). By a fact pointed out in {14, 1.5.7] that every
element of K,(A) is the class [c] of some ¢ in A when A is a Waldhausen category
with a mapping cylinder functor satisfying the cylinder axiom, there are E* €
P(sd, off oA,,,,) and F* € P(d, off 4, ) such thata= {E*] and b ={F"]. Then
{JIE ‘1=[j2F’], so by Lemma 3.5.1, there is a G € (s off &,) such that
]‘,G is quasi-isomorphic to E*, thus a =[E"] € Ky(&, off &)™ By the exact-
ness of the sequence with ‘~’, we have (a, b) € Im((K, (jr ) K (]A ). This
finishes the proof of the proposition. T

Proof of Theorem 4.0.1. We use induction on the number n of the structure
divisors {(s,, F,),...,(s,, F,)}. Here, for the sake of simplicity, we only write
down the proof for the absolute case, i.e., (i, H,)=(0,1d) for all k, then
s, =0. For the relative case, we just need replace ( )() by ( )( off &4, ), etc.

When n=1, i.e., & has a set of small projective generators, then Theorem
4.0.1 for this case is just Proposition 4.3.2.

Assume the theorem is true for n—1. To prove the inductive step, let
o= ﬂ", 's,. Consider the following commutative diagram of K-groups:

Ki(sd, ) K () Ko(,) Ky(,) Ko(A,0s,)

sy & — @ —»< o |® & | @

Ki(d,o,) Ky(s) Ko(L,), Ky(,) Ko(H,0.,)
ce—s K(PL, ) > K(PY) K(PLODK(P, ) — Ky(PY )

By Proposition 4.3.3, the two rows are exact; then applying the induction
hypothesis to &, which has n—1 structure divisors {(s;s,, F;F,).

o s,

1,.... n—1}, and applymv the five-lemma to the above diagram, we hdve
isomorphisms

K()®K(t)—> K(PL), =0,
so we have a homotopy equivalence
K(s4)x K(s4)— K(PL).

This finishes the proof of Theorem 4.0.1. U]
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5. Negative degree K-groups

5.0. Thanks to the results in Sections 3 and 4, we can follow [14] very closely to
construct negative degree K-groups so that we can extend to negative degree
K-groups the results obtained in Sections 3 and 4. In terms of spectra, we can
construct nonconnected K-theory spectra so that we can get rid of covering
spectra in the homotopy fibre sequences in Theorem 3.3 and get real homotopy
fibre sequences. We first write down the modifications we need in our context.

5.1.1. Lemma. Let {, (s,, F,)} be an admissible abelian category, ( )[T]: s —
[ T) be the functor as defined in Definition 4.1.0; then:
(@) K(( )T]): K(sd)— K(oL[T]) is a split monomorphism up to homotopy.
(b) If further there is another finite set of divisors {(u,, H,)} on o such that
{(s;, F)). (uy, H)} are compatible, w = () u,, then

K(()[TD : K(s off o, )— K(A[T] off s4,[T})
is a split monomorphism up to homotopy.

Proof. (a) Let D denote the image of ( )[T]: o — «/[T]; then D generates sf[T]
because for any (A, ¢) € #/[T], we have a surjection

(¢):AT1=D a— (4, )

in @[T]. Let A be the Waldhausen subcategory of 2(#[T]) of perfect complexes
of objects in D. Since D generates #/[T], every perfect complex in &[T} is
quasi-isomorphic to a perfect complex of objects in D, so by Theorem 3.1.1 we
have K(o/{T]) = K¥(A). Obviously ( )[T]: P(/)— A is an exact functor of the
Waldhausen categories.

Define a functor

C:Ad[T]—> A, C(A, ¢)=coker(¢), VY(A,o)Ed[T].

Then the restriction C|;, : D— & is exact. Thus C will induce an exact functor of
Waldhausen categories A— P(«f) if we can prove that C sends perfect complexes
€A to perfect complexes €P(sf), or equivalently, for each i, s(CE")=
C(s,(E")) is perfect in &/, when E° € A. This can be easily obtained from the
following sublemma: ‘

Sublemma. Assume o has a set of small projective generators, E' is perfect in
A[T); then LC(E") is perfect in s, where LC is the left derived functor of C. In
particular, if E* € A, because C|y is exact, LC|, = C|,, so C(E*) is perfect in .
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Proof. Since &/[T] has enough projective objects,
LC:D (A[T)— D ()

exists.
Define a functor

N:si—d[T], N(A)=(A,0)€HT], YAESHA.

Then obviously (C, N) is an adjoint pair of functors between &/{T] and &/, and N
is exact. We claim that (LC, N) is also an adjoint pair of functors between the
derived categories. To see this, let E*€ D (A[T]), F*— E* be a projective
resolution of E*. By Lemma 4.1.1(b), we can choose all F" to have the form
F"= P"[T], where P" is a small projective object in &; then C(F") is a complex
of small projective objects in &. Let G* € D (&f): then

Hom,, ,(LC(E"), G")
= Hom,,,(C(F*), G*)= H'(Hom"(C(F*), G"))
= H"(Hom(F", N(G"))) = Hom .y 7),(F", N(G"))
= Hom (7, (E7, N(G)) -
So (LC, N) are adjoint for the derived categories. Now if £* is perfect in s[TI.
{F:} is an arbitrary inductive system of complexes in «/, then
Hom y,,(LC(E"). lim F,)
= Hom g 7y (F, N(lim FO))
EE_“} Hom o7 (E7 NFL))
EH_L)n Hom, ., (LC(E"), F}).

So LC(E") is perfect in &/ by Proposition 2.4(a). This finishes the proof of the
sublemma. [

Now Ce( )[T]=1d, so K(( )[T)]) is a split monomorphism up to homotopy.
(b) In the proof of (a) above, replace A by AN (P(HA[T]off &£, [T]) and
replace P(sf) by P(sf off of,). O

5.1.2. Theorem (Bass fundamental theorem). Let { &, (s, F;)} be an admissible
abelian category, and {{u,, G,)} be another finite set of divisors on s such that
(s, E)). (1. G,)} are compatible, p = u; then:

(a) For n=1, there are exact sequences
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0— K, ()= K (LT DK ([T])
- K(A[T, T D=5 K, (4)—0,
0—> K, (o off &L, )~ K, (A[T] off £, [T])® K, ([T "] off £,[T'])
— K, ([T, T off of, [T, T"')—5> K, _ (st off s1,)—0.
(b) For n=1,
3 K (AT, T D= K,_ (L),
ar: K ([T, T™"off &[T, T"')— K,_ (L off £,),
split naturally, i.e., there are
he: K, (4)= K (A[T.T]),
hp:K,_ (s off o) K ([T, T 'off A,[T.T']),

such that d;°hy =id.

Naturality here means the following: Let sds{ be the category of all admissible
abelian categories {sd, (s,, F,)} with another finite set of divisors {(u,, G,)} on &
such that all divisors involved are compatible. A morphism in s is a functor

F:{dd, (s;, F), (uy, Gy = {', (si, F), (4}, G}))}

which sends complexes €P(dA off s,) to complexes EP(4' off o)), where

w=Yu, and p' =V u,. Then the following diagram commutes for any mor-
phism F in dsi:

K,_ ( off &fu)—h’—ng(ﬂn, T off o1, [T, T LN K, (doffd,)
K, _1(F) K, (F) K, ((F)
K, (s’ ofde,)L(ﬂ’[T, T oft st [T, T™') —Z—>K, (L' off si,.)
(c) For n=0, there are exact sequences '
0— Ko(st) = Ko(L[T))® Ko( [T )= K(A[T, T,

0—> Ko(sf off 51, )— Ko(L[T] off £, [TD® Ko(L[T ™' off £, [T'])
— Ky(A[T, T ']off 4,[T, T']).
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Proof (cf. {14, 6.1]). Notice that in [14] K(X) is a ring spectrum where X is a
scheme. But in the present case, K(sf) is no longer a ring spectrum. S0 we must
modify the proof in [14].

For simplicity of exposition, we only write down the proof for the absolute
case. For a proof of the relative case, we just need to replace P(dA) by
P(A off A,), etc. ) .

(a),(c) Consider the following homotopy commutative diagram of spectra:

Ku1H . ~
K(P., off 4[Th—— K(PL,)————K([T])

K@y K(T™H

l

K(sA[T "} off [T, T ———— K(4[T ™)) —— K(A[T. T™'])"

where the two rows are homotopy fibre sequences by Theorem 3.3 and the left
vertical map is a homotopy equivalence by Theorem 3.2, so we get a homotopy
cartesian square

e =
K(PYy) ————— K(:4[T))
K@l K(T™YH
-1 — 1y~
KA T )~ KT, 17D
Then we have a map of spectra Q(K(H[T, T )= K(PL) or rather
o, KT, T > K(Py) A S

which induces the connecting map 3 in the following jong exact Mayer—Vietoris
sequence of K-groups (by Proposition 4.3.3, we can remove )

o K (AT, T )= K (P
(G, g (T @ KT
ST g (a7, T = KT T

From Theorem 4.0.1, we have isomorphisms
K (®): K (A)DK, (L)~ K (P, Vn=z0.

Let [,.r,: K (#)— K, (4)D K, () send x to (x,0), (0, x) respectively, and
i, =1,—r, Then
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K (7)) K ()i, = K (OITD - K(O[TH =0,
K, (7)o K (@) ei, = K(OITD~ K (O[T D =0.
But (K, (T7) K, (®), K,(t5")e K, (P))el, is an injection by Lemma 5.1.1, and

Im(l)) @Ir.n(i,,) =K, (s4)® K,(s), so the above long exact sequence breaks into
the following exact sequence for n =0:

0— K, ()= K (L[ TH® K,(L[T'])
- K (AT, TS K,_ (s4)=0,

which is (a). For n =0, we get

0> Ky(al)— Ko(A[T))® Ky(L[T )= Ky([T, T7'])

which is (c).
(b) The_ tens_or product (in the obvious sense) induces the following homotopy
commutative diagram of spectra (here Z is the ring of integers):

. Iadp

K(d) A K(Z[T, T™' )" ——K() n K(P;) A S’

K(A[T, T™'))" ——— K(P}) A S'

B.y (a) above, Im(K,(d;)) = K,_,(#), so we have the homotopy commutative
diagram

- _ - Ia
K(st) A K(Z[T, T —25 K(sd) A K(Z) A S
® A
J J"*’ ! (13)
K(L[T, TY))” — S K(sA) A S

On the other hand, let T denote the map of spectra §'— K(Z[T, T™'])” which
represf:nts the element T € K,(Z[T, T™'])™ = K,(Z[T, T™"]); then we have the
following homotopy commutative diagram:

K()YAn K(Z)AS'—> K(s4) A K(Z[T, T™'])™

(14)
KHAYAS' ——— K(A[T, T'])"
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Composing (14) with (13) horizontally, we have the following homotopy com-
mutative diagram:

K(st) A K(Z) A $'— K(s£) ~n K(Z[T, T — K(#) A K(Z) A S

l l l as)

K(A) A St ——— K([T, T7'D)” K(A)AS'

The composite of the top row of (15) is an automorphism [14, Theorem 6.1(b)},
and because K(sf) A K(Z)g K(s¢) induces a K(Z)-module structure on K(A),
so the composite of the bottom row of (15) is also an automorphism. Let &, be
the composite of the inverse of this automorphism and of the map K(d) A
$'— K(4[T, T"'])” at the bottom of (14); then d,°h;=id, 50 97 is split.
Obviously A, is natural. [

Let o/sd be the category defined as in Theorem 5.1.2(b), then we can construct
covariant functors K= from 4.4/ to the category of all abelian groups for all n =0,
+1, *2,... and KB from <dsf to the category of spectra. We refer the reader to
[14, Section 6} for detailed construction of K and KB Here we only write down
the final results of the construction.

5.2. Theorem (Bass fundamental theorem). Let {od, (5, F),i=1.....,n} bean
admissible abelian category, {(u.. Hp), k=1,..., r} be another finite set of
divisors on sf such that {(s;, F), (u,, H,)} are compatible, p = ﬂ,:=1 u,; then:

(a) The natural map K(s off od,)— K®(sd off o) induces isomorphisms on
m, for n=0:

K, (s oft o, )—— K (A off ) .
(b) For any integer n, there is a natural exact sequence.
0—> KB(sf off 54, )= K (st[T]off £, [T KB(oA[T ‘Jotf A, [T7'])
> KP(A[T, T 'Joft &, [T, T"'D— KE (sioffsd,)—0.

(c) There is a natural homotopy fibre sequence of spectra

K(A[T}off &, [T]) LhJ K(A[T "Yoff &,[T'])
k(4 offad,)
2 K(sA[T. T "] off 4, [T, T"'])— ZK( off s1,,) .

(&) For any integer n and any positive integer k=1, we have the natural
isomorphism 8y °- - '°6Tl°(U T)e---o(UJ T,)=1id:
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K, (o off o, )——> Koo T, T ot s [T ..., TS

Jv (UTy)eo(UTy)
id

K (oA off o1,)

(e) For any positive integer k=1, the composite d, "'°d71°(U T))o---o
U T,) is a natural homoto, equivalence, i.e., the ollowing diagram is
Py eq g g
homotopy commutative:

(U Ty)eso(U Ty)
—_—

KB (oA off 1) KP(A[T .. Tilott s [T, ..., TF'])

I*KP(sd off 5i,) 0

From the construction of K° and K® and the degree shifting formula, Theorem
5.2(d), we can re-write the results in Sections 3 and 4 in terms of K® and K®
casily.

5.3. Theorem (Excision). Let {, (s, F,), i=1,...,n} be an admissible abelian
category, {(t;, G;), j=1,...,m} and {(u,, H,), k=1,...,r} be other two finite
sets of dtwsors on o such that {(s;, F,), (t;, G)), (uk,H )} are compatible,
T= ﬂ s =, -1 Uy, and (7-Tor) N (u-Tor) = 0; then we have induced by
the localwatzon functor j%, a natural homotopy equivalence,

KP(j}): KP(A off A, )—> K®(si, off o)
and isomorphisms for all integers n,
KJ(i7): Kl (st off f,)—> KP(ed off f,,,). O

S.4. Theorem (Projective line bundle theorem). Ler {, (s, F),i=1,...,n} be
an admissible abelian category, {(u,, H,), k=1,. ,r} be another ﬁmte set of
divisors on d such that {(s,, F,), (u,, H,)} are compatzble p=0\_, u,; then we
have natural homotopy equivalences,

) K™(ot) x K(d)—> K®(PL),
(i) K(.ﬁoff&i)xK(&loft&{)—»K (P, off P!, )
and isomorphisms for all integers n,

(1) K (A)x K} (&¢)—>K (P,
(i) K, (s off sd,) X K2(s4 off o, )—— KP(P, off P, )
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5.5. Theorem (Localization). Let {d, (s;,,F), i=1,...,n} be an admissible
abelian category, {(t;, G;), j= .,m}and {(u,, H), k=1,...,r} be another
two finite sets of divisors on .524 such that {(s;, F,), (t,,G) (u,, H)} are
compatible, T = ﬂl Ve p= ﬂk | U,; then there are homotopy fibre sequences of
spectra,

(i) K®(sf off )~ K® (ﬂ)—>1< (s£,),

(ii) KB(oA off m#)-—>K (oA off o4, y— KP(d. off £,,,),

and the long exact sequences of K-groups drawn from the above homotopy fibre
sequence,

(i) > K2 off o)~ K? (Jd)—)K (d)—>--
(ii) - K2(sd off o, )~ K2 (st off 1,)—> K (54 off ., )~ -

Proof. See [14, Theorem 7.4]. O

5.6.1. Proposition (Mayer—Vietoris). Let {4, (s;, F;)} be an admissible abelian
category, {(t;. G;)}, {(1;,, G; )} and {(u,, H,)} be another three finite sets of
divisors on & such that all the divisors involved are compatible, T = ﬂ, Lo

T, = ﬂ, > = (Y, u,; theri we have homotopy cartesian squares:

(i) K0~ K°(sL,)

K(sd, ) ——K"(t, ,.)

(i) K%t o, OFf i yin) —— KP(t, 0ff 5L, )

T, N7y

K(st, off o, ) — K*(,

Un T Ury Y YT U

Proof. Consider the following commutative diagram:

Kl o, OFF 51, 1)) — Kt o, OFF ) ——— KO (s, off A, )

| | 1

K®(d,, off o, ) ——— K*(, off oA, ) ——— K*(sf, ., off A, 00)

>N T un)

The rows are homotopy fibre sequences by Theorem 5.5, the left vertical map is a
homotopy equivalence by Theorem 3.3, so the right square is a homotopy
cartesian square. [J

5.6.2. Proposition. Let {f,(s,, F,)} be an admissible abelian category,
{(uy s Hy )} and {{u,, Hy,)} be another two finite sets of divisors on A such that
all the divisors involved are compatible, p, = ﬂk Up s Po = N, , Ui, then we have
a homotopy cartesian square:
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K®(d off A, , ) —> K(A off 4, )

l l

K®( off of, ) ——K"(L off 4, )
Proof. Consider the following commutative diagram:

K¥sAoff o, ) ————s K¥(A)—— K (A, )
I l
\ | | \
KP(sf off o, ) —— K®(st) s kP,
| |
T

KA off of,) ——b > K®(a) ——4—-> K%(sL,)
l Ny )
\ . ~

K% off o, ., ) ——— K*(d) ————— K*(d,

1Yny IU“Z)

The rows are homotopy fibre sequences by Theorem 6.4, the right vertical square
is homotopy cartesian by Proposition 6.5.1, and the middle vertical square is
homotopy cartesian obviously, so the left vertical square is homotopy cartesian
also. [

5.6.3. We will use homotopy limits of systems of spectra to formulate the
Mayer-Vietoris theorem for covers with more than two sets of divisors. For
definition and basic properties of homotopy limits of systems of spectra, we refer
to [13, Sections 1 and 5].

Let {«, (s;, F;)} be an admissible abelian category, {(t;, G;}}...., {(tjp, G/.p)}
be p finite sets of divisors on & such that all the divisors involved are compatible,
= ﬂht“,...,rp = m;,,ff,; We call U = {71,...,7,,} a cover of & if

(r,-Tor)N---N(7,-Tor)=0.

If Fis an arbitrary functor from s/ to the category of spectra, we denote by
. P P —
H'(«, U; F)=holim <H Fa)s [l A, )= )
=1 foody=1 o3

the homotopy limit over A of the cosimplicial spectrum where the coface maps
and codegeneracy maps are defined in the standard way. There is a natural
augmentation

&1 F(st)— H' (A, U; F)
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which is induced by
14
(F(j2) : F(t)— |1 F(sL,) .-
=1

Let ¥ ={oy,...,0,} be another cover of of. We call ¥ a refinement of % if the
all divisors involved are compatible, and if there is a map

<p:{1,...,q}—>{1,...,p}

such that o, =7, for k=1,..., 4. Let 7 be a refinement of 9; there is an
augmentation-preserving map H'(d, U%; F)— H'(s4, ¥ F) induced by {1},
where

P q

1 Fet, o) 11 Fg s,
=1 0 i 1

I4
F(6l, )= P o) F )
lgeo ok, =1

By [13, Section 1.20] (or more accurately the same proof as the one given
there), the induced map H(st,%; F)—> H (A, V' F) 1s independent of the
choice of the ¢ up to homotopy, so if % and V' refine each other, then
H*(sd, U; F) is homotopy equivalent to H*(#, V75 F). 4

Let % ={r,...,7,} be a cover of . If {(u,, H,)} is a-nothe.r finite set of
divisors on & which are compatible with all the other divisors involved, p =

M, u,, then

pUaU={FUp,-7,Up}
is a cover of &,,.

5.7. Theorem (Mayer—Vietoris). Let {, (s;, F)} be an admisst_'ble abeliarf ?ate-
gory. {{u,. H)}, (@, G {(tjp, G].p)} be another p + 1 finite sets of divisors
on s such that all the divisors involved are compatible, p = MNyue, 7=

M. ¢ .,7P=ﬂ-t- Y={r,....m,}- If

Jyht ip i’
(r,-Tor) N -+ - N (5,-Tor) = 0,
then the augmentations are homotopy equivalences:
6 KP(st)— H' (o4, U; K®)

14 14 =
= holim (H K )s T1 Kt ) 3 ) ,

=1 Ig;=1
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.. B 7.
(ii) K®(o off o, )— H" (o, Us; K(A, ,off A )

P
= : B
= holim (I=H1 Ko (d, off 4, )5 ) .
Therefore, we have the strongly convergent Mayer-Vietoris spectral sequences
s, rs s £ 2
£y = e, 4 KM = B ([T K2t [T K2t )
1=1 lo =1 o

>K2 (),
ES' = H(dA, U; K7 (s off 4 )

P
=H’ (H KP(sd, off A, )= )

=1

SKP (doff ).

Proof. See '[14.1, 8.2.5 and 8.3]. We need to replace a cover of a scheme by a cover
of an admissible abelian category, and replace the intersection of open sub-
schemes by the union of torsion theories, etc. O

6. Applications
6.1. 'ljheorem. Let R be an arbitrary ring, t|, ..., t, be n elements in the center of
R or if not, there are ¢, . .., ¢, € Aut(R) such that for any a€R, t,a = ¢(a)t,,

ety =ti, gop=¢roq for any i,j=1,...,n. If Re,+---+ Rt, =R, then we
have a homotopy equivalence:

K®(R)~> holim (H KAR[ DS H KP(R[ ')

it

and therefore a strongly convergent spectral sequence

Ef?=H® (H K2R, - f[ KoR[e 7" )

ij=1
>KJ ,(R).
Proof (cf. Example 1.2.3). (¢,,Id), .. ., (z,, Id) are compatible divisors on R-Mod,
and Rt; +---+ Rt, =R implies (¢+,-Tor)N---N(z,-Tor) =0, so {¢,...,t,} be-

comes a cover of R-Mod, then the corollary follows Theorem 5.7. O

Proposition 6.2. Let X be a smooth variety over a field k; then the embedding from
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the structure sheaf €y of X to the sheaf By of germs of differential operators on X
induces isomorphisms of K-groups of all integers n:

K (X)=K,(@y) foraln.

Proof. Since X is a variety over a field k, X has an ample family of line bundles,
thus X = U], X,, where X, is the locus of a global section s, of some line bundle
F,on X and is affine. Then (s, F,),...,(s,, F,) are divisors on the categories
& = Qcoh(X) and &'= the category of all sheaves of @y-modules in Qcoh(X),
and form covers for of and &'; and the localizations &, = I' (X, 0,)-Mod and

i

s, =I(X,, Zx)-Mod (cf. Examples 1.1.4 and 1.1.5). From [11, 7.2], we have
isomorphisms for all n=0, K(I'(X,, 0,))— K, (I'(X, , 9x)). Then the proposi-
tion follows Theorem 5.7. [

References

[1] D. Carter, Localization in lower algebraic K-theory, Comm. Algebra 8 (1980) 603-622.

2] S. Gersten, Localization theorem for projective modules, Comm. Algebra 2 (1974) 307-350.

{3] H. Gillet, Riemann—Roch theorems for algebraic K-theory, Adv. in Math. 40 (1981) 203-289.

[3] D. Grayson, Higher Algebraic K-theory II (after Quilien), Lecture Notes in Mathematics 551
(Springer, Berlin, 1976) 217-240.

[5] D. Grayson, The K-theory of hereditary category, J. Pure Appl. Algebra 11 (1977) 67-74.

{6} D. Grayson, Localization for flat modules in algebraic K-theory, J. Algebra 61 (1979) 463-496.

{7] D. Grayson, K-theory and localization of noncommutative rings, J. Pure Appl. Algebra 18
(1980) 125-127.

{8} H. Hartshorne, Residues and Duality, Lecture Notes in Mathematics 20 (Springer. Berlin, 1966).

[9] S. MacLane, Natural associativity and commutativity, Rice University Studies 47 (4) (1963)
28-46.

[10] N. Popescu, Abelian Categories with Applications to Rings and Modules (Academic Press, New
York).

[11] D. Quillen, Higher algebraic K-theory I. Lecture Notes in Mathematics 341 (Springer, Berlin,
1973) 85-147.

{12} R.G. Swan, Algebraic K-theory, Lecture Notes in Mathematics 76 (Springer. Berlin, 1968).

{13] R. Thomason, Algebraic K-theory and étale cohomology, Ann. Sci. Ecole Norm. Sup. 18 (1985)
437-552.

[14] R. Thomason and T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories,
Preprint.

{15] F. Waldhausen, Algebraic K-theory of spaces, Lecture Notes in Mathematics 1126 (Springer,
Berlin, 1983) 318-419.

{16] C. Weibel, K-theory and analytic isomorphisms, Invent. Math. 61 (1980) 177-193.

[17] C. Weibel and D. Yao, Localization of rings in algebraic K-theory, Preprint.




