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Localization for the K-Theory
of Noncommutative Rings

CHARLES WEIBEL AND DONGYUAN YAO

ABSTRACT. If § is denominator set in a ring A, we describe the third term
in the long exact sequence relating the K-theory of A and S™1A. It is the
Waldhausen K-theory of a category Perf(A4,5). f A — B is an analytic
isomorphism along S, this third term satisfies excision, yielding a long exact
Mayer-Vietoris sequence in K-theory.

The recent work [T'T] of Thomason and Trobaugh establishes a local-
ization theorem for the K-theory of commutative rings and quasi-compact
quasi-separated schemes. This paper is partly an attempt to give a simple
exposition of their proof in the important case A — S~1A, and partly an
extension of their proof to the noncommutative case. When S consists of
nonzerodivisiors, we recover the calculations of {GQ] and [Gr], since in that
case our Perf(A,S) has the same K-theory as the exact category Hs(A).
We include an excision result which is new even in the commutative case.

To understand the statement of our localization theorem. we introduce some
terms. Let A be a ring with unit. A strictly perfect complex P = P* is a bounded
chain complex of finitely generated projective left A-modules. A chain complex
E = E* of left A-modules is a perfect complexz if there is a strictly perfect complex
P* and a quasi-isomorphism P — E. The category Perf(A) of perfect complexes
forms a “Waldhausen” category, i.e., a category with cofibrations (degreewise
split monics) and weak equivalences {quasi-isomorphisms). The K-theory of A
is the same as the Waldhausen K-theory of Perf(A). (See 1.1 below.)
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We are interested in localizing A at a multiplicatively closed subset S to form a
left quotient ring S™' A whose elements have the form s~ la (s € S,a € A). This
exists iff S is a left denominator set, i.e., it satisfies the following conditions:

(i) (“@re condition”) (Vs € S,a € A)(3t € S,b € A)ta = bs

(i) (Annihilators) (Vs € S,a € A) if as = 0 then (3t € S)ta = 0.

See [F], 16.9. This hypothesis is sufficient to make S~ 1A flat as a right A-module,
so that M+ S—1M = S~1A®4 M is an exact functor from A-mod to S'A-
mod. We remark that any central multiplicatively closed S will automatically
be left denominator set. ,

Suppose that S is a left denominator set in A. The category Perf(4, S) of
perfect A-module complexes E such that S~ 1F is exact forms a Waldhausen
subcategory of Perf(A), so it makes sense to talk about its algebraic K-theory.
We will see below that it has the same K-theory as the subcategories Perf*(4, 5),
Perf®(4, 5) and Perf~(4,S) of strictly perfect, bounded, and bounded above
complexes, respectively.

Localization Theorem. Let S be a left denominator set in a ring A, for
example a central multiplicatively closed set. Then there is a long exact sequence

e o Ky (5714) 2 Ky Perf(A, §) — Kn(A) - Ka(5724) 2> -
valid for all integers.

Formula. Here is an explicit formula for the boundary map 0 : K 1(S714) —
KoPerf(A, S). If s € S, then s is a unit of 5714 and 8(s) is represented by the
complex

0-A—A—0
concentrated in degrees 0 and 1. More generally, every matrix B € GL,(S714)
is of the form s 'a for some s € S and some a € My(A). Then 8(8) =
B(ar) — nd(s), where d(a) is represented by

0— A" 25 A™ = 0.

Remark. We will only construct a sequence ending in Ko(4) — Ko(S71A).
However, the argument of [C] shows that we can define negative K-groups for
Perf(A, S) and continue the above sequence to negative values of n. On a spec-
trum level, if K(A) denotes the nonconnective spectrum for the K-theory of
A, the fiber F of K(A) — K(S™'A) is a nonconnective delooping of the usual
connective K-theory spectrum for Perf(4, S).

Remark. The proof of the Localization Theorem is much easier if we as-
sume that S is central. The difficulty with the general case is that clearing
denominators in commutative diagrams is delicate. (See 3.1.)

Remark. It seems probable that the Localization Theorem remains valid if
A — S571A is replaced by a flat epimorphism A — B. However, the techniques
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of this paper do not immediately extend to that case. Several variants of the
Localization Theorem may be found in the second author’s thesis [Yao}.

In order to compute with the Localization Theorem, we provide an excision
result for analytic isomorphisms along S. ‘

Definition. (Cf. [T'T] and [We]) Let S be a left denominator set in A. We
say that a ring map f : A — B is a (left) analytic isomorphism along S if
a) f(9) is a left denominator set in B
b) A/As = B/Bsforallse S
c) Tor;;’(B, A/I) =0 for p # 0 and all left ideals I of A meeting S.

Remark. Condition b) implies that A/I = B/BI for every ideal I meeting
S. If A is commutative, then c) is implied by the condition of [TT] that Bp is flat
over Ap for all primes P of A meeting S. If S consists of central nonzerodivisors
in A, we will show in 5.5(b) below that c) is equivalent to the assertion that
f(S) consists of right (hence left) nonzerodivisors in B. Thus our notion includes
the notion of analytic isomorphism used in [K] and [We]. The term “analytic
isomorphism” comes from the fact that the S-adic completions A = liLnA/As

and B = lim B/Bs are isomorphic.
e

Excision Theorem. Let A — B be an analytic isomorphism along S. Then
the total tensor product map

B®Y — : KPerf™(A,8) — K Perf™ (B, S)

is a homotopy equivalence of spectra. Consequently, there is a long exact Mayer-
Vietoris sequence (for all integers n):

o K1 (S71B) -5 K(A) — Kn(B) @ Ko(S™1A) - Ka(S71B) - -

Remark. Our proof follows the proof of [TT, 3.19]. If S is a central set of
nonzerodivisors on A and B, this result was proven by Karoubi [K] by showing
that Hs(A) =~ Hs(B). (See [We, 1.1]).

§1. The proof of the Localization Theorem.

The K-theory of A is the K-theory of the category P(A) of fin. gen. projective
left modules; either Quillen K-theory or Waldhausen K-theory may be used by
[Wa, 1.9]. In order to compare the K-theory of A to that of Perf(4,S), we
invoke the following result.

LEMMA 1.1. (Waldhausen) The following subcategories of Perf(A) have the
same K -theory:
a) P(A), the K-theory of A
b) Perf*(A), the strictly perfect complezes
¢) Perf®(A), the bounded perfect complezes
d) Perf (A), the bounded above perfect complezes
e) Perf(A), all perfect complezes.
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In all cases, cofibrations are degreewise split monics, and the weak equivalences
w are the quasi-isomorphisms.

ProOF. By [Gi, 6.2], the categories a) and b) have the same K-theory.
The inclusion of strictly perfect complexes in either bounded or bounded above
perfect complexes satisfies the approximation property (App) of [Wa, 1.6.7]
by a standard exercise (see [SGAS, 1.2.7.1] or [TT, 1.9.5]). The inclusion
of category d) in category e) satisfies the dual approximation property (App°?)
since we can truncate complexes. By the Approximation Theorem [Wa, 1.6.7],
these categories have the same K-theory. O

Porism 1.2. It follows from the proof of 1.1 that the following subcategories

of Perf(A, S) have the same K -theory:

a) Perf*(4,S5) = Perf**(A) N Perf(4, )

b) Perf’(4, S) = Perf’(A4) N Perf(4, 5)

¢) Perf(4,S) = Perf (A)N Perf(4, 5)

d) Perf(4,S)
In all cases, cofibrations are degreewise split monics, and the weak equivalences
w are the quasi-isomorhisms.

In order to prove the Localization Theorem, we introduce a new notion of weak
equivalence on the category with cofibrations Perf(A). We let v denote the class
of all maps E — F such that ST'E — S™'Fisa quasi-isomorphism. The sub-
category of perfect complexes v-equivalent to zero is Perf (4,5), so Waldhausen'’s
Fibration Theorem [Wa, 1.6.4] states that thereis a homotopy fibration of spec-
tra (yielding a long exact sequence on K-groups):

(1.3) K(Perf(4, S)) — K(Perf(A),w) — K{(Perf(4),v).

The middle term gives the K-theory of A, so it suffices to compare the right
term to the K-theory of B.

Since S—1A is flat over A, localization provides an exact functor from Perf(A)
to Perf(§~1A). This functor not only factors through the change in weak equiv-
alence (from w to v), but it also factors through a category B, which we now
define.

Definition 1.4. Let B denote the full subcategory of Perf(S~1A) consist-
ing of those perfect S~'A-module complexes E* such that the class [E®] in
Ko(S—1A) is in the image of the map Ko(4) — Ko(S™1A). We make B into
a category with cofibrations (degreewise split monics) and weak equivalences
(quasi-isomorphisms).

Thomason’s version of the Cofinality Theorem for Waldhausen K -theory [TT,
1.10.1] applies to the inclusion of B in Perf(S~'A), proving that K.(B) —
K,(S~1A) is an isomorphism for n 2> 1, and that Ko(B) is the image of Ko(A) —
10 (S-1 A) Therefore in order to prove the Localization Theorem it suffices to
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establish the following assertion:
(1.5) K (Perf(A),v) — K(B) is a homotopy equivalence.

This will be a consequence of the Thomason-Trobaugh Approximation Theorem
[TT, 1.9.8], once we prove {in section 3 below) that the map of derived categories

T : v~ !Perf(A) » w'B

is an equivalence. The first step is to show that every complex E* in B is quasi-
isomorphic to S™1P* for some perfect A-module complex P°®, i.e., that every
object of w—!B is isomorphic to T(P*) for some P* in v~! Perf(A). This is the
subject of the next section.

§2. An Extension Criterion.

In this section we shall assume that S is either central or a left denominator
set in A. The following Exercise is trivial when S is central. When S is a
left denominator set, it uses the fact that any finite subset {b;} of S~'A has a
common denominator, i.e., is of the form {¢t~1a;}.

Exercise 2.1. Fix a left denominator set S in A, and let E£* be a bounded
chain complex of fin. gen. free left S~!A-modules. Then there is a bounded
complex F* of fin. gen. free A-modules and an isomorphism f : ST1F* — E® of
S'"lA-module complexes. Moreover, if we use a choice of basis to represent the
ft by matrices and assume that E* = 0 for i > n, then f* = 1 and every other
f* is right multiplication by an element of S.

COROLLARY 2.2. If P is a fin. gen. projective A-module and
0-’Em‘—*Em+1"""'—’En—1—)En—)0

is an S~YA-module complexr with E* fin. gen. free for i # n and E™ = S§™'P
then there is a bounded chain complex P* of fin. gen. projective A-modules with
P™ = P and an isomorphism f : ST1P* — E°* of S A-module complezes.

P1ROOF. Choose @ so that P & @ is fin. gen. free and apply 2.1 to E®* &
(S7'Q(n)) to get a free complex F* with F* = P @ @ and an isomorphism
S71F* > E* @ (571Q(n)) in which

STIF" 2 (ST'P)@ (STIQ) = E" 9 (S7'Q)
is the canonical map. Now set P* = F*/Q(n). O

’ COROLLARY 2.3. If E® is a strictly perfect S~ A-module complez, then there
is a bounded complez F* of fin. gen. free A-modules, an S~ A-module complez
D* and an isomorphism S™1F* =~ D* ® E* of S~ A-module complexes.

PRrOOF. Each Ei' is a fin. gen. projective S~1A-module, so there are S™!A-
modules D! with D @ E* fin. gen. free. Assemble the D* into a complex (e.g.,
by 0 maps) and apply 2.1. O
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Remark 2.3.1. This is the elementary analogue of [T'T, 5.5.1]. Thomason
and Trobaugh need to work harder, invoking the derived category of S71A,
because of their geometric context. In loc. cit., they state that “despite the
flagrant triviality of the proof, this result is the key point in [TT}.”

Extension Criterion 2.4. The following assertions are equivalent for every
perfect S~! A-module complex E*:

(i) E*® is quasi-isomorphic to S ~1p* for some perfect A-module complex P*

(if) The class [E*] € Ko(S~1A) is in the image of Ko(4) — Ko(S7'4).
ProoF. That (i) implies (ii) is clear. For the converse, we may suppose
that E* is strictly perfect, so [E*] = Y(—1)}(E’]. By adding short complexes
of the form 0 — D = D' — 0, we may assume every E‘ is free except
E™, that Ef = 0 for i > n, and that [E"] = [ST1P] for some projective A-
module P. Hence E™ and S~1P are stably isomorphic S~!A-modules, i.e.,
E" @ (S~1A)" 2 S~1(P @ A7) for some r. Adding (S™'A)" in dimensions n —1
and n, we may assume that in fact E™ = S§~1P. Now apply 2.2 to obtain (i). O

§3. Equivalence of Derived Categories.

If w is a class of maps in a skeletally small additive category C, there is an
additive category w—!C and a functor @ : C — w1 sending w to isomorphisms
which is universal in this respect. If w is a multiplicative system [H, 1.3}, this is
an especially nice construction, since w~1C has the same objects as C and every
morphism is represented by a diagram in C of the form

E&E -5 F.
This follows from the calculus of fractions [V, 2.3.2] [H, 3.1]

THEOREM 3.1. Let B C Perf(S™1A) be as in (1.4), with w being the quasi-
isomorphisms. Let v be the class of maps v : E — F in Perf(A) such that
S-1y:S-1E — S™'F is a quasi-isomorphism. Then

T : v~ ! Perf(A) — w™'B
is an equivalence of categories.

Reduction. The Extension Criterion 2.4 shows that every object of B, hence
of w—1B, comes from an object.of Perf(A). Therefore, it is enough to show that
the functor T is full and faithful. The following argument, copied from [TT,
5.2.6], shows that it is enough to prove that T is full, for this implies that T
is also faithful. Since v is a multiplicative system, every map in v~1Perf(4) is

represented as B X B -2, F with ' in v. Suppose that T sends this map (or
equivalently, @) to zero in w~B C w! Perf(S714) C D(S71A). Let C be the
mapping cone of a, so that

c) ~E SF-S5ce
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forms a distinguished triangle of perfect A-module complexes. Since Hom(E, —)
is a cohomological functor [V, 1.2] [H, 1.1] we have a diagram of abelian groups
with exact rows:

Hom, (E, C(1)) LI Hom, (E, E') =2 Hom, (E, F)

|» |7 |
Homy (S~1E, S~1C(1)) = Homy(S~'E,S'E') - Hom(S™'E,S~'F)

For clarity, we have written Hom, (resp. Hom) for Hom in the triangulated
category v~ Perf(A) (resp. w™1B). Since we have assumed that T is full, the
vertical maps are onto. Hence there is a map E «— E” —*5 C(1) in v~ Perf(A)
such that T(v='on) is the isomorphism v'~! in w~!B. But then $7'(o7) is
a quasi-isomorphism. By definition of v, o is an isomorphism in v~ Perf(A).
Since oma = 0, this forces a to be zero in v~! Perf(A), proving that T is faithful.

PRrROOF THAT T IS FULL. Note that T is an additive functor between additive
categories. As every strictly perfect complex is a direct summand of a bounded
f.g. free complex, we are reduced to showing that if E and F' are bounded com-
plexes of fin. gen. free A-modules, then

T : Homy -1 pers(ay(E, F) = Homy-15(S7'E, 571 F)

is onto. By [SGAS, 1.2.7] and [V, 1.2.4.2], every map in w~ !B from STIE to
S~1F is represented by a chain map 3 : S ~1E — S~1F. Clearing denominators,
we can choose A-module maps o™ : E* — F™ and s € S so that 8" = s™!a™ for
all n. As a warmup we consider the easy case first.

Easy case: S is central. Because over S ~1A we have
(0" 'dp — dpa™) = s(f" " 'dp — dgf") =0,

some t € S annihilates a® 'dr — dga™. Replacing s by ts and a” by ta™,
we have arranged that the {a”} assemble to form a chain map a : E — F.
Multiplication by s is a chain map F — E lying in v, and evidently the map

E~~ ESF
in v~! Perf(A) maps to 3. We are done in this case.

General case. When S is not central, multiplication by s may not be a chain
map. Since E™ = 0 for n > N, we may use the following lemma, together with
descending induction on n, to see that by changing our choice of the o™ (and
sp € S so that 8® = s71a™) we can find a new chain complex

E';..._,E"—le_"ll_,EniL..._,EN_‘o
and a diagram of chain maps

E {sn} E {a”} F
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Since {s,} is in v, this represents a map in v~ Perf(A) lifting . This will finish
the proof.

LEMMA. Suppose we are given s, € S and a™ : E™ — F so that f* = s;la®,
and a map e : E® — E™*! such that s,dg = €"snp+1. Then there is a map
e: E"1 - E" ans,_; € S and an o : E*! — F*7! 50 that ee™ = 0,
gt = s;’ila and such that the following diagram commutes:

En—l Sn-1 En—l @ Fn—l

dE.l, le J,dF
B I pr 2,
PROOF. Recall that 87! = s~1a™ !is given. Choose s’ € Sand e’ : E"~1 —
E"™ so that e's, = s'dg. Then choose t € S and a € A so that as’ = ts. Set
e’ = ae’ and o = ta™"1, so that

(e"e™)sny1 = (ae')(sndE) = a(s'dg)dep =0
and over S~1A we have

(o"dp — €"a™) = t(s3" " V)dr — (ae')(sn ")
— as'(ﬂ"’ldp _ dE,Bn)
=0.

Therefore there is an s” € S so that s”e"e™ = 0 and

s"(a"dp —€'a™) = 0.
Set e = "¢, 8p.1 = §"as’ = s"ts and a = s"a”. O

§4. Criteria for perfectness and pseudocoherence.

The following two results are straightforward modifications of results in [TT,
2.4]. We need them for the excision result in the next section.

Recall from [SGAS6, 1.2] that an A-module chain complex P* is said to be
strictly pseudo-coherent if it is a bounded above complex of fin. gen. projective
A-modules. A complex E* is said to be pseudo-coherent if there is a quasi-
isomorphism P* — E*® with P* strictly pseudo-coherent. Recall also that v"E
is the good truncation

--—+O—+d(En—1)——’En ——*E"+l e
THEOREM 4.1. ([TT, 2.4.2]) Let E be an A-module chain complex. The
following are equivalent:

a) E is pseudo-coherent
b) For all integers n and k, and all directed systems {Fy} of A-module
complezxes, the canonical map (4.1.1) is an isomorphism.

(4.1.1) lim H*(R Hom(E, 7" Fa)) = H*(R Hom(E, lim 7" F,))

x (o 4
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c) Same as b) except we require the F,, to be strictly perfect

d) Same as c) except we require the Fo, to be uniformly bounded above, and
we require E to be cohomologically bounded above.

e) For all integers n, and all directed systems {Fu} of A-module complezes,
the canonical map (4.1.2) is an isomorphism.

(4.1.2) h_r’n HOmD(A)(E, TnFa) i HomD(A)(E,@T"Fa)
04 a

f) Same as e) except we require the Fy to be strictly perfect
g) Same as f) except we require the F,, to be uniformly bounded above, and
we require E to be cohomologically bounded above.

PROOF. We merely note the changes that are needed to modify the proof of
[TT, 2.4.2). Note that the meaning of “perfect” is slightly different in op. cit.
In the proof that b) = e) we cite [H, I.6.4] instead of [T'T, 2.4.1} to see that

H°RHom(E, r"F) = Hompa)(E, 7" F).

In the proof that g) = a) we cite [SGA6, 1.2.12 and 1.2.7] instead of [TT,
2.2.13] to see that if E @ E’ is n-pseudo-coherent then so is E, and if E is
n-pseudo-coherent for all n then E is pseudo-coherent. [

THEOREM 4.2. ([TT, 2.4.3]) Let E be an A-module chain complex. The
Jollowing are equivalent:
a) E is perfect
b) E is cohomologically bounded below, and for any directed system {Fa} of
A-module complezes, the canonical map (4.2.1) is an isomorphism.

(4.2.1) lim Homp(4)(E, Fa) =, Hompya)(E, limF.)
[e3 a

¢) E is cohomologically bounded, and (4.2.1) is an isomorphism for any
directed system {F,} of strictly perfect complezes which is uniformly co-
homologically bounded above.

PROOF. We merely note the changes needed for the proof of [TT, 2.4.3] to
go through. For a) => b) we cite [H, 1.6.4] instead of [TT, 2.4.1], as above.
For ¢) = a), the proof in [T'T] shows that some E © E’ is isomorphic in D(A)
to a strictly perfect complex. As in the proof of 4.1 above, this implies that F
is pseudo-coherent. By [SGAS6, 1.5.8.1] E is perfect. O

§5. Excision.

In this section, we assume that f : A — B is an analytic isomorphism along
a left denominator set S in A. In order to compare Perf(A, S) and Perf(B, 5),
we first compare the derived categories of A and B.

Recall the construction of the total tensor product

Lf*=B®Y —: D (A) — D (B).
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Any bounded above A-module complex E has a quasi-isomorphism P — E
with a bounded above projective complex P, and Lf*(E) is B ®4 P. The
choice of P may be made functorial—use the total complex of the canonical
free resolution—and therefore defines a functor from bounded above A-module
complexes to bounded above B-module complexes. Restricting still further, but
retaining the notation, we get functors

Lf* : Perf~(A) — Perf™(B)
Lf* : Perf (A, §) — Perf™ (B, 5).

The former induces the map f* : K(A) — K(B). The latter map is the focal
point of this section: we shall prove that it induces an isomorphism on K-theory.

PROPOSITION 5.1. Let f : A — B be an analytic isomorphism along S.

a) If E is a bounded above complex of A-modules such that S—1E is ezact,
then the canonicel map E — B ®ﬁ E is an isomorphism in the derived
category D~ (A).

b) If F is a bounded above complex of B-modules such that S7IF is ex-
act, then the canonical map (obtained by thinking of F as an A-module
complez)

BLYF—F
is an isomorphism in the derived category D~(B).

Proor. (Cf. [TT, 2.6.3 (a,b)]) For purposes of checking we may assume
that E and F are also bounded below. The usual devissage argument (see op.
cit.) now reduces to the case in which E and F are concentrated in one degree,
i.e., S-torsion (left) modules. Since for every A-module M we have

H.(B ®% M) = Tor(B, M),
we are done by the following lemma. O

LEMMA 5.2. Let A — B be an analytic ismorphism along S. Then for every
S-torsion left A-module M we have M = B®s M and Torl‘;l(B, M) =0 for

p#0.

PROOF. If M = A/I then S meets I and we are done by the definition of
analytic isomorphism. An induction on the number of generators of M proves
this result if M is finitely generated. As every M is the union of its fin. gen. sub-
modules, and Tor commutes with filtered colimits, the result holds for infinitely
generated M as well. O

PROPOSITION 5.3. If E is a perfect B-module complez with S~'E ezact, then
E is also perfect as an A-module complex.

Proor. (Cf. [TT, 2.6.3 (d)].) By truncating, we may assume that F is
bounded above. We appeal to criterion 4.2 (c) to see that E is perfect, so let
{F4) be a uniformly bounded above directed system of strictly perfect A-module
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complexes. Let s F denote the mapping cone of F — S~!F, translated by +1,
so that S~(T'sF) will be exact, and the natural map

HomD(A)(E,FsF) — HOInD(A)(E, F)

is an isomorphism. (To see this, use the long exact Hom sequence and note
that Hom(E, S™1F) is trivial because S~1E 2 0 in D(A).) Using (5.1) and the
adjointness property [V, 2.3.3|, we see that if F and F are bounded above
Homp(4)(E, I'sF) 2 Hompa)(E, B ®4 T'sF)
= HOIIID(B)(B ®Ij E B ®Ij [sF)
= HomD(B)(E,B ®ﬁ I'sF).

Now set F = li_IgFm and note that l_i}_)n(FSFa) ~I'gF.
a3 o
Using criterion 4.2 (c¢) in D(B), we therefore have

lim Hompya)(E, [s Fa) & lim Homp(p)(E, B ®% I'sFa)

a x

2 Homp(p)(E, limB ®} I'sFa)
o

= HOI‘I]D(B)(E,B ®ﬁ IgF) = HomD(A)(E, T'sF).

Hence
lim Homp(a)(E, Fa) = Homp(a)(E, F).

«

Using 4.2 (c), this proves that E is perfect in D(A4). O

COROLLARY 5.4. The forgetful functor from B-modules to A-modules induces
a functor u : Perf(B, S) — Perf(A4,S) and an equivalence of derived categories

w1 Perf(B, S) ~ w™l Perf(4, 5),
whose inverse is the total tensor product B @4 —.

ProOF OF EXcCisION THEOREM. By 5.1 and [Wa, 1.3.1} the compositions

Perf~ (A, S) 215 Perf~(B, S) —% Perf™ (A, 5)
Perf~(B, §) - Perf~ (A, ) 225 Pert~(B, S)

induce maps on K-theory which are homotopy equivalent to the identity. The
existence of the Mayer-Vietoris sequence is a formal consequence of the homotopy
equivalence
K Perf~(A4, ) — K Perf (B, S),

given the Localization Theorem. (See, e.g., [We, 1.2]). O

We conclude with the following promised result, that our notion of analytic
isomorphism generalizes both the notion of “isomorphism infinitely near Y of
[TT] and the notion of analytic isomorphism used in [K] and [We].
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LEMMA 5.5. Let S be central in A and f : A — B a map such that Af/As =
B/Bs for all s € S, and f(S) is a left denominator set in B.
a) f is an analytic isomorphism iff Tor;}(B,A/As) =0 forp # 0 and all
sES
b) If S consists of nonzerodivisors in A, then f is an analytic isomorphism
iff S consists of right nonzerodivisors in B.

PRrOOF. If s is a nonzerodivisor on A, then Tor;‘,‘(B, A/As)=0for p>1and
Tor#(B, A/As) = {b € B : bs = 0}. Therefore a) implies b). To see a), let I be
a left ideal of A containing s € S and set J = As. As A/I = A/J®a A/I there
is a spectral sequence

E2, = Tor/? (Tor(B, A/J), A/T) = Torp, (B, A/I).

If TorqA(B,A/As) = 0 for ¢ # 0 and B/Bs = A/As, the spectral sequence
collapses to give

Tor(B, A/I) = Tor}/7 (A]J, A/T).
This vanishes for p # 0, proving (a). O

Remark. The proof goes through if, instead of assuming S central, we as-
sume that As is a 2-sided ideal of A for all s € S.

REFERENCES

[C] D. Carter, Localization in lower K -theory, Comm. Alg. 8 (1980), 603-622.

[F] C. Faith, Algebra: Rings, Modules and Categories I, Grundlehren Math. 180, Springer-
Verlag, 1973.

[Gi] H. Gillet, Riemann-Roch theorems for higher algebraic K-theory, Adv. Math. 40
(1981), 203-289.

[GQ} D. Grayson, Higher algebraic K-theory II (after Quillen), Lecture Notes in Math.
551, Springer-Verlag, 1976.

[Gr] D. Grayson, K -theory and localization of noncommutative rings, J. Pure Appl. Algebra
(1980), 125-127.

[H] R. Hartshorne, Residues and Duality, Lecture Notes in Math. 20, Springer- Verlag, 1966.

[K] M. Karoubi, Localisation des formes quadratiques I, Ann. Sci. Ecole Norm Sup, 4¢ serie,
t. 7 (1971), 63-95.

[SGAS6) P. Berthelot, A. Grothendieck and L. Illusie, Théorie des Intersections et Théoréme
de Riemann-Roch, Lecture Notes in Math. 225, Springer-Verlag, 1971.

[TT] R. Thomason and R. Trobaugh, Higher algebraic K -theory of schemes and of derived
categories, preprint, 1988, to appear in Grothendieck Festschrift, Progress in Math., Birkhalter
Press.

[V} J.-L. Verdier, Catégories derivées, pp. 262-311 in SGA4 1/2, Lecture Notes in Math.
589, Springer-Verlag, 1977.

[Wa] F. Waldhausen, Algebric K-theory of spaces, pp. 318-419 in Algebraic and Geometric
Topology, Lecture Notes in Math. 1126, Springer-Verlag, 1985.

[We] C. Weibel, K -theory and enalytic isomorphisms, Inv. Math. 61 (1980), 177-197.

[Yao] D. Yao, Higher algebraic K-theory of admissible abelian categories and localization
theorems, Ph.D. thesis, Johns Hopkins Univ., 1990.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NJ 08903
USA
DEPARTMENT OF MATHEMATICS, JOHNS HorkiNs UNIVERSIY, BALTIMORE, M]? 21218

Copying and reprinting. Individua! readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy an article for
use in teaching or research. Permission is granted to quote brief passages from this publication
in reviews, provided the customary acknowledgement of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this pub-
lication (including abstracts) is permitted only under license from the American Mathematical
Society. Requests for such permission should be addressed to the Manager of Editorial Ser-
vices, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.

The appearance of the code on the first page of an article in this book indicates the
copyright owner’s consent for copying beyond that permitted by Sections 107 or 108 of the
U.S. Copyright Law, provided that the fee of $1.00 plus $.25 per page for each copy be paid
directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts
01970. This consent does not extend to other kinds of copying, such as copying for general
distribution, for advertising or promotional purposes, for creating new collective works, or for
resale.



