HIGHER INVERSE LIMITS AND HOMOLOGY THEORIES

by
Zuel-Zong Yeh



Uy
N
2,
T
i)
¥

RN
Hd
$y
b

&
w3

A DISSERTATICHN
Presented to the
Faculty of Princeton University
in Candidacy for the Degree
of Doctor of Philosophy

Recommended for Acceptance by the
Department of
MATHEMATICS

DR

Ea April, 1959

f_/} ;‘ i i ;’"—..,

s
{7




This 1s an authorized facsimiie, made from the microfilm

master copy of the original dissertation or master thesis
published by UMIL.

The bibliographic information for this thesis is contained
in UMI's Dissertation Abstracts database, the only
central source for accessing almost every doctoral
dissertation accepted in North America since 1861.

UMI Dissertation
Services
A Bell & Howell Company

300 North Zeeb Road
P.O. Box 1346 |
Ann Arbor, Michigan 48106-1346

1-800-521-0600 734-761-4700
http:/imwww.belihowell.infolearning.com

Printed in 2001 by digital xerographic process
on acid-free paper

oPBT



INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some’
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted.  Also,: if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper lef-hand corner and
continuing from left to right in equal sections with small overlaps. Each
ongnal is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the onginal manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor Ml 48106-1346 USA
31377614700  800/521-0600



AL frr

9 Dol ke frps

Abstract

Part I is purely algebraic. We obtain tre defirxition

o0f the first derived functor lim' of inverse 1limit =nd show

[
taet 1) 1lim' vanishes on zll inverse systems (o zbelien
6.—-.
froups) which are “star-epimorphic.” 1i) 1im' is "right

W
zXact’ on the category of inverse systems whose urderlying
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t is countables ard "directed.," 1ii) %39’ is ore-
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y cofinzl inverse systezxs.,

Tre defirition of Ei?‘ is obtained z2g follows: First
¥e consider a trivizl generslization of inverse limit, the
relative inverse limit so-called. Then besed on tre relz-
tive izverse limit we define N (2,V,4), = three-variable
function of inverse systems with the condition B DV S A,
"rom /\ we acauire 2 two-variable function by setting
A(2,8) = A(B,A,4). Finslly we ascertzir thet A depends
only on & as lonz 3s 5 ig a Star-evimorphic covering of A.
This deperdence of X on A is the Tirst derived functor of
inverse limit. The laborious definition of ii?l nzs 1)

above as a2 by-croduct. This definition iz also shown to be

eculvalent to one imrlied by Carten~Zllenbers in Hormolczical

Llcebra.,

L

2alczories of inverse srystems, we need the roticn of
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"Aarived inverse systems" as well as the followlng simvle

U

rcvosition: lim(A + 38) = lim A + 1lim B if A, B € C and AN 3
< & -

bk

s star-evimorvhic. The examples of star-eplzorohic lnverse
systemws are provided ip Part I by sozme derlvsd inverse sSys-

te~s znd in Part II by certzin inpverse systems of chaln

Part II consists of apclications of Part I to various
nomologzy and cohomology theories. First we consider infinite

soxplexes as described oy Lefschetz in Alsebraic Topolosy

without, nowever, the assumption that the complexes be star-
finite or closurs-firite., Certailn infirnite chalns are selected
as d-sermissible or §-permissible and the homology or co-
homology based on such chains are considered. Then we estab-
lish a short exact sequsnce which relates the homolozy or
cohomology of the infinite complex based on the zroutr of
sermissitle chains to the inverse system of tzne homolosy or
sohomology zroups of subcomplexes of the given infinite com-

slex. This short exact szquence, named after Professcr John

B

Milnor, involves Ttoth lim znd 11

'. =y soveclallzinz the
—

snfinite coaplex to tne simplicisl, the sinzulzr, ths Steen-
red-Milnor, and the Ellesnberc-Mzclzne complexess we obtaln
tr=z corresponding Mlilnor short exact sequences. Jf sbecizal

‘saterest is that for Steenrod-¥ilnor homology, which zives
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showr trzt lim?! is risrt =xzot
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gystems whoss csongtituent groucs



INTRODUCTION

Inverse limit as a functor on the category of inverse
systems of abelian groups is not "right exact." Hence, ac-
cording to Cartan-Eilenmberg [1] it is possible to define
the higher derived functors of inverse 1limit once the ap-
prooriate injective objects are found (ecf. §10, Part I).
In Part I we study the first derived functor with the view
of making applications in various homology and cohomology
theories in Part II., For the study of the first derived -
functor a certain type of inverse system turned out to be
useful in making the definition as well as acqguiring an
important property of the first derived functor. These
inverse systems are called "star-epimorvhic."” It is showmnm
that the first derived functor vanishes onm all star-epimor-
thic inverse systems, and in Part II 1t 1s indicated that
certalin inverse systems of chain Zroups are star-epimor-
ohic,

Zut for an effective application of the first derived
functor %o homology and cohomwology theories, it is necessary
to determine whether the first derived functor is right
exact. This seems a2 difficult problem. In Part I only a

restricted result is obtained: it LS snown that the first



izrivad functor is rigzht exact, 1if the index setv underlyling

T2 invarse systems is countable ard directed, in ovarticular

.i.. *

th

are dealinz with inverse sequences, A morse universzl
»222lt wzg obtzined by Professor‘Jchn ¥ilnor. Ir ths Appen
iz re ascertalirns the right exactrness for all lnverse sys-
Tems whose constituert zroups zre firitely zenerated free

2pelizn oroups. Tre lorortance of this result becomes zp-

Ld

, ).

Tre odurvose ¢f Part 11 is to establish for various
nomolozy and cohomolozy theoriss certain short exact se-
cuznees. These secuences were first zonlsctursd by Profes-
Jor Hiipor znd were in fzct the reazscns for trz study of
trz fipgt dspived functor of inverse limit inm Part I, As we
mew, nenclozry theory was firpct ievélo;sd for finites ceom-

tl2xes; zr2 e 2Xtena 1t to infinite comrlexes, csesrtain re-

strictiors were imvosed on the tyres of infinite coomrlexes,
such z2s "ztar-firniteness,” "closurce-Tinitzress," stes. Hew-
zvzer, sucr restriztioms 2rc nct zlwarg necessary. rInis be-

3omes clear 28 thne result of studyings frofessor ilnor's

e

wodernized zrcé gencrallzed verslon ¢f Steenrod's hzmolozy,

%

Ir S2rE one re

{ﬂ

lizes that ty restricting the t7ze of in-
fizite chalns onz may study the nomolocy of an infinite com-
n“lzx which is not star—firite.

'~e relaztions betwesr homoleogzy (zchomology) srouss of

I

finite comclexes based on sultable tyces of infirnite
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shains and those of thelr (finite) subcomplexes are ex-
vressed by Milnor short exact sequences. In nparticular
Stesnrod-Milnor homology satisfies such a short exast se-
quence, which leads to another short exact seguence relat-
ing this homology to Cech homology. Other Milnor short
exact sequences are obtained by specializing the infinite
complex and its associated infinite chains.

This dissertation was prepared under the direction of
Professor John Milnor. I am most grateful to him. I wish
also to express my thanks to Professors J. C. ¥oore zZpnd Y. E=.

Steenrod for their valuable criticisms and suggestions.
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PART I

1. DBasic Notions

Throughout all sections by group we shall always mean

gtzlian group. And by inverse gystem a2lways inverse system

I 2bellan groups.

Let I be 2 partizlly ordered set ( o ¢ o admitted),
fn lnverse system (4;1I) consists of z collection of Eroups
{ AL | «e I } and a collection of brojection homomorphnisms
{p: l d< g , o, ¢ I} where p: is a homowmorphism of
%y into A, such that if dcepcry then py followed by
o is identical With ZF i.e. = p:' = oY . The inverse
limit denoted i&E(A;I) 1s the croup each of whose element
i3 a simultaneous selection of element 2g from A, for
2.1 4 such that p: aF =a, for J&Lcp ,

4 homomorphism h of (4;I) into (2;I) is a collection

of nomomorphisms {h, | «e I} such that the diagram
4, B - B,
, e} al
Ay e By

iz commutative, i.e. n, p‘f = q: hP .

A sequence of inverse systenms

(Al;I) — (AZ;I) —— s --—--9.(%;1)
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where each arrow represents a homomorphism 1s said to be
‘exact if for each pair of consecutive homoworphisms the
lzage of tkhe first is the kernel of the secord. Now if
(3;I) € (B;I) Lt.e. Ay 1is 2 subgroup of By and p: is the
»:striction of of for 211 <<p €I, and if (C;I) denotes
“Z€ usual quotient object arisingz from the inclusion Do
(2;I) € (B;I), then the following exact seauence holds
0 — (A;I) &, (B31) 1, (C;I) 50

#rere 1 1s the inclusion homomorphism and 4 18 the cannonical
nozomorohisw. Conversely, if such "short" exact sequence is
zlven we may regard (4;I) as z sut inverse system of (B;I)
ard (C;I) the aquotient inverse system of (B;I) vy (4;I).

For ezch fixed partially ordered set I, we z=ay con-
sider the category of inverse systeams f(a;0)} , L.e. the
wotality of 21l inverse systems over the same index set I
znd all possible nozomorphisms among these inverse systems.
4s long as vwe are considering only the inverse systems be-
lorgirgz to a fixed catezory, we may omlt the letter "It
‘rom the notations of inverse systems.

Inverse lixit is 2 functor on the category of inverse

systems. This means that for any given homomorphism

f:A —» B there corresponds 2 ratural induced hoomomorohism

ot 1im A —>.1im B satisfying the following conditions.
L e | S
1). If f:A —> A is an identity homomorohism tren
f*: 1im A —> 1im A is z2ls0 an identity homomorphism.

«— —
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z2). If f:A -+ 3B, z:B -—>C, then (gf)a = Eufe.
Now, irverse limit is left exact zs a functor. This
mezrs glven a short exact sequence
0o —aHedec o0
27 inverse systems, the functoriszl "action' of inverse
-izit gives rise to the following half "closed" exact se-
Juence.

is Je
00— 1im A —5 )i B wo lim C
“— — —

=y an examtle (§9) we shall snow that Jju 1s in generzl not

drto.

If we let k derote the quctient of lim C by Je(lim B)
- L

"‘_' {' g (‘ ——

We will determine the nzture of k's dependence on A znd B

in §8.



2. Star-epimorvchic Inverse Systems

Let I' be a subset of I. Let
P(I) = { «| «e I, “<<p for some pe I' }.
42 say that I' is a full subset of I if £(I') = I', Unless
Otherwise stated we shall consider only subszts of I that
are full,
Now if I'C I, we Tay consider ths inverse system

(&;I') obtaired by restricting (4;I) to I' in an obvious
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way. Civen I' C I" € I we consider the following restric-

tion homomorphism,

PI": 1im(a;Iv) —» 1im(a;TY)

Il
D —
wrere (PI:S )‘ = %o for X e 1im(A;I") and « ¢ I',
I i

Definition 1. An inverse system (A;I) is said to be

star-epimorphic if P%: is an evimorphism (i.e. onto-homomcr-
Thism) for every psir I[' ¢ Iv,

We meke the following remarks:

1}. If A is star-evimorphic, then 1im & # O unless

W
= Ol

A

-

2). An inverse system (A:;I) is star-ezirorpnic if
and only if for any given I'C I znéd ? ¢ EE?(A;I‘) and
for any given pe I - It |

N of

ry Pa (S) #£0
where & ranges in I'n O (p). 3« is an abbreviation
for $(« ) e &, .

3). The recgulrement that an inverse system be star-
epimorphic is in general much strorger than wmerely requir-
ing that every projection homomorohism gf in the inverse
system be epimorphic. If I = ZT (the set of cositive in-
tegers) then the two requirements are eguivalent. That is,
“star~epimorbhic inverse sequence" and "eclrorphic inverse
sequence” mean the same thing,

4). Any inverse system can be irtbedded in a star-

e~imorovhic inverse system. (See $5. Derived inverse systems)
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3. Belative Inverse Limits and Related Functors

Belative inverse limit is a generalization of inverse
lizit. Let § be a simultaneous choice of element from the
system of groups, then the relative inverse limit is defined
for each pair of inverse systems (B,A) with A € B as follows:

Definition 2.

- ;
lim(B,A) = { § | ol !p -¥ e A, “<p}
Sirce 1im(B,A) will occur repeastedly, we will abbreviate it
*—

oy [{B,4]. Note [B,0] = 3;}_’5_“ B, {5,B] = TIB.,, , and trat
[=2,£] is strictly monotone increasing on both variables,
l.e. 1T 3¥Y> B 2 A' > A, then

t

[(2',4a'] (2,4]
~[3,4'] 7

Lemma 1. Given a short exact sequence of inverse sys-

tems 0—A-B-4C-30, 110 — 1t A 2% 11n 8 3% 14p ¢ oty & 0,
D e e

—

t

{b

n
k = [B:A} / < £A}A]! [BrO]>
where {* * * *>dencte the group generated by - - - -,
Proof: 1) 3;313 C = [B,A]/[A,A], for let « :[B,A]—-;E:_}in c,
wnere R(B) = f3. (%)} ¢ lim c, $e [(B8,A], then z is

clearly onto and kernel of & = [A,4A].

11)  J{liz B)w1lim B/1in A = [2,0]/(4,0] by the
L — L



g
exac ce 00— 1lim A 1 B 1 C. H f
2zt sequernce *J? '"é’éE? ——y QE? ence from
i) and 11i) follows
lim C/ju(lim B) = ((B,A]/[A,A])/([B,0]/[4,0])
€ €=
=~ (B,A]/{ [4,4],[B,0] "
We shall abbreviate this last expression by »(B,a).
In zeneral A (B,A) does not vanish. The only situation
where we are sure 0f its vanishing at this moment is
Lemma 2. MB,A) =0 if T =8(«) for some e I,
Proof: Given $<«({B,A], 1let $¢ [B,0] be such
o
that for B« SP-- = 3 , then !P - SP = SP € 4y,
Nearly § = {8} € (A,A]and $=3 + &,
(This lemma will be needed in droving some formulas of &5.)

»(B,A} can be generalized to the following useful

N(B,V,A) = [(B,A]/ {[V,4],[B,0]Y ACVCEB
s V varies from A to B, A(R,V,A) "shripks" from N(B,A)
3 Zero. A theorem of A proved in §8 will trivially im-
2ly that N(B,A) = 0 if A is a star-epimorohic inverse sys-

tem. (See Corollary 2.)



L. Derived Inverse Systems

Given (A;I) and I' € I"C I we have previously defined

by restriction the homomorphism

III. a " " - [
PIg- lé:in(A’I ) “"')léf(A]I )
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Now for givem (B;I) D (A;I) and I'C I®* ¢ I we can similarly
define
I -
Pri: [B,A;I%] —» [B,4;1%]
- . ." .
v setting (Pi, 3}y =5 for $¢ [B,A;I"] and «e I,
Definition 3. Given an inverse system B, for each

sub inverse system A C B the derived inverse system of B -

with respect to A, which we denote BA,- is defined as fol-

lows:
Bf = [B,A; ()]
P:. = P:éi;‘ (B,A; @(p)] —[B,a; P(x)] << p

A
Clearly 1f 0 C 43 € A5 C ... cB then B9 ¢ BA1 c B 2¢ ... ¢ B°.
B

Also if A ¢ B then A% ¢ BB.
Lemma 3, B = Bo for given inverse system B.
Proof: Let $ € B, define ¢: B .y B® by

(93, =P£(-‘)s € [B,0;®(«)]

Then one can easily check the following commutative dia-

gram

¢P
SP —3 (03 )’

) T(p)
P, l le(‘)
0%

g‘ Sm—— (‘¢s )‘
Lemma &, B:B*::l.s stat-epiporphioc- for any given inverse
system B.

Proof: Given I' C I"¢ I we must show
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P, : 1lim (B%;I") — 11n (8%;I') 1s onto.
«— -
First we consider the following natural isomorphism

t B
., Lim(B7;I') — U B

tnen we check the following commutative diagrém

11m(8%;1%) =, T B,
f—-——

s n
I l
PI‘ | 11
1im(3B;1') = . Tt 3
o ’ YeT ¢t v

ft
sirce ® 1is onto, so is PI"
fheorem 1. An inverse system can be imbedded in a
stzr-evimorphic inverse system.
Proof: By Lemmz 3 ¢: B _2,3% rLet i1 :8° ___, 5B
ot the inclusion, then 10 is the imbeddaing of B into BS,

wrere 55 1s star-epimorphic by the previous lemma,

The following simple forwmulas of derived inverss sys-
tems will be needed later.

Lemma 5. Given A,A' C B, we have

1) BA - B0 . AA

4
11) (a4 + av)(a*AY) _ 44 A

t ] 1
111) BAYAY L pgA L AT gAY L LA

1v) BA+A‘ - BA & BA'

Froof: 1) It suffices to show B2 = B + ad, wut

B = (5,4, 8(«)], 8BS = (3,0; 8(«)], 4% = (a,4;08(x)],
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2nd by Lemma 2 ([B,A] = [(B,0] + [A,A] if the index set is
of the form £(a ). The appropriate restrictions of .the
srojection homomorvhism of B2 gives those of_BO and A%,

11) To show (A + A')‘.(A"'At) = Aﬁ + ottt e

ok
. (a+at) |
ncte (A + A‘L = E‘.(AY + Alf)' Aé R Ay
At
L3 Sl .8 1 - 1
AL }"\"A' , but TL (Ay + &%) ILA, + L\" AL .
_ : ¢ 1
111) pA+4T g0y GA.-&'AH)(‘}J('& )by 1) and (&4 + A‘)(Aﬂ )
t t
= 2% 4 oarh by 1i), hence gf*é _ (BO + AA) + oA o phoy g8Y

Siz-ilarly BA+A' = BA + Aﬂ.

t
1v) BAYA' _ ghA o adAY o 449 but

| At t 1 1
A 5 A L g% s B2 4 a2 pence BATAY C 2A , BAY

e
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5., Distributivity of Inverse Limit.

Lemma 6. The derived inverse system and the relative
inverse limit are relzated by
lim B% a [B,A]

" —
Proof: By the definition of 3# we have a whole collec-

-
[¥]

ion of commutative diagrams

Bf —=—[B,5;8(p)]

» O(p )
Pu l ! F D)
A

By ———»[B,4; D ()]

ranging all pairs d<pg € I, Through these dizgrams it

1s evident that each element Y ¢ lim b determines =
s
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unique element ¢(3 ) ¢ [B,A;I] and each element Y€ [B,A;I]

determines a unique element Y(¥) € 1im B, and that ¢ and
— :

¢ are inverse of each other.

de make the following observations: Since we know from
zezma 5 3% = B® + 4% and now 11m 2% = (8,4 11m B0 = (3,03,
11z a® = (A7A] and as remarked in §4 A(B,A) # 0 in general,

. —
l.e,

(B,4] 2 [B,0] + [&,4]
hence we have the following negative statement.

Lemma 7. Cilven A,A'C B, lim (A + A') & lim 4 + lim A!
G Commn
in general, ‘

However we have the following positive case:
Theorem 2. If A n At 1s star-epimorphic, then

lim (A + A') = 1im A + 1im At
G L !

Pr:oof‘; 1t suffices to show lim (A + A') ¢ 1im A + lim A!
- G P G
20 ziven 1K lim (A + A'), let, say
M

; L ’
and suppose «<ps , then
of (a, + ag ) =8y +aj
Thus of ag - 3y = -(p? ap - aj )
but p! 8y -2, € Ay and of a; -al € A}
nence pﬂ ag - 3 , p: a; -a; &€ A, O Ay

Now let Ay N Al be denoted by 4 , and supvose {a,} = §

znd  {al} = !’.



Then Ye(4,4]

Sut since A is assumed

ANa,A) =

i.2. [A,A] =
Trerefore there exist §
L

Similarly there exist (4
!l

Thus y = ¥ ¥+ B
but & + € € [A,A] and
hence & + & € 1im 4,

-
Trerefore ¥ = (9§ +¢

-

14
and §' € [A',4]

star-epimorphic

[Asél/([é,il, [A}Q])- = 0

(4,4] + [4,0].

€ (A,A] and %€ [A,0] such that
= § + %
€ [i,i]'and. ' & [A,0] such that
= £+ g
= § + & + 85 + 3
also §+ & = ma (% + $7)¢ Lim(A+ A"
and hence § + £ + 5 ¢ 1ig A.+~
—

+ 5 )+ %% ¢ 1im A + 1lim Af.
e «—
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é. Lemmas from Group-theory

Many propositions in fhis paper will be proved by cal-
culations involving the relative inverse limits. The cal-
culations will be based on 2 few lemmas from the group-theory.
Ihese lemmas are stated here without proofs and will be ap-
Plied repeatedly in the sectiorns that follow. Other basic
lemmas from the group-theory needed here aﬁd tnere are also
gathered in this section.

Lemma 8. Suppose f 1s a homomorphism of a group-pair

(G,Gg) into another (H,HO), i.e., f: G — H such that

7(Gg) € H,, then the induced homomorphism f,: G/Gy —» H/H,



“E5
can ce completed intc the following exact sequence

0 m,f“'lcﬂo)/c;o —+ G/G, — B/H, —» B/ (£(G),HB > —0

r1(5%) /6 w1ill be called the kermel of f, and H/ CE(G),H_ Y

the cokernel of f£4.

Corollary 1. (Fundamental lemma of homomorphism)

If f: G — E 1s onto mod Hyy L.e. given h € H there exists
g € G sucn that £(g) - he H, then G/r~l(H) = H/H .
Lemma 9. Supvose f: (G,G,) —» (H,H,) so that
fu! C/Gy — H/H, then
kernel f, = f”l(Ho)/Go
(f(G),HO> /Hq
Lemma 10. Given f: G - H, and supvose Ho’ch H.
Then £ (g, ED ) = Cemhag) e hE ) Y
1f £(G) > H, or £(G) D Hy, in particular if f is onto.

image f3

Lemma 11. Given groups and inclusion howmomorchisms

/l
\. /

“nzre Gy = Gy A Gy we have the following isomorphism

(G/G1)/(Gy/G ) = G/ {Gy,GpY

~eoma 12. Let AO C 4 2nd B be subgroups of G, then
{4,BY /<A, ,BY = A/{AnB,A >

Lemma 13. Given the dlagram of groups and inclusion

noTomorphisms D

A

i
/
: o
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™rere exists E s¢ that the following diagram is commubtative

/D*
A E
}*Dt(v
wnere 3 and j' are inclusion homomorphisms. The smallest

such E exists and will be denoted D & DF rel a.

Leomg 1l4. Every group can be imbedded in an injective

grouv. < is called -injective if given

O3 b= — tw
]
X

There exists T B —» @ -such that

£
\Q
T

O —3pr—p (T

is z coonutative diagram.
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7. Study of AN(B,A) and A(B,V.A)

A homowmorphism f: (B,A) —> (B',A') induces
fa: N(B,4) — a(B',A'). We compute the kermnel and co-
¥ernel of fu:
[ 0 —» kernel T —> A(B,8) —» N(B',4') —> cokernel £, —» 0
kernel fx = ([r‘”lun E,A],[B,f"lc n Bl1Y/{[4,4],[B,0]
| cokernel f» = [B' A']/(FfB,fA],[AY,4%],(B',0]Y
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Legma 19, EKernel fu =0 if £ is 2 monomorphism of
(B,A) into (B',A') which takes A onto A'.

Proof: [f~lA'n B,A] reduces to [4,4], and [B,f~1o n 4]
reduces to [B,0].

Lemme 16. Gokernel f#« = 0 if B is a staf-epimcrphic

inverse system.
Proof: A substitution of fA = A' reduces the expression
for cokernmel %o
(Bf,at]/ ([fB,A*],[B*,0]% = A(B*,fB,A")
where f8 % B is a star-epimorphic inverse system. Ve
cornplete the proqf by stating the following essentizl the-

orem of A :

Theorem 3. AN (2,V,A) = 0 if V is & star-epimorphic

[l

nverse system.
Proof: Recalling A(B,V,A) = [B,A]J/ [V,A]),[B,0] >we will
show by transfinite induction that given % € [B,A;I] we

can find § € [V,A;I] and $e [B,0;I] such that § = § + 8

Suprose I is well-ordered, say I = { d., &y, ...}
Let I, =‘£(¢1), Ip =9 (&4, ,), .y then Iy, I,, ...
s an increasing sequence of subsets of I such that {J I, = I,

1
i

In general for I'<C I let (¥;I') denote Pft'} .
1) Since I = O («£,), by Lemma 2 there exist
(§;I1) € [A,4;Iy] and ($;I7) ¢ [B,0;I;] such that
(8510 + (5;1;) = (¥;14).

11) Supprose we have shown for 3} ¢ n that there
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exist (§ ;Ij) € [&,A;IJJ and (S ;IJ) (3 [B‘,O;Isj such that
. . . I . . .
(§:;Ig) + (3;I4) = (¥;I4) and that Pzg( S',IJ) = (d§;14);
Pii(S ;IJ} = {f;}ii). Now this implies that for I# =U I

] <
there exist (& ;I#) € [A,A;I#} and (% ; #) € {B,O;I#:} such

trat (§;IF) + (8 :77) = (% ;17).

J

Notations: 1let (!;I#)*_* {81 -kel#}, ({;I#)
- 1& | «eT#}, (3;77) = {8 | asi¥}, them

f‘ = :‘ + S‘ for 4 & I#.

To show hthare exist (§ ;In) € [A,A;In] and (% ;In)s (B,0;I,]
such that
(1) (!';In) + (5:I,) = (§;1,)
I - - . . I . - .
(20 PBY;Iy) = (5:T9); PRSIy = (8;79)
first note I_ = ™ y ﬁ(ctn), and let I* = ' n B(«

n) -
&5 usual, decompose in the manner of Lemma 2,

(;;ﬂ(dn))m(?;a(dn))'*(3‘;°(¢n)) (1]
Let ple( §5r) - 20X g @« = (g5 1MerB,0i1*) (2]
3ut since tor &€ I* 4
| o
(¢ ;z*)+ = (Péi( $;17)), - (PI.(*n)( 300 )) )

( !‘ - 8. )*Pjn }in
= F -0 b)) - 5, € A,
hence (£:;1I") € [A,0;1%]) ¢ [Vv,0;1T*]
Now since V 1is s.tar-epimorphic, there exists

(5";.‘:)(dn)) € [(V,0;8( « )] such tanat
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p R0 (g d(ay)) = (8519 (3]
Define (S;ﬂ(uﬁn})=($ ;D (& )) + (£ a(i)) r4]
and (&;P(L)) = (&' pld)) - (5% 8(«))) (5]

Then clearly (£;B(& ) + (5;8(d )) = (§;0(s)))

It remains to check that (§;® (&, )) and (§:86( an))
ar= consistent with (% ;I#) ana (§ ;I#) raspectively:

(a) P;’("’ﬂ)(g;a(dn)):Piﬁgg;r#), but

A Y Y R A A U TR IR E LTI TSI
4 _ oy (4]

- {Pii(g TF) - (£31I%)] - (£;1%) by (21,031

-_-Pﬁcs;f’f).

Tnus (5 ; 8(d,)) and ( 8 :1¥) 2zree on I*, hence together

mzkz us {§;IB) which we want in (1), (2).

O(dy) I#

(o) P, (5 ;8(4 n)) «(&; I#) but

H

T
et

ol (gm0 ) = PRltnlCrse s ) - 400 pipca )

by (5]
g sl P TR 8B ) T- eI by (11,03]

(3 x’r‘)w%ﬁw ;T#) ] - 9‘”“‘ Cenaa )y - (250

b 25(‘L

|
-n:.-..

I
.;f

by the induction hypothesis

[Prf(s I#)_Pﬁt-w(g B(d )>3+p.(s ;T%) - (£51%)

it

= { £;I%) + P%ﬁ( 5";1#) ~ (£:;1%) by [2]

#
= pLL(§;1T7)

T
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Trus (§ ;0 (& )) and (& :T%) agree on I*, hence together
meke up ( § ;I®) which we want in (1), (2). Q.E.D.

Corollary 2. AN(B,A) = 0 if A is star-epimorphic.
Proof: A(B,A) = A(B,5,A) = 0 since A is staf-epi-
morwhic, _

Corollary 3. A(B,W,A) = 0 if there exists 2 star-

es>imorphnic V such that W 2V D A.
Proof: [B,A] = ((v,A],(B,01% c {([V,4],(B,0]1Y, hence
A(v,w,a) =-0.
Theorem 4. Given &4 C B, A CB', if there exists a
star-epimorphic V such that A C V C B 1 BY, then
N(B,A) = AN(B%,4).
Proof: Consider the inclusion homomorphisms induced
oy (V,A) € (3,4) and (V,A) ¢ (B',4)
1e: N(V,2) — A(B,4)
15 N(V,4) — A(B',4).
Tren by Lemma 15 a2nd Lemma 16,

kernel i, = 0; cokernel i,

i
o

kernel i, = 0; cokermel i, = 0

Yence AZ,48) = NV,A) =« rMBY,4). In particular we

corollary 4. If A C V C B ¢ B' with V star-epimorphic,
trhen A(B,A) = XN(B',A).
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8. The First Derived Functor of Inverse Limlt

Definition 4. & sté.r«epimorphiﬂ covering of a given
inverse system A is an inverse system which contains a
star-epimorvhic inverse system which contains A,

Let B and B! be star-epimorphic coverings of A, then
the dlagram

0 - A B
{ 0 —» A —3 B!

can be imbedded in a computative diagranm

A/B\‘B@B' rzl A
~

where B @ B! rel A is the (smallest) inverse system con-

O-—-—b

taining both B and B' preserving their common inclusion of
A. (Cf. Lemma 13.)
Theorem 5. If B and B' are star-epilmorphic coverings
of A then
| M(3,A) = A(B',4).

Proof: By Corollary &4,

i

A(B,A) MB @ B' rel A,A)
rBLA) = AN(B @ B' rel A,4)
Hence A(B,A) = A(B',A). Thus we see A(B,A) has a certain

degree of invariance with respect to B, znd this enables us
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to obtain a functor of A from N .,

Definition 5. The first derived functor of inverse

limit,; which we denote by lim', is defined by
A~

d1im' A = A(B,A)
L —
where B is a2 star-epimorphic covering of A.
From this definition,:isince -N{4,4) =0, we,have the
following

Theorem 6. i&g' A =0 if A is star-epimorphic,
In £5 "Derived inverse systems® we noted that for any in-
verse system A, we have the inclusion relation
A = A% c Al

where AR is a star;epimorphic inverse system, hence A4 is
a2 star-epimorphic covering of A, Thus we may formulate

the oDreceding definition as follows:

Definition 6. 1im' & = [2%,4°1/(14%,4°%7,02%,07 Y.

From this definition it is seen that %&g‘ is a functor on

the category of inverse systems.

T

Examoie. Let (A;2%) be such thet A, 1s the additive

group of integers for each i € 2%, and pi be a multiplica-

tion by 23“1. It can be seen that lim A = 0, but we will
L

show that 1lim' A # 0.
-

First we note that (4;Z%) is isomorphic to (A%;Z+)
where A: is the additive group of all integers divisible

by 21, and pg is the inclusion of Ag in A Now we let

1.
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(8;2%) ve such that By is the group of integers and pg is the
ideptity, then B is an epimorphic inverse sequence contalning

A. Let C = B/A®™. B2y Lemma 19 we have

0 —1im &% —» Lio B 4% 1ip ¢ —» 1im* A% —» 1ig' B —> Lim' C —3 0
oo - e e - o

Q——w

but lim A* = 11m A =0, 1lim B =2, 1lim'B = 0, and it is

S <« & e
not hard to see that lim C has as many elements as a can-~

é...._

Lor set.

Hence lim' A = lim' A" = liz C/j3e(Z) #£ 0, a huge group.

L - -

(In fact it can ve seen that lim' A is a divisible group
and therefore is a direct sumégé grouns esch iscomorchic to
the additive group of ratiopals or to thz zroup of p-adic
ratiopals mod tae additive grour of intezers for various
primes p. Cf. Kaplansky, Infinite Abelizn Groups, Ann
Arbor, 1954, Theorem 4,)

Theorem 7. lim' is a half-exact functor, i.e. given
A

we have @n exast sequence

Iim' A 4 1imt B . Limt ¢
—— - o

ggégg: Consider the followingz commutative diagram
nat, a0) Lx, n(8B 30) 1=, a(cC,20)
Py
r(z2,4%)
where A(AA,AO) = AN(33,4°) by Corollary 4., We will show by

stralght forward coaputation that
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image i« = kernmel jx
image 1a = {[BB,a°],[B°,B°]1Y/ ([B°,B°],(BB,01Y
kernel je = 3-1¢[c°,c®],[cC,0]) n [8B,B°1/¢ [8°,B°],(EB,019
but 3~ {[c°,c°1,(c, 0]y n (BB,BO]

= {371[c°,¢c°] n[EB,8%], 371(cC 0] n (BB,E°1Y

i

((3-1c®n BB, 371c® n 803,[37LcC A 2B, ;1o 8°1)
= {(=%,B°],(B5,4°7)
put [BA,B°] = [éo + &, 8°7 = ([8°,8°1,(4%,2°1) . (1n
general 1t is not difficult to see [B + B',B] = (B, B8]+[3' B'n B]L)
Hence kermel jx = { [35,4°],(8%,8°]) /{ [8B°,8°],(B%,0])
= image 1y = izacge 14. Q.E.D.

Now we reczsll Lemma 1.

0 - llp A — lim B ——— 1lim Ly N(B,A) ——eey O
L] A

'Is' Is g {9
0 —>{49,0] —»[B%,0] — [B°,2°7/74%,4°] &, a(B° 2% o0

But by Theorem 4, 0 — A(B®,2°) 4, N(BB,A9) = 1im' &

h

so the composition of h and i zives

-

§4: lim C — lim' A
P — o

thus §, connects the two exzct secuences

0 — 1im & 2% 14m 3 4% 14 ¢
— “— “—

igft A iw?" ¢ ii '
: iim' B >lim
ln. 21 :

Q

apnd by strazigntforward calculaticn 2s in the Trevicus



25
theonrem we can show

image ju = kernel 5 %

image §4 = kernmel 1§ .

Hence we have

.Theorem 3.

1& J* 1‘

0 — 1lim A — 1lim B 25 1im C -S-t}lim‘ A =& 1ixt
e o L

FR—- .
is an exact sequence.

H
B -‘1-2}3;&31‘ C
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9. Cofinal Inverse Systems

A partially ordered set I is said to be directed if

for any glven pair 4 ,8 € I there exists ¥ € I such that

Let I# C Ii,. I# 1s said to be cofinal

(-]

I. Given (A;I) and ¥ cofinal in I, we
As be-

d <y ’ P L o »
in I 1f O(1%) =
call (A;I#) a cofinal inverse subsystem of (A;I)..

fore we may consider the homomorvhism by restriction:

i’-‘%#: (B,A;1] — [B,4;1#)]

Lemma 15.

kernel P%g C [(A,A;1]

S6karnet P:][:# =0 if T 1s directed

1. Suppose § e [B,4;I] such that Prgf ¢ [0,0;I#]

then
if «e€ I, E=0 ¢ 4,
#

if 4 ¢ I-I#, there exlists B « I,
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s¢ that L !P - }‘ [ 1 A¢ :
but !P =0 P, e &, .
2. 7To show cokernel P§# =0, i.e. P%# is onto, given
E# € [B,A;I#] choose § e [B,A;I] as follows:
if « e I# let § = §#
if &« ¢ I - 1% let L = p:}r for some arbitrary 8 e I#.
To see {L} Iindeed determines an element of [B,A;I] we
wust check
4
P, EP - Fos A for any o, & I.

Case ...I. “,p € I# p: !P - -Fd = p: }’# - .!e#‘ Ay

]

Case II.diI#F{.I-I#, p!f - F‘ of (oF £, ) - B
d for ;;onze ¥l

v
= p - § reducing
« E‘ “® to Case I.

Case ITI. <€ I -1%, pne If
p: EP = L = P: }P - p: Er for some Ye I#
Now sirnce I is directed and I# is cofinal in I trere exists

§ ¢ I1¥ such that B<§

r £
so_that@f‘fp -13:5, =pf(p’!; +a,)-p:(p‘,§,~ +ay )

"k YR e -n ¥ - a4

p:}P --L =p: (p; §r )---3;.:.t E‘. for some ¥ ,§ & I#

T ' 3
=p¢!r “pﬁfr

Now sirce I 1s directed and I# cofinal in I, etc., like Case III.
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The lemma implies in particular that (B,0;I] = [B,0;I7]

il.e.

Corollary 5. The inverse limit is vreserved by coO-

final inverse subsystems if I is directed.
Throughout the rest of this section we will assume that
I is directed.
Leoma 16. Let §§#(....) denote the inverse image
of .... under P%#,
then 'P"%#([A,A;I#]) = {(A,A;I]
Pre(028,0;7%]) c ({8,4;11,(8,0;I1)

1. Let §« [B,A;I] be such that P%#;e [A,4;I7]

ther if & ¢ If § e A,

and if e I -TI* there exists p e ¥ such th;at
p: 5' - ke Ay

but §’ ¢ Ay , hence p:!’.. £, e A, and ¥ ¢ A,

2. Let § e [B,4;I] be such that PIzf = 5 e [5,0;1%];
then since (B,0;1] = [B,O;I#] by previous lemma, 5 can be
extended in a unique way ts ¢ e (B,0;I]. VYNow

if « e ¥ F‘-§¢ = B - 3. =o0ea,

and 1f « « I-I7 there exists p < I such that

£, - 'f‘ = (p: g:ﬁ +a, ) - p:gp for some a, € 4,

but 5, = }P hence § - 5 € &,

therefore § - 3 e[a,A;I]
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P%# nowWw induces the following homomorphism Py
Pa: [&%,89511/ (18°,8%;17,02%,0;1])
— [88,8%;1%1/ ([8°,80;17], (48, 0771 )
Theorem 9. Let (A;I#) be & cofinal inverse subsystem
of (A;I). Then
lim' (A1) = ];}_z_n‘(A;I#)

—

Proof: It suffices to check the vanishing of kernel

and cokernel of Ps.

1. kernmel Pw=TFr#({ [a°,8%;1#], (4%, 0;1%15)/¢[4°,4%;:11,02%,0;1]Y
= (?f-.-#(-[a",&o;.f#j),?%#([AA,O;I#])>/({A",A";I],[AA,O;H}

C {[4%9,4°;17,(4%,0;135 /7 {([a%,4%;71,044,0;1]) = 0 by lemme 16.
2. cokernel Py = 0 since Pi#([AA,AO;I]) e [AA,AO;X#] by lexma 15. -

Lemma 17. If I is countable and directed, then there
exists IFC I with D (¥) = I apd ¥ = z¥, the set of
vositive integers.

Proof: Since I is countable let I = ‘1' “2’ °L3’ cev 3

Since I is clirected, given «,p € I, let <« ,py € I
such that &« ¢ (¢, amd p ¢ (= By .+ Let ¥ = &,
Y, = (U_l,gz), er (3'2,13), !'4.-.(5',&.,4), “eny

then ief I¥ = { ¥, ¥, ¥y, ... }. Clearly 8(1*) = I ane

#=+ - - -
I Z because a'l ¢ ¥, < 3’3 Cone
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10. Injective Inverse Systems

The objective of this section is to relate our defini-
tion of lim' to that implied in Homological Algebra of
Eilenber;i;artan. T&e results of this section are primarily
due to Professor J. Milnor.

Definition 7. An inverse system Q is said to be injec-
tive 1f for any given pair of inverse systems A < B the
diagranm

i
rad

O > p»-—% (D

can be imbedded in a commutative diagram

~,

jFpQ

O —p—3 00

Theorem 10. There exists an injective inverse system.
For each 4 € I, let &, be an arbitrary injective Zroup
(Cf. Lemmas from group theory) and for each valr d<p eI
let n’ = 0. Let (Q;I) denote the resulfing inverse system,

Let Q = QQ %o show Q is an injective inverse system, let
£, : ' = &

and suppose e EPQ’ -——-)Q s the projection nomcmorphism.
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Let (f, )‘- = u[fp . AP — Qr
In particular consider for each pe 1
(f’ )’ : A’ — QP
Then since Q’ is injective (f" )P can be extended to F,

so that the following diagram is commutative

Now we gre ready to define

—f:. : Ba —Q, = IE“QF
by (f, )y = F '5;

We must check the following

1) {f,] 46 I} give rise to f, a homomorovhism of
B — Q. It suffices to show the following diagram is com-

mutative
Bd' """"""""""""" Qdf.- i = n 'ép
Lfﬁd.‘ - P a(i’) P«
B"'* « 8(d) T ¢
Pa T B Qﬁ

1., Tor sezch B <o

Bi! (f" )
P
< P
5‘4;
is commutative, but (f, )P :‘:' = F‘P “: E: = Fy p;' = (T, )
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2) fi = i.e. the following diagram is commutative

By =

Il‘\
A, 5 T

< Q=

Pul.p
for this it suffices to know
B‘ "_‘
S
1e
A (), b
is commutative, but (f, )P = (£, )B ;g recause of the
commutative diagram
£ .
T ) TR T A
o B .
§§ l \\\\\\3 . e ;; l [ ’
% T W % 4
P’ P
o 4
and (fp )p-;¥ = FP pP .

On the other hand

- sd . - . n®
(£, ,)P 1e Fy oy la Fy oy

BRemark. In forming Q from Q the nature of {p} of

O i

(Q;I) is entirely irrelavant. In fact one can form é@

without talking about {p}! at all.

Theorem 1ll. Every inverse system can be imbedded in

an injecstive inverse system.

Given (A;I) let A, be imbedded in some injective é‘ ’

and let Q = é,Q then A = A° ¢ Q where Q is injective by the
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proof of the previous theorem. Incldentally we remark that

Q is also a star-epimorphic inverse system.

Theorem 12. 1f Q 1s an injective inverse system then

lm' Q, = 0.
Qsars

Since Q° ¢ Qg'and Q° 1s injective
QQ:QGQXU
Since l1im' is a2 functor

P

liz' Q% = 1im' Q° @ 1in' X
A e o

But ¥5g=.qﬂ = Q because"Qg 1s star-epimorphic. ¥We conclude

1im' @° = 0O
s

Theorem 13. Glven 0 —A-——Q~»( —>»0 where Q is in-

Jective, comnsider 0 —> lip A 1%, 31p Q 4% 13 C, if we let
& -
F = Jz_ifﬂ 'C/J*(]ffa q), i.e.

0 er 1im &4 — 1lim Q§ — 12 C - F —2 0
— — —

Then F depends only on A as long 25 Q is injective.,
Proof: By the preceding Thneorem aznd Thecrem 8,
, —_— o t —— ! t o
{ O —»lim A %&9 Q.uﬂ.%ig C — %&g A iim Q,—ﬁv%ig
lim? =
LA 4]
Hence ¥ = 1lim! A.
Q——.
This Theorem way be regarded as a2rn alternative defini-

tion of the first derived functor of inverse limit.
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11, BRBRight Exactness of 3;}3'

Lemma 18, Glven as usuzl 0 —» A —» B —» C — 0, if k!
1s such that 1lim® A —» lim' B l‘%lm' C — k' —0 then
L &
B
Xt = [BB,BA]/([BB,BOJ [=2,4471)
Proof: 1) 1liz' ¢ = [c%,¢°3/¢(c%,¢c%],0cC,0)Y,

o
it is not difflicult to see the natursl homomorphism

f: [BB,BA] —> [CC,CO] is onto, hence by the Pundamental
Lemmza of Homomorphism (Cf., §5, Corollary 1)

ot ¢ o= (8%,84/670((e%, ¢, (c%, 00
since 71 {[c9,c0],(cC,01Y = { £ 2(co,c1, e 1(cC,01d
= {rteo, r7ho0], 107268, £ Y01y = ([3f,BA], (50,40
Wwe nave  lim' G = (88,84 7¢[BA B"‘] (83, 4%7)

13) 3a: (8%,8°1/ ([8°,8°],(85,0]) —>
[82,8%7/ ((3%,8%],(28, 441} hence

k' = cokernel 34 = (B>,BY/((B3,8°],(5%,8%], 82,44y

111) Note however [8%,B4] = [BOa+ a4, B0 +ad]
= (B +ad) = MBS + Tah

Therefore [BA,BA] = ([B°,2°],[a% 441y ¢ ([B ,8°3, (8" 481y

Thus k=~ 85,841/ ([85,8°1,(85,4%]> .

Now suppose we let



¢ - 8°

W = 2

w = g°
Then mw + =~.'.BA (Cf. Formula i), Lemma 5)
so that = [, ML+ u.‘]/(l.ir w.] [& 'UL’]7

Hence the vanishing of kf depezxds on whether the following

equality holds:
(&, v+w'] = (&, ] + Lfr wil
But by Lemma 6 (&, M+W'] = 1inm 6-

 —
($,].= 110 H™
t - u'
(f, W] = Jﬂb

i i
5 0" n
and by Lemma 5 iv) ' R = & +H*
Hence the equality sbove is equivalent to the following

distributivity of lim:
c—m

1 ]
ol 47 + 4™ ) = 110 #™ + 11 p®
] Vi
Now by Theorem 2 the distributivity holds if -4 N {p.m
AQ
ls star- glimorphic, i.e. if (BB) is star-epimorphic.

4

But this is true if I is the set of positive integers, for
in general it is not hard to see that C® is star-epimorphic

if C is and 1f I = Z¥. Thus we have the following

Lemma 19. lim' is right exact 4if I = Z*’, i.e. given

O —>A —»B —( rO, liz' A — lim' B — lim' ¢ —» 0 holds.
“— P —

Hence for I = 2%, 0 -3 A —5B —3 C —5 0 implies
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~

O —s 1im A s 1im B — 1im C —y» lim® A —> lim'! 3 —r iip!' T — 0
. o« . R e R ~

Theorem 1l&. If I is countables a2nd directed then we have

0 ey 1im A — 1iz? 3 — 1im T — 1im' A - 1lig! B —» Llin? C — 0
| G o - e —

Proof: It suffices to show that 1im! is rizht exact
Q—.—

for I countable zni directed., 3ut this is clear in view

of Lemmas 17, 19 z2nd Theorem 9.
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PART II

1. Milnor Short Exact Seguences

In this section we state in general ﬁefms two dual
theorems, which wiil be specialized in the subsequent sec-
tion into speclial thecorems corresvonding to various homology
and cohomology theories.

By comrlex we mean the type described by Lefschetz

(Cf. Llgebraic Topoloszy, 1942). Let K ze zn infinite com-

vlex, l.e. a comrlex with an infixite number of cells, Let
2 be the cell boundary overator of K, which assizms to
each g-cell of K a linear combination of {(g-l)-cells of X
zccording to tne lncidence numbers, An infinite g-chain C
of K is s21d to be 7Qd-permissible if 3 can be linearly
extended on ¢ to glve 8 well-defined infinite linear com-
biration of (a~1l) cells, the boundary of ¢ denoted ?c,

For example, 1f K is 2 star-finite complex then every infinite
chain of K is ?d-permissible., But if K is not star-finite
it may still be possible to have 2 group of infirite chains
which are 7J-permissible., Thls group will lie between the
group of finlte chains and the group of 211 infinite chsins.
(e.g. ef. %3, §5)

Gilven zn infinife complex K, let C denote a group of
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3 -permissible infinite chains, and let 2, B, and H respectively
denote the corresponding group of cycles, group of boundarles,
and homologzy =roup. Let K, and KP be open subcomplexes
with Ky C K’ , then there is a chain homomorphism p: :C(KP)wC(Ki)
sending Z(KP) into Z(K,), B(KP) into B(K,) and consequently
we have
p, ¢ H(KF ) —» H(K_ )
If I = {XK,} is a family of subcomplexes of X, then we
have an inverse system
(8;1) = { H(XK, ),pf}
In generzl it does not held trhat lim (¥;I) = H(X),
but when the family of subcomplexes satisfies certain con-
ditions, there is a relation between H(K) and (H;I). This
relation is expressed by Milmor short exzct sequence in-
volving lim and limt.
Theorem 1. Given an infinite complex K, let I = {K,}

be 2 family of subccmplexes with the followlng properties:

(1) (C;I) is a star-epizorvhic inverse system.

(2)  Lim (S;I) = C(K)

(3) I has a cofinel subseguence 17 or

(3)* C(K_,) is finitely gzenerated for every K, € I

then

A
e

0 — Liz'(HyyiI) — Hg(K) — Lim(H ;1) — O 0
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Remark I. Condition (1) holds whenever I has the
*finite intersection" proverty, i.e. if K, , K, € I then
Kgn Ko € 1. To see this let I'C T and g ¢ I - It be
glven, let I* = I' A ®(p ), and suppose Y e lﬂ(C(Kd ) ;I%),

then ¥ determines uniquely an elemernt XI e ¢(R), K= U K, ,.

deT#
as follows: let € ¢ K, , « & I¥ then Xy (¢) = T(e).
Xy 1is well-defined, for if T € K, , & & I", then
Sole) = Tle) = 3I.(¢) where K, n K, =K, , ve I¥
since I¥ is full. Now since X is a subcomrlex of Kg » Xg

‘can be extended to an element y of C(KF }. Clearly then
pf y=3, forany « ¢ I*. Eence {C(¥, )| 4 € I} 1s
a star-epimorphic inverse system (Cf. Def. 1, Bemark 2 of
Part I). Condition (1) holds also whenever I has the fol-
lowlng prorerty: each ¢ € K is contained in some smallest
subcomrlex Kﬂ € I, t.e. £ e K, & M<ao+ This state-
ment 1s needed for Lemma 1 of the Appendix.

Bemark II. It is not hard to check that (2) implies
(2)° 1im(Z;I) = Z(K)
We point out that in contrast to (2) and (2)' 2 similar
statement can not be made for B and that herein lies the
origin of Milnor short exact sequence as we shall see in
the vroof of the theorenm.

Proof: For each K_ € I# consider the following

diagram
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'(K)

a o 1
S ctEy)
4 ?

0 — B(K,)} — 2(K,) — H(X,) — 0

0
Ts
3
f

0
where 3'(K,) is by definitior (X)) /2Z(¥, ). Eacsn arrow

excent 4 revresserts a homomorvthi

tn

oresgerving dezree,
i.e. Z,(K,) goes into C,(X,) for each g, ete. i is an
isomorghisz with degrse -1, l.e. 3&+1(K*) goes into B (x,)
£or =a2c¢ch q.
3y Treorem 14, Part I, z2nd Aprendix we have in view
of the condition (3)
0 —Lim(Z; %) — 110(S;TF) — Lin(341%) — Lnt (Z;1F) — Jiat (55 17)
— B TF) — 0

and 0— Lim(>;T%) = 14x(3:77) — Lim(K; ;%) — 1w (2;17) — 1imt (2;17)

#
«.{ 1 i
w—y Lim! (E5IF) ey O
- - % 3 1 (2) - d) l i -
HFence substituting the conditions (1) nd (2)' in the
abive STJUSHGES We have
0—s Z(X) —2 C(K) — Lim(23" ;I7 ) —y L1 (Z;17 ) — O Lip* (3! ;I-“f‘)--:»o

ard O lim(B;I#)——¢Z(K)*m=lim(H:I#)awaO-ALim‘(Z;I#)uéiim(ﬁ;l#)-—;0
L S — &
or simply
0 —3Z(K) — C(K) — Lim(3';I7) — Lot (5;1%) —o0

and 0 = 1inm(8; IF) — Z(x) — Limt (8 -1¥) — 0
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Now it is voessibhle to combline the two sxact secuences

into trhe following dizgrzn

0 - 110 (3;T%) — 2(£) — Lim(¥;T7) — 0
T
¢
Fis
¥e shall call %35(8;1”) the groun of local boundaries zf
K (with respect to I) zné dencte it by 3(K).

Next we expend the azbove diagram as follcows:

o
T i
0 0 > X! Lim(E;I7) —1lip' (Z;I7) —0
\\. L 4 T - —
~ v X
x C(K) 0
L 1 ]
0 — Z(K) = Z(K)=1im(=:IF) —20
&.—u—
1 \‘r
9

O & K
— B
/

O g

dax 13 ar lsomorphlism with degree -1,

X', X, ¥, W emerge in that crder during the exvarsion. A4nd
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we see that

(1) Sinece X' = 3'(¥), de(X') = X nust be 2(K] the
group of boundaries or X.

(2) Prom O =X -—=2Z(K}—a W0, o= H(X).

(3) Y = lizm'(§;I7) with shift of degres, i.e.
Y, = lim'(Hy,iI¥). Substitution of (2) =nd (3) in
Q0 e Y D W ey };_3;@(5;1#)-—-9 0 gives

0""’1&2&‘ (5q+l;1ﬁ’)~9§q(i)—-b]‘_§._g(§q;ﬁ)~a0

Sut since lim'(Hg41iT7) = Lim'(Eg,;;I) and Lim(KgiTF) = Lim(6,;1)

the oroof is complete.
The oreczding has the following dual for conomology:
Let K be an infinite complex. Let 4§ be the cell coboundary

operator, which assigns to each cg-cell of K a linpear com-

tnation of (a+l)-cells of K according to

oy

g incidence

ct

numbers. An infinite g-chaln of ¥ iz callzd § -verzissivle

i

{f § o22n be linearly axtended or it to glve 3 well-Cefined
{irfinite) linezr combinztion of (g+l)-cells. CGiven 2n ip-

firite comulex K, let Z denotz 2 zroud of d~permissible

(co-) chains, and let Z, 3, ¥ respectively denote the cor-
responding group of cocycles, group of coboundaries znd co-

homology group. Let K, and KP be closed subcomplaxes

with K, € K, , then there is 2 cnain homomorphism pf : S(K,) = S(K,)
sending Z(KP ) into Z(K.), 3(Ky ) imto 2(Ky ) and conse-

-

quently we nave pl : (K, )= (i, ). IrI= {K/]J 1isa
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family of subcomrlexes of K, then we have an inverse system
(=;1) = {8H(K, )50}

Theorem 2. Given an infinite complex K, let I = {K,}
be a family of closed subcomplexes with tne following con-
ditioms:

(1} (C;I) is a star-epimorphic inverse system.

(2) 1im(C;I) = Cc(K)

(3) I nas a cofinal subsecuence ¥ or

(3)" C(K, ) is finitely generated for K, € I.

Then
{ 0 —r1im' (ET1;1) —s HUK) —21im(EL;1)—a 0 1

HO(K) = lim(HO;I)

For q = 0 HY%K) = 2%X) = %&g(2°;1) = %39(50;

| ]
L]
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2., Star~finite Simvnlicizsl Complex

and Closure-finite Celiular Complex

If =z sioplicial complex X is starafinitel) (or equive-
lently if each vertex of K belongs tc at most a finite num-
ber of simplices) then every infinite chain of K is 3 -per-

missible. Hence we may consider the zroucr of all infinite

1) A complex i1s locally finite if it is both star-finite
and closure finite. Since 2 simplicial cowmplex is alweys
closure~finite, a star-finite simpiicial complex is also
referred to as 2 locelly finite simplicizal complex.
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chnains of K and study its homology. Theorem 1 specializes

into the following
Theorem 3. Let K be z star-finite simplicial complex,
Let I = {K,} be the family of 21l the finite oven sub-

couplexes of K, then

O-e-tli.m‘(Eiq_i_l;I)MEq(K)-—vl&_g(Hq;I)—a 0 . 0 ¢ a

Proof: Conditiomns (1), (2), (3)% of Theorem 1l are
easily verified,

If a cellular complex K is closure-finite (or equiva-
lently if each cell is incident to at most a finite number
of vertices), in rarticular if K is simplicizl, then every
infinite chain is § -permissible, and the group of all in-
finite chalins glves rise to the corresponding cohomology
group H(K). Theorem 2 specializes into the following

Theorem 4. Let X be 2 closure-finite cellular complex.

Let I = {K,] be the family of all finite closed subcom-

plexes of K, then

0 =2 1imt (B3 L:T) 2 HU(K) —o 11m(HD; T )—v-0 0 ¢ q
Sy [ - -
where we set formally H'I(K‘ ) = 0 £ & I.

Proof: Conditions (1), (2), (3)' of Theorem 2 are

eagily verified,

Bemark I. In both Theorem 3 ané Theorem 4 the condi-
tion that {K, ©be the family of all finite (open or olosed,
respectively) subcompleses of K may be weakensd to the con-

dgitiom UX, = K.
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Bemark II., In Theorems3 and 4 subcomplexes K, are
finite so that their chain groups are finitely generated.
The theorems will still hold even if K, are not finite as

long as their chain groups are finitely generated,

Example. Let S denote circle (1-dimensional sphere)
in general. Let X be the space built inductively by
X=XV XuXqu . .., Xp€ X¢ X3¢ ..,
where X; = 8, (circle) and X, = the mapring cylinder of
fl’zz Slww* So with the degree of fl,z = 2
and in general let X,,, be cbtained from Xy by adjoining a
mapoing cylinder as follows: let Si be the last circle 4in
Xy, consider
£1,141% Sy — Sy with deg(f1’1+l) = 2
and adjoin the mapoing cylinder of fi,1+l t§ Xy by identifi-
cation along Sy.

It is not hard to see trat there is z trizngulation K
of X such that its restriction to Xy gives 2 triangulation
Kl of Xi. The cochaln complexes generated by K, for all i
form an inverse system of cochain. complexes whick is cofiral
in the inverse system of all finite cochain subcomplexes

of K. FHence by Theorem 15, we obtain in particular:

0 - lint { HI(X,,6)} — E2(X,0) — 11o{ H'?-_(xi,-fc;)} — 0

wnere G 1s some chosen coefficient group.
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To go furtaoer we examine the inverse seguences
4 1

{ B¥(x,6)}  and [H2(X,®)} . First the nomologies

of X; are
Hy(X4) = 2 for all &
gl(xi) = Z for all i
Hy(X) =0 for all i

and the inclusion i: K, ~»K;,.7 induces
Ho(Xi) — HO(X:U-]_) identity

1g: Hl(xi)-ue Hl(xi+l) multiplicative by 2

[ 3

Lef Hy(X ) HZ(X1+1) trivial

By the Universal Coefficient Theorem (Cf. Eilenberg, "Group

Extentions and Yomology," Annals of Mathematics,, 1942):

Hl(x,,3) = Hom(Hy (X4),G) + Ext(¥5(X,),G) =G + 0 =G

i

B2(Xy,G) = Hom(Hp(X,),0) + Ext(H,(X;),8) =0 + 0 = 0

and tre inclusion K, C K,y induces

1e: HL(Xy,G) & HL(Xy,4,0) multiplication by 2
1e: B2(X,,G) & B2(X, 11,0) trivial
Hence { HZ(X,_)} = 0 and {al(xi)} is an inverse ssquence

similar to (A,Z%) in Example A. (Cf. p. 22.)

So if in general we let g'n) _ Mot {c & c&cXE .. 4

then H3(X,0) = UsfE'(x,,0)} = ¢(2)
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J. Sipgular Homolocy Based on Locally

Finite Singular Chains

Let X be 2 topclogiczl svace then a singulzar chain of
X is said to be loczally finite if ezch n0oint x ¢ X has 2
neighborhood Uy which intersects with at most finite number
of singular simplexes with non-zero coefficient in the
given singular chair. Unless a sinzular c¢hain is locally
finite it is impossibls to defire its boundary. A locally
finite singular chain is d-permissibis, If = space 1is
compact its singular chain is lececally finite if and only
1f 1t is finite.

An open subset of X is sald to be bounded if its
closure is compact in X. For each bounded open set U we
way consider C(X,X-U) = 2(X) /2(X~U)., The totality.
{ c(x,x-0U)} of such singular chain complexes constitute
an inverse system with obvious homomorphism pg: L, X~V) C(X,X=-0).
And letting I = {U} be the family of all bounded open sets
of X, we may denote by (K;I) the resulting inverse system

of singular homology zgroups.

- ]
Lemma 1. Let X = LJin where each X; is 2 bounded
i=1

open subset of X, then the set I = { U{U bounded in X },

partially ordered by U <V if UC V, has a cofinal subsequence I,
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Froof: Let U be an arbitrary bouhded open set of X.

Stnce U is compact and { X |i=1,2,...] covers U, there is

a fipite subcovering, say by x‘tl’ -Xiz, Xln’ of U, So

Lf we let ¥; =X;, ¥ = Y3 v X3, and in general ¥y = Y3 3 u Xy,
then U C Tyge Therefore I# = { Y3, Y2, ...} is a cofinal

subsequence of I.

Corollary 1. Let X be locally compact, and suppose X
has a countable basis ¥ = § Xill=}.,2, «.» }. Then I={0U|U bounded inX}
has a coflnal subsequence I#.
. Proof: Let ¥ consist of 211 open sets of ¥ which
are bounded. Demote ¥ = {xtli=1,2,... |, In view of
the previous lemma it suffices to show X = QIX;_. Let x € X
be an arbitrary polnt, then since X is localzy compact,
there is.an open set Uy containing X with Uy compact. Since

¥ is a basiz of X, there is an X, such that x ¢ Xy C Ug, so

[ -3
that X, C U, is compact. Hemce X = {J X! .
1 X f=1 [y

Theorem 5. Let X be locally compact and supnose X is

& union of countable number of bounded open subsets, then
[ . .
Y ““*1‘3_-__?_ (Hq+1:1)-—bﬁq(}()*—9]6}_5(ﬁq,1)ﬂ 0

ﬁhe-re Hq(x) 1s the qbR singular homology zroup of X based

or locally finite simgular chains, and I = { U|U open 2nd bounded in X}
Proof: First we remark that C(X,X-U) can be inter-

preted as tre free abelian group generated by singular

sizplexes of X which intersect with U. Under thnis inter-
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pretation gg is achleved by merely deleting singular sim-
Dléxes which lntersect V but which do not intersect U, U C V,
Ther it is not hard to see that {C(X,X-U) |U € I} con-
stitute a2 star-epimorphic inverse system. Thei 1im(C;I) € C(X)
is clesr, but for %&E(C;I)ZD-C(X) we need the assumption
that X 1s locally compact. Hence by Lemma 1 and Theorem 1,
the theorem 1ls proved,

Corollary 2. Let X be locally compact and separable

(1.2. with a countable basis) ther the Milnor short exact
sequence of Theoremr 5 holds.

Proof: Cf, Corolliary 1.

Corollary 2. Let X be such that for zny bounded open

set U X there exists U' D U such that

H (X,X -0 ::{ i for ¢ = n

) 0 for a » n

Then Hq(X) = Zor 0 forec=mnmn
{ 0 for g > n



q, Sinzular Cahomologz

Let X be a topological space. Since the singular com=-

plex of X 1s closure-finite, every singular chain of X is

3 -permissible. The resulting cohomology is the singulsr

cohomology of X, dencoted hereH(X).

Lemma 2. Let X be a loczlly finite uricn of countable
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n&mbép of compact subsefs, i.e. there exist compact subsets
X1y X2, » . . such that X = lexi and for any x € X there
exists a neighborhood U; of £ such that U; intersects with
at most finite number of X,'s, then I = { F|F compact in X}
has 2 cofinal subsequence I#.

Proof: Let ¥ be an arbitrary compact subset of X,
then for each f ¢ F there is Uy intersaecting with at most
finite number of X;'s. { Ug|fe Fl is a covering of P,
compact; hencs there 1s a Tinite subcovering of F by say
Gfl’ ng, eeny Ufn' legfi intersests with at mosg finite

number of X,'s, hence the same can be 3aid of F¢ y Us

, SO
1=1 1

that if wez let f}_ = Xl, Iz = Y..IU XZ, v then
1# = { Zl, Y5, ...} 4is cofinal in I.

Corollary 3. Let X be 2 locally compact, veracompact
Lind=18f space, then I = { F | P compact in Xf has a co-
final subseguence,

Proof: Since X is locally compact, for s2ach x ¢ X
there exlists an open set Ux centaining x such that ﬁi is
compact in X. ¥ = { Ug Iz ¢ x} is =2 covering of X. But

sirce X is paracompact ¥ has a locally finite refinement

)

X', which in turn has z countable subcoverinzg E" = {ng
since X 1s Lindelof., It is easily seen that X is a locally
finite union of the compact sets f§ ?&} » Hence by Lemma 2

the corollary follows.

Bemark related toc Lemma 2. Given X let 1, C I ;C ...
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be compact subsets of X, then X = U ¥, does not guarantee
1=1

tnat # = { Xl, Ig, ...} constitutes a cofinal subseguence
of I = { F|F compactl . As an example let X be the sub-
L -
- ..};. - }
n=1,2,3,...J v (0,0). Let Xy = { (x,§)|0¢ x ¢ 1] for
1
1=1,2,3, ee¢ « Let ¥y = X3, ¥

set of the fuclidean vlane determined by X = i (x,%)l=0 £E€x¢ 1,

clearly ¥; € ¥2C ¥3C ... ané¢ X = U zi, put F = (0,0)v
-{(x,%) |0 £ x ¢ %' nxl,z,...} is not contained in any
Y;, rence = (v , Y2, ...} is mot a cofinzl subseguence
of I, In fact we will show thet I does not have any zofinal
subsequence,

Example of z svace wWwhose vartially ordered familiy of
comoact subsefs does not have a cofinal subsecuence: Let

K={(&%)“3éxélqnﬂﬂ%x.uiIJ(QO)

let Xy

]

{(x,£ ] 0& x £ 1} 1=1,2,...

Let Ay € Ap(C ... ze an arditrarily ziven secuence of com-
pact subksets of X,z) we will show that I# { An} is not
cofinal in I = { F|F comsact in X by exhibiting z com-
pact subset B of X which 15 not contained in any An' Con-
sider X3 N Ay. Since Ay is compact, Xy N Ay rust have the

greatest point (i.e. the point witk largest x-coordinzte)

say alm?) Similarly X, N A; Dust have the greatest ocint

1) And include (0,0) in X;.

2) aAnd assume wi tbout the loss of generality that each Ay
contains (0,0)}.

3) In case 1N &y = ¢, sct ay
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a21, etec. . . so that we can associate with 4, 2 column

of real numbers (a;;, apq, 431y, «..). Similarly we can
associate with A, a column of real numbers. (215, 833, 23p, +..)
etc. We contend that the setr of pcints{(l,all), (%, azl),
(%7'331), ...} has one and only one limit o0int which is

ths origin (0,0), for if it should have another lizit opoint
say o it would have to be on the x-axis so that we coulid
szlset a set of voints of Al within a small neighborhood

of 2 clusterinz at D, &and Al would no longer be sompactc.

-

Sizilar contantions can be made Sap { (1, 2901, %; 232}, .4
ete. Now define 3B zs follows: Let 5y =1, by =1, ...

until iy is such that 23,1 ¢ 1l when we set bil = 1 and conw.
tinus with b11+1 = 1, bil+2 = 1, ... until 1, > 1, is such

that ay,2 < % when we set by, = % and continue with biz+l = %,

b12+2 = 3, ... until 13> 15 is such that a133 < %- »hen

we szt 513 = %-and continue with b + 1 = %, bij + 2 = %,

13
se. e, If we let now B = {(x, %) 0 € x¢ b} u (0,0)
then ciearly 3B is compact and is not contzined in any An‘

Theorem 6. Let X be suck that I = { F|® zompact in x}
has a cofinal subsequence. Then the following Milnor short
exact sequence holds

0 =iz (Hy ) iT) s Hy(X) — 1in(Hg;I)—s ©

whers H, (X) is ths qtB Singular cohomology of X.

Proof: This is the dual orf Thecrem 5, Here we merely
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Now let 2(X) denote the group of all infinite chains

. 0f K satisfying the following "regularity" condition.

Definition 1. An infinite chain ¢ of K is regular if

for any covering 4 of X at most a finite number of sim-
clexes outside &« have pon-zero coefficlents in c.//ﬁhile

K is not star-finife the rsgular chains are 3¥-permissible,
To see this let ¢ be any regular g-chazin of X, a Z 2., Ther
any (g-l)-simplex Aghy...A, ] = 0 of K is incident to at
most a finite number of g-simplexes of K with non-zero co-
egfficients in ¢c. EREezson: Ty sevaration axlom insures a
covering 4 which separates say A, and 43, so that ¢ 1is
outbide «, Now zll the n~simplexss toc which r is incident
will 2lsc be outside & ., The regularity of ¢ then guarantees
that at most a finite number of these n-simplexes have non-
zero coefficlents in c. If ¢ 1is z regular.l-chain its
coundary snzll be zsro, »¢c =0 for ¢ € Ei(x).l)

It 1s not clfficult to see that the boundary of a
rezular chain 1s again regular, and that 3 = 0 as usual,
so that C(X) is 2 chain compl=ax, with Z(x , 3(x) and H(X)
defined in the usual way, H(X) is called the Steenrod-

Milnor homology.
P Fa
Proposition. Let A € X. Let C(Xmoda) = c(X) / C(4).

Y
The boundary operator 9 of C(X) together with its restric-

tion to G(£) induces a boundary operator for (X mod A},

1) we set formally EQ(X) = Q.
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which gives rise to H(Xmod 4), the relative Steenrod-Mil-
zor nomology. From the short exact sequence

F i f s J ~
0 —C{a) = C(X) =2 C(Xmod &) —a 0 we immediately obtain

“Miluor
the exaci sequence for Steenrod homology

e 3 E(8) B (Xmod 4) X B (0 &2 By L L .

Let C(X) be the finite-chain complex of K}1<Given -
coverirg ¢ of X let Ky be those simplexes of K whick are
conteined in & and let C(K 4 ) be the finite-chair complex
of Kg . Let C(KmodKy ) = C(¥) /C(Ey ). Tre boundary
spernter #f CLK) omd CLKY) induas the frwns
operator of C{(Kmod K, ) and mzke C(X wodK_ ) a chain com-
plex with the usual Z(Kmod K, ), B(Kmod Ky ), H(Kmod Ky )

etfe.

Now supvose g 1s 2 refinement of o then a unique
chain homomorvhism p: : C(X mod KP ) —» C(X mod K, ) is
defined by maXkinz the followinz dizgram comrutzative

0 «-—-»<C(KF } —» C{K) ~a C{¥K mod KF ) ——a O
In | o}
Q == C(K_ ) =n C(X) —» C(K mod K, )—= 0

Let I be the partially ordered set of all covering of X
with_ o< p if P 1s a refinement of &, With p: defired
for every palr ««< B the fzmily {C(X mod Kg )| o« € I}
becomes an inverse system whichk we will denote by (C;I)

in the sequel. Similarly the notation (Z;I), (5;I), (8;1),

etd., will be used.

1} 1,e. the free abeliizan grour generzted Dby simplexes of K,
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Lemma 3. 1) (C;I) is star-epimorphic.
11)  lim(S;I) = &(x).

Proof: Pirst C(K mod K, ) may be interpreted as the
free abellan group generated by simplexes of K which lie
outside of « , and p/ : C(X mod Kg ) —» C(K mod K, ) may be
interpreted as deletion of simplexes lying outside of B
but contained in . With this ioterpretation we easily
check 1), i1).

Lemma 4. I has a cofinal subseaquence if X is a com-
pact metric space,

Proof: For each integer n, cover each p¢ X by arn
open sphere of radius %{ centered at p, Let the resulting
covering be denoted by #,. Let I¥ = { & |n=1,2,3,... }.
Now let any covering & of X be given. Since X is compact,
d has z finite subcoverinz which determines a2 certain num-
ber ¢ lmown as Lebesgue number so that if n 1s such that
% < £ then ‘n is a refinement of «, Hence IF is ccfinal
in I,

With Lemmwa 3 and Lemma 4 Theorem 1 scecializes into

Theorem 7. Steenrod-Milnor homology %(K) satlisfies
the following Milnor short exact sequence if X is compact

metric

0—!3‘22'(30.4_1;1)-—45(1(1()*@ 1im(Hq;I)~—;0 aZ 0

or 0=1lim! { Hgq+1 (KmodK ) | w6 I} — EQ(X)M}‘.&EJ{HQ(KEOdK‘) | ae 130
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Bemark I. EHomology functor applied on
0 = C{K )= C(K) = C(K mod Ky ) —a 0 gives

0« Ho(K mod Ky) € Ho(K) e~ E (K )emE) (K mod K)e Hy (K) @ Hy (K ) o 00

But clearly Eg{X) =0 for c 2 1 hence

c

HolK, ) = Hq_,,l(K mod K, ) azl
and HO(K‘) = H,(K mod K, )

where H (X, ) cC Ho(K ) 1is the group of nomolozy classes
of O-cycles witr Kronecker index ecuzl to 0. So that we
have the following altermative ¥ilnor short exact sequence
for Steenrod-Milnor hemol oZy

~ ™=

OM%'{HQ-{K‘)H‘ I — Hg (X) — Iﬂ{ﬁq_l(xglu i}—0 qz2

A —
and o--sja_;gl{ﬁl-(z:_tnﬂﬂwal(x)w H{HO(K‘) | eI} =0

Bemark II., 4s was tointesd out inp trre oroof of Tnegrerm
1 we zzy define the grour of local bcundzries by setting
2(X) = 1im(B:I)
In Steenrod's czver quoted ezriier trhe notlon of thne croup

of weak boundaries (weakly bourding cyeles) wes introcduced,

Denotin Lrlis group by B(X). We reve the Tollowing siasram
g ol — S

2(X)
b Lo
B(X) Z(X)
C iy €
3(2) anc £ (X) are not apparently related. (But ef. §s52.)

Steenrod defined the wezk nomologsy group by setting £(X) =é(x)/-§.(x).
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/1]
b
1
¢
N
ot
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{1
th
v
¢t
O
4
£}

ucn coverings is krown tc be cofinzl

ir ordesr to estzblisk tre relztion betweer Steenrod-

-
Milnor arnc vech hexclogzy we ns

th

¢ the thecry of carrisr,
We stzte below 2 few lerrzs without ctroof. (CF FLi oor
{83.)

A carrier C from 2 comrlsx K *c = coxclex XY iz =
functior whicn assizrs to.eash cell ¢ of ¥ 2 ACh-Vacuous

sudcomzlex C(e ) oF ' suck that ¢ ¢ irvlies S(e ) C (1),

F PR P o "\( - - T i o P
Tra zzrrier is zoyeltc if 2( @) iz zevaiie oo zvery ¢,
4 - - Y £ ‘*( ] - “n
-+Te ZESL C-CFC.E, § D> 0, of @) L= =z boundsry znd szcor
.Y - ] < —~ - ] L S —~ s o -
b=CyC.z 2F InGex O i3z =z zourdsry.

of nomomorehlsrs O: U _(K) —s I_(K') §sr o211 z) susr that
e = 92 ¢, c e Zo(K)
Irdex (%c) = Index (g}, e S,(¥)
Legoz A. If O 15 an zevelie carrier K —3 ', thex 7
czrries some ¢nzirn trarsforoeatior ¢ ard i7 ¢,V zre tis
cnzin trznsforrations carrisd 5y O, ftren C sarries = obroin

rozotony D of & into ¥. Thus T zivzs risz fte 2 uricus

homomerphise C#: “(X) —pBH(X').
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Lemma 3. Let Cy bz an a2cyclic carrier K —» K', Let
©2 be azn acyclic carrier K' —» K", Let Cp(Ci(e)), ¢ ¢ K,

demote U ,C2(® ). If Cis an acyclic carrier K — K°
N1

such that C2(C1(e )) C C(e ) for every ¢ e K, then the com-
position C¥ - Ci: E(K) = =(K') —»E(K"*) is identical with
C¥: H(K) - H(K").

A cell transformation f: K —sK' i3 a function whicnk
assignas to each cell ¢ Ka cell fl¢) ¢ K' ir such a way
taat 1f ¢,z € K are incident, so are (¢ ),f(z) € XK',
Tnus f irduces a homozorphism £*; E(X) —» H(K!'). The cell
trapsformatior £ 1s said to be carrizd by a carrier 2 if
f{e) e C{(or ) for each ¢ ¢ X,

Lemma T. IT 2 cell trznsformation f£:K —» K! is car-
ried by an acycliz carrier C: ¥ —*K' then Pe: Z{K) - u(K1)
and C%*: E(K) — =(K') are identics

Lempa D. If £ is 2 cell transformation K —» x! such

that for =sach cell T e X! f"}"(:r) is non-vacuous and

acyclic ir K, then fu: “(K)-» 4(K') 15 an isomorohism.

Given 2 zcvering & of X consider chre csroduct comolex

Ny x K, . Let [, be the set of zzirs o° tre type

(U,, Uy, ...'Um; Xgs X1, «es Xy) with Xgs X1, «--y Xpelgn Cin...nty,
then [, 1is 2z subcomplex of ¥, x K, . Jonsider the roi-

lowing cell-transformations f1, 2 Sy srojection.

r

o

"/ "\

N, K

o
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It iz z=ct difficult to ckeck that wotk £+ ang fo sztisfy

tnz cordition of Lemme U, hence H(M, ) = H(T,) = S(¥, ).
Tc see {5-}‘{‘)] &eI}w{H-(K,()[ «¢ I}, we need
ornly check the Tollowing comrutztive diagrar,.

H(Ng ) = 5(Tp) =ru(E, )
:4:(3%‘_) S E(p, ) S, )
Milpor snort exzct sequerce Tor Steerrod-iilncr nomology
new assures tne follcwirg form. (If. Eemzrk I of §5.)

0 — iz { E (Ng)} —> B (X) — Lo {H; (¥ )} —0 cz1
where E (¥, ) is understood tg be the srour of norolos:
classes of Q-cycles with igdex 0. Szeellins tre definition
of Zeckh homology we izredisztely nezve tre follovilng thecoren.

Theorer 3. Givern X let H(X) be Steenrcd-ifilnor homolozy,

- - b4 . - - -— - - . = .- . .
H(X) pe Cec: rozologzy, zms Fr(X) = _izt {8y )}, tisr cre
{-—.

degers I. Steernroa-iiilacr norol OLy satlsfiss Exsciness
ixiom (4] &s indiczted in §5 wiile Oscr cCoClozy dsss rnot
Teus zitnouzn Steenroc-ii>ng GOECIS YV
in ierms of Cecn nowmdlozy (Cf. [2]) it rez this formel =d
vantage.

Remark II. Zilsnberg-dzclare [

i)
O
’.. '}
[.....l
O
€
H
H
1] }
0
[ )
r
0

2
2t secuecnce (peze 3825, §i45)

[
I!
>
i
0
°N
o
|
o
-~
b
o



61
where QG(X) 1S She g°? weak nomology group of Steemrod [7].
Thus we see that Z!'(X) and 8(X) are equivalent, and the
evaluation of the weak homologzy grour H(X) amounts ta2 som-
puting %&E' of some inverse system. Steenrnsd (7] evaluated
H(X) for some particular cases, and Eilenberg-MacLane 2]
equated é(K) With certain zroup of gETroup extensions involv-

ing Zech cohomology group with integer coefficlents.



61

$. Cohomology of Eilenberg-~Maclane Complexes

Eilenberg-MacLane (3] defined im = curaly zlzebraic
fashion the com.:lexes K(T ,n) for any abelian group ™ zand
any integer n =1, 2, ... . The torzolozical significance
of tbesa comglexes rests on the fact that thetir nomology
(z2nd cohomology) =zroups #{T™, n) are thoss of any arcwise
connectad space X Witk homotopy groucs (D=1 , rn(K) =0
for 1 # n,

4 brief definition of K(T, n) is as follows: Let a,

dencte the stzndard g-sizvlex. Lot Kgllt, n) = 28( a_; m),

wrere 4g as 2 complex admits all faces of O includine

Q

degenerate ones. Let £y Ac}__l-—* A be defined by

(0‘, LR ) q*l) — (0, L 2-"1., i+1| LR q_)o fi iﬂduces
£7: ZB( Ay, ) —> ZB( A5-1,T ) which cives rise to

@, Kq(mr, n) ="K, (1, n). J: Ko(TT, n) —» K1 (7, n)
1s then defined by & = %‘_(-—»l)i 3

i=0 1
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Now let I = {rm,] be the family of all finttely
generated subgrouvs of T |, then { 20{ Aq, Mu )l W & I}
form a direct system of gcroups with deg 1 MW, ¢ !'l’r, ’

and it is not difficult tc see jflﬂ {Zn(aq, (L )! = ZIY{ nq,Tr)

since 4, is a Tinite complex and =ach W, is finitely gen-

erated. 1In fact since for W, Tpn z2( Aq .)€ Z5( Aq, Te )
we may Write

YT - g
1.2. wWe have mgKQ(T\;, n) = K, n) or JX(T,, n) = K(TT n)

LD 4
Furthermore we sce B(Kq{ m, n))c Ka-—l( W, n) l.e, each

K(T,, =) is a closed.subcomplex of K(T, n).

Theorew 9. Given 2 countabie zbelian group TF , let
1= [l Se the famwily of 211 the firnitely generated
subgroups of TU , then
0 — lim' { gI-1( m, ,n)? — EUW ,n} s iz {EU W, ,n)l._., C 0% g

Proof: We need only chccok condiors

e~

1), (2), (2) or

Thecrex 2.



Anmendix

We shall consider closurs finite cemolexes, with

finite

chains, infirite cochains zré closed subcomplexss. Let a

directed family of subcomrclexes Kq with unicn K satisfy

ths following condition:

(#) Each cell ¢ is contalned in some smallest sub-

complex K, 1.e: TEeE K, & .y

The higher derived functors of invsrse 1izit 3ra

f : -
denoted by lim' = éim‘l), éim(Z), Lim()), cee
Lemma 1. i3 "'C7 (X, ;G) =0 for n» 0.

ol -

fCi(K¢ ;G)l 15 star-evimorpric. (Cf., Theorsm £,

Proof: Czse 1) nel, The assertior folloaws sincs

Part I.)

lase 11) The coefficient zroup G is injective.

de will snow in this case the inverse systerm [Cj‘(K“l :G)}

is injective, Let C = { c(x, ;G)§ , 2nd leat invsrse

AC 3 be‘giveﬁ with

o
L 4

L] \
Q ¢ &
P
\.:‘;

nen for each 4 WwWe hzve
0 Ay, — By

. |

~
bt 8

{i)

v

staos
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ince C¢ 1s a direct vroduct of covies of G, i.e.
Cu = fﬂ; C{e ;G) where C(e ;G) = G, it suffices to con-
o
sider the following dizgram.

0~ 4, —3 B,

2&
v
C(e ;G)
Since G is inizctive we czp ©in ?' : B, —>» Cle¢ ;G) such
trzt the followilng diszgrza is comrutative
0 — A,-— B,
fd,rJ/}:,r
Cle ;G)
But we zust choose ﬁ‘, iz sucr a2 way that for a««<p E,',.
and ?;J. commute with the orojsctiorns pf of Zand T, Iz

order to azchieve thnis let gr b2 tre minirum subcomrlex zon-
taining ¢ , cthep we have the fnllowinz commutative dizzren

by tre treceding arzument.

o | /5
&
M

We combine tre last two dizzracs as folliows

*{ o

A-—--—-—-—~—¢B._

3 /u

n(ﬂ' G)

'C ‘
f
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Wners r is the obvious restriction nomomorphism, ¥e let
E#, = rg‘p;.

Thus T is inj=sctive, hence lim(n)c = Q forn v 0. The zs-
sertion tirzt higrer cerived functors vanish on injesctive
objects can ve found in Chapter 3 of Cartan-tilenberg,

Case 1ii) 0> 1land GC Q injsctive, then
Q/G is zlso irjective., This is so because for abelian
grouss injectivity 1is eculvalent to infinite divigihi ity
and the latter is clearly ocreserved by quotient. Tre fol-

lowins sequence

- i
C e %55(” L etk e/ — %igtn):i(xi;e)-wa;1m(n)3i(5¢;g}—a -
i i i
o 0
completes the proof.
Lemma 2. Let $K,] satisry (%), 1r si(x, ) = o

for L # 0 and 2Y(K) = 0 for L < 0 then
¥B(K) = 1im(B)yO
e-m—n-
{any coefficiznt zroup).
Proof: ¥From the sscusnce ( -a zt “ﬂhci-—% El+luu* 0

it fellows that

1) By /3t x) = 1100 ZY (25, Proor of

hﬂ“

Theorew 1, Pzrt II.)

2) i&gtn}8}+l = lim(n+l)zi forns 1

*w

Prom trne sequence 0 — Bt —s 2z} _opl L0 1t follows that

gt = Z1 far & £ O hence §;(K) = zi(K) =nd



66

3) BYK) = BYK) /BY(K) for 1 £ 0
Furthermore

4) HO = 2z°

Now %&g(n)ﬁo = %&E(n)zo = }mg(n”l)sl = lin (n-1)5,

{
L]
-
L)

=1imt zP-1 o %n(K),/BF(K) = BEP(K) forny O.
@m——

For n = 0, clearly lim B = 1im 2° = zZ%(K) = 8°%¢(x). . E.D.
Arm— e

corollary. If furthermore Hy = 0 for i # 0 then

110 ™0 _ 0 ror n > 1.

Proof: Ther Hiy(K) = lim Hy =0 for i # 0; nence by
i —— Y ,
the universal coefficiert theorem, B Y (E) = 0 for & £ 0, 1.
Now let.{A ,{ 'be an inverse system of finitely generated
free abellan groups.

{(n)p -
Theorenm. %&g A 2 forn » 1.

| . . < i
Proof: <Jonstruct z corplex K as fcllows. Let &% = Eom(4,;2)

o . ) ‘.““‘q
so that {A%] is 2 éirect system. Define A as a
o - . -
copy of A° znd choose 2 {ixesd bssis for eacn such. Let
LIELY 4 [ T : ——
a 1: A iy A- * ¢

be the identity for 1 v 0; ard tre zperooriate hozomorchism

from the direct system for L = 0, «_ < oy, Define

C‘ﬂ(K‘; ) "":@ &
‘.("-““.(d

with the induced preferred basis, srd define o : c,~— ¢
by 3 = BO - 81 + = . :t énc ThEIﬂ 32 = O &.r;:i {ﬁ-‘!

satisfies (*).
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Assertion: HL(I{,L ) =0 for 1 # 0 and HO(K‘ ) is

naturally isomorphic to 4% . This follows by considering

K. 2as a "mappirg cylinder." Now {A.} is isomorphic to

! B9(k. )} , and the corollary above implies that m(nh&:o

forn v 1.
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