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Annals of Mathematics, 134 (1991), 277-323

Floer homology and splittings of manifolds

By Tomoyosur YosHIDA
Dedicated to Professor Akio Hattori on his sixtieth birthday

1. Introduction

In [F], Floer defined a mod8 graded homology group I,(M) for an
oriented integral homology 3-sphere M. It is an invariant of the differentiable
structure of M. Roughly speaking I, (M) is a homology group coming from the
Morse theory of the Chern-Simons functional f on the infinite-dimensional
manifold of all the gauge equivalence classes of irreducible connections on the
principal SU(2)-bundle M X SU(2). The critical point set of f is the set of the
gauge equivalence classes of irreducible flat connections. In general, these
critical sets may be degenerate and f not be a genuine Morse functional; a
suitable perturbation of f is needed to define I,(M). In this paper we consider
only non-degenerate critical points of f. This is partly because we want to avoid
some inessential technical complications and partly because it is sufficient for
our computations of I,(N,) for homology 3-spheres N, obtained by Dehn
surgery along the figure eight knot in S°.

For a smooth connection A on M X SU(2), a self-adjoint Fredholm opera-
tor D, is defined (Section 2). The gauge equivalence class [A] of an irreduci-
ble flat connection A is a non-degenerate critical point of f if and only if
Ker D, = 0. In this case [A] determines a generator of the mod 8 graded chain
group of I,(M). The mod8 degree d([A)]) is related to the spectral flow
invariant (Section 2) as follows. Let A, and A, be two irreducible flat connec-
tions on M X SU(2) such that Ker D, = 0 = Ker D, . Let {A,} be a smooth
path of smooth connections on M X SU(2) connecting A, and A,. Then
d[A,D — d(A,) is the mod 8 reduction of the spectral flow of the path of the
self-adjoint Fredholm operators {D, }.

The object of this paper is to give a practical method of calculation of the
above spectral flow when M is split as M = M, U M,, where M, N M, =
M, = M, =3 and 3 is an orientable surface of genus g (= 2). Such a
decomposition in 3-dimensional gauge theory was first considered by C. H.
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Taubes in [T], where he proved that the Casson invariant of an oriented
homology 3-sphere is equal to half of the Euler number of its Floer homology
group. In this paper, we consider essentially the same differential operators on
M, (i = 1,2) as in [T] but with different boundary conditions.

In Sections 3 and 4, we formulate some boundary value problems on
3-dimensional compact Riemannian manifolds with boundary. In Section 5, we
give simple perturbations of metrics and connections which are necessary tc
make the boundary problems work well for our purpose. Using these data, in
Section 6, we define an invariant y({A,}) for a generic smooth path of smooth
connections on M X SU(2), here the terminology generic will be clarified in
Sections 5 and 6 (Definitions 5.1 and 6.1). y({A,}) is a homotopy invariant of a
path derived from {A,} of the space of all the Lagrangian pairs in a (6g — 6)-
dimensional symplectic vector space.

The following is our main theorem. In the theorem, M is not necessarily a
homology 3-sphere.

Tueorem 1.1. Let M be an oriented connected closed 3-manifold. Let M,
and M, be codimension-0 submanifolds of M such that M = M, U M, and
M, N M, =0M, =dM, =3 is a connected closed surface of genus g (> 2)
oriented as the boundary of M,. Let A, and A, be smooth irreducible flai
connections on M X SU(2) with Ker D, = 0 = Ker D, such that A, restricts to
an irreducible flat connection B; on %, X SU(2) (i = 1,2).

Then there are a Riemannian metric on M and a smooth generic path of
smooth connections, {A }y -, -, on M X SU(2) connecting A, and A, such that
(1) for 0 <t <1, A, restricts to a product B, X 1 in a neighborhood of 3. for
an irreducible flat connection B, on 3 X SU(2) and the trivial connection 1 in
the normal direction of 3 and (2) the invariant y({A,}) can be defined and

SF(M,{A}) = v({A))
where SF(M,{A,}) denotes the spectral flow of {D, }, <, <1-

Theorem 1.1 will be proved in Section 7.

We expect that there may be simple and practical methods to calculate
y({A,}) in various cases. In the case of Heegaard splittings, a generic path
{A}o<, < in Theorem 1.1 can be found using the representation space of the
surface group into SU(2) and y({A,}) is the Maslov index associated with
the Lagrangian submanifolds of the representation space corresponding to the
handlebodies M; and M,. In this case, the result of Theorem 1.1 seems to be
closely related to the result of [F2].
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As an application of Theorem 1.1, we obtain the following theorem:

TueoreMm 1.2. Let N, be the homology 3-sphere obtained by the (1/k)-Dehn
surgery along the figure eight knot in S® for an integer k. Let 1,(N,) be the Floer
homology group of Ny. Then for k an integer < 0, I 44(N,) = 0 and I, (N,) is
a free abelian group whose rank is given by

( 2m , 2m 2m 2m ) fork = —4m

(2m — 1, 2m , 2m —1, 2m ) fork = —4m + 1
@em—-1, 2m—-1, 2m -1, 2m—1) fork = —4m + 2
@em—-2, 2m—1, 2m—2, 2m —1) fork = —4m + 3.

Here the (j + 1)-th coordinate of the 4-vectors represents the rank of I,,(N,)
(j =0,1,2,3). Since N_, is orientation-preserving diffeomorphic to —N, (N,
with the opposite orientation), 1, (N _,) = I,_ (N,) for k an integer < 0.

The proof of this theorem will be given in Section 8.

The author would like to thank Y. Matsumoto and S. Morita for providing
useful information. Also his hearty thanks go to A. Floer, P. Kirk, E. Klassen and
T. S. Mrowka for their careful reading of the manuscript and helpful conversa-
tions.

2. Gauge theory in 3 dimensions

Let M be an oriented closed 3-manifold with the integral homology of S3.
Every principal SU(2)-bundle over M is isomorphic to the trivial bundle,
P =M X SU(2). It is understood that a trivialization of P is fixed and the
associated product connection is denoted by 6.

The space of smooth connections on P, &= 2Z(P), is an affine space; the
choice of 6 gives an isomorphism of &7 with Q'(M) ® su(2). Here su(2) is the
Lie algebra of SU(2) and Q”(M) (p = 0, 1,2,3) is the space of smooth p-forms
on M. Use the L2-inner product on Q'(M) ® su(2) to define &7 as a smooth
manifold modelled on a (pre-)Hilbert space ([Pa)).

With the product structure fixed, the group & of smooth automorphisms of
P is identical to C*(M; SU(2)). It acts on & in the usual way (as (g, &) —
g =gdg '+ gAg™"). Let # =/« with the quotient topology. Let
R C o denote the space of reducible connections. The group & acts on &Z* =
o — A with stabilizer +1. Set #* = (*)/&. Think of #* as an

infinite-dimensional manifold which is modelled on a pre-Hilbert space by
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using L3-theory in [Pa]. This manifold structure makes the projection from
¥ — F* a principal Zbundle.

Give M a Riemannian metric, and let *: QP(M) — Q3 ?(M) denote the
associated Hodge star operator. The metric defines an L? inner product on
QP(M) ® su(2): the inner product of p-form a with p-form b is

(a,b): = —[Mtr(a A #b).

In particular the above inner product on Q'(M) ® su(2) defines a “equivariant
Riemannian metric on & * and also defines a Riemannian metric on #*.
The Chern-Simons functional f on 27* is defined by

f(A) = [ (A AdA+ (2/3)A A A AA)

(A € &7%*). Then, for g € &, f(gA) = f(A) + c deg(g), where ¢ is a constant
and deg(g) is the mapping degree of g: M — SU(2). Then f descends to a
functional f: #* — R/cZ. The curvature of a connection A is the su(2)-valued
2-form F, = dA + A A A. The assignment A — — * F, defines a &equivariant
vector field on &7* and its descendant to #* is the gradient vector field of f.
Thus the critical point set of f on &* is precisely the set of the Zorbit of the
irreducible flat connections on M X SU(2). This set is identical to the set of the
conjugacy classes of the irreducible representations of 7 (M) to SU(2),
Hom(m (M), SU(2))*/ad SU(2).

Notation convention. From now on, we adopt the following abbreviation: we
denote a direct sum

Q7( ) ®su(2)+ - +Q7( ) ®su(2)
by

(QP + - +Q")( ) ® su(2).

Definition 2.1. For a smooth connection A on M X SU(2), we define the
operator
D,: ('@ Q%) (M) ® su(2) » (Q' & Q°)(M) ® su(2)

by
(2.1) D,(a,b) = (*d,a + d,b, d%a)

for a € QM) ® su(2) and b € Q°%(M) ® su(2), where d, denotes the covari-
ant derivative.
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D, defines a self-adjoint Fredholm operator from the L3-completion of
(Q!' @ Q%(M) ® su(2) to the L*-completion of (' & Q) M) ® su(2). A £
orbit [A] of an irreducible flat connection A on M X SU(2) is a non-degenerate
critical point of f if and only if Ker D, = 0. Such an [A] defines a generator of
the chain group of the Floer homology group of M. To define the mod 8 degree
d([A]), we need the notion of the spectral flow.

The spectral flow for a continuous family of self-adjoint Fredholm operators
was studied in [A-P-S 3]. To say that an operator is self-adjoint and Fredholm is
to say that its spectrum near 0 is that of a finite-dimensional, self-adjoint matrix.
Move on a continuously differentiable path in the space of such operators, and
the eigenvalues near 0 move in a continuously differentiable manner. Suppose
that the operators at the path’s endpoints have empty kernel. Then, the number
of eigenvalues which cross zero with positive slope minus the number which
cross zero with negative slope is well defined and finite along a suitably generic
path. This number is the spectral flow along the path.

When two such generic paths are homotopic (rel. endpoints), their spectral
flows agree. Therefore, the spectral flow defines a locally constant function on
the space of continuous paths between the two endpoints.

Since the spectral flow is only a locally constant function, there can be
non-zero spectral flow around a non-contractible, closed curve in the space of
self-adjoint, Fredholm operators. Indeed, as remarked in [A-P-S 3], the spectral
flow around closed loops gives an isomorphism between Z and the fundamental
group of the space of self-adjoint Fredholm operators on a real, infinite-dimen-
sional, separable Hilbert space.

Let {A,}, -, <, be a smooth path of smooth connections on M X SU(2) such
that Ker D, = 0 = Ker D, . Then {D, },.,., is a smooth family of self-adjoint
Fredholm operators and the spectral flow is defined. The spectral flow defines a
locally constant function on the space of continuous paths in &* connecting
[A,]and [A,]. This function depends on the homotopy class of the path between
[A,] and [A,], but its mod 8 reduction does not ([F)).

Prorosition 2.1 ([F], [TD. Let [A,] and [A,] be the Zorbits of two
irreducible flat connections such that Ker D, = 0 = Ker D, . Then the spectral
flow mod 8 of a path between [A,] and [A, ] depends only on the differentiable
structure on M. In particular, it is independent of the choice of Riemannian
metric on M.

The mod 8 spectral flow in Proposition 2.1 gives the difference d([A;]) —
d([A,)D. The definition of d([A]) itself for an irreducible flat connection with
Ker D, = 0 is given as follows.
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Let 6 be the trivial connection on M X SU(2). Then Ker D, is 3-dimen-
sional. We can perturb 6 to an irreducible smooth connection 6’ with
Ker D, = 0 (arbitrarily close to 6) so that Ker D, splits into the direct sum of
three 1-dimensional eigenspaces belonging to the small eigenvalue (small means
much smaller than any other eigenvalues of D,). Let p(6’) be the number of the
positive eigenvalues among these three. Let {A,},_, ., be a smooth path of
smooth connections on M X SU(2) connecting A, = 6’ and A; = A. The inte-
ger mod 8

(2.2) p(6') + the spectral flow of {D, }

0<t<l1

does not depend on the choice of perturbation ', and it is d([A]).

3. Computations on the cylinder

In this section, we make some explicit calculations which will be basic to
the rest of the paper.

Let 3 be a connected oriented closed surface of genus g (> 2). Fix a
Riemann metric on 3. Let 3 X R™ be the product Riemannian manifold, where
R* denotes the half line {s > 0} with the standard metric. Let B be an
irreducible flat connection on 2 X SU(2). Let A = B X 1 be the connection on
(2 X R™) X SU(2) which is the product of B with the trivial connection 1 on
R*X SU(2). Let Q{(Z X R*) ® su(2) denote the space of su(2)-valued smooth
j-forms on ¥ X R* with compact support. For a € QJ(3 X R*) ® su(2) and
0 <s < o, we write a as a(s) = p(s) + g(s) ds, where p(s) € Q/(Z) ® su(2)
and g(s) € Q771(3) ® su(?).

Let D, be the differential operator on (Qg ® QF) (3 X R™) ® su(2)
defined by the equation given in Definition 2.1, where A = B X 1 as above. For
(a,b) € (O ® QY(Z X RY) ® su(2) and 0 < s < %, we write

(3.1) (a(s), b(s)) = (p(s), q(s), b(s))

where a(s) = p(s) + g(s)ds is as above. Thus we regard (a(s), b(s)) as an
element of (' ® Q° & Q°)(3) ® su(2). Then D, can be written in the matrix

form

p(s) p(s)
(52) Da(s) | = o5 = By a5

b(s) b(s)
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where
* 0 o0 0 dy *dg
(3.3) o=|0 0 1|, Dy,=| di o0 0
0 -1 0 —xd;, 0 0

Here * denotes the Hodge star operator on /() ® su(2) (j = 0,1) and dy
denotes the covariant derivative.
The relations

(34) oDy + Dygo=0 and o= -1
hold.

D, can be extended to a self-adjoint Fredholm operator from the L3-
completion of (Q' ® Q° ® Q°)(Z) ® su(2) to the L*-completion of
Q' Q° @ Q%)(2) ® su(2). The eigenvalues {u} of Dy form a discrete subset
of R and each eigenvalue has a finite multiplicity. The set of all the normalized
eigenforms {tp#} of Dy forms a complete orthonormal basis of the L*-completion
of (Q' @ Q° @ Q°)(Z) ® su(2). By the above relation, o(4,) is a (—u)-eigen-
form of Dy. Thus the spectrum of Dy is symmetric about 0.

Let P, (resp. P_) be the subspace of the L*-completion of (Q' & Q° @
Q%)(3) ® su(2) spanned by {¢“}“>0 (resp. {tpﬂ}#«)).

Let &%, denote the space of the su(2)-valued 1-forms on 2, harmonic with
respect to B,

Hy={o € Q) ® su2)dyow = djw = 0}.

#, is a (6g — 6)-dimensional real vector space isomorphic to the
de Rham cohomology group Hj(Z, su(2)) with su(2)-valued local coefficient sys-
tem defined by the holonomy representation of B. Since B is irreducible, d ; has
no non-trivial kernel in Q°2) ® su(2). Hence each 0-eigenform ¢, of Dy has
the form ¢, = (0,0,0) € (Q' & Q° & Q°)(Z) ® su(2) for some w € H#5. Thus
Ker D; is identified with ##. Note that o = * on #5.

# has a non-degenerate symplectic structure defined by

(3.5) (W, wy) = —/Etr(a)1 A w,)

for o, w, € H#;. A Lagrangian L of # is a (3g — 3)-dimensional subspace
of #, such that (w,, w,) = 0 for any w,, w, € L.
For a subspace W of (' & Q° & Q°)(3) ® su(2), we set

Q2 X RY, W) = {¢ € (0 @ Q) (2 X R*) ® su(2)ly(0) € W}.
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Definition 3.1. Let B be an irreducible flat connection on 3 X SU(2) anc
A = B X 1 be the connection on (% X R*) X SU(2) as above. We define the
following operators.

(1) &, is the operator from the L3-completion of Q(3 X R™, P, + #
to the L>-completion of (2§ ® Q)3 X R™) ® su(2) defined to be the closure
of D,, and

(2) & is the operator from the L3-completion of Q,(2 X R™, P) to the
L*-completion of (A} ® Q) X R*) ® su(2) defined to be the closure of D,

Prorosition 3.1. &, and &F are the adjoints of each other.

Proof. The adjointness relation between the boundary conditions follows
from the next equation derived from the Stokes theorem, for ¢ = (a, b) =
(p(s) + q(s) ds, b(s)) and &' = (a', b)) = (p'(s) + q'(s) ds, b'(s)) €
Q5 ® QS X RY) ® su(2),

(3.1.1) (Dath,¢') = (¢. Dyyp)

= —fzxmtr((*dA +d,b) A *a').—f

- tr(dfa A *D')

+ t A xd,a +d,b"))) +
- r((a #(xdya A ))) fzx

- fEX{O} tr(p(O) A P'(O) + b(O) A * q'(()) _ q(o) A % br(o))

= (¥(0), o (47(0))).
Note that o interchanges P, and P_. The rest of the proof goes in the same
way as the proof of Proposition (2.5) and (2.1) in [A-P-S 1]. The bounded inverse
of &,

tr(b A xd¥a’)
R+

Q: (2 ® QY)(X X RT) ® su(2) = Q,(X X RT, P+ #})

is constructed as follows. Let {(//#} be an L*-orthonormal basis of (Q! © Q° @
Q°)(2) ® su(2) consisting of eigenforms of Dj. To solve D, = ¢, we expand
¢ and ¢ in terms of {(//#} and {0((//#)} respectively;

U(s) = Ze, (), o(s) = 2d,(s)o(¥,)-

We take the explicit solutions

c,(s) = —fme“(s_t)dﬂ(t) dt forp >0

= f:e“(s“) d(t)dt  foru <0
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to define Q,. Formally Q = £Q,,. The proof of the convergence of Q is the
same as the proof of Proposition (2.5) of [A-P-S 1] and we refer to it. Similarly
we get a bounded inverse R for &*. If we decompose the L*-completion of
(QF @ QN2 X RY) ® su(2) into two parts, ' & Q", ", involving the zero
eigenvalue of D, and ' all the non-zero eigenvalues, then &, and &
decompose accordingly. On Q", D¥ = (—o)—3d/ds) = 0d/ds = D, and the
adjointness is clear. On (), the fundamental solutions Q and R give bounded
inverses Q' and R’ for &, and &* respectively. Then R’ = (Q')* follows by
continuity from the fact that (&, ) = (¢, &Y' for ¥, ¢' € Q (2 X RT,
P,+ ##;) by Equation (3.1.1). Since the adjoints commute with inverses, the
proposition is established. q.e.d.

4. Indices of Fredholm operators with global boundary conditions

Let X be a compact oriented 3-dimensional Riemannian manifold with
boundary X = 3 a connected closed surface of genus g (> 2). 2 inherits its
metric from that of X. We assume that, near 2, X is isometric to the product
3. X [0, 1]; here 3 X {0} = dX. We orient 2 as —dX.

Let B be an irreducible flat connection on 2 X SU(2). Let A be a smooth
connection on X X SU(2) which restricts to the product B X 1 on 2, X [0, 1] X
SU(2); here 1 denotes the trivial connection on [0, 1] X SU(2). Let D, be the
differential operator on (Q' & Q°)(X) ® su(2) defined by the equation in Defi-
nition 2.1. D, has the form (d/ds — Dy) on 3 X [0,1]; here o and Dy are as
in Section 3.

For a subspace W of (' @ Q° & Q°)(2) ® su(2), we set

QX, W) = {¢ € (' ® Q°)(X) ® su(2)ly|oX € W}.

Definition 4.1. Let P, P_ and &#5 be as in Section 3. We define the
following operators:

(1) &, is the operator from the L3j-completion of Q(X, P, + #%) to the
L2-completion of (' & Q°)(X) ® su(2) defined to be the closure of D,, and

(2) &* is the operator from the L3-completion of Q(X, P,) to the L*
completion of (' ® Q°)(X) ® su(2) defined to be the closure of D,.

ProrositioN 4.1. &, and & are Fredholm operators and are the adjoints
of each other.

Proof. &, is a first order elliptic differential operator. On 3 X [0, 1], it has
the form o(9/ds — Dy). We construct a parametrix R by patching together the
fundamental solution Q, = Q constructed in the proof of Proposition 3.1 with an
interior parametrix Q,. More precisely, for — <u <v <, let B(u,v)
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denote an increasing C” function of the real variable s, such that
B=0 fors<u, and B=1 fors>v

and define four C* functions r, r,, p;, p, by

ri=B(1/4,1/2),  py=B(1/2,3/4),

ro,=1-B(3/4,1) p, =1-p,.
Note that r; = 1 on the support of p; (j = 1,2). We regard these functions of s
as functions on the cylinder 2 X [0, 1] and extend them to X in the obvious way:
r1, p; being extended by 0 and r,, p, being extended by 1. Considering r;, p;
(j = 1, 2) as multiplication operators we put

R =p,Q\ry +py0;r;.
R is a linear operator
(Q'® Q%) (X) ® su(2) = Q(X, P, + H#5).

R is a right parametrix; that is, & R — 1 has a C* kernel. Switching the roles of
r;,p; gives a left parametrix; hence R is, in fact, a two sided parametrix.
Proposition 3.1 shows that R is continuous from the L*-completion of (Q' &
Q°)(X) ® su(2) to the L3-completion of QUX, P, + ). It now follows that &,
is a Fredholm operator. Essentially the same argument works for &*. q.e.d.

An element of the L%-completion of (Q! ® Q°)(X) ® su(2), orthogonal to
the image of &,, is necessarily C* (being in Ker &*). Thus &, has a well-
defined index, computed either in C* or in L?, and

index &, = dim Ker &, — dim Ker &*.

The calculation of index &, will be given in Proposition 4.2. For it, we
prepare two lemmas. For 0 < r < oo,
X(r)=2X[-r,00 UX
where 2, X {0} is identified with dX. The product metric on % X [—r, 0] should
be understood. We extend the connection A on X X SU(2) to the connection
(still denoted by A) on X(r) X SU(2) by setting A = B X 1 on % X [—r,0] X
SU(2).

Lemma 4.1. There is a positive constant ¢ > 0 not depending on r (2 <
r < ) such that, for any smooth 0-form b on X(r) with b|dX(r) = 0,

15" Ml2 < clld¥d, bl
where b"= b|X(2) denotes the restriction of b on X(2) € X(r).
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Proof. On the contrary, assume that there is an infinite sequence of positive

numbers 2 <r; <r, < -, 1, > ®, and a sequence of 0-forms on X(rj),
{b};,_1 5 such that

b;l0X(r;) = 0, ldid bl =1 (j=1,2,...)
and

“bT\”Lz —> o as j o ®

where b = b, |X(2). We set b b/llb |2 and b = b |X(2). Then, by the
assumptlon ||d b l;2 = 0 as j — oo. Since b IBX(r) =0, by Stokes s theorem,
Ild b L2 = 0 as j = . Hence |ld, b |2 — O as j — . Thus {b }] Lo, .. 18
an L 2-bounded sequence. By Relhchs lemma, taking a subsequence if neces-

sary, we may assume that {b },_,, = has an L%strong limit b.. Since

] j=

IIb le=1 fOI‘j =1,2..., lb.ll;2=1 and b, + 0. Also since IId b lz— 0
as j — o, {bj }i_1s. . is an Li-convergent sequence. Hence b, is an L3-form
and d b, = 0. This contradicts the irreducibility of A. g-ed.

For a calculation of index &,, we first consider the special case of flat
connection. Assume that A is a flat connection on X X SU(2) which restricts to
B X 1on 3 X[0,1] X SU(2) for an irreducible flat connection B on 3 X SU(2).
Since A is flat, d,d, =0, and the complexes {Q*(X) ® su(2),d,} and
{0*(X,3) ® su(2), d,} become chain complexes, where Q*(X, %) ® su(2) de-
notes the space of su(2)-valued smooth forms on X which vanish on 2, = dX.
Let H¥(X,su(2)) and H¥(X,3,su(2)) be the de Rham cohomology groups of
these chain complexes.

Lemva 4.2. Let A be a flat connection on X X SU(2) which restricts to
B X 1on3 X[0,1] X SU(2) for an irreducible flat connection B on % X SU(2).
Then there are natural isomorphisms

Ker &, = Hi(X,su(2)),
Ker &F = Hy(X, 3, su(2)),
and
Index &, = 3g — 3.
Proof. For 2 <r <, let X(r) =3 X [—=r,0] U X be as before. Let x €
HX(X,su(2)). Let a, € Q'(X(1)) ® su(2) be a smooth 1-form representing x
with d,a, = 0. Let w € #; be the harmonic 1-form representing i*x

(i: 3 — X the inclusion). For r > 2, we regard @ as a 1-form on % X [—r,0]
constant along [—7,0]. On 3 X [—1,0], a; = » + d,b, for a 0-form b,.
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For r > 2, let B, be a C* increasing function on [—r, 0] such that B, =0
on [-r,1/4 —r] and B, =1 on [—r + 1,0]. We regard these functions as
functions on the cylinder 2 X [—r, 0] and extend them to X(r) by 1

For r > 2, we define a, € Q'(X(r)) ® su(2) by

a,=a, on X,
=w +d,(B,b;) onZ X [-1,0],
=w on % X [—r, —1].

Then d,a, = 0, supp(d¥a,) € X(1) and d*a, = d%a,, for 2 <r <r’, on X(1).
Since A is smooth and irreducible, there is a unique b, € Q% X(r)) ® su(2)
such that

d*d,b =d*a,, bloX(r)=0

(see [T]). By Lemma 4.1, [Ib,|X(2)|l;2 < ¢, for a constant ¢, > 0 independent of
r.On X X [—r, —1], since d¥d,b, = 0 and b,|0X(r) = 0, b, can be written as

b, = E)‘br)‘(e(”')‘/)T - e*(”’)‘/’\—)d),\, -r<s< -1,

for some constants {b?}, where {¢,} is an orthonormal basis of the L?-completion
of Q°(3) ® su(2) consisting of the eigenforms of d%dy. Since ||b,1X(2)l.2 < ¢,
(Lemma 4.1), from the above explicit form of b, on the cylinder, it follows that
Ib,ll.2 < ¢y for a constant ¢, > 0 not depending on r. Since b,|0X(r) = 0, by
Stokes’s theorem,

(dab,.d,b,) = (did,b,, b,) = (dja,.b,)
< lldjall2llb, |2 < ¢4

for a constant c; > 0 not depending on r. It follows that {b,|X(2)}, is an
L3-bounded sequence. Hence by Rellich’s lemma, taking a subsequence if
necessary, we obtain an L>-strong limit bw, an L? 0- -form on X(2). Since
d%d, b, = d%a, and dfa, is independent of r > 2, b, satisfies the weak
equation

d*d, b, = d*a,.
By elliptic regularity, b, is a smooth 0-form on X(2) and it is an actual solution
of the above equation. On X X [—2, —1] € X(2), b can be written in the form
of a linear combination of {¢*V" &, e*s‘/_ci)A}A for —2 <'s < —1. Since b, is the
L2-strong limit of {b,|X(2)} and each b, has the above explicit form on the

cylinder, it follows that I;OOIE X [—=2, —1] can be written as a linear combination
of {es‘/xqbl\})‘. Hence b, can be extended to a O-form b, on X(«) which is
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smooth, exponentially decays as s = — and satisfies
dxd,b, = d%a,.

Define a,, € Q%X()) ® su(2) by setting a,, = a, — d,b,, on X(r) for r > 0.
Then d,a, = d%a,, = 0. We regard a,, as an element of (' & Q°)(X()) ®
su(2). Then D,a, = 0. Hence, on 3 X (—,0], a, can be written as a linear
combination of ¢**,, where {,} is the orthonormal basis of the L?-completion
of (' ® Q% ® Q°)(3) ® su(2) consisting of the eigenforms of Dy (Section 3).
Since a,, is a bounded form, a, =w + X, oc,e**¢, for constants {c,} on
3 X (—=,0]. Thus the restriction a = a,|X satisfies D,a = 0 and «ldX €
P+ H#5. Hence a € Ker &,. Obviously d,a = d5a = 0 and a represents x. If
there is another 1-form ' satisfying these conditions, then @' can be extended to
a bounded harmonic 1-form @, on X(e), and a,, — a,, = du for a harmonic L?
0-form u on X(). Since there exists no non-trivial such 0-form, a, = a,, and
a = a'. The correspondence x — a gives a homomorphism H(X, su(2)) —
Ker &,.

Conversely let (a,b) € (Q' ® Q°)(X) ® su(2) be an element of Ker &,.
Since, on % X [0, 1], (@, b) can be written as w + L, oc ey, for w € H#5
and {c,} constants, it can be extended to a bounded element (a,, b,,) of Ker D,
on X(). From the equation * d,a, + d b, = 0, d%d,b,, = 0 follows as A is
flat. Hence b, is an L? harmonic O-form on X(). There is no non-zero such
0-form on X(x), and b, = 0. Hence d, a, = dia, =0 and a = a,|X is a
harmonic 1-form on X. It defines an element of H4(X, su(2)). This gives the map
Ker &, — HA(X,su(2)) which is the inverse of the above map. Therefore this
correspondence is an isomorphism.

As for Ker &F = H (X, 3, su(2)), the above arguments involve the follow-
ing consequence (as in the special case with @ = 0) that H (X, 3, su(2)) is
isomorphic to the space of the harmonic L? 1-form on X(x). The latter is
identical to Ker &* by the restriction.

Finally, as for the index of &, by the Poincaré duality of the de Rham
cohomology group, we see that dim Ker &, — dim Ker &* is equal to
—(3/2)x(3), where x(2) denotes the Euler characteristic of 3. g.ed.

Prorosition 4.2. Let A be a smooth connection on X X SU(2) which
restricts to a product B X 1 on 3 X [0,1] X SU(2) for an irreducible flat
connection B on % X SU(2). Assume that there is a smooth path of smooth
connections on X X SU(2), {A}o<, <, such that A, = A, A, is an irreducible
flat connection and, for 0 <t <1, A, restricts to a product B, X 1 on 3 X
[0,1] X SU(2) for an irreducible flat connection B, on 3 X SU(2). Then the
Fredholm index of &, is 3g — 3.
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Proof. For 0 <t < 1, we can construct the Fredholm operator &, Now
{€4}o<i<1 is a continuous one-parameter family of Fredholm operators and we
can construct a continuous one-parameter family {R,}, _, ., of parametrices as in
the proof of Proposition 3.1. It follows that index &, = index &y, =32 — 3 by
the above lemma. q.ed.

Definition 4.2. We define the map m,: Ker &, » #5 by

AU
for € Ker &, where y|0X = w + ¢, for w € H#; and ¢y, € P,.

Lemma 4.3. Let m, be as above. Let L, = w(Ker &,). Then L, is a
Lagrangian of #5.

Proof. Let , ' € Ker &, and let ¢10X = w + ¢, ¥'|0X = o' + ¢/, for
w, 0 € Hy and ¢, ¢, € P,. By Equation (3.1.1) in the proof of Proposi-
tion 3.1,

(G 4') — (4. &Y) = (0 + ¥, 0(0" +¢))).
Since ¢, " € Ker &), the left-hand side is zero. The right side is equal to

—fztr(a) Aw'),

as ¥, € P, and o(¢') € P_ and they are orthogonal to each other. It follows
that the symplectic pairing vanishes identically on L,. It remains to show that
dim L, = 3g — 3. Assume that ¢ € Ker m,. Then ¢|3X € P, and this implies
that ¢ € Ker &*. Conversely an element of Ker &* corresponds to an element
of Ker m,. Thus Ker m, is identical to Ker &F. Hence

dim L, = dim Ker &, — dim Ker 7,
= dim Ker &, — dim Ker &*
= index &, = 3g — 3. q.ed.

5. Generic smooth path of smooth connections

Let X be a compact oriented 3-dimensional Riemannian manifold with
boundary X = 3, a connected surface of genus g (> 2) as in Section 4.

Let {A}o.,<, be a smooth path of smooth connections on X X SU(2)
connecting irreducible flat connections A, and A, such that, for 0 < ¢t < 1, A,
restricts to a product B, X 1 on 2 X [0,1] X SU(2) for an irreducible flat
connection on 2, X SU(2). By Definition 4.1, we obtain one-parameter families
of Fredholm operators, {&} },.,., and {&},_, ;. Each of these depends
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smoothly on ¢. By Lemma 4.3, we obtain a one-parameter family of the
Lagrangians, {L, }o .y, in {#3} <, <1- Each &5 is mutually isomorphic as a
symplectic vector space for 0 < t < 1. If we regard {#3 }, ., <, to be a symplec-
tic vector bundle over [0, 1] with fiber &, » there is a trivialization

0,: Hp =V

where V is a fixed non-degenerate (6g — 6)-dimensional real symplectic vector
space and O, is an isomorphism of symplectic vector spaces continuously
depending on t. Using ©,, we obtain a Lagrangian ®,(L, ) in V which we
denote also by L, . Let " be the space of all the Lagrangians in V. - is
endowed with the topology as a subspace of the Grassmann variety of all the
(3g — 3)-dimensional subspaces in V. Thus we get a map

[0,1] 2t —> L, €7.

Lemma 5.1, Let {A}o.,., be a smooth path of smooth connections on
X X SU(2) such that, for 0 <t <1, A, restricts to B, X 1 on 3 X [0,1] X
SU(2) for an irreducible flat connection B, on 3% X SU(2). Let {L,} be the
corresponding one-parameter family of the Lagrangians. Assume that, for
0<t<1, Ker&* =0.Then {Ly},.,, is a continuous path of Lagrangians.

Proof. Since &;* is the adjoint operator of & ,
Ker &, = Image &%~ .

Here the right-hand side denotes the L2-orthogonal complement of the L-closure
of the image of &* in H = the L*-completion of Q' ® Q%)(X) ® su(2). The
assumption Ker &3* = 0 for 0 < ¢ < 1 implies that {Image &;*},.,., is a con-
tinuous family of the closed subspaces in the Hilbert space H. Hence
{Ker &, = Image &;*'},.,<, is a continuous family of (3g — 3)-dimensional
subspaces in H. Since the map m, : Ker &, — #3 is injective for 0 < ¢ < 1,
{Ly }o << is continuous. q.ed.

Definition 5.1. A smooth path of smooth connections, {A},_,.;, on X X
SU(2) such that, for 0 <t < 1, A, restricts to B, X 1 on % X [0, 1] X SU(2) for
an irreducible flat connection B, on % X SU(2) is called generic if Ker £* = 0
for0 <t <1

Thus by Lemma 5.1, for a generic path of smooth connections {A,},_, 1,
the corresponding path of Lagrangians, {L, }, ., is continuous.

To get a generic path we adopt the following perturbations of metrics and
connections.
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As in Section 4, for 0 < r < =, let X(r) be the manifold defined by
X(r)y=2X[-r,0] UX

where 3, X {0} is identified with dX. Let A be a smooth connection on
X X SU(2) which restricts to B X 1 on 3 X [0,1] X SU(2) for an irreducible
flat connection B on 2, X SU(2). Then A can be extended to a connection, A(r),
on X(r) X SU(2) by putting A =B X 1on X X [—r,0] X SU(2).

For ¢ = (a,b) € (Q' ® Q°)(X) ® su(2), as in Section 3, on 3, X [—r, 0]

we write
¥(s) = (a(s),b(s))
= (p(s).q(s), b(s))
where p(s) € QX(3) ® su(2), q(s), b(s) € Q%) ® su(2) and als) = p(s) +
q(s)ds for —r < s <0.

As in Section 3, let {1} be the set of the eigenvalues of Dy and let {,}, be

the set of the corresponding eigenforms of Dy which forms an L?-orthonormal
basis of the L2-completion of (Q! & Q° ® Q°)(3) ® su(2).

Lemma 5.2. If ¢ # 0 € Ker &, then, for each —r < s < 0, at least one
of q(s) and b(s) is non-zero.

Proof. On 3 X [—r,0], ¢ can be written as
P(s) = X c.e™y,

uw>0

for some constant {c#}. Let d%dy be the Laplace operator on Q%) ® su(2)
with respect to the connection B. Since B is an irreducible flat connection,
d%dy has only positive eigenvalues {A} which are related to the non-zero
eigenvalues {u}, ., of Dy as {A} = {u®}, ,,. Moreover the eigenforms of Dy
corresponding to the positive eigenvalues, {i,},.,, are given as forms in

Q' Q° @ Q°)(3) ® su(2) by
¥, = (dBd))n \/)T(],’))\,O) or

¥, = (*dg,,0,VA ¢,)

where u = VA and {¢,}, is a set of the eigenforms of d%d, which forms an
L2-basis of the L?-completion of Q°(2) ® su(2).
Therefore g(s) and b(s) can be written as

‘7(3) = Zf/\es‘/x‘/xd’m
b(s) = Lg,e" VA o,
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where {f,} and {g,} are sets of constants such that c, =f, or ¢, =&\ for each
w = VA. Since ¢ is a solution of an elliptic differential equation with smooth
coeflicients, by the unique continuation theorem, (s) # 0 for —r <s < 0.
Hence the lemma follows from the above expressions. g-ed.

Definition 5.2. For r > 2, a simple perturbation of A(r) is defined to be a
connection on X X SU(2) given by A(r) + a, where a € Q'(X(r)) ® su(2) is a
smooth 1-form such that (1) the support of « is contained in 2 X [—r + 1,
—r+2]and (2), for —r+1<s < —r + 2, a(s) € Q(I) ® su(2); that is, it
has no ds-component.

In this section, from now on, we use the notation

[B.n] =BAn+(-1)"" " nAB

for an su(2)-valued i-form B and an su(2)-valued j-form 7.
Suppose that &* has a non-trivial kernel ¢ = (a, b) € (Q' & Q°)X) ®
su(2). Then for a simple perturbation of A(r), A(r) + a,

(5‘1) DA(r)+a(‘/’) = (*[a,a] + [a,b],*[a,*a])
e ('@ Q% (X) ® su(2).

ij+1

The support of D), () is contained in % X [—r + 1, —r + 2]. Using the
expression (s) = (p(s), q(s), b(s)), we write (5.1) as

(52) Dyry+al¥) = (la, * @] + [a, b], *[a, p], *[a, *p])
€ (0 e Qe Q%(2) ®su(2)

where * denotes the Hodge star operator on Q(3) ® su(2) (i = 0,1, 2).

Let (w, 0) be an element of (A} ® Q°)(3 X [—r,0]) ® su(2) where w is an
element of %%, considered to be a 1-form on 3 X [—r, 0], constant with respect
to s. We denote (w,0) simply by w. Consider the L*inner product on 3 X
[—r,0],

—r+2
(5‘3) (a), DA(r)+a('/’)) = f_ o ds(a(s), [Q(3)> *“’] + [b(s),w])
where ( , ) in the integral denotes the L-inner product on 3. We consider the

1-form [g(s), * w] + [b(s), @] which appeared in the above integral.

Lemma 5.3. Let g, b € Q%Z) ® su(2) be such that at least one of q and b
is nonzero. Define the linear map

T Hy - QN2) ® su(2),
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for w € Hp, by
(w) =[q,*w] + [b,®].
Then dimy 7(H#5) > 4g — 4.

Proof. Assume that 7(w) = 0. This implies that
w=nAb+ xnAg

for some 1 € QX3). We give 3 the complex structure compatible with the
conformal structure on 3 coming from the metric. As is well-known ([A-B]), the
flat connection B on 3 X SU(2) defines a holomorphic structure on the com-
plexified adjoint bundle ad, = 3 X (su(2) ® C). We set

(5.3.1) p=w+V-1*0
=(n+\/—_1*77)/\(b—\/—_lq).

Then ¢ is a cross-section of T*% ® ad, where T*3, denotes the holomorphic
cotangent bundle of 3. The fact that @ is dg-harmonic is equivalent to the fact
that ¢ is holomorphic with respect to the above complex structure on ad. If
o # 0, then the complex linear span of ¢ determines a holomorphic sub-line
bundle L in T*% ® ad and Ker 7 is in one-to-one correspondence with the
space of the holomorphic cross-section of L by (5.3.1). We can find a smooth
path of flat connections {B}},_,., on 3 X SU(2) such that (1) B, = B and
B, = the trivial connection and (2) for 0 < ¢t < 1, B, is irreducible. Hence we
can deform o continuously to @, which is an SU(2)-valued harmonic 1-form
with respect to the trivial connection. It follows that L is topologically equivalent
to T*3. By the Riemann-Roch theorem and the irreducibility of B, the complex
dimension of the space of all the holomorphic cross-sections of L is equal to
g — 1. Hence in any case, dim Ker 7 < 2g — 2 and we get the lemma. q.e.d.

Cororrary oF LEmma 5.3. Let q, b and 7 be as in Lemma 5.3. Let L be a
Lagrangian in 5. Then dimy 7(L) > 2g — 2.

Proof. Since Ker 7 is a *-closed subspace in &#%, for any Lagrangian L
in H#%, dimg(L N Ker 7) < (1/2)dimg Ker 7. The corollary follows from
Lemma 5.3. g-ed.

For ¢y € Ker &,,), on 2 X [—r,0], ¢ can be written as

(5.4) U(s) =@+ 4.(s)

where w € L, and ¢, (s) = L,>oc.e™ P, for some constants {c#}. In particu-
lar, for € Ker & |, ¥ = .. From the expression (5.4), the next two lemmas
A(r) + P
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follow:
Lemma 54. For 0 <r' <r,
Ker &,,, = Ker &,(,,, and
Ker &, = Ker &,
Lemma 5.5. There are positive constants ¢, and c5 both of which do not
depend on r such that, for r > 2 and ¢ € Ker &,
1 ()l < cae = Nllees
in particular, for € Ker &),
lo ()l < cqe= Nl
for —r<s<0.
Let
Ker &y, = L Ay T Ker &,

be the orthogonal decomposition of Ker &, with respect to the L*-inner
product. Then

Tar| Lagyt Lagy = La
is an isomorphism.

Lemma 5.6. Suppose Ker & # 0 and let & be a non-trivial element of
Ker&y:,. Let P be the L*-orthogonal projection of the L*-completion of (Q' &
Q°)X(r)) ® su(2) onto L,. Then there is a linear subspace L, C L, with
dimg Ly > 2g — 2, such that, for w € Ly with |lwll2 =1 and sufficiently
large r > 0, there is a simple perturbation A(r) + a (a depends on w) such that

(5.6.1) (0 P(Dacrysal$))) # 0

where ¥, € Ly, with m,,(¥,) = and (, ) denotes the L*-inner product.
Moreover a can be chosen arbitrarily small.

Proof. By the corollary of Lemma 5.3, we have a subspace Ly, C L, with
dimg L'y > 2g — 2 such that L', N Ker 7 = {0}; here 7 is the map defined in
Lemma 5.3. Let w € L, with |lo|l;> = 1. (5.6.1) is equivalent to

(562) (dlm’ DA(r)+a("/I)) # 0.
On 3 X [—r,0], ¢, can be written as in (5.4),
(Ilw(s) =w + ¢w+(s)'
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Now (5.6.2) is equal to
(5'6‘3) (a), DA(r)+a(‘/’)) + (‘/’w+> DA(r)+a(‘/’))-

By Lemma 5.5, we see that there is a positive constant ¢4 not depending on r
such that

(Vo> Dagry+a(#)) < €67 (@, Dyiyysal¥)).

Hence for sufficiently large r > 0, we can neglect the second term in (5.6.3). By
(5.3) and Lemma 5.3, there is an @ which satisfies (5.6.2). Moreover for any
such @, ea also satisfies (5.6.2) for € > 0. Hence a can be chosen arbitrarily
small. q.ed.

ProrositioN 5.1. Let {A}, ., ., be a smooth path of smooth connections on
X X SU(2) connecting two irreducible flat connections A, and A, such that, for
0<t<1, A, restricts to a product B, X 1 on 3 X [0,1] X SU(2) for an
irreducible flat connection B, on % X SU(2). Suppose Ker &% = 0 = Ker &*.
Then, for sufficiently large r > 0, there is a smooth generic path of smooth
connections {A}},_, ., on X(r) X SU() such that (1) A, = A,(r) and A, =
A(r) and (2) for 0 <t <1, A, restricts to a product B, X 1 on 3 X
[—r, —=r + 1] X SU(2) for an irreducible flat connection on 3, X SU(2). More-
over {A}}, _, ., can be chosen arbitrarily close to {A(r)}y, -,

Proof. Let F be the Banach manifold of all the real bounded Fredholm
operators of index 3 — 3¢ on real separable Hilbert space. For k > 0, set

F® = (T € F|dim ker T > k}.

Then F® is a closed subvariety of F of finite codimension k(3g — 3 + k). Also,
F® has normal bundle in F on F® — F&+D whose fiber at T € F® — F&+D

is identified with the finite-dimensional linear space

Hom g(Ker T, Coker T')

([Ko)). For {A}; ., <, and r > 0, regarding {&}% )}, <, <, to be a path of bounded
Fredholm operators of index (3 — 3g) from the L3-completion of Q(X(r), P.)
to the L?-completion of (Q' + Q°)(X(r)) ® su(2), we get a smooth path in F,
{€FYo<i <1 such that &F, & € F© — FO. The space of all the irreducible
representations of (%) to SU(2) is a smooth manifold. First we perturb
{A}o<i<y so that the curve {B,},_,., has nonzero tangent vector at each
0 <t < 1 when it is regarded as a smooth curve in the representation space of
7(2) to SU(2). This can be achieved by arbitrarily small perturbations. Then
the curve {&*}, ., ., in F also has a nonzero tangent vector at each 0 <t < 1.
Suppose &% € F® — F&*D for some 0 <u <1 and k > 1. By Lemma 54,
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i € F® — F&*D for r > 0. Let A (r) + a be a simple perturbation of

A (r). Let P be the L%*orthogonal projection of the L?-completion of (Q' ®
Q°)(X(r)) ® su(2) onto Coker &;*(,,. Then the correspondence

Ker GOA*Z(,) 5¢ - P(DAu(r)+a"/I) € Coker (’pAt(r)

determines an element o, of Hom z(Ker &5 ,), Coker &) which is the fiber
of the normal bundle of F® at &4 By Lemma 5.6, for sufficiently large
r > 0, taking various @, we have at least (2g — 2)-dimensional perturbations
{4 1y+ala Of €4%(,, in the normal direction of F®_ In particular, we can choose
a so that o, is linearly independent of the normal vector to F® at &
determined by the tangent vector of the curve {& )}, <, at t = u. Moreover
we can chose an arbitrarily small such . Since F® — F&*D is open in F&), for
a sufficiently small such @, &%), € F & for 0 < k' < k. The proposition
follows from the compactness of [0, 1] and the transversality argument. g-ed.

6. Operators and invariants associated with splittings of manifolds

Let M be an oriented closed Riemannian 3-manifold. Let M, and M, be
connected submanifolds of codimension 0 such that M = M; U M, and M, N
M, = dM, = M, = 3, is a connected orientable surface of genus g (= 2). We
orient 3 as the boundary of M,. We assume that, near %, M is isometric to the
product Riemannian manifold 3 X [—1,1]with 3 = 3 X {0}, £ X [~ 1,0] € M,
and 3 X [0,1] € M,.

Definition 6.1. Let A be a smooth connection on M X SU(2) which re-
stricts to a product B X 1 on 3 X [—1,1] X SU(2) for an irreducible flat
connection B on ¥ X SU(2). For i = 1,2, we define the operators:

(1) & = &, in Definition 4.1(1) for X = —M, (i = 1) and for X = M,
(i = 2), where —M, is M, with the opposite orientation, and

(2) &i* = &F in Definition 4.1(2) for X = —M, (i = 1) and for X = M,
(i=2).

Let 7': Ker & — #, be the map defined in Definition 4.2 for &, = &
(i = 1,2). By Lemma 4.3, L, = w'(Ker &) is a Lagrangian of #}.

Let {A,}, <, <, be a smooth one-parameter family of smooth connections on
M X SU(2) such that, for 0 <t <1, A, restricts to a product B, X 1 on
3, X [—1,1] X SU(2) for an irreducible flat connection B, on 3 X SU(2).
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For 0 <t <1 and i = 1,2, the following operators have been defined:

{DA»}ogs . defined in Definition 2.1,
{eﬂi}oStSV defined in Definition 5.1(1),

{g@i*}ogs y defined in Definition 5.1(2).

The first is a one-parameter family of self-adjoint Fredholm operators, and the
second and the third are one-parameter families of Fredholm operators and their
adjoints. Each of these depends smoothly on ¢.

Definition 5.1 Let {A },.,., be as above. {A},_,, is called generic if,
fori=1,2and 0 <t <1, Ker &* = 0.

We assume that {A},_, ., is generic.
ForO <t <1,

%B, = {w = QI(E) ® Su(2)|dB[a) = dgiw — 0}

is a (6g — 6)-dimensional real vector space with the non-degenerate symplectic
structure defined in Section 3. Let 7;: Ker & — #3 be the map defined in
Definition 42 for 0 <t < 1 and i = 1,2. L}, = m(Ker &}) is a Lagrangian of
#p, by Lemma 4.3.

As in Section 5, there is a trivialization

0,: %B[ -V

where V is a fixed non-degenerate (6g — 6)-dimensional real symplectic vector
space and O, is an isomorphism of symplectic vector spaces continuously
depending on t (0 < ¢t < 1). We choose and fix such a trivialization. Using ©,
we obtain a Lagrangian ©(L) of V, where L = m/(Ker &) as above
(i = 1,2). For simplicity, from now on, we denote ®,(L, ) also by L, .

By the assumption Ker &}* = 0 for 0 < ¢ < 1 and Lemma 5.1, {L; }o, <,
is a continuous one-parameter family of Lagrangians in V (i = 1,2).

As in Section 5, let .# be the space of all the Lagrangians of V. Let
L2 =X be the space of all the Lagrangian pairs of V. Then
{(Ly, L% Wy, <, is a continuous path in 2.

We study .2 in the subsequent paragraph. Let ( , ) denote the
symplectic pairing of V. We choose and fix a symplectic base of V,
{xl,...,xsg_3,y1,...,y3g_3}, where (xj, Yi) = 6, and (xj,x3) = (yj, y) =0
for 1 <j,k <3g—3. For v,,...,v, €V, {v,,...,v,} denotes the subspace of
V spanned by v,,...,v,. For a subspace U of V, U* denotes the symplectic
orthogonal complement of U; U*={v € V[{v,x) =0, for all x € U}. Let
Sp(3g — 3, R) be the group of all the symplectic automorphisms of V. Choosing
a symplectic base of V as above, we identify Sp(3g — 3,R) with the group
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consisting of all the (6g — 6) by (6g — 6) real matrices T such that

tT(—OI (I))Tz(i)l (I))

where I denotes the (3g — 3) by (3¢ — 3) unit matrix. Thus Sp(3g — 3,R) is a
noncompact Lie group of dimension 2(3g — 3)® + (3g — 3). The maximal
compact subgroup of Sp(3g — 3,R) is the unitary group U(3g — 3), and
Sp(3g — 3,R) = U(Bg — 3) x RC&=¥+0Ge=d) 46 ©* manifolds. Hence
7(Sp(3g — 3,R)) = m(U(Bg — 3)) = Z and it is generated by the homotopy
class of the loop {I(6)}, < 5., where 1(6) denotes the rotation
( cos 6 sin 6 ) —
—sinf cos 6

in the (x,, y,)-plane and the identity on {x, y,} *.

Let Ly ={x,..., %3, 3} be the standard Lagrangian of V. For L € .7,
there is a (not unique) h € Sp(3g — 3, R) such that L = hL, (the translation
image of L,). Thus - is a homogeneous space Sp(3g — 3, R)/G,, where G, is
the subgroup of Sp(3g — 3, R) defined by

R S detR # 0
= e - .
G {(0 tR—l) Sp(3g — 3.R) ‘(R'S) =R_IS}
G, is a real Lie group of dimension (3(3g — 3)*> + (3g — 3)) /2.
Lemma 6.1. 2 is a homogeneous space of dimension ((3g — 3)® +

(Bg —3))/2 and (L) = Z.

Proof. The first statement follows from the above paragraph. From the
homotopy exact sequence of the fibration
G, - Sp(3g — 3,R) > 2,
we have
m1(Go) = m(Sp(3g — 3,R)) = 7 (L) = m(Gy) = 1.
Since 7(G,) = 7(GL(3g — 3,R)) = Z, and 7,(G,) = m,(GL(3g — 3,R)) =
Z,, we obtain the exact sequence
1>Z->m(L)—>Z,—> 1.
Hence 7 (£) = Z. q.ed.
By the proof of the above lemma, we see that the homotopy class of the loop

{l(O)L}y <o <, is a generator of 7 ().
For 0 <k < 3g — 3, we set

£ = (L', L*) € Z*dim(L' N L?) = k},
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and we set
3g—-3
2 _ 2
ji=k
Then £2 = £§ D L5 DL35 D+ D£3, 5 isa stratification of £

Lemma 6.2. % is a C* manifold of dimension ((3g — 3)*> + (3g — 3)).
For 0 <k <(3g — 3), £ is a connected C* submanifold of .£’* of codimen-
sion (k* +k)/2, and £}, is a real analytic subspace of £

Proof. The first statement is obvious by Lemma 6.1. Let L, be the standard
Lagrangian and let Ly = {x,..., x4, 4y 11, -+» Yg, 3} Then (L, L) € 2 for
0 <k <3g—3. For (L,L) € 42, we can choose a symplectic base of V,
{ug,..., Uy 3, Vpse e DSg—B}’ such that (uj, uq> = (vj, vq> =0, (uj, vq> =9,
(1<j,9g<3g—3) and

L={uy,... uz, 3} L'={uy,...,up,0p4,,...,05, 3}

Hence (I, L") = (hL,, hL)) for some h € Sp(3g — 3, R). Thus .#? is a homo-
geneous space Sp(3g — 3,R)/G,, where G, is the subgroup of Sp(3g — 3,R)
fixing the pair (L,, L}). By matrix calculation, we have dim G, = (3g — 3)® +
(k* + k)/2. Hence £ is a C* submanifold of codimension (k2 + k)/2. The
condition that dim(L' N L?) > k is written locally by a system of real algebraic
equations and the last statement holds. q.e.d.

Thus codim .#> = 1 and codim .#}> > 3 for k > 2.

Lemma 6.3. 7 (£ £2) = Z. A generator vy, is given by the homotopy
class of the path {(L,, UO)L')}_, ., for small & > 0; here Ly = {x,,..., x5, 5}
and Ly = {x1, Yy, -, Y3,

Proof. By Lemma 6.1, m(.£?) = w (£ X ) =Z X Z and it is gener-
ated by the homotopy classes of the two loops {(L,, I(6)L,)}y.p., and
{(O)Ly, Llgcp<,. Let p;: £2— .7 be the projection onto the first
factor. By Lemma 6.1 and Lemma 6.2, = Sp(3g — 3,R)/G, and £} =
Sp(3g — 3,R)/G,. Hence p, is a fiber bundle with fiber G,/G, which is
contractible. It follows that 7 (.£}) = 7 ,(.#") = Z which is generated by the
homotopy class of the loop {(I(6)L,, 8L}y < < ., where Ly = {y,,...,y5, s}
In (%), this homotopy class is equal to the sum of the above two generators
of ,(.£"?). By the homotopy exact sequence of the pair (.£2, £2), we obtain
the result. q.e.d.

Now we have prepared for the definition of the invariant y({A,}).
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Definition 6.2. Let {p(t)} = {(L} B Lit)} be the path of _#? obtained as
above from L) = mj(Ker&,) (0 <t <1 and i = 1,2) for a generic smooth
path of smooth connections on M X SU(2), {A ), <, <;- We assume p(0), p(1) €
Z¢. Let [p(t)] be the homotopy class in (.22, -£2) of the path {p(t)}. We
define the invariant y({A,})) € Z by

[p(t)] = v({A})7e

where 7y, is the generator of 7 (£, £) given in Lemma 6.3.

7. Proof of Theorem 1.1

Let M, M, and M, and 3 be as in Theorem 1.1. For 0 < r < o, we define
the elongated manifolds M,(r) and M,(r) by

M(r) =M, U3 X [-r,0] and
My(r) =3 X [0,r] UM,

where 3 X {—r} and 3 X {r} are identified with dM, and M, respectively.
The product metrics on % X [—r,0] and 3 X [0, r] should be understood. For
0 <r < o, we define the manifold M(r) by

M(r) = M,(r) U My(r)
where dM (r) = 3, X {0} is identified with dMy(r) = 3 X {0}. The volume and
the diameter of M,(r), M,(r) and M(r) tend to infinity as r — o, while the

Riemannian metrics on M;, M, and 3, all remain constant. For 0 < r' <r, we
regard M,(r') as a submanifold of M(r) in a natural way (i = 1,2).

Lemma 7.1, Fori=1,2, and 1 <r <, let {A},_,,  be a sequence of
smooth connections on M(r) X SU(2) such that A; converges to a smooth
connection A on M(r) X SU(2) asj — . Let {{;};_, ,  be a sequence of forms
in (Q' @ Q°)M,(r)) ® su(2) such that Dy ;= A and {|ly;ll.2} is bounded,
where {A}},_, ,  is a sequence of real numbers such that A; - A as j — . Let
1/1 w; |M (r — 1) be the restriction of §; on the submanifold M(r — 1) € M(r).
Then there is an Li-strongly convergent subsequence {1// Y of {(/I} whose limit

W, satisfies Dy, = A,
Proof. For j =1,2,..., let
V;: Q5 (M,(r)) ® su(2) = T*M,(r) ® Q*(M,(r)) ® su(2)

be the covariant derivative operator associated to the connection A ;. Since A;
converges to A, we may assume that there is a C* function B on M,(r) such
that 0 <B <1, 0<|VBl <1, B=1o0n M(r—1) € M(r) and B = 0 near
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IM(r) (j=1,2,...). We set tzj = By,. The leading term of the differential
operator (DAJ)2 is the Laplace operator on (! & Q°)(M,(r)) ® su(2). Hence by
the Weitzenbock formula and the assumptlon on i, it follows that {(V* V. !// , !// )}
is bounded. Since (V*V zp , t// ) = v, !// I3, {(p} is an L2-bounded sequence. By
Rellich’s lemma, there is an L2-str0ngly convergent subsequence {t// J;- By the
assumption that Dyy; = A;p; and A; - A, it follows that {(p } is also
an L2 -strongly convergent sequence. The limit ¢, of this sequence satisfies

D,y,, = AJ, on M(r — 1), and we set ¢, = U IM(r — 1). q.ed.

For a smooth connection A on M X SU(2) which restricts to a product
B X 1on 3 X[—1,1] X SU(2) for an irreducible flat connection B on 3 X
SU(2), A can be extended to a smooth connection denoted by A(r) (in each
case) on M(r) X SU(2) and M,(r) X SU(2) (i = 1,2) by setting A(r) =B X 1
on the attaching cylinder parts.

For 0 <r <o, we define the operators D, &, and &% as in
Definitions 2.1 and 6.1 (1), (2) respectively.

Let {u} and {¢,} be the set of eigenvalues and orthonormal eigenforms of
Dy respectively.

First we consider the behavior of the kernels of the above operators for
r > 0.

Let II: Ker &' + Ker &2 — #; be the map defined by

(e, 9%) = o'~ o
for ' € Ker & (i = 1,2), where o' is the harmonic part of |dM,.

Lemma 7.2. If KerIl is trivial, then there is r(0) > 0 such that, for
r > r(0), Ker D,,, is trivial.

Proof. Assume that D, has a nontrivial kernel . Let ¢' = ¢/|M; be the
restriction of ¢ on M; (i = 1,2). On 3 X [—r,r], & can be written as

(7.2.1) Y(s)=w+ . (s)+¢_(s), -r<s<r,

where w € #5 (considered as a 1-form on 3 X [—r, r], constant with respect
to s), ¥ (s) =X, 0c,e™ P, and ¢_(s) = X, ,c,e™ ¢, for constants {c,}.
Since ¢ is a solution of an elliptic differential equation with smooth coeflicients,
by the unique continuation theorem, ¢ has positive mass on M; U M,. Hence
we can normalize ¢ as |[¢']l.2 + |[%]l.2 = 1. From the above form of #(s), it
follows that there is a positive constant ¢, not depending on r such that

”Qp—(_r)”[} < c7”‘//1”1‘2 and
"‘p+(")”L2 < C7||¢2||L2~
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It follows that there are positive constants c¢g and ¢y both not depending on r
such that

(7.2.2) [¥_(r)|: < cge™ " and
o (=r) e < cse™"
Assume that there is a sequence r, <r, < ---, r; > © such that

Ker Dy, # 0. Let {y} be a sequence such that ¢, e Ker Dy, and
||¢ I| 2 £ ||¢2 Iz = 1. By Lemma 7.1, taking a subsequence if necessary, we
may assume that this sequence strongly converges to (¢, ¥2) in L3. Since
Ntz + w2l = 1, (Y, ¢2) # (0,0). By the inequality (7.2.2), ¥.|oM, €
P_+ #, and $2|0M, € P, + #},. Hence ¢} € domain & and ¢} € Ker &
(i = 1,2). Since the harmonic part of ¢|dM, in the above decomposition is
equal to that of ¢?l0M, (j =1,2,...), H(((ﬁm, ¥2)) = 0 and Ker IT # 0. This
contradicts the assumption of the lemma. q-e.d.

The next lemma is a restatement of Lemma 5.4.

LemMma 73. For 0 <r' <r<wandi=1,2,
Ker &, = Ker &,, and

Ker &%) = Ker &%),

Next we consider the behavior of the small eigenvalues and the correspond-
ing eigenforms of &, for r > 0.

For ¢ € (Q' @ Q°)M,(r)) ® su(@), on % X [—r,0] for i =1 and on
3 X [0, 7] for i = 2,  can be written as

W(s) = o(s) +¥.(s) +¥_(s)
where ,(s) € H#5, ¢, (s) € P, and ¢y_(s) € P_.

Lemma 7.4. Let 8 > 0 be such that § < min|u|, where u runs through all
the nonzero eigenvalues of Dy. Then there are positive constants c,y(8) and
¢11(8) both not depending on r such that, for any A-eigenform ¥ of &, with
Al <6 (i=1,2),

I|¢+(O) +¢_(0)] 2 < c10(8)e |1yl 2.

Proof. On 3 X R, a A-eigenform of D, (JA| < min{|u||x # 0}) is a linear
combination of

o7 (s) = (1 + ViF = 2 ), — Aor(w,) ) eV =,



304 TOMOYOSHI YOSHIDA

and
®, (s) = ((—A)t/l# + (,u + Yu?— A2 )0(¢#))e_\/ms for u # 0,

and
¢o(s) = (cos As)w — (sin As)* @ foru =0,w € H#5.

We consider the case that i = 2 and ¢ is a A-eigenform of &7,,. The other case
can be treated in essentially the same way. We set

e, = (1 + V2 = 2)or + 207 ) /1 2.

Then the boundary condition of ¢ implies that, on 2 X [0, 7], ¢ can be written
as

¥(s) = ZC#GD#(S), 0<s<r

m#*0

for some constants {c,}. There is a constant ¢, not depending on r such that

”Q//(r)”L2 < 012||¢||L2-

By the above forms of ¢, (s) and ¢, (s), we see that there are positive constants
¢10(8) and ¢,4(8) both not depending on r such that

( X Ci)ec“(a)r < co(8)llpllzz.

w#0

Since [l (0) + ¢_(0)|l2 = \/Zwﬁoci , the lemma follows. q.e.d.

For r > 0, we define a self-adjoint Fredholm operator %, which is
related to y({A,}) in Theorem 1.1 as follows:

Let I' be the space of smooth sections of the trivial &#%-bundle (3 X
[—r,r]) X H#5. Let Ly = image(w’: Ker &' = H#;) for i = 1,2, where 7' is
the map defined in Definition 4.2.

Set

T(LY, L2) = (¢ € Tly(—r) € L} and ¢(r) € L3).

Definition 7.1. Let %, be the operator from the L3-completion of
I'(LY,L2) to the L*-completion of I' defined to be the closure of the operator
sending ¢ € ['(LY, L%) to *(d4/ds), where s is the coordinate of [—r, r].

Note that %, is the restriction of D,,, to the part of (Q' ® Q°)(Z X
[—r, 7] ® su(2) involving the harmonic part of Q(2) ® su(2).
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Lemma 7.5. K, is a self-adjoint Fredholm operator. For 0 <r <r' <,
the eigenvalues {A} and {X'} of #,,, and ¥, respectively, are related as
N = (r/r)A.

Proof. The self-adjointness of the boundary condition for %), follows
from (3.1.1) and the fact that L}, and L} are Lagrangians. That %, is
Fredholm follows from essentially the same argument as in the proof of
Proposition 4.1(1). The second statement follows from the simple variable
change. q.e.d.

The next lemma relates the small eigenvalues and the corresponding
eigenforms of %, ,, to those of D, for r > 0. In the lemma and its proof, we
use the map

h,:2X[-1,1] » %X [-r,r]

defined by h (x, s) = (x,rs) for x € 3 and s € [—1, 1] and its induced isomor-
phism
R QF(E X [—r,r]) @ su(2) » QF(E X [-1,1]) ® su(@) (k=0,1).
Lemma 7.6. Let A be an eigenvalue of %, of multiplicity n such that
M| < 7. Then for sufficiently large r > 0, there are precisely n linearly inde-
pendent eigenforms (Y, ()}, _ of Dy, belonging to the eigenvalues
{€(r)}or ., such that, for k = 1,...,n,
@) A —r&(r)]is O /r), and
(i) {M(w (1))}, converges to a A-eigenform of K,y as r — o, where
() denotes the harmonic part of the restriction {; (,\|% X [—r,r].

Proof. Let ¢ be a A-eigenform of J#),). Then ¢ is a form on 2 X [—1, 1];
¢ = (cos As)w — (sin As) * w, -l<s<1
for o € H#5, and
o' = (cos M)w + (sin A)*w € L,
® = (cos A\)w — (sin A)*w € L2

Put ¢, = (h*)"'¢. Let ¢' € Ker & be such that 7' (¢?) = o' (i = 1,2). Then
@' is the restriction of ¢ € Ker @O[f(r) (Lemma 7.3). On 3 X [—r,0] (resp.
3 X [0,r]), ¢! (resp. ¢2) can be written as

¢'(s) = o' + dL(s),
$*(s) = 0 + $%(s)
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where ¢! (s) (resp. ¢2(s)) is a linear combination of ey, for u < 0 (resp
w > 0). If we normalize as ||¢']l.2 = 1 (i = 1,2), then ||¢L (0)||L2 and ||¢2 (0) ||
are both O(e™ ") by Lemma 7.4. For r > 1 and i = 1,2, let B! be a C°
function defined on M(r) such that 0 < B! <1, 0 < |VB!| < 1, Bi=1 on
M(r — 1) and B; = 0 near dM,(r). We define a form ¢’ on M(r) by

Y= ¢ on M, (i=1,2)

=@, + Blo + B2 on 3 X [—r, r].

Here Bl¢L and B2¢% are considered to be forms on 3 X [—r, r] by extending
by 0 on 3 X [0,7] and on 3 X [—r, 0], respectively. We set

Then ¢ is an element of the L3-completion of (Q! & Q%)(M(r)) ® su(2). For
r > 0, the greater part of the mass of ¢ lies on ¢, and we see that
||DA(,-)¢’, - (A/r)ﬂb,”LZ is O(A/Tz)

Let {A(r)} and {¢A(r)} be the set of eigenvalues and the set of orthonormal
eigenforms of D,,,, respectively. Then

¥, = ZCA(r)¢’A(r)

for constants {c,,,}, and
| Daoytr, = (A/r), ]2 = minf A(r) = A/r].

Hence there must be an eigenvalue §(r) of DA(r) such that |&(r) — A /7] is
O(1/r?). For a sequence 0 < r, <r, < , r; = ®, we consider a sequence
of eigenforms of DA(r),{¢§(r Y belongmg to a sequence of such eigenvalues
{f(r )} Since A /r; = 0 as j — %, when we normalize as ||¢'§(r)|M U M,ll2 =
1, by Lemma 7.1, taking a subsequence if necessary, we may assume that
{¢§(rj)|Mi}j converges strongly in L} to a form ¢ in Ker & (i = 1,2). Hence,
taking a subsequence if necessary, we may assume that {h}(w(r))}; converges to
a A-eigenform of %), where w(r;) denotes the harmonic part of Yy 2 X
[—r, r]. By the method of construction, the harmonic part of h* (i, |3 X [ r,r])
is the nontrivial A-eigenform ¢ of % ,,. Therefore there must be a sequence of
eigenforms {tﬂg(,j)}j satisfying the above conditions such that {h*(w(r))}; con-
verges to a nontrivial A-eigenform of #,,. Since we can construct such a
sequence of eigenforms of D, for arbitrary A-eigenform ¢ of Faay by
dimension counting, the number of linearly independent such eigenforms is n
for r > 0. q.e.d.
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Now let A, and A, be smooth irreducible flat connections on M X SU(2)
with Ker D, = 0 = Ker D, such that A, and A, restrict to irreducible flat
connections B, and B, on 3, X SU(2), respectively. Since the space of all the
irreducible representations of 7 (2) to SU(2) is arcwise connected, there is a
smooth path of smooth irreducible flat connections on 3 X SU(2), {B}, ., <1
connecting B, and B,. Also by Proposition 5.1, we may assume that there are a
Riemannian metric on M and a smooth path of smooth connections, {A },, ;.
on M X SU(2) such that (1) M is isometric to a product ¥ X [—1,1] near 3,
(2) A, restricts to the product B, X 1 on 3 X [—1,1] X SU(2) for 0 <t < 1
and (3) Ker &* =0for0 <¢ <1landi=12

Since A; (j =0,1) is irreducible flat, Ker D, is isomorphic to Hj (M
su(2)) and 1t is independent of the Riemannian metric on M. In particular,
Ker D, () =0 for >0 (j =0,1). The sequence of the path of operators
{D ,(r)}0<t<1 for 0 <7’ <r gives a homotopy between {D, } and {D, ,}. It
follows that SF(M,{A,}) is equal to the spectral flow of {DA,(r)} for r > 0.

For 0 <t <1, let {u,} and {t//m} be the set of eigenvalues and eigenforms
of Dy respectively. Since [0, 1] is compact and {u,} depends continuously on ¢,
there is a 6 > 0 such that § < minf|u,|} for 0 < ¢ < 1, where u, runs through
all the nonzero eigenvalues of Dj. We choose and fix such a 8. Then the
constants c,o(8), ¢;,(8) in Lemma 7.4 can be chosen independent of ¢.

Since Ker &* = 0 for 0 < ¢ < 1, by Lemma 5.1, {L}, },, <, is a continu-
ous path of Lagrangians (i = 1,2). Hence {#] ,)}o<,., is a continuous one-
parameter family of self-adjoint Fredholm operators for r > 0. Since Ker %
coincides with the space of constant sections in I'(L} , Li,)> it is isomorphic to
Ly, N L} . The nondegeneracy of the irreducible flat connections A(r) and
A((r) implies that Ker %, ., = 0 = Ker % ). Hence the spectral flow of
{Fi(Po<i <1 is well-defined.

Lemma 7.7. For r >0, the spectral flow of {#] . )}o<.<: is equal to
y({AD.
Proof. A A-eigenform ¢, of %, ., has the form
= (cos As)w, — (sin As) * w,
for w, € #; and —r <s <r; here
= (cos Ar)w, + (sin Ar)*w, € L}
and
w? = (cos Ar)w, — (sin Ar)* w, € L2.

The 0-eigenvalue of %, ) appears exactly at those ¢ such that L}‘&, N Li, #0
and dim th N Lit is its multiplicity. To see the sign changes of A near the
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0-eigenvalue, let {¢),} be a sequence of eigenforms of %, (,, such that ¢, - ¢, ,
a 0-eigenform, as t = ¢, and ¥, (,,¢h, = A, where A, —> O as t — t,,. Consider
the symplectic pairing

(0}, 02) = —[Etr(w; A w?)

- (sin2)\tr)(f2wt A *wt).

For A, near 0, the sign of A, is equal to that of {w}, ®?). Hence the sign change
of A, at ¢ = ¢, (if it occurs) is equal to that of (w}, w?). In the definition of
y({A,}) (Definition 6.2), the generator vy, of 7 (.22 £2) is given by the
homotopy class of the path {(L,, I(8)L))}_, ., ., in the notation of Section 6.
The sign change of 6 coincides with that of the symplectic pairing w,, @)
where w, and o} (—& < @ < &) are sequences of elements of L, and I(9)L,
respectively, such that w,, 0y = w, € L, N L, as 8§ — 0. It follows that the
spectral flow of % () is equal to y({A,}). q.e.d.

The following lemma completes the proof of Theorem 1.1.

Lemma 7.8. For sufficiently large r > 0, the spectral flow of {D, ()}, <
is equal to y({A,}).

Proof. For 0 <¢ <1, let II,: Ker(f1 + Kercft — H#3 be the map de-
fined just before Lemma 7.2. By Lemma 72, if r - o, the set {t € [0, 1]]
Ker D, (,, # 0} concentrates to the set T, = {t € [0, 1]|Ker II, # 0}. Since the
sign change of the eigenvalues of D,y occurs near 0-eigenvalue, the points at
which the sign of the eigenvalues change concentrate to the points of T,. Ker II,
is the space spanned by those (!, %) € Ker &, + Ker &2 with 771((//1) =

w2(%) # 0. The latter space is nontrivial precisely ‘at those ¢ with L n L2
0. At these points, by Lemma 7.6, the sign changes of the elgenvalues of DA ™)
are equal to the sign changes of the eigenvalues of %, 4,y for sufficiently large
r > 0. Hence the spectral flow of {D, .}, ., ., is equal to the spectral flow of
{Z, apo<i<1 for sufficiently large r > 0. The lemma follows from Lemma 7.7.
q.e.d.

8. Dehn surgery along the figure eight knot

In this section we prove Theorem 1.2. Let S! and D? be the unit circle and
the unit disk in the complex plane respectively oriented by the complex
structure. Let S' X S! be the 2-torus. Let # and ¢ be the homotopy classes in
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(8! X S!) represented by S* X 1 and 1 X S respectively. Set
R(S" x S') = Hom(m(S' x S'),SU(2))/ad SU(2).

For p € R(S' X S'), we can write, up to conjugation,

(8.1) p(w)=(e;u egu) p(‘)z(e(i)v e?i”)

for —7 <u,v <. The correspondence p — (e, ¢’*) induces a bijection
between R(S! X S!) and S' X S'/~ , where (z,w) ~ (3, w) (- denotes the
complex conjugate) for z, w € S'. Thus R(S' X S') is the 2-sphere with distin-
guished 4-points Q = {(£1, £ 1)} each of which corresponds to a representa-
tion of 7 ,(S' X SY) ipto the center of SU(2).

Let P, = R(S* X S') — Q. P, is a four-punctured sphere. Let q: P, P,
be the universal abelian covering of P,. P, can be identified with R? — Q,
where O denotes the set of those points whose coordinates are integer multiples
of . The variables (u, v) in (8.1) can be considered as coordinates of f’o. Let A
be the discrete subgroup of the euclidean motions of P, generated by three
motions, (u,v) = (u + 2, v), (u,v) = (u,v + 27) and (u,v) - (—u, —v).
Then P,/A = P,.

Let K be the figure eight knot in S3 Let U(K) be a closed tubular
neighborhood of K. Let N = §* — U(K). Let (#, ¢) be the meridian-longitude
pair on dN. Thus # is a simple closed curve on dN, null-homotopic in U(K),
and ¢ is one null-homologous in N. We denote their homotopy classes in
7,(0N) by the same letters.

For an integer k, let f;: S' X §' = dN be a diffeomorphism such that
fisx(m) =m+ k¢ and fi,(£) = ¢. Let Ny =N ULD?X S") be the
manifold obtained by attaching D? X S! to N along their boundaries by f;:
S! X S' =ad(D? X §') > IN. Then N, is a Z-homology 3-sphere. We give
N, an orientation compatible with that of N.

Set

R(N) = Hom(m(N),SU(2))*/ad SU(2),
R(N,) = Hom(m(N,), SU(2))* /ad SU(2),

where * denotes the irreducible representations.
7(N) has the presentation

m(N)={s,ds¢ 47 ea=¢s¢ "4 ¢)

and 7 =4, (= ¢33 e Using this presentation, Burde [B] has
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shown that the SO(3)-representation space of (N)
R(N) = Hom(m(N), SO(3))*/ad SO(3)

is a real algebraic curve C in the plane. The algebraic equation of C is given as
follows [B]: For a representation p: m,(N) — SO(3), let a be the rotation angle
of p(4) (= that of p(¢)) and let B be the (unoriented) angle between the axis of
p(4) and p(¢). Put 7 = cos B and y = (cot(a/2))>. When these parameters are
used, the algebraic equation of C is given by

8.2) C:y>+ (Q2r+4)y+4r2+2r—1=0.
y

R(N) is a circle containing two binary dihedral representations. Let D =
{binary dihedral representations} denote these two points in R(N). Then
R(N) — D consists of two disjoint arcs C and C’. For each p’' € C’, there is a
p € C such that p'(s) = (—1p(4) and p'(¢) = (=1)p(¢), where —1 is the
generator of the center of SU(2).

The map fy: §' X §' = dN induces the map f¥: R(N) - R(S' X S
sending p € R(N) to the restriction plf, .7 ,(S* X S'). From the analysis in
[B], it can be seen that f*(R(N)) C P, = R(S' X S§') — Q. Thus f;*(C U C")
consists of two curves in P,, C, and C}. Let €, and C} be their inverse images
in P,. For an SU(2)-representation p of 7 ,(N), up to conjugation, we can write

eia/Q 0 et{ 0
p(m) = ( 0 e-"a/Z) p(4) = ( 0 e_ig)
for —m <a, { <. Then the curves C, and C, are the graphs given by
(u,v) =(a/2 + k¢, 0.

For k an integer < 0, a fundamental segment E, of C, with respect to the

action of A is as in Figure 8.1 (for k = —1, see [B]), where ¢, corresponds to a

w/2 + kT — 9 ' € ' o T/2 — KT

—u

' Py

Ficure 8.1
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binary dihedral representation. A A-fundamental segment Ej of C; is obtained
by shifting E, to the right by the amount 7. The graph in Figure 8.1 is not
rigorous, but the important features of E;, and Ej are that they have no
self-intersection points and they intersect transversely with these lines

L = {u = 2mm|m integers}.

R(N,) consists of finite points and it is in one-to-one correspondence with
the set of the intersection points (E, U E;) N L. By Figure 8.1, we see that
there are precisely k such points on each of E, and E}. Their u-coordinates
are:

(8.3) 2mjlj € Z,1/4 +k/2<j<1/4-k/2},
(2mjlj € Z,3/4 +k/2 <j<3/4—k/2}.

For each j in (8.3), let p; and p; be the points of R(N,) corresponding to the
above intersection points on E; N L and Ej N L respectively.

For j in (8.3), let K; and K/, be the flat connections on N X SU(2)
associated to p; and p; respectively.

The de Rham cohomology group H ’1<1(N’ su(2)) is the Zariski tangent space
of R(N) at p,;. H ,1<j(Sl X S! su(2)) is identified with the tangent space of P, at
p;. The image f(H ,1<j(N, su(2)) by the map f; is identified with the tangent
space of the curve E; at p;. Let v S x S —» D? X S! be the inclusion map.
Then *(H ,1<1(D2 X S! su(2)) is identified with the tangent space of the vertical
lines L at p;. Since the E; cut L transversely, by the Mayer-Vietoris exact
sequence of de Rham cohomology groups, Hg (N, su(2)) = 0. Since Ker Dy is
identified with this de Rham cohomology gronj.lp, Ker Dg = 0. The same arjgu-
ments hold for p;, E; and K.

Thus the set of the gauge equivalence classes of the flat connections on
N, X SU(2), {[K j],[K}]}, is the set of the non-degenerate critical points of the
Chern-Simons functional and they form a basis of the chain complex of I, (N,).

(I) Computation of d([K;]) — d([K;] and d(K,,D — d(K}]. First we
compute the difference d([KjH]) — d([Kj]) for j, j + 1 in (8.3).

Let {A,}, -, <, be a smooth path of smooth connections on N; X SU(2) such
that (1) A=K, A, =K,,, and (2) for 0<¢<1, AJINXSU) is the
irreducible flat connection corresponding to the representation p‘, where
{p"}y < <1 is the segment of E; connecting p’ =p; and p' = p, ., and (3) near
3, A, restricts to B, X 1; here B, is the flat connection on % X SU(2) associated
to the restriction p’|7(3).

To apply Theorem 1.1, we need a technical modification. Since 7 (N ) is
generated by the homotopy classes represented by the meridian loop in N and
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Ficure 8.2

its conjugate, we can find a simple closed curve v in N such that v N N =
{base point} and (v UAN) carries the generator of 7(N). Let Y =
Y, UY,UY, be the 1-complex pictured in Figure 8.2.

There is an embedding ¥: Y — N, such that ¥(Y,) is isotopic to the core
curve of the attaching solid torus D2 X S* in N,, and W(Y,) is isotopic to v.
Let Ny(Y) be a regular neighborhood of W(Y) in N,. We set M, = Ny (Y),
M, = N, — Ng(Y) and 3 = M; N M, = dN4(Y). Obviously we may assume
M, C Int N. By the above choice of v, 7 (3) carries the generator of 7 ,(N). It
follows that, for each p* (0 < ¢ < 1), the restriction p‘|m (2) is irreducible. We
give a Riemannian metric on N, such that, near %, it is isometric to the product
Riemannian manifold 3 X [—1, 1] for some metric on 3.

(I-1) Claim. Ker &y >* = (0. Since A,|M, X SU(2) is an irreducible flat
connection for 0 <t < 1, by Lemma 4.2, Ker cf * is isomorphic to the relative
de Rham cohomology group H A(Mz, 3, su(2)). By the excision property, it is
isomorphic to H;(N,N — M,, su(2)). As HX(N M,,su(2)) = 0 by the irre-
ducibility, we have the exact sequence

0 = Hy(N,N — M, su(2)) = Hi(N,su(2)) > H} (N — My, su(2)).

N — M, is homotopy equivalent to » U dN and the Mayer-Vietoris sequence
shows that HA(N M,, su(2)) contains Hj, (0N, su(2)) as a direct summand.
Since the image (H,(N,su(2)) — H, (4N, su(2)) is identified with the tan-
gent space of the curve E, at p’ as noted before, this map is injective. It
follows that the last map in the above exact sequence is injective. Hence
Hjt(N,N — M, su(2) =0for0 <t <1

By Proposition 5.1, perturbing {A,},_,., and the metric slightly if neces-
sary, we may assume that Ker &}'* = 0 for 0 <t < 1. Hence y({A,}) can be
defined as in Section 6.

(I-2) Computation of y({A,})). We adopt an indirect method to compute
v({A,}) by making use of its homotopy invariance and the computation of the
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Floer homology group of the Brieskorn homology 3-sphere by Fintushel-Stern
[F-S].
Let H = 3(2, 3, 19) be the Brieskorn homology 3-sphere
H={z}+2]+2=¢JNS> (&> 0small)
where (z,, z,, z;) € C* and S® is the unit sphere in C®. It is oriented as the
boundary of the non-singular algebraic variety {z} + z5 + z}° = ¢} N D¢, where
D? is the unit disk in C>.

Let T ={z; =0} N H. T is a circle in H. Let U(T) be a closed tubular
neighborhood of T in H. Let V.= H — U(T). Then V is an oriented compact
connected 3-manifold with 8V diffeomorphic to S' X S'. 7 (V) has the presenta-
tion

m (V) = {w,/lwz =/3}.
We set
R(V) = Hom(m,(V), SO(3))*/ ad SO(3),
R(V) = Hom(m,(V),SU(2))*/ ad SU(2).
R(V) is an open arc, and each point p of R(V) is parametrized by the
(unoriented) angle between the axis of the rotations p(«) of order 2 and p( /) of
order 3. R(V) is also an open arc.

Set m' =wyp and (' = w’ =//3 in 7,(V). Let g: 9V — V be the inclu-
sion. Then g, (V) is generated by ' and ¢'. Note that U(T) is diffeomor-
phic to D? X S' and H can be written as H = V U,(D?* X S'), where D% x S!
is attached to V along their boundaries by the diffeomorphism h: S' X St =
(D X 8Y) - 9V such that h,(») = 192" — 3¢’ and h,({) = —6»" + ¢’
(see [E-N]). Let h*: R(V) — R(S! X §') be the map induced by h. Then
h*(R(V)) C P, = R(S8* X §') — Q. A A-fundamental segment of g '(h*(R(V))
C P, is a straight line J as shown in Figure 8.3.

4
<ﬂ 61 81 107 127 147 u
K, ‘\
\f‘z\
\K3
\

-2

o i
\‘Ki
\Kﬁ
\

—4m

Ficure 8.3
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R(H) consists of 6 points and it is in one-to-one correspondence with the
set of the points J N L. We label the six points of R(H) as ki, ky,...,Kg
corresponding to the above six points on J in the order from left to right in
Figure 8.3.

Let S,,S,,...,Ss be the flat connections on H X SU(2) corresponding to
the above representations. By the same argument as in the case of N;, we see
that all the gauge equivalence classes {[S;]}, .., are non-degenerate critical
points of the Chern-Simons functional and they form a basis of the chain
complex of I,,(H). The mod 8 degree of [S,] is computed as follows ([F-S])

(8.4) degree 0 {[S,]}
degree 2 {[S5]. [S4]}
degree 4  {[Ss]}
degree 6 {[8.]. [Ss]}-

For 1 <i <5, let {G,},.,., be a smooth path of smooth connections on
H X SU(2) such that (1) G,=S;,, G, =S,,, and (2) for each 0 <t <1,
G,V X SU(2) is the flat connection corresponding to k* where {k'}, _, ., is the
segment in J connecting k° = k; and k' = k,,; and (3) near 3, G, restricts to
B; X 1; here B, is the flat connection associated with the restriction ‘|7 (3).

Now we make a technical modification similar to the case of N,. Let w be a
simple closed curve in V such that @ N dV = {base point} and w represents the
homotopy class «=. Let Y be the 1-complex in Figure 8.2. Let ®: Y — H be an
embedding such that ®(Y,) is isotopic to T (= the core curve of D? X S') and
d(Y,) is isotopic to . Let Ng(Y) be a regular neighborhood of ®(Y) in H. We
set H, = Ny(Y) and H, = H — Ny(Y). We may assume that H, C IntV. We
give a Riemannian metric on H such that, near 3 = H, N H,, it is isometric to
the product 3 X [—1, 1] for some metric on 3. Note that this metric on 3, can
be chosen to be the same metric as in the case of N, and we do so. By
essentially the same argument as in Claim (I-1), we can show that Ker 5«32,* =0
for 0 <t < 1. Also we may assume that Ker &* =0 for 0 <¢ < 1 and that
Y{G,}) can be defined.

Now we compare y({A,}) with y({G,}). We consider both of M, and H, to
be the same Riemannian manifold with boundary 2, which is homeomorphic to
the handlebody of genus 2.

The endpoints of the arcs {p'},_,.; in E; and {«'};_, ., in J sit on L. Let
7°8(P,, L) be the set of the smooth regular homotopy classes of smoothly
immersed curves in P, which intersect with L transversely at the endpoints. We
require that the homotopy keep the transversality at the endpoints. Then {p’}
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and {k'} determine homotopy classes [p‘] and [k'] in 7%(P,, L), respectively.
Obviously the discrete subgroup A acts on (P, L).

Prorosrtion 8.1. Assume that [p'] and [k'] are the same homotopy class in
mi8(P,, L) up to the A-action. Then

'Y({At}) = 'Y({Gt}) (mOd 8)'

Proof. Let N(Y) be the 3-dimensional thickening of the 1-complex Y in
Figure 8.2 with boundary 3. N(Y) is a handlebody of genus 2. We extend the
embeddings ¥: Y - N, and ®: Y - H to diffeomorphisms ¥: N(Y) — Ny(Y)
and @: N(Y) — Ng(Y), respectively. We assume that N(Y) is endowed with a
Riemannian metric which is a product near % and that both ¥ and & are
isometries. We consider the restrictions of the connections {A,} and {G,} on
Ng(Y) X SU(2) and Ngi(Y) X SU(2) respectively to be the connections on
N(Y) X SU(2).

Let U(Y,) be a closed tubular neighborhood of Y, in Int N(Y). We set
Ny(Y) = N(Y) — U(Y;). Then dN,(Y) = 3 U dU(Y,) (disjoint union). We as-
sume that W(U(Y,)) (resp. ®(U(Y,))) is the solid torus in N, (resp. in H)
attached to N (resp. V).

Under the assumption of the proposition there is a smooth map
p: [0,1] X [0,1] = 130 such that p(t,0) = p’, p(¢,1) =k’ for 0 <t <1 and
ap(t, s)/dt # 0 for 0 < ¢, s < 1. Ny(Y) is homotopy equivalent to the one-point
union S' Vv (S! X S§Y). For 0 < t,s < 1, p(¢, s) gives a nontrivial flat connection
on (S' X SY) X SU(2). From this, it follows that we can choose {A,} and {G,} so
that there may be smooth connections A on N(Y) X [0,1] X [0,1] X SU(2) and
B on 2 X [0,1] X [0,1] X SU(2) satisfying the following conditions:

(1) AIN(Y) X {t} x {0} x SU2) = A, 0<t<l,

(2) AIN(Y) X {t} x {1} X SU(@Q) =G, 0<t<]l,

(3) AIN(Y) X {i} X {s} X SU(2) is an irreducible flat connection for i =
0,land 0 <s <1,

(4) AIN,(Y) X {t} X {s} X SU(2) is an irreducible flat connection and, on
au(Y,) X {t} X {s} X SU(2), it is the flat connection associated to p(t, s), for
0<ts<l,

(5) B, , = B|2 X {t} X {s} X SU(2) is an irreducible flat connection for
0<ts <1 and

(6) A, , = AIN(Y) X {t} X {s} X SU(2) restricts to the product B, X1
near > X {t} X {s},for 0 <t¢,s < L.

We can construct such an A by first constructing it on Ny(Y) X SU(2) using
p(t, s) and its flat extension on (S* V (S' X S')) X SU(2) and then extending it
smoothly on U(Y;) X SU(2).
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We choose and fix a trivialization as in Section 5:
0=0,,H# =H (3,502)->V

where V is a 6-dimensional symplectic vector space and © is a symplectic
isomorphism depending continuously on ¢, s for 0 < t,s < 1.

Now A is a homotopy of smooth connections on N(Y) X SU(2) connecting
{A} and {G}. For 0 < ¢, s < 1, the connection A, ; has property (6) and the
operators &; ~and &}* can be defined as in Section 6. By perturbing A and the

metric on N(Y) as in Section 5 if necessary, we may assume that Ker &* =0
for 0 < t, s < 1. In fact, in this case, using the fact that N(Y) is a handlebody,
we can directly construct an A having such a property (we omit the details).
Hence by Lemma 5.1, we get the continuous 2-parameter family of Lagrangians
{Ly, Yo<i s<1 of V as in Section 5.

Let {(L! LA o<1 and {(Lg, L2 o< <1 be the path of Lagrangian pairs
associated with the connections {A, } and {G,} on N, X SU(2) and on H X SU(2),
respectively.

Note that N is a 2-torus, and, for 0 <¢,s < 1, H/il s(éN, su(2)) is a
2-dimensional real vector space endowed with non-degenerate symplectic struc-
ture defined by the cup product and taking the trace of the coeflicient. Let U be
a standard non-degenerate 2-dimensional symplectic vector space. We choose
and fix a trivialization

E =E,,: Hj (0N,su(2)) - U.

t,s

Then
® + E: Hy (INy(Y),su(2)) > V+ U
gives a trivialization of
Hi (ON,(Y),su(2)) = 5, + H} (9N, su(2)).

The 2-parameter family {L A, 3} gives a homotopy connecting {th} ={L A, 0}
and {L, }— {L, }. For 0 <t,s <1, the tangent space X, , of the curve
{p(t, s)}0<t<1 at p(t s) is a 1-dimensional subspace of the tangent space of P,
at p(t,s). We can consider X, , to be a Il-dimensional subspace of
H, (3U(Y)), su(2)). We denote E(X, ;) € U also by X, . Then
(8.1.1) {La +X, )

0<t,s<1

is a continuous 2-parameter family of Lagrangians of V + U.
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Since AN X SU(2) and G,|V X SU(2) are both irreducible flat connec-
tions for 0 < ¢ < 1, by the Mayer-Vietoris theorem, we have the exact sequences

(8.1.2) 0 — H, (N,su(2))
= H} (No(Y), su(2)) + Hy(M,,5u(2)) = #5, = 0,

0 = He(V,su(2))
- HL(N(Y), su(2)) + H:(Hy, su(2)) > H# = 0.

Now Im(H j‘(N, su(2)) - H [{t(aN, su(2))) and Im(H f{t(V, su(2)) - H f{t(éV, su(2)))
are identified with X, ; and X, , respectively. Let * be the Hodge star operator
on H, (3U(Y)),su(2)), where we consider the said space as the space of the
harmonic 1-forms on dU(Y,) for 0 < ¢, s < 1. We denote E(*X, ;) C U also by
* X,

By definition,

L% = Im(Hjm(Mz, su(2)) - %)

L%, = Im(H}, (H,,su(2)) > 5, ).

t t,

We set, for 0 < t,s <1,

Z,, = (0 + E)(Im(H}, (No(¥). su(2))) = H}, (No(Y), su(2)),
where the map is the homomorphism induced by the inclusion. Then by the
exact sequence (8.1.2) we see that both of

(8.1.3) (Z,0 L3 + *X,,) and (Z,,,L% + *X, )

are complementary pairs of Lagrangians of V + U for 0 < ¢ < 1. Consider the
two-parameter family of Lagrangians of V + U, {*Z, },_, ,.,. Combining it
with (8.1.1), we obtain the two-parameter continuous family of Lagrangian pairs
of V+ U,

{q(t’ S)}Ost,ssl = {(LAM. + Xt,s’ * Zt»s)}Ost,ssl'

Now we form the space .#> of all the Lagrangian pairs of V + U and the
subspaces .Z;2 for k = 0,1,...,4, as in Section 6. By property (3) of A, we see
that ¢(0, s), q(1,s) € £ for 0 < s < 1. Hence the paths {g(¢,0)},_,., and
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{q(t, D), -, -, are mutually homotopic relative to . and they determine the
same homotopy class in (£ #}). From the complementary relations of
(8.1.3), it follows that {¢(¢,0)},.,., and {q(¢, D},_, ., are homotopic rel. £}
to the paths

{(L;’ + Xt»o’ Lit t o Xt’o)}OStsl’

and

(B + X L+ X)),y
respectively. This implies that the paths {(L}, , L% )}, -, ., and {(Lg,, L)} -, <,
are mutually homotopic rel. .£2. Thus y({A,}) = y({G,}). This proves the propo-
sition. q.e.d.

By Proposition 8.1, Figure 8.3 and (8.4), we see that the difference of the
mod 8 degree d([K ; +1) —d(K ].]) of the flat connections corresponding to two
consecutive points on the curve E; can be counted as 4, —2 or 2 according to
whether the (oriented) arc in E, connecting p; and p,, , is regularly homotopic
rel. L to the arcs (i), (ii) or (iii) respectively in Figure 8.4.

I R ! A R R
N D s U WO S S

P Py
b—o é o——0o——0
@ (i) (iii)
Ficure 8.4

Here o denotes those points with coordinates (mr, n) for m, n integers. The
same conclusion holds for the flat connections corresponding to the points on
E}. Consequently we have the following result:

(75)  d([K;,,]) —d([K;]) =4 forl/4+k/2<j< -1 and
1<j< —=3/4—-k/2;

d([K,]) = d([K,]) = —2
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and
d([K).]) —d([K;]) =4  for3/4+k/2<j< -1 and
1<j<—1/4—k/2;
a([4]) - d([4]) - 2
(I1) Computation of d([K,]) and d([K').

Prorosirion 8.2. Neither of the mod 8 degrees d([K,]) and d([K']) de-
pends on a particular value of k = —1, —=2,... .

Proof. Let N(Y) and ¥: N(Y) — N, both be as in the proof of Proposition
8.1. N(Y) is the boundary connected sum of the 3-dimensional thickenings
N(Y) of Y, (i = 0,1,2), N(Y) = N(Y) | N(¥,)§l N(Y,). Let U(Y,) be a closed
tubular neighborhood of Y, in N(Y) and let Ny(Y) = N(Y) — U(Y,) as
before. We assume that W(U(Y,)) is the solid torus in N, attached to N and
W(N,(Y)) = U(r U dN), where v is the simple closed curve in N chosen in (I)
and U(y U dN) is a closed regular neighborhood of » U dN in N.

We adopt the splitting N, = M, U M,, where M, = W(N(Y)), M, =
N, — ¥(N(Y)) and M; N M, = % as before. We give a Riemannian metric on
N, such that, near 3, it is isometric to % X [—1, 1], and we assume that the
metrics on N and X are both independent of k.

Let 3, =3 NN(Y)and 3, = 3 N N(Y,). Let b 3, = 2 and j: 3 - M,
be the inclusions (i = 1,2).

Introduce the vector spaces of real-valued harmonic 1-forms,

H#(3) = {n € Q(2)ldn = 0and d*n = 0},
H'(M,) = {n € Q'(M,)ldn = 0,d*n = 0and jF(*n) =0},

where * 1 denotes the Hodge star of 7.

Then by de Rham’s theorem, s#'(X) and #'(M,) are isomorphic to
HY(X,R) and H'(M,, R), respectively. For n € H(3) (resp.€ #1(M,)), we
denote the corresponding cohomology class by [n] € H'(Z,R) (resp. €
H'(M,, R)). There is a natural isomorphism T: #'(M,) + #'(My) » #(%)
which sends (1,,7,) to the projection of (j¥n, — j3m,) onto the harmonic part
of it. Also there is an isomorphism H'(Z,R) —» H'(3,,R) + H'(Z,, R) which
sends [n] to (h¥[n], —h%[n)).

We can choose a; € T(H#XM,) + 0) and a, € T(0 + H#(M,)) such
that h*([a;) = 0 (i = 1,2) and {[e;] U [@,], [2]) < 0, where U denotes the
cup product, [2] is the fundamental class of % and ¢ , ) is the Kronecker
product. Let o, € su(2) be an element such that —tr(o))* = 1. We define o, €
H(3) ® su(2) by o, = a; ® 0. Let B be an increasing C* function on [0, 1]
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such that 8 =0 on [0,1/3] and B =1 on [2/3,1]. We define a € Q'(N,) ®
su(2) by

(821) a

—*(dB/ds)(ds N (0, — w,))  on 2 X [0,1]
=0 on N, — 2 X [0,1],

where o, is regarded as a 1-form on 3 X [0, 1], constant with respect to
0<s<1(G=12).

Let 0 be the trivial connection on N, X SU(2). For a small ¢ > 0, we
define a smooth connection 6(¢) on N, X SU(2) by

0(¢) =0 + €a.

Then, in [T], Taubes showed that, for small & > 0, the 0-eigenvalue of D,
with multiplicity 3 splits into three small eigenvalues {e?A}, £°A,, £°A 3} of Dy,
up to order £°, where {A;, A,, A;} are the eigenvalues of the symmetric bilinear
form on su(2) defined by

(8.2.2) 7,00, 05) = —2trf2[01,w1] A [0y, wy]

(see Sections 2 and 7, (7.7) in [T]). As in the choice of w, and w,, the bilinear
form (8.2.2) is positive definite. Hence if we set 8’ = 0(¢) as in (2.2) in Section
2, then p(0') = 3.

Now # () ® su(2) is a non-degenerate symplectic vector space with the
symplectic pairing,

(8.2.3) (w, ) = —tr/w Ao
3

for w, 0 € H(3) ® su(2).

Let L(w,, w,) be the su(2)-subspace of H#'(3) ® su(2) spanned by the
two vectors (0, — w,) and *(w, — @,). We call L(w,, w,)" the orthogonal
complement of L(w,, w,) with respect to the symplectic pairing of (8.2.3). Then
dimy L(w,, w,) = dimy L(w,, w,) "= 6.

Now, for k = —1, —2,..., the curve E; in Figure 8.1 contains the point
e, = (7/2,0). It corresponds to the representation e,: 7,(N) = SU(2) such
that e (7 (N)) is the binary dihedral group in SU(2) and it does not depend on
a particular value of k. Note that e¢,(2) # +1 and ¢,(¢) = 1.

Having assumed that W(U(Y,)) is the solid torus in N, attached to N,
2, C Int N, we can take two simple closed curves on 3, C 3, isotopic to 7 and ¢
in N. We denote these two curves on 3, by the same letters. Then the
restriction of ¢, on 7 (2), &, = ¢ylm (3), is an irreducible representation of
(%) into SU(2) such that ¢,(¢) = 1.
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There is a smooth path {¢%},_, ., ,, in the space of all the representations of
7(3) into SU(2) such that (1) ¢° = the trivial representation and £'/% = ¢,
(2) ¢ is an irreducible representation for 0 <t < 1/2, and (3) £'(¢) =1 for
0<t<1/2

Let {B}y ., 1, be the smooth path of the flat connections on % X SU(2)
associated to the path of the representations {£'},_, ., /»- Let #} be the space
of the su(2)-valued harmonic 1-forms on 3 with respect to B, for 0 <t < 1/2.
Then #7 converges to a subspace of # 1(3) ® su(2) as t = 0. We can choose
the above {£}; ., ., /s, and hence {B/},_, 1,5, so that the following condition

holds:
(8.2.4) lim, ,, #p = L(w;, 0y).

Let {A,}, <, <, be a smooth one-parameter family of smooth connections on
N, X SU(2) satisfying the following conditions:

(1) A, =0(e) and A, = K,,

(2) For 0 <t<1/2, A, restricts to the product B, X 1 on X X
[—1/4,1/4] X SU(2), where {B)}, ., is the above path of flat connections
on 2 X SU(2).

(3) For 1/2 <t <1, A, restricts to the flat connection on N X SU(2)
corresponding to p‘, where {p'}, , _,, is the arc in E; connecting p'/?
and p' = p,.

=60

By the definition of d([K,]) in (2.2) in Section 2, and by the above remark
on the small eigenvalues of Dj,,, we have

d([K,]) = 3 + the spectral flow of {D, }

o<t<l’

For 0 <t <1, the operators 6?:{, (fjj are defined. By Proposition 5.1,
perturbing A, if necessary, we may assume that Ker & = 0 (i = 1,2). Then
the continuous paths of the Lagrangian pair of V, (L, L?) are defined.

Since N, is a homology 3-sphere, j¥(H(M;,R)) and ji(H'(M,y,R)) are
mutually transversal in H*(3, R). It follows that, for any small ¢ > 0, we can
choose & > 0 such that, for 0 < ¢ < §, L} N L2 = 0. Thus we can define the
invariant y({A,}) by taking the limit of y({A };_,.,) as 6 — 0.

For r > 0, let N(r) be the elongated manifold defined at the beginning of
Section 7. As was mentioned there, A, defines naturally the connection A (r) on
N,(r) X SU(2) and hence the operator D ,, for 0 < ¢ < 1. By the construction
of 0(¢) and (8.2.4), there is 8, > 0 such that Ker D,y =0 for r > 0 and
0 <t <&, In the proof of Theorem 1.1 in Section 7, we need the fact that
Ker D, (,) = Ker D, (,, = 0 for r > 0, and this is the only point at which we
used the irreducible flatness conditions on A, and A,. Hence we can adopt
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essentially the same argument as in Section 7 in this case, and we have

(8.25) d([K,]) = 3 + ¥({4)).

We compare (8.2.5) for k # k negative integers. Let {A Jo<i<1 be the
above path of connections on M X SU(2) corresponding to k. Let ¥ and ¥ be
the embeddings of N(Y) to N, and Nj respectively. Let 7= (¥13)-{(w|3)
which is a diffeomorphism of 3, which is the identity on 3,. The irreducible flat
connection B, on 3 X SU(2) is independent of k and k for 0 <t < 1
# induces the isomorphisms #« of the symplectic vector spaces #%. By
choosing a suitable trivialization ©: Hp — V, we may assume that g, is
identified with an element g € Sp(3,R) for 0 <t < 1. Let {(L}, L} )}, o,
and {(L;,L3 }o<,., be the paths of the Lagrangian pairs for k and k,
respectively. Then we have the relations, L}&, = Lf‘,t and Lit = gLit for 0 <

< 1. Since g is the identity on a 2-dimensional subspace in V and it is a
transvection on the complementary 2-dimensional subspace, we can choose a
path {g,}, ., <, in SP(3, R) such that g, = g, g, = 1 (the identity) and L} N
,guL2 =0, LY n guL2 = 0 for 0 < u < 1. The paths of Lagrangian pairs ofV
{(L,, g“Lz)}0<t<l (0 <u < 1), give a homotopy connecting the paths of the
Lagrangian pairs for k and k. Therefore y{A}y <, <1) is independent of k.

This completes the proof of the independence of d([K,]) on k. Essentially
the same argument shows that d([K'] is independent of k, and we omit the
details.

This completes the proof of Proposition 8.2. q-e.d.

It is well-known that N_, is orientation preservingly diffeomorphic to the
Brieskorn homology 3-sphere 2(2,3,7). In [F-S], I, = I,(3(2,3,7)) was calcu-
lated. The result is that I 44 = I, = I, = 0 and I, and I, are both free abelian
groups of rank 1. Hence d([K,]) and d([K'] are 2 and 6 respectively. Combin-
ing this with (8.5) above, we obtain Theorem 1.2.
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