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1. Introduction
JUST as we can construct various homology theories for a topological
space, so we can construct various spectral theories for a continuous map.
In this paper we use dihomology to define the simplicial and Cech theories,
and to prove that certain theories are isomorphic under suitable conditions;
in particular, all theories agree on a simplicial map. The notions of
dihomology upon which this paper depends are introduced in (8) §§ 1 to 5.
The following table describes the different spectral theories that we shall
be concerned with.

Homology theory

^^^{con^mofogy

Alexander cohomology "\
= Cech cohomology J

Vietqris homology "\
= Cech homology J

StapHoia.{XX
(on simplicial complexes)

Analogous spectral theory

spectral sequence \
spectral ring J

spectral ring

semi-spectral sequence

spectral sequence "\
spectral ring J
(on simplicial maps)

Method of construction

singular cubes (Serre (4))

/sheaves (Leray (3))
\ dihomology

dihomology

dihomology (Zeeman (5))

By spectral sequence and spectral ring we mean canonical spectral
sequence for homology and canonical spectral ring for cohomology,
respectively (as defined in ((8) § 5)). The term semi-spectral as applied to
the Cech sequence is merely a description of the structure possessed by
the limit of an inverse system of spectral sequences (see ((8) §6)).

The paper is divided into seven sections:
1. Introduction.
2. Cech theory.
3. Polyhomology.
4. Leray theory.
5. Simplicial theory.
6. Computation theorem.
7. Singular theory.
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Section 2 is concerned with the definition of the simplicial and Cech
spectral theories.

Section 3 is purely algebraic, and introduces multiple facing relations.
The typical problem is to prove an isomorphism between two given
spectral sequences arising from two double complexes. The way we
tackle it is to construct a parent spectral sequence arising from a quadruple
complex, and then establish sufficient conditions (in Lemmas 5 to 8) for
the parent to map down isomorphically onto each of the given spectral
sequences. This technique is then applied throughout the remaining four
sections.

In §4 we prove the canonical isomorphism between the Cech and the
Leray spectral rings.

Section 5 establishes, in the case of a simplicial map, an isomorphism
between the Cech and simplicial theories, provided we calculate the
simplicial theory on the second derived map. As a corollary, the Cech
sequence is promoted in this case from being semi-spectral to spectral.
The isomorphism can be regarded both as a topological invariance theorem
for the simplicial theory, and as a computation theorem for the Cech
theory. However, one of the main applications of the spectral sequence
is to fibre bundles, where, although the spaces concerned are often poly-
hedra, it is seldom that the projection is given as a simplicial map. So
it is worth proving a better computation theorem.

This we do in § 6, and, without much extra effort, the proof goes through
for a larger class of maps called polyfibre maps. A polyfibre map is a
generalization of a fibre map with polyhedral fibre and base, the main
difference being that various singular fibres are allowed above subpoly-
hedra of the base. The definition includes ramified coverings, and maps
of manifolds onto orbit spaces of groups acting on them. The computation
theorem (Theorem 4) states that, given a polyfibre map, we can construct
finite coverings of the spaces concerned, from which the Cech spectral
sequence and ring can be calculated in a finite number of steps (not that
many folk would ever have the energy to carry out such a calculation).
However, a second part of the theorem gives a method of calculating the
E2 term only from a cell decomposition of the base and the homology of
the fibres, and this is a practical proposition.

In § 7 we define the singular spectral theory for a continuous map; this
is a mild generalization of Serre's definition for a fibre map. The main
result is to establish (Theorem 5) a canonical homomorphism Y* from the
Cech spectral ring to the singular spectral ring—or in other words from
Leray's spectral ring to Serre's. The homomorphism Y* generalizes the
canonical homomorphism from Cech cohomology to singular cohomology
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((8) Corollary 2.7), in the sense that if the map concerned is the
identity map on a space, then the spectral rings of the map collapse to
the cohomology rings of the space. Finally we show that Y* reduces to
an isomorphism on certain fibre maps (Theorem 6), and on simplicial maps
(Theorem 7).

We run into a certain notational impasse, due to conflicting conventions.
Throughout we are concerned with a map / : X-+Y, and we associate
with X a complex K = ^Kp and with Y a complex L = ZLq, from which
we obtain a spectral sequence Eq

r
v. The adherence to alphabetical order

leads to having q as the filtering degree associated with Y, which is the
base when / is a fibre map, while p turns out to be associated with the
fibre. The usual notation is the other way round. However, as the letters
p and q are not used very much, the change will be comparatively unobtru-
sive. I t is most apparent in §7, where the link-up with Serre's theory
takes place. As a result of interchanging p and q, it is more natural to
have degenerate singular cubes degenerate at the front rather than at
the back.

2. Cech theory
Facing relations

The essence of dihomology lies in the idea of a facing relation ((8) § 2).
Recall that a facing relation $ between two geometric chain complexes
K = 2>Kp and L = T,Lq is a set {CT®T} of cells of K®L satisfying the
facing condition

a®T£$ and O®T>-O'®T' implies O'®T'G'$.

A facing relation generates (and is logically equivalent to) a subcomplex D
of the double complex K®L. Filtering with respect to p or q, we obtain
two spectral sequences. If the facing relation is right acyclic the p-filtration
sequence collapses ((8) Theorem 1) to the isomorphism^ : H^D)-^-* H*(K)
induced by the augmentation of L. Meanwhile the ^-filtration yields the
(we hope) interesting spectral sequence

where i/*((5) *s the covariant stack on L of left facet homology ((8)
Theorem 3).

Notation: the use of the word 'etc'
Let us denote by E(D) the above spectral sequence obtained from D by

^-filtration—that is to say the sequence E2, Ez, ..^E^oibigraded differen-
tial groups, together with H*(D) and the several interrelations. If G is
an arbitrary coefficient group, let E(D; 0) denote the spectral sequence

5388.3.12 Rr
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arising from the filtered graded group D®G\ and if R is a coefficient
ring and if the complexes are multiplicative (as they all are in this paper),
let E*(D; R) denote the spectral ring arising from the filtered graded
ring DrfiR. To avoid repetition we shall denote these three constructions
by E(D) etc.

More generally, suppose that D is a functor from a category X to the
category of double complexes, which assigns to each object XeX the double
complex DX, and to each map a chain map. If we form the spectral
sequence E(DX) we obtain a functor E : X -> (E from X to the category
(E of spectral sequences. Similarly E(DX; 0) gives a covariant functor of
two variables, the first being X, and the second being the coefficient
group 0, into the category of spectral sequences; and E*(DX; R) gives a
functor of two variables, contravariant in X and covariant in R, into the
category of spectral rings (for the definitions of the categories of spectral
sequences and rings see ((8) § 5)). We denote all three functors by E etc.

I t is also useful to extend the technical use of the word etc. to cover the
following situations. Suppose that S is any statement about the spectral
sequence E(D). We write S etc. if similar statements are true for E{D; 0)
and E*(D; R). For example, suppose the homomorphism v : D-+D'
induces isomorphisms E{D)-^±E(D'), E(D; G)-^+E(D'; G), and
E*(D'; R)-^->E*(D; R). We abbreviate this to: -n induces an iso-
morphism E(D)-^->E(D'), etc. Note that the second two isomorphisms
are not in general implied by the first (see (9)), but they are if the first
results from the existence of a homotopy operator (see Lemma 2). If the
word etc. is included in the statement of a lemma or theorem, we shall
omit the proof of the etc. if it is substantially the same as the given proof.

The simplicial spectral sequence of a simplicial map, etc.
Let f;K-+L be a simplicial map between finite oriented simplicial

complexes. Let $ be the facing relation between K and L given by

Alternatively we may write the condition as: O®TE<$ if and only if there
exists some psK such that p>or and/p>-T. Clearly $ satisfies the facing
condition, for if a®re^ and a®r^a'®r'} then the same p will ensure
that CT'®T'G$. The subcomplex D generated by $ w e m a v think of
intuitively as a 'closed neighbourhood' of the graph o f / in |.K"|x|Zr|.
5 is right acyclic because the right facet $CT = /(st a) is a cone with vertex
any vertex of fa. However f$? is not in general left acyclic, as the example
below shows. Consequently we obtain a spectral sequence,
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which is in general non-trivial. We define this to be the spectral sequence
E{f) of the simplicial map f, etc.

The term 'etc' here means the spectral sequence E(f; G) over an
arbitrary coefficient group, and the spectral ring E*(f; R) over an arbitrary
coefficient ring. Note that in order to define the spectral ring it is necessary
for the oriented simplicial complexes K, L each to be given a multiplicative
structure (see ((8) § 4)), and as usual this is done by choosing an ordering
of the vertices (see ((2) Chapter 4)); it is not necessary that the ordering
of the vertices of K be in any way related to that of L. In Lemma 4
Corollary 1 we show that the ring structure of the spectral ring is indepen-
dent of the orderings chosen. In § 5 we discuss the topological invariance
of E(f), etc.

Example. Suppose we have the very special case of a simplicial map
f: K->L whose underlying continuous m a p / : X-> Y is the projection of a
fibre bundle, with base Y and fibre F. Suppose further that the covering of
Y by the closed stars of L refines the covering of Y by canonical neighbour-
hoods of the bundle. Then the left facet 2fT =/~1(str) triangulates the
'solid fibre' above str, which is homeomorphic to F xstr and is retractible
onto a fibre. Therefore H^(^r)^H^(F), and the left facet homology stack
•fl*(<5) is none other than the associated local coefficient bundle H%(F).
The spectral sequence E(f) turns out to be the familiar

As mentioned in the introduction, p and q have interchanged their
customary roles.

Nerves and oriented nerves

For Cech theory we have a choice of using either nerves or oriented
nerves. Recall the definitions (see (8) Example iv). Let a be an open
covering of the topological space X. A Cech p-simplex is an ordered set
of p +1 sets of a (possibly with repetitions) having non-empty intersection.
The nerve N(oc) is the geometric chain complex generated by all Cech
simplexes.

We now define an oriented nerve of a. An oriented Cech p-simplex is
an oriented set of p +1 distinct sets of a having non-empty intersection.
For each distinct set of sets of a having non-empty intersection we choose
an orientation, and therefore obtain an oriented Cech simplex. The
oriented nerve 2V°(a) is the geometric chain complex generated by this
chosen set of oriented Cech simplexes. There is a well-known chain
equivalence between an oriented nerve N°(a) and the nerve N(a) (see
Lemma 4 and ((2) Theorem 3.5.4)).
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In the definition below of the Cech spectral sequence $ of a map we
use nerves. Had we started with oriented nerves, then with the same
definition, using exactly the same formula for the facing relation, we
would have obtained a spectral sequence, S° say. In Lemma 4 Corollary 2
at the end of this section we show that SOi^S. Therefore to define the
Cech spectral sequence of a map it does not matter whether we use nerves
or oriented nerves. However, there are reasons for choosing one or the
other in different contexts. For the theoretical development we use nerves
in order that the theory be functorial, and in particular that the ring
structure of the spectral ring be functorial.

For comparison with the simplicial theory (in §5) we use oriented
nerves. For if f:K^-L is a simplicial map between finite oriented
simplicial complexes, and if a, jS are the star coverings of K, L, respectively,
then we can choose oriented nerves to be identical with K, L, and the Cech
facing relation below reduces to the simplicial facing relation above.
Hence the Cech facing relation is a generalization of the latter. Also for
computation (in § 6) when we are given finite coverings, it is desirable to
use oriented nerves in order that the computations remain finite.

The Cech facing relation of a continuous map

Letf:X->Y be a continuous map between two topological spaces.
Let a,jS be (open) coverings of X, Y with nerves K = N(a), L = N(f$),
respectively, such that a refines f~xfi. Let g be the facing relation
between K and L given by:

$ = {a®r;/(sup a) n supT^0}.

The facing condition is satisfied because supports expand when passing
to faces.

Next we show that $• is right acyclic. Consider the right facet $a.
Let a be a vertex of a; then sup a is the corresponding set of a. Since a
refines f-1 j8, there is a vertex b e L such that sup a <= /^(sup 6). Therefore
/(sup a) <=/(sup a) <= sup b. If r 6 $CT, then

/(sup a) n sup 6T = /(sup a) n sup b D sup T

= /(sup a) n sup T

so that bre'fto. Therefore fto is a total cone with vertex b, and so is
acyclic. Consequently $ is right acyclic. We may summarize this little
piece of argument by saying $ is right acyclic by Cech cones, because it is
characteristic of Cech dihomology, and is the prototype of arguments
that we shall meet with often.
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Filtering the resulting double complex with respect to q, we obtain a
spectral sequence which we denote by J5/(/, a,j6), etc. The 'etc.' here means
the spectral sequence S(f, a, j8; G) over an arbitrary coefficient group, and
the spectral ring E*(f, a, j3; R) over an arbitrary coefficient ring. Note that
there is no choice of multiplicative structure involved in the definition of
the spectral ring, because nerves are naturally multiplicative (see ((8) § 4)).
Moreover the facing relation, and therefore the functor $ etc., are functorial
in the sense of ((8) § 4), as we shall now explain.

The category of continuous maps
Let 501 be the category of continuous maps, or in other words the

derived category of the category % of topological spaces and continuous
maps. An object of 9ft is a continuous map / between two topological
spaces. A map of 9JI from / to / ' is a pair (<j>, ip) of continuous maps such
that lpf=f'<f>.

/ ' I/.

We now introduce a larger category 9Jlcov that includes coverings, and
which is related to 3JI in the same way that 9ICOV was related to *$L in (8).
An object (/, a, /?) of S[RC0V is a continuous map f: X->Y between two
topological spaces, together with coverings a, jS of X, Y, respectively, such
that « refines / - 1 jS. A map (<f>, 0, <f>a, $p) of 2TCCOV from (/, a, ]3) to (/', a', j8')
consists of a pair (<£, ifj) of continuous maps such that tfjf = f'<j>, and such
that a refines c ^ a ' and j3 refines ^~x^', together with a pair (^a,^) of
simplicial approximations to ((£, </r) between the relevant nerves.

LEMMA 1. jT&e (?ec^ facing relation is functorial, and therefore induces a
functor E : 3tRcov-»(£, ê c.

Proof. Let (</>, i/r, 0a, i/j^) be a map of 9Cftcov, as described above. What we
have to check in order to show $ functorial is that OT®TE $(/, a, j8) implies
<f>0La®\jjprE(^{f',<x ,fi'). But this is true because ^ a , ^ are simplicial
approximations of <f), ip, and so

/'(sup </>a a) (1 sup ippT ^ /'(£(sup a) n i/f(sup T)

= 0(/(sup CT) D sup T)

#0.
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Therefore <£a®^? maps D(/,a,jS) into D{f',<x',fl') and induces a homo-
morphism £(f, a, j8) -+ B(f, a', j8') as required. The 'etc' part of the lemma
follows by substituting D ® G or D </» R for D in the argument.

The idea is now to take limits. But before we can do so it is necessary
to verify that the functor B is independent of approximation, i.e. that the
homomorphism S(f, a,f$)^-E(f, a',j8') depends only on <j>,i[j and not on
^a'^/?- Given two choices of the latter we construct (in Lemma 3) a
homotopy operator on the bigraded group D. This induces a homotopy
operator on the filtered graded group, which ensures (Lemma 2) that the
two choices give rise to the same homomorphism of the spectral sequences.

Homotopy operators

Let A be a filtered graded differential group, with grading nA and
filtration Ap. Since any filtered graded group in this paper has the
property that nAp = 0 (p< 0) and nAp = nA (p^ n), we may assume that
the resulting spectral sequence is convergent. A homotopy operator
between two homomorphisms 61,92: A -+A' is a homomorphism h : A -+A'
such that h{nA)<=n+1A, h(Ap)<^Ap+1, and 01 — B2 = hd + dh.

Similarly a homotopy operator between two chain maps 81,62 :
of a double complex is a homomorphism h: D->D' such that

and 61 — 82 = hd + dh. Clearly if A, A' are obtained from D, D' by filtering
with respect to either p or q then a homotopy operator on D induceb a
homotopy operator on A.

LEMMA 2. If there is a homotopy operator between two homomorphisms
61,d2:A->A' of filtered graded groups, then d\ = 6%\ E{A)-+E(A'), etc.

Proof. The proof is given in ((1) 321, Proposition 3.1). For the 'etc.',
instead of the homotopy operator h on A use the homotopy operators
h®l,h(f*I on A®G, A'fiR, respectively.

LEMMA 3. Let $ be a facing relation between K, L and § ' a facing relation
between K',L'. Suppose that O : K^-K'', *F : L-+U are two acyclic carriers

are chain maps carried by O, and ift1,^ : L^-L' are chain maps carried by
T, then there is a homotopy operator between the chain maps

Proof. Since O is acyclic, (f)1, <f>2 differ by an ordinary chain homotopy
hK : Kp -> Kp+1, also carried by O. Similarly if;1, «/»2 differ by hL carried by *F.
Now hK®^j1 maps D to D', for if a®r is a generator of D, then ^
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and so the hypothesis implies that <D<r is contained in the left facet
^'(i/r1 T). Therefore hK a is a chain of this facet, and so (hK ® i/r1) (a ® T) e D'.
Writing ioK for the sign-changing automorphism of K,

(hK ®tfj1)d + d{hK ® 01)

= (hK ® tp1) {dK ®l+coK®dL) + {dK- ®1 + toK- ® dL>) (hK ® 01)

since hKcoK + a>K'hK = 0. Therefore hK®^- is a homotopy operator
between (j)1®^1 and (f)2®^1; similarly <f>2coK®hL is a homotopy operator
between ^2®»/f1 and <̂ »2®i/r2. The sum of these two homotopy operators
maps Dvq to D'p+itq + D'p()+1 and gives the result.

COROLLARY. The functor E of Lemma 1 is independent of approximation,
etc.

Proof. Let (<f>, ifj, <£a, i/r̂ ) be a map of 9Jlcov. Then cf>a is carried by the
acyclic Cech carrier O : K-+K' given by Oor = {a'; sup a' ^ <f> (sup a)}, and
similarly ^ is carried by the acyclic Cech carrier T : L->L'. Moreover
the Cech facing relation satisfies the hypothesis of Lemma 3, for if
<7®Te$(/,a,j8),a'evFa,T/exFT, then

/ ' ( sup a') n sup T' =3 / '^ (sup a) n ^(sup T)

= 0(/(sup a) n sup T)

#0,
and so a'® T' e $ ( / ' , a'>i^')- Applying Lemmas 2 and 3 gives the corollary.

Now the object of the exercise was to take limits. Notice that for a
given continuous map / , the (/, a,jS)'s form a directed set if we put
(/, a,j3)> (/, a',j3') whenever a refines a' and jS refines j3'. Therefore the
$(f, a,j8)'s form an inverse system of spectral sequences, and we may
define $(f) to be the limit sequence. Since the inverse limit functor is
not exact the limit sequence is only semi-spectral, unless we use a field
of coefficients. In the dual case the direct limit of a system of spectral
rings remains a spectral ring because the direct limit functor is exact.
As in ((8) Lemma 1), where the limit of a functor on 3ICOV gave a functor
on 91, so the limit of a functor on 9Jicov gives a functor on StR. Summarizing
what we have proved:

THEOREM 1. Letf: X^-Y be a continuous map between two topological
spaces.

(i) If G is a group, there is a Cech semi-spectral sequence .#(/; G), whose
co-term is related to the Cech homology group fif*(X; G). If G is afield, S is



648 E. C. ZEEMAN

spectral. £j is a functor, covariant on SCR and covariant in the coefficient
group G.

(ii) If B is a ring, there is a Cech spectral ring $*{f; R), whose co-term is
related to the Cech cohomology ring H*(X; R). £* is a functor, contravariant
on 9K and covariant in the coefficient ring R.

Remark 1. The Cech spectral and cohomology rings in the theorem are
assumed to have been defined by cochains with arbitrary supports. There
is a similar result if both are taken with compact supports, and / is a
proper map.

Remark 2. Just as Cech cohomology forms the link between Alexander
cohomology and the computable simplicial cohomology of polyhedra, so
the above spectral ring turns out to be the link between sheaf theory and
the computable simplicial theory. This is the aim of the next three
sections. Finally, the Cech theory is in a convenient form for the link-up
with singular theory in the last section.

We conclude this section by showing that in the construction of the
Cech spectral sequences it does not matter whether we use nerves or
oriented nerves.

Suppose a is a covering of X. Let N(oc) and N°(<x) denote respectively
the nerve and an oriented nerve of a. The chain equivalences

6

are defined as follows (see ((2) Chapter 3)): Let aoa1...ap be a Cech
simplex, where a0,..., ap are sets of a with non-empty intersection. If the
af are not all distinct, define dia^a-^ ...ap) = 0. If the at are all distinct,
let aeN°(oc) be the associated oriented Cech simplex, and define
6(aoa1...ap) = ± a, according to whether or not the ordering ao,av ...,ap

is in the orientation class of a.
To define B, choose an ordering of a. Given an oriented Cech simplex

oeN°(<x), let ao,aL....,ap be the corresponding sets of a, written in the
correct order. Define Bo = ±aQa1...ap, according as to whether or not
the ordering is in the orientation class of a.

Then 6B = 1; and Bd is chain homotopic to 1, because both Bd and 1
are carried by the acyclic Cech carrier O : N(a.) -> N(a.) given by

OCT = {T; sup a c sup T}.

Hence d and B are chain equivalences. Similarly if y3 is a covering of Y,
we have a chain equivalence 9 : N(P) -»• N°(P) between the nerve and an
oriented nerve of jS.
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Suppose we are given a map f: X-+Y such that a refines / - 1 jS. The
Cech facing relation

^ = {a®T;/(supcr)nsupT^0}
between the nerves N(a) and N(fi) gives rise to the spectral sequence
$(/ , a,j8), etc. The same facing relation between the oriented nerves
N°(ot) and iV0(j8) gives rise to a spectral sequence B0(f, a, j8), etc. Note that,
whereas the spectral ring for nerves is functorial, in order to define the
spectral ring for the oriented nerves it is necessary to choose orderings
of a and jS so as to make the oriented nerves multiplicative.

LEMMA 4. The chain equivalences between nerves and oriented nerves
induce an isomorphism S(f,a,/?)—=->i£0(/,a,jS), etc.

Proof. Let D c N(oc) ® JV(0) and D°^N°(a)®N°(^) denote the double
complexes arising from the facing relation. Let 6a, Ba denote the chain
equivalences between N{oc) and N°(oc), and dp, Bp those between iV(jS) and

). It is easy to verify that these induce chain maps

8*® 9P
Then

(0«®0,)(0«®fy) = M«
On the other hand,

{B0L®Bp){d0L®efi) = Bj
is chain homotopic to 1 by Lemma 3, since #a0a, Bpdp are carried by the
acyclic Cech carriers cDa, O ,̂ respectively, which satisfy the hypothesis of
Lemma 3, because if O®TE^, cr'e<I>acr and T'GO^T, then

/(sup a') n sup T' =>/(sup <r) n sup T

and so a'®T'e5- Hence by Lemma 2 the induced homomorphisms
between spectral sequences are isomorphisms. This completes the proof
of Lemma 4.

Notice that in the 'etc.' case of the spectral rings, the isomorphism is a
ring isomorphism. This is proved by using the same orderings to define
the chain maps Ba, Bp as were used to define the multiplicative structures
on the oriented nerves N°(<x),NQ(f$). As a corollary we deduce that the
ring structure of £°*(f, a,jS; R) is independent of the orderings.

COROLLARY 1. Let f: K->L be a simplicial map between finite oriented
simplicial complexes. Then the spectral sequence E(f) is independent of the
orientations of K,L,etc, and the spectral ring E*(f; R) is independent of
the orderings of K,L. For we may identify K,L with oriented nerves of
their star coverings a,j8, and then E(f) = S°(f)a,^),etc.
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Return to Cech theory. Given a map f: X^-Y, we can take inverse
limits over pairs of coverings a, /? of X, Y, of both JH(f, a, jS) and E°(f, a, jS),
and obtain the semi-spectral sequences S(f) and 2?°(/), etc. The chain
equivalences 6 commute with simplicial maps, and so they induce
isomorphisms between the limits:

COBOLLARY 2. Let f be a continuous map, and let S(f) and S°(f) denote
the Cech semi-spectral sequences off defined using nerves and oriented nerves
respectively. Then there is an isomorphism J^(/)—=->J^°(/), etc.

3. Polyhomology
In (8) double complexes were used to relate homology theories on single

complexes. Here it is necessary to use triple, quadruple, and quintuple
complexes to relate spectral theories on double complexes. We therefore
generalize the notion of a facing relation to an arbitrary number of
complexes.

We observe in passing that although we deal with multiple complexes
we are limited in the tools for handling them. We still only have homology
groups and spectral sequences at our disposal, which are respectively the
single and double digestion processes. Even the triple process seems to
be too complicated as yet; this is probably due to the non-distributivity
of a certain lattice (6). However, for the purposes of this paper spectral
sequences are quite adequate.

Multiple complexes

Let K(i) (i = l,2,...,s), he s geometric chain complexes. The multiple
complex

has s gradings and s differentials

du) = (x)(1)®...®to{i_1)®dH)® 1 ® . . . ® 1 {i = l , 2 , . . . , s ) ,

where d{i),coH) are respectively the boundary and the sign-changing auto-
morphism of K{i). Let A,/x,v,... denote disjoint subsets of the indexing
set {1,2, ...,s}, and let A/x denote the union of A and fx. Let Kx = ®K{i).

i s A
Then KXfl = K^K^, where ® denotes the tensor product of the factors
of Kx and K^ suitably shuffled so that the suffixes are in the correct
ordering.

We remark that the particular ordering of suffixes does not in fact
matter, since two different orderings give isomorphic algebraic structures
—all we ask is that one particular ordering should be adhered to through-
out the discussion.
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Let eA : K^-^-K^ denote the X-augmentation, or, more precisely, the
epimorphism formed by tensoring the augmentations eH) on K(i), ieX, with
the identities on K(j), jsfx. We shall use the same symbol eA to label any
homomorphism induced by the A-augmentation.

A cell of K is the tensor product

of cells aH) EKH). We write CT>T if each aH) >-T(i).

Multiple facing relations

A facing relation ^ on K is a set of cells closed under the facing condition

ere 5 and CT>-T implies r e ^ .
Therefore $ generates a subcomplex D of K. Let DA = eflD, where /x is
the complement of A. Let $A be the set of cells generating Z>A. Then $A

is a facing relation on Kx. The test for a cell aA of Kx to be in $fA is the
existence of cells o(i)eK(j)) each j$X, which when tensored with aA give
a cell of 5 because in a geometric complex every cell cr(j) possesses at
least one vertex a(i), and the A-augmentation maps all the a(i) to 1.

Upon the various Dx we can now form several homology groups and
spectral sequences, whose interrelationship we proceed to explore. For
convenience of notation we dispense with brackets.

Since DX^KX, Dx possesses gradings nH) and differentials d(i), ieX. If A
is non-empty we can define on Dx the grading n = 2 n(i) and differential

d = YidH), and hence we can form the homology group HXDX . This
ieA

homology group, besides having its own grading nA, also has induced
gradings n(j) and differentials d(j),JEfx,.

If we filter DX/IV with respect to the grading nk, and use the differential
dXfi, we obtain the spectral sequence

E\,iiD\iiv '• H\HMDAftv => HXftDAflv.

This sequence also has induced gradings and differentials from v. If v is
empty we abbreviate the spectral sequence to the single symbol EXfl.

Multiple facets
If 0^ e Kp the A-facet £jfA o^ of a^ is denned by

The notation agrees with our previous notation of facets with respect to
the facing relation 3fA/t between Kx and K^. Notice that $A aA is non-empty
if and only if a^ e 3^. The two main properties of facets are:

(i) $A 0^ is a subcomplex of Kx. We therefore allow the same symbol
5A a to represent also the graded differential group structure.
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(ii) Taking direct sums over t ^ e ^ , 2 $ ^ ® ^ = DAfl.

We say that $ .is (A, fi)-acyclic if, for each CT^G^, the facet $A<r/f is
acyclic. If $ is (A, ju,)-acyclic then /z-augmentation induces an isomorphism
eA : H^^a^-^-Z. Tensoring with a^ and taking the direct sum over all
afiE S/i' w e obtain the isomorphism

We say that $ is (A, /x, v)-independent if for each av e $„, the facet

The definition is symmetrical in the first two coordinates A and fx.
We are now in a position to prove the key lemmas. Roughly speaking

they give permission to 'excise' the acyclic facets, firstly from the comple-
mentary degree of the spectral sequence, and secondly from the filtering
degree.

L E M M A 5. / / $ is (A, JXV)-acyclic then €A : Ev>Xli-^-:>EVill, etc.

Proof. The hypothesis implies that eA : H^D^—^+D^. Therefore the
spectral sequence

collapses because the E1 term is concentrated on the axis nK = 0. Hence

Therefore Hv HAfl D^-f* Hv HM D^v.

In other words eA induces an isomorphism between the E2 terms of the
two spectral sequences concerned in the lemma, and consequently an
isomorphism between the entire spectral sequences.

LEMMA 6. If ev: HvHxD?flv^^HxDX/l then e, : E^-^E^, etc.

Proof. The spectral sequence

En,v(H\ D\fiV) '• H? Hv HA DXp, => H/lv HA DAflv

collapses, since by hypothesis the E1 term is concentrated on the axis
nv = 0. Therefore

H^v Hx D A ^ ^ * H^ Hv Hx DA/tv—^> H^ Hx DA/l.

The composition is an isomorphism between the E2 terms of the two
given spectral sequences, which is sufficient to prove the lemma.

LEMMA 7. / / $ is (/x, v)-acyclic and (A, p, v)-independent, then



DIHOMOLOGY. II 653

Proof. By the independence, SA^M = S A ^ I - ® ^ ^ for all crve%v.
Therefore

because <^IJLav is free. The ju-augmentation induces H^^^-^Z by
acyclicity, and therefore

<> : Rp H\ %*? ̂ - ^ * #A SA CTP

by the universal coefficient theorem. Tensoring this equation by av and
summing over ov e ^$v

 w e have

Now apply Lemma 6 with /x and v interchanged.

In two of the applications (§§ 5 and 6) we shall need the conclusion of
Lemma 7 without having the advantage of (A, fx,v)-independence, so it is
necessary to develop a more delicate condition. For want of a better
name we shall call a facing relation having this property (A, fi, v)-excisable,
and Lemma 8 ensures that the property is sufficient for the purpose. The
conditions (v,/x)-acyclic .and (A, v, ^-independent do in fact imply (A, \x,v)-
excisable, so that Lemma 8 implies Lemma 7. However, the proof of
Lemma 7 was so simple compared with the formation and proof of
Lemma 8 that it was worth giving separately. For the reader's peace
of mind in what follows, it is admitted that in the applications each of
A, /x, v is comprised of a single suffix, although of course this is immaterial
to the proof.

The category Ly

Let L be a geometric chain complex. In particular L is a category.
Let L* be the derived category of L. That is to say an object o> of Ly

is a map of L, or, in other words, w = (a,r) where CT>T in L. And a map
oiL* is a relation OJ>O/, which is defined by CT>CT',T>T', where to = (<T,T),

(x) = (CT , T ) .

We remark that IS is not\ a facing relation on K®K because the
facing condition is not satisfied. Therefore Ly does not give rise to a
differential group structure, but has only category structure. One might
say that it was a notion more geometric than algebraic in flavour. How-
ever the category structure of L* is useful. We can define the subcategories
<L = {a/; a>>-a»'} and stco = {a/; a/>-6o}. If K is another geometric chain
complex we can define a facing relation on the category K®Ly satisfying
the facing condition. The facets in K will be sub complexes, while those
in L* will be only subcategories.

f Nor is Ly a mixed facing relation as in (5) because the latter is contra variant
in a and covariant in T, while Ly is covariant in both a and T.
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Acyclic carrier functors

The motivation .behind the next definition is by no means obvious.
Therefore let us first give the definition, and then a geometrical example.
We do not wish to dwell .on the example, nor verify the properties, for
these are proved in a generalization of the example in Lemma 9; we only
include it for the benefit of those readers who do not like to proceed
without some kind of intuition.

FIG. 1

Definition. If ft is a facing relation between K and L, we say that a
functor F : K ->Ly is an acyclic functor carrying ft if

(i) a®reft implies I V X T J T ) , and

(ii) for each triple T1>-T2>-T in L, the subcomplex of K

ftr n r -^OV 5 ) = {<*; o ® T E ft and

is acyclic.

(T1, T ) >-To}

Example. Suppose that L triangulates a manifold. Each simplex TEL
has a dual cell T*. Let K be the second derived complex of L. Let the
facing relation on K®L be given by |O-|<=|T*|. Let F : K->Ly be given
by To = (T1,!-2), where ICTI^IT1!, and T2 is the smallest face of T1 meeting
i i to j . (See Fig. 1.)
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Definition. Let ^ be a multiple facing relation. We say that f̂ is
(\,H,v)-excisable if there exists an acyclic functor F : Kv-+K^ carrying ft^,
and a facing relation $* between Kx and K^, such that for each o-^e^
and c r ^ o ^ e ^ , , there are chain equivalent inclusions between the facets:

LEMMA 8. / / $ is (\,fx,,v)-excisable then ev: E ̂ ^-^-^ E MtX, etc.

Proof. I t suffices to show that for each o^e^f,,, the ^-augmentation
induces an isomorphism

€„: Hv Hx ^Xv or^—=-• Hx $ A 0^;

for then tensoring by aA and summing over o^ e ftf^, and applying Lemma 6
gives the result.

Therefore let aM be fixed in ^ I n the category K^, let o>° =
Well-order o»°, cu1,o>2,... the objects of sto>° in such a way that if
then i ^j. This is possible since the partial ordering >- has the descending
chain condition; or, explicitly, after o>° we can first order those pairs of
cells of dimensions (p+l,p) where p is the dimension of ap and then
successively those pairs of dimensions (p + l,p + l),{p + 2,p),..., and so on.

We use this well-ordering to construct a (possibly transfinite) filtration
Q1 of the facet $„ o-/t. First notice that V\$v a^ <= st OJ° by the first property
of an acyclic carrier functor. Let P1 (i ̂  0) be the subcomplex of $„ o^
which is the inverse image under F of oi*; alternatively we may write

Pi = {av;all^>ave%llv and <
By the second property of an acyclic carrier functor P* is acyclic. Let
Qi = (J pi (j^ 1), and let PU = P*nQ*. We next show that the PU and

i<i

the Qj are also acyclic. For suppose that some P™ were not acyclic, and
assume that i is the least ordinal for which this is so, and that j is least
with respect to this i. Then i ^j, otherwise Pi>j = P \ Also j > 1, otherwise
j = 1 and Pi>3" = Q1 = P°, since all the P1 contain P°. If j is an ordinal
with predecessor, and if pi~lczPi

) then a contradiction is achieved by
using the Mayer-Vietoris Theorem, for

and the three complexes pi - i , pw-i} p*-w-i are acyclic by hypothesis.
On the other hand, if P^^P*, then pu = pu-i by our choice of well-
ordering. Finally if j is a limit ordinal a contradiction results from the
fact that Pl<i is the direct limit of the acyclic subcomplexes Pitk, k <j,
and the direct limit of acyclic complexes is acyclic because direct limits
are exact, and so the homology of the limit is the limit of the homologies
which is trivial.
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To prove that the Q? are acyclic, we proceed in much the same manner.
Suppose Qi to be the first not acyclic. Since Q1 = P° the induction begins
with^' > 1. If j has a predecessor, Qj = Qj-1 U Pi-1 and the three complexes
Qj~x, P'-1, Pi-1*-1 are acyclic. If j has no predecessor, Q* is the direct limit
of the acyclic Qk, k<j. The contradiction in either case proves that all
the Qi are acyclic. In particular, if J is the first ordinal not in the well-
ordering then $„ 0^ = QJ is acyclic.

We now pull the filtration back by means of the A-augmentation to a
filtration of the facet $Al, a^: let Rj be the inverse image of Qj under the
homomorphism eA : S f ^ o ^ & o y For any aveQt,

Tensoring with av and summing over aveQi, the inclusions induce a
homomorphism

Taking homology with respect to A,

since Qi is free. Taking homology with respect to v, we have, by the
universal coefficient theorem since Qi is an acyclic subcomplex of Kv,

We have given this last homomorphism a name because we want to show
inductively that dj is an isomorphism for all j .

First consider the case j = 1. If av£Qx = P°, then

is an isomorphism by the excisability. Tensoring by ov and summing
over oveQx,

and eiiHrHiW-Z+

Suppose that some 0* is not an isomorphism, and assume that j is the
least such. If j has a predecessor there is a commutative diagram induced
by inclusions:

1 .

HV H\Rj jr* ^A d\ °h

Now if ovEQi — Qi-1 then Fa, = to*, and excisability gives an isomorphism
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so there is an exact sequence

0 -> #A i?'"1 -> #A Ri -> HK %\ a>i <§> Qiffl-1 -+ 0.

But H^Qt/Qi-1) = 0 because the Qj are acyclic, and so by the relative
exact sequence, inclusion induces an isomorphism

HvHxR^-^HvHkRK

Hence the commutative diagram above gives 6j an isomorphism, contra-
dicting our supposition. If j has no predecessor, 6j is the direct limit of
a directed system of isomorphisms, and is therefore an isomorphism.

We have now shown that all the 9j are isomorphisms, and in particular
when j = J,

Hv H\ 5A» °> ~=^ H\ 5A V

But this is none other than the isomorphism induced by v-augmentation
that we wished to prove, because the v-augmentation can be factored into
two homomorphisms,

5A, °> -> 5A <V ® 5 , °> ~> SA V
of which the first induces the isomorphism above while the second induces
the identity isomorphism on H^^a^. Lemma 8 is proved.

4. Leray theory
We now link up the Cech dihomology theory with the sheaf theory of

Leray (3). We recall the following

Definition. Let X be a topological space and R a ring. The Alexander
presheaf £ = £(X; R) on X over R is defined by assigning

(i) to each open set U of X the normalized Alexander cochain complex
AN{U; R) of U over R, and

(ii) if C/3 U', the restriction homomorphism AAr(C7; R)^AN(U'; R).
If / : X->Y is a continuous map, then / £ is a multiplicative graded
differential presheaf on Y. If jS is a covering of Y, the cochain complex
of Y with respect to jS with coefficients i n / £ is a double complex. Filtering
with respect to the grading of the nerve of jS, we obtain a spectral ring,
and taking direct limits over /? gives the Leray spectral ring.

THEOREM 2. There is a canonical isomorphism between the Gech and
Leray spectral rings of a continuous map.

COROLLARY. There is a natural equivalence between the Cech and Leray
spectral functors on the category $[R of continuous maps.

Proof of the Theorem. Let R be the coefficient ring, and let / : X-> Y
be the continuous map. Let a,jS be coverings of X, Y such that a refines

5388.3.12 Ss



658 E. C. ZEEMAN

f~rp. Consider the following triple facing relation on Kx®Kn®Lp, where

Kx = N(oc), the nerve of a,

Kp = V(X, a), the Vietoris complex of a-small simplexes of X (see (8)),

Ly = N(P), the nerve of jB.

ft = {crA®a/4®T,; ^csup^nZ-^supT, )} . (See Fig. 2.)

FIG. 2

Clearly $ satisfies the facing condition because Cech supports expand
while Vietoris simplexes shrink when passing to faces. Also ft has the
properties:

(1) ft is (fi, Av)-acyclic, because if o-A®Tve2rAv, then supaA meets
/ - ^ s u p r j and the facet

3 > A ® T J = F(supaAn/-1(supr,;))

is an acyclic Vietoris cone.

(2) $ is (A, /Av)-acyclic, because if o ^ T ^ e ^ , then aM c/-i(sup TP) and
the facet ~ . _ . f

is non-empty since â  is a-small, and is an acyclic Cech cone.
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(3) ft is functorial on 9WCOV. For let (cf>, if,, <f>a, fo): (/, a, j8) -> (/ ' , a', jS') be
a map of yjlcov, and let CTA ® a^ ® rv e $ ( / , a, j8); then

K aA n / '
c ^ sup aAn (/')

c sup <f>a aA n (Z')"1 sup iftft rv.

Therefore ^aax®^a/t®i/jfiTvG
<^(f',a,^').

Applying Lemma 5 to properties (1) and (2), we have isomorphisms

Passing to the spectral rings over i£, we have isomorphisms

Since the isomorphisms are induced by augmentations, which are

functorial, there is by (3) a natural equivalence between the contra-
variant functors ^ , A ~ ^ : mco^<£*,

where (£* is the category of spectral rings. Therefore there is a natural
equivalence between the limit functors

a,fi a,fi

Now the facing relation $Aj, is none other than the Cech facing relation
/(supoA)nsupTl,7^0, so the functor lim^p-A is the Cech spectral ring

functor of Theorem 1. It remains to identify lim E"^ with Leray's spectral
ring. a'fi

The first thing to notice is that in taking direct limits over all pairs a, jS
we may first take limits over a and then over jS (it is important to do it in
this order because a has to refine/~1j3). The next thing to notice is that

lim (E^Df") ^ W'f- (lim Z>"
a \ a

since the direct limit functor is exact. Now D^ = C{LV; <^/l.), the chain
complex of Lv with coefficients in the covariant stack of facets {^T,,}.

Meanwhilef

the cochain complex of Lv with coefficients in the contravariant stack

Fix TV for the moment, and let U =/-1(supri;). Then ^ T , , = V(U, a),
the a-small Vietoris complex of U. We have the split exact sequence

f As in (8) we use A rfi B for Horn {A, B).
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which remains split exact under the functor //»R,

where A(U; R) is the Alexander cochain complex of U over R, and
A(U,a; R) is the subcomplex of cochains which vanish on all a-small
simplexes. Taking direct limits over ex of this sequence, we observe that
since lim A(U, a; R) is the subcomplex of cochains with zero support,

the normalized Alexander cochain complex of U over R. But this is the
complex assigned to U by the Alexander presheaf £, and to supTy by the
presheaf/£. Moreover if TV

X)>T2 the homomorphism $/t T
2 //I R -+ $/t T / ffi R

of the stack 3^ is induced by inclusion, and therefore in the limit is the
same as the restriction homomorphism of the presheaf / £ . Summarizing,
we have shown that

lim 2>" = C-(£

the cochain complex of Y with respect to jS with coefficients in /£ . Passing
to the spectral ring and taking limits over j8 identifies limE"^ with the

Leray spectral ring. Both Theorem 2 and Corollary are proved.

5. Simplicial theory

Throughout this section we shall assume that we are given a fixed
simplicial map between two finite oriented simplicial complexes K and L.
Since it is necessary to distinguish between the simplicial map and the
underlying continuous map/ : Jf-> Y between the polyhedra, let us denote
the simplicial map by /(0 ) : K^L. It is natural to ask whether or not
the simplicial spectral sequence E(fl0)), as defined at the beginning of § 2,
is isomorphic to the Cech sequence S(f). The answer is in fact not, for
the technical reason that the closures of stars of simplexes are too big
as the example at the end of this section shows. It transpires that if we
pass to the second derived map /(2) : K{Z)^-L{2) between the second
derived complexes then we do get the 'correct' answer, as not infrequently
happens when working with simplicial complexes. In Theorem 3 we
establish a canonical isomorphism between the simplicial E(f{2)) and the
Cech $(f), etc. This on the one hand proves the topological invariance
of E(f{2)), and on the other furnishes a means of computing S(f). If we
are only interested in computing the E2 term of the spectral sequence
(and not the dr's, r^2) then we can do this satisfactorily from/(0) without
having to pass to the derived complexes.
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Derived maps
We define the first derived map fa) of/(0) as follows. Let La) be the

barycentric first derived complex of L. A vertex of La) is the barycentre T
of some T e L. Given ere if, with fa = r say, lift f to an interior point a of cr,
such that CT6/~1(T), and define /(1>CT = f. If a happens to be mapped
non-degenerately, then a coincides with the barycentre of a, but otherwise
it may not. The points o form the vertices of a triangulation K{X) of X
that, qua abstract complex, is the first derived of K. The function /(1)

already defined on the vertices of K(1) determines a simplicial map of
yd) ; K{1) ^ La), and completes the definition. By induction we define
the sequence of derived maps/(s+1) = (/(s))(1), s = 0,1, 2,....

The point of this construction is that /(1) has the same underlying
continuous m a p / as/ ( 0 ) . Therefore from the Cech point of view/(1) is a
simplicial approximation to / with respect to the star coverings of K{1)

and L(1). Consequently when computing $(f) we can confine our attention
to the sequence of derived simplicial maps, since the corresponding
sequence of pairs of star coverings is cofinal in the directed set of all
pairs of coverings of X, Y. That is why we required the complexes K
and L to be finite.

In this section we shall have to take particular care to distinguish
between the stars of different complexes, so when there is any likelihood
of doubt we shall write st (cr, K) for the star of a in K.

Fibres
If y G Y we shall call f~x y the fibre above y, even though / may not be

a fibre map. If B^ Y and B is not a point, it is suggestive to refer to
/ - 1 B as the solid fibre above B. Of particular interest are the following
four constructions. If TEL, let FT denote the solid fibre above | str | , and
let FT denote the fibre above T the barycentre of T. If T*>T3' let F^1,^)
be the closure of FT{ in i*V, and let /(T*, TJ) = JP(T\ TJ) n PTK In particular
F(T, T) = FT and P(T, T) = fir. Whereas / ( T \ T3') is the polyhedron under-
lying a subcomplex of K{1), F^,^) is not in general a polyhedron; in
particular FT is an open set of X. The linear contraction of | st T | to T can
be lifted linearly to a deformation retraction of FT onto JV. If T*>-TJ

there is a similar deformation retraction oi F{T1,TJ) onto J^(T*,TJ').

The stack § = £)*(/), etc.
We associate with the simplicial m a p / : K^-L a covariant graded stack

^ ( Z ) = 2 $)p(f) on L, defined below. Similarly we can define for arbitrary
p

coefficients G,R a covariant stack §*(/; G) and a contravariant stack
<?)*(/; R). Since we shall make much use of £)*(/) in this section while/
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stays the same, we shall abbreviate £*(/) to £j. The definition runs:
(i) To each reL assign the homology group § T = H%(FT).

(ii) If T ^ T 3 assign the homomorphism ^ri->-^T:> induced by inclusion.
It does not matter whether we use Cech or singular homology in the

definition, since both are equal because both are preserved under the
deformation retraction FT->$T, and fr, being a polyhedron, has unique
computable homology. In practice, of course, we compute § from the
homology groups of the fibres fir.

THEOREM 3. / / / is the underlying continuous map of the simplicial map
/ ( 0 ) : K-+L, there is a canonical isomorphism between the simplicial spectral
sequence E(fl2)) and the Qech sequence ${f), etc. The sequence runs

COROLLARY 3.1. The Cech sequence of a simplicial map is spectral.

COROLLARY 3.2. The Cech sequence of a simplicial map converges Er = 2?°°
at r = max (p + 1, q), where p is the maximum dimension of a fibre and q is
the dimension of the image space.

Proof of Theorem 3. By Lemma 4 we can compute the Cech sequence
using oriented nerves (rather than nerves).' Therefore

the inverse limit taken over all pairs of coverings a,j8 of |K\, \L\, respec-
tively, such that a refines f~x^, where J°(/ , a,j8) denotes the spectral
sequence obtained using oriented nerves.

Let a(8),j8(8) denote the star coverings of K{8),L{8), respectively. We
may choose oriented nerves of a(8),j8(8) to be identical with K{8),L{8);
then P(f, a(8), j3(8)) is identical with the simplicial sequence E{f(8)), by the
definition in §2. As we have already observed, the set of pairs a<s),j3(s) is
cofinal in the directed set of all pairs of coverings of |JK"|, |L| . Therefore
to compute $(f) it is sufficient to confine our attention to these pairs:

If s^t, let 7r8'': E(f{8))->E(flt)) denote the appropriate homomorphism in
the inverse system. We shall prove that for each s^2 , there is an
isomorphism

F 8

such that for s ^ t^ 2, the diagram
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is commutative. Therefore n8'1 is an isomorphism on the E2 terms and
consequently on the whole spectral sequence. The inverse system is a
sequence of isomorphisms for s ̂  2, so that the homomorphism of the
limit term

is an isomorphism as desired. Moreover we have shown that the sequence
runs as stated in the theorem. There remains the main burden of the
proof, the definition of the isomorphisms IT8.

Let s be fixed for the moment, ^ 2. We shall use a triple facing relation
on KX®LM®LV, where KA = K<8),Lfl = L, and Lv = L(8). For a typical cell
we shall write ax®rlt®rv to remind ourselves that the a's are in X and
the T'S in Y. To express the facing relation we shall need a generalization
to complexes of the notion of the dual cell of a simplex in a combinatorial
manifold.

Definition. Let T = 6° ft1... bq be a simplex of L. Define the dual of r by

dualT =

The dual of T is a cone with vertex at the barycentre of T, and is therefore
an acyclic subcomplex of La).

The facing relation is given by

and

Clearly $ satisfies the facing condition because duals are closed and expand
when passing to faces, and similarly stars expand. Consider the properties
of ^ :

(1) ^ is (/x,i>)-acyclic, because the facet <^tlrv is merely the closure of
the largest simplex whose dual contains \rv\.

(2) 5 is (A, /A, v)-independent, because, for a given TV, the two indepen-
dent conditions in the facing relation ensure that 5A/t

7\> =
 $AT./® tSf/iV

(3) 3f is (A, n, v)-excisable by the next lemma, Lemma 9. Therefore
applying Lemmas 7 and 8 we have isomorphisms

(4) The facing relation ^Xv is none other than the simplicial facing
relation of/(8), because every rv is contained in some |dualTA|, and so
ja-augmentation leaves us with only the first condition f\ st ax \ n | s t r j ^ 0 .
Therefore BVtK = E(f{8)).

(5) There is an isomorphism induced by inclusion
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For consider the facing relation $A/r Fix T for the moment. The facet
$AT;< is a subcomplex of Kk = K{s), and triangulates the solid fibre over
the subcomplex Tv = /<s) %vT/l of Lv = Us). In detail

TV = {TV; | dua lT / , | n | s t7 j#0} ,

or in other words Tv is the closed simplicial neighbourhood of IdualrJ
in Lv. This is the point where it was essential to have chosen s ^ 2, for
then |Tv|cr|stT^|. Consequently \TV\ is deformable onto Idualr^l, which,
being a cone, is contractible to its vertex T/(. We may lift this to a
deformation retraction of |5,\T/J o n*° -^V Therefore inclusions induce
isomorphisms

If rj^Tji, inclusions induce a commutative diagram

The resulting isomorphism between the stacks HA $A —^ § on L induces
the isomorphism E£x-^-+H*(L; 9>) that we want.

Combining all the above properties of $ we are able to define TTS as the
composition

2, we have the commutative diagram

the right-hand square being commutative because it is induced by inclu-
sions, and the two left-hand squares being commutative by the functorial
quality of £jf on the derived maps. This diagram gives the formula
TTS = TT'7TS'( that we wanted to prove. Therefore the definition of TTS and
the proof of Theorem 3 are completed by the following lemma.

LEMMA 9. $f i$ (X,ix,v)-excisable.

Proof. We have to define an acyclic functor F : Lv-+ L^ carrying <ftflv,
and a facing relation ffi between KA and Z£. The functor is a generaliza-
tion (to non-manifolds) of the example in §3.
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Define FT,, = (T^1, T/4
2), where T^1 is the unique simplex of L^ whose interior

contains | T J , and T2 is the unique smallest face meeting j s t r j . The latter
exists because the condition o 2 ensures that the closed stars of Lv refine
the open stars of Lp and T2 is merely the join of those vertices of LfC whose
stars contain |st-r,,|. We now verify the two conditions required of an
acyclic carrier functor.

(i) The closed simplicial neighbourhood Tv of | dualr^ | in Lv is contained
in | st T^ |. Therefore if r/t ® rv e ̂ /w, then | rv | c= | dual rfl j and | st rv | <= | st r/t |.
Hence all the vertices of T^ are vertices of T/(

2 by the above description of
r/t

2. Therefore FT,, = ( T ^ T ^ X T ^ T J , as desired.

(ii) Given T/t
1>-T/t

2>T, we have to show that
~P — / - r • T (x) T - p T t a n f l ( T 1 T 2 ] N ^ . T^T \Jrv — \~u ' T(i^-'Tv*: Ofi\ c l I l u \Tft )Tfi I r ^ - ' v )

is acyclic. Let 0,,1, 0,,2 be the subcomplexes of Lv triangulating the inter-
sections of |dualr^j with |T^1 |, \rM

2\ respectively. Both | 0 / | and |0,,2| are
convex. Therefore Pv, which is the closed simplicial neighbourhood of
0,,2 in 0/ , is acyclic. An example of Pv is shown shaded in Fig. 3.

Having established the functor F, we now turn our attention to the
facing relation ffi. Recall that if o>/( = (T,,1, T/(

2)£JLJ"(1 then Fw/t is the closure
of FT * in FT*. Define

Therefore the facet ^A wp. ^s ̂ n e largest sub complex of KK contained in
Fai^ and | ̂ \ to^ \ is in fact a deformation retract of Fio^. In the particular
case when cô  = (r/t, T^) we already know that | f5fAx/f | is contained in, and
is a deformation retract of, Ffj^T^ = FTU. Therefore there is a chain
equivalent inclusion

Finally, to establish the other chain equivalent inclusion, suppose
T / t 0 T , e ^ , and suppose Yrv = cofl = ( r / , ^ 2 ) . The facet %X{TM®TV) is the
closure of the solid fibre above Istr^j, and is therefore contained as a
point set in Fw , and as a subcomplex in $A ciy To show that the inclusion

is a chain equivalence, we present a polyhedron, homeomorphic to
/ a y which is a deformation retract of both |5A(T^®TX)I a n (^ - ^ V
and therefore also of | ̂ A % I because this is a deformation retract of
Fa> . If y £ | stTV | n | T 21, the linear contraction of | stT^2 | to y can be lifted
linearty to a deformation retraction of Foo^ onto the polyhedron
Fco^Df^y. Similarly the contraction of | s t r j to y can be lifted to a
deformation retraction of | ̂ (v®7""^ on^° the same polyhedron. The
proof of Lemma 9 and Theorem 3 is complete.
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FIG. 3
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Example. We give an example to show that it is necessary to pass to
the second derived map to be sure of the correct computation of the Cech
sequence.

Let K = a, the boundary of a 3-simplex a = a0 a1 a2 a3. Let L = f,
a 1-simplex r = b0^. Let / ( 0 ) : K->L be the simplicial map given by
fa0 = fa1 = 6°, fa2 = /a3 = 61. To compute § we notice that the fibres
above fe0,^1 are contractible while that above r is a 1-sphere. Therefore
the Cech spectral sequence E(f) of the underlying continuous map con-
verges at E2 = $°°, with

[0, otherwise.

Meanwhile in the simplicial facing relation of/(0), the facets of 6°, 61,T
all coincide with K, so that the simplicial spectral sequence E(f(0)) also
converges at E2 — E00, but with

(Z, p = 0,2, g = 0,

otherwise.

A small calculation shows that E(f{1)) is also in error, so that E{fl2)) is
the first correct computation for E(f).

Homotopic maps

The above example also illustrates that the Cech spectral sequence,
although a topological invariant of the map, is not an invariant of the
homotopy class of the map, as Leray pointed out for the spectral ring,
in (3). For consider the constant map g : K-+L, that maps K to 6°, which
is homotopic to / . A glance at the fibres will convince the reader that
E(g)^£(f); in fact E(g) happens to be isomorphic to #( / ( 0 ) ) above. The
difference may be analysed by noticing what has happened to the ^-filtra-
tion of H%(K), and in particular to the filtration of a generator of H2{K).
In passing from f to g the filtration has slipped from 1 to 0. The pheno-
menon may be interpreted geometrically by the fact that the 2-sphere,
which represents a generating cycle of H2(K), is mapped by / t o a 1-dimen-
sional subset of \L\ and by g to a 0-dimensional subset. The dimension
of the image of the sphere dictates the way in which it is fibred, and is
thereby captured in the spectral sequence.

This observation suggests that we seek a more delicate equivalence
relation between maps than homotopy. For example call two maps
f,g : X-> 7 isotopic if / = hg, where h is a homeomorphism of Y onto
itself that is isotopic to the identity. Then the spectral sequence E(f)
is an invariant of the isotopy class of/.
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6. Computation theorem

As pointed out in the introduction, Theorem 3 is not much use for
computation in fibre bundle theory, because the projection of the bundle
is seldom simplicial. Therefore we introduce the notion of a poly fibre map
between compact spaces, for which it is possible to compute the spectral
sequences finitely. The definition is tailored on the one hand to make
computation possible, and on the other to include the following examples
of maps:

(i) Simplicial maps.

(ii) Fibre bundles with polyhedral fibre and base.

(iii) Ramified coverings of polyhedra.

(iv) The projection M-+MJG of a manifold onto its orbit space M\G
under the action of a Lie group G (provided G acts sufficiently smoothly).

(v) The projection from product to symmetric product of a polyhedron.
Since simplicial decompositions are uneconomical for computation, we
shall use a cellular decomposition of the base of the polyfibre map, with
the restriction that the cells must have non-singular boundaries, so that
their stars can be contractible, and so that we can form derived complexes.

Cell complexes

Recall the definition. A finite cell complex L o n a space Y is a finite
collection {e^} of disjoint subsets called cells, such that

(i) Y=Ueq\
(ii) for each g-cell, e = eg\ there is a homeomorphism Bq->e from the

g-ball B9 onto the closure e of the cell, that maps the interior of the
ball onto e,

(iii) the boundary, e = e — e, of a cell is an exact union of cells of lower
dimension, which, together with e itself, are defined to be the faces of e.

Choose an orientation for each cell, and then the cell complex gives
rise to a geometric chain complex, also denoted by L.

The barycentre e of a cell e is defined to be the image of the centre of the
ball under the homeomorphism B9->e. By joining the points {e^} suitably,
we can form the first derived complex La) of L, which is a simplicial
complex triangulating Y, with the points {e^} as vertices. Therefore Y
is a polyhedron. Inductively we can define the tth. derived L{t) of L.

Both the closure, e = (J e\ of a cell, which is a closed subset of Y, and

the star, |ste | = (J e1, of the cell, which is an open subset of Y, are con-

tractible to the barycentre i. It is possible to define duals in a cell complex
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as in a simplicial complex:

dual e = D stTi

which is an acyclic subcomplex of L{1). The underlying point set, | duale|,
is closed in Y, and is a cone with vertex e, and is a deformation retract
of |ste|.

Given a continuous map / : X -> Y, we introduce the same fibre notation
as in the last section: let Fe =/~1 |s te | , and fe =/~1e.

Definition of a poly fibre map
We say that a map / : X^-Y is a poly fibre map if there exists a cell

complex L on Y, such that for each cell eeL:

(i) fe is a polyhedron.
(ii) There exists a retraction p(e) : Fe->fe, which maps the fibre above

any point in e homeomorphically onto fe, and maps the fibre above any
point in | st e | onto fe, and which induces an isomorphism of Cech homology
8*(Fe)-=+S*(#e).

(iii) Given a point x e / " 1 e, define an e-rectangular neighbourhood of x
to be an open set of X of the form p(e)"1 U n / - 1 V, where U is open in fe
and V is open in | st e |: we require that the e-rectangular neighbourhoods
of x form a base of neighbourhoods for x, for all x e X.

We say that such a complex L is associated with the polyfibre map / .
If L is associated with / , then the derived complexes of L are also.

Example. Let / be the orthogonal projection of a circle X onto a
diameter Y. Then / is a polyfibre map with two types of fibre, single
points and pairs of points. Triangulating Y as a 1-simplex provides an
associated complex, for which the axioms are easy to verify.

All the examples mentioned at the beginning of this section can also
be shown to be polyfibre maps.

Remarks. Notice that in a polyfibre map fiX-^-Y all the fibres are
polyhedra, and the solid fibre above each cell is a product. However X
itself need not be a polyhedron, since there is little restriction on the way
in which the solid fibre above one cell is glued onto that above another
cell. From (iii) one can show that X is compact. Y is compact because
it is a polyhedron. Another important consequence of (ii) and (iii) is
that / is an .open map.

The stack § , etc.
Given a polyfibre map / and an associated complex L, we can define,

as in the last section, the covariant stack Jr> = £)*(/) — ^§ P ( / ) on X; to
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each cell eeL assign the Cech homology group §e = B#(Fe), ^ff^.(Pe) by
hypothesis (ii) above, and if e*>»e* assign the homomorphism ^e^-^-^e3

induced by the inclusion Fei<^Fei. Similarly define the stacks §, etc.

The computation facing relation

Suppose / : X -> Y is a polyfibre map with an associated cell complex
L on Y. Let a be a finite covering of X, and let K = N°(a) be an oriented
nerve of a. Define the computation facing relation § between K and L by

§ = {a®e;/(supa)n|duale|#0}.

The facing condition is satisfied because both supports and duals expand
on passing to faces. Filtering the resulting double complex with respect
to q, the grading of L, we obtain a spectral sequence which we denote by
E(f,ct,L), etc. The advantage of this over the ordinary Cech facing
relation is that fewer cells are involved, so that from the point of view
of computation it is much more economical.

THEOREM 4. {Computation theorem.) If f:X-+Y is a polyfibre map,
and L an associated cell complex on Y, then we can find a finite covering a.
of X, such that the Cech sequence ${f) is isomorphic to B(f, a, L), etc. The
sequence runs

L

COROLLARY. The Cech sequence of a polyfibre map is spectral.

The rest of the section is devoted to the proof of Theorem 4. The
pattern of proof is much the same as that of Theorem 3, except that in
this case we have the additional complication of constructing a, and the
need for rather careful handling of Cech theory. The covering a will
consist of rectangular sets.

Construction of a

We introduce the notation: if y is a covering of the solid fibre / - 1 V
above a subset V of Y, and if W^V, let yjW denote the covering cut
down to the solid fibre above W.

Let ex,ei,...,em enumerate the cells of L in some order of increasing
dimension. Let Mi be a simplicial complex triangulating the polyhedron
fel. Let y(ei, s) be the inverse image under p(el) of the star covering of
the 5th derived complex of M*. Therefore y(ei, s) is a finite covering of
Fei by el'-rectangular sets.

We shall define inductively two sequences of integers s1', t1 (i = 1,2,..., m),
with tl non-decreasing, and starting with s1 = 0, t1 = 2. Suppose that i is
fixed for the moment, and s*, tj have been defined for j < i. We proceed to
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define s* and ti. If j < i, let Ai be the point set underlying the open
simplicial neighbourhood of ej in L(ti), and let B* = (J Ak. Then Bj is an

open subset of Y. Let J1 = e* — i?*"1, which is a closed compact subset of ei

underlying a subcomplex of Llli~l).

LEMMA 10. Given yeJ*, there is an integer s and a neighbourhood Wofy
contained in \stei\, such that y(ei,s)jW refines y(e^,si)\W for allj, ei^ei.

Proof. Since ei is fixed for the lemma, we may abbreviate p{el) to p.
Let xef~xy. For each j,ei^e:j, choose a set AJ' of y{ej,sj) containing x.
By property (iii) of the polyfibre map, we can choose an e*-rectangular set

fl

The aggregate of these choices as x varies forms a covering of the compact
polyhedron f~xy, which admits of a finite subcovering p~1UkC\f~1Vk

(k = 1, ...,n), say. Let W = f\ Vk, and choose s minimal such that the

star covering of the 5th derived of Mi refines {Uk}. The requirements of
the lemma are satisfied.

We can now continue with the construction of a, namely with the
inductive choice of s* and ti. The sets W of Lemma 10 cover J \ which is
compact. Therefore a finite number of W's cover J1, and indeed cover
their union J1 say, which is an open neighbourhood of J1 in Y. Let s* be
the maximum of the corresponding finite set of s's. If t is large enough,
the star covering of Lll) refines the covering by W's of J1. If t is minimal
with respect to this property, define tl = max(£ +1,^"1). We have
completed the inductive definition of si and tl.

Let Lv = L{8tn). We say that a vertex bv of Lv is of filtration i if it is
contained in Bi — Bi~1. If bv is of filtration i, let oc{bv) be the covering
y{ei,si)l\stbv\ of the solid fibre above the star of &„. Let

Remark. We have completed the definition of a. However, a is but
the first of an infinite sequence of such coverings. The rth covering a(r)

is obtained by replacing L and Mi in the construction of a by their rth
deriveds. Since X is compact, property (iii) of the polyfibre map ensures
that this sequence of coverings is cofinal in the directed set of coverings
oiX.

Notation
Let Kx = N°(a), an oriented nerve of a. If jS is the star covering of

L{8tn), let Lv = U8^ = iV0(j3). By construction a refines /^jS, and there
is a unique simplicial approximation <f>: KA-+LV of/. If Tv is a set of
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simplexes of Lv, let

the oriented nerve of a cut down to the solid fibre above \TV\. We may
regard Nx Tv as a sub complex of /fA, and alternatively define

Since supports are open sets and / is an open map, we deduce that
JVATv = NKTV. Therefore we may as well assume from now on that Tv is
a subcomplex of Lv.

LEMMA 11. If b is a vertex of Lv of filtration i, then NAb = $~lb, and

inclusion induces HxNKb-^>$$ei.

Proof. First we notice that the only open sets of a which meet/"16 are
those of a(6). Property (ii) of a polyfibre map ensures that the support of
a simplex in N°(y(ei,si)) meets the fibre above every point of |st(e\Z/)|.
Therefore if aA6iV0(a(&)), then /(supaA) = |s t(6, iy | , and so
Therefore

NAb = </»-! b = 2V°(a (&)) -^

But by property (ii) again, these coverings are sufficient to compute the
Cech homology groups of/"16 and Fe{, respectively, so that we have the
commutative diagram of isomorphisms

Remark. We have shown that if Tv is a vertex, then NkTv = <£~121,,. If
Tv is not a vertex, however, although NXTV has the same vertices as
</>~x Tv, it may be slightly smaller than <f)~x Tv, so that we can only claim

For example, we may have a simplex whose vertices lie in ^~x Tv but whose
support lies above the complement of |Tv\. And it is this point which is
the very crux of the matter. For herein is reflected the main advantage
and awkwardness of fibre bundles, whereby two open sets which look nice
and horizontal in two neighbouring coordinate systems may cut each
other pathologically. It is this point which necessitates the elaborate
construction of a and the device of Lemma 13. The crucial property of a
is pinpointed in:

LEMMA 12. / / 6°61 ...b9 = TVELV, the vertices arranged in some order
of increasing filtration, then for each k<l, u.{bl)l\&t(bkbl,Lv)\ refines
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a(6fc)/| st (6fc bl, Lv) |, and we can choose a corresponding simplicial approxima-
tion £ w : iVA6?->iVA6fe. The approximations can be chosen to satisfy the
associative law t,k>l £*>m = £,k>m.

Proof. First we define £fc>fc+1 (k = 0,1, ...,q-1). Let the filtrations of
bk,bk+1 hej,i respectively. Hi =j, both cx(bk) and a(bk+1) are isomorphic
restrictions of y{ei,si), so obviously we choose £fc.fc+1 to be induced by the
identity.

If i>j, then el^eK From the construction of ot, we notice that bk+1

must be contained in the open simplicial neighbourhood of Jl in Lai),
and so bk+1e\at(b,L{lf))\i some beJ\ Therefore \rv\^\st (b,L^)\. There-
fore | f, | c | st (b, L{t)) | if t + 1 ^«'. (This was the reason for the ' + 1 ' in the
original definition of tl.) Therefore if V = \st(fv,Lv)\, the open simplicial
neighbourhood of fv in Lv) then V<^\st(b,Lw)\. But |st(6,L(0)| is con-
tained in some W of Lemma 10. Therefore by Lemma 10, y(ei,si)/F
refines y{ei,si)jV. We can identify the oriented nerves of these coverings
with 2VA6fc+1 and iVA&

fc, respectively, and define an approximation ^>k+1

accordingly.
If k < I, define £w by the composition t,k>k+1... £*-x'*; clearly the associative

law is satisfied. If j , i are now the filtrations of bk, bl, respectively, then by
induction y{ei,si)jV refines y{ej,sj)lV and £w is an approximation. Since
F=>|st(6fc6*,L,,)|, we can replace V by | st (bk bl, Lv) \ in these statements,
and we have the lemma.

Definition. Let Tv be a subcomplex of Lv. Let TV be a simplex of Tv,
6° a vertex of minimum filtration, and rv° the opposite face. Let Sv be Tv

with rv and T,,0 removed. If 8V is a subcomplex of Tv, we say that the
passage from Tv to Sv is a simple contraction. (The condition is equivalent
to saying rv is a principal simplex of Tv, and TP° is a free face.) We say that
Tv is simply contractible to the vertex 6, if there is a sequence of simple
contractions beginning with Tv and ending with b (which must therefore
be a vertex of minimum filtration in Tv). As an example, if eeL, and Tv

is the subcomplex of Lv triangulating |duale|, then Tv is simply con-
tractible to e.

LEMMA 13. IfTvis simply contractible to b, then the inclusion Nxb<^NkNv

is a chain equivalence.

Proof. The idea is to lift the nibbling away of Tv by simple contractions
to a nibbling away of NXTV. Consequently it is sufficient bo show that if
the removal of TV and TV° from Tv to Sv is a simple contraction, then
NXSV^NATV is a chain equivalence.

If ax ENXTV — NX 8V, then /(sup <rA) meets | Tv \ but not \SV\, and therefore
/(supo-A), being an open set, meets |TJ . By excision, it suffices to show

5388.3.12 Tt
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that Nxrv DNXSV^NXTV is a chain equivalence. We prove this by producing
a retraction p : Nxrv->Nxb°, which is a chain equivalence, and which
when restricted to Nx TV n Nx Sv is also a chain equivalence.

Let rv = bQb1... ba, with the vertices arranged in some order of increasing
filtration. If a is a vertex of Nx rv, and <j>a is of filtration k, define pa = t,°>k a,
where £0>A: is given by Lemma 12. Then p is a simplicial map Nxrv->Nxb°;
for let a1 a2... aP = ax e Nx rv. By Lemma 12,

sup pa1 n/"11 rv | => sup ai n/"11 TV |,

sup pa1 n ... n sup poP Of'1 \rv\^> sup ax Of'11 TJ # 0 .

Therefore pa1, ...,pav span a simplex paxENxb°.
To show that p is a chain equivalence we observe that it is contiguous

to the identity. For if aA e Nx TV> then
sup aA n sup Pak n/-11 TV | # 0 .

Therefore there is a simplex x^\^Nkrv with vertices a1,...,ap, pa1, ...,pav.
Now let Rx - NXTvnNxSv, and let p~ be the restriction of p~ to Rx. To

show that p is a chain equivalence is not so easy, because p~ is not in
general contiguous to the identity, for the same reason as described in
the remark preceding Lemma 12. We have to produce an acyclic carrier T
from Rx to itself, carrying both p and the identity.

Suppose aA 6 Rx, and let T1 = <j>ax. Then/(sup o-A) is contained in | st T,,1 |,
and by hypothesis meets | rv \ and \SV\. Therefore T1 E f „ n Sv. Let r,,2 = b° r/
if b^r1, and let r2 = T1 if WET1. Let U1 = / - 1 | s t r , 1 | and U2 =/-1 |stTv

2| .
Suppose that the vertices a1,a2,...,ap of aA are labelled so that fa1,..., <j>av

are in the correct ordering of the 6's (possibly with repetitions). If
l^i<j^p, and if Jc,I are the filtrations of (f>ai,<f>aj, respectively, let
aiJ = t^la?. Also let a°j = pa\ and aj-j = aK We claim that there is a
simplex I/J°<JXERX spanning the vertices {aiJ; l^i^j^p}. For, by
Lemma 12, if 1 ^ i ^j ^p, then

U1 n sup ai>j => U1 n sup aj>i ̂ U1^ sup ax = sup ax.

Therefore the supports of all the vertices concerned meet, and ip° <rA exists
in Kx. Moreover sup0°crA = supaA, and since ax satisfies the condition for
being in Rx, so does ifj° ax.

We also claim that for each k, 14:k^p, there is a simplex i/jkaxERx

spanning the vertices {a^\ O^i^k^j^p}. For if
U3 = U2n sup ak-k n sup ak'k+1 n . . . n sup ak*,

then by Lemma 12
Us ^f'11 T J n sup ak>k n sup ak+1'k+1 n ... n sup aP*
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Therefore ak<k,ak>k+1, ...,ak'v span a simplex, cxA
& say, in Nx(<f)ak). And if

O^i^k^j^p, then

U2 n sup a{>j =3 U2 n sup akJ => U3.

Therefore the supports of all the vertices concerned meet, and so ^kaK

exists in KK. Moreover U2 n sup ifjk aA = U3, and so

/(sup</r*aA)=>/[/3 =/(C/2nsupaA
fc) = |stT,2|,

which meets both \TV\ and \8V\. Therefore 0fcaA qualifies for being in Rk.
We can now define the carrier XY by the formula

It is a carrier because, if aA>aA, then XFCTA=5XFCTA, since each ijjko'A is a
face of some i/»zaA. It is acyclic because To^ is a cone with vertex a1>1}.
Finally it carries both the identity, because I/»°CTA>-CTA, and p, because
01 aA>paA. Lemma 13 is proved.

LEMMA 14. Inclusions induce an isomorphism E2{f,<xiL)-=-^H^,{L\ <?>).

Proof. Let L^ = L. Recall that the computation facing relation between
Kx and L^ is given by

§ = {aA ® e,; /(sup aA) n | dual e/t | # 0}.

If Tv is the subcomplex of L,, triangulating | dual eA |, the facet §A ê  = î A Tv.
By Lemma 12, iVA ê  «= iVA 7], is a chain equivalence. Therefore, by
Lemma 11, inclusions induce isomorphisms

V
The resulting stack isomorphism HK^K—^->& gives the lemma.

Proof of Theorem 4. We shall establish an isomorphism

which together with Theorem 1 and Lemma 14 implies Theorem 4.
Continuing with the notation

KA = N°(OL), L^L, and Lv = L<sm> = N°(P),

consider the triple facing relation on KA®L^0Lv given by

S = {^A®e/t®Ti;;/(supa,)n|stTj^0 and Iduale^l^lrj}.

We notice similar properties to those enjoyed by the facing relation in
the proof of Theorem 3.

(1) g is (fx, i/)-acyclic.

(2) % is (A,/LI, ^-independent.
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(3) $ is (A, fx, v)-excisable. For let the acyclic functor F : ^
carrying g ^ be given by Trv = {e^ej), where j is the minimum nitration
of the vertices of strv. (We observe that we could have used a simpler
version of 'excisability' for this particular application, and dispensed with
Lp, for the first member of the pair Lej, efl

j) is irrelevant.) Let

ei>ei

It is possible to show that Cj is the closed subset of Y underlying the
subcomplex of L spanned by all vertices of filtration i, e^eK Let the
facing relation ffi between KA and IS be given by

<F = K ® (efl\ e*); /(sup aA) n Qt # 0}.
We can use Lemma 13 to prove the chain equivalent inclusions

where e ^ ^ r ^ e ^ . Applying Lemmas 7 and 8, we have isomorphisms

(4) ^Xv is none other than the Cech facing relation of/ between oriented
nerves of a, £, so that by Lemma 4, Ev>x ^ E(f, a, £).

(5) There is an isomorphism induced by inclusion

For the chain equivalence iV ê <=^Ae , mentioned in (3) above, leads, as
in Lemma 14, to an isomorphism #A$A—^>§ between stacks on L/r

Combining the above properties, let v be the composition

This is but the first of an infinite sequence of isomorphisms {7Tr}, corre-
sponding to the cofinal sequence of pairs of coverings (a(r),j6(r)). The
consequence of such a cofinal sequence is, as in Theorem 3, a canonical
isomorphism from the Cech sequence of/

(6) Finally we use the chain equivalent inclusion §Ae//c:g:
Ae//)

mentioned in (3) above, to deduce a stack isomorphism HK ^A ~> H\ 5A o n

L^, and hence an isomorphism from the computation sequence

Combining, we have the composite isomorphism

£(/)-=+£(/,*, 0) = E^^E^-Z+E

which concludes the proof of Theorem 4.
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7. Singular theory

In this section we relate the singular and Cech spectral theories by
establishing canonical homomorphisms between them. As a corollary we
show that the two theories are isomorphic on simplicial maps, and on
certain fibre maps. Following Serre (4) we use singular cubes to define
the singular theory. As mentioned in the introduction, we differ in
notation from him, in that our degenerate cubes are degenerate at the
front rather than at the back, and an %-dimensional cube has its first p
coordinates parallel, roughly speaking, to the fibre, and its last q = n-p
coordinates parallel to the base.

Singular cubical homology

Let Q(X) = HQn{X) denote the geometric chain complex of singular
cubes in a space X. Let QD(X) denote the subcomplex of degenerate
cubes, i.e. those which are independent of the first coordinate. Let
QN(X) = Q(X)IQD(X), the normalized singular cubical chain complex of X.
Then QN(X) is a geometric chain complex, whose cells are in one-one
correspondence with, and may be identified with, the non-degenerate
cubes of X.

The singular spectral sequence of a map, etc.

L e t / : Z-> Y be a continuous map. We make A = QN(X) into a filtered
graded differential group as follows. The grading n and differential d are
those of QN(X). The filtration {Ag} of A is the image under the epi-
morphism Q(X)-*A of a filtration {Q(X)q} of Q(X). Define Q(X)q to be
the subcomplex generated by all cubes u, such that/w depends upon only
the last (at most) q coordinates. In other words, if u is w-dimensional
then ueQ(X)q if n^q, or if n>q and fu is independent of the first
p = n — q coordinates. The spectral sequence arising from A is defined
to be the singular spectral sequence sE(f) of the map / . The sequence runs

where 8H*(X) is the singular homology group of X, and D is the bigraded
differential group associated with A; the gradings of D are p,q, and the
differential d° is induced by d and is of degree (1,0).

Similarly if G is a coefficient group, and R a coefficient ring, we can
define the spectral sequence sE(f; G) and the spectral ring sE*(f; R) from
the filtered graded differential groups A ® G and AfR, respectively.

Relation with Serre's theory

The above is a mild generalization of Serre's definition (4). He was
concerned only with fibre maps having path-connected base and fibre,



678 E. C. ZEEMAN

and as a result was able to confine his attention to the subcomplex A° of A,
comprised of those singular cubes having all their vertices at a base point
a;0 in X. The advantage of doing this was that it simplified the identifica-
tion of the E2 term with the homologies of base and fibre. Since we are
concerned with arbitrary maps, which may have different fibres above
different points, we have to allow ourselves singular cubes within every
fibre, and so must free the vertices of the cubes from the base point.

It is possible to show that the above definition is a true generalization
of Serre's, by proving that in the case of a fibre space the inclusion
j : A°-+A induces an isomorphism of spectral sequences. For one can
define a retraction k : A-+ A0 and a homotopy operator h:jk~l, and
apply Lemma 2. To define h and k, one uses the homotopy extension and
homotopy lifting theorems to lift a similar construction on the singular
complex of the base space Y, building inductively on dimension, and
remembering to be careful on degenerate cubes (in a manner not unlike
that of (4) Chapitre II, Lemmes 4, 5). The construction is straightforward
but laborious, and is left to the reader.

THEOREM 5. Let f: X->Y be a continuous map, 0 a coefficient group,
and R a coefficient ring. There is a canonical homomorphism

from the singular spectral sequence of f to the Cech semi-spectral sequence,
and a canonical homomorphism Y*:i£*(/; R)^-8E*(f; B) from the Cech
spectral ring to the singular spectral ring.

COROLLARY 5.1. Y : SE -» £ and Y* :S*^-8E* are natural transformations
between functors.

COROLLARY 5.2. / / / : Y^-Y is the identity, then Y reduces to the natural^
transformation from the singular homology group of Y to the Cech homology
group, and Y* similarly.

Small cubes

The proof of Theorem 5 will employ a facing relation which fits singular
cubes inside Cech supports. Let a be a covering of X; we say that a
singular cube of X is a-small if its image lies in some set of a. Denote,
as in (8), by Q{X, a) the subcomplex of Q{X) generated by a-small cubes.
Let QN(X, a) be the induced subcomplex of QN(X). Then A(a) = QN{X, a)
inherits the filtered graded differential structure from A, and so gives rise
to a spectral sequence which we denote by sE(f,<x).

LEMMA 15. Inclusion induces an isomorphism 8E(f,oc)-^-*8E(f), etc.

t ((8) Corollary 2.7.)
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Proof. The pattern of proof is similar to that of the classical result,
that the singular homology groups of a space can be calculated using
only small singular simplexes. We have to adapt the proof to cubes and
to spectral sequences.

First we give a formula for chopping an w-dimensional cube into 3n

smaller cubes. Let u : In^X be an w-dimensional singular cube of X. Let

for % —1,2,. . . , 7 1 . Let

Xi

X

h

= Xi{0)+Xi
= Xn Xn—X •

n
- la \ ~ r

3 = 1

(D_x.(2)

••Xi,

^fyXj-i.

Then ^ is a chain map Q(X)->Q(X), and h is a homotopy operator
Qn(X)->Qn+1(X), such that dh + hd = 1— x- Moreover the subcomplex of
degenerate cubes is stable under x and h, so the same formula is induced
in the normalized complex. If u is such that fu is independent of its first p
coordinates, then xu a n ( l hu a r e sums of like cubes. Therefore, passing
to the filtered group (and omitting the grading), we see that x(^g) <= ̂ 4fl

and h(Aq)<^Aq+1. The result of chopping-up is that if we apply the
operator x enough times, then any cube is chopped into a-small cubes,
or more precisely: given a covering a, and a chain x e Aq, then x8 x £ -4a(

a)
provided s is sufficiently large. If «/r = l + x + X2 + ••• +X8"1' then \p is a
chain map A -*A, and

l^X^ + hifjd + dhtfj. (1)

To prove the lemma, it is sufficient to show that inclusion induces an
isomorphism between the E2 terms, or in other words that

^ ^ ^ f
where Bq

r, Cq
r are the customary groups of boundaries and cycles used in

constructing the spectral sequence. The isomorphism holds provided

(2)

«). (3)
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Let xeCq
2, the left-hand side of (2). Choose s sufficiently large so that

Xs x e Cq
2(a). Applying (1) we have

x = xs x + hifjdx + dhtpx.

But hdifjxeCgi-L, because ipdxeAq_2, so htpdxEAq_1} and

dhdtjjx = d{l-xs)xeAq_2.

Meanwhile dhjix e B^, because hiftx e Aq+1, and dhtfjx = (1 - xs) x - hifjdx e Aq.
Therefore x lies in the right-hand side of (2), and we have proved (2).

Now let xeC^diC^ + Bq
1), the left-hand side of (3). Then a: = y + dz,

where yeC^ and zeCQ\x. Choose s large enough so that
Then by (1)

But hifjdy is also in C^l^a), because dy = dx, and hi/jdy e h\jjAq_2(<x)
and d(hifjdy) = d(l -xs)yeAq((x). Therefore x = y' + dz', where

i(a), and z' = z + hifjye Cq\x.

To establish (3), it remains to show that dz' eB^a). Choose t sufficiently
large so that ^ ' e C ^ a ) . Therefore dz' = dx

sz' + dhijjdz', by (1). But
dz' = x - y'eAg{oc), and so Jupdz' eAq+1(a), with d(hipdz') = (1 - xs) dz'eAq(a).
Therefore hipdz' e ^ ^ ( a ) , and consequently dz' = d(xsz' + h\fjdz')eBq

x{oi.), as
desired. We have established (3), and completed the proof of Lemma 15.

The multiple facing relation

In the proof of Theorem 5 we shall use a triple facing relation involving
three gradings and one filtration. Let (/, a, jS) e SOZCOV; in other words,
/ : X-> Y is a continuous map, and a, j8 are coverings of X, Y such that a
refines/"1^. Let

KA = N{<x), the graded differential group, graded by pXi with
differential dA;

Lv = N(f3), the graded differential group, graded by qv, with
differential dv\

K^ = QN{X, a), the filtered graded differential group, filtered by qip

graded by n% , with differential d^r

Then KX®LV®K^ is a filtered trigraded tridifferential group, filtered by
q.n, graded by PK,qv,n^, and with (skew-commutative) differentials
dx,dv,dcr Let $ be the facing relation on KK®Lv®K^ given by

^ = {CTA ® T,® oir); sup CTA =3 im CT^ and sup rv 3 im/a^} . (See Fig. 4.)

Clearly the facing condition is satisfied, since supports expand and images
shrink when passing to faces. $ gives rise to a filtered trigraded tri-
differential subgroup AAv£V of KK®LV®K^. Let Dkv^ be the associated
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quadrigraded tridifferential group, graded by Px,qv,P£,qv, with induced
differentials dK,dv,d^ We can form various spectral sequences from
AXvgv, subject to the condition that we must not have both £ in the filtering
degree and 77 in the complementary degree.

X

FIG. 4

By applying Lemmas 5 and 7 we shall now deduce the isomorphisms

Notice that the proofs of the lemmas remain valid in spite of the presence
of a filtration instead of one of the gradings, because they are performed
over the associated graded groups. The requirement for the first iso-
morphism is that $ should be (A, v^J-acyclic, which is true because we
have arranged for the singular cubes to be a-small, so that the facets
concerned are Cech cones. The requirement for the second isomorphism
is given by
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LEMMA 16. $ is {v^yacyclic and ($,v,r})-independent.

Proof. The first'thing to do is to define the 'facets' 3 ^ , fJfgT , ^ r v ;
for as yet we have not defined any facets in which the suffixes £ and rj
do not occur together. Let Lv = QN(Y,p). For each rveLr the facets
SPT

V> %ir
v> %vg

r
v
tnat w e s n a 1 1 construct, will be subgroups of Lv, Kiv Dviv

generated by cells and closed with respect to the differentials dv,d^,dv^,
respectively, and such that if we take direct sums over all rveLv, then

It is these properties which entitle us to call them facets, and make the
statement of the lemma meaningful. It is also these properties of facets
which are used in the proof of, and validate the application of, Lemma 7.

Let ^vn be the Cech-singular facing relation of {Y,P), as defined in
((8) Example 5); it is the facing relation between Lv and Lv given by

%vv = {TV®TV; s upT^ imrJ .

The facets $VTV are therefore defined, and being Cech cones are acyclic.
Hence $ is (v,-^-acyclic, as desired.

If o^ G K^ is a (p + #)-dimensional non-degenerate cube in X of filtration
precisely q, let fa^ be the (/-dimensional cube in Y defined by

{i<riv){t1} . . . , t Q ) = {faiv) {slt . . . , « „ , « ! , . . . , « a ) , f o r a n y s1} . . . , s p .

By definition of the filtration q, fcr̂  is a non-degenerate cube, independent
of the arbitrary choices of s1} ...,sp. I t is jS-small, because a^ is a-small
and a refines f~xfl. Therefore £a^eLr

We digress for a moment to glance at the resulting commutative square

where lv,Iq are standard Euclidean cubes, and g is the projection. For
this square is the real structure implicit in a singular cube of filtration q.
The left-hand side g may be regarded as a prototype continuous map, just
as Ip is a prototype topological space; and just as we obtain the singular
homology of a space by considering all maps of the prototype cube into
the space, so we obtain the singular spectral theory of/ by considering all
maps of the prototype g into / , or, in other words, all squares like the
above.

We now return to the business of defining the f -facets. Let
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This is closed with respect to d^, because dg is, in effect, the boundary
with respect to the fibre Iv only, and, when applied to a^, yields a sum
of cubes lying above the same rv as air Summing, S ^ T , = Kiv as was
needed. Finally define

Again we see that %vg rv is closed with respect to dv and dp and £$„£ TV =
Moreover

from the independence of the conditions sup T ^ T ^ and rv = fa^. There-
fore $ is (v, I,?])-independent, which is the same as (£,^-^-independent.

Proof of Theorem 5. The facing relation $ has the following properties:

(1) The Av-augmentation induces an isomorphism EvvX^-^->Ev^ as we
have already proved.

(2) The ^-augmentation induces a homomorphism EVVtX^EVtX.

(3) The spectral sequence Ev g is none other than the singular sequence
8E{f,oi,fi), and by Lemma 15 the inclusion induces an isomorphism

(4) $AV i s * n e Cech facing relation, so that EvX = E(f,<x,fS).

(5) The facing relation $ is functorial on 9Jlcov. For let

be a map of S[RCOV, as described in § 2. If

aA®T,®a^G^(/,a,jS), then ^ ^ © ^ r , ® ^

because sup </>a aA => </»(sup aA) => ^»(im ag^) = im fa

and sup ^ rv =?«/»(sup T J =5 0(im/agl?) = im j/r/a^ = ^

Combining the results of (1) to (4), we define Y to be the composite

= $(/, a

Since ^ is functorial, and since the left isomorphism is induced by inclusion,
Y is a natural transformation on 9Jlcov. Taking inverse limits, we see that
Y : 8E->S is a natural transformation between the functors 8E,£ : 3Ji->(£.
This completes the proof of Theorem 5 and Corollary 5.1, subject to the
observation that the proof over an arbitrary coefficient group 0, and the
dual proof over an arbitrary ring R, are similar.

Proof of Corollary 5.2. I f / : Y-> Y is the identity, we may restrict
ourselves to the cofinal system of coverings in which a = £. Then all the
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spectral sequences in the above row collapse, and we have the commutative
diagrams

HVLV = H*(N({S))

*E*(f)

which give in the limit

The top homomorphism arises from the Cech-singular facing relation $vv

on Y, and so is the natural transformation from singular to Cech homology
((8) Corollary 2.7).

Fibre spaces

In the case of a fibre space, we can identify 8E*(f; R) with Serre's
spectral ring, and use Theorem 2 to identify E*(f\ B) with Leray's. Also
the simple structure of the E2 terms enables us to impose sufficient condi-
tions on/for T* to be an isomorphism. The conditions in Theorem 6 below
are merely those which permit of an immediate application of the com-
parison theorem for spectral sequences (7). We cannot do the same
for homology, because the comparison theorem fails for semi-spectral
sequences. No doubt the conditions of Theorem 6 could be weakened. In
particular it would be pleasant to replace condition (i) by something
which ensured the correct E2 term for the Leray sequence, and which
included the loop-space fibring of a nice space.

THEOEEM 6. If f: X->Y is a fibre map with connected fibre and base,
T* is a natural transformation from Leray's spectral ring to Serre's spectral
ring. T* is an isomorphism under the following conditions:

(i) The fibre map f is locally trivial.

(ii) The fundamental group of Y acts trivially on the Cech and singular

cohomology rings of the fibre F.

(iii) The Cech and singular cohomology groups of Y are finitely generated

in each dimension.

(iv) Two of the spaces X, Y, F have their Cech and singular cohomology

rings canonically isomorphic. (Therefore the third has also.)

We shall conclude the paper by proving that T, Y* are isomorphisms if/
underlies a simplicial map. A preliminary lemma is necessary.
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Definition. Suppose we are given a map f-.X-^-Y, and a subspace
P c 7 . LetZ1=/-1(71). Denote by// 71 the map X1->Y1 induced by/.
We say that // Y1 is a deformation retract of / if there exist deformation
retractions a : Xxl^-X o£X onto X1 keeping X1 fixed, and b : Y xI-+Y
of 7 onto 71 keeping 71 fixed, such that fa - b(fxl). Recall also the
notation that if a is a covering of X, then a/ 71 is the induced covering of X1.

LEMMA 17. Iff/Y1 is a deformation retract off, then the inclusion induces
an isomorphism 8E(fjYx,ajYl)^^8E{f,<x), etc.

sta.

f

FIG. 5
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Proof. Le t ; : Q^X^^Q^X) be the inclusion, and k : Q
the homomorphism induced by the retraction p: X-+X1, where
px = a(x, 1). Then kj = 1, because a is fixed on X1. Let h : Qu(X)->Qn+1(X)
be defined by hu = (— )n+1 v, where

Notice that h preserves degeneracies, and so induces a homotopy operator
on QN(X) such that dh + hd = 1 -jk. Passing to the filtration {Aq} oiQN{X),
we see that kAq<^Aq and hAq<=Ag+1. Therefore, by Lemma 2, k induces
an isomorphism 8E(f)^^-sE(flY1), and j the inverse isomorphism.
Lemma 17 follows from Lemma 15, and the commutative diagram induced
by inclusions

8E(f,<x)

—-=-* •E(f)

THEOREM 7. All the spectral theories of a simplicial map are isomorphic.

Proof. We have already shown in Theorems 2 and 3 that the simplicial,
Cech, and Leray theories agree. It remains to bring the singular theory
into the fold. For this we use a quadruple facing relation, which is a
combination of the two triple facing relations used in Theorems 3 and 5.

Suppose/(0) : K-+L is the simplicial map, and / : X-> Y the underlying
continuous map. Let Kx = Z(2), Lfl = L, Lv = L{2), and Kgrj = QN(X,ot),
where a is the star covering of Km. Let $ be the facing relation on

given by

(See Fig. 5.)

Consider the diagram

and |dual |

The bottom row of isomorphisms was proved in Theorem 3, and the top
right isomorphism in Theorem 5. The right-hand square is commutative,
since it is the definition of Y. The other two squares are commutative,
because they are induced by augmentations. To prove that Y is an
isomorphism, it is sufficient to prove that e^1, e,,1, and e^ are isomorphisms.
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Of course it would be simpler if we could prove that e^ was an isomorphism,
but we cannot do this directly, because in the facing relation ^ A ^ we have
not fed in the essential fact that / (2 ) is the second derived of a simplicial
map.

We deduce that e^1 is an isomorphism by Lemma 7, because $ is
(jit, ^-acyclic and (A£,/x, r^-independent in the sense of Lemma 16.
Similarly e,,1 is an isomorphism, because $ is (v, ju/q)-acyclic and {\£,IX,VT])-

independent. It is intriguing to notice how the presence of £77 lightens
the task of proving e,,1 an isomorphism, compared with ev

2; for the proof
that €v

2 was an isomorphism in Theorem 3 required all the elaborate
construction of (A, /x, v)-excisability, which is apparently unavoidable.
The third isomorphism, e^, is given by the following lemma, and completes
the proof of Theorem 7.

LEMMA 18. The ^-augmentation induces an isomorphism

Proof. We use Lemma 17, and a variation of Lemma 6. Fix T^GL^ for
the moment. Let Y1 denote the point set underlying the open simplicial
neighbourhood of | dualr^l in Lv, and let X1 =f~1(Y1). The facet <5A^T/«

is the same as the facing relation 5 1 on Kx ® Kgv given by

5 1 gives rise to the filtered bigraded bidifferential group A^v = 5A /̂T/i>
with associated trigraded bidifferential group Dx\v>

 s a v -
Let 7° = rp the barycentre of rp and let X° =f~1(Y°). Let $° be the

facing relation on Kx ® K^v given by

The resulting group A^L is a subgroup of, and has a similar structure to,
Axjr We list some of the properties of $° and 51.

(1) If we forget the filtration, $° is the simplicial-singular facing relation
on the polyhedron X° ((8) Example (2)), and is consequently both
(A, ^)-acyclic and (^,A)-acyclic. Therefore

(2) $x is (A, (^-acyclic, so that

and in particular
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(3) X° is a deformation retract of X1, and since A^,A^ are the sub-
complexes of Kx triangulating X°, X1, respectively, the inclusion induces
an isomorphism HXAX

O—=L^HXAA
L.

(4) The map// Y° is a deformation retract of// Y1, and so, by Lemma 17,
the inclusion induces an isomorphism

and in particular
H^Atv^^HivAlr

(5) 8E(flY°,(xlY0) collapses onto the axis q = 0, since Y° is a point.
(6) From (2), (4), and (5) we deduce that EVi^A^v also collapses, so that

There is a commutative diagram, whose horizontal homomorphisms are
induced by augmentation, and vertical homomorphisms by inclusion:

The isomorphisms marked in the diagram come from (1), (2), (3), and (4),
and we deduce from the diagram the isomorphism

We remark that we could have proved (7) directly, by showing 5 1 to be
(gr), A)-acyclic. But this would have involved a careful geometrical
argument to ensure the contractibility of | st <rA | n X1 for these CTA C X1 — X1,
which is the point where we must feed in the essential fact about second
deriveds. In the above treatment, we fed in this fact comparatively pain-
lessly in the retraction (3).

Combining (6) and (7), and observing that Ax
x = D/jthe ^-augmentation

induces an isomorphism

Up to this point rft has been fixed in Zy Now tensor the equation (8) by
T^ and sum over all r^sL^.

Proceeding as in Lemma 6, the left-hand side of (9) is the E1 term of the
spectral sequence EM(HA^DX^V), which therefore collapses, because the E1
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term is concentrated on the axis qv = 0. Hence

(10) Em EXi DX/liv - ^ > H^ Hv HH

the second isomorphism again by (9). The composition (10) is the iso-
morphism between E2 terms that is sufficient to prove Lemma 18. The
proof of Theorem 7 is complete.
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