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1. Introduction
THE Poincare duality for manifolds may be generalized to arbitrary
topological spaces. The result is a spectral sequence E running

which is a topological invariant of the space X, but not an invariant of
homotopy type. The E2 term is the Cech cohomology of X with coefficients
in the sheaf £ of local singular homology of X, and the E™ term is related
to the ordinary global singular homology of X. The sequence therefore
relates the local and global structures of the space.

If X is a closed orientable w-manifold, then the local homology sheaf
reduces to the simple sheaf of integers, and the spectral sequence collapses
to the familiar isomorphism of Poincare, Hq^Hn_Q.

If X is a polyhedron, there is a simple way of defining E, and its dual $,
using a triangulation. In order to obtain the spectral sequences as quickly
as possible we give this simplicial method in §2, and summarize the
properties of the sequences in Theorem 1.

In §3 we generalize E,£ to arbitrary topological spaces, using a
combination of singular homology and Cech cohomology, and verify that
the simplicial sequences are in fact topological invariants. The functorial
qualities of E,$ are also discussed. Since both E and $ involve both
homology and cohomology, they are not functors on the category of
topological spaces but we prove in Theorem 2 that if we generalize them
further they are functors on a category of maps, the sequences of a space
being those associated with the identity map.

The last section is concerned with the geometrical interpretation of
E and $, and, in particular, of the filtrations induced on the homology
and cohomology groups. It appears that the filtration of a homology or
cohomology class has something to do with the dimension of that part
of the space in which it is 'situated', and we prove two theorems which
are feelers in this direction. Theorem 3 connects the homology filtration
with cap products, while Theorem 4 concerns the filtration of a cohomology
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class. Define the codimension of a cohomology class to be the minimum
dimension of the support of a cocycle in that class. Theorem 4 shows that
codimension ^ filtration, and we conjecture that on polyhedra codimension
= filtration.

The paper uses definitions and techniques introduced in (5), but is
self-contained; the main difference between this paper and (5) is the
mixture here between homology and cohomology. Theorems 1, 2, and 3
were contained in a thesis submitted for a doctorate at Cambridge in
1954, and Theorem 1 was stated in (3). The sequence E was used in its
collapsed form in (1) to prove the Poincare duality between the singular
homology and the Cech cohomology of a topological manifold. An
analogous spectral sequence, defined using local Cech homology, which is
isomorphic to E on polyhedra, was discovered independently by I. Fary
in 1955.

Contents
1. Introduction
2. Simplicial theory
3. Generalization and topological invariance
4. Geometrical interpretation

2. Simplicial theory
Let K be a finite oriented simplicial complex of dimension n. We use

the same symbol K also to denote the resulting geometric chain complex
K = ZKjy The purpose of this section is to define the spectral sequences
E(K) and J@(K), and to establish their main properties in Theorem 1.
The reader is warned that at first sight the mixture of homology and
cohomology may seem unnatural, but in the next section we generalize
the procedure and show that the algebra is functorial.

The dichain complex t)
Let £)% be the free Abelian group generated by all pairs of simplexes

(OP,TQ), where av is an oriented p-simplex of K, and rq a ^-dimensional
face of av. The reason for the position of the suffixes is that we regard rg

as an elementary chain, and ap as an elementary cochain (mapping av to 1
and other simplexes to 0). Let D = £JD£, and define skew-commutative

p.g
differentials dvd2 on D by the formulae

d1:£^^Jt^+1 given by ^ C . T , ) = (8o»,Tfl),

li'.bv + t)*^ given by <!a(o^Tff) = (-)»(o*,0ra),

where the notation is distributive. Then t) is a bigraded bidifferential
group. We make t) into a dichain complex by further specifying a total
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degree and a total differential. Define the total degree to be s = p — q, the
total grading JDS = £ &%> a n d the total differential to be d = dl-d2.

(The reason for the minus signs is explained in the next section.) Then
d is a coboundary d : i)s->Z)s+1, and so we can form the cohomology
group H*0) =

FIG. 1

The dichain complex D
Let D« = £)%rjiZ = Hom(£)P,Z), the group of homomorphisms of DjJ

into the integers Z. Let D = t)//>Z — £ D?p. Then D is also a dichain
p.q

complex, and since K is finite, both D and t) are free and finitely
generated. The total degree of D is s = p — q, the total grading is given
by A? = 2 -̂ p» aH(* the total differential by d = drf\\. Then d is a

boundary d: DS->DS_V and so we can form the homology group

The spectral sequences

Define E(K),J@(K) to be the spectral sequences obtained from D,£),
respectively, by filtering with respect to q.

Notation for spectral sequences

In order to decide whether the suffixes p,q,r,s should be subscripts or
superscripts in the two spectral sequences E,E we have the following
conventions. The positions of the filtration degree q and the complemen-
tary degree p are inherited from D,£); the position of the total degree s
is the same as that of p because s = p — q; the position of the spectral
index r is opposite to that of s (analogous to the usual convention that r
lies opposite to n = p + q). Thus E is composed of terms Er, r = 2, 3,. . . , oo,
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where Er = E ^ r > $ ; and £ is composed of terms Er, r = 2,3, ...,oo, where

$r - 2) $ru - The differential dr on Er increases the filtration degree q by r,
P,Q

decreases the total degree s by 1, and so increases the complementary
degree p by r — 1. The differential dr on $r behaves dually. Therefore

dr • $r>Q

Facets

Now that the spectral sequences have been defined, we want to describe
the first and last terms, the i£2-term and the E^-term. For this it is
convenient to use the language of (5). Notice that the set of pairs
{(CT, T); CT>T} is not a facing relation in the sense of (5), because it does
not satisfy the facing condition. The difference will be analysed in the
next section. Nevertheless we can speak about the facet of a simplex,
which is the complex consisting of all those simplexes that are paired
to it. The right facet of a is the closure a of a, which is acyclic. The left
facet of T is str, the star of T, which is an open subcomplex of K. The left
facets are not in general acyclic, and their homology gives what we have
been talking about as local homology.

As in (5) we use the term stack for a local coefficient system; a stack is
a functor from K, regarded as a category, to the category of Abelian
groups.

Define the local homology stack, Q = S£;), to be the graded contravariant
stack on K given by

(i) Qpr = Hp(str), and
(ii) if T > T ' , then £ T ' - » £ T is the restriction homomorphism. (Note that

this homomorphism does go the right way because s t r is open in st-r'.)
Define the local cohomology stack, £ = ££**, to be the graded covariant

stack on K given by
(i) £*>T = #p(s t r ) , and

(ii) if T > T ' , then <GT-»-£T' is the inclusion homomorphism.
For example, if K is a closed orientable combinatorial ?i-manifold, then

both £ n and fin reduce to the simple stack of integer coefficients, and

LEMMA 1. There are isomorphisms HS{K) - ^ HS(D) and Hs0)-^->Hs{K).

Proof. We prove the second; the first is given by the dual proof. The
proof is a standard spectral-sequence argument, and resembles that of
((5) Theorem 1). Consider the p-filtration spectral sequence of D running

H* Hg{£>) =£> H>(£>).
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We can write t)1^, Ua, the direct product of the acyclic right facets, since
t) is free and finitely generated. Therefore

Therefore the spectral sequence collapses to Hs(K)^Hs(jb). We show by
the arrows in the statement of the lemma the correct direction of the
isomorphisms, because they are in fact induced by the augmentation of
the acyclic right facets.

THEOREM 1. (1) The spectral sequences of the finite simplicial complex K
run

(2) If K is of dimension n, the domain of both sequences is the triangle
O^q^p^n (as shown in Fig. 1), and the sequences converge at r = n+1.

(3) The sequences are topological (although not homotopy type) invariants
of the underlying polyhedron.

(4) If K is a closed orientable combinatorial n-manifold, then both
sequences collapse to the Poincare duality isomorphism.

Proof. (1) We prove the result for the second sequence; the first is
dual. The spectral sequence $(K) runs

By Lemma 1 we can replace H8(D) by H8(K). To identify the 2?2-term,
we write b = Estr , the direct sum of the left facets. Therefore

which is the chain group of K with coefficients in the covariant stack £b\
Therefore

HqH*0)~Hq{K\ &).

(2) The domain of both sequences is inherited from the domain of I)
in Fig. 1. If r > n, then both dr and dr move anything in the domain out
of the domain, and so dr = dr = 0. The convergence follows.

(3) We shall prove the topological invariance in the next section, in
Theorem 2(6).

(4) If if is a closed combinatorial w-manifold, and reK, then | s t r | is
an open n-cell, and so str has the cohomology of a closed n-cell modulo its
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bounding n — 1 sphere, namely

(Z, p = n,

If K is orientable, all the homomorphisms of the stack £ may be chosen
to be the identity homomorphism Z^-Z, so that £j'1 is the simple stack
of integer coefficients, while £y = 0, p # n. Therefore

0 , p^n.

Since the j©2-term is concentrated on the line p = n, the spectral sequence
$ collapses, $ 2

 = $a> = H*{K)- Since Hq{K) is the only non-zero term on
the isogonal s = n — q, we have Hq(K) ^ Hn~9(K), as desired. The dual proof
shows that E also collapses onto the line p = n to give the isomorphism
Hq{K) = Hn-q(K)- The proof of Theorem 1 is complete, apart from the
topological invariance.

EXAMPLE. We give one example in detail, to illustrate the type of
sequence that can occur, and to indicate how to compute it. Since the
space concerned is contractible (in fact is a cone), and since the sequence
E{K) is non-trivial (in fact has non-zero differentials d2,d3, ...,dn), the
example proves that E is not an invariant of homotopy type, for the
sequence of a point is clearly trivial. A second more interesting example,
in which the choice of coefficient group is significant, is given at the end
of the paper.

Let i f be a closed orientable combinatorial w-manifold, and let K be a
cone on M with vertex v. To compute E2, we first compute £. Let
Z,H1,H2,...,Hn_1,Z be the integral homology groups of M, and let
Z,/ /1 , / / 2 , ...,Hn~l,Z be the integral cohomology groups of M, so that
Hr ~ Hn_r. The simplexes of K are of three types: (i) the vertex v; (ii) the
join VT of v to a simplex reM; and (iii) a simplex reM. The following
table gives the value of the stack Qp for the three types.

p

SB(w)

2JT)

0

0
0
0

1

0
0
0

2

o1
0

3

# 2

o2 ...
0

o 1
0

«.+ l

z
z
0

Therefore E2 has two types of non-zero terms, the first type situated on
the 2>axis due to the local homology at v:

Terms of the second type are situated on the line p — n + 1, and are due
to the global cohomology of the open subcomplex K — M (or equivalently
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KmodM):

For 2 ^ r ̂  n, the differential dr is zero everywhere except for

which is none other than the Poincare duality isomorphism Hn_r+1 —=-»• H1"'1

for M. Eventually En+1 = E™, and the only non-zero term left is $»•£+£ ~ Z.
This lies on the isogonal s — 0, and corresponds to the only non-zero
homology group of K, H0{K)~Z.

Z

Hn-l

H'-*

FIG. 2

3. Generalization and topological invariance
The aim of this section is to put the algebra on a proper footing, and

to extend the definition of E,$ to arbitrary topological spaces with
arbitrary coefficients, thereby proving the topological invariance of
E{K),£l{K). We in fact extend the definition further, so that E,£ are
functors on a mixed category 91 of continuous maps. The results are
summarized in Theorem 2.

The dichain complexes K®(L/fiG) and Krfi{L®G)
Le t K = ~LKV and L = T,Lq be geometr ic chain complexes (for t he

definition see ((5) §2) ) , and let ( ? b e a coefficient g roup . W e use t he

5388.3.13 M
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symbol */» in the following sense: define

LrfiG = 2lLg
ff>G, where LqrpG = Bom {LQ,G).

Q

Therefore K ® (L </> G) is a bigraded bidifferential group

P,Q

with skew commutative differentials

dx = dK® (10 1) and d2 = ouK® (dLrf> 1),

where dK, a>K denote respectively the boundary and sign-changing auto-
morphisms of K. We make K®(LffiG) into a dichain complex by defining
the total degree to be s = p — q, and the total differential to be

d = dx — d2 = dK® (10 l) — coK®(dLrft\).

Dually we define the dichain complex

P,Q

with total degree again 5 = p — q, and total differential

d = ^ - ^ = dK<fr(l® l)-u

Multiple mixed chain complexes

The above two examples are the only two examples of multiple mixed
chain complexes that we shall use in this paper. However, it is worth
mentioning the general procedure in order to explain our choice of signs
and differentials. To begin with we assume that all boundaries and
coboundaries operate on the left; it is necessary that they should all
operate on the same side, because the total differential is composed of a
mixture, and it has to operate on one side.

Let W =W{K1,K2,...,Km;G1,G2,...,Gn) be a word in the chain
complexes Kl, i = 1,2, ...,m, and the coefficient groups Gj, j = 1, 2,...,n,
formed by using the binary operators ® and rf\. Let rf = ± 1 according
as to whether W is covariant or contravariant in Kl. Suppose further
that W is a functor on some category (depending upon the context), and
let rj = + 1 according as to whether W is covariant or contravariant on
this category. For instance, in the examples above we have regarded
K®(LffiG) and K(ft{L®G) as covariant and contravariant respectively.

Then we make W into a multiple chain complex as follows. The ith
degree of W is given by the degree pi of K1. The total degree p of W is
defined by the formula -qp = TiViPi- The ith differential dl of W is
defined to be l

d* = W(co1,^2, ...,u>i-\di, l<+\ ..., 1»; 1,1,..., 1),
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where d\ aji, and l'£ denote respectively the boundary, sign-changing, and
identity automorphisms of K\ and the l's denote the identity auto-
morphisms of the coefficient groups. The differentials dl,d2, ...,dm are
skew-commutative. The total differential d of W is defined by the
formula rjd = ^rfd1'. Then if -q = 1 (17 = — 1) the total differential d is a

boundary (coboundary) operator with respect to the total degree p, and
so we can form the homology (cohomology) group H(W). We can also
form various spectral sequences as in ((6) § 3).

The rule of procedure agrees with the familiar boundary formula for
cap products. For suppose cap products are written with homology on
the left and cohomology on the right. Then, remembering that both
boundary and coboundary operate on the left,

d(hp n c«) = dhp n c « - ( - f hp n 8c?.

We make use of this fact in Theorem 3 in the next section.

Carriers

Let K, L be geometric chain complexes. A carrier F : K -* L is a function
assigning to each cell aeK a, closed subcomplex FCT of L, such that if
CT>~CT' then FCT=> FCT'. If c is a chain of K, then Fc is defined to be (J Fa,
the union taken over all a that occur with non-zero coefficient in the
chain c. A chain m a p / : K->L is carried by F iifaeTa for each cell aeK
(and therefore/c 6 Fc for each chain ceK).

We now define the category of carriers X. An object of X is a carrier. A
map of X from the carrier F : K-+L to the carrier F' : K' ^-L' is defined
to be a pair (<p, ifj) of chain maps

such that ifjT'p^r. The meaning of the last inclusion sign is that
ijjY'cpa c FCT for each cell a e K (and therefore ifjV'cpc c Fc for each chain
ceK). The axioms for a category are easily verified, and the verification
is left to the reader.

Given a carrier F : K -*• L we call FCT the right facet (or carrier) of the
cell aeK. We say that F is acyclic if all the right facets are acyclic. For
instance, if K is an oriented simplicial complex, then the identity carrier
A : K->K given by ACT = a is acyclic. Returning to the carrier F : K-*-L,
we define the left facet of a cell reL to be
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which is an open subcomplex of K. Algebraically it is more correct,
but less intuitive, to describe the left facet as the relative complex
{K, K — F"1 T). In general the left facets are not acyclic.

Carriers resemble the facing relations of (5), in much the same way
that </» resembles ®. Consequently carriers give rise to spectral sequences.
Given a carrier F : K-+L and a coefficient group G, it is possible to
construct in a natural way 48 different spectral sequences. We select 2.
The selection is uniquely determined by the two considerations:

(i) The sequences should reduce to E(K),£(K) of the previous section
when F is the identity carrier on K and G = Z.

(ii) Lemmas 4 and 5 should be true.

The spectral sequences E,$ of a carrier

We are given a carrier V : K-^-L and a coefficient group G. Construct
the following two split exact sequences of dichain complexes:

where J is defined to be the subcomplex generated by

and t) is defined to be the subcomplex given by

D = {x; x{o)eTo®G, all o<=K}.

The dichain complexes D = HD^ and t) = £i)£ inherit their structure
from the two middle terms. Define E,$ to be the spectral sequences
formed from D, t) respectively, by filtering with respect to q.

We leave the reader to verify that in the special case when F is the
identity carrier on a finite simplicial complex and G = Z, then D, D. E, $
reduce to the definitions given in § 2.

LEMMA 2. E, $ are covariant, contravariant functors, respectively, on the
category of carriers X.

Proof. We have already defined E, $ on the objects of 3t. We must
now define the functors on the maps of X.

A map {<p,ijj) of X from the carrier F : K ->L to the carrier F ' : K' -+L'
is a pair of chain maps cp : K-+K' and ift: L' ->L, such that ifjT'<p c F. The
induced homomorphism

maps J to J' for the following reason. Suppose a®y is a generator
of J . Then yTo = 0. Therefore # ( F > C T ) = y{ifjY'<p)o^yYo = 0. Hence
<p<T®yipeJ'. But tpo®yip is the image of a®y under 9?® (</"/> 1). Therefore
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<p 0 (tfj rf\ 1) maps J to J', and induces homomorphisms Ds-D' between
the dichain complexes and E^-E' between the spectral sequences.

Dually the homomorphism

<pij*(4i®l) : K'rj>(L'®G)->Ktfi(L®G)

maps £)' to D. For suppose xeD' and oeK. Then cpoeK', and
x(<pa)eT'(<pa)®G. Therefore

Hence (tp®\)x<pel). But (I/J® .1)3:9 *s ^ n e image of x under p</i(t/>® 1).
Therefore <p</i(</»®l) maps D' to D, and induces a spectral sequence
homomorphism E'^-E.

The functor axioms are easily verified, and the verification is left to
the reader.

LEMMA 3. Let E,fi be the spectral sequences arising from the carrier
F : if-> L, and E', $' those arising from V : K' -^-L' (both with coefficients G).
Let tp : K-+K' be a chain map, and W : L' ->L an acyclic carrier, such that
W ^ J C T . Suppose ipl,ip2 are chain maps L'->L carried by XF. Then the
two maps (99, ifj1) and (<p, i/»2) from T to V in the category X induce the same
spectral sequence homomorphisms E-+E', $' ^-E.

Remark. A similar result holds for maps (<pl, ip1) and (<p2, i/»2) where <pl, cp*
are carried by an acyclic carrier O : K-+K', such that TP 'OczF . How-
ever, for the applications below we require the result stated in the
lemma. The proof is analogous to that of ((6) Lemma 3).

Proof. We indicate the proof for E->E'', and leave the dual proof to
the reader. Let h be a chain homotopy between j/f1, ip2 carried by VF. Let o>
denote the sign-changing automorphism of K. Then <pw®(hffi\) is a
dichain homotopy between the dichain maps

Also (p®{h(fi\) maps J to J', and so induces a dichain homotopy between
the induced dichain maps D^-D'. Therefore the induced spectral sequence
homomorphisms E-+E' are the same (by ((6) Lemma 2)).

LEMMA 4. If T is acyclic then the augmentation of L induces isomorphisms

Ha(K;G)-2+HK(D), H°(D)-=+H°(K; G).
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Proof. The proof resembles that of Lemma 1 and is left to the reader;
it depends upon the collapsing of the ^-filtration spectral sequences.
The secret lies in writing D,D in terms of the acyclic right facets,
Dp = Z{Tqop(f>G) and £)$ = U(Tqap®G), where Tqap denotes the qth
chain group of the right facet Tap, and the sum and product are taken
over all £>-cells apeKp.

The left facet stacks
Lemma 4 above gives an interpretation of the ends of the spectral

sequences E,$. We now look at the beginnings. The left facets of F
give rise to two stacks on L analogous to the local homology and cohomo-
logy stacks defined in the last section. Replacing stT in the definition
of the local homology and cohomology stacks by T~1T®G and T^T^G,

respectively, we obtain a graded contravariant stack H^F*1; G) on L,
and a graded covariant stack / /•(F"1; G) on L.

Recall that in the definition (see ((5) § 2)) of a geometric chain complex
K = TiKp, each Kp is a free Abelian group. Define K to be of finite type if,
further, each Kp is finitely generated. For example, the nerve of a finite
covering is an infinite complex of finite type.

LEMMA 5. / / either K or Lis of finite type, then

E**~W{L\ Hp(T-i; G))t £2$zHq(L; #*>(F-i; G)).

Proof. If either K or L is of finite type, there are canonical isomorphisms
(see ((4) Theorem 2)):

Therefore we can write D, D in terms of the left facets

where F"1 rq denotes the pth chain group of the left facet F"1 TQ, and the
product and sum are taken over all ^-cells rqeLq. The lemma follows.

Remark. If neither K nor L is of finite type, then the canonical
isomorphisms mentioned in the proof above become monomorphisms.
Lemma 5 is no longer true, and there is no easy interpretation of the
beginnings of the spectral sequences E, $. If the right facets of F are of
finite type there is a partial interpretation in terms of homology and
cohomology of the 'second kind'. Selecting different definitions of D,£>
would get over the difficulty, but only at the expense of the more important
Lemma 4. In the general case it seems to be impossible to tame both the
beginnings and the ends of the spectral sequence at once.
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The singular-Cech carrier of a map

We are now in a position to give the topological application of the
above algebra. Let / : X-+Y be a continuous map between two topo-
logical spaces. Let jS be a covering of Y (all coverings are assumed to be
open). Let K = S{X) the singular simplicial complex of X. Let L = N(fi)
be the nerve of the covering p. Define the singular -Cech carrier of the map/
and the covering /? to be the carrier F : K-+L given by

r<T = {T;T£i and im/o-nsupT#0}, oeK.

Clearly F is a carrier. The right facet of a singular simplex asK is the
nerve iV(/31 imfa), where jS | im fa denotes the restriction of the covering j8 to
the subset im fa of Y. The left facet of a Cech simplex reL is the relative
singular complex S(X,X— /^(supr)) . Denote the spectral sequences
arising from F and a coefficient group G by

E = E(f,p,Q), £ = £(f,p,Q).

We have defined the main idea. The programme now is (i) to take
limits over the directed set of coverings of Y, (ii) to show that the resulting
spectral sequences are functors on a category of maps, (iii) to identify
the beginnings and the ends of the sequences, and (iv) to relate them to
the simplicial sequences of the last section, and to the Poincare duality.
The results are summarized in Theorem 2.

Category of maps
Define the mixed category 91 of continuous maps as follows. An object of

91 is a continuous m a p / : X-> Y between two topological spaces. A map
of 91 from / to / ' is a pair (<p, </») of continuous maps such that tpf'tp = / .

/ '

We include the word mixed in the definition to distinguish 9Z from the
category 9ft of maps introduced in (6), which differs from 91 by having
if; in the above diagram going in the opposite direction. The word mixed
refers to the fact that the range and domain functors on 91 are respectively
contravariant and covariant, whereas on 9)t they are both covariant.

As in (6), we define a larger category 9lcov which includes coverings.
An object (/, j8) of 9lcov is a continuous map / : X-+Y between two topo-
logical spaces, together with a covering jS of Y. A map (<p, I/J, ip^) of 9icov

from (/, j8) to (/',jS') consists of a pair <p, ip of continuous maps such that
ijjf'cp =:f} and )8' refines 0~1j8, together with a simplicial approximation
ipff : N(P')^-N(P) to </» between the nerves of /3' and j8.
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LEMMA (5. E,B are covariant, contravariant functors, respectively, on the
category %oy.

Proof. It suffices to show that the singular-Cech carrier is a covariant
functor from $ftcov to the category of carriers X, for then we can appeal
to Lemma 2. By the above definition, an object of %QV determines an
object of X. We must now show that a map of 9flcov determines a map of X.

Suppose we are given a map (<p, 0, iftfi) of $ftcov.

Let F, F" denote the singular-Cech carriers of (/,j8), (/',j8'), respectively.
Then {(p,^p) maps Y to V in X provided that \f)pY'<p<^Y. To prove the
last inclusion, let aeK, i.e. a is a singular simplex of X. Suppose
TEifjp(Y'(q>o)), i.e. T is some simplex in the nerve of j3. Then T = I/^T' for
some T E T'(<po) such that supr=>i/f(supT'). Therefore

im/a n sup T 3 im (</»/V) <* n ^(sup T')

~=> ifj(imf'<pa D s u p T ' )

Hence reFa . Therefore ijjpT'rp^Y, as required. The proof that the
axioms for a functor are satisfied is immediate, and is left to the reader.

LEMMA 7. E, $ are independent of approximation.

Proof. The term independent of approximation (as defined in ((5) § 4))
means that any two maps (tp,^,^), (<p,i/r,0£) of %0V from (/,jS) to (/',j3')
with the same underlying continuous maps <p, i/» give rise to the same spectral
sequence homomorphisms. Both <fi\ and </r| are carried by the acyclic Cech
carrier W : L' ->L given by Yr' = {T; supT=>0(supT')}. We verify that
T F ' p c r , as in the previous lemma, and then appeal to Lemma 3.

COROLLARY. E,£ induce functors on $1.

Proof. By Lemma 7 and ((5) Lemma 1) we can take limits. E(f,G) is
defined to be the direct limit of E(f,p, G), and £{f, G) the inverse limit of
fi(f,fi,G), both limits taken over the directed set of all open coverings
of Y, the domain of/. Notice that E(f,G) is a spectral sequence because
direct limits are exact, but E(f,G) is only semi-spectral because inverse
limits are only left exact.
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Oriented nerves

Next we prove a lemma showing that it does not matter whether we use
nerves or oriented nerves in the construction of E, E (cf. ((6) Lemma 4)).
The lemma is useful in two contexts, to show the convergence of the
spectral sequences when Y is finite-dimensional, and to relate the singular-
Cech theory to the simplicial theory.

Given an object (/,/?) of %ov, where f:X^Y, let F : K^L be the
singular-Cech carrier, where K is the singular complex of X, and L the
nerve of /3. Let L° be an oriented nerve of j8. The difference between L°
and L is that L° is generated by oriented Cech simplexes, whereas L is
generated by ordered Cech simplexes. The analogous carrier F° : K->L°
is given by exactly the same formula as F,

r°cr = {T; TEL° and imfansupT±0}, oeK,

and gives rise to analogous spectral sequences E°(f,fi,G),$0(f,l3,G), say.
Let 6 : L->L° be the natural chain equivalence from nerve to oriented
nerve (see ((2) Chapter VI) or ((6) § 2)).

LEMMA 8. The chain equivalence 6 induces isomorphisms

Proof. We prove the first and leave the dual proof to the reader. Choose
one of the usual chain equivalences 9 : L°->L (see ((2) Chapter VI) or
((6) §2)). Then 0F = T° and #r°c r . Therefore by Lemma 2 there are
induced homomorphisms between the spectral sequences

The composite 9*6* = (69)* = 1, because 69 = 1. The other composite
6*9* = (96)* = 1 by Lemma 3, because both 9d:L-+L and.the identity
on L are carried by the acyclic Cech carrier T : L^-L that is given by
W = {T; supT=>supr'}, and which satisfies vFrc= T. Therefore 6* and 9*
are isomorphisms.

Small singular simj)lexes
We now investigate the beginnings and the ends of the spectral

sequences. We want to identify the ends with the singular homology
and cohomology groups of X, but we cannot apply Lemma 4 because F
is not in general acyclic; large singular simplexes may have complicated
right facets. We therefore resort to the device of small singular simplexes
(see ((5) Example vi)).

Suppose that we are given a map / : A' -> Y and a covering jS of Y.
Let a be a covering of X that refines f~xP, and let K -= S(X,a) be the
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subcomplex of K = S{X) of a-small singular simplexes. Then F restricted
to K is acyclic because the right facets of a-small singular simplexes are
Cech cones. Let D,fi denote the dichain complexes formed using K
instead of K, and let E = E(/,j8,G), E = t(f,fi,G) denote the resulting
spectral sequences.

LEMMA 9. The inclusion K c Z induces isomorphisms E—=->E, 2?—=->•£.

Proof. We prove the first and leave the dual. If the covering j8 is finite,
then the nerve L is of finite type, and there is an easy proof using Lemma 5:
the inclusion induces an isomorphism between the stacks concerned, and
consequently an isomorphism between the i^-terms, W-^+E1. Therefore
the spectral sequences are isomorphic.

If on the other hand the covering f3 is infinite, we form the exact
sequence of dichain complexes

We can use the standard 'chopping up' of singular simplexes to prove
that the homology group of JD/D with respect to the boundary of K
vanishes. Therefore, from the relative exact homology sequence of D,D
with respect to the boundary of K, we obtain the required isomorphism
W-^+E1, between the ^1-terms. The lemma follows as before.

COROLLARY. The E^-term of the spectral sequence E(f, j8, G) is the graded
group associated with the singular homology group H% (X; G), suitably filtered.
Dually the Sm-term offi(f,fi, G) is related to H*(X; G).

Proof. The statement is true for E, £ by Lemma 4, and is carried over
to E, £ by Lemma 9.

Local homology presheaves

In order to identify the beginnings of the spectral sequences, we introduce
notions which generalize the local homology stacks of § 2.

Define the local singular homology presheaf £ of a space X with co-
efficients in a group G as follows. It is a graded presheaf £ = ££p, and
£ p is defined by assigning to each open set [ / c l the relative singular
homology group £,,(£/) = Hp(X,X — U; G), and to each pair of open sets
U=>U' the inclusion homomorphism Hp(X,X-U;G)->Hp{X,X-U'\ G).
If, further, we are given a map f:X->Y, then the image presheaf/£
is defined in the usual way, by assigning to each open set V^-Y the
group /£ (F) = £ ( / - 1 V), and to each pair of open sets V^>V the homo-
morphism £ ( / - 1 F ) -»£( / - 1 V). We can form in the usual way the
oohomology group H*(X; £) of X with coefficients in £, and similarly
H*(Y;fQ).
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The dual notion jl = 2£ p is defined by assigning to each open set
U^X the relative singular cohomology group £*>(£/) = Hv(X,X-U; G),
and to each pair of open sets U^=>U' the (upstream) inclusion homo-
morphism H*{X,X-U'\ G)-+Hv(X,X-U; G). Given / : Z - > Y, the
image / £ is defined as above. By taking homology groups of nerves of
coverings of X, with coefficients in £, and by proceeding to the inverse
limit, we can form the homology group H*(X; £) of X with coefficients
in £. Similarly we can form H*(X; f&).

Notice that both £ and £ are different from the local singular cohomology
presheaf (3 that was used in ((5) § 6).

We can now state the results of this section.

THEOREM 2. (1) E,$ are functors on the mixed category of continuous
maps 9t and the category of Abelian groups. E(f, G) is a spectral sequence
covariant in both f and G. $(f, G) is a semi-spectral sequence (the inverse
limit of spectral sequences) contravariant in f and covariant in G.

(2) / / / maps X to Y, then E^^E^ are related to the singular homology,
cohomology groups of X, respectively. In detail there are filtrations

8 ( ; ) l . . . = > 0

0 cP0<zP1c...<=pqcPq+1c...c:H°{X

and exact sequences

If Y is of dimension n, then the filtrations are finite and stop at Ff+l = 0,
j^»+1 = HS(X; G). If f is the identity map on a polyhedron of dimension n,
then the filtrations stop at Ff~8+1 = 0, Pn-S+1 = HS(X; G).

(3) Suppose f maps X into a compact space Y. Let £ denote the local
singular homology presheaf on X with coefficients in G, and 5 the dual. Then
the E2, $2 terms are given by

E*% = W(Y- / £ , ) , £$ = Hq(Y; /&»).

(4) If f is the identity map on a compact space X, then the sequences run

E : H*(X; £„) =?=> HS(X; G), S : Hg(X; £*) ==> H'(X; G).

(5) Iffis the identity map on a closed orientable topological n-manifold M,
then the spectral sequences E, E collapse to the Poincare duality isomorphisms
between Cech cohomology, homology and singular homology, cohomology,
respectively.

B*(M', G)^Hn_q(M; G), Hq(M; Q)~H»-*(M\ G).
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(6) If f is the identity map on a polyhedron triangulated by K, and if the
integers are taken as coefficients, then E,2 are isomorphic to the spectral
sequences E(K), ${K) of Theorem 1. Consequently in this case E is spectral.

Proof of Theorem 2. (1) This is the Corollary to Lemma 7.
(2) The Corollary to Lemma 9 tells us that the statements are true

when the covering jS is present. Therefore they remain true when we take
limits. Two points should be borne in mind. Since direct limits are exact,
both the filtration of HS(X: G) and the exactness of the upper short exact
sequence are preserved in the limit. Inverse limits are left exact, and so
the filtration of HS(X; G) is preserved, but the last zero of the lower short
exact sequence is lost. The second point concerns the isomorphisms
H^D)^HS{X\ G), HS(D)^HS(X; G). These isomorphisms are functorial
because they are induced by augmentation (Lemma 4) and inclusion
(Lemma 9). Therefore they are independent of /3, and so the direct,
inverse systems of groups HS{D), HS(D) are systems of. isomorphisms.
Hence the limit groups remain isomorphic to the singular homology,
cohomology groups of X, respectively.

If Y is of dimension n, we can confine ourselves to the cofinal set of
coverings of dimension n. The sequences E, E for such a covering can be
computed using oriented nerves by Lemma 8, and so their domains lie
in the strip O^q^n. Therefore F%+1 = 0, F8

n+1 = HS(X; G) for each such
covering, and consequently also for the limit.

If/ is the identity map on a polyhedron of dimension n, we can by (6)
compute the sequences as in Theorem 1. Therefore E, E have the domain
shown in Fig. 1, and the lengths of the filtrations can be read off from the
lengths of the isogonals s = constant.

(3) If Y is compact, we can confine ourselves to the cofinal set of finite
coverings. The advantage of having /3 finite is that the nerve is of finite
type, and so we can apply Lemma 5:

E*l?H«(L; Hp(T-i; Q)), &$~Ha{L\ H*{T-i\ G)).
Since the left facets of Y are the relative singular complexes

r-1T = /S(X,X-/-1(supT)), TEL,
the contravariant stack Hp(r~l; G) on L is none other than that arising
from the presheaf /£,, . Taking direct limits gives the first result. The
second result is dual.

(4) This is a special case of (2) and (3).
(5) In a closed topological n-manifold M we can confine ourselves to

the cofinal set of finite coverings by n-cells U, such that
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Since M is orientable, the presheaf Qn reduces to the simple presheaf G,
and £7, = 0, p^n. Therefore the spectral sequence E collapses onto the
line p = n to the isomorphism

8*{M; G)^E*>1 = E**~Hn_Q(M; G).

The sequence E also collapses onto the linep = n, to the dual isomorphism.
(6) We are given a finite oriented complex K triangulating the

polyhedron X. Let 1 denote the identity map on X. We shall prove that
the singular-Cech semi-spectral sequence E{\,Z) is isomorphic to the
simplicial spectral sequence E(K) of Theorem 1. We leave the proof of
the dual result to the reader.

Let jS denote the star covering of K. We can identify K with an oriented
nerve of j3, and, by Lemma 8, use this to compute the spectral sequence
$(l,fi,Z). The computation is as follows. S(X) is the singular complex
of X. The dichain complex

is determined by the singular-Cech carrier F given by

To = {T; reK and imcrn | s tT |^0} , ae

Meanwhile the simplicial dichain complex

is determined by the identity carrier A on K given by ACT = CT, oeK.
Choose an ordering of the vertices of K, and let <p : K->S(X) be the

chain equivalence defined as follows: given an oriented simplex oeK,
let h be the simplicial isomorphism of the standard simplex onto CT, mapping
the vertices in the correct order, and define pa = ± h according as to
whether or not this ordering is in the orientation class of a. Then Yep = A.
Therefore (<p, 1) maps A to F in X, and so by Lemma 2 induces a dichain

m a p ytftl

If TGK, <p induces an isomorphism from the singular cohomology group
to the simplicial cohomology group HP(X,X— |str|)—^//^(st-r). The
resulting isomorphism between stacks gives, by Theorem 1 and Lemma 5,
an isomorphism between the 2^-terms, and so an isomorphism between
the spectral sequences

It remains to prove the combinatorial invariance. Let K' be the first
derived complex of K, j8' its star covering, and w : K' ->K a simplicial
approximation to the identity. The next lemma, Lemma 10, shows that w
induces an isomorphism between the i?2-terms, and so an isomorphism
between the spectral sequences
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Taking inverse limits over the cofinal set of star coverings of derived
complexes of K, we obtain an isomorphism

which, combined with the isomorphism above, completes the proof of
Theorem 2:

LEMMA 10. Combinatorial invariance. The approximation w\K'->K

induces isomorphisms H*{K; Q)^+H*(K'; £), H*{K'; Q)-^+H*(K ; £).

Proof. We prove the second result, and leave the dual proof to the
reader.

To distinguish between the stars in K and K'', we denote by st (r,K)
the star in if of a simplex T e K, and by st (T', K') the star in K' of a simplex
T'EK'. The underlying open sets of X are denoted by |st(r,K)\,
\st(r',K')\.

The stacks on K and K' concerned in the lemma arise from the covariant
presheaf &, which is defined by means of relative singular cohomology,
but since everything is polyhedral we can also interpret the stacks in
terms of simplicial cohomology, or compact (Cech) cohomology:

&r' = H*(X,X-\8t(T\K')\)zH*(st(T\K'))zH*(\st(T'tK')\).

The last interpretation is perhaps the most satisfactory in the present
context, because it emphasizes the nature of the stack homomorphisms,
which are all induced by inclusion. For if U, V are open sets, £/<= V^X,
then inclusion induces a homomorphism between the compact cohomology
groups H*(U)-*H*(V). In particular, suppose |T ' |C: |T | , where TGK,

T'EK'. Then |st(x'sJK^')| is contained in, is homeomorphic to, and is a
deformation retract of, |st(T,i£)l> the retraction taking place radially
towards some fixed point in the interior of T\ Therefore inclusion induces
an isomorphism £T'—=->• £T. In other words, all the little simplexes inside T
have the same coefficient group as T. TO express this homologically we
introduce the notation: if L is a subcomplex of K, let PL denote the first
derived complex of L. Then PL is a subcomplex oiPK = K'. In particular
PT,PT are respectively the subdivided closure and boundary of T. We
have shown that if T is (/-dimensional, then

t = / T , T , = | 0 ^ t ^ ^

Moreover, the simplicial approximation w induces this isomorphism
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If K{q) denotes the (/-skeleton of K, we have, summing over all the
(/-simplexes of K:

w* : H^PK^PK^; fy-^H^K^K^; £).
But this can be interpreted as an isomorphism between the Ex terms of
two spectral sequences formed from the chain groups of K',K with
coefficients in £, filtered by PK(q),K(q), respectively. Since the filtrations
are finite, we can deduce an isomorphism between the E^ terms, and an
isomorphism between the homology groups:

The proof of Lemma 8 and Theorem 2 is complete.

Remark. It is possible to generalize the above topological invariance
proof to the following result: if / is the underlying continuous map of a
simplicial map g : K-+L, we can compute the spectral sequences E,E off
by using the carrier F : K^-L, where To = 7Ja.

4. Geometrical interpretation
Throughout this last section we shall assume that the map is the

identity map on a given space X. We know that the resulting spectral
sequence E, and the semi-spectral sequence it, are topological invariants
but not homotopy type invariants of X, and we wish to discover some
geometrical interpretation of them. The first thing to discuss is the
filtration induced upon the homology and cohomology groups of X, for
here is an extra structure upon groups that are very familiar. In
Theorem 3 below we show a relation between the homology filtration and
cap products, and in Theorem 4 we explain the cohomology filtration in
terms of supports.

Recall from Theorem 2(2) the notation

° .=> 0 ,
0 <=F8

0<=F*c...c:FQcF9+1c...(zH*(X\ G).

Define the filtration of an s-dimensional homology (cohomology) class £
to be the maximum (minimum) q for which f eF% (respectively FQ). It
was mentioned in the introduction that the filtration of a class appears
to have something to do with the dimension of the piece of X in which
it is 'situated'. For example, if X is an orientable ?i-manifold, then both
the spectral sequences collapse onto the line p = n, and the above filtra-
tions only have one non-trivial step. Therefore the filtration of any
non-zero s-dimensional class is n — s.

If X is not a manifold, then an intuitive explanation runs something
like this: suppose for the purposes of explanation that we can represent
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homology and cohomology classes of X by 'manifolds' contained in X.
Then an s-dimensional class £ has filtration n — s if it 'lies in an n-manifold'
in X. For example if £s is a homology class that can be written as a cap
product £s = i)n n £n~s, then f s must 'lie in an w-manifold' representing rjn,
and so £s is of filtration n — s; this is the meaning of Theorem 3. On the
other hand, if £s is a cohomology class of filtration n — s, then £s 'lies in
an w-manifold' in X, and so can be represented geometrically by an
'(n — s)-submanifold'; this is the meaning of Theorem 4.

THEOREM 3. / / X is a polyhedron, then Hq+S

Proof. We prove the theorem for integer coefficients; the proof for
arbitrary coefficients is the same. Let K triangulate X, and consider
E(K). There is an exact sequence

where J is generated by {a®z; z(5) = 0}. Let

be the cap product homomorphism given by c(y®z) = yf\z, where y is
a chain in K and z is a cochain in K$Z. We deduce that c is a chain
map satisfying cd = dc, for if p = dim?/, then

cd(y®z) = c(dy®z-(-)1}y®8z)

= dy n z - ( - )p y n 82

= dc(y®z).

If e : K^-K®(Kff>Z) is the chain map induced by the augmentation of
the second factor K, then cc = 1, because

ce(y) = c{y®l) = yr\l=y.

Now cJ = 0, because if z(5) — 0 then c(a®z) = CTD Z = 0. Therefore c and c
induce chain maps

K-^D-^K

and homology homomorphisms

such that c* €* = 1. But e* is an isomorphism by Lemma 1, and so c*
is the inverse isomorphism. Therefore c* is precisely the isomorphism
that induces the filtration on H*{K) from that on H*{D).

Now suppose that the homology class £SEHS(K) is a cap product
£s = rjq+sr\l,(I. Represent r)q+s by the cycle y, and t? by the cocycle z.
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Then y®z is a rf-cycle of K®(K'frZ) of filtration q, and its image e(y®z)
under the epimorphism e : K © (K ff> Z) -> J9 is a rf-cycle of D. The homology
class [c(y®z)] in HS(D) is of filtration ^g, and is mapped by c* into
[yC)z], which is none other than the class £seHs(K). Therefore £s is of
filtration ^ q, and Theorem 3 is proved.

EXAMPLE. A corollary to Theorem 3 is 2 Hm+sr)H"lclF<i- I* i s

pertinent to enquire whether or not the inclusion can be replaced by
equality. In many cases it can (in particular in the case of oriented
manifolds), but not always, as is shown by the following counterexample.

Let X be the real projective plane, and let G = Z. Then the spectral
sequence converges, E2 = E™, and the only non-zero terms are

E'^'l^Z, Ex'l^Z2, the integers modulo 2.

Therefore F{ = H^Z^, but £ Hm+1nHm = 0, and so equality does not
hold. w > 1

It is the non-orientability of X over Z that has prevented equality. If
instead of Z we choose coefficients G = Z2, then the Poincare duality of X
over Z2 restores equality: H2 n H1 = F{ = Hx ^Z2.

Codimension
If a; is a singular cochain on a space X, and if Ar <= X, let x | N denote the

restriction of x to N. The sujtport of x, sup x, is defined in the usual way:
a point is not in sup a; if and only if it has a neighbourhood N such that
x\N = 0. Define the codimension of the cochain x to be the dimension of
sup re, where dimension means the usual topological dimension defined
by means of coverings. Define the codimension of a cohomology class £
to be the minimum codimension of a cocycle in £.

EXAMPLES. The circle, annulus, and solid torus are all of the same
homotopy type, and are of dimensions 1, 2, and 3, respectively. We can
represent a generator of the first cohomology group of each space by a
cocycle with support a point, a line, and a disk, respectively. The corre-
sponding codimensions will be 0,1, and 2. If a particular meridional disk
of the solid torus were shrunk to a point, then a representative cocycle
could be chosen supported by this point, and so the codimension of the
cohomology class would drop from 2 to 0.

LEMMA 11. If £ is an s-dimensional cohomology class of an n-dimensional
polyhedron, then codimension £ ̂ n — s.

Proof. Let K triangulate the polyhedron X, and let K(s) denote the
s-dimensional skeleton of K. The coskeleton KUl~s) is defined as follows.
As in ((6) § 5) we can generalize the notion of the dual cell of a simplex in

5388.3.13 N
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a manifold to non-manifolds. If T = a0a1... as in K, define

dualr = st (a0, A") n st (a1, K') n ... n st (a8, K'),

which is a subcomplex of the first derived complex K' of K, of dimension
^ n — s. Define the coskeleton

jf<n-«) = y {dual T ; dim T ^ s},

which is also a subcomplex of K', of dimension n — s.
Let Y = | K{n~s) | be the underlying closed subspace of X. Then X — Y

is deformation-retractible (linearly) onto |/^(,S._D|, and therefore the
singular cohomology group HS(X— Y) = 0.

Let £ be an s-dimensional cohomology class of X. If £ is represented by
the singular cocycle y, say, then y\X—Y is the coboundary 82 of some
cochain z on X — Y. Extend z arbitrarily to X, and let x = y — hz. Then
sup x <= Y, because x \ X — Y = 0. Therefore a; is a cocycle in £ of codimen-
sion ^ n — s, which proves the lemma.

THEOREM 4. If £ is a cohomology class of a compact Hausdorff space X,
then codimension £ ^filtration £. The proof is below.

COROLLARY 1. If £ is an s-dimensional cohomology class of filtration
^n — s on an n-dimensional polyhedron, then codimension £ = filtration £
= n — s.

For codimension ^filtration £, by the Theorem,

^n — s, by hypothesis,

^codimension £, by Lemma 11.

COROLLARY 2. An s-dimensional cohomology class of an orientable
combinatorial n-manifold has codimension n — s.

For such a class has filtration n — s, as observed in the introduction to
§ 4, and so Corollary 1 is applicable.

CONJECTURE. / / X is a polyhedron, then the inequality of Theorem 4 can
be improved to equality. This would be a complete geometrical interpreta-
tion of the cohomology filtration. Corollary 2 shows that the conjecture
is true for orientable manifolds.

Proof of Theorem 4. The given cohomology class £ implies the use of
a given coefficient group G. Let k = codimension £. Choose a singular
cocycle x e £, with support Y of dimension k. Since the cocycle x \ X — Y
has empty support, it cobounds. Therefore f is killed by the restriction
homomorphism H*(X\ G)-*H*(X— Y; G), and so £ = A77, the image of
some 77 under the relative inclusion homomorphism

A : H*{X,X- Y; G)^H*(X; G).
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Suppose j8 is a given arbitrary open covering of X. The restriction of §
to the subspace 7 is denoted by j8| 7. We construct an open covering
f$x of X, and a neighbourhood W of Y, with the properties

(i) jSi refines j8, and

(ii) j8x | W is of dimension ^ k (the dimension of a covering is the
dimension of its nerve). The construction of & is as follows. Since Y
is closed it is compact, and since Y is of dimension k we can refine j31 Y
by a finite open covering y of Y, of dimension ^ k. Since X and 7 are
compact Hausdorff spaces, they are normal. Therefore we can find a
closed covering yx of 7 that is a reduction of y (in the sense of ((2) 261,
Lemma 3.3)). Therefore yx also refines fi\ 7, and is of dimension ^k,
because the nerve of yy is contained in that of y. By ((2) 261, Lemma 3.4)
there exists in X an open (in X) enlargement y2 °f 7\> which refines jS
and has a nerve isomorphic to that of yx (of dimension ^k). The sets of
y2 cover an open neighbourhood, Wx say, of 7. Choose a smaller open
neighbourhood W of 7 such that W <^WX. Define jSx to be y2 together
with jS | X — W. Then fix is an open covering of X refining j8, such that
jSj | W = y21 W, which has dimension ^ k.

Choose now an open covering a of X with the properties

(i) a refines j81? and

(ii) any set of a which meets 7 is contained in W.

Let K = S(X) the singular complex of X, and K = S(X, a) the a-small
subcomplex. Let j : K-^-K be the inclusion homomorphism. There is an
induced commutative diagram of singular cohomology with vertical
isomorphisms

H*{X,X-Y- 0)

i r
H*(X,X- 7,a; G)—?^H*(X,a; G).

Let yj = j * rj and \ = j * g = XYJ.

Choose oriented nerves L, Lx of j8,jSl5 respectively, and construct the
following dichain complexes

D

where t), b1 are formed as usual from the singular-Cech carrier

FCT = {T; imo-nsupT#0}, aeK,
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where ©x is formed using a-small singular simplexes (as in Lemma 9),
and where fi2 is the subcomplex of fix given by

f)2 = {x\ x(a) = 0 for all CTEK such that imo-n Y = 0} .

In fact fi2 is none other than the relative dichain complex associated
with (X,X— Y), because we can identify (62)£ = U(rqap®G), the direct
product taken over all ^-simplexes crp in the relative a-small singular
complex S{X,X- 7 , a) = S(X,oc)IS(X- 7 , a). Since the right facets of
a-small simplexes are acyclic, we have by Lemma 4

H*<P2)-=+H*(X,X-Y,<x;G).

This isomorphism can be embedded in a commutative diagram:

H*{t2) >H*(bx)< %—#*(A) .,, > H*(£>)

H*(X,X

where the vertical isomorphisms e2, cl5 ev e are induced by the augmenta-
tions of L and Lv and where the horizontal homomorphisms are induced
respectively by the relative inclusion f)2<^f)1, by j :K->K, and by some
simplicial approximation ifj; L^-^-L. The purpose of the diagram is to
trace the filtrations induced from the upper row of groups on the elements
t\X, £, £ occurring in the lower row.

Now if aGS(X,X—Y,ot) then ima meets 7 and is contained in some
set of a, and so, by the construction of a, is contained in W. By the
construction of j8l5 the right facet To in Lx is of dimension ^ k. Con-
sequently the domain of fi2 is contained in the strip O^q^k. Therefore
the filtration of any element in H*(f)2) is ^ k. In particular the filtration
of Y), induced by e2, is ^ k. Consequently the filtration of \ = XYJ, induced
by el5 is ^ k. By Lemma 9, j * is an isomorphism not only on H*(X; G)
but on the whole spectral sequence, and in particular upon the filtration
of J&*(JD1). Therefore since \ = j * £ the filtration of £, induced by el5 is
< k. Finally the isomorphism I(J* induces a homomorphism (not necessarily
an isomorphism) of the filtration, and so the filtration of £, induced by e,
is ^k.

Writing fis
k(fi,G) for the filtration terms induced on HS(X; G) by e, we

have shown that if £ has dimension s and codimension k, then £eJ^f.(jS, G)
for arbitrary j8. Therefore £e f) $%{&, G) = lim^f.(]8, G). In other words £

ft <—
is of filtration ^ k in the filtration induced by the semi-spectral sequence £
of X. Theorem 4 is proved.
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We conclude the paper with an example to show how the filtration
and codimension depend upon the choice of coefficient group. First we
need a lemma.

LEMMA 12. Suppose that a homomorphism G->G' between coefficient
groups sends a G-cohomology class £ into a G'-cohomology class £'. Then
filtration £' ̂ filtration £, and codimension £' ^codimension £.

Proof. The coefficient homomorphism induces a homomorphism
between the resulting semi-spectral sequences, and a homomorphism
/*->-?'* between the filtration terms. Therefore if £s has filtration q,
then £sePq, f ' e / ' J , and so £' has filtration ^q.

If £ has codimension k, and re is a cocycle in £ with codimension k, then
the image 6r'-cocycle x' of x has if anything smaller support than x, and
so has codimension ^ k. Therefore codimension £' ̂  k.

EXAMPLE. The example is the quadric cone Q in complex projective
3-space. Q fails to be a real 4-manifold only at its vertex V. If A' triangu-
lates Q, then V must be a vertex of K, and the link of V is real projective
3-space, P3. First we use integer coefficients Z, and later we use Z2, the
integers modulo 2.

To compute $2 we first compute 5. If r £K, r ̂  V, then | stT | is a 4-cell.
Meanwhile H»(8t V)^Hv-l{lk V) = HP-^P3), the reduced cohomology of
P3. Therefore the stack £ = Z£p is given by the table

p

S"(T)

0

0
0

1

0
0

2

0
0

3

0
Zi

4

Z

z
The global homology of Q is H*(Q)^Z, Q,Z, 0,Z. Therefore the only non-
zero terms of E2 are:

$2%^Z2, from the local cohomology at V, and

£2^Z,q = 0, 2,4, from the global homology of Q.

The only possible non-zero dr is d2, and d2: E2^^$2\ must be the
epimorphism Z^-Z2 in order that J©3 = E^ be related to the global
cohomology of Q, H*(Q)^Z,0,Z,0,Z. Therefore the only three non-zero
terms of ̂ w are S^^Z, q = 0,2,4.

We now compute the same spectral sequence, only using Z2 coefficients,
which we denote by J@'. The stack £' is given by the table

p

§'»(T)
2/J)(F)

0

0
0

1

0
0

2

0

z2

3 4

0 Z2

z2 zz
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Therefore the only non-zero terms of E'2 are:

$2$ = Z2, V = 2, 3, from the local cohomology at V, and

£2*q^Z2, <7 = 0, 2,4, from the global homology of Q.

This time d2 : ̂ 2,2^-^2,0 i s a n isomorphism in order that i?3 = J^, be
related to the global cohomology H*{Q\ Z2)^Z2,0,Z2,0,Z2. Therefore
the only three non-zero terms of E'^ are E'^*?Z2, q = 0,4, and 2'^l^Z2.

Z

Z
FIG. 3

The coefficient homomorphism Z-+Z2 sends a generator

into a generator

Therefore

filtration £ = 2, filtration f' = 0.

From Corollary 1, putting n = 4 and 5 = 2, we obtain

codimension £ = 2.
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Therefore any integral cocycle XE£ must have support at least 2-dimen-
sional; the support must be some sort of surface spreading globally over Q,
for example, the 2-sphere underlying a generator of the cone (a generator
being a complex projective line). On the other hand, with Z2 coefficients
it is possible to find a cocycle x'sg' with support a single point, the
vertex F. Therefore

codimension £' = 0.

The construction depends upon being able to find aZ2-cocycle to represent
the generator of Hl{P*\ Z2) = Z2, whose support is a real projective plane,
which we then 'join' to V. The construction breaks down for integer
coefficients because no such cocycle exists. The spectral sequence reflects
and illuminates this interplay between local and global structures and
coefficient group.

Duality

Let E,E' be the dual spectral sequences of Q with coefficients Zi,Z2,
respectively. Since Z2 is a field there is strict duality between E' and E':
corresponding terms are dual vector spaces over Z2) and corresponding
differentials are conjugate maps. Therefore knowing E' we can write
down E' at once.

Since Z is not a field there is no strict duality between E and JE. For
instance, if E is also computed for Q, it turns out that d2 = 0, whereas d2 ^ 0.
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