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Problems in Differential and Algebraic
Topology. Seattle Conference, 1963

R. LASHOF, Editor

Introduction

In the summer of 1963 a conference on Differential and Algebraic Topology
was held under the auspices of the American Mathematical Society at the
University of Washington, Seattle, Washington. It was financed by a grant
from the National Science Foundation.
The emphasis of the conference was on differential topology, and we have
attempted to give the general background and statements of results for recent
developments in the field. A glance at these notes will show that it is impossible
to separate developments in differential topology from those in algebraic topol-
ogy. But in order to keep these notes a manageable size, it was necessary to
limit the discussion to just a few areas in differential topology. We have chosen
immersion and imbedding theory and combinatorial and differentiable structures
because of their rapid development in the past couple of years, and because they
coincide with present interests of the editor.
At the instigation of Norman E. Steenrod, who directed the conference,
participants presented problems of current interest, for which we hope the
discussion serves as motivation and elucidation.
For background material for other recent developments of differential and
algebraic topology, we refer the reader to the following summaries.
(1) J.F. Adams, Cohomology operations (Seattle Conference)
(2) M. G. Barratt, Homotopy operations and homotopy groups
(Seattle Conference)

(3) F. Hirzebruch, Lectures on K-theory (Seattle Conference)

(4) S. Smale, A survey of some recent developments in differ-
ential topology, Bull. Amer. Math. Soc. 69 (1963),
pp. 131-145.

Since the original draft of this report, considerable progress has been made
on many of the problems presented. These results have been inserted wherever
sufficient information was available. R. Lashof.

1. IMMERSIONS AND IMBEDDINGS

DEFINITION 1.0. An tmmersion of one smooth manifold M* in a second
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X", of dimensions k and n respectively, is a C'-map f: M — X with the property
that, for each pe M in some coordinate system (and hence all) about p and
f(p), the jacobian matrix of f has rank k. An imbedding is an immersion
whiech is also a homeomorphism onto its image.

DEFINITION 1.1. An isotopy between two immersions (imbeddings)
f,9:M— X, isaC'map F: M x I— X, such that F,;: M — X is an immersion
(imbedding) for each t.

The fundamental problem of immersion (imbedding) theory is: Given
manifolds M and X, find the isotopy classes of immersions (imbeddings) of M
in X. This includes in particular the problem of whether M can be immersed
(imbedded) in X at all.

The first theorem of this type was based on general position arguments
and proved by Whitney [58] in 1936.

THEOREM 1.0. Given manifolds M*, X", any two tmmersions (imbeddings)
f,9: M— X which are homotopic are isotopic provided n = 2k + 2 (n = 2k + 3).
If n=2k (n =2k + 1), there exists an immersion (mbedding) of M* in X,

In 1944, Whitney [59] improved the existence theorem as follows:

THEOREM. FEwvery k-manifold can be immersed in E*', k > 1, and
imbedded in E*.

The next general advance was the work of Smale [46] and Hirsch [19] on
the theory of immersions (1957-1959).

THEOREM 1.1. Assume k= n tf any component of M* is closed. If a map
f: M*— X" is covered by a bundle monomorphism @: T,— Ty of the tangent
bundles, there is an immersion g: M — X homotopic to f such that the differ-
ential dg: T, — Tx 18 homotopic to @ through bundle monomorphisms. Any
two such tmmersions g are regularly homotopic. If n >k, g can be chosen
so as to approximate f as closely as desired.

COROLLARY 1. M* immerses in E™ 1f and only 1f there exists a bundle
v** over M such that T, P v** is trivial.

This beautiful result of Hirsch reduces the immersion problem to a homo-
topy problem. Still one wishes to reduce this problem further to obtain a pure
number theoretic expression for the least possible dimension for immersing a
manifold in euclidean space. A great deal of work has been done on the special
case of projective spaces by many authors. A good many (but not all) of the
authors take this theorem as the starting point [12], [25], [44], for proving the

existence of immersions. The non-existence theorems are largely proved by
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using characteristic classes expressed as cohomology operations, including K-
theory operations [43], [53], [33], [45]. These results are too complicated to
reproduce here. (See Hirsch’s excellent summary [20]).

On the other hand, Hirsch’s theorem completely solves the existence
question for immersions of 7-manifolds (i.e., manifolds which can be imbedded
with trivial normal bundles in sufficiently large euclidean spaces). Namely,

THEOREM 1.2 (Hirsch). A m-manifold M* is tmmersible in E**'. If none
of the components of M* are closed, M* is itmmersible in E*.

The situation for imbeddings is not nearly so good. In the so-called meta-
stable range, however, the results are somewhat better than for immersions, in
the sense that they include a more explicit classiflcation theory. These results
are due to Haefliger [15], [16], who greatly extended the techniques of Whitney
using ideas of Thom, Wu, and Shapiro.

We first state his general theorem: Let M* be compact, and n = 3/2(k+1).

THEOREM 1.3 (Haefliger). Let f: M* — X" be a map. Considering f as a
map of Ax into A, (the diagonals in M X M and X X X resp.), suppose that
f s extendable to a map 6: M x M — X satisfying

(a) 0 is equivariant with respect to the involutions (x, y) — (y, ),

(b) 07%(Ax) C Ay.

Then f is homotopic to an imbedding g: M — X such that g X g is homotopic,

preserving properties (a) and (b) to . If n > 3/2(k + 1), then any two such
vmbeddings g are isotopic.

COROLLARY 1. If M is topolegically imbeddable in X, then M is differ-
entiably imbeddable.

THEOREM 1.3". If f: M— X 1s a map such that f,: m,(M)— w(X) is an
isomorphism for © < 2k — n and onto for © = 2k — n 4 1, then f is homotopic
to an imbedding. If f, is an isomorphism for ¢ < 2k — n + 1 and onto for

1=2k —n+ 2, and n > 3/2(k + 1), then two vmbeddings which are homotopic
to f are isotopic.

COROLLARY 2. If M*isr-co-connected (i.e., (k— r)-connected), r = (k+3)/2,

M 1s vmbeddable in E**". If r > (k + 1)/2, then two imbeddings in E*++!
are isotopic.

REMARK. Although for immersions in the meta-stable range the analogue

of Theorem 1.3 but using only a neighborhood of the diagonal [18]; no direct
analogue of Theorem 1.3’ has been given.

Another approach to imbeddings in the meta-stable range has been given
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by J. Levine (Bull. Amer. Math. Soc., 59 (1963), 806-809); based on constructions
of Browder and Novikov [7], [41], [31], together with Corollary 2 above.

THEOREM 1.4. Suppose 2n = 3(k + 1) and & is a (n — k)-plane bundle
over a simply connected closed manifold M*, stably equivalent to the the
normal bundle of M, such that Thom space T (€) is reducible (i.e., 7, (T(€))—
H,(T(&)) is onto). Then there is an tvmbedding f of M in S™ such that the
normal bundle v, is fibre homotopically equivalent to &:

(a) over Mif n =6, 14 or n = 2mod 4

(b) over M-open disc, tf n = 2 mod 4.

Now suppose f imbeds M in S*, then the Thom construction defines an
element a; ¢ 7, (T(v,)). If f, g are isotopic imbeddings of M in S*, it is easy
to show that there is a bundle map ®: v, — vy, over the identity such that
Py T (T(s)—7, (T(v,)) sends a; into a¢,. We say that @ induces an equivalence
between the normal invariants of f and g. Then Levine proves:

THEOREM 1.5. If 2n > 38(k + 1), then two imbeddings of M im S™ are
wsotopic if and only tf they have equivalent normal invariants.

In special cases, depending on dimension and assumptions concerning
characteristic classes, these results have been pushed a bit further (Haefliger
and Hirsch, Existence and classification of differentiableimbeddings, Topology
(2) (1963), 129-136). Also a number of authors [20] have obtained special results
for projective spaces. Although it is hoped that results on projective spaces
will show the way to obtain general results for imbeddings below the meta-stable
range, the results so far are too fragmentary and complicated to reproduce here.

The first general results for imbeddings below the meta-stable range have
recently been obtained for w-manifolds by J. Minkus and R. De Sapio [11]. In
particular, their results partially establish a conjecture of M. Hirsch, (see
Corollary 2 below).

Problem 1. Is every parallelizable n-manifold imbeddable in euclidean
n + [(n + 1)/2]-space?

DEFINITION 1.2. A closed k-manifold M#, is almost differentiably imbed-
dable in E*, if there is a smooth submanifold M, C E™, and a homeomorphism
h: M — M, which is differentiable except at one point.

THEOREM 1.6. Let M* be an r-co-connected (i.e., (k—r)-connected) closed
k-dimensional T-manifold, k = 5, r = k/2 + 1. Then

(a) if M bounds a m-manifold, M is differentiably imbeddable in E* "
with trivial normal bundle;
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(b) ©f k= 2mod 4 or k=2mod 4 and the Arf invariant of M is zero, M
18 almost differentiably imbeddable in E**,

COROLLARY 1. An (I — 1)-connected (21 + 1) manifold, I = 2, is almost
differentiably imbeddable in E**® if and only if it is a w-manifold, and s
differentiably imbeddable if and only if it is the boundary of a w-mantfold.

COROLLARY 2. Let m = m(k), be the smallest dimensional euclidean space
in which all homotopy k-spheres are differentiably imbeddable. Then, 1f M*
18 a m-manifold, which is at least k—(m + 1)/2-connected, it ts differentiably
imbeddable in E™, with fibre homotopically trivial normal bundle.

REMARK 1. De Sapio has shown that for certain coconnectivities and di-
mensions, the theorem is best possible.

REMARK 2. An example of Hsiang and Szczarba [22] shows that some 7-
manifolds M*, which bound 7-manifolds, can be imbedded in E*~* with normal
bundles which are not fibre homotopically trivial, and further give two imbed-
dings which are not isotopic.

Problem 2. (a) Is Theorem 1.6 best possible for all dimensions and co-con-
nectivities?
(b) Give a classification theory for imbeddings of 7-manifolds.

The following question of Steenrod poses the imbedding problem in a
somewhat different form:

Problem 3. For each integer n = 1, does there exist a compact (n + 1)-
manifold without boundary in which each n-manifold is imbeddable? There is
one problem for each of the categories, topological piecewise linear, differenti-

able (n = 1 is trivial, » = 2 is given in Stiefel’s thesis). N. E. Steenrod.
Problem 4. If k> n/2, and M* immerses in E***, does M imbed in E»+*+7,
7 not too big? M. W. Hirsch.

Problem 4'. Let n and m be the least integers such that a differentiable
manifold M is immersible in %-space and imbeddable in m-space. Write
divergence M = m — n. WhenisdivM = 0? Examples are the ordinary spheres,
complex and quaternionic spaces a dimension a power of 2. Is div CP, =
div HP, — 0 all n? B. J. SANDERSON.

Imbeddings of spheres

Theorem 1.8’ of Haefliger establishes and classifies the imbeddings of
homotopy spheres in euclidean space for the meta-stable range. Theorem 1.6
of De Sapio establishes the imbeddings of homotopy spheres which are
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boundaries of m-manifolds, in codimension two (a result originally due to
Hirsch). The problem of imbedding homotopy spheres below the meta-stable
range will be further discussed in § 2.

In the meta-stable range, any two imbeddings of a homotopy sphere are
isotopice, and hence the normal bundle is uniquely determined. Consequently,
the ordinary sphere, or one which is a w-boundary must have a trivial normal
bundle. Massey [34] established that the normal (sphere) bundle of a homotopy
sphere in any euclidean space must be fibre homotopically trivial. Kervaire-
Milnor [28] and Adams [2] established that the stable normal bundle is trivial.
On the other hand, Hsiang, Levine, and Szczarba exhibited a sphere imbedded
in the meta-stable range with a non-trivial normal bundle. (On the normal
bundle to a homotopy sphere embedded in euclidean space, to appear in
Topology). In general they proved:

THEOREM 1.7. A sphere bundle over an n-dimenstonal sphere may be the
normal bundle of a homotopy sphere imbedded in the meta-stable range if and
only if it 1s fibre homotopically trivial and stably trivial (n = 4k + 2, if the
Arf invariant of a closed manifold is not zero).

Problem 5. Classify the normal bundles of homotopy spheres in the
meta-stable range.

The above theorem reduces part of this problem to a homotopy question.
One such specific homotopy problem is described below.

Problem 6. Let 1, be a generator of 7,(S™) and v, a generator of 7,.(S.,).

If n = 13, the Whitehead product [%,, 7,] = 0. If this could be shown to be
the case for n > 13, n = 5 mod 8, it would follow that the element of A,v, in
T,4(80(n)) [A, is the connecting homomorphism in the homotopy sequence of
the fibering so(n) C so(n + 1) — S*] represents an (n — 1)-sphere bundle over
S*+3 which is fibre homotopically trivial. Since the bundle is also stably trivial,
it can be realized as the normal bundle of an imbedding of an exotic (n + 3)-
sphere in E***%; go in particular, 8y, # 0 (04 the group of homotopy 8¢ spheres).
Hsiang and Szczarba.

Other problems connected with the imbeddings of spheres in manifolds are:
Problem 7. Let N(k, n) denote the set of differentiable or combinatorial
knots S* c E***, Is there a stability theorem N(k, n) = N(k + 1, n) for large
k? Such a theorem is suggested by Kervaire’s result on the group of knots
Nk, 2). A. Dold.

This appears to be answered negatively by recent results of J. Levine.

Problem 8. Which classes in H,(S? X S?) are representable by smoothly



SEATTLE CONFERENCE, 1963 571

imbedded 2-spheres?
Congecture 1. Only classes px + gy where p or ¢ is 0 or 1 (pessimist).

Conjecture 2. The above together with classes px + qy where p and ¢
are relatively prime (optimist).

REMARKS. When p or ¢ = 0,1, —1 there exists a smooth sphere. When

P = q = 2 (mod 4), there exists no sphere. First unsolved case 22 + 3y. In

(S* x S*)#(S* x S? any primitive class can be represented. Kervaire-Milnor
[29] have shown all classes are represented by simplicial imbeddings.

C. T. C. Wall.

Problem 9. Let x € Hy(M*) be primitive, M a 1l-connected closed smooth
manifold. Consider imbedded smooth 2-spheres representing x, with 1-connected
complement. Are they all diffeotopic? C. T. C. Wall.

Problems on projective spaces

Problem 10. The existence problem for immersions of real projective spaces
RP, in euclidean space is solved for n < 12; n =27 43,0 <s < 3; n = 2 +
2"+ 3, ¢ > r. Can one find an algebraic formula which fits the known results?

B. J. Sanderson.

Problem 11. The following is known: HP, immersible in (4n + k)-space
implies RP,,, immersible in (4n + 3 + k)-space.

Is the converse true? (It is known when n is a power of two or the sum
of two powers of two.) B. J. Sanderson.

The following is suggested by results on projective spaces.

Problem 12. Let a(n) be the number of 1’s in the dyadic expansion of n.
Are all n-dimensional differentiable manifolds embeddable in (2n — a(n) + 1)-
space? B. J. Sanderson.

2. COMBINATORIAL AND DIFFERENTIABLE STRUCTURES ON MANIFOLDS

In §1, we discussed problems concerned with the category of smooth
manifolds and smooth maps. One has similar problems for the category of
piecewise linear (or combinatorial) manifolds and piecewise linear maps, and
the category of topological manifolds and continuous maps. (There are also
various in-between objects, such as homotopy manifolds, homology manifolds,
Lipschitz manifolds, C"-manifolds; and stronger structures such as real analytic,
complex analytic, and algebraic. These will largely be ignored here). Even
more interesting is the relation between these categories.
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There is now a fair body of knowledge concerning combinatorial manifolds
and their relation with smooth manifolds.

DEFINITION 2.1. A function f: K— L between locally finite simplicial
complexes is piecewise linear (PL) if there exists a rectilinear subdivision K’
of K so that f maps each simplex of K’ linearly into a simplex of L.

REMARKS. (a) Any open subset of a locally finite simplicial complex can
be triangulated so that the inclusion map is piecewise linear.

(b) Given any PL map f: K — L between finite complexes, there exists
rectilinear subdivisions K’ of K and L’ of L, such that f is simplicial with
respect to these subdivisions.

DEFINITION 2.2. A simplicial complex M will be called a PL manifold if
each point has a neighborhood U which is PL homeomorphic to R,

REMARKS. (a) Every combinatorial manifold in the sense of Whitehead
[57] is a PL manifold.

(b) Every compact PL manifold is a combinatorial manifold.
We begin with combinatorial analogues of Haefliger’s imbedding theorems
(1.3").

Let M and @ be closed PL manifolds.

THEOREM 2.1 (Irwin [24]). Suppose dim Q —dim M = r = 3, where M is r-
co-connected and Q (2r — 1)-co-connected. Then, given a continuous map
f+ M — Q, there exists an imbedding g: M C Q homotopic to f.

DEFINITION 2.3. Let @ be a PL manifold. A PL isotopy of Q is a piecewise
linear homeomorphism k: @ x I— @ X I such that

(1) his level preserving, i.e., commutes with projection onto I.

(2) h starts with the identity, i.e. h, = 1.
A PL manifold M is said to be unknotted in @ if for any two imbeddings
f,9: MC Q which are homotopic, there exist a PL isotopy & of @ such that
hlf =4d.

THEOREM 2.2 (Unknotting theorem of Zeeman [61], [62]). Supposedim@Q —
dim M =r +1=8. Then M unknots in Q, provided that M ts r-co-connected
and Q s 2r-co-connected.

COROLLARY. S™ unkmnots in S™*", r = 3.

Various examples of Zeeman and Hudson [23] show that this Theorem is
best possible in general. In particular, there are combinatorial n-spheres that
knot in S™*2,

The above corollary contrasts sharply with the differentiable case, where
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Haefliger [17] has shown that there exist smooth submanifolds M*~* in S°%,
such that M**! is diffeomorphic to S*~, but the pair (S, M*™*) is not diffeo-
morphic to the standard pair (S, S*-1),

This raises the question as to the relation between combinatorial and differ-
ential structures, and between PL-imbeddidgs and smooth imbeddings. This
theory has been developed by S. S. Cairns and J. H. C. Whitehead [57]; and
by J. Munkres (Obstructions to extending diffeomorphisms, Proc. Amer. Math.
Soc., April 1964) using a somewhat different approach. Before stating some
recent results in the theory, we need

DEFINITION 2.4. A smoothing of a PL-manifold K" is a pair (M™, ), where
f: K— M is a piecewise regular homeomorphism (i.e., for each simplex ¢ of
some rectilinear subdivision of K, f | ¢ is differentiable and the jacobian is of
maximum rank).

Two smoothings (M, 1), (M,, f.) are called concordant if there exists a
smoothing of K x I, which induces the same differentiable structure on K x (0)
and K x (1) as (M, f)) and (M,, f,), respectively. Concordance implies diffeo-
morphism (although not trivially), but the converse is known to be false.

THEOREM 2.3 (Cairns-Hirsch [35]). Let K be a PL-manifold without bounda-
ry, and let (f, M) be a smoothing of K X R™. Then there exists a smoothing
(9, N) of K, unique up to concordance with the following property:

There 1s a precewise-regular isotopy H: K X R™ X I— M x I with H,=f
and H, = @o(g X identity), where @ is a smooth imbedding of N X R™ in M.

This theorem has been generalized from products to vector bundles by
Lashof-Rothenberg [32]. But we need Milnor’s [37] concept of microbundles to
state the result.

DEFINITION 2.5. A PL-microbundle & of dimension n is a diagram
B E-'.B,

where B and E are locally finite simplicial complexes and %, j are PL maps
satisfying: For each b€ B, there exists neighborhood U of b and a PL homeo-
morphism 4 of U x R™ onto a neighborhood V of 4(b) so that the diagram

14
iau/ gl v
N
U h U
N
XO\\ /pl
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is commutative. Here p, is projection onto the first factor and x 0 is the map
% — (u, 0). (Note this implies ji: B — B is the identity). B is called the base
space, E the total space, © the m]ectwn and ] the projection of &.

A second PL-microbundle &': B———> E L» B over the same base space is
1somorphic to & (written & ~ &) if there exist neighborhoods E,; of (B) and
E! of i'(B), and a PL-homeomorphism E, — E! so that the diagram

E,

i/ & \Jl|E:
21N
B B

\'/ I {'E,
Ny 8
is commutative.

Example 1. The trivial bundle &*: B —X—0+B x R*- 2L B .

Example 2. The tangent microbundle r, of a PL-manifold M

et M—2 Mo M -2 01,

DEFINITION 2.6. Consider PL-manifolds M N with PL-inclusion map
9 M — N. M has a normal microbundle v in N if there exists a neighborhood
Uof Min N and a retraction j: U— M so that the diagram

i .
v MU M
is a PL-microbundle over M.

REMARK. All these definitions which have been given in the category of
PL-manifolds and maps, make sense in the category of topological manifolds
and continuous maps. See [38].

Just as for vector bundles one may define Whitney sum of microbundles
and hence stable equivalence of microbundles (the definitions are formally the
same). Stably, normal microbundles behave just like normal vector bundles.

This is summarized in the stable tubular neighborhood theorem for PL-mani-
folds [32].

THEOREM 2.4. Let f;: K— V, i = 0, 1, be PL-imbeddings, where K and V
are combinatorial manifolds without boundary, then

(a) f«K) hasanormal microbundle p,in V x R n sufficiently large;i.e.,
there exists PL-homeomorphisms Fi: E(it;)) — V x R™ such that F, restricted
to the zero section is f;: K — V x 0.

(b) If h: K x I— V x I is any PL-isotopy between f, and f,, there exists
a PL-isotopy H: E(tt) X R* X I — V x R"% x I, k sufficiently large, covering
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h, such that H,= F, X 1,, and H, is a microbundle equivalence of E(t,) x R*
into Fy(E(tt) x R.

Problem 13. Do normal microbundles always exist in some stable or
metastable range?

According to Zeeman [62], this would follow if any PL-homeomorphism
®: S?x S?— S?x S, sufficiently close to the identity is isotopic to the identity.

The existence of at least one normal microbundle for S* in S*+* k > 2,
follows from Zeeman’s unknotting theorem.

Problem 14. Is there some range of codimensions for which an isotopy
between two imbeddings of M in N may be covered by an isotopy between their
normal microbundles, assuming such exist?

Problem 15. Does there exist a non-trivial normal microbundle for a sphere
in a sphere (or euclidean space)?

DEFINITION 2.7. A ptecewise differentiable structure on an n-plane bundle
& over a locally finite simplicial complex K, is a presentation of the total space
E(&) as the unionof ¢ X R", ¢ € K, with the coordinate transformations from
o to 0,0 being differentiable over each simplex of a rectilinear subdivision of a.

A vector bundle, together with a piecewise differentiable structure is called
a piecewise differentiable vector bundle (pd-vector bundle).

It follows from the definition, that there exists a rectilinear subdivision
K, of K, such that 7—%(0), 0 € K,, has a well defined differentiable structure.
We will say that & is differentiable over K,.

Two pd-bundles &, and &, over K are called equivalent if there exists a
vector bundle map ¢: E(6,) — E(&,) such that @ |7w7%(0): n7%(0) — w7 (o) is
differentiable over each simplex of a rectilinear subdivision of o.

It is shown in [32], that two pd-vector bundles &, and &, over K are equiva-
lent if and only if they are equivalent as vector bundles.

DEFINITION 2.8. Triangulation of pd-vector bundles. A triangulation of
a pd-vector bundle & over K, is a PL-microbundle £ over K and a fibrewise
map @: E(p¢)— E(&), preserving the zero section, and such that ¢ is a piecewise
regular homeomorphism over each simplex ¢ of a rectilinear subdivision K, of
K where & is differentiable over K,. We denote such a triangulation by the pair
(&, P).

It is shown in [32] that, if (%, ®.), © =1, 2, are triangulations of &, there

exists a microbundle equivalence +: E(#,) — E(#,) such that @, is isotopic to
@, through triangulations.
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THEOREM 2.5 (Smoothing of imbeddings). Let ¢: K — L be a PL-imbedding
where K and L are PL-mantfolds without boundary. Let f: L—V be a smooth
trrangulation. Then there exists a piecewise regular homeomorphism h: V —
V (i.e., hf is piecewise regular) such that hfi(K) is a smooth submanifold
with normal vector bundle &, if and only 1f i(K) has a normal microbundle
¢ which triangulates &.

CoROLLARY (Milnor [37]). K is smoothable if and only if its stable normal
microbundle (in euclidean space) triangulates a vector bundle.

In particular, an exact sequence of Lashof and Rothenberg using the above
theorem, largely reduces the question of classifying smoothly imbedded homo-
topy spheres in spheres to the existence and classification of normal micro-
bundles for spheres in spheres.’

In [37] Milnor has defined a semi-simplicial group complex PL, which plays
the role of a structural group for n-dimensional microbundles. A k-simplex in
PL, being a germ of a PL-microbundle equivalence f: A, X R"— A, X R", A,
the standard k-simplex. In order to compare microbundles with vector bundles,
it is useful to introduce an ss-analogue O, of the orthogonal group which acts
as a structural group for pd-vector bundles. A k-simplex in O, is a pd-vector
bundle equivalence f: A, x R"— A, x R". O, is an ss-group complex of the
same homotopy type as the orthogonal group on n-dimensional euclidean space.
Finally, one introduces the ss-complex (not a group complex) PD,; a k-simplex
in PD, being a germ of a topological microbundle equivalence f: A, X B"—
A, X R", where f is a piecewise regular homeomorphism with respect to the
product triangulation of A, x R". Then PL, C PD,, and O, acts freely in the
right of Pp,. It is shown in [32], that ¢: PL,— PD, is a homotopy equivalence.
Let pL, PD, O, be the direct limits of PL,, PD,, O,, under the natural inclusions
PL, — PL,,;, PD, — PD,,;, O, — O,,;. Then PD is the same homotopy type as
PL, and O acts freely in the right of PD.

The following theorem has been announced by Mazur, a proof is given in
[32].

THEOREM 2.6. Let K be a PL-manifold which admsits a smoothing. Then
the concordance classes of smoothings of K are in one to one correspondence
to the homotopy classes [K, PD/O] of ss-maps of K imto PD/O, where K is the
associated ss-complex to K.

In [32] it is shown that PD/O is a homotopy commutative H-space, and that

1 J. Levine has given a complete theory of imbeddings of spheres in spheres for
codimension greater than 2, using differentiable methods only.
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the concordance classes of smoothing of K form an abelian group with any pre-
chosen smoothing as unit class. In particular, 7;(PD/O) =~ I';, the group of
differentiable structures on S?. By an argument of Milnor, 7;,(0O) maps mono-
morphiecally into 7,(PD). Hence, ‘

THEOREM 2.7 (Hirsch-Mazur). There is an exact sequence:
0— 7, (0)—>my(PL) > T, — 0.

REMARK. J. Cerf [10] has recently proved I', = 0 and hence I'; =0, ¢ < 7.

Problems 11 and 12 for spheres may be stated as a homotopy problem.

Problem 16. For each ¢, is there some m, such that 7;(PL,) — 7,(PL) is an
isomorphism, n = m?

Problem 17. If a k-dimensional microbundle £¢* has a non-zero cross-section,
is ¢* the Whitney sum of a microbundle v*~! and a trivial bundle?

M. Hirsch.

Problem 18. Let M be a topological or combinatorial manifold with vanish-
ing Euler characteristic. Does the tangent microbundle of M have a non-zero
cross-section?

This problem has been solved by R. Brown and E. Fadell: Non-singular
path fields on compact topological manifolds (to appear).

Problem 19. Let 6, act on the diffeomorphism classes of manifolds by
connected sum. What determines this action? Does it depend on more than
the tangential homotopy equivalence class at the manifold? Similar questions
for the action of the subgroup 6*(87) of smooth homotopy spheres which are
boundaries of parallelizable manifolds. W. Browder.

Contributions to this problem have been make by Tamura [52], C.T.C. Wall
[65], W. Browder [8], and Kosinski. Also at the Seattle Conference, Munkres
proved the following:

THEOREM 2.7. Consider the pairing 7, _,(S0(n — m)) @ T,y i1 — .. (See
discussion of diffeomorphisms of S* below). Let 3" be an exotic sphere lying
in the image under this pairing, say 3" = a®~. Let M" contain a smoothly
1mbedded S™ with « the characteristic class of the mormal bundle. Then
M+#73, is diffeomorphic to M.

In fact, M#ZX is concordant to M, in the following sense: If f: K — M is
a smoothing of K, there is a smoothing g: K— M#3 such that the induced
differentiable structures on K agree outside a combinatorial ball; the assignment
(M, f)— (M+#%, g) defines an action of 6, =TI, on concordance classes. Under
the preceding hypotheses, the element 3 acts trivially on the concordance class
of (M, f).
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Problem 20. 1s 6, = 0,(07) P 6,/0,.(07). C. T. C. Wall.

REMARK. The group I" of smooth combinatorial # spheres (under connected
sum) is isomorphic to the group of diffeomorphisms of S~ modulo those which
can be extended over B*. The group 6, is the group of h-cobordism classes
of smooth homotopy n-spheres. 6, =~ I',, » # 3, 4.

Problem 21. Is an orientation preserving diffeomorphism of S, which is
extendable to a diffeomorphism of the ball B, diffeotopic to the identity?

S. Smale.
This has been answered affirmatively for » = 8 by J. Cerf.

Problem 22. Let =" be a homotopy sphere, bounding M**, M"** not paral-
lelizable but, for example, highly connected. How can one calculate the class
of 3" in 6,/6,(67) C Coker J,? C.T.C. Wall.

Topological manifolds and imbeddings

Very little is known about classifying topological manifolds. However,
the following weak analogue of the corollary to Theorem 2.5 follows from the
results of Browder [7].

THEOREM 2.7. Let M be a closed topological n-manifold, and suppose that
its tangent microbundle is stably equivalent to a vector bundle & If M 1is the
homotopy type of a finite complex, then:

1) if n is odd, M is the same homotopy type as a smooth closed n-mani-
fold;

@) if n = 4k, and if the index of M is equal to the Hirzebruch number
defined by the Pontrjagin classes of &, M is the same homotopy type as a
smooth closed n-manifold;

B) wfn =4k + 2, then M is the same homotopy type as a closed combi-
natorial n-manifold. (Which is differentiable except possibly at one point.)

We are equally ignorant as to the classification of topological imbeddings,
even of smooth manifolds (cf. corollary of Theorem 1.4). However, in the case
of locally flat imbeddings the situation is somewhat better.

DEFINITION 2.8. A topological imbedding i: M™— N* is called locally flat
if, for each x € M C N, there exists a neighborhood U of « in M, and a homeo-
morphism k: U — R™ such that h/UN MC R"C R".

REMARKS. (1) It follows from Zeeman’s unknotting theorem that, if 7 is
a combinatorial imbedding of a combinatorial manifold, it will be locally flat
provided the codimension is at least three.

(2) The existence of a topological normal microbundle implies the imbed-
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ding is locally flat (cf. Def. 2.6). Hence Milnor’s theorem on the existence of
a topological normal microbundle stably [38], implies that 4: M™— N"C N x R®
is locally flat if s is sufficiently large.

Stallings unknotting theorem [49]

THEOREM 2.8. A locally flat imbedding of S™ in S™** is topologically
unknotted provided k = 3, or if k = 2, and the complement of S™ in S™** has
the homotopy type of S*.

In the stable range we have Greathouse [14], Gluck [13].

THEOREM 2.9. Let f be a locally flat tmbedding of the closed combinatorial
manifold M* into the combinatorial manifold V*. If 2k + 2 < n, then for
each € > 0 there is an e-push h of (V*, f(MF*)) such that hf: M*— V™ is
piecewise linear.

COROLLARY. Any topological imbedding of a closed combinatorial mani-
Jfold in euclidean space is stably unknotted.

Milnor has given the following as his candidates for the toughest and most
important problems in geometric topology.

Problem 23. Let M* be a homology 3-sphere with 7, = 0. Is the double
suspension of M ® homeomorphic to S°?

Problem 24. Is simple homotopy type a topological invariant?

Problem 25. Can rational Pontrjagin classes be defined as topological
invariants?

Problem 26 (Hauptvermutung). If two PL-manifolds are homeomorphic,
does it follow that they are PL-homeomorphic?

Problem 27. Can topological manifolds be triangulated?

Problem 28. The Poincaré hypothesis in dimensions 3, 4.

Problem 29. (The annulus conjecture). Isthe region bunded by two locally
flat n-spheres in (n + 1)-space necessarily homeomorphic to S* x [0, 1]?

Discussion of Milnor’s problems

Problem 23. Since the double suspension of M?is the same homotopy type
as S° and since any combinatorial 5-manifold the homotopy type of S° is
homeomorphic to S® [47], [62]; the problem reduces to whether the double
suspension is a combinatorial manifold. (Also note that it has been shown that
SM* = S* for any smooth homotopy 4-sphere.—Hirsch)

Problem 24. Inthe simply connected case, simple homotopy type is the same
as homotopy type. By definition it is a combinatorial invariant. Hence for com-
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binatorial manifolds, an affirmative answer to Problem 26 would imply that
homeomorphic combinatorial manifolds are of the same simple homotopy type.

Problem 25. Milnor [39] has given an example which shows that the

answers to problems 25, 26, and the Hurewicz conjecture (Problem 31) cannot
all be affirmative.

Problem 26. Milnor has given an example to show that the Hauptrermut-
ung is not true for simplicial complexes. Smale and Barden have shown it is
true for 1-connected closed PL 5-manifolds.

Problem 27. Wall [56] has shown that not every Cw-complex which is
dominated by a finite complex is homotopy equivalent to a finite complex.

However, the following question still remains open, in particular for topological
manifolds.

Problem 30. Is a compact ANR the homotopy type of a finite complex?
(Milnor has demonstrated this in the simply connected case.)

Problem 28. Smale and Stallings [47], [50] have proved the Poincaré
hypothesis, i.e., that every combinatorial n-manifold of the same homotopy
type as an n-sphere is homeomorphic to S*, » = 5; in fact PL-homeomorphic..

Problem 29. For smooth spheres, smoothly imbedded, Smale’s h-cobordism
theorem [47] gives a homeomorphism for » = 5 which is actually a diffeomor-
phism. Similarly, Mazur’s combinatorial k-cobordism theorem [36], gives a
PL-homeomorphism, # = 5, for combinatorially imbedded spheres. Stallings
has outlined a proof for combinatorially imbedded spheres, = arbitrary

but the homeomorphism not necessarily combinatorial, using results of
M.H.A. Newman.

Problem 31 (Hurewicz conjecture). Are two simply connected closed
smooth manifolds of the same homotopy type homeomorphic?

The following is closely related to Problem 31.

Problem 32. If M and M’ are compact differentiable manifolds, and if
there exists a homotopy equivalence h: M ~ M’ which is compatible with the
tangent bundles (i.e., h*Ty =~ Ty), is M*xM — A~ M'«xM' — A’, where *
denotes the symmetric square, and A, A’ the diagonals?

Similarly, if there is an isomorphism @: H*M = H*M' which maps the
characteristic classes of M into those of M’', is H*(MxM — A) =
H*(M'xsM' — A')? A. Dold.
C. Weber (Geneva) has some results in this direction.

Problem 33. It is known that if M and M’ are homeomorphic smooth n-
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manifolds and M has a tangent k-field for k¥ < (n — 1)/2, then so does M’'. Is
this true if M and M’ merely have the same homotopy type? M. Hirsch.
W. A. Southerland has proven this in the cases

(a) n even

(b) » =1 (4), M a spin manifold.

The Arf invariant

In a number of the previous theorems and problems, the question of the
Arf invariant of a manifold has arisen. We give a brief description of this
invariant together with the present status of the problem.

~ The algebraic concept: A quadratic form in a Z,-vector space V takes the
form of a function @: V — Z, satisfying

Plx + y) = P@) + 2¥) + v, ¥) , r,yeV,
where 4: V x V—Z, is bilinear and symmetric. If +r is non-degenerate (i.e.,
r(x, ¥) = 0 all ¥ implies 2 = 0), then one may choose a basise, -« -,e,, e, -+, e,
for V, such that (e, e}) = 1,92 =1, ---, n, and + for all other pairs is zero.

‘This is called a symplectic basis. Define the Arf invariant of @ by:

Arfp =3 " P(e)pler) .
Then Arf proved that two such quadratic forms over V are equivalent under
change of basis if and only if they have the same Arf invariant.

For a compact (k — 1)-connected 2k-manifold M with or without boundary,
Kervaire [27] defines @(x), @: H*(M, bM) — H*(M, bM; 705,—(S*)) = 74,—(S*),
as the first obstruction to the existence of a map f: (M, bM)— (S*, p) satisfying
J*(v) = x, v the generator of H*(S*, p). Then @ satisfies: @(x + y) = @(x) +
®(y) + [, 1]z -y, where the last term stands for the image of the class
xy € H*(M, bM; z) under the coefficient homeomorphism Z — 7,,,(S*), which
carries 1 into the Whitehead product class [, ¢]. For k odd, k + 1, 3,; the
subgroup of m,,_,(S*) generated by [7, 7] is identified with Z,. Then ¢ may be
considered as a function ¢: H¥(M, bM; Z,) — Z, satisfying @(x + y) = @(x) +
P(y) + xy. Then Arf (M) is defined to be Arf (). It may be shown that the
definition of Arf invariant may be extended to any framed 47 -~ 2 manifold so
as to be an invariant of framed cobordism; i.e., there exists a homomorphism

D: Qi — Z, such that ®({M}) = Arf M for a closed framed 2n-connected
manifold M.

Problem 34. Let ®@: QI*%"—Z, be the Arf invariant as defined by Kervaire.
Is® =07

The following argument of E. Brown (cf. Novikov [42]) may be of some
help in this problem:
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PROPOSITION 2.10. ®: Q7 — Z, may be factored through Q%

Outline of proof. Let k = 4n + 1. There is a secondary cohomology
operation @: H*(x) N Ker Sq*~* N Ker Sq** Sq'— H*(x)/(Sq*H + Sq*H), corre-
sponding to the relations Sq*™ = Sg*Sq*~* + Sa'(Sa*'Sq') = 0 in H*(x) such
that if @(x) and @(y) are defined, @(x + y) is defined, and

P(x + y) = P(®) + P(y) + 2y .

If M is a 1-connected closed 2k-manifold such that the Stiefel-Whitney class.
w, =0, p: H¥(M) — H*(M) = Z,. Let Arf (M) = Arf (®). One may show
that this induces a homomorphism ®,: Q$» — Z, which, when composed with
the homomorphism Q™™ — Q¥* gives Kervaire’s ®.

Problem 35. Is®, =07 Is Q57 ,— Q& i Z,zero? (Q57 may be easier to
calculate than Q®™),! E. Brown.

Kervaire has shown [27] that a closed 4-connected 10-manifold has Arf
invariant zero if and only if it is smoothable. By Wall’s classification of handle
bodies [54], there exists an almost closed 4-connected smooth 10-manifold with
Arf invariant non-zero, and hence with boundary an exotic 9-sphere. Putting
a cone over the boundary of this 10-manifold we obtain a closed 4-connected
combinatorial 10-manifold K. By the Cairns-Hirsch theorem, K must have.
a non-trivial normal microbundle.

Problem 36. Is K a combinatorial boundary? M. Hirsch.

If KY is not a boundary, it must have a non-trivial mod 2 combinatorial
characteristic class, according to the following theorem that Browder, Peterson,
and Liulevicius obtained at the Seattle conference.

THEOREM 2.11. The non-oriented combinatorial cobordism classes Np.
are determined by their mod 2 characteristic numbers.

Problem 37. Give a geometric interpretation of these mod2 characteristic
classes of a PL-manifold, and compute H *(BPL; Z,).

Browder, Liulevicius, and Peterson have shown that H *(BPL; Z,) is free
as a module over H *(BO; Z,). More explicitly H*(BPL; Z,) ~ H*(BO; Z,)XC,.
C Hopf algebra; and N, =~ N @ C* as algebras.

Automorphism groups of S”

Considering S™ as a smooth manifold, a combinatorial manifold, or a topo-
logical manifold, we consider the groups:
G. = Group of PL-homeomorphisms of S” onto itself

1 This problem has been solved affirmatively by Brown and Peterson.
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H, = Group of homeomorphisms of S™ onto itself
D, = Group of orientation preserving diffeomorphisms of S™ onto itself.

The group of diffeomorphisms of S™

D = D, is made into a topological group by considering D to be a subspace
of the space of all smooth maps of S™ into S with the C’-topology. Milnor
[39] showed that Dis not arcwise connected, in general. Novikov [41] announced
some further results on the homotopy of D. We present here some results
obtained by Munkres and Milnor at the Seattle conference in answer to a
problem suggested by Munkres.

First it is easy to show that D, is the same homotopy type as the product
of 80,., and diff, (F*) = diffeomorphisms of E" fixed outside of some compact
set.

Now define pairings

(a) m,(s0,) @ 7, diff, R?* — m,(diff, B**9)

(b) m,(80,) @ T,(80,) — m(diff, RB?*9)
as follows: Represent

a € w,(s0,) by f+ R? — 80,, f smooth with compact support

B e m,(s0,) by g: R*— 80,, g smooth with compact support

v e w, diff, R? by h: R*— RY, h diffeomorphism with compact support.
Write

F(x,y) = (x, f(x), y), x€ R*, yc R*

G(z, y) = (9(W)z, ¥)

1 X h(z, y) = (, h(y)).

Then F, G, 1 X h are diffeomorphisms of E? x R? onto itself, and

(a) F(L X B)F'(1 x h)™

(b)) FGF'G™
give the above pairings.

The above pairings in turn induce pairings

(@) Tp(80) @ Losr — Thigun

(b") 7,(80,) @ 7,(80,) — Lpigiae
These pairings in turn can be shown to correspond to composition in the stable
homotopy groups of spheres. And it follows, for example, that:

77-'1(807) ® I'y—1T1,, 753(8011) ® r,—Iy
77"1(308) ® I'y—Ty, 771(3013) ® ry,—Ty,
are non-trivial.

The diffeomorphisms a, and b, above may also be considered as representing
an element of 7, diff, R,, and for example (a) may be factored:
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7,(80,) ® 7, diff, R* — m, diff, R* — =, diff, R** .

Hence the above give non-trivial elements of the higher homotopy groups of
D,,, not coming from 80,¢+1.

The group of homeomorphisms of S*

H is made into a topological group by giving it the compact open topology.
Since Kister [30] and Mazur have shown that microbundles are equivalent to
fibre bundles, it follows that stably any topological microbundle is equiva-
lent to a sphere bundle with group H. Consequently, the question (Problem
25) as to whether rational Pontrjagin classes are topological invariants is
equivalent to

Problem 38. Isi*: H*(H,, Q) — H*(S0,, Q) onto, when @ is the rationals
and ¢ : 80,4, — H, the inclusion?

For recent results concerning the group of homeomorphisms of S™ and
other manifolds, see M. Brown and Gluck [9].

The PL-automorphism groups

Let 3, be a fixed finite simplicial complex (for example a simplex boundary),
and let G denote the group of all piecewise linear homeomorphisms of =. Then
G can be topologized in three different ways, as follows, thus yielding three
different spaces G,, G,, G;:

First topology (Stasheff). Let G, denote G with the compact open
topology.

Second topology (Wall). For each integer k, let G* denote the subspace
of G, consisting of those PL-homeomorphisms of = which are simplicial with
respect to rectilinear subdivisions of 5 having at most k-vertices. Now topol-
ogize G as the direct limit of the G, and call the result G,.

Third topology (Milnor). It is believed that G can be given the structure
of an infinite simplicial complex G, with the fine topology in such a way that
a map f: K — G, is piecewise linear if and only if the associated map

(%, y)— (x’ f(x)y)
from K x 3 to itself is peicewise linear. (Here K denotes an arbitrary

simplicial complex). Furthermore, it is believed that this simplicial structure
in G is essentially unique.

Problem 39. Do the natural maps G, — G,— @, provide homotopy equiva-
lence?

Problem 40. It is conjectured that G,, G, are topological groups.
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Besides the above automorphism groups, the H-space F', of maps of degree
one of S” onto itself (with the compact open topology) has played an important
role in differential topology. For fibre spaces with fibre a homotopy sphere,
it plays the role that a structural group does for fibre bundles. Letting F' =
inj Lim F,, the inclusion O — F induces a map BO — BF of the universal base
spaces, which on homotopy groups is essentially the J-homomorphism.

Although the cohomology of F mod p has been computed, very little
is known about the cohomology of BF except that H*(BF, Z,) =~
H*BO; Z,)  D; H*(BF; Z,) is free as a right module over A/(0%).

Problem 41, Compute the Hopf algebra structures of H.F,, H,F, or
better of H,(BF; Z,) and the induced homomorphism H*(BF; Z,)—
H*(BO; Z,), p a prime. J. Milnor.

Problem 42. Milnor claims that H*(BF; Z,) =~ Z,. The ordinary methods
for constructing fibre homotopy invariants do not appear to construct this
characteristic class. How can we construct it? J. F. Adams.

H-spaces
The study of Lie groups and H-spaces has been strongly motivated by
problems in differential topology. Conversely, the study of finite dimensional

H-spaces has been a motivating factor in differential topology. W. Browder
proved [7]:

THEOREM 2.12. A l-connected H-space X, which s the same homotopy
type as a finite complex, is the homotopy type of a closed smooth manifold.
(Except possibly when the homological dimension is 4k + 2).

Problem 43. If a 1l-connected manifold M is the homotopy type of a
topological group is it homeomorphic to a Lie group? W. Browder.

REMARK. A.D.Wallace has shown that a smooth manifold with an
associative differentiable multiplication is a Lie group.

Problem 44. 1t would be interesting to get some fresh examples of
H-manifolds; i.e., manifolds which can be given the structure of an H-space.
The known examples are the Lie groups, the T7-sphere, the real projective
T-space, and combinations of these. How can one construct H-manifolds which
are different from these either in the topological sense or in the sense of

homotopy type (cf. 39 above)? (There are also problems in differential topology
that arise.)

One possibility is to look at the total spaces of sphere bundles over
spheres. These have been considered by J.F.Adams [3] and I. M. James
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[25]. Among the questions left open by this work are whether any 7-sphere
bundles over S™ or S™ can be H-spaces. Two examples stand out. One is the
Stiefel manifold of 2-frames in quaternionic 3-space, which is a T-sphere
bundle over S®. The other is the Stiefel manifold of 2-frames in octonionic
2-space, which is a 7-sphere bundle over S*. They do not have the same
homotopy type as any known examples of H-spaces.

Again consider the twelve different classes of 3-sphere bundles over Nid
which have cross-sections. Of these twelve, four have trivial fibre homotopy
type and so are the same homotopy type as S°® x S’, and consequently are
H-manifolds. One is the product bundle, homeomorphic to S* x S’. Are the
other three homeomorphic to S® x S’? (Two of the classes are weakly
equivalent and therefore homeomorphic to each other.) I. M. James.

The results of Browder and other authors have shown a strong connection
between multiplicative properties of an H-space and properties of its homology
and cohomology rings.

Problem 45. Does existence of p-torsion (p an odd prime) in the cohomology
of an H-space G imply H,(G; Z,) is not commutative? This has been checked

for Lie groups G except H,.(E;, Z;). W. Browder.
Problem 46. What can be said of the action of the mod p Steenrod
algebra on the mod p cohomology of topological groups. E. Thomas.

Problem 47. What can be said of the action of the Steenrod squares on
the mod 2 cohomology of (finite dimensional) H-spaces with non-primitively
generated mod 2-cohomology (Exs. E;, E;, E;). (For the primitive case see
E. Thomas [53]). E. Thomas.

3., ALGEBRAIC TOPOLOGY

Although the Seattle Conference emphasized geometric topology, a num-
ber of papers in algebraic topology were presented, and a number of problems
were raised. In any case, it is abundantly clear from the preceding discussion
that it is impossible to divorce these two aspects of topology. We make no
attempt to summarize the situation in algebraic topology. For the most
recently developed branch of the theory, i.e., K-theory, we refer the reader
to the excellent summaries presented at the conference by F. Hirzebruch and
J. F. Adams.

Homology and fibrations

Problem 48. Relate occurrence of torsion in the homology of fibre, base,
and total space for a fibration of H-spaces. In particular, if H*(B)(or H*(F))
has no torsion and H*(E) = 0, does this imply that H*(F)(or H*(B)) has
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torsion of at most order p for each prime p? Assume B, F, E connected.
This is equivalent to E, = E., in the Bockstein spectral sequence.

For example, the loop space of a Lie group has no torsion, and the
(simply connected) Lie group has no p* torsion. The loop space of a sphere
has no torsion, and the double loop space has no p* torsion. W. Browder.

REMARK. Adams has given a counter-example to Browder’s conjecture
in the case that it is not a fibration of H-spaces.

Problem 49. Let F—'» E *.B be a fibre space, and suppose we con-
sider cohomology with Z, coefficients (¢ a prime). Then H*(E) is a graded
commutative algebra over the Steenrod algebra A, (in the sense of Steenrod),
and also over R = H*(B)/Ker p* (in the usual sense). Suppose that H *(F') =
U(X), the free graded commutative algebra over A, ganerated by an
A, submodule X of H*(F'), and the elements of X are transgressive.

The problem is to give sufficient conditions that imply H *(E) = Ug(N),
the free graded commutative A4, — R algebra generated by an A, — R sub-
module N of H(E). Massey and Peterson have shown that the result holds
in two special cases with ¢ = 2. W. Massey and F. Peterson.

Problem 50. Let S, denote the symmetric group on n-perameters. Let
A, denote the m-fold join of A, with itself, with S, acting by permutation.
What invariants of A are necessary to determine the homology of the orbit
space of A, under the action of S,? 1. James.

Problem 51. Let w be a finite group of automorphisms of a finitely
generated group G, and let = be a positive integer. Does there exist a finite
connected complex K such that H,(K; Z) ~ G, H(K; Z) = 0 for g # n, and
7 acts as an automorphism group of K so as to induce the preseribed auto-
morphisms in H, = G? A related problem is obtained by requiring 7 to act
freely in K. (In this case the Lefschetz fixed point formula imposes the
condition: for each aerm, o =1, we must assume the trace of the action
induced by a in G Q Q is (—1)"*, N. E. Steenrod.

The case where Ext (G, G Q Z,) = 0 is trivial (Wall).

Homotopy theory
Problem 52. W. D. Barcus [6] has some results on the stable homotopy
groups of Eilenberg-MacLane spaces (stable in the sense of S-theory). What
can be said about the stable homotopy groups of other spaces whose ordinary
homotopy groups are known? For example, the stable (in the other sense)
classical groups? 1. James.

REMARK. Since the infinite classical groups are infinite loop spaces, it



588 R. LASHOF, EDITOR

follows that their ordinary homotopy maps monomorphically into their stable
homotopy.

Problem 53. Let X, Y be complexes which are of the same homotopy
n-type for all n. Are X and Y the same homotopy type? This is true if 7,(X)
is finite for each n, and can be false if ,(X) is infinitely generated (Adams [1]).
Is it true if 7,(X) is finitely generated for each n? In particular, consider
the case where X and Y are H-spaces. J. F. Adams.

Problem 54. Can any thing general be said about J : 7,(SO,) — 74.(S™)
.on Samelson products? M. G. Barratt.

Stasheff pointed out the solution of Problem 54 on the basis of results of
B. Steer (Thesis, Oxford): Extensions of mappings into H-spaces, Proc. Amer.
Math. Soc., 13 (1963), 219-272, See Theorem 5.76.

Problem 55. Can anything general be said about @ : 7,..(Bs) — 7,(G) on
.composition elements? M. G. Barratt.

Problem 56. Let v, generate 7,.4(S,), » = 5; P, = [4,, v,] does not appear
to show periodic behavior mod 8 as a function of n. Is it always zero for
n = 5,7 mod 8?7 Is it alternately zero and of order 12 when » is large?

M. G. Barratt.

Problem 57. Let K, denote the stable p-primary components of the
homotopy groups of spheres of stems >0. This is a commutative graded ring.
Which if any of the following is true?

(a) K, is commutative as an ungraded ring.

(b) K, is nilpotent (or at least every element is).

(¢) The product between even stems is zero in K.

(d) The cokernel K,/ImJ is a Z,~module for some f depending on p.
(The image of J is never an ideal in K,). M. G. Barratt.

Problem 58. Examine periodicity phenomena in 7,,.,(U,), 1 =k < 2n.
This has something to do with the order of a line bundle over a complex pro-
jective space in the Grothenieck group J of a vector bundle under fibre
homotopy equivalence. (cf. [43]). M. Rothenberg.

K-theory
Problem 59. The cannabalistic characteristic classes 6, or p, appear to
be the strongest currently known fibre homotopy invariants of spin 8n-bundles.
Can one prove that they determine the Stiefel-Whitney classes w,, ws, =« +?
Can one give a formula exhibiting w,, w;, «++ as a function of the classes 0,
or p,? J. F. Adams.
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Problem 60. What relations does the tangent bundle of a smooth
manifold M satisfy in KO(M), KU(M), etc? R. Bott.

Problem 61. (a) Let G be a compact Lie group and H a closed subgroup.
Calculate K*(G | H) and KO*(G | H).

(b) Is the following conjecture true? Let G be a compact connected Lie
group. Suppose that H,(G; Z) has no torsion. Let U be a closed connected
subgroup of G of maximal rank. Then the natural homomorphism R(U)—
K*(G | U) is surjective.

(Compare Atiyah-Hirzebruch, Vector bundles and homogeneous spaces,
AMS, Symposia Pure Math. vol. 3, 1961) F. Hirzebruch.

Problem 62. Let M be a compact oriented 4k-manifold. Suppose « is in
the kernel of the homomorphism R(so(4k)) — R(so(4k — 1)). Following the
Atiyah-Singer index theorem we can introduce the rational number

ch(a) x,/2
I, o = E' - <smh x /2> LM]
which is in fact an integer, interpretable as the index of an elliptic operator.
I(M, o) can be expressed in terms of Pontrjagin numbers and the Euler
number. Can all relations between Pontrjagin numbers be obtained in this
way? We have the analogous problem for weakly almost complex manifolds
where one can use the Riemann-Roch formula. F. Hirzebruch.

Problem 63. Let ¢ be a function which attaches to each partition
[k, +++, k;] of n an integer. For which g does there exist a connected.

n~-dimensional projective algebraic manifold X whose Chern numbers are given
by the formula

(ckl ce ij)[X] = g([kl’ ) ka]) .

Same problem for projective algebraic replaced by complex or almost complex
or weakly almost complex. F. Hirzebruch.
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