Geometry and Topology, Lecture 4 The fundamental group and covering spaces

Text: Andrew Ranicki (Edinburgh)

Pictures: Julia Collins (Edinburgh)

8th November, 2007

The method of algebraic topology

- Algebraic topology uses algebra to distinguish topological spaces from each other, and also to distinguish continuous maps from each other.
- ► A 'group-valued functor' is a function

$$\pi$$
: {topological spaces} \rightarrow {groups}

which sends a topological space X to a group $\pi(X)$, and a continuous function $f: X \to Y$ to a group morphism $f_*: \pi(X) \to \pi(Y)$, satisfying the relations

$$(1: X \to X)_* = 1: \pi(X) \to \pi(X),$$

 $(gf)_* = g_* f_*: \pi(X) \to \pi(Z) \text{ for } f: X \to Y, \ g: Y \to Z.$

- ▶ Consequence 1: If $f: X \to Y$ is a homeomorphism of spaces then $f_*: \pi(X) \to \pi(Y)$ is an isomorphism of groups.
- ▶ Consequence 2: If X, Y are spaces such that $\pi(X)$, $\pi(Y)$ are not isomorphic, then X, Y are not homeomorphic.

The fundamental group - a first description

- ▶ The fundamental group of a space X is a group $\pi_1(X)$.
- ▶ The actual definition of $\pi_1(X)$ depends on a choice of base point $x \in X$, and is written $\pi_1(X,x)$. But for path-connected X the choice of x does not matter.
- Ignoring the base point issue, the fundamental group is a functor π₁: {topological spaces} → {groups}.
- ▶ $\pi_1(X,x)$ is the geometrically defined group of 'homotopy' classes $[\omega]$ of 'loops at $x \in X$ ', continuous maps $\omega : S^1 \to X$ such that $\omega(1) = x \in X$. A continuous map $f : X \to Y$ induces a morphism of groups

$$f_*$$
: $\pi_1(X,x) \rightarrow \pi_1(Y,f(x))$; $[\omega] \mapsto [f\omega]$.

- $\blacktriangleright \pi_1(S^1) = \mathbb{Z}$, an infinite cyclic group.
- ▶ In general, $\pi_1(X)$ is not abelian.

Joined up thinking

- ▶ A path in a topological space X is a continuous map $\alpha: I = [0,1] \to X$. Starts at $\alpha(0) \in X$ and ends at $\alpha(1) \in X$.
- ▶ **Proposition** The relation on X defined by $x_0 \sim x_1$ if there exists a path $\alpha: I \to X$ with $\alpha(0) = x_0$, $\alpha(1) = x_1$ is an equivalence relation.
- ▶ Proof (i) Every point x ∈ X is related to itself by the constant path

$$e_X : I \to X ; t \mapsto x .$$

▶ (ii) The reverse of a path $\alpha: I \to X$ from $\alpha(0) = x_0$ to $\alpha(1) = x_1$ is the path

$$-\alpha : I \to X ; t \mapsto \alpha(1-t)$$

from
$$-\alpha(0) = x_1 \text{ to } -\alpha(1) = x_0.$$

The concatenation of paths

• (iii) The concatenation of a path $\alpha: I \to X$ from $\alpha(0) = x_0$ to $\alpha(1) = x_1$ and of a path $\beta: I \to X$ from $\beta(0) = x_1$ to $\beta(1) = x_2$ is the path from x_0 to x_2 given by

$$\alpha \bullet \beta : I \to X ; t \mapsto \begin{cases} \alpha(2t) & \text{if } 0 \leqslant t \leqslant 1/2 \\ \beta(2t-1) & \text{if } 1/2 \leqslant t \leqslant 1 \end{cases}$$

Path components

- ▶ The path components of X are the equivalence classes of the path relation on X.
- ▶ The path component [x] of $x \in X$ consists of all the points $y \in X$ such that there exists a path in X from x to y.
- ▶ The set of path components of X is denoted by $\pi_0(X)$.
- ▶ A continuous map $f: X \rightarrow Y$ induces a function

$$f_* : \pi_0(X) \to \pi_0(Y) ; [x] \mapsto [f(x)].$$

The function

$$\pi_0$$
 : {topological spaces and continuous maps} ; \to {sets and functions} ; $X \mapsto \pi_0(X)$, $f \mapsto f_*$

is a set-valued functor.

Path-connected spaces

- ▶ A space X is path-connected if $\pi_0(X)$ consists of just one element. Equivalently, there is only one path component, i.e. if for every $x_0, x_1 \in X$ there exists a path $\alpha: I \to X$ starting at $\alpha(0) = x_0$ and ending at $\alpha(1) = x_1$.
- ▶ Example Any connected open subset $U \subseteq \mathbb{R}^n$ is path-connected. This result is often used in analysis, e.g. in checking that the contour integral in the Cauchy formula

$$\frac{1}{2\pi i} \oint_{\omega} \frac{f(z)dz}{z - z_0}$$

is well-defined, i.e. independent of the loop $\omega \subset \mathbb{C}$ around $z_0 \in \mathbb{C}$, with $U = \mathbb{C} \setminus \{z_0\} \subset \mathbb{C} = \mathbb{R}^2$.

- Exercise Every path-connected space is connected.
- Exercise Construct a connected space which is not path-connected.

Homotopy I.

▶ **Definition** A homotopy of continuous maps $f_0: X \to Y$, $f_1: X \to Y$ is a continuous map $f: X \times I \to Y$ such that for all $x \in X$

$$f(x,0) = f_0(x), f(x,1) = f_1(x) \in Y.$$

Homotopy II.

▶ A homotopy $f: X \times I \rightarrow Y$ consists of continuous maps

$$f_t : X \to Y ; x \mapsto f_t(x) = f(x,t)$$

which vary continuously with 'time' $t \in I$. Starts at f_0 and ending at f_1 , like the first and last shot of a take in a film.

▶ For each $x \in X$ there is defined a path

$$\alpha_{\mathsf{x}} : I \to Y ; t \mapsto \alpha_{\mathsf{x}}(t) = f_t(\mathsf{x})$$

starting at $\alpha_x(0) = f_0(x)$ and ending at $\alpha_x(1) = f_1(x)$. The path α_x varies continuously with $x \in X$.

▶ **Example** The constant map $f_0: \mathbb{R}^n \to \mathbb{R}^n$; $x \mapsto 0$ is homotopic to the identity map $f_1: \mathbb{R}^n \to \mathbb{R}^n$; $x \mapsto x$ by the homotopy

$$h: \mathbb{R}^n \times I \to \mathbb{R}^n ; (x,t) \mapsto tx.$$

Homotopy equivalence I.

▶ Definition Two spaces X, Y are homotopy equivalent if there exist continuous maps f: X → Y, g: Y → X and homotopies

$$h \;:\; gf \simeq 1_X \;:\; X \to X \;,\; k \;:\; fg \simeq 1_Y \;:\; Y \to Y \;.$$

- ▶ A continuous map $f: X \to Y$ is a homotopy equivalence if there exist such g, h, k. The continuous maps f, g are inverse homotopy equivalences.
- **Example** The inclusion $f: S^n \to \mathbb{R}^{n+1} \setminus \{0\}$ is a homotopy equivalence, with homotopy inverse

$$g: \mathbb{R}^{n+1}\setminus\{0\} \to S^n; x \mapsto \frac{x}{\|x\|}.$$

Homotopy equivalence II.

▶ The relation defined on the set of topological spaces by

$$X \simeq Y$$
 if X is homotopy equivalent to Y

is an equivalence relation.

- ▶ **Slogan 1.** Algebraic topology views homotopy equivalent spaces as being isomorphic.
- ▶ **Slogan 2.** Use topology to construct homotopy equivalences, and algebra to prove that homotopy equivalences cannot exist.
- ▶ **Exercise** Prove that a homotopy equivalence $f: X \to Y$ induces a bijection $f_*: \pi_0(X) \to \pi_0(Y)$. Thus X is path-connected if and only if Y is path-connected.

Contractible spaces

- ▶ A space *X* is contractible if it is homotopy equivalent to the space {pt.} consisting of a single point.
- ▶ Exercise A subset $X \subseteq \mathbb{R}^n$ is star-shaped at $x \in X$ if for every $y \in X$ the line segment joining x to y

$$[x, y] = \{(1-t)x + ty \mid 0 \le t \le 1\}$$

is contained in X. Prove that X is contractible.

- **Example** The *n*-dimensional Euclidean space \mathbb{R}^n is contractible.
- ▶ **Example** The unit *n*-ball $D^n = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ is contractible.
- By contrast, the n-dimensional sphere S^n is not contractible, although this is not easy to prove (except for n=0). In fact, it can be shown that S^m is homotopy equivalent to S^n if and only if m=n. As S^n is the one-point compactification of \mathbb{R}^n , it follows that \mathbb{R}^m is homeomorphic to \mathbb{R}^n if and only if m=n.

Every starfish is contractible

"Asteroidea" from Ernst Haeckel's Kunstformen der Natur, 1904 (Wikipedia)

Based spaces

- ▶ **Definition** A based space (X, x) is a space with a base point $x \in X$.
- ▶ **Definition** A based continuous map $f:(X,x) \to (Y,y)$ is a continuous map $f:X \to Y$ such that $f(x)=y \in Y$.
- ▶ **Definition** A based homotopy $h: f \simeq g: (X, x) \to (Y, y)$ is a homotopy $h: f \simeq g: X \to Y$ such that

$$h(x,t)=y\in Y\ (t\in I)\ .$$

▶ For any based spaces (X,x), (Y,y) based homotopy is an equivalence relation on the set of based continuous maps $f:(X,x) \to (Y,y)$.

Loops = closed paths

- ▶ A path $\alpha: I \to X$ is closed if $\alpha(0) = \alpha(1) \in X$.
- ▶ Identify S^1 with the unit circle $\{z \in \mathbb{C} \mid |z| = 1\}$ in the complex plane \mathbb{C} .
- ▶ A based loop is a based continuous map $\omega : (S^1, 1) \to (X, x)$.
- ▶ In view of the homeomorphism

$$I/\{0 \sim 1\} \to S^1$$
; $[t] \mapsto e^{2\pi i t} = \cos 2\pi t + i \sin 2\pi t$

there is essentially no difference between based loops $\omega:(S^1,1)\to (X,x)$ and closed paths $\alpha:I\to X$ at $x\in X$, with

$$\alpha(t) = \omega(e^{2\pi it}) \in X \ (t \in I)$$

such that

$$\alpha(0) = \omega(1) = \alpha(1) \in X$$
.

Homotopy relative to a subspace

▶ Let X be a space, $A \subseteq X$ a subspace. If $f, g: X \to Y$ are continuous maps such that $f(a) = g(a) \in Y$ for all $a \in A$ then a homotopy rel A (or relative to A) is a homotopy $h: f \simeq g: X \to Y$ such that

$$h(a,t) = f(a) = g(a) \in Y \ (a \in A, t \in I)$$
.

- **Exercise** If a space X is path-connected prove that any two paths $\alpha, \beta: I \to X$ are homotopic.
- ▶ Exercise Let $e_x: I \to X$; $t \mapsto x$ be the constant closed path at $x \in X$. Prove that for any closed path $\alpha: I \to X$ at $\alpha(0) = \alpha(1) = x \in X$ there exists a homotopy rel $\{0,1\}$

$$\alpha \bullet -\alpha \simeq e_{\mathsf{x}} : I \to X$$

with $\alpha \bullet - \alpha$ the concatenation of α and its reverse $-\alpha$.

The fundamental group (official definition)

- ▶ The fundamental group $\pi_1(X,x)$ is the set of based homotopy classes of loops $\omega: (S^1,1) \to (X,x)$, or equivalently the rel $\{0,1\}$ homotopy classes $[\alpha]$ of closed paths $\alpha:I \to X$ such that $\alpha(0) = \alpha(1) = x \in X$.
- ▶ The group law is by the concatenation of closed paths

$$\pi_1(X,x) \times \pi_1(X,x) \to \pi_1(X,x) \; ; \; ([\alpha],[\beta]) \mapsto [\alpha \bullet \beta]$$

▶ Inverses are by the reversing of paths

$$\pi_1(X,x) \to \pi_1(X,x)$$
; $[\alpha] \mapsto [\alpha]^{-1} = [-\alpha]$.

▶ The constant closed path e_x is the identity element

$$[\alpha \bullet e_x] = [e_x \bullet \alpha] = [\alpha] \in \pi_1(X, x)$$
.

See Theorem 4.2.15 of the notes for a detailed proof that $\pi_1(X,x)$ is a group.

Fundamental group morphisms

▶ **Proposition** A continuous map $f: X \rightarrow Y$ induces a group morphism

$$f_*$$
: $\pi_1(X,x) \to \pi_1(Y,f(x))$; $[\omega] \mapsto [f\omega]$.

with the following properties:

- (i) The identity $1: X \to X$ induces the identity, $1_* = 1: \pi_1(X, x) \to \pi_1(X, x)$.
- (ii) The composite of $f: X \to Y$ and $g: Y \to Z$ induces the composite, $(gf)_* = g_*f_* : \pi_1(X, X) \to \pi_1(Z, gf(X))$.
- (iii) If $f, g: X \to Y$ are homotopic rel $\{x\}$ then $f_* = g_* : \pi_1(X, X) \to \pi_1(Y, f(X))$.
- (iv) If $f: X \to Y$ is a homotopy equivalence then $f_*: \pi_1(X, x) \to \pi_1(Y, f(x))$ is an isomorphism.
- (v) A path $\alpha: I \to X$ induces an isomorphism

$$\alpha_{\#}$$
: $\pi_1(X,\alpha(0)) \to \pi_1(X,\alpha(1))$; $\omega \mapsto (-\alpha) \bullet \omega \bullet \alpha$.

In view of (v) we can write $\pi_1(X,x)$ as $\pi_1(X)$ for a path-connected space.

Simply-connected spaces

- ▶ **Definition** A space X is simply-connected if it is path-connected and $\pi_1(X) = \{1\}$. In words: every loop in X can be lassoed down to a point!
- **Example** A contractible space is simply-connected.
- ▶ **Exercise** A space X is simply-connected if and only if for any points $x_0, x_1 \in X$ there is a unique rel $\{0, 1\}$ homotopy class of paths $\alpha: I \to X$ from $\alpha(0) = x_0$ to $\alpha(1) = x_1$.
- ▶ Exercise If $n \ge 2$ then the n-sphere S^n is simply-connected: easy to prove if it can be assumed that every loop $\omega: S^1 \to S^n$ is homotopic to one which is not onto (which is true).
- ▶ **Remark** The circle *S*¹ is path-connected, but not simply-connected.

The universal cover of the circle by the real line

► The continuous map

$$p: \mathbb{R} \to S^1 ; x \mapsto e^{2\pi i x}$$

is a surjection with many wonderful properties!

The fundamental group of the circle

▶ Define $\mathsf{Homeo}_p(\mathbb{R})$ to be the group of the homeomorphisms $h: \mathbb{R} \to \mathbb{R}$ such that $ph = p: \mathbb{R} \to S^1$. The group is infinite cyclic, with an isomorphism of groups

$$\mathbb{Z} \to \mathsf{Homeo}_p(\mathbb{R}) \; ; \; n \mapsto (h_n : x \mapsto x + n) \; .$$

▶ Every loop $\omega: S^1 \to S^1$ 'lifts' to a path $\alpha: I \to \mathbb{R}$ with

$$\omega(e^{2\pi it}) = e^{2\pi i\alpha(t)} \in S^1 \quad (t \in I) .$$

There is a unique $h \in \mathsf{Homeo}_p(\mathbb{R})$ with $h(\alpha(0)) = \alpha(1) \in \mathbb{R}$.

▶ The functions

degree :
$$\pi_1(S^1) \to \mathsf{Homeo}_p(\mathbb{R}) = \mathbb{Z}$$
; $\omega \mapsto \alpha(1) - \alpha(0)$, $\mathbb{Z} \to \pi_1(S^1)$: $p \mapsto (\omega_p : S^1 \to S^1 : z \mapsto z^n)$

are inverse isomorphisms of groups. The degree of ω is the number of times ω winds around 0, and equals $\frac{1}{2\pi i} \oint_{\omega} \frac{dz}{z}$.

Covering spaces

- ▶ Covering spaces give a geometric method for computing the fundamental groups of path-connected spaces X with a 'covering projection' $p: \widetilde{X} \to X$ such that \widetilde{X} is simply-connected.
- ▶ **Definition** A covering space of a space X with fibre the discrete space F is a space \widetilde{X} with a covering projection continuous map $p:\widetilde{X}\to X$ such that for each $x\in X$ there exists an open subset $U\subseteq X$ with $x\in U$, and with a homeomorphism $\phi:F\times U\to p^{-1}(U)$ such that

$$p\phi(a,u) = u \in U \subseteq X \ (a \in F, u \in U)$$
.

- ▶ For each $x \in X$ $p^{-1}(x)$ is homeomorphic to F.
- ▶ The covering projection $p: \widetilde{X} \to X$ is a 'local homeomorphism': for each $\widetilde{x} \in \widetilde{X}$ there exists an open subset $U \subseteq \widetilde{X}$ such that $\widetilde{x} \in U$ and $U \to p(U)$; $u \mapsto p(u)$ is a homeomorphism, with $p(U) \subseteq X$ an open subset.

The group of covering translations

- ▶ For any space X let $\mathsf{Homeo}(X)$ be the group of all homeomorphisms $h: X \to X$, with composition as group law.
- ▶ **Definition** Given a covering projection $p: \widetilde{X} \to X$ let $\mathsf{Homeo}_p(\widetilde{X})$ be the subgroup of $\mathsf{Homeo}(\widetilde{X})$ consisting of the homeomorphisms $h: \widetilde{X} \to \widetilde{X}$ such that $ph = p: \widetilde{X} \to X$, called covering translations, with commutative diagram

▶ **Example** For each $n \neq 0 \in \mathbb{Z}$ complex n-fold multiplication defines a covering $p_n : S^1 \to S^1; z \mapsto z^n$ with fibre $F = \{1, 2, \dots, |n|\}$. Let $\omega = e^{2\pi i/n}$. The function

$$\mathbb{Z}_{|n|} o \mathsf{Homeo}_{p_n}(S^1) \; ; \; j \mapsto (z \mapsto \omega^j z)$$

is an isomorphism of groups.

The trivial covering

▶ **Definition** A covering projection $p: \widetilde{X} \to X$ with fibre F is trivial if there exists a homeomorphism $\phi: F \times X \to \widetilde{X}$ such that

$$p\phi(a,x) = x \in X \ (a \in F, x \in X)$$
.

A particular choice of ϕ is a trivialisation of p.

► **Example** For any space *X* and discrete space *F* the covering projection

$$p : \widetilde{X} = F \times X \rightarrow X ; (a, x) \mapsto x$$

is trivial, with the identity trivialization $\phi=1:F\times X\to \widetilde{X}$. For path-connected X Homeo $_p(\widetilde{X})$ is isomorphic to the group of permutations of F.

A non-trivial covering

Example The universal covering

$$p: \mathbb{R} \to S^1; x \mapsto e^{2\pi i x}$$

is a covering projection with fibre \mathbb{Z} , and $\mathsf{Homeo}_p(\mathbb{R}) = \mathbb{Z}$.

- Note that p is not trivial, since \mathbb{R} is not homeomorphic to $\mathbb{Z} \times S^1$.
- Warning The bijection

$$\phi: \mathbb{Z} \times S^1 \to \mathbb{R} \; ; \; (n, e^{2\pi i t}) \mapsto n + t \; \; (0 \leqslant t < 1)$$

is such that $p\phi=$ projection : $\mathbb{Z}\times S^1\to S^1$, but ϕ is not continuous.

Lifts

▶ **Definition** Let $p: \widetilde{X} \to X$ be a covering projection. A lift of a continuous map $f: Y \to X$ is a continuous map $\widetilde{f}: Y \to \widetilde{X}$ with $p(\widetilde{f}(y)) = f(y) \in X \ (y \in Y)$, so that there is defined a commutative diagram

Example For the trivial covering projection $p: \widetilde{X} = F \times X \to X$ define a lift of any continuous map $f: Y \to X$ by choosing a point $a \in F$ and setting

$$\widetilde{f}_a : Y \to \widetilde{X} = F \times X ; y \mapsto (a, f(y)) .$$

For path-connected Y $a\mapsto \widetilde{f}_a$ defines a bijection between F and the lifts of f.

The path lifting property

- ▶ Let $p: \widetilde{X} \to X$ be a covering projection with fibre F. Let $x_0 \in X$, $\widetilde{x}_0 \in \widetilde{X}$ be such that $p(\widetilde{x}_0) = x_0 \in X$.
- ▶ Path lifting property Every path $\alpha: I \to X$ with $\alpha(0) = x_0 \in X$ has a unique lift to a path $\widetilde{\alpha}: I \to \widetilde{X}$ such that $\widetilde{\alpha}(0) = \widetilde{x}_0 \in \widetilde{X}$.
- ▶ Homotopy lifting property Let $\alpha, \beta: I \to X$ be paths with $\alpha(0) = \beta(0) = x_0 \in X$, and let $\widetilde{\alpha}, \widetilde{\beta}: I \to \widetilde{X}$ be the lifts with $\widetilde{\alpha}(0) = \widetilde{\beta}(0) = \widetilde{x}_0 \in \widetilde{X}$. Every rel $\{0,1\}$ homotopy $h: \alpha \simeq \beta: I \to X$ has a unique lift to a rel $\{0,1\}$ homotopy

$$\widetilde{h}:\widetilde{\alpha}\simeq\widetilde{\beta}:I\to\widetilde{X}$$

and in particular

$$\widetilde{\alpha}(1) = \widetilde{h}(1,t) = \widetilde{\beta}(1) \in \widetilde{X} \ (t \in I)$$
.

Regular covers

- ▶ Recall: a subgroup $H \subseteq G$ is normal if gH = Hg for all $g \in G$, in which case the quotient group G/H is defined.
- ▶ A covering projection $p: Y \to X$ of path-connected spaces induces an injective group morphism $p_*: \pi_1(Y) \to \pi_1(X)$: if $\omega: S^1 \to Y$ is a loop at $y \in Y$ such that there exists a homotopy $h: p\omega \simeq e_{p(y)}: S^1 \to X$ rel 1, then h can be lifted to a homotopy $\widetilde{h}: \omega \simeq e_y: S^1 \to Y$ rel 1.
- ▶ **Definition** A covering p is regular if $p_*(\pi_1(Y)) \subseteq \pi_1(X)$ is a normal subgroup.
- ▶ **Example** A covering $p: Y \to X$ with X path-connected and Y simply-connected is regular, since $\pi_1(Y) = \{1\} \subseteq \pi_1(X)$ is a normal subgroup.
- **Example** $p : \mathbb{R} \to S^1$ is regular.

A general construction of regular coverings

▶ Given a space Y and a subgroup $G \subseteq \text{Homeo}(Y)$ define an equivalence relation \sim on Y by

$$y_1 \sim y_2$$
 if there exists $g \in G$ such that $y_2 = g(y_1)$.

Write

$$p: Y \to X = Y/\sim = Y/G$$
;

$$y \mapsto p(y) = \text{equivalence class of } y$$
.

▶ Suppose that for each $y \in Y$ there exists an open subset $U \subseteq Y$ such that $y \in U$ and

$$g(U) \cap U = \emptyset$$
 for $g \neq 1 \in G$.

(Such an action of a group G on a space Y is called free and properly discontinuous, as in 2.4.6).

▶ **Theorem** $p: Y \to X$ is a regular covering projection with fibre G. If Y is path-connected then so is X, and the group of covering translations of p is $\mathsf{Homeo}_p(Y) = G \subset \mathsf{Homeo}(Y)$.

The fundamental group via covering translations

▶ **Theorem** For a regular covering projection $p: Y \rightarrow X$ there is defined an isomorphism of groups

$$\pi_1(X)/p_*(\pi_1(Y)) \cong \mathsf{Homeo}_p(Y)$$
.

▶ **Sketch proof** Let $x_0 \in X$, $y_0 \in Y$ be base points such that $p(y_0) = x_0$. Every closed path $\alpha : I \to X$ with $\alpha(0) = \alpha(1) = x_0$ has a unique lift to a path $\widetilde{\alpha} : I \to Y$ such that $\widetilde{\alpha}(0) = y_0$. The function

$$\pi_1(X, x_0)/p_*\pi_1(Y, y_0) \to p^{-1}(x_0) ; \alpha \mapsto \widetilde{\alpha}(1)$$

is a bijection. For each $y \in p^{-1}(x_0)$ there is a unique covering translation $h_v \in \text{Homeo}_p(Y)$ such that $h_v(y_0) = y \in Y$.

► The function $p^{-1}(x_0) \to \operatorname{Homeo}_p(Y)$; $y \mapsto h_y$ is a bijection, with inverse $h \mapsto h(\widetilde{x}_0)$. The composite bijection

$$\pi_1(X,x_0)/p_*(\pi_1(Y)) o p^{-1}(x_0) o \mathsf{Homeo}_p(Y)$$

is an isomorphism of groups.

Universal covers

- ▶ **Definition** A regular cover $p: Y \rightarrow X$ is universal if Y is simply-connected.
- ▶ **Theorem** For a universal cover

$$\pi_1(X) = p^{-1}(X) = \operatorname{Homeo}_p(Y).$$

- **Example** $p : \mathbb{R} \to S^1$ is universal.
- ▶ **Example** $p \times p : \mathbb{R} \times \mathbb{R} \to S^1 \times S^1$ is universal, so the fundamental group of the torus is the free abelian group on two generators

$$\pi_1(S^1 \times S^1) = \mathsf{Homeo}_{p \times p}(\mathbb{R} \times \mathbb{R}) = \mathbb{Z} \oplus \mathbb{Z}$$
.

▶ Remark Every reasonable path-connected space X, e.g. a manifold, has a universal covering projection $p: Y \to X$. The path-connected covers of X are the quotients Y/G by the subgroups $G \subseteq \pi_1(X)$.

The classification of surfaces I.

- Surface = 2-dimensional manifold.
- ▶ For $g \ge 0$ the closed orientable surface M_g is the surface obtained from S^2 by attaching g handles.
- **Example** $M_0 = S^2$ is the sphere, with $\pi_1(M_0) = \{1\}$.
- ▶ Example $M_1 = S^1 \times S^1$, with $\pi_1(M_1) = \mathbb{Z} \oplus \mathbb{Z}$.

The classification of surfaces II.

▶ **Theorem** The fundamental group of M_g has 2g generators and 1 relation

$$\pi_1(M_g) = \{a_1, b_1, \dots, a_g, b_g | [a_1, b_1] \dots [a_g, b_g]\}$$

with $[a, b] = a^{-1}b^{-1}ab$ the commutator of a, b. In fact, for $g \geqslant 1$ M_g has universal cover $\widetilde{M}_g = \mathbb{R}^2$ (hyperbolic plane).

- ▶ Classification theorem Every closed orientable surface M is diffeomorphic to M_g for a unique g.
- ▶ **Proof** A combination of algebra and topology is required to prove that M is diffeomorphic to some M_g . Since the groups $\pi_1(M_g)$ $(g \ge 0)$ are all non-isomorphic, M is diffeomorphic to a unique M_g .

The knot group

▶ If $K: S^1 \subset S^3$ is a knot the fundamental group of the complement

$$X_K = S^3 \backslash K(S^1) \subset S^3$$

is a topological invariant of the knot.

- ▶ **Definition** Two knots $K, K' : S^1 \subset S^3$ are equivalent if there exists a homeomorphism $h : S^3 \to S^3$ such that K' = hK.
- Equivalent knots have isomorphic groups, since

$$(h|)_* : \pi_1(X_K) \to \pi_1(X_{K'})$$

is an isomorphism of groups.

▶ So knots with non-isomorphic groups cannot be equivalent!

The unknot

▶ The unknot $K_0: S^1 \subset S^3$ has complement $S^3 \setminus K_0(S^1) = S^1 \times \mathbb{R}^2$, with group

$$\pi_1(S^3 \setminus K_0(S^1)) = \mathbb{Z}$$

The trefoil knot

▶ The trefoil knot $K_1: S^1 \subset S^3$ has group

$$\pi_1(S^3 \setminus K_1(S^1)) = \{a, b \mid aba = bab\}.$$

▶ **Conclusion** The groups of K_0 , K_1 are not isomorphic (since one is abelian and the other one is not abelian), so that K_0 , K_1 are not equivalent: the algebra shows that the trefoil knot cannot be unknotted.