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The method of algebraic topology

I Algebraic topology uses algebra to distinguish topological
spaces from each other, and also to distinguish continuous
maps from each other.

I A ‘group-valued functor’ is a function

π : {topological spaces} → {groups}

which sends a topological space X to a group π(X ), and a
continuous function f : X → Y to a group morphism
f∗ : π(X )→ π(Y ), satisfying the relations

(1 : X → X )∗ = 1 : π(X )→ π(X ) ,

(gf )∗ = g∗f∗ : π(X )→ π(Z ) for f : X → Y , g : Y → Z .

I Consequence 1: If f : X → Y is a homeomorphism of spaces
then f∗ : π(X )→ π(Y ) is an isomorphism of groups.

I Consequence 2: If X ,Y are spaces such that π(X ), π(Y ) are
not isomorphic, then X ,Y are not homeomorphic.
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The fundamental group - a first description

I The fundamental group of a space X is a group π1(X ).

I The actual definition of π1(X ) depends on a choice of base
point x ∈ X , and is written π1(X , x). But for path-connected
X the choice of x does not matter.

I Ignoring the base point issue, the fundamental group is a
functor π1 : {topological spaces} → {groups}.

I π1(X , x) is the geometrically defined group of ‘homotopy’
classes [ω] of ‘loops at x ∈ X ’, continuous maps ω : S1 → X
such that ω(1) = x ∈ X . A continuous map f : X → Y
induces a morphism of groups

f∗ : π1(X , x)→ π1(Y , f (x)) ; [ω] 7→ [f ω] .

I π1(S1) = Z, an infinite cyclic group.

I In general, π1(X ) is not abelian.
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Joined up thinking

I A path in a topological space X is a continuous map
α : I = [0, 1]→ X . Starts at α(0) ∈ X and ends at α(1) ∈ X .

I Proposition The relation on X defined by x0 ∼ x1

if there exists a path α : I → X with α(0) = x0, α(1) = x1

is an equivalence relation.

I Proof (i) Every point x ∈ X is related to itself by the
constant path

ex : I → X ; t 7→ x .

I (ii) The reverse of a path α : I → X from α(0) = x0 to
α(1) = x1 is the path

−α : I → X ; t 7→ α(1− t)

from −α(0) = x1 to −α(1) = x0.
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The concatenation of paths

I (iii) The concatenation of a path α : I → X from α(0) = x0

to α(1) = x1 and of a path β : I → X from β(0) = x1 to
β(1) = x2 is the path from x0 to x2 given by

α • β : I → X ; t 7→

{
α(2t) if 0 6 t 6 1/2

β(2t − 1) if 1/2 6 t 6 1 .

x
0

x
1 x

2

α βα(0) α(1) = β(0) β(1)

α • β
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Path components

I The path components of X are the equivalence classes of the
path relation on X .

I The path component [x ] of x ∈ X consists of all the points
y ∈ X such that there exists a path in X from x to y .

I The set of path components of X is denoted by π0(X ).

I A continuous map f : X → Y induces a function

f∗ : π0(X )→ π0(Y ) ; [x ] 7→ [f (x)] .

I The function

π0 : {topological spaces and continuous maps} ;

→ {sets and functions} ; X 7→ π0(X ) , f 7→ f∗

is a set-valued functor.
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Path-connected spaces

I A space X is path-connected if π0(X ) consists of just one
element. Equivalently, there is only one path component, i.e.
if for every x0, x1 ∈ X there exists a path α : I → X starting
at α(0) = x0 and ending at α(1) = x1.

I Example Any connected open subset U ⊆ Rn is
path-connected. This result is often used in analysis, e.g. in
checking that the contour integral in the Cauchy formula

1

2πi

∮
ω

f (z)dz

z − z0

is well-defined, i.e. independent of the loop ω ⊂ C around
z0 ∈ C, with U = C\{z0} ⊂ C = R2.

I Exercise Every path-connected space is connected.

I Exercise Construct a connected space which is not
path-connected.
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Homotopy I.

I Definition A homotopy of continuous maps f0 : X → Y ,
f1 : X → Y is a continuous map f : X × I → Y such that for
all x ∈ X

f (x , 0) = f0(x) , f (x , 1) = f1(x) ∈ Y .

f
0

f
1

f
t
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Homotopy II.

I A homotopy f : X × I → Y consists of continuous maps

ft : X → Y ; x 7→ ft(x) = f (x , t)

which vary continuously with ‘time’ t ∈ I . Starts at f0 and
ending at f1, like the first and last shot of a take in a film.

I For each x ∈ X there is defined a path

αx : I → Y ; t 7→ αx(t) = ft(x)

starting at αx(0) = f0(x) and ending at αx(1) = f1(x). The
path αx varies continuously with x ∈ X .

I Example The constant map f0 : Rn → Rn; x 7→ 0 is
homotopic to the identity map f1 : Rn → Rn; x 7→ x by the
homotopy

h : Rn × I → Rn ; (x , t) 7→ tx .
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Homotopy equivalence I.

I Definition Two spaces X ,Y are homotopy equivalent if there
exist continuous maps f : X → Y , g : Y → X and
homotopies

h : gf ' 1X : X → X , k : fg ' 1Y : Y → Y .

I A continuous map f : X → Y is a homotopy equivalence if
there exist such g , h, k. The continuous maps f , g are inverse
homotopy equivalences.

I Example The inclusion f : Sn → Rn+1\{0} is a homotopy
equivalence, with homotopy inverse

g : Rn+1\{0} → Sn ; x 7→ x

‖x‖
.
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Homotopy equivalence II.

I The relation defined on the set of topological spaces by

X ' Y if X is homotopy equivalent to Y

is an equivalence relation.

I Slogan 1. Algebraic topology views homotopy equivalent
spaces as being isomorphic.

I Slogan 2. Use topology to construct homotopy equivalences,
and algebra to prove that homotopy equivalences cannot exist.

I Exercise Prove that a homotopy equivalence f : X → Y
induces a bijection f∗ : π0(X )→ π0(Y ). Thus X is
path-connected if and only if Y is path-connected.
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Contractible spaces

I A space X is contractible if it is homotopy equivalent to the
space {pt.} consisting of a single point.

I Exercise A subset X ⊆ Rn is star-shaped at x ∈ X if for every
y ∈ X the line segment joining x to y

[x , y ] = {(1− t)x + ty | 0 6 t 6 1}
is contained in X . Prove that X is contractible.

I Example The n-dimensional Euclidean space Rn is
contractible.

I Example The unit n-ball Dn = {x ∈ Rn | ‖x‖ 6 1} is
contractible.

I By contrast, the n-dimensional sphere Sn is not contractible,
although this is not easy to prove (except for n = 0). In fact,
it can be shown that Sm is homotopy equivalent to Sn if and
only if m = n. As Sn is the one-point compactification of Rn,
it follows that Rm is homeomorphic to Rn if and only if
m = n.
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Every starfish is contractible

”Asteroidea” from Ernst Haeckel’s Kunstformen der Natur, 1904
(Wikipedia)
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Based spaces

I Definition A based space (X , x) is a space with a base point
x ∈ X .

I Definition A based continuous map f : (X , x)→ (Y , y) is a
continuous map f : X → Y such that f (x) = y ∈ Y .

I Definition A based homotopy h : f ' g : (X , x)→ (Y , y) is a
homotopy h : f ' g : X → Y such that

h(x , t) = y ∈ Y (t ∈ I ) .

I For any based spaces (X , x), (Y , y) based homotopy is an
equivalence relation on the set of based continuous maps
f : (X , x)→ (Y , y).
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Loops = closed paths

I A path α : I → X is closed if α(0) = α(1) ∈ X .

I Identify S1 with the unit circle {z ∈ C | |z | = 1} in the
complex plane C.

I A based loop is a based continuous map ω : (S1, 1)→ (X , x).

I In view of the homeomorphism

I/{0 ∼ 1} → S1 ; [t] 7→ e2πit = cos 2πt + i sin 2πt

there is essentially no difference between based loops
ω : (S1, 1)→ (X , x) and closed paths α : I → X at x ∈ X ,
with

α(t) = ω(e2πit) ∈ X (t ∈ I )

such that
α(0) = ω(1) = α(1) ∈ X .
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Homotopy relative to a subspace

I Let X be a space, A ⊆ X a subspace. If f , g : X → Y are
continuous maps such that f (a) = g(a) ∈ Y for all a ∈ A
then a homotopy rel A (or relative to A) is a homotopy
h : f ' g : X → Y such that

h(a, t) = f (a) = g(a) ∈ Y (a ∈ A, t ∈ I ) .

I Exercise If a space X is path-connected prove that any two
paths α, β : I → X are homotopic.

I Exercise Let ex : I → X ; t 7→ x be the constant closed path
at x ∈ X . Prove that for any closed path α : I → X at
α(0) = α(1) = x ∈ X there exists a homotopy rel {0, 1}

α • −α ' ex : I → X

with α • −α the concatenation of α and its reverse −α.
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The fundamental group (official definition)

I The fundamental group π1(X , x) is the set of based homotopy
classes of loops ω : (S1, 1)→ (X , x), or equivalently the rel
{0, 1} homotopy classes [α] of closed paths α : I → X such
that α(0) = α(1) = x ∈ X .

I The group law is by the concatenation of closed paths

π1(X , x)× π1(X , x)→ π1(X , x) ; ([α], [β]) 7→ [α • β]

I Inverses are by the reversing of paths

π1(X , x)→ π1(X , x) ; [α] 7→ [α]−1 = [−α] .

I The constant closed path ex is the identity element

[α • ex ] = [ex • α] = [α] ∈ π1(X , x) .

I See Theorem 4.2.15 of the notes for a detailed proof that
π1(X , x) is a group.
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Fundamental group morphisms

I Proposition A continuous map f : X → Y induces a group
morphism

f∗ : π1(X , x)→ π1(Y , f (x)) ; [ω] 7→ [f ω] .

with the following properties:
(i) The identity 1 : X → X induces the identity,

1∗ = 1 : π1(X , x)→ π1(X , x).
(ii) The composite of f : X → Y and g : Y → Z induces the

composite, (gf )∗ = g∗f∗ : π1(X , x)→ π1(Z , gf (x)).
(iii) If f , g : X → Y are homotopic rel {x} then

f∗ = g∗ : π1(X , x)→ π1(Y , f (x)).
(iv) If f : X → Y is a homotopy equivalence then

f∗ : π1(X , x)→ π1(Y , f (x)) is an isomorphism.
(v) A path α : I → X induces an isomorphism

α# : π1(X , α(0))→ π1(X , α(1)) ; ω 7→ (−α) • ω • α .

I In view of (v) we can write π1(X , x) as π1(X ) for a
path-connected space.
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Simply-connected spaces

I Definition A space X is simply-connected if it is
path-connected and π1(X ) = {1}. In words: every loop in X
can be lassoed down to a point!

I Example A contractible space is simply-connected.

I Exercise A space X is simply-connected if and only if for any
points x0, x1 ∈ X there is a unique rel {0, 1} homotopy class
of paths α : I → X from α(0) = x0 to α(1) = x1.

I Exercise If n > 2 then the n-sphere Sn is simply-connected:
easy to prove if it can be assumed that every loop
ω : S1 → Sn is homotopic to one which is not onto (which is
true).

I Remark The circle S1 is path-connected, but not
simply-connected.
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The universal cover of the circle by the real line

I The continuous map

p : R→ S1 ; x 7→ e2πix

is a surjection with many wonderful properties!

S1
1-1

0

1

2

3

4
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The fundamental group of the circle

I Define Homeop(R) to be the group of the homeomorphisms
h : R→ R such that ph = p : R→ S1. The group is infinite
cyclic, with an isomorphism of groups

Z→ Homeop(R) ; n 7→ (hn : x 7→ x + n) .

I Every loop ω : S1 → S1 ‘lifts’ to a path α : I → R with

ω(e2πit) = e2πiα(t) ∈ S1 (t ∈ I ) .

There is a unique h ∈ Homeop(R) with h(α(0)) = α(1) ∈ R.
I The functions

degree : π1(S1)→ Homeop(R) = Z ; ω 7→ α(1)− α(0) ,

Z→ π1(S1) ; n 7→ (ωn : S1 → S1; z 7→ zn)

are inverse isomorphisms of groups. The degree of ω is the
number of times ω winds around 0, and equals 1

2πi

∮
ω

dz
z .
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Covering spaces

I Covering spaces give a geometric method for computing the
fundamental groups of path-connected spaces X with a
‘covering projection’ p : X̃ → X such that X̃ is
simply-connected.

I Definition A covering space of a space X with fibre the
discrete space F is a space X̃ with a covering projection
continuous map p : X̃ → X such that for each x ∈ X there
exists an open subset U ⊆ X with x ∈ U, and with a
homeomorphism φ : F × U → p−1(U) such that

pφ(a, u) = u ∈ U ⊆ X (a ∈ F , u ∈ U) .

I For each x ∈ X p−1(x) is homeomorphic to F .
I The covering projection p : X̃ → X is a ‘local

homeomorphism’: for each x̃ ∈ X̃ there exists an open subset
U ⊆ X̃ such that x̃ ∈ U and U → p(U); u 7→ p(u) is a
homeomorphism, with p(U) ⊆ X an open subset.
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The group of covering translations

I For any space X let Homeo(X ) be the group of all
homeomorphisms h : X → X , with composition as group law.

I Definition Given a covering projection p : X̃ → X let
Homeop(X̃ ) be the subgroup of Homeo(X̃ ) consisting of the

homeomorphisms h : X̃ → X̃ such that ph = p : X̃ → X ,
called covering translations, with commutative diagram

X̃

p ��?
??

??
??

?
h // X̃

p����
��

��
��

X
I Example For each n 6= 0 ∈ Z complex n-fold multiplication

defines a covering pn : S1 → S1; z 7→ zn with fibre
F = {1, 2, . . . , |n|}. Let ω = e2πi/n. The function

Z|n| → Homeopn(S1) ; j 7→ (z 7→ ωjz)

is an isomorphism of groups.
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The trivial covering

I Definition A covering projection p : X̃ → X with fibre F is
trivial if there exists a homeomorphism φ : F × X → X̃ such
that

pφ(a, x) = x ∈ X (a ∈ F , x ∈ X ) .

A particular choice of φ is a trivialisation of p.

I Example For any space X and discrete space F the covering
projection

p : X̃ = F × X → X ; (a, x) 7→ x

is trivial, with the identity trivialization φ = 1 : F × X → X̃ .
For path-connected X Homeop(X̃ ) is isomorphic to the group
of permutations of F .
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A non-trivial covering

I Example The universal covering

p : R→ S1 ; x 7→ e2πix

is a covering projection with fibre Z, and Homeop(R) = Z.

I Note that p is not trivial, since R is not homeomorphic to
Z× S1.

I Warning The bijection

φ : Z× S1 → R ; (n, e2πit) 7→ n + t (0 6 t < 1)

is such that pφ = projection : Z× S1 → S1, but φ is not
continuous.
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Lifts

I Definition Let p : X̃ → X be a covering projection. A lift of a
continuous map f : Y → X is a continuous map f̃ : Y → X̃
with p(f̃ (y)) = f (y) ∈ X (y ∈ Y ), so that there is defined a
commutative diagram

X̃

p
��

Y

f̃
??�������� f // X

I Example For the trivial covering projection
p : X̃ = F × X → X define a lift of any continuous map
f : Y → X by choosing a point a ∈ F and setting

f̃a : Y → X̃ = F × X ; y 7→ (a, f (y)) .

For path-connected Y a 7→ f̃a defines a bijection between F
and the lifts of f .
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The path lifting property

I Let p : X̃ → X be a covering projection with fibre F . Let
x0 ∈ X , x̃0 ∈ X̃ be such that p(x̃0) = x0 ∈ X .

I Path lifting property Every path α : I → X with
α(0) = x0 ∈ X has a unique lift to a path α̃ : I → X̃ such
that α̃(0) = x̃0 ∈ X̃ .

I Homotopy lifting property Let α, β : I → X be paths with
α(0) = β(0) = x0 ∈ X , and let α̃, β̃ : I → X̃ be the lifts with
α̃(0) = β̃(0) = x̃0 ∈ X̃ . Every rel {0, 1} homotopy
h : α ' β : I → X has a unique lift to a rel {0, 1} homotopy

h̃ : α̃ ' β̃ : I → X̃

and in particular

α̃(1) = h̃(1, t) = β̃(1) ∈ X̃ (t ∈ I ) .
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Regular covers

I Recall: a subgroup H ⊆ G is normal if gH = Hg for all
g ∈ G , in which case the quotient group G/H is defined.

I A covering projection p : Y → X of path-connected spaces
induces an injective group morphism p∗ : π1(Y )→ π1(X ): if
ω : S1 → Y is a loop at y ∈ Y such that there exists a
homotopy h : pω ' ep(y) : S1 → X rel 1, then h can be lifted

to a homotopy h̃ : ω ' ey : S1 → Y rel 1.

I Definition A covering p is regular if p∗(π1(Y )) ⊆ π1(X ) is a
normal subgroup.

I Example A covering p : Y → X with X path-connected and
Y simply-connected is regular, since π1(Y ) = {1} ⊆ π1(X ) is
a normal subgroup.

I Example p : R→ S1 is regular.
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A general construction of regular coverings

I Given a space Y and a subgroup G ⊆ Homeo(Y ) define an
equivalence relation ∼ on Y by

y1 ∼ y2 if there exists g ∈ G such that y2 = g(y1) .

Write
p : Y → X = Y /∼ = Y /G ;

y 7→ p(y) = equivalence class of y .
I Suppose that for each y ∈ Y there exists an open subset

U ⊆ Y such that y ∈ U and

g(U) ∩ U = ∅ for g 6= 1 ∈ G .

(Such an action of a group G on a space Y is called free and
properly discontinuous, as in 2.4.6).

I Theorem p : Y → X is a regular covering projection with
fibre G . If Y is path-connected then so is X , and the group of
covering translations of p is Homeop(Y ) = G ⊂ Homeo(Y ).
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The fundamental group via covering translations

I Theorem For a regular covering projection p : Y → X there
is defined an isomorphism of groups

π1(X )/p∗(π1(Y )) ∼= Homeop(Y ) .

I Sketch proof Let x0 ∈ X , y0 ∈ Y be base points such that
p(y0) = x0. Every closed path α : I → X with
α(0) = α(1) = x0 has a unique lift to a path α̃ : I → Y such
that α̃(0) = y0. The function

π1(X , x0)/p∗π1(Y , y0)→ p−1(x0) ; α 7→ α̃(1)

is a bijection. For each y ∈ p−1(x0) there is a unique covering
translation hy ∈ Homeop(Y ) such that hy (y0) = y ∈ Y .

I The function p−1(x0)→ Homeop(Y ); y 7→ hy is a bijection,
with inverse h 7→ h(x̃0). The composite bijection

π1(X , x0)/p∗(π1(Y ))→ p−1(x0)→ Homeop(Y )

is an isomorphism of groups.
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Universal covers

I Definition A regular cover p : Y → X is universal if Y is
simply-connected.

I Theorem For a universal cover

π1(X ) = p−1(x) = Homeop(Y ) .

I Example p : R→ S1 is universal.
I Example p × p : R× R→ S1 × S1 is universal, so the

fundamental group of the torus is the free abelian group on
two generators

π1(S1 × S1) = Homeop×p(R× R) = Z⊕ Z .

I Remark Every reasonable path-connected space X , e.g. a
manifold, has a universal covering projection p : Y → X . The
path-connected covers of X are the quotients Y /G by the
subgroups G ⊆ π1(X ).
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The classification of surfaces I.

I Surface = 2-dimensional manifold.
I For g > 0 the closed orientable surface Mg is the surface

obtained from S2 by attaching g handles.
I Example M0 = S2 is the sphere, with π1(M0) = {1}.
I Example M1 = S1 × S1, with π1(M1) = Z⊕ Z.

a
1

a
2 a

g

b
1

b
2

b
g

M
g

a

a

b b=
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The classification of surfaces II.

I Theorem The fundamental group of Mg has 2g generators
and 1 relation

π1(Mg ) = {a1, b1, . . . , ag , bg | [a1, b1] . . . [ag , bg ]}

with [a, b] = a−1b−1ab the commutator of a, b. In fact, for
g > 1 Mg has universal cover M̃g = R2 (hyperbolic plane).

I Classification theorem Every closed orientable surface M is
diffeomorphic to Mg for a unique g .

I Proof A combination of algebra and topology is required to
prove that M is diffeomorphic to some Mg . Since the groups
π1(Mg ) (g > 0) are all non-isomorphic, M is diffeomorphic to
a unique Mg .
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The knot group

I If K : S1 ⊂ S3 is a knot the fundamental group of the
complement

XK = S3\K (S1) ⊂ S3

is a topological invariant of the knot.

I Definition Two knots K ,K ′ : S1 ⊂ S3 are equivalent if there
exists a homeomorphism h : S3 → S3 such that K ′ = hK .

I Equivalent knots have isomorphic groups, since

(h|)∗ : π1(XK )→ π1(XK ′)

is an isomorphism of groups.

I So knots with non-isomorphic groups cannot be equivalent!
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The unknot

I The unknot K0 : S1 ⊂ S3 has complement
S3\K0(S1) = S1 × R2, with group

π1(S3\K0(S1)) = Z

S3\K
0
(S1)

K
0
(S1)

S3\K
1
(S1)

K
1
(S1)

a

b
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The trefoil knot

I The trefoil knot K1 : S1 ⊂ S3 has group

π1(S3\K1(S1)) = {a, b | aba = bab} .

S3\K
0
(S1)

K
0
(S1)

S3\K
1
(S1)

K
1
(S1)

a

b

I Conclusion The groups of K0,K1 are not isomorphic (since
one is abelian and the other one is not abelian), so that
K0,K1 are not equivalent: the algebra shows that the trefoil
knot cannot be unknotted.


