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The method of algebraic topology

» Algebraic topology uses algebra to distinguish topological
spaces from each other, and also to distinguish continuous
maps from each other.

» A ‘group-valued functor’ is a function

7 : {topological spaces} — {groups}

which sends a topological space X to a group 7(X), and a
continuous function f : X — Y to a group morphism
f. - m(X) — 7(Y), satisfying the relations

1:X—=>X), =1: 7(X)—-n(X),
(gf)s = gufi :7(X) = 7w(Z)forf: X—>Y, g:Y—Z.
» Consequence 1: If f : X — Y is a homeomorphism of spaces
then £, : 7(X) — 7(Y) is an isomorphism of groups.

» Consequence 2: If X, Y are spaces such that 7(X), 7(Y) are
not isomorphic, then X, Y are not homeomorphic.



The fundamental group - a first description

The fundamental group of a space X is a group m1(X).

» The actual definition of m1(X) depends on a choice of base
point x € X, and is written 71(X, x). But for path-connected
X the choice of x does not matter.

Ignoring the base point issue, the fundamental group is a
functor 7 : {topological spaces} — {groups}.

m1(X, x) is the geometrically defined group of ‘homotopy’
classes [w] of ‘loops at x € X', continuous maps w : St — X
such that w(1) = x € X. A continuous map f : X — Y
induces a morphism of groups

fo + m(X,x) = m(Y,f(x)); [w] — [fw] .

» 11(St) = Z, an infinite cyclic group.
» In general, 71(X) is not abelian.



Joined up thinking

» A path in a topological space X is a continuous map
a:l=][0,1] — X. Starts at a(0) € X and ends at a(1) € X.
» Proposition The relation on X defined by xp ~ x1
if there exists a path av: [ — X with a(0) = xo, a(1) = x1
is an equivalence relation.
» Proof (i) Every point x € X is related to itself by the

constant path
ex : =X t—x.

> (ii) The reverse of a path a: | — X from a(0) = xp to
a(l) = xq is the path

—a =X, t—al-1t)

from —a(0) = x1 to —a(1) = xo.



The concatenation of paths

» (iii) The concatenation of a path a: | — X from a(0) = xo
to (1) = x; and of a path 5: 1 — X from ((0) = x; to
B(1) = xz is the path from xp to x» given by

ifo<t<
aef =X t— a(2t) fo<t<1/2
Bt—1) ifl/2<t<1
o(0) o o(1) = B(0) B B(1)




v

v

v

v

v

Path components

The path components of X are the equivalence classes of the
path relation on X.

The path component [x] of x € X consists of all the points
y € X such that there exists a path in X from x to y.

The set of path components of X is denoted by mo(X).
A continuous map f : X — Y induces a function

s mo(X) = mo(Y) 5 [ [F(x)] -

The function

mo : {topological spaces and continuous maps} ;

— {sets and functions} ; X — mo(X) , f— £

is a set-valued functor.



Path-connected spaces

» A space X is path-connected if 7o(X) consists of just one
element. Equivalently, there is only one path component, i.e.
if for every xp, x; € X there exists a path o : | — X starting
at a(0) = xp and ending at a(1) = xi.

» Example Any connected open subset U C R" is
path-connected. This result is often used in analysis, e.g. in
checking that the contour integral in the Cauchy formula

1% f(z)dz

2ri J, z — 2o

is well-defined, i.e. independent of the loop w C C around
79 € C, with U = C\{z} c C = R2.

» Exercise Every path-connected space is connected.

» Exercise Construct a connected space which is not
path-connected.



Homotopy I.

» Definition A homotopy of continuous maps fp : X — Y,
fi : X — Y is a continuous map f : X x | — Y such that for
all x e X

f(x,0) = fo(x), f(x,1) = A(x)e Y.



Homotopy II.

» A homotopy f : X x | — Y consists of continuous maps
fr : X=Y,; x—fi(x) = f(x,t)

which vary continuously with ‘time’ t € /. Starts at fy and
ending at f1, like the first and last shot of a take in a film.
» For each x € X there is defined a path

ay =Y ; t—a(t) = fi(x)

starting at a,(0) = fy(x) and ending at (1) = fi(x). The
path ay varies continuously with x € X.

» Example The constant map fo : R” — R"; x — 0 is
homotopic to the identity map f; : R” — R"; x — x by the
homotopy

h: R"xI—-R"; (x,t)— tx .
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Homotopy equivalence |.

Definition Two spaces X, Y are homotopy equivalent if there
exist continuous maps f : X — Y, g: Y — X and
homotopies

h:gf~1lx : X=X,k : fg~ly : Y>Y.

A continuous map f : X — Y is a homotopy equivalence if
there exist such g, h, k. The continuous maps f, g are inverse
homotopy equivalences.

Example The inclusion f : S” — R"1\{0} is a homotopy
equivalence, with homotopy inverse

g : RMI\{0} - S"; x»—>HX—H.
X
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Homotopy equivalence Il.

The relation defined on the set of topological spaces by
X ~ Y if X is homotopy equivalent to Y

is an equivalence relation.

Slogan 1. Algebraic topology views homotopy equivalent
spaces as being isomorphic.

Slogan 2. Use topology to construct homotopy equivalences,
and algebra to prove that homotopy equivalences cannot exist.
Exercise Prove that a homotopy equivalence f : X — Y
induces a bijection f, : mo(X) — mo(Y). Thus X is
path-connected if and only if Y is path-connected.
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Contractible spaces

A space X is contractible if it is homotopy equivalent to the
space {pt.} consisting of a single point.

Exercise A subset X C R" is star-shaped at x € X if for every
y € X the line segment joining x to y

oyl = {1-tx+y[o<t<1)

is contained in X. Prove that X is contractible.

Example The n-dimensional Euclidean space R” is
contractible.

Example The unit n-ball D" = {x € R"|||x]| < 1} is
contractible.

By contrast, the n-dimensional sphere §” is not contractible,
although this is not easy to prove (except for n = 0). In fact,
it can be shown that §™ is homotopy equivalent to S” if and
only if m=n. As S" is the one-point compactification of R”,
it follows that R™ is homeomorphic to R" if and only if

m = n.
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Every starfish is contractible

" Asteroidea” from Ernst Haeckel's Kunstformen der Natur, 1904
(Wikinedia)
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Based spaces

Definition A based space (X, x) is a space with a base point
x € X.

Definition A based continuous map f : (X,x) — (Y,y) is a
continuous map f : X — Y such that f(x) =y € Y.
Definition A based homotopy h: f ~ g : (X,x) — (Y,y)isa
homotopy h: f ~ g : X — Y such that

h(x,t)=yeY (tel).
For any based spaces (X, x), (Y,y) based homotopy is an

equivalence relation on the set of based continuous maps
fo(X,x)=(Y,y).
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Loops = closed paths
A path a : | — X is closed if a(0) = a(1) € X.

Identify S with the unit circle {z € C||z| = 1} in the
complex plane C.

> A based loop is a based continuous map w : (S%,1) — (X, x).

» In view of the homeomorphism

1/{0 ~ 1} — St [t] — €®™ = cos 27t + isin 27t

there is essentially no difference between based loops
w: (S, 1) — (X, x) and closed paths o : | — X at x € X,
with

alt) = wEe™®) e X (tel)

such that



Homotopy relative to a subspace

» Let X be a space, A C X a subspace. If f,g: X — Y are
continuous maps such that f(a) = g(a) € Y forallac A
then a homotopy rel A (or relative to A) is a homotopy
h:f~g:X — Y such that

h(a,t) = f(a) = g(a)eY (acAtel).

» Exercise If a space X is path-connected prove that any two

paths o, 3 : | — X are homotopic.
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» Exercise Let e, : | — X;t +— x be the constant closed path

at x € X. Prove that for any closed path a: | — X at
a(0) = a(1) = x € X there exists a homotopy rel {0, 1}

ae—a ~ e | —-X

with o« @ —a¢ the concatenation of « and its reverse —o.



17

The fundamental group (official definition)

The fundamental group m1(X, x) is the set of based homotopy
classes of loops w : (S*,1) — (X, x), or equivalently the rel
{0,1} homotopy classes [«] of closed paths o : | — X such
that a(0) = a(1) = x € X.

The group law is by the concatenation of closed paths

m1 (X, x) x (X, x) = (X, x) 5 ([a], [8]) = [« e f]

Inverses are by the reversing of paths

(X, %) = m(X,x) i [o] = [a] * = [~a] .

The constant closed path e, is the identity element

[avee] = [ecoa] = [a] € m(X,x).

See Theorem 4.2.15 of the notes for a detailed proof that
m1(X, x) is a group.
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Fundamental group morphisms

» Proposition A continuous map f : X — Y induces a group
morphism

fo @+ m(X,x) = m(Y,f(x); [w]— [fw] .
with the following properties:
(i) The identity 1: X — X induces the identity,
1, =1:m(X,x) = m(X,x).
(i) The composite of f : X — Y and g : Y — Z induces the
composite, (gf). = g fx : m1(X, x) — m1(Z, gf (x)).
(iii) If f,g: X — Y are homotopic rel {x} then
fo = g (X, x) — m (Y, f(x)).
(iv) If f: X — Y is a homotopy equivalence then
fi : m(X, x) — m (Y, f(x)) is an isomorphism.
(v) A path a:/ — X induces an isomorphism

ag  m(X,a(0)) - m(X, (1) ; w— (—a)ewean.

> In view of (v) we can write m1(X, x) as m1(X) for a
path-connected space.
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Simply-connected spaces

Definition A space X is simply-connected if it is
path-connected and 71(X) = {1}. In words: every loop in X
can be lassoed down to a point!

» Example A contractible space is simply-connected.

» Exercise A space X is simply-connected if and only if for any
points xp, x; € X there is a unique rel {0,1} homotopy class
of paths a: I — X from a(0) = xp to (1) = xy.

Exercise If n > 2 then the n-sphere S” is simply-connected:
easy to prove if it can be assumed that every loop

w : St — S" is homotopic to one which is not onto (which is
true).

Remark The circle ST is path-connected, but not
simply-connected.



The universal cover of the circle by the real line

» The continuous map
p - R—>51;Xi—>62ﬂix

is a surjection with many wonderful properties!
4

51

20
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The fundamental group of the circle

Define Homeo,(R) to be the group of the homeomorphisms
h:R — R such that ph = p: R — S. The group is infinite
cyclic, with an isomorphism of groups

Z — Homeop(R) ; n+— (hy i x — x+n) .

Every loop w : ST — St ‘lifts’ to a path o : | — R with
w(e® ) = M e ST (tel).
There is a unique h € Homeo,(R) with h((0)) = (1) € R.
The functions
degree : 71(S') — Homeo,(R) =Z ; w+ a(1l) — a(0) ,
Z— m(SY); n— (wy: St — Stz 2")

are inverse isomorphisms of groups. The degree of w is the

dz

. . 1
number of times w winds around 0, and equals 5~ ¢ F.



22

Covering spaces

Covering spaces give a geometric method for computing the
fundamental groups of path-connected spaces X with a
‘covering projection’ p : X — X such that X is
simply-connected.

Definition A covering space of a space X with fibre the
discrete space F is a space X with a covering projection
continuous map p : X — X such that for each x € X there
exists an open subset U C X with x € U, and with a
homeomorphism ¢ : F x U — p~*(U) such that

pp(a,u) = ueUCX (ae F,uel).

For each x € X p~1(x) is homeomorphic to F.

The covering projection p : X — X'is a 'local
homeomorphism’: for each x € X there exists an open subset
U C X such that X € U and U — p(U); u — p(u) is a
homeomorphism, with p(U) C X an open subset.
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The group of covering translations

For any space X let Homeo(X) be the group of all
homeomorphisms h: X — X, with composition as group law.
Definition Given a covering projection p : X — X let
Homeop(X) be the subgroup of Homeo(X) consisting of the

homeomorphisms h : X — X such that ph=p: X — X,
called covering translations, with commutative diagram

XRX%X

Example For each n £ 0 € Z complex n-fold multiplication
defines a covering p, : S' — S';z +— z" with fibre
F=1{1,2,...,|n|}. Let w = €*™/"_ The function

Ly — Homeopn(Sl) s (2 w’z)

is an isomorphism of groups.
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The trivial covering

» Definition A covering projection p : X — X with fibre F is
trivial if there exists a homeomorphism ¢ : F x X — X such
that

pp(a,x) = xe X (aeF, xe X).

A particular choice of ¢ is a trivialisation of p.

» Example For any space X and discrete space F the covering
projection

p: X = FxX—=X; (a,x)—x

is trivial, with the identity trivialization ¢ =1: F X X — X.
For path-connected X Homeo,(X) is isomorphic to the group
of permutations of F.



A non-trivial covering

Example The universal covering

pZR—>51;X’—>62mX

is a covering projection with fibre Z, and Homeo,(R) = Z.

Note that p is not trivial, since R is not homeomorphic to
7 x St.
Warning The bijection

¢ ZxSt SR (ne™)—n+t (0<t<1)

is such that p¢ = projection : Z x St — S, but ¢ is not
continuous.

25
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Lifts

» Definition Let p: X — X be a covering projection. A lift of a
continuous map f : Y — X is a continuous map f : Y — X

with p(f(y)) = f(y) € X (y € Y), so that there is defined a

7 J/
f

Y —X

» Example For the trivial covering projection
p: X =F x X — X define a lift of any continuous map
f Y — X by choosing a point a € F and setting

i Y =X = FxX;ym(af(y).

For path-connected Y a — 73 defines a bijection between F
and the lifts of f.



>

>
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The path lifting property

Let p: X — X be a covering projection with fibre F. Let
xo € X, Xp € X be such that p(x) = x € X.

Path lifting property Every path o : | — X with

a(0) = xo € X has a unique lift to a path a: | — X such
that a(0) = xp € X.

Homotopy lifting property Let o, 3 : | — X be paths with
a(0) = 8(0) = xo € X, and let &, 3 : | — X be the lifts with
a(0) = B(0) = X € X. Every rel {0,1} homotopy
h:a=~f(:1— X has a unique lift to a rel {0,1} homotopy

h:a~p:1—-X
and in particular

a(l) = h(1,t) = 1) eX (tel).
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Regular covers

Recall: a subgroup H C G is normal if gH = Hg for all

g € G, in which case the quotient group G/H is defined.

A covering projection p : Y — X of path-connected spaces
induces an injective group morphism p, : m1(Y) — m1(X): if
w: S — Yisaloop at y € Y such that there exists a
homotopy h : pw =~ e,y : S* — X rel 1, then h can be lifted
to a homotopy hiwn~ e, : ST — Yrel L.

Definition A covering p is regular if p.(m1(Y)) C m1(X) is a
normal subgroup.

Example A covering p: Y — X with X path-connected and
Y simply-connected is regular, since m1(Y) = {1} C m1(X) is
a normal subgroup.

Example p : R — S! is regular.
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A general construction of regular coverings

» Given a space Y and a subgroup G C Homeo(Y) define an
equivalence relation ~ on Y by

y1 ~ yo if there exists g € G such that y» = g(y1) -

Write
p:Y—=>X=Y/~=Y/G,;
y — p(y) = equivalence class of y .

» Suppose that for each y € Y there exists an open subset
U C Y such that y € U and

glUynU=0forg#1€eG.

(Such an action of a group G on a space Y is called free and
properly discontinuous, as in 2.4.6).

» Theorem p: Y — X is a regular covering projection with
fibre G. If Y is path-connected then so is X, and the group of
covering translations of p is Homeo,(Y) = G C Homeo(Y).
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The fundamental group via covering translations

» Theorem For a regular covering projection p: Y — X there
is defined an isomorphism of groups

m1(X)/pe(m1(Y)) = Homeop(Y) .

» Sketch proof Let xg € X, yo € Y be base points such that
p(y0) = xo. Every closed path a : | — X with
a(0) = a(1) = xo has a unique lift to a path & : | — Y such
that @(0) = yp. The function

m1(X,x0)/pemi (Y y0) = pH(x0) i @ (1)

is a bijection. For each y € p~!(xg) there is a unique covering
translation h, € Homeo,(Y) such that h,(yo) =y € Y.

» The function p~1(xg) — Homeop(Y);y — h, is a bijection,
with inverse h — h(Xp). The composite bijection

m1(X, x0)/p(m1(Y)) — p~*(x0) — Homeoy(Y)

is an isomorphism of groups.
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Universal covers

Definition A regular cover p: Y — X is universal if Y is
simply-connected.
Theorem For a universal cover

m1(X) = p'(x) = Homeop(Y) .

Example p : R — S! is universal.

Example p x p: R x R — S! x S! is universal, so the
fundamental group of the torus is the free abelian group on
two generators

m1(S* x S') = Homeo,xp(RxR) = ZOZ .

Remark Every reasonable path-connected space X, e.g. a
manifold, has a universal covering projection p: Y — X. The
path-connected covers of X are the quotients Y /G by the
subgroups G C 1 (X).
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The classification of surfaces I.

» Surface = 2-dimensional manifold.

» For g > 0 the closed orientable surface M, is the surface
obtained from S? by attaching g handles.

» Example My = S? is the sphere, with 71 (Mp) = {1}.

» Example M; = St x St with 71 (M) = Z @ Z.
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The classification of surfaces Il.

» Theorem The fundamental group of M, has 2g generators
and 1 relation

7T1(Mg) = {317 bl, -, dg, bg | [al, bl] RN [ag, bg]}

with [a, b] = a~tb~'ab the commutator of a, b. In fact, for
g > 1 M, has universal cover M, = R? (hyperbolic plane).

» Classification theorem Every closed orientable surface M is
diffeomorphic to M, for a unique g.

» Proof A combination of algebra and topology is required to
prove that M is diffeomorphic to some M. Since the groups
m1(Mg) (g = 0) are all non-isomorphic, M is diffeomorphic to
a unique M,.
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The knot group

If K:S! C S3is a knot the fundamental group of the
complement

Xk = S3\K(SY)c S®
is a topological invariant of the knot.

Definition Two knots K, K’ : S C S3 are equivalent if there
exists a homeomorphism h : §3 — S3 such that K/ = hK.

Equivalent knots have isomorphic groups, since
(AD)x = m(Xk) — m1(Xk')

is an isomorphism of groups.

So knots with non-isomorphic groups cannot be equivalent!



The unknot

» The unknot Ky : ST C S3 has complement
S3\Ko(St) = St x R2, with group

m1(S3\Ko(SY)) = Z

SAK,(S)
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The trefoil knot

» The trefoil knot K7 : ST C S3 has group
71(S3\K1(SY)) = {a, b|aba = bab} .

SAK,(S)

» Conclusion The groups of Kp, K1 are not isomorphic (since
one is abelian and the other one is not abelian), so that
Ko, K1 are not equivalent: the algebra shows that the trefoil
knot cannot be unknotted.



