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Algebraic K-theory

The algebraic K-groups of an exact category E are
K.(E) = m.(K(E)) (x€Z),

the homotopy groups of a spectrum K(E) (Quillen, 1972).
Ko(E) = class group of E, with one generator [P] for each
object P in E, and one relation [P] — [Q] + [R] = 0 for each
exact sequence in E

0O—-P—-QQ—R—0.

Ki(E) = torsion group of E, with one generator 7(f) for
each automorphism f : P — P in E, and relations

r(fef) = r(f)+7(F). r(ef) = (F)+(e).
The algebraic K-groups of a ring R are
Ki(R) = Ki(Proj(R))

with Proj(R) = exact category of f.g. projective R-modules.



Executive summary

The 40-year old splitting theorems for the algebraic K-theory
of polynomial extensions

K.(R[t]) = K.(R)@® Nil_1(R),
K(R[t,t71]) = Ki(R) @ K.a(R) @ Nil._1(R) @ Nil._1(R)

have been recently extended to a splitting theorem for the
algebraic K-theory of a dihedral extension

K.(R[Ds]) = K.(R — R[Z2] x R[Z2]) & Nil,_1(R)

involving the same NNiI-groups.

Motivation from the algebraic K-theory obstructions to the
codimension 1 splitting of homotopy equivalences of finite
CW complexes.
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Kernel modules

» The kernels of a map f : M — X of connected spaces are the
relative homology Z[m1(X)]-modules

K(M) = Hy1(F: M — X)

with X the universal cover of X, M = f*X the pullback cover
of M, and f : M — X a m1(X)-equivariant lift of f.
» Definition A map f : M — X is mi-iso if it induces
isomorphisms f, : w1 (M) = m1(X).
» Theorem (Hurewicz, Whitehead, 1930's) Let f : M — X be a
m1-iso map of connected CW complexes.
» If K,(M) =0 for r < n then the forgetful map

Tpr1(f: M — X) — K,(M)

is an isomorphism.
» f is a homotopy equivalence if and only if K.(M) = 0.



The Wall finiteness obstruction

> Ko(Z[r]) = Ko(Z) & Ko(Z[x]) for any group 7.

> A f.g. projective Z[r]-module P is such that
[P] =0 € Ko(Z[r]) if and only if P is stably f.g. free, i.e.
such that P @ F = G for f.g. free F, G.

» A CW complex X is finitely dominated if it is a homotopy
retract of a finite CW complex, or equivalently if there exists
mi-iso map f : M — X from a finite CW complex M with
K.(M) =0 for r # n, and K,(M) a f.g. projective
Z[m1(X)]-module.

» Finiteness obstruction (Wall, 1965) A finitely dominated
CW complex X has an algebraic K-theory invariant

[X] = (2)"[Ka(M)] € Ko(Z[m1(X)])
such that [X]" =0 € Ko(Z[r1(X)]) if and only if X is

homotopy equivalent to a finite CW complex, if and only if
Kn(M) is a stably f.g. free Z[m1(X)]-module.



Whitehead torsion

» The torsion group of a ring R is the abelian group

Ki(R) = Ki(Proj(R)) = lim GLa(R)™ .

» An n X n invertible matrix M with entries in R has a torsion
T(M) € Ki(R) such that 7(M) = 0 if and only if M can be
reduced to 1 € R by stabilizations M — M & 1,
destabilizations and elementary row and column operations.

» (J.H.C. Whitehead, 1951) A homotopy equivalence
f: X — Y of finite CW complexes has a torsion

7(f) € Wh(m(X)) = Ki(Z[m(X)])/{+g|g € m(X)}

such that 7(f) = 0 if and only if f is simple, i.e. can be
deformed to 1: Y — Y be elementary cell expansions and
collapses.



The infinite dihedral group D,

» Free product of two cyclic groups of order 2
Dy = Zp*Zy = {t1,t2]|(t1)? = (2)> =1}
» Contains infinite cyclic subgroup of index 2
{1} = Z = (titt) > Do — Z2 — 0 .
» D, acts on R by

t; = reflectioninl/2 : R—-R; x—1—x,

tp = reflectionin —1/2 : R—-R; x+— —1—x
with

titp = translationby +2 : R—-R; x+— 2+ x .



Nil. (R, B)

» Let R be a ring, and B an (R, R)-bimodule, P an R-module.
An R-module morphism v : P — B ®g P is nilpotent if for
some k> 1

VN =0:P-BorP, B = BorB®r--QrB.

» Let Nil(R, B) be the exact category of pairs (P,v) with P a
f.g. projective R-module and v : P — B ®g P nilpotent,

Nil.(R,B) = Ki(Nil(R,B)) .
» The composite of the exact functors
Proj(R) — Nil(R,B) ; P+~ (P,0)
Nil(R, B) — Proj(R) ; (P,v)— P
is the identity, so that
Nil.(R,B) = K.(R)® Nil.(R, B)
with Nil,(R, B) = ker(Nil.(R, B) — K.(R)).



The algebraic K-theory of the tensor algebra T(B)

» Definition The tensor algebra of an (R, R)-bimodule B is
the ring

T(B) = Ro B
k=1

» Theorem (Waldhausen, 1978) If B is flat as a right R-module
and f.g. projective as an R-module then

K(T(B)) = K.(R) & Nil,_1(R, B)
with
Nilo(R, B) — Ki(T(B)) ;
[P,v]—717(14+v:T(B)®@r P — T(B)®g P) .

» Ildea of proof Higman linearization, an algebraic
transversality technique which reduces all expressions involving
B for k > 1 to the case k = 1.



10

The algebraic K-theory of R[t] and R[Z]

» Example If B = R then T(B) = R|[t] is the polynomial
extension, and Nil(R, B) = Nil(R) is the exact category of
nilpotent endomorphisms (P,v : P — P). Linearization:

a0 +ait+at? 0\ (1 —t\ (a+at t 1 0
0 1 - 0 1 —aot 1 at 1
» Theorem (Bass, 1968 and Quillen, 1972) For any ring R

K.(R[t]) = K.(R)& Nil._1(R) ,
K(RZ]) = K.(R)® K.-1(R) @ Nil._1(R) @ Nil._1(R)

with R[Z] = R[t,t71] and

Nilo(R) — Ki(R[t]) ; [P,v] — r(1+ vt : P[] — P[t]) .
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Nil. (R, By, B»)
For any ring R
Proj(R x R) = Proj(R) x Proj(R) .
For any (R, R)-bimodules By, B,

Nil(R, B1, B) = Nil(R x R, 0 B )
B 0

is the exact category of quadruples
(Pi, P2, pr:PL—Bi®rPa, p2:P2— By®gPr)

with Py, P, f.g. projective R-modules and p1, po» R-module
morphisms such that the composite

p2p1 + P1— B1 ®r By ®r P1

is a nilpotent R-module morphism.
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Generalized free products

» A group G is a generalized free product if it is
» either an amalgamated free product

G = Gy*y G
with iy : H — Gy, i : H — G, group morphisms, and
ii(x) = ih(x)e G (xeH).
» or an HNN extension
G = Gy {t}
with iy, i : H — Gy group morphisms, and

h(x)t = th(x) e G (xe H) .

» A generalized free product is injective if i1, i» are injections, in
which case H, G1, G, C G.
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The Seifert-van Kampen and Mayer-Vietoris theorems

» A subspace Y C X is codimension 1 if Y has an open
neighbourhood Y x R C X.
» Theorem (1930's) If X, Y are connected then:

> (S-vK) the fundamental group of 71(X) is a generalized free
product of w1(Y) and 71 (X\Y),
> (M-V) the homology groups H,(X) fit into an exact sequence

<+ = Ho(Y) = Ho(X\Y) = Ho(X) = Hoea(Y) — ...

» For connected X, Y there are two cases:

» (A) Y separates X, with X\Y disconnected
» (B) Y does not separate X, with X\'Y connected



The separating case (A)

» X is a union
X = XiUy X

with Xi, X5 connected.

X1 Xo

» The fundamental group is an amalgamated free product
m1(X) = m1(X1) *5,(v) T1(X2)

» The homology groups are related by a Mayer-Vietoris exact
sequence
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<+ = Hp(Y) = Ho(X1)®Hn(X2) — Hp(X) — Hpe1(Y) — .



The non-separating case (B)

» X is a union
X =X Uy x{0,1} Y x [0,1]

with X7 connected.

» The fundamental group is an HNN extension

m1(X) = m(X1) #q,(v) {t} -

» The homology groups are related by a Mayer-Vietoris exact
sequence

15

e Ha(Y) T2 () Ha(X) = Hya(Y) — ..
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The algebraic K-theory of generalized free products

» Theorem (Waldhausen, 1978) (A) For an injective
amalgamated free product G = Gy xy Gy

Ka(RIG]) = Kn(RIH] — R[G1]x R[G2])®Nila_1(R[H], By, B2)

with Bj = R[G;\H] (j = 1,2), and an almost-Mayer-Vietoris
exact sequence

- — Ko(R[H]) & Nila(RIH], B1, B2) — Kn(RIGLl) & Kn(RIGa])
— Kn(R[G]) <% K, 1(R[H]) @ Nil,_1(R[H], B1,B2) — ...
» (B) For an injective HNN extension G = Gy *p {t}
Kn(R[G]) = Kn(ir — ir : R[H] — R[G1]) ® Nil,_1
with an almost-Mayer-Vietoris exact sequence

-+ — Kn(RIH]) @ Nil, — Kq(RI[G1])

— Kn(R[G]) % Kn_1(R[H]) ® Nil,—y — ... .
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The algebraic K-theory of R[Dy]
For R[Dso] = R[Zy * Z5] take By = B, = R, so that
K.(R[Ds]) = Ki(R — R[Z2] x R[Z2]) @ Nil,_1(R, R, R) .

The exact category

Nil(R,R,R) = Nil(R x R, (g 'g))

has objects quadruples (P1, P2, p1: P1 — P2, p2 : P2 — P)
with Py, P, f.g. projective R-modules and p2p1 : P1 — P
nilpotent, and

K.(Nil(R,R,R)) = K.(R)® K.(R)® Nvil*(R, R,R) .

An element x; € P; can be “killed” by an “algebraic cell
exchange”

(Plv 'D27p17p2) - (Pl/<X1>7 P2a [pl]v [p2])
if and only if p1(x1) = 0 € Py. Similarly for x, € Ps.
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The Nil—Nil theorem
» The construction of the groups NNiI*(R, R, R) is more

complicated than that of Nil.(R). However:

» Nil—Nil Theorem (DKR, 2008) For any ring R the functors
of exact categories

i : Nil(R) — Nil(R,R,R); (P,v)— (P,P,v,1),
J : Nil(R,R,R) — Nil(R) ; (P1,P2,p1,p2) — (P1,p2p1)
induce inverse isomorphisms
i+ Nil.(R) = Nil.(R,R,R),
j ¢ Nil,(R,R,R) = Nil.(R) .
» ldea of proof For any (P1, P2, p1, p2) it is possible to make

p2 an isomorphism by elementary algebraic cell exchanges.
Details in DKR.
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The transfer theorem

» Theorem (DKR, 2008) The transfer for the index 2 subgroup
7. C Dy

K.(R[Ds]) = K.(R — R[Zs] x R[Z5]) & Nil,_1(R, R, R)
— Ku(R[Z]) = K.(R)® K._1(R) & Nil._1(R) & Nil._1(R)
is the diagonal embedding on the Nvil—groups

Nil._1(R,R,R) = Nil,_1(R)
— Nil,_1(R) & Nil,_1(R) ; x — (x,x) .



Some non-zero Nil-groups

» Example (Bass, 1968) For R = Z[Z2 X Za x Z]
Nilo(R) = ker(Ki(R[t]) — Ki(R))

is an infinitely generated group of exponent a power of two.
» Corollary (DKR, 2008) For R = Z[Z2 x Z» x Z|

Nilo(R, R, R) = Nilo(R)

is an infinitely generated group of exponent a power of two.

» This is the first nontrivial computation of the type (A)
codimension 1 splitting obstruction groups Nil.(R, By, B>).
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Codimension 1 transversality and splitting

» A map of finite CW complexes f : M — X is transverse at a
codimension 1 subcomplex Y C X if f is cellular and
N = f~1(Y) C M is a codimension 1 subcomplex.

» Proposition Every map is simple homotopic to a transverse
map.

» A homotopy equivalence of finite CW complexes f: M — X
is split at a codimension 1 subcomplex Y C X if it is
transverse and the restrictions

g=fl:N>Y,h="f:MN=XY

are also homotopy equivalences.
» The Whitehead torsion 7(f) € Wh(m1(X)) of a split f is

7(f) = 7(h) —7(g) € im(Wh(m1(X\Y)) — Wh(m1(X))) .

So [7(f)] € coker(Wh(m1(X\Y)) — Wh(m1(X))) is an
obstruction to codimension 1 splitting.
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The codimension 1 splitting theorem

» Theorem (Farrell-Hsiang (1968), Waldhausen (1969/78))
Let (X, Y) be a codimension 1 finite CW pair with X, Y
connected and m1(Y) — m1(X) injective.

» (i) The Whitehead group of X fits into an exact sequence
Wh(mi(Y)) =% Wh(r1(X\Y)) — Wh(r (X))
o Ko(Z[m(Y)]) & Nilo(Z[r1(Y)], B1, B2) — Ko(Z[m1(X\Y))])

with B; = Z[m1(X;)\m1(Y)] (j = 1,2) in case (A).
» (ii) A homotopy equivalence f : M — X from a finite CW
complex M splits at Y C X if and only if

7(f) € im(Wh(m1(X\Y)) — Wh(m1(X)))
= ker(8 . Wh(ﬂ'l(X)) — Ro(Z[ﬂ'l(Y)]) D mo(Z[ﬂl(Y)], Bl, Bz)) .
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The universal cover of a union X = X; Uy X5 L.

> The Bass-Serre tree T of an injective amalgamated free
product G = Gy *y Gy has

TO = [6: GIU[G: Gy, TW = [G: H].

» Let X = X; Uy X3 be a finite CW complex with a type (A)
codimension 1 subcomplex Y C X such that the morphisms

ij : 7T1(Y) — 7T1()<j) (./ = 172)

are injective, and 7T1(X) = 7T1(X1) *1(Y) 7T1(X2).
» The universal cover of X is

X = U aXiu 4y U 82X2
grelm (X):m (X)) helm (m ] gyefm (X)im (Xa)]

with )~(1,)~(2, Y the universal covers of X1, X2, Y.
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The universal cover of a union X = X; Uy X5 Il.

)~<+ = )?2 U U hg)?l U U h2h1;<2 U...
ho€[Ga: H\{H} he[Gi:HI\{HY, h2€[Go: H]\{H}
)~<_ = ;(1 @] U hl)?g U U h1h2)?1 U...

hi€[Gi:H]\{H} hi€[G1:H\{H} h€[G2:H[\{H}




The type (A) codimension 1 splitting obstruction I.

» Given a transverse map
f =HhUgh: M = MUy M, — X = XiUy Xo
the kernel modules fit into an M-V exact sequence
= Z[m(X)] @zpry vy Kr(N) —

Z[ﬂ—l(X)] ®Z[7r1(X1)] Kr(Ml) D Z[ﬂl(x)] ®Z[7r1(X2)] KF(M2)
— Ki(M) — Z[r1(X)] @z (v)) Kr—1(N) — ...

» f is a homotopy equivalence iff 7i-iso and K.(M) = 0.

» f is a split homotopy equivalence iff fi, f», g are m1-iso and
Ki.(M1) = Ki(M2) = K.(N) = 0.

> Let X = X/m1(Y), X; = Xj/mi(Y) so that X = X

with X1 € X, Xo € X . Similarly for M=M Uy M".

25
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The type (A) codimension 1 splitting obstruction II.
» Lemma (Waldhausen) (i) For n > 2 a homotopy equivalence
f=hHhUgh : M= MUyM —X = XUy Xo
is simple homotopic to one concentrated in dimension n, with
K/(M1) = K,(M2) = K,(N) = Oforr#n.
» (i) The codimension 1 splitting obstruction of f is
Ar(A = ([P].[P1, P2. p1. p2]) € Ko(R) @ Nilo(R, By, B)
with R = Z[r1(Y)], Bj = Z[mi(X;)\ijm(Y)] (j = 1,2), and
Pi = Kn1(M",N), Py = Knpai(M . N)

f.g. projective R-modules such that P; @ P> = K,(N) is f.g.
free and

[P1]+[P2] = [Ka(N)] = 0€ Ko(R) .
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Semi-splitting

Let f : M — X is a homotopy equivalence of finite CW
complexes, and let Y C X = Xj Uy X; be a type (A)
codimension 1 subcomplex. A homotopy equivalence

f = flUgfz M = MUy My, - X = XiUy X5

is semi-split if
Ki(Ma,N) = 0.

If f is concentrated in dimension n it follows from the exact
sequence

0 — Kni1(Ma, N) — Py = Kpoa (M, N) L2
B ®r P = Kn+1(m+7ﬂ2) — Kp(My, N) — 0

that f is semi-split if and only if po : P — Ba ®g P71 is an
isomorphism.
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The topological semi-splitting theorem

» Theorem Let X = X; Uy X5 be a finite CW complex with a
type (A) decomposition. If the group morphisms

i1 . ’/T1(Y)—>7T1(X1), i2 . 7T1(Y)—>7T1(X2)

are injective then every homotopy equivalence f : M — X of
finite CW complexes is simple homotopic to one which
semi-splits.

> ldea of proof As for the Nil-Nil theorem, realizing algebraic
cell exchanges by geometric cell exchanges.
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Groups over D,
» Definition A group over D, is a group G with a surjection
p: G— D = ZpxZy = (t1) * (t2) .
» Lemma 1 G is an amalgamated free product
G = Gy G
with G; = p~1({t;)) for (i = 1,2), and
H = GNG = ker(p), [Gi:H] = 2.

» Lemma 2 G has an index 2 subgroup G = p~!((t1t2)) which
is an HNN extension

G = HxnZ, ht=ta(h)
with Z = (t) for any t € p~Y{t1t>) and
a: H—H; h—ttht.
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Further results from the DKR paper I.

» The extension of the Nil-Nil-theorem to an arbitrary group
G = Gl*H G2 over DOO:ZQ*ZQ

Kn(R[G]) = Kn(ia x i) ® Nilo_1(R[H], By, B2)
= Ky(ir % i2) @ Nil,_1(R[H], B1 @gpw B>)

with 7 X i : R[H] — R[Gl] X R[GQ] and Bj = R[GJ\H]
» The extension of the transfer theorem to the index 2 subgroup
G =H x,Z C G. The transfer

K.(R[G]) = K.(i x i) ® Nil._1(R[H], By, B>)
— K.(R[G]) = K.(1—a: R[H] — R[H])
fan NNiI*_l(R[H], B ®R[H] 82) (S5) N\ﬂ*—l(R[H]a By ®R‘[H] 82)

is the diagonal embedding on the NTI—groups.
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Further results from the DKR paper Il.
The extension of the Nil-Nil-theorem to (R, R)-bimodules

B1, B> such that B, is f.g. projective R-module and flat as a
right R-module. The functors of exact categories

i : Nil(R,B1 ®g B2) — Nil(R, By, B2) ;
(P,v) — (P,By®g P,v,1),
J : Nil(R,B1,B2) — Nil(R, By ®g B2) ;
(P1, P2, p1, p2) — (P1, p2p1)
induce isomorphisms
Nil.(R, By ®g B>) = Nil,(R, By, By) .
The reduction of the Farrell-Jones isomorphism conjecture in
algebraic K-theory to the family of finite-by-cyclic groups,
avoiding the need for virtually cyclic groups of infinite dihedral
type.



