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Algebraic K -theory

I The algebraic K -groups of an exact category E are

K∗(E) = π∗(K (E)) (∗ ∈ Z) ,

the homotopy groups of a spectrum K (E) (Quillen, 1972).
I K0(E) = class group of E, with one generator [P] for each

object P in E, and one relation [P]− [Q] + [R] = 0 for each
exact sequence in E

0→ P → Q → R → 0 .

I K1(E) = torsion group of E, with one generator τ(f ) for
each automorphism f : P → P in E, and relations

τ(f ⊕ f ′) = τ(f ) + τ(f ′) , τ(gf ) = τ(f ) + τ(g) .

I The algebraic K -groups of a ring R are

K∗(R) = K∗(Proj(R))

with Proj(R) = exact category of f.g. projective R-modules.
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Executive summary

I The 40-year old splitting theorems for the algebraic K -theory
of polynomial extensions

K∗(R[t]) = K∗(R)⊕ Ñil∗−1(R) ,

K∗(R[t, t−1]) = K∗(R)⊕ K∗−1(R)⊕ Ñil∗−1(R)⊕ Ñil∗−1(R)

have been recently extended to a splitting theorem for the
algebraic K -theory of a dihedral extension

K∗(R[D∞]) = K∗(R → R[Z2]× R[Z2])⊕ Ñil∗−1(R)

involving the same Ñil-groups.
I Motivation from the algebraic K -theory obstructions to the

codimension 1 splitting of homotopy equivalences of finite
CW complexes.

I Reference

J.Davis, Q.Khan, A.Ranicki,Algebraic K-theory over D∞

ArXiv/math.AT.0803.1639
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Kernel modules

I The kernels of a map f : M → X of connected spaces are the
relative homology Z[π1(X )]-modules

Kr (M) = Hr+1(f̃ : M̃ → X̃ )

with X̃ the universal cover of X , M̃ = f ∗X̃ the pullback cover
of M, and f̃ : M̃ → X̃ a π1(X )-equivariant lift of f .

I Definition A map f : M → X is π1-iso if it induces
isomorphisms f∗ : π1(M) ∼= π1(X ).

I Theorem (Hurewicz, Whitehead, 1930’s) Let f : M → X be a
π1-iso map of connected CW complexes.

I If Kr (M) = 0 for r < n then the forgetful map

πn+1(f : M → X )→ Kn(M)

is an isomorphism.
I f is a homotopy equivalence if and only if K∗(M) = 0.
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The Wall finiteness obstruction

I K0(Z[π]) = K0(Z)⊕ K̃0(Z[π]) for any group π.
I A f.g. projective Z[π]-module P is such that

[P] = 0 ∈ K̃0(Z[π]) if and only if P is stably f.g. free, i.e.
such that P ⊕ F ∼= G for f.g. free F ,G .

I A CW complex X is finitely dominated if it is a homotopy
retract of a finite CW complex, or equivalently if there exists
π1-iso map f : M → X from a finite CW complex M with
Kr (M) = 0 for r 6= n, and Kn(M) a f.g. projective
Z[π1(X )]-module.

I Finiteness obstruction (Wall, 1965) A finitely dominated
CW complex X has an algebraic K -theory invariant

[X ] = (−)n[Kn(M)] ∈ K̃0(Z[π1(X )])

such that [X ]̃ = 0 ∈ K̃0(Z[π1(X )]) if and only if X is
homotopy equivalent to a finite CW complex, if and only if
Kn(M) is a stably f.g. free Z[π1(X )]-module.
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Whitehead torsion

I The torsion group of a ring R is the abelian group

K1(R) = K1(Proj(R)) = lim−→
n

GLn(R)ab .

I An n × n invertible matrix M with entries in R has a torsion
τ(M) ∈ K1(R) such that τ(M) = 0 if and only if M can be
reduced to 1 ∈ R by stabilizations M 7→ M ⊕ 1,
destabilizations and elementary row and column operations.

I (J.H.C. Whitehead, 1951) A homotopy equivalence
f : X → Y of finite CW complexes has a torsion

τ(f ) ∈Wh(π1(X )) = K1(Z[π1(X )])/{±g | g ∈ π1(X )}

such that τ(f ) = 0 if and only if f is simple, i.e. can be
deformed to 1 : Y → Y be elementary cell expansions and
collapses.
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The infinite dihedral group D∞

I Free product of two cyclic groups of order 2

D∞ = Z2 ∗ Z2 = {t1, t2 | (t1)2 = (t2)2 = 1}

I Contains infinite cyclic subgroup of index 2

{1} → Z = 〈t1t2〉 → D∞ → Z2 → 0 .

I D∞ acts on R by

t1 = reflection in 1/2 : R→ R ; x 7→ 1− x ,

t2 = reflection in −1/2 : R→ R ; x 7→ −1− x

with

t1t2 = translation by +2 : R→ R ; x 7→ 2 + x .
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Nil∗(R,B)

I Let R be a ring, and B an (R,R)-bimodule, P an R-module.
An R-module morphism ν : P → B ⊗R P is nilpotent if for
some k > 1

νk = 0 : P → Bk ⊗R P , Bk = B ⊗R B ⊗R · · · ⊗R B .

I Let Nil(R,B) be the exact category of pairs (P, ν) with P a
f.g. projective R-module and ν : P → B ⊗R P nilpotent,

Nil∗(R,B) = K∗(Nil(R,B)) .

I The composite of the exact functors

Proj(R)→ Nil(R,B) ; P 7→ (P, 0)

Nil(R,B)→ Proj(R) ; (P, ν) 7→ P

is the identity, so that

Nil∗(R,B) = K∗(R)⊕ Ñil∗(R,B)

with Ñil∗(R,B) = ker(Nil∗(R,B)→ K∗(R)).
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The algebraic K -theory of the tensor algebra T (B)

I Definition The tensor algebra of an (R,R)-bimodule B is
the ring

T (B) = R ⊕
∞⊕

k=1

Bk .

I Theorem (Waldhausen, 1978) If B is flat as a right R-module
and f.g. projective as an R-module then

K∗(T (B)) = K∗(R)⊕ Ñil∗−1(R,B)

with

Ñil0(R,B)→ K1(T (B)) ;

[P, ν] 7→ τ(1 + ν : T (B)⊗R P → T (B)⊗R P) .

I Idea of proof Higman linearization, an algebraic
transversality technique which reduces all expressions involving
Bk for k > 1 to the case k = 1.
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The algebraic K -theory of R[t] and R[Z]

I Example If B = R then T (B) = R[t] is the polynomial
extension, and Nil(R,B) = Nil(R) is the exact category of
nilpotent endomorphisms (P, ν : P → P). Linearization:(

a0 + a1t + a2t
2 0

0 1

)
=

(
1 −t
0 1

)(
a0 + a1t t
−a2t 1

)(
1 0

a2t 1

)
I Theorem (Bass, 1968 and Quillen, 1972) For any ring R

K∗(R[t]) = K∗(R)⊕ Ñil∗−1(R) ,

K∗(R[Z]) = K∗(R)⊕ K∗−1(R)⊕ Ñil∗−1(R)⊕ Ñil∗−1(R)

with R[Z] = R[t, t−1] and

Ñil0(R)→ K1(R[t]) ; [P, ν] 7→ τ(1 + νt : P[t]→ P[t]) .
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Nil∗(R,B1,B2)

I For any ring R

Proj(R × R) = Proj(R)× Proj(R) .

I For any (R,R)-bimodules B1,B2

Nil(R,B1,B2) = Nil(R × R,

(
0 B2

B1 0

)
)

is the exact category of quadruples

( P1 , P2 , ρ1 : P1 → B1 ⊗R P2 , ρ2 : P2 → B2 ⊗R P1 )

with P1,P2 f.g. projective R-modules and ρ1, ρ2 R-module
morphisms such that the composite

ρ2ρ1 : P1 → B1 ⊗R B2 ⊗R P1

is a nilpotent R-module morphism.
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Generalized free products

I A group G is a generalized free product if it is
I either an amalgamated free product

G = G1 ∗H G2

with i1 : H → G1, i2 : H → G2 group morphisms, and

i1(x) = i2(x) ∈ G (x ∈ H) .

I or an HNN extension

G = G1 ∗H {t}

with i1, i2 : H → G1 group morphisms, and

i1(x)t = ti2(x) ∈ G (x ∈ H) .

I A generalized free product is injective if i1, i2 are injections, in
which case H,G1,G2 ⊂ G .
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The Seifert-van Kampen and Mayer-Vietoris theorems

I A subspace Y ⊂ X is codimension 1 if Y has an open
neighbourhood Y × R ⊂ X .

I Theorem (1930’s) If X ,Y are connected then:
I (S-vK) the fundamental group of π1(X ) is a generalized free

product of π1(Y ) and π1(X\Y ),
I (M-V) the homology groups H∗(X ) fit into an exact sequence

· · · → Hn(Y )→ Hn(X\Y )→ Hn(X )→ Hn−1(Y )→ . . .

I For connected X ,Y there are two cases:
I (A) Y separates X , with X\Y disconnected
I (B) Y does not separate X , with X\Y connected
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The separating case (A)

I X is a union
X = X1 ∪Y X2

with X1,X2 connected.

X1
Y

X2

I The fundamental group is an amalgamated free product

π1(X ) = π1(X1) ∗π1(Y ) π1(X2)

I The homology groups are related by a Mayer-Vietoris exact
sequence

· · · → Hn(Y )→ Hn(X1)⊕Hn(X2)→ Hn(X )→ Hn−1(Y )→ . . . .
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The non-separating case (B)

I X is a union

X = X1 ∪Y×{0,1} Y × [0, 1]

with X1 connected.

X1

Y

I The fundamental group is an HNN extension

π1(X ) = π1(X1) ∗π1(Y ) {t} .
I The homology groups are related by a Mayer-Vietoris exact

sequence

· · · → Hn(Y )
i1 − i2// Hn(X1)→ Hn(X )→ Hn−1(Y )→ . . . .
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The algebraic K -theory of generalized free products

I Theorem (Waldhausen, 1978) (A) For an injective
amalgamated free product G = G1 ∗H G2

Kn(R[G ]) = Kn(R[H]→ R[G1]×R[G2])⊕Ñiln−1(R[H],B1,B2)

with Bj = R[Gj\H] (j = 1, 2), and an almost-Mayer-Vietoris
exact sequence

· · · → Kn(R[H])⊕ Ñiln(R[H],B1,B2)→ Kn(R[G1])⊕ Kn(R[G2])

→ Kn(R[G ])
∂ // Kn−1(R[H])⊕ Ñiln−1(R[H],B1,B2)→ . . .

I (B) For an injective HNN extension G = G1 ∗H {t}

Kn(R[G ]) = Kn(i1 − i2 : R[H]→ R[G1])⊕ Ñiln−1

with an almost-Mayer-Vietoris exact sequence

· · · → Kn(R[H])⊕ Ñiln → Kn(R[G1])

→ Kn(R[G ])
∂ // Kn−1(R[H])⊕ Ñiln−1 → . . . .
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The algebraic K -theory of R[D∞]

I For R[D∞] = R[Z2 ∗ Z2] take B1 = B2 = R, so that

K∗(R[D∞]) = K∗(R → R[Z2]× R[Z2])⊕ Ñil∗−1(R,R,R) .

I The exact category

Nil(R,R,R) = Nil(R × R,

(
0 R
R 0

)
)

has objects quadruples (P1,P2, ρ1 : P1 → P2, ρ2 : P2 → P1)
with P1,P2 f.g. projective R-modules and ρ2ρ1 : P1 → P1

nilpotent, and

K∗(Nil(R,R,R)) = K∗(R)⊕ K∗(R)⊕ Ñil∗(R,R,R) .

I An element x1 ∈ P1 can be “killed” by an “algebraic cell
exchange”

(P1,P2, ρ1, ρ2)→ (P1/〈x1〉,P2, [ρ1], [ρ2])

if and only if ρ1(x1) = 0 ∈ P2. Similarly for x2 ∈ P2.
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The Nil−Nil theorem

I The construction of the groups Ñil∗(R,R,R) is more

complicated than that of Ñil∗(R). However:

I Nil−Nil Theorem (DKR, 2008) For any ring R the functors
of exact categories

i : Nil(R)→ Nil(R,R,R) ; (P, ν) 7→ (P,P, ν, 1) ,

j : Nil(R,R,R)→ Nil(R) ; (P1,P2, ρ1, ρ2) 7→ (P1, ρ2ρ1)

induce inverse isomorphisms

i : Ñil∗(R) ∼= Ñil∗(R,R,R) ,

j : Ñil∗(R,R,R) ∼= Ñil∗(R) .

I Idea of proof For any (P1,P2, ρ1, ρ2) it is possible to make
ρ2 an isomorphism by elementary algebraic cell exchanges.
Details in DKR.
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The transfer theorem

I Theorem (DKR, 2008) The transfer for the index 2 subgroup
Z ⊂ D∞

K∗(R[D∞]) = K∗(R → R[Z2]× R[Z2])⊕ Ñil∗−1(R,R,R)

→ K∗(R[Z]) = K∗(R)⊕ K∗−1(R)⊕ Ñil∗−1(R)⊕ Ñil∗−1(R)

is the diagonal embedding on the Ñil-groups

Ñil∗−1(R,R,R) ∼= Ñil∗−1(R)

→ Ñil∗−1(R)⊕ Ñil∗−1(R) ; x 7→ (x , x) .
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Some non-zero Ñil-groups

I Example (Bass, 1968) For R = Z[Z2 × Z2 × Z]

Ñil0(R) = ker(K1(R[t])→ K1(R))

is an infinitely generated group of exponent a power of two.

I Corollary (DKR, 2008) For R = Z[Z2 × Z2 × Z]

Ñil0(R,R,R) = Ñil0(R)

is an infinitely generated group of exponent a power of two.

I This is the first nontrivial computation of the type (A)

codimension 1 splitting obstruction groups Ñil∗(R,B1,B2).
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Codimension 1 transversality and splitting

I A map of finite CW complexes f : M → X is transverse at a
codimension 1 subcomplex Y ⊂ X if f is cellular and
N = f −1(Y ) ⊂ M is a codimension 1 subcomplex.

I Proposition Every map is simple homotopic to a transverse
map.

I A homotopy equivalence of finite CW complexes f : M → X
is split at a codimension 1 subcomplex Y ⊂ X if it is
transverse and the restrictions

g = f | : N → Y , h = f | : M\N → X\Y

are also homotopy equivalences.
I The Whitehead torsion τ(f ) ∈Wh(π1(X )) of a split f is

τ(f ) = τ(h)− τ(g) ∈ im(Wh(π1(X\Y ))→Wh(π1(X ))) .

So [τ(f )] ∈ coker(Wh(π1(X\Y ))→Wh(π1(X ))) is an
obstruction to codimension 1 splitting.
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The codimension 1 splitting theorem

I Theorem (Farrell-Hsiang (1968), Waldhausen (1969/78))
Let (X ,Y ) be a codimension 1 finite CW pair with X ,Y
connected and π1(Y )→ π1(X ) injective.

I (i) The Whitehead group of X fits into an exact sequence

Wh(π1(Y ))
i1−i2 // Wh(π1(X\Y ))→Wh(π1(X ))

∂ // K̃0(Z[π1(Y )])⊕ Ñil0(Z[π1(Y )],B1,B2)→ K̃0(Z[π1(X\Y )])

with Bj = Z[π1(Xj)\π1(Y )] (j = 1, 2) in case (A).

I (ii) A homotopy equivalence f : M → X from a finite CW
complex M splits at Y ⊂ X if and only if

τ(f ) ∈ im(Wh(π1(X\Y ))→Wh(π1(X )))

= ker(∂ : Wh(π1(X ))→ K̃0(Z[π1(Y )])⊕ Ñil0(Z[π1(Y )],B1,B2)) .
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The universal cover of a union X = X1 ∪Y X2 I.

I The Bass-Serre tree T of an injective amalgamated free
product G = G1 ∗H G2 has

T (0) = [G : G1] ∪ [G : G2] , T (1) = [G : H] .

I Let X = X1 ∪Y X2 be a finite CW complex with a type (A)
codimension 1 subcomplex Y ⊂ X such that the morphisms

ij : π1(Y )→ π1(Xj) (j = 1, 2)

are injective, and π1(X ) = π1(X1) ∗π1(Y ) π1(X2).

I The universal cover of X is

X̃ =
⋃

g1∈[π1(X ):π1(X1)]

g1X̃1∪ ⋃
h∈[π1(X ):π1(Y )]

hỸ

⋃
g2∈[π1(X ):π1(X2)]

g2X̃2

with X̃1, X̃2, Ỹ the universal covers of X1,X2,Y .
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The universal cover of a union X = X1 ∪Y X2 II.

X̃+ = X̃2 ∪
⋃

h2∈[G2:H]\{H}
h2X̃1 ∪

⋃
h1∈[G1:H]\{H},h2∈[G2:H]\{H}

h2h1X̃2 ∪ . . . ,

X̃− = X̃1 ∪
⋃

h1∈[G1:H]\{H}
h1X̃2 ∪

⋃
h1∈[G1:H]\{H},h2∈[G2:H]\{H}

h1h2X̃1 ∪ . . . .

Y X̃2X̃1

X̃+Y

X̃ = X̃− ∪
Ỹ

X̃+

X̃− •
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The type (A) codimension 1 splitting obstruction I.

I Given a transverse map

f = f1 ∪g f2 : M = M1 ∪N M2 → X = X1 ∪Y X2

the kernel modules fit into an M-V exact sequence

· · · → Z[π1(X )]⊗Z[π1(Y )] Kr (N)→
Z[π1(X )]⊗Z[π1(X1)] Kr (M1)⊕ Z[π1(X )]⊗Z[π1(X2)] Kr (M2)

→ Kr (M)→ Z[π1(X )]⊗Z[π1(Y )] Kr−1(N)→ . . .

I f is a homotopy equivalence iff π1-iso and K∗(M) = 0.

I f is a split homotopy equivalence iff f1, f2, g are π1-iso and
K∗(M1) = K∗(M2) = K∗(N) = 0.

I Let X = X̃/π1(Y ), X j = X̃j/π1(Y ) so that X = X
− ∪Y X

+

with X 1 ⊂ X
−

, X 2 ⊂ X
+

. Similarly for M = M
− ∪Y M

+
.
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The type (A) codimension 1 splitting obstruction II.

I Lemma (Waldhausen) (i) For n > 2 a homotopy equivalence

f = f1 ∪g f2 : M = M1 ∪N M2 → X = X1 ∪Y X2

is simple homotopic to one concentrated in dimension n, with

Kr (M1) = Kr (M2) = Kr (N) = 0 for r 6= n .

I (ii) The codimension 1 splitting obstruction of f is

∂[τ(f )] = ([P1], [P1,P2, ρ1, ρ2]) ∈ K̃0(R)⊕ Ñil0(R,B1,B2)

with R = Z[π1(Y )], Bj = Z[π1(Xj)\ijπ1(Y )] (j = 1, 2), and

P1 = Kn+1(M
+
,N) , P2 = Kn+1(M

−
,N)

f.g. projective R-modules such that P1 ⊕ P2 = Kn(N) is f.g.
free and

[P1] + [P2] = [Kn(N)] = 0 ∈ K̃0(R) .
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Semi-splitting

I Let f : M → X is a homotopy equivalence of finite CW
complexes, and let Y ⊂ X = X1 ∪Y X2 be a type (A)
codimension 1 subcomplex. A homotopy equivalence

f = f1 ∪g f2 : M = M1 ∪N M2 → X = X1 ∪Y X2

is semi-split if
K∗(M2,N) = 0 .

I If f is concentrated in dimension n it follows from the exact
sequence

0→ Kn+1(M2,N)→ P2 = Kn+1(M
+
,N)

ρ2 //

B2 ⊗R P1 = Kn+1(M
+
,M2)→ Kn(M2,N)→ 0

that f is semi-split if and only if ρ2 : P2 → B2 ⊗R P1 is an
isomorphism.
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The topological semi-splitting theorem

I Theorem Let X = X1 ∪Y X2 be a finite CW complex with a
type (A) decomposition. If the group morphisms

i1 : π1(Y )→ π1(X1) , i2 : π1(Y )→ π1(X2)

are injective then every homotopy equivalence f : M → X of
finite CW complexes is simple homotopic to one which
semi-splits.

I Idea of proof As for the Nil-Nil theorem, realizing algebraic
cell exchanges by geometric cell exchanges.
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Groups over D∞

I Definition A group over D∞ is a group G with a surjection

p : G → D∞ = Z2 ∗ Z2 = 〈t1〉 ∗ 〈t2〉 .

I Lemma 1 G is an amalgamated free product

G = G1 ∗H G2

with Gi = p−1(〈ti 〉) for (i = 1, 2), and

H = G1 ∩ G2 = ker(p) , [Gi : H] = 2 .

I Lemma 2 G has an index 2 subgroup G = p−1(〈t1t2〉) which
is an HNN extension

G = H ×α Z , ht = tα(h)

with Z = 〈t〉 for any t ∈ p−1〈t1t2〉 and

α : H → H ; h 7→ t−1ht .
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Further results from the DKR paper I.

I The extension of the Nil-Nil-theorem to an arbitrary group
G = G1 ∗H G2 over D∞ = Z2 ∗ Z2

Kn(R[G ]) = Kn(i1 × i2)⊕ Ñiln−1(R[H],B1,B2)

= Kn(i1 × i2)⊕ Ñiln−1(R[H],B1 ⊗R[H] B2)

with i1 × i2 : R[H]→ R[G1]× R[G2] and Bj = R[Gj\H].

I The extension of the transfer theorem to the index 2 subgroup
G = H ×α Z ⊂ G . The transfer

K∗(R[G ]) = K∗(i1 × i2)⊕ Ñil∗−1(R[H],B1,B2)

→ K∗(R[G ]) = K∗(1− α : R[H]→ R[H])

⊕ Ñil∗−1(R[H],B1 ⊗R[H] B2)⊕ Ñil∗−1(R[H],B1 ⊗R[H] B2)

is the diagonal embedding on the Ñil-groups.
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Further results from the DKR paper II.

I The extension of the Nil-Nil-theorem to (R,R)-bimodules
B1,B2 such that B2 is f.g. projective R-module and flat as a
right R-module. The functors of exact categories

i : Nil(R,B1 ⊗R B2)→ Nil(R,B1,B2) ;

(P, ν) 7→ (P,B2 ⊗R P, ν, 1) ,

j : Nil(R,B1,B2)→ Nil(R,B1 ⊗R B2) ;

(P1,P2, ρ1, ρ2) 7→ (P1, ρ2ρ1)

induce isomorphisms

Ñil∗(R,B1 ⊗R B2) ∼= Ñil∗(R,B1,B2) .

I The reduction of the Farrell–Jones isomorphism conjecture in
algebraic K -theory to the family of finite-by-cyclic groups,
avoiding the need for virtually cyclic groups of infinite dihedral
type.


