Exotic spheres and the Kervaire invariant

Addendum to the slides

Michel Kervaire's work in surgery and knot theory

http://www.maths.ed.ac.uk/~aar/slides/kervaire.pdf

Andrew Ranicki (Edinburgh)

The Kervaire-Milnor braid for m I.

For any m ≥ 5 there is a commutative braid of 4 interlocking exact sequences (slide 46)

The Kervaire-Milnor braid for m II.

- \triangleright Θ_m is the K-M group of oriented *m*-dimensional exotic spheres.
- ▶ $P_m = \mathbb{Z}, 0, \mathbb{Z}_2, 0, \mathbb{Z}, 0, \mathbb{Z}_2, 0, \dots$ is the *m*-dimensional simply-connected surgery obstruction group. These groups only depend on $m \pmod{4}$.
- ▶ $a: A_m = \pi_m(G/O) \rightarrow P_m$ sends an m-dimensional almost framed differentiable manifold M to the surgery obstruction of the corresponding normal map $(f,b): M^m \rightarrow S^m$.
- For even m $b: P_m \to \Theta_{m-1}$ sends a nonsingular $(-)^{m/2}$ -quadratic form over $\mathbb Z$ of rank r to the boundary $\Sigma^{m-1} = \partial W$ of the Milnor plumbing W of r copies of $\tau_{S^{m/2}}$ realizing the form.
- ▶ The image of b is the subgroup $bP_m \subseteq \Theta_{m-1}$ of the (m-1)-dimensional exotic spheres Σ^{m-1} which are the boundaries $\Sigma^{m-1} = \partial W$ of m-dimensional framed differentiable manifolds W.
- ▶ $c: \Theta_m \to \pi_m(G/O)$ sends an m-dimensional exotic sphere Σ^m to its fibre-homotopy trivialized stable normal bundle.

The Kervaire-Milnor braid for m III.

- ▶ $J: \pi_m(O) \to \pi_m(G) = \pi_m^S$ is the *J*-homomorphism sending $\eta: S^m \to O$ to the *m*-dimensional framed differentiable manifold (S^m, η) .
- ▶ The map $\mathfrak{o}: \pi_m(G/O) = A_m \to \pi_{m-1}(O)$ sends an m-dimensional almost framed differentiable manifold M to the framing obstruction

$$\mathfrak{o}(M) \in \pi_m(BO) = \pi_{m-1}(O) .$$

► The isomorphism $\pi_m(PL/O) \to \Theta_m$ sends a vector bundle $\alpha: S^m \to BO(k)$ (k large) with a PL trivialization $\beta: \alpha^{PL} \simeq *: S^m \to BPL(k)$ to the exotic sphere Σ^m such that $\Sigma^m \times \mathbb{R}^k$ is the smooth structure on the PL-manifold $E(\alpha)$ given by smoothing theory, with stable normal bundle

$$\nu_{\Sigma^m}: \Sigma^m \simeq S^m \stackrel{\alpha}{\longrightarrow} BO(k)$$

 $\pi_m(PL) = \Theta_m^{fr}$ is the K-M group of framed *n*-dimensional exotic spheres.

The Kervaire-Milnor braid for m = 4k + 2 I.

▶ For $m = 4k + 2 \ge 5$ the braid is given by

with K the Kervaire invariant map.

The Kervaire-Milnor braid for m = 4k + 2 II.

▶ K is the Kervaire invariant on the (4k + 2)-dimensional stable homotopy group of spheres

$$\begin{array}{lll} \mathcal{K} &: \ \pi_{4k+2}(\mathcal{G}) \ = \ \pi_{4k+2}^{\mathcal{S}} \ = \ \varinjlim_{j} \pi_{j+4k+2}(\mathcal{S}^{j}) \\ \\ &= \ \Omega_{4k+2}^{fr} \ = \ \{ \text{framed cobordism} \} \rightarrow P_{4k+2} = \mathbb{Z}_{2} \end{array}$$

- ► K is the surgery obstruction: K = 0 if and only if every (4k + 2)-dimensional framed differentiable manifold is framed cobordant to a framed exotic sphere.
- ▶ The exotic sphere group Θ_{4k+2} fits into the exact sequence

$$0 \longrightarrow \Theta_{4k+2} \longrightarrow \pi_{4k+2}(G) \xrightarrow{K} \mathbb{Z}_2 \longrightarrow \ker(\pi_{4k+1}(PL) \longrightarrow \pi_{4k+1}(G)) \longrightarrow 0$$

The Kervaire-Milnor braid for m = 4k + 2 III.

- ▶ $a: \pi_{4k+2}(G/O) \to \mathbb{Z}_2$ is the surgery obstruction map, sending a normal map $(f,b): M^{4k+2} \to S^{4k+2}$ to the Kervaire invariant of M.
- ▶ $b: P_{4k+2} = \mathbb{Z}_2 \to \Theta_{4k+1}$ sends the generator $1 \in \mathbb{Z}_2$ to the boundary $b(1) = \Sigma^{4k+1} = \partial W$ of the Milnor plumbing W of two copies of $\tau_{S^{2k+1}}$ using the standard rank 2 quadratic form $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ over \mathbb{Z} with Arf invariant 1.
- The image of b is the subgroup $bP_{4k+2} \subseteq \Theta_{4k+1}$ of the (4k+1)-dimensional exotic spheres Σ^{4k+1} which are the boundaries $\Sigma^{4k+1} = \partial W$ of framed (4k+2)-dimensional differentiable manifolds W. If k is such that K=0 (e.g. k=2) then $bP_{4k+2} = \mathbb{Z}_2 \subseteq \Theta_{4k+1}$, and if $\Sigma^{4k+1} = 1 \in bP_{4k+2}$ (as above) then $M^{4k+2} = W \cup_{\Sigma^{4k+1}} D^{4k+2}$ is the (4k+2)-dimensional Kervaire PL manifold without a differentiable structure.
- ▶ $c: \Theta_{4k+2} \to \pi_{4k+2}(G/O)$ sends a (4k+2)-dimensional exotic sphere Σ^{4k+2} to its fibre-homotopy trivialized stable normal bundle.

What if K = 0?

- ▶ For any $k \ge 1$ the following are equivalent:
 - $K: \pi_{4k+2}(G) = \pi_{4k+2}^S \to \mathbb{Z}_2 \text{ is } 0,$
 - $\bullet \ \Theta_{4k+2} \cong \pi_{4k+2}(G),$
 - $\ker(\pi_{4k+1}(PL) \to \pi_{4k+1}(G)) \cong \mathbb{Z}_2,$
 - Every simply-connected (4k+2)-dimensional Poincaré complex X with a vector bundle reduction $\tilde{\nu}_X: X \to BO$ of the Spivak normal fibration $\nu_X: X \to BG$ is homotopy equivalent to a closed (4k+2)-dimensional differentiable manifold.

When is $K \neq 0$?

- ► **Theorem** (Browder 1969) If $K \neq 0$ then $4k + 2 = 2^j - 2$ for some $j \geqslant 2$.
- ▶ It is known that $K \neq 0$ for $4k + 2 \in \{2, 6, 14, 30, 62\}$.
- ▶ **Theorem** (Hill-Hopkins-Ravenel 2009) If $K \neq 0$ then $4k + 2 \in \{2, 6, 14, 30, 62, 126\}$.
- ▶ It is not known if K = 0 or $K \neq 0$ for 4k + 2 = 126.

The exotic spheres home page

http://www.maths.ed.ac.uk/~aar/exotic.htm

The Kervaire invariant home page

http://www.math.rochester.edu/u/faculty/doug/kervaire.html