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e Given aring A and a set > of elements, ma-
trices, morphisms, ..., it is possible to con-
struct a new ring =1 A, the Cohn localization

of A inverting all the elementsin >. In gen-
eral, A and ~—1A are noncommutative.

e T he Cohn localization of triangular matrix
rings gives a new construction of gener-
alized free products G (= amalgamated
free product Gq1 *x Go and HN N extension
G+ {z}) and a new way of relating mod-
ules, chain complexes and quadratic forms
over Z[G] to the components. For the ap-
plication to pu-component boundary links
G=F,={z1,22,...,2u}-



Ore localization

The Ore localization of a ring A
714 = (Ax D)/~

is defined for a multiplicatively closed sub-
set > C A of elements s € A satisfying:

Ore condition for all a € A, s € X there
exists be A, t € > such that at = sbe A
(e.g. central, as=sa forallae A, s€ X)

The Ore localization is the ring of fractions
1A = (Ax D)/~

with 4 c> 1A the equivalence class
S

(a,s) ~ (b,t) iff atu = bsu € A for someu € X

>~1Aisaflat A-module, with Hy(Z~10) =
Z_lH*(C) for any A-module chain complex
C.



Cohn localization

A = ring, 2 = a set of morphisms
s. P— @ of f.g. projective A-modules.

A ring morphism A — B is >-inverting if
each 1®s: B4 P —>B®4Q (s€X)is a
B-module isomorphism.

The Cohn localization 1A is a ring with
a 2 -inverting morphism A — >—14 such
that any 2 -inverting morphism A — B has
a unique factorization A — ¥~14 — B.

> 14 exists, but could be 0. 1A need
not be a flat A-module, H,(X71C) # =1 H,.(C).

An element fs~1g € X714 is an equiva-
lence class of generalized fractions, triples
(s : P —-Q,f:P— Ag: A — Q) with
s € X (Malcolmson).



The lifting problem for chain complexes

A lift of a f.g. free ~—1A-module chain
complex C is a f.g. projective A-module
chain complex B with X~1B ~ C.

Every n-dimensional f.g. free >—1A-module
chain complex C can be lifted if n < 2, or
if 1A is an Ore localization.

For n > 3 there are lifting obstructions in
Tord(Z—1A,=-1A) fori> 1.

Chain complex lifting = algebraic analogue
of transversality. e-print AT.0304362



Stable flatness

e Definition A localization 1A of a ring
A inverting a set > of morphisms of f.g.
projective A-modules is stably flat if

Tord(=7 1A, =7 14) =0G>1).

e For stably flat > —1 A have stable exactness:

1 L 1
H(= o) = %Qz H«(D)

with ¢ — D such that -1 ~3x—1D.

e (Neeman, R. and Schofield)
Examples of ~1A4 which are not stably
flat, and > 1 A-module chain complexes which
cannot be lifted.
Math. Proc. Camb. Phil. Soc. 2004,
e-print RA.0205034



Theorem of Neeman 4+ R.

If A— >"1A is injective and stably flat then :

e have 'fibration sequence of exact categories’
T(A,X) — P(A) —» P(=71A4)

with P(A) the category of f.g. projec-
tive A-modules and T(A,3>) the category
of h.d. 1 >-torsion A-modules, and

e every finite f.g. free ~—1A-module chain
complex can be lifted

e there are long exact sequences

— Kp 1(T(A, X)) = Kp—1(A) — ...

. — Lp(A) — Lp(Z714)
— Ln(T(A, X)) — Lp_1(A) — ...
e-print RA.0109118



Group rings and Cohn localization

e Given a group G consider (commutative or
Ore) localization of the integral group ring
7Z[G], e.g. Q[G] = (Z — {0})~1Z[G]. Local-
ization is a "better” ring than Z[G], e.g.
Q[G] is semisimple for finite G.

e The ‘augmentation localization’ M~1Z[F),]
inverts the set IN of square matrices in Z[F},]
which become invertible over Z.

e If G is a generalized free product the matrix
ring M, (Z[G]) for some k > 1 is a Cohn lo-
calization M—1A of a k x k triangular matrix
ring A. The localization map A — MN—1A4 is
an ‘assembly’ map. In the ‘injective case’
it is possible to describe the homological
algebra of Z[G]-modules and the algebraic
K- and L-theory of Z[G] in terms of A and
1. In particular, this is the case for G = Fy,
with £k = u + 1.



Triangular matrix rings

Given rings A1, A> and an (A, A1)-bimodule B
define the triangular matrix ring

_ (A1 O
A= (o)
Aq (0 L
5| P, = <A2> f.g. projective
A-modules such that A = P; ¢ P».

with P; =

Proposition (i) The category of A-modules is
equivalent to the category of triples

M = (M17M27:u : B®A1 My — MQ)

with My an Aj-module, M> an A>-module and
@ an Ao>-module morphism.

(ii) If A — C'is a ring morphism such that there
is @ C-module isomorphism C® 4 P1 = C®4 P>
then C = M>(D) with D = Ends(C ®4 P;),

{A-modules} — {C-modules} ~ { D-modules};
M— (D D)®@q M
= coker(D®4, BRa, M1 — D@4, M1®D®4,M>)
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Generalized free products

e Theorem (Schofield, R.) Given group mor-
phisms H — G1, H — G» define

Z|H] 0 0
A = |z[cy] z[Gy] O
Z|Go] 0 Z[G2]

and let M ={P, C P;,P3 C P1} with P; the
1th column of A. Then

N14A = M3(Z[G1xg Go]) .
Stably flat for injective H — G1, H — G».

e Similarly for HN N extensions.

e See survey article Noncommutative localization

in topology, e-print AT.0303046, for the
connection with the Bass-Serre theory of
groups acting on trees, and the algebraic
K- and L-theory splitting theorems of Wald-
hausen and Cappell.




The codimension 2 placement problem

e For a connected space X with universal
cover X and a Z[r1(X)]-module A

H.(X;A) = H*(A®Z[7T1(X)] C()A(/))

e Let X = M\N be the complement of a
codimension 2 embedding N™ C M2, By
Alexander duality

Ho(X) = H"T?7*(M,N) (*#0,n+2)

depends only on the homotopy class of the

inclusion N C M. However, Hy«(X) depends
on the knotting of N C M.

e [ he applications of Cohn localization to

boundary links (M, N) = (S"*+2 (JS") are
[

a joint project with Des Sheiham.
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Boundary links

e An (n + 2)-dimensional u-component
boundary link is a locally flat embedding
US™ c S™*t2 with a pu-component Seifert
%

surface

ju
(Mn+1’aM) — ( U M;, S™) C gnt2
i=1
The Z-homology equivalence to the trivial
link complement

FiX=8"TA( s -y =\ srtly\/st
H pu—1 M
induces a surjection m1(X) — m(Y) = Fj.

e Can construct a Seifert surface M by tak-
ing f to be transverse at x U---Ux, CY
and setting M, = f—1(x;).
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The augmentation localization

e Theaugmentation Z[F,,] — Z factors through
the Cohn localization ~1Z[F,] inverting
the set > of square matrices in Z[F},] which
augment to invertible matrices in Z. Stably
flat (Farber and Vogel, 1992)

e A finite f.g. free Z[F,]-module chain com-
plex C is such that Hy(Z ' Z[Ful®z(p,1C) =
0 if and only if H«(Z ®zF, C) = 0.

e The localization map Z[F,] — X~ 1Z[F,]
detects knotting of a boundary link |JS™ C
m

S"t2 in the sense that

Ho(X;Z[F,)) = Ho(X) , H«(X; =7 1Z[F,]) =0

for x =2 0,1,n+1, with X the boundary link
complement and X the cover of X induced
from the universal cover Y of Y.
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[ -groups

Theorem (Cappell-Shaneson, 1980)

For n > 4 the concordance group Cn(FM) of
pu-component (n4+2)-dimensional boundary
links (with Fj,-structure) is the relative I'-
group

Z|Fy) Z[F}]
Cn(Fu) = rn-|-3< l b l >

LIFy ——7
in the exact sequence

- — Ly 3(Z[FL]) — Ty 3(Z[FL] — Z)
— [ p43(P) = Lygo(Z[Fy]) — ... .

In particular, Cy,(Fy) = 0 for ¢ > 2.
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Seifert, Blanchfield, computation

e (Levine for p = 1 1969, Ko, Mio, 1987)
The expression of Cp,_1(Fy) in terms of
Seifert matrices.

e (Kearton for o = 1 1973, Duval, 1986)
The expression of Cp,_1(Fy) for ¢ > 2 in
terms of Blanchfield forms.

e (Levine for u = 1 1970, Sheiham, 2002)
The computation of Co,_1(Fy) (infinitely
generated) for ¢ > 2, using Seifert forms.
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The L-theory localization sequence

Theorem (R., 2003) The Cappell-Shaneson
exact sequence is the noncommutative L-
theory localization exact sequence

N Ln+3(Z[FM]) — Ln+3(Z_IZ[FM])

— Ln—|—3(T(Z[FM]> >)) — Ln—I—Q(Z[FM]) .

with 4 3(P) = L4 3(T(Z[FL], X)) the cobor-
dism group of (n+2)-dimensional Z-contractible
quadratic Poincaré complexes over Z[F}].
The Fj-link concordance class of a bound-

ary link JS™ ¢ S™"12 is the cobordism class
[t

of the complex (C(f)s41,%) with f: C(X) —
C(Y) the canonical Z-coefficient chain equiv-
alence.

Can recover the middle dimensional Blanchfield-
Duval form for n = 2q — 1.
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The Cayley localization (1)

e For 1 > 1 and any ring R let A be the
(u+ 1) x (u+ 1) triangular matrix ring

(R ROR R®R ... R®R)

0O R O ... 0
A=1]|0 © R ... O

o o o . R,

e An A-module V consists of R-modules Vj, V1,...

and R-module morphisms g; 1,9;2:V; — Vo,
labelled by Cayley graph of Fy,.

o Let Qg,Q1,...,Qu be the f.g. projective A-
module defined by the columns of A, and

N={0;;:Qi—Qoli=1,2,...,0,5=1,2}

with T j the projection of the jth factor.
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The Cayley localization (II)

e Theorem (Schofield, R.) The Cohn local-
ization of A inverting 1 is

N4 = M, 1 (RIF])

with the endomorphism ring of M—1Qq freely
generated by the automorphisms z; = 0‘2'71(0‘@"2)_1.

e Example Let X be a manifold (e.g. bound-
ary link exterior) with a map f: X — V51
Lt

transverse at xqy U.--U=xp. Let Xg be ob-
tained from X by cutting out neighbour-
hoods of X; = f~1(x) (G = 1,2,...,u).
The construction of the induced Fj-cover
X from Xg, X1,..., X, and the Cayley graph
gives a lifting of Z[F,]-module chain com-
plex C(X) to an A-module chain complex
D(X) such that N~1D(X) = C(X) (with
R=127).
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Blanchfield and Seifert modules (I)

A Seifert module (V,s) is a f.g. projec-
tive R-module V together with an endo-
morphism s : V. — V and a direct sum de-
composition V=V, Vo & --- B Vj.

A Blanchfield (= Fj,-link) module B is a ho-
mological dimension 1 R[F},]-module such
that

p 7
PD1-z): @ B — B; (b1,ba,....bp) — Y (1—z)b;
is an R-module isomorphism, Fj, = (21,22, ..., 2u)-

The covering of a Seifert module (V,s) is
the Blanchfield module

B(V,s) = coker(1 —s+sz: V[F,] — V[F.])

L4

with z = Y mz; @ V[Fu] — V[F,] and =; :
1=1
V-V, —->V.
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Blanchfield and Seifert modules (II)

For any ring with involution R there is de-
fined a commutative braid of exact cate-

gories with chain duality and functors
T T
T(A, M) P(A) P(Z~1R[Fy])

N

T(A,NUX) P(N~1A) =~ P(R[F,])

Q /
T(R[FL), %)

with = ~1R[F,] the augmentation Cohn lo-
calization, M—1A the Cayley Cohn localiza-

tion and

T(A, M) = {Seifert modules (V, s) with B(V,s) = 0},
T(A,NMUX) = {Seifert modules},

T(R[F.],X) = {Blanchfield modules}

Theorem (R.4+Sheiham) The braid induces
a commutative braid of exact sequences in
algebraic K and L-theory for R = Z.
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