COHN LOCALIZATION, GENERALIZED FREE PRODUCTS AND BOUNDARY LINKS

ANDREW RANICKI (Edinburgh) http://www.maths.ed.ac.uk/~aar

- Given a ring A and a set Σ of elements, matrices, morphisms, ..., it is possible to construct a new ring Σ⁻¹A, the <u>Cohn localization</u> of A inverting all the elements in Σ. In general, A and Σ⁻¹A are noncommutative.
- The Cohn localization of triangular matrix rings gives a new construction of generalized free products G (= amalgamated free product $G_1 *_H G_2$ and HNN extension $G *_H \{z\}$) and a new way of relating modules, chain complexes and quadratic forms over $\mathbb{Z}[G]$ to the components. For the application to μ -component boundary links $G = F_{\mu} = \{z_1, z_2, \dots, z_{\mu}\}.$

Ore localization

• The <u>Ore localization</u> of a ring A

 $\Sigma^{-1}A = (A \times \Sigma) / \sim$

is defined for a multiplicatively closed subset $\Sigma \subset A$ of elements $s \in A$ satisfying:

- Ore condition for all a ∈ A, s ∈ Σ there exists b ∈ A, t ∈ Σ such that at = sb ∈ A (e.g. central, as = sa for all a ∈ A, s ∈ Σ)
- The Ore localization is the ring of fractions
 $$\begin{split} \Sigma^{-1}A &= (A \times \Sigma)/\sim \\ \text{with } \frac{a}{s} \in \Sigma^{-1}A \text{ the equivalence class} \\ (a,s) \sim (b,t) \text{ iff } atu = bsu \in A \text{ for some } u \in \Sigma \end{split}$$
- $\Sigma^{-1}A$ is a flat A-module, with $H_*(\Sigma^{-1}C) = \Sigma^{-1}H_*(C)$ for any A-module chain complex C.

Cohn localization

- $A = \operatorname{ring}, \Sigma = a$ set of morphisms $s: P \to Q$ of f.g. projective A-modules.
- A ring morphism $A \to B$ is $\underline{\Sigma}$ -inverting if each $1 \otimes s : B \otimes_A P \to B \otimes_A Q$ $(s \in \Sigma)$ is a *B*-module isomorphism.
- The <u>Cohn localization</u> $\Sigma^{-1}A$ is a ring with a Σ -inverting morphism $A \to \Sigma^{-1}A$ such that any Σ -inverting morphism $A \to B$ has a unique factorization $A \to \Sigma^{-1}A \to B$.
- $\Sigma^{-1}A$ exists, but could be 0. $\Sigma^{-1}A$ need not be a flat A-module, $H_*(\Sigma^{-1}C) \neq \Sigma^{-1}H_*(C)$.
- An element $fs^{-1}g \in \Sigma^{-1}A$ is an equivalence class of generalized fractions, triples $(s : P \to Q, f : P \to A, g : A \to Q)$ with $s \in \Sigma$ (Malcolmson).

The lifting problem for chain complexes

- A <u>lift</u> of a f.g. free $\Sigma^{-1}A$ -module chain complex *C* is a f.g. projective *A*-module chain complex *B* with $\Sigma^{-1}B \simeq C$.
- Every *n*-dimensional f.g. free $\Sigma^{-1}A$ -module chain complex *C* can be lifted if $n \leq 2$, or if $\Sigma^{-1}A$ is an Ore localization.
- For $n \ge 3$ there are lifting obstructions in $\operatorname{Tor}_i^A(\Sigma^{-1}A, \Sigma^{-1}A)$ for $i \ge 1$.
- Chain complex lifting = algebraic analogue of transversality. e-print AT.0304362

Stable flatness

• <u>Definition</u> A localization $\Sigma^{-1}A$ of a ring A inverting a set Σ of morphisms of f.g. projective A-modules is <u>stably flat</u> if

$$\operatorname{Tor}_{i}^{A}(\Sigma^{-1}A,\Sigma^{-1}A) = 0 \ (i \ge 1) \ .$$

• For stably flat $\Sigma^{-1}A$ have stable exactness:

$$H_*(\Sigma^{-1}C) = \varinjlim_D \Sigma^{-1}H_*(D)$$

with $C \to D$ such that $\Sigma^{-1}C \simeq \Sigma^{-1}D$.

(Neeman, R. and Schofield)
 Examples of Σ⁻¹A which are not stably
 flat, and Σ⁻¹A-module chain complexes which
 cannot be lifted.

 Math. Proc. Camb. Phil. Soc. 2004,
 e-print RA.0205034

Theorem of Neeman + R.

If $A \to \Sigma^{-1} A$ is injective and stably flat then :

• have 'fibration sequence of exact categories'

$$T(A, \Sigma) \to P(A) \to P(\Sigma^{-1}A)$$

with P(A) the category of f.g. projective A-modules and $T(A, \Sigma)$ the category of h.d. 1 Σ -torsion A-modules, and

- every finite f.g. free $\Sigma^{-1}A$ -module chain complex can be lifted
- there are long exact sequences

$$\cdots \to K_n(A) \to K_n(\Sigma^{-1}A)$$

$$\to K_{n-1}(T(A,\Sigma)) \to K_{n-1}(A) \to \dots$$

$$\cdots \to L_n(A) \to L_n(\Sigma^{-1}A)$$

$$\to L_n(T(A,\Sigma)) \to L_{n-1}(A) \to \dots$$
e-print RA.0109118

Group rings and Cohn localization

- Given a group G consider (commutative or Ore) localization of the integral group ring Z[G], e.g. Q[G] = (Z − {0})⁻¹Z[G]. Localization is a "better" ring than Z[G], e.g. Q[G] is semisimple for finite G.
- The 'augmentation localization' $\Pi^{-1}\mathbb{Z}[F_{\mu}]$ inverts the set Π of square matrices in $\mathbb{Z}[F_{\mu}]$ which become invertible over \mathbb{Z} .
- If G is a generalized free product the matrix ring $M_k(\mathbb{Z}[G])$ for some $k \ge 1$ is a Cohn localization $\Pi^{-1}A$ of a $k \times k$ triangular matrix ring A. The localization map $A \to \Pi^{-1}A$ is an 'assembly' map. In the 'injective case' it is possible to describe the homological algebra of $\mathbb{Z}[G]$ -modules and the algebraic K- and L-theory of $\mathbb{Z}[G]$ in terms of A and Π . In particular, this is the case for $G = F_{\mu}$ with $k = \mu + 1$.

Triangular matrix rings

Given rings A_1, A_2 and an (A_2, A_1) -bimodule B define the triangular matrix ring

$$A = \begin{pmatrix} A_1 & 0 \\ B & A_2 \end{pmatrix}$$

with $P_1 = \begin{pmatrix} A_1 \\ B \end{pmatrix}$, $P_2 = \begin{pmatrix} 0 \\ A_2 \end{pmatrix}$ f.g. projective
A-modules such that $A = P_1 \oplus P_2$.

<u>Proposition</u> (i) The category of A-modules is equivalent to the category of triples

$$M = (M_1, M_2, \mu : B \otimes_{A_1} M_1 \to M_2)$$

with M_1 an A_1 -module, M_2 an A_2 -module and μ an A_2 -module morphism.

(ii) If $A \to C$ is a ring morphism such that there is a *C*-module isomorphism $C \otimes_A P_1 \cong C \otimes_A P_2$ then $C = M_2(D)$ with $D = \text{End}_C(C \otimes_A P_1)$,

 ${A-\text{modules}} \rightarrow {C-\text{modules}} \approx {D-\text{modules}};$ $M \mapsto (D \ D) \otimes_A M$

 $= \operatorname{coker}(D \otimes_{A_2} B \otimes_{A_1} M_1 \to D \otimes_{A_1} M_1 \oplus D \otimes_{A_2} M_2)$

8

Generalized free products

• <u>Theorem</u> (Schofield, R.) Given group morphisms $H \rightarrow G_1$, $H \rightarrow G_2$ define

$$A = \begin{pmatrix} \mathbb{Z}[H] & 0 & 0 \\ \mathbb{Z}[G_1] & \mathbb{Z}[G_1] & 0 \\ \mathbb{Z}[G_2] & 0 & \mathbb{Z}[G_2] \end{pmatrix}$$

and let $\Pi = \{P_2 \subset P_1, P_3 \subset P_1\}$ with P_i the *i*th column of A. Then

$$\Pi^{-1}A = M_3(\mathbb{Z}[G_1 *_H G_2]) .$$

Stably flat for injective $H \to G_1$, $H \to G_2$.

- Similarly for *HNN* extensions.
- See survey article <u>Noncommutative localization</u> <u>in topology</u>, e-print AT.0303046, for the connection with the Bass-Serre theory of groups acting on trees, and the algebraic *K*- and *L*-theory splitting theorems of Waldhausen and Cappell.

The codimension 2 placement problem

• For a connected space X with universal cover \widetilde{X} and a $\mathbb{Z}[\pi_1(X)]$ -module A

 $H_*(X; A) := H_*(A \otimes_{\mathbb{Z}[\pi_1(X)]} C(\widetilde{X}))$

• Let $X = M \setminus N$ be the complement of a codimension 2 embedding $N^n \subset M^{n+2}$. By Alexander duality

$$H_*(X) = H^{n+2-*}(M,N) \quad (* \neq 0, n+2)$$

depends only on the homotopy class of the inclusion $N \subset M$. However, $H_*(\widetilde{X})$ depends on the knotting of $N \subset M$.

• The applications of Cohn localization to boundary links $(M,N) = (S^{n+2}, \bigcup_{\mu} S^n)$ are a joint project with Des Sheiham.

Boundary links

• An (n+2)-dimensional μ -component boundary link is a locally flat embedding $\bigcup_{\mu} S^n \subset S^{n+2}$ with a μ -component Seifert surface

$$(M^{n+1}, \partial M) = (\bigcup_{i=1}^{\mu} M_i, S^n) \subset S^{n+2}$$

The \mathbb{Z} -homology equivalence to the trivial link complement

 $f: X = S^{n+2} \setminus (\bigcup_{\mu} S^n) \to Y = \bigvee_{\mu=1} S^{n+1} \vee \bigvee_{\mu} S^1$

induces a surjection $\pi_1(X) \to \pi_1(Y) = F_{\mu}$.

• Can construct a Seifert surface M by taking f to be transverse at $*_1 \cup \cdots \cup *_{\mu} \subset Y$ and setting $M_i = f^{-1}(*_i)$.

The augmentation localization

- The augmentation $\mathbb{Z}[F_{\mu}] \to \mathbb{Z}$ factors through the Cohn localization $\Sigma^{-1}\mathbb{Z}[F_{\mu}]$ inverting the set Σ of square matrices in $\mathbb{Z}[F_{\mu}]$ which augment to invertible matrices in \mathbb{Z} . Stably flat (Farber and Vogel, 1992)
- A finite f.g. free $\mathbb{Z}[F_{\mu}]$ -module chain complex C is such that $H_*(\Sigma^{-1}\mathbb{Z}[F_{\mu}]\otimes_{\mathbb{Z}}F_{\mu}]C) = 0$ if and only if $H_*(\mathbb{Z}\otimes_{\mathbb{Z}}F_{\mu}]C) = 0$.
- The localization map $\mathbb{Z}[F_{\mu}] \to \Sigma^{-1}\mathbb{Z}[F_{\mu}]$ detects knotting of a boundary link $\bigcup_{\mu} S^{n} \subset S^{n+2}$, in the sense that $H_{*}(X;\mathbb{Z}[F_{\mu}]) = H_{*}(\widetilde{X}), \ H_{*}(X;\Sigma^{-1}\mathbb{Z}[F_{\mu}]) = 0$

for $* \neq 0, 1, n+1$, with X the boundary link complement and \widetilde{X} the cover of X induced from the universal cover \widetilde{Y} of Y.

Γ-groups

• <u>Theorem</u> (Cappell-Shaneson, 1980) For $n \ge 4$ the concordance group $C_n(F_\mu)$ of μ -component (n+2)-dimensional boundary links (with F_μ -structure) is the relative Γ group

$$C_{n}(F_{\mu}) = \Gamma_{n+3} \begin{pmatrix} \mathbb{Z}[F_{\mu}] \longrightarrow \mathbb{Z}[F_{\mu}] \\ \varphi \\ \mathbb{Z}[F_{\mu}] \longrightarrow \mathbb{Z} \end{pmatrix}$$

in the exact sequence

$$\cdots \to L_{n+3}(\mathbb{Z}[F_{\mu}]) \to \Gamma_{n+3}(\mathbb{Z}[F_{\mu}] \to \mathbb{Z})$$
$$\to \Gamma_{n+3}(\Phi) \to L_{n+2}(\mathbb{Z}[F_{\mu}]) \to \cdots$$

• In particular, $C_{2q}(F_{\mu}) = 0$ for $q \ge 2$.

Seifert, Blanchfield, computation

- (Levine for $\mu = 1$ 1969, Ko, Mio, 1987) The expression of $C_{2q-1}(F_{\mu})$ in terms of Seifert matrices.
- (Kearton for $\mu = 1$ 1973, Duval, 1986) The expression of $C_{2q-1}(F_{\mu})$ for $q \ge 2$ in terms of Blanchfield forms.
- (Levine for $\mu = 1$ 1970, Sheiham, 2002) The computation of $C_{2q-1}(F_{\mu})$ (infinitely generated) for $q \ge 2$, using Seifert forms.

The *L*-theory localization sequence

• Theorem (R., 2003) The Cappell-Shaneson exact sequence is the noncommutative *L*theory localization exact sequence

 $\cdots \to L_{n+3}(\mathbb{Z}[F_{\mu}]) \to L_{n+3}(\Sigma^{-1}\mathbb{Z}[F_{\mu}])$ $\to L_{n+3}(T(\mathbb{Z}[F_{\mu}], \Sigma)) \to L_{n+2}(\mathbb{Z}[F_{\mu}]) \to \cdots$ with $\Gamma_{n+3}(\Phi) = L_{n+3}(T(\mathbb{Z}[F_{\mu}], \Sigma))$ the cobordism group of (n+2)-dimensional \mathbb{Z} -contractible quadratic Poincaré complexes over $\mathbb{Z}[F_{\mu}]$. The F_{μ} -link concordance class of a boundary link $\bigcup_{\mu} S^n \subset S^{n+2}$ is the cobordism class of the complex $(\mathcal{C}(\tilde{f})_{*+1}, \psi)$ with $\tilde{f} : C(\tilde{X}) \to$ $C(\tilde{Y})$ the canonical \mathbb{Z} -coefficient chain equivalence.

• Can recover the middle dimensional Blanchfield-Duval form for n = 2q - 1.

The Cayley localization (I)

• For $\mu \ge 1$ and any ring R let A be the $(\mu + 1) \times (\mu + 1)$ triangular matrix ring

	(R)	$R\oplus R$	$R\oplus R$	• • •	$\left. \begin{array}{c} R \oplus R \\ 0 \end{array} \right)$
	0	R	0	• • •	0
A =	0	0	R	• • •	0
	:	:	:	•••	:
	0	0	0	•••	R
	`				/

- An *A*-module *V* consists of *R*-modules V_0, V_1, \ldots, V_μ and *R*-module morphisms $g_{i,1}, g_{i,2}: V_i \to V_0$, labelled by Cayley graph of F_μ .
- Let Q_0, Q_1, \ldots, Q_μ be the f.g. projective Amodule defined by the columns of A, and $\Pi = \{\sigma_{i,j} : Q_i \to Q_0 | i = 1, 2, \ldots, \mu, j = 1, 2\}$ with $\sigma_{i,j}$ the projection of the *j*th factor.

The Cayley localization (II)

• <u>Theorem</u> (Schofield, R.) The Cohn localization of A inverting Π is

$$\Pi^{-1}A = M_{\mu+1}(R[F_{\mu}])$$

with the endomorphism ring of $\Pi^{-1}Q_0$ freely generated by the automorphisms $z_i = \sigma_{i,1}(\sigma_{i,2})^{-1}$.

• <u>Example Let X be a manifold (e.g. boundary link exterior) with a map $f: X \to \bigvee_{\mu} S^1$ </u> transverse at $*_1 \cup \cdots \cup *_2$. Let X_0 be obtained from X by cutting out neighbourhoods of $X_i = f^{-1}(*_i)$ $(i = 1, 2, \ldots, \mu)$. The construction of the induced F_{μ} -cover \widetilde{X} from $X_0, X_1, \ldots, X_{\mu}$ and the Cayley graph gives a lifting of $\mathbb{Z}[F_{\mu}]$ -module chain complex $D(\widetilde{X})$ to an A-module chain complex $D(\widetilde{X})$ such that $\Pi^{-1}D(\widetilde{X}) = C(\widetilde{X})$ (with $R = \mathbb{Z}$).

Blanchfield and Seifert modules (I)

- A <u>Seifert module</u> (V, s) is a f.g. projective *R*-module *V* together with an endomorphism $s: V \to V$ and a direct sum decomposition $V = V_1 \oplus V_2 \oplus \cdots \oplus V_{\mu}$.
- A <u>Blanchfield</u> (= F_{μ} -<u>link</u>) <u>module</u> B is a homological dimension 1 $R[F_{\mu}]$ -module such that

$$\bigoplus (1-z_i) : \bigoplus_{i=1}^{\mu} B \to B; (b_1, b_2, \dots, b_{\mu}) \mapsto \sum_{i=1}^{\mu} (1-z_i)b_i$$

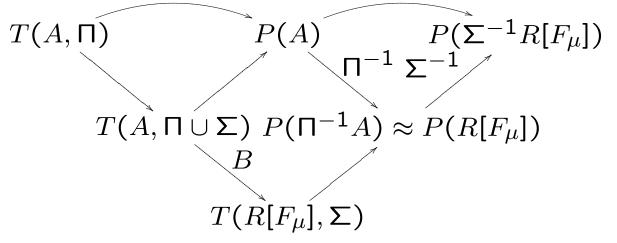
is an *R*-module isomorphism, $F_{\mu} = \langle z_1, z_2, \dots, z_{\mu} \rangle$.

• The covering of a Seifert module (V, s) is the Blanchfield module

 $B(V,s) = \operatorname{coker}(1 - s + sz : V[F_{\mu}] \to V[F_{\mu}])$ with $z = \sum_{i=1}^{\mu} \pi_i z_i : V[F_{\mu}] \to V[F_{\mu}]$ and $\pi_i : V \to V_i \to V$.

Blanchfield and Seifert modules (II)

• For any ring with involution *R* there is defined a commutative braid of exact categories with chain duality and functors



with $\Sigma^{-1}R[F_{\mu}]$ the augmentation Cohn localization, $\Pi^{-1}A$ the Cayley Cohn localization and

 $T(A, \Pi) = \{ \text{Seifert modules} (V, s) \text{ with } B(V, s) = 0 \}, \\ T(A, \Pi \cup \Sigma) = \{ \text{Seifert modules} \}, \\ T(R[F_{\mu}], \Sigma) = \{ \text{Blanchfield modules} \}$

• <u>Theorem</u> (R.+Sheiham) The braid induces a commutative braid of exact sequences in algebraic K and L-theory for $R = \mathbb{Z}$.